WO2008025625A1 - Leuchtmodul - Google Patents

Leuchtmodul Download PDF

Info

Publication number
WO2008025625A1
WO2008025625A1 PCT/EP2007/057834 EP2007057834W WO2008025625A1 WO 2008025625 A1 WO2008025625 A1 WO 2008025625A1 EP 2007057834 W EP2007057834 W EP 2007057834W WO 2008025625 A1 WO2008025625 A1 WO 2008025625A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting diode
silicon substrate
module according
light module
Prior art date
Application number
PCT/EP2007/057834
Other languages
English (en)
French (fr)
Inventor
Paul Farber
Michele Hirsch
Martin Neuburger
Sigmund Braun
Josef Richter
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP07788036A priority Critical patent/EP2059949A1/de
Publication of WO2008025625A1 publication Critical patent/WO2008025625A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q11/00Arrangement of monitoring devices for devices provided for in groups B60Q1/00 - B60Q9/00
    • B60Q11/005Arrangement of monitoring devices for devices provided for in groups B60Q1/00 - B60Q9/00 for lighting devices, e.g. indicating if lamps are burning or not
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • F21S41/153Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the invention relates to a light-emitting module having at least one light-emitting diode (LED) arranged on a substrate, wherein the substrate is a silicon substrate and the light-emitting diode is designed as a light-emitting diode chip.
  • LED light-emitting diode
  • the silicon oxide layer between the silicon substrate and the light-emitting diode chip.
  • the silicon oxide layer is formed as a silicon dioxide layer (SiO 2).
  • SiO 2 acts as an electrically insulating layer between the silicon substrate and the light-emitting diode chip.
  • the silicon oxide layer offers two further advantages, which favors the heat dissipation from the LED chip.
  • the silicon oxide layer which is produced, for example, by passivation of the silicon substrate surface, has a very low height (1 to 2 ⁇ m) compared to physically applied insulating layers, and, on the other hand, still has a moderate thermal conductivity Heat is dissipated by the light-emitting diode chip advantageous.
  • a metallization is applied as an electrical and / or thermal contact for the LED chip on the silicon oxide layer.
  • the metallization dissipates the heat generated in the LED chip quickly and easily.
  • bond connections can be established, for example by means of wire bonding.
  • the LED chip is contacted via the metallization directly electrically, so that a subsequent creation of, for example, bonds is not necessary.
  • the light-emitting diode chip is applied to the metallization by means of the so-called flip-chip technique. This means that the LED chip with its active contacting side is mounted towards the silicon substrate. This brings advantages especially for a package and short conductor lengths.
  • the electrical connections to the light-emitting diode chip are created simultaneously, and not sequentially as in wire bonding, so that a time saving is achieved.
  • the light-emitting diode chip is soldered to the metallization.
  • a silicon oxide layer is provided on the back side of the substrate.
  • the silicon substrate can be attached with its back directly to an electrically conductive support, such as on a printed circuit board, without additional insulation or a complex arrangement of the tracks on the circuit board, is necessary.
  • an electrically conductive support such as on a printed circuit board
  • heat of the silicon substrate can be dissipated very well to the carrier.
  • a plurality of light-emitting diode chips are arranged at a distance from one another on the front side of the silicon substrate.
  • the electrical insulation of the silicon oxide layer serves to electrically separate different areas of the lighting module, such as light-emitting diode chips connected in series, from each other.
  • the silicon oxide layer is an especially easy to implement insulation.
  • the use of light emitting diode Chips has the advantage over light-emitting diode solutions that use packaged LED's, especially for headlights of a motor vehicle, which are relatively large light sources due to the required number of individual LEDs, to enable particularly small light sources and thereby achieve a more flexible use.
  • the corresponding optics which are to project the generated light onto the street are smaller.
  • the light module according to the invention makes it possible in a simple manner to realize the luminous power per luminous module individually according to customer requirements, the basic structure of the luminous module remains unchanged and only the luminous module size is changed. This happens for example by singling by sawing, milling and / or lasers.
  • the light-emitting diode chips can be arranged in any manner on the silicon substrate, wherein they are advantageously arranged so that a favorable heat distribution is formed and / or so that the legally prescribed cut-off with the 15 ° increase for motor vehicle headlights is formed, which is mapped in a suitable manner by an additional optics on the road.
  • a light-emitting diode chip is arranged in a cavity. After the application of a light-emitting diode chip in a cavity, it is advantageously filled with a phosphorus conversion gel or an optically inert material in order to produce white light from the blue or UV-emitting light of the light-emitting diode chips. If the light-emitting diode chip is already phosphor-coated, encapsulation of the cavity with optically neutral material is advantageous.
  • the cavity is formed as ⁇ tzkavmaschine, for example by wet-chemical etching with KOH.
  • the flanks of the cavity have a metallization in order to achieve better optical properties for light extraction.
  • the metallized flanks form mirror surfaces.
  • a metallization is applied as a contact surface to a carrier, such as a printed circuit board, or to a heat sink on the back of the silicon substrate.
  • the metallization of the back is beneficial when a suitably sized heat sink is soldered to the back, which gives the generated heat efficiently to the environment.
  • an adhesive layer is applied thereto on the back side of the silicon substrate.
  • At least one sensor is applied to the silicon substrate, which detects the light output and / or the temperature of one or more light-emitting diode chips, since these are dependent on their performance.
  • the light output of headlamps is regulated by legal requirements.
  • the driver of a motor vehicle advantageously by means of a warning message is a defective
  • Light-emitting chip or a defective light module reported. Electrical parameters would not reflect the light output or only inadequate.
  • the sensor it is also possible to detect the aging effect of a light-emitting diode chip, so that this by a suitable control of the
  • Light-emitting diode chips is balanced. According to a development of the invention is advantageously at least one other function, such as dimming or turning off the light-emitting diode chip, an evaluation of integrated sensors, a control circuit and / or communication with an electronic control system for controlling the Light-emitting diode chips, integrated on the silicon substrate, so that an intelligent light-emitting module is realized.
  • the senor in the range of scattered light, in particular in the range of laterally exiting stray light of the light-emitting diode chip, arranged so that the actual light output is not adversely affected.
  • a sensor is provided for each light-emitting diode chip.
  • the acquired measurement data are either directly internally, ie in the light module, evaluated or guided to a control unit.
  • the silicon substrate offers the possibility of accommodating one or more sensors directly on the light-emitting medium, ie directly at the light source or the light-emitting diode chip.
  • a PN or PIN diode is advantageously used, which is advantageously mounted directly on the edge of an etched cavity and / or formed by doping a surface.
  • such a sensor forms one of the flanks of the cavity.
  • the sensor is attached or formed before the etching of the cavity. The subsequent etching of the cavity on the one hand allows the realization of the so-called bottom contact of the sensor and on the other hand performs a self-adjustment of the sensor.
  • the invention relates to a method for producing a light-emitting module, in particular a light-emitting module as described above, wherein initially a silicon oxide layer is applied to a silicon substrate or generated on a silicon substrate, and wherein subsequently a
  • Metallization is applied to the silicon oxide layer, and wherein finally a light-emitting diode chip is applied to the metallization.
  • a cavity is etched into the silicon substrate into which the light-emitting diode chip later is used.
  • the cavity is expediently filled with a phosphorus conversion gel or an optical inert mass in order to produce white light from the blue or UV-emitted light of the light-emitting diode chip.
  • Figure 1 is a sectional view of an inventive
  • FIG. 2 is a detailed sectional view of the light module
  • Figure 3 is a perspective view of a lighting module.
  • FIG. 1 shows a section of a section of a lighting module 1 which has a silicon substrate 2 and a light-emitting diode chip 3.
  • the silicon substrate 2 has an etched on its front side 4
  • Cavity 5 which is formed by a bottom surface 6 and side flanks 7, wherein in the illustration shown in Figure 1, only one formed by the cavity 5 flank 7 is shown.
  • the flank 7 opposite flank T is formed by a sensor 8.
  • the edge on its surface by a suitable doping profile so PN- or PIN-doped that the edge T acts as a sensor 8.
  • the light-emitting diode chip 3 is arranged with its rear side 9 on the bottom surface 6. When switched on, the LED chip emits both direct light, indicated by the arrows 10, as well as lateral scattered light, indicated by the arrows 11.
  • the sensor 8 registers the lateral scattered light 11, the measured data either intelligent internally, ie in the light module 1, evaluated or out, for example, to a control unit, out.
  • This measurement data make it possible to monitor the light output of the LED chip 3. This is particularly advantageous when using the light module 1 for a headlight of a motor vehicle, in which the light output is determined by legal specifications. If the sensor 8 detects a defective light-emitting diode chip, advantageously a warning message is transmitted to the driver. In addition, can be monitored and optionally compensated by the constant monitoring of the LED chip 3 by the sensor 8, the aging effect of the LED chip, so that the life of the light module is extended.
  • a silicon oxide layer 12 is advantageously provided, which causes an electrical insulation.
  • the silicon oxide layer 12 is a silicon dioxide layer.
  • a metallization as shown in FIG. 2, is provided.
  • FIG. 2 shows the detail of the lighting module 1 from FIG. 1 from a viewing direction offset by 90 degrees, so that the sensor 8 is not shown.
  • Illustrated by way of example is the silicon oxide layer 12, which is produced for example by passivation of the surface of the silicon substrate 2.
  • the metallization 13 is provided, by means of which the light-emitting diode chip 3 is thermally and / or electrically contacted.
  • the light-emitting diode chip 3 is set with its functional rear side 9 on the metallization 13 and soldered with it.
  • Heat arising in the light-emitting diode chip 3 is advantageously dissipated via the metallization 13 and the very thin silicon oxide layer 12 to the silicon substrate 2.
  • a Heatsink 15 arranged to the back 14 of the silicon substrate 2 .
  • a metallization is also applied to the rear side 14 of the silicon substrate 2.
  • the rear side 14 of the silicon substrate 2 is likewise insulated by means of a silicon oxide layer, wherein the metallization is applied only after the silicon oxide layer.
  • the entire silicon substrate 2 is passivated, so that the silicon oxide layer is formed on the entire surface, which should be done after the etching of the cavity 5.
  • the heat sink 15 can also be attached to the rear side 14 of the silicon substrate 2 by means of an adhesive layer arranged on the rear side 14 of the substrate 2.
  • the intrinsic flatness of the silicon substrate has an advantageous effect, so that the necessary adhesive layer is very thin.
  • FIG. 3 shows in a perspective view the
  • Light module 1 In the light module 1, a plurality of cavities 5 are arranged at a distance from one another on the front side 4 of the silicon substrate 2. In each cavity 5, a light-emitting diode chip 3 is fixed in the manner described above.
  • the passivation of the silicon substrate 2 by means of the silicon oxide layer 12 enables the light-emitting diode chips 3 to be connected in series.
  • the flanks 7 also have a metallization in order to improve the optical properties or the luminous power of the light-emitting module 1. They serve as a mirror surface.
  • This concept of the light module 1 allows a modular design in which the light output per light module 1, for example by variations of the module size, can be achieved with a single basic concept. This is of particular advantage for the design-specific considerations of today Automotive industry, in which the requirements for a light module vary widely.
  • the actual module size of the lighting module 1 can, for example, after the actual production by separating, such as by sawing, be set.
  • a light-emitting diode chip 3 and a sensor 8 are arranged in each cavity 5, wherein the sensor 8 is realized for example by a PN or PIN diode.
  • the silicon oxide layer the heat dissipation is advantageously improved and thus enables a higher light output to be generated on a smaller area.
  • the legally prescribed light-dark boundary can advantageously be imaged with a 15 degree rise already at the light module level.
  • the cavities 5 can be filled with either a phosphorus conversion gel or an optically inert mass in order to produce white light from the blue or UV-emitted light of the light-emitting diode chips 3.
  • suitable primary optics which project the generated light onto the road, are molded onto the lighting module. The control of the individual
  • Light-emitting diode chip 3 is advantageously integrated in the silicon substrate 2. Different additional functions, such as, for example, dimming or selective switching off of individual LED chips 3, are also advantageously realized in and / or on the silicon substrate.

Abstract

Die Erfindung betrifft ein Leuchtmodul (1) mit mindestens einer auf einem Substrat angeordneten Leuchtdiode (LED), wobei das Substrat als Siliziumsubstrat (2) und die Leuchtdiode als Leuchtdioden-Chip (3) ausgebildet ist, und wobei sich zwischen dem Siliziumsubstrat (2) und dem Leuchtdioden-Chip (3) eine Siliziumoxid-Schicht (12) befindet. Ferner betrifft die Erfindung ein Verfahren zum Herstellen eines derartigen Leuchtmoduls.

Description

Beschreibung
Titel Leuchtmodul
Die Erfindung betrifft ein Leuchtmodul mit mindestens einer auf einem Substrat angeordneten Leuchtdiode (LED), wobei das Substrat ein Siliziumsubstrat ist und die Leuchtdiode als Leuchtdioden-Chip ausgebildet ist.
Stand der Technik
Aus dem Stand der Technik sind Leuchtmodule der eingangs genannten Art bekannt. So wird in der Veröffentlichung "Packaging Design with Thermal Analysis of LED on Silicon Substrate, NSTI- Nanotech 2005, Vol. 3, pp. 513-516, 2005" ein Leuchtmodul beschrieben, bei dem mehrere Leuchtdioden, die als Leuchtdioden- Chips ausgebildet sind, auf einem Siliziumsubstrat angeordnet sind.
Offenbarung der Erfindung
Erfindungsgemäß ist vorgesehen, dass sich zwischen dem Siliziumsubstrat und dem Leuchtdioden-Chip eine Siliziumoxid- Schicht befindet. Besonders bevorzugt ist die Siliziumoxid-Schicht als Siliziumdioxid-Schicht (Siθ2) ausgebildet. Diese wirkt als elektrisch isolierende Schicht zwischen dem Siliziumsubstrat und dem Leuchtdioden-Chip. Außerdem bietet die Siliziumoxid-Schicht zwei weitere Vorteile, die die Wärmeabfuhr von dem Leuchtdioden- Chip begünstigt. Zum einen weist die Siliziumoxid-Schicht, die beispielsweise durch Passivierung der Siliziumsubstrat-Oberfläche erzeugt wird, im Vergleich zu physikalisch aufgebrachten Isolierschichten eine sehr geringe Höhe (1 bis 2 μm) auf, und zum anderen hat sie dabei immer noch eine moderate Wärmeleitfähigkeit, sodass Wärme von dem Leuchtdioden-Chip vorteilhaft abgeführt wird. Vorteilhafterweise ist auf der Siliziumoxid-Schicht eine Metallisierung als elektrischer und/oder thermischer Kontakt für den Leuchtdioden- Chip aufgebracht. Über die Metallisierung wird die im Leuchtdioden- Chip entstehende Wärme schnell und auf einfache Art und Weise abgeführt. Um eine elektrische Verbindung von dem Leuchtdioden- Chip zu der Metallisierung zu erhalten, können beispielsweise mittels Drahtbonden Bondverbindungen erstellt werden. Vorteilhafterweise wird der Leuchtdioden-Chip über die Metallisierung direkt elektrisch kontaktiert, sodass ein nachträgliches Erstellen von beispielsweise Bondverbindungen nicht notwendig ist. Der Leuchtdioden-Chip wird dabei mittels der sogenannten Flip-Chip-Technik auf die Metallisierung aufgebracht. Das bedeutet dass der Leuchtdioden- Chip mit seiner aktiven Kontaktierungsseite zum Siliziumsubstrat hin montiert wird. Dies bringt Vorteile besonders für ein Package und kurze Leiterlängen. Darüber werden die elektrischen Verbindungen zu dem Leuchtdioden-Chip gleichzeitig, und nicht nacheinander wie beim Drahtbonden, erstellt, sodass eine Zeitersparnis erreicht wird. Zusätzlich ist der Leuchtdioden-Chip mit der Metallisierung verlötet.
Nach einer Weiterbildung der Erfindung ist auf der Rückseite des Substrats eine Siliziumoxid-Schicht vorgesehen. So kann das Siliziumsubstrat mit seiner Rückseite direkt an einem elektrisch leitenden Träger, wie zum Beispiel an einer Leiterplatte, angebracht werden, ohne dass eine zusätzliche Isolierung oder eine aufwendige Anordnung der Leiterbahnen auf der Leiterplatte, notwendig ist. Darüber hinaus kann durch die Siliziumoxid-Schicht Wärme des Siliziumsubstrats sehr gut an den Träger abgeführt werden.
Zweckmäßigerweise sind auf der Vorderseite des Siliziumsubstrats mehrere Leuchtdioden-Chips beabstandet voneinander angeordnet. Die elektrische Isolierung der Siliziumoxid-Schicht dient dabei dazu, verschiedene Bereiche des Leuchtmoduls, wie zum Beispiel in Serie verschaltete Leuchtdioden-Chips, elektrisch voneinander zu trennen. Die Siliziumoxid-Schicht stellt dabei eine besonders leicht zu realisierende Isolierung dar. Die Verwendung von Leuchtdioden- Chips hat gegenüber Leuchtdioden-Lösungen, die verpackte LED's verwenden, insbesondere für Scheinwerfer eines Kraftfahrzeugs, welche aufgrund der benötigten Anzahl an Einzel-LED's zu relativ großen Lichtquellen werden, den Vorteil, besonders kleine Lichtquellen zu ermöglichen und dadurch einen flexibleren Einsatz zu erreichen. Ebenso fallen durch die Verwendung von Leuchtdioden- Chip-Lösungen die entsprechenden Optiken, die das erzeugte Licht auf beispielsweise die Straße projizieren sollen, kleiner aus. Durch das erfindungsgemäße Leuchtmodul ist es auf einfache Art und Weise möglich, die Leuchtleistung pro Leuchtmodul individuell nach Kundenwunsch zu realisieren, wobei der prinzipielle Aufbau des Leuchtmoduls unverändert bleibt und lediglich die Leuchtmodulgröße verändert wird. Die geschieht beispielsweise durch Vereinzeln mittels Zersägen, Fräsen und/oder Lasern. Die Leuchtdioden-Chips können dabei in beliebiger Art und Weise auf dem Siliziumsubstrat angeordnet werden, wobei sie vorteilhafterweise so angeordnet werden, dass eine günstige Wärmeverteilung entsteht und/oder so, dass die gesetzlich vorgeschriebene Hell-Dunkel-Grenze mit dem 15° Anstieg für Kraftfahrzeugscheinwerfer gebildet wird, welche in geeigneter Art und Weise durch eine zusätzliche Optik auf die Straße abgebildet wird.
Zweckmäßigerweise ist je ein Leuchtdioden-Chip in einer Kavität angeordnet. Nach dem Aufbringen eines Leuchtdioden-Chips in einer Kavität wird diese vorteilhafterweise mit einem Phosphor- Konversionsgel oder einer optisch inerten Masse aufgefüllt, um aus dem Blau- oder UV-emittierenden Licht der Leuchtdioden-Chips weißes Licht zu erzeugen. Falls der Leuchtdioden-Chip bereits phosphorbeschichtet ist, so ist eine Verkapselung der Kavität mit optisch neutralem Material vorteilhaft.
Zweckmäßigerweise ist die Kavität als Ätzkavität, beispielsweise durch nass-chemisches Ätzen mit KOH, ausgebildet. Nach einer Weiterbildung der Erfindung weisen die Flanken der Kavität eine Metallisierung auf, um bessere optische Eigenschaften zur Lichtauskopplung zu erreichen. Die metallisierten Flanken bilden dabei Spiegelflächen.
Nach einer Weiterbildung der Erfindung ist auf der Rückseite des Siliziumsubstrats eine Metallisierung als Kontaktfläche zu einem Träger, wie beispielsweise eine Leiterplatte, oder zu einem Kühlkörper aufgebracht. Die Metallisierung der Rückseite ist förderlich, wenn ein geeignet dimensionierter Kühlkörper an die Rückseite angelötet wird, der die erzeugte Wärme effizient an die Umgebung abgibt. Alternativ oder zusätzlich zum Verlöten ist dazu auf der Rückseite des Siliziumsubstrats eine Klebstoffschicht aufgebracht. Dabei wird ein Vorteil des Siliziumsubstrats, nämlich die intrinsische Ebenheit des Siliziums, ausgenutzt. Sie erlaubt es, sehr dünne Klebstoffschichten zu realisieren, die einen geringen Beitrag zum thermischen Gesamtwiderstand des Systems beitragen.
Nach einer Weiterbildung der Erfindung ist mindestens ein Sensor auf dem Siliziumsubstrat aufgebracht, der die Lichtleistung und/oder die Temperatur von einem oder mehreren Leuchtdioden-Chips erfasst, da diese in ihrer Leistung davon abhängig sind. Die Lichtleistung von Scheinwerfern wird durch rechtliche Vorgaben geregelt. Zusätzlich wird dem Fahrer eines Kraftfahrzeugs vorteilhafterweise mittels einer Warnmeldung ein defekter
Leuchtdioden-Chip beziehungsweise ein defektes Leuchtmodul gemeldet. Elektrische Kenngrößen würden die Lichtleistung nicht oder nur unzureichend wiedergeben. Mittels des Sensors ist es möglich auch den Alterungseffekt eines Leuchtdioden-Chips zu erfassen, sodass dieser durch eine geeignete Ansteuerung des
Leuchtdioden-Chips ausgeglichen wird. Nach einer Weiterbildung der Erfindung ist vorteilhafterweise mindestens eine weitere Funktion, wie zum Beispiel Dimmen oder Ausschalten des Leuchtdioden-Chips, eine Auswertung von integrierter Sensorik, ein Regelkreis und/oder eine Kommunikation mit einer Steuerelektronik zur Ansteuerung des Leuchtdioden-Chips, auf dem Siliziumsubstrat integriert, sodass ein intelligentes Leuchtmodul realisiert wird.
Vorteilhafterweise ist der Sensor im Bereich von Streulicht, insbesondere im Bereich von seitlich austretendem Streulicht des Leuchtdioden-Chips, angeordnet, sodass die eigentliche Lichtleistung nicht negativ beeinflusst wird.
Vorteilhafterweise ist für jeden Leuchtdioden-Chip ein Sensor vorgesehen. Die erfassten Messdaten werden dabei entweder direkt intern, also in dem Leuchtmodul, ausgewertet oder zu einer Steuereinheit geführt. Das Siliziumsubstrat bietet dabei erstmals die Möglichkeit, einen oder mehrere Sensoren direkt am Leuchtmedium, also direkt bei der Lichtquelle beziehungsweise dem Leuchtdioden- Chip unterzubringen. Als Sensor wird vorteilhafterweise eine PN oder PIN-Diode verwendet, die vorteilhafterweise direkt am Rand einer geätzten Kavität angebracht und/oder durch Dotierung einer Oberfläche ausgebildet ist. Vorteilhafterweise bildet ein derartiger Sensor dabei eine der Flanken der Kavität. Um die Prozesstechnik zu vereinfachen, wird der Sensor vor der Ätzung der Kavität angebracht beziehungsweise ausgebildet. Die anschließende Ätzung der Kavität erlaubt zum einen die Realisierung des sogenannten Bottom-Kontaktes des Sensors und führt zum anderen eine Selbstjustage des Sensors durch.
Ferner betrifft die Erfindung ein Verfahren zum Herstellen eines Leuchtmoduls, insbesondere eines Leuchtmoduls wie es oben beschrieben wurde, wobei zunächst eine Siliziumoxid-Schicht auf ein Siliziumsubstrat aufgebracht beziehungsweise auf einem Siliziumsubstrat erzeugt wird, und wobei anschließend eine
Metallisierung auf die Siliziumoxid-Schicht aufgebracht wird, und wobei abschließend ein Leuchtdioden-Chip auf die Metallisierung aufgebracht wird. Vorteilhafterweise wird vor dem Aufbringen beziehungsweise Erzeugen einer Siliziumoxid-Schicht eine Kavität in das Siliziumsubstrat geätzt, in die der Leuchtdioden-Chip später eingesetzt wird. Zweckmäßigerweise wird die Kavität nach dem Aufbringen und dem Verlöten des Leuchtdioden-Chips auf der Metallisierung mit einem Phosphor-Konversionsgel oder einer optischen inerten Masse aufgefüllt, um aus dem Blau- oder UV- emittierten Licht des Leuchtdioden-Chips weißes Licht zu erzeugen.
Kurze Beschreibung der Zeichnungen
Im Folgenden soll die Erfindung anhand einiger Zeichnungen näher erläutert werden. Dazu zeigen im Folgenden
Figur 1 eine Schnittsdarstellung eines erfindungsgemäßen
Leuchtmoduls,
Figur 2 eine detaillierte Schnittdarstellung des Leuchtmoduls und
Figur 3 eine perspektivische Darstellung eines Leuchtmoduls.
Ausführungsform(en) der Erfindung
Die Figur 1 zeigt als Ausführungsbeispiel der Erfindung in einer Schnittdarstellung einen Ausschnitt eines Leuchtmoduls 1 , das ein Siliziumsubstrat 2 und einen Leuchtdioden-Chip 3 aufweist. Das Siliziumsubstrat 2 weist an seiner Vorderseite 4 eine eingeätzte
Kavität 5 auf, die durch eine Bodenfläche 6 und seitlichen Flanken 7 gebildet wird, wobei in der in Figur 1 gezeigten Darstellung nur eine durch die Kavität 5 gebildete Flanke 7 gezeigt ist. Die dieser Flanke 7 gegenüberliegende Flanke T wird von einem Sensor 8 gebildet. Dazu ist die Flanke an ihrer Oberfläche durch ein geeignetes Dotierungsprofil so PN- oder PIN-dotiert, dass die Flanke T als Sensor 8 wirkt. In der Mitte des durch die Flanken 7 und T gebildeten Raums der Kavität 5 ist der Leuchtdioden-Chip 3 mit seiner Rückseite 9 auf der Bodenfläche 6 angeordnet. Im eingeschalteten Zustand emittiert der Leuchtdioden-Chip sowohl direktes Licht, durch die Pfeile 10 angedeutet, als auch seitliches Streulicht, durch die Pfeile 11 angedeutet. Der Sensor 8 registriert das seitliche Streulicht 11 , wobei die Messdaten entweder intelligent intern, also im Leuchtmodul 1 , ausgewertet oder nach außen, zum Beispiel zu einer Steuereinheit, geführt werden. Diese Messdaten ermöglichen die Überwachung der Lichtleistung des Leuchtdioden- Chips 3. Dies ist insbesondere von Vorteil bei der Verwendung des Leuchtmoduls 1 für einen Scheinwerfer eines Kraftfahrzeugs, bei dem die Lichtleistung durch rechtliche Vorgaben bestimmt ist. Detektiert der Sensor 8 einen defekten Leuchtdioden-Chip, so wird vorteilhafterweise dem Fahrer eine Warnmeldung übermittelt. Darüber hinaus kann durch die ständige Überwachung des Leuchtdioden-Chips 3 durch den Sensor 8 der Alterungseffekt des Leuchtdioden-Chips überwacht und gegebenenfalls ausgeglichen werden, sodass die Lebensdauer des Leuchtmoduls verlängert wird. Zwischen dem Leuchtdioden-Chip 3 und dem Siliziumsubstrat 2 ist vorteilhafterweise eine Siliziumoxid-Schicht 12 vorgesehen, die eine elektrische Isolierung bewirkt. Vorteilhafterweise ist die Siliziumoxid- Schicht 12 eine Siliziumdioxid-Schicht. Zum elektrischen und thermischen Kontaktieren des Leuchtdioden-Chips 3 ist eine Metallisierung, wie sie in Figur 2 dargestellt ist, vorgesehen.
Die Figur 2 zeigt den Ausschnitt des Leuchtmoduls 1 aus der Figur 1 aus einer um 90 Grad versetzten Blickrichtung, sodass der Sensor 8 nicht dargestellt ist. Beispielhaft dargestellt ist die Siliziumoxid- Schicht 12, die beispielsweise durch Passivierung der Oberfläche des Siliziumsubstrates 2 erstellt wird. Zwischen der Siliziumoxid- Schicht 12 und dem Leuchtdioden-Chip 3 ist die Metallisierung 13 vorgesehen, mittels derer der Leuchtdioden-Chip 3 thermisch und/oder elektrisch kontaktiert wird. Bei der Montage wird der Leuchtdioden-Chip 3 mit seiner funktionellen Rückseite 9 auf die Metallisierung 13 gesetzt und damit verlötet. In dem Leuchtdioden- Chip 3 entstehende Wärme wird vorteilhaft über die Metallisierung 13 und die sehr dünne Siliziumoxid-Schicht 12 an das Siliziumsubstrat 2 abgeführt. An die Rückseite 14 des Siliziumsubstrates 2 ist ein Kühlkörper 15 angeordnet. Um einen besonders vorteilhaften Wärmeübergang von dem Siliziumsubstrat 2 auf den Kühlkörper 15 zu erhalten, ist auch an der Rückseite 14 des Siliziumsubstrates 2 eine Metallisierung aufgebracht. Um einen elektrischen Kontakt zwischen dem Siliziumsubstrat 2 und dem Kühlkörper 15 oder beispielsweise einer Leiterplatte zu vermeiden, ist ebenfalls die Rückseite 14 des Siliziumsubstrats 2 mittels einer Siliziumoxid- Schicht isoliert, wobei die Metallisierung erst nach der Siliziumoxid- Schicht aufgebracht wird. Vorteilhafterweise wird das gesamte Siliziumsubstrat 2 passiviert, sodass die Siliziumoxid-Schicht an der gesamten Oberfläche ausgebildet ist, wobei dies nach dem Einätzen der Kavität 5 geschehen sollte.
Alternativ kann der Kühlkörper 15 auch mittels einer an der Rückseite 14 des Substrats 2 angeordneten Klebstoffschicht an der Rückseite 14 des Siliziumsubstrats 2 befestigt werden. Die intrinsische Ebenheit des Siliziumsubstrats wirkt sich dabei vorteilhaft aus, sodass die notwendige Klebstoffschicht sehr dünn ausfällt.
Die Figur 3 zeigt in einer perspektivischen Darstellung das
Leuchtmodul 1. In dem Leuchtmodul 1 sind mehrere Kavitäten 5 beabstandet zueinander auf der Vorderseite 4 des Siliziumsubstrats 2 angeordnet. In jeder Kavität 5 ist ein Leuchtdioden-Chip 3 auf die oben beschriebene Art und Weise befestigt. Die Passivierung des Siliziumsubstrats 2 mittels der Siliziumoxid-Schicht 12 ermöglicht das In-Reihe-Schalten der Leuchtdioden-Chips 3. Vorteilhafterweise weisen auch die Flanken 7 eine Metallisierung auf, um die optischen Eigenschaften beziehungsweise die Leuchtleistung des Leuchtmoduls 1 zu verbessern. Sie dienen dabei als Spiegelfläche.
Dieses Konzept des Leuchtmoduls 1 erlaubt einen modularen Aufbau bei welchem die Lichtleistung pro Leuchtmodul 1 , zum Beispiel durch Variationen der Modulgröße, mit einem einzigen Grundkonzept erzielt werden kann. Dies ist von besonderem Vorteil für die designspezifischen Überlegungen der heutigen Kraftfahrzeugindustrie, bei der die Anforderungen an ein Leuchtmodul stark variieren. Die eigentliche Modulgröße des Leuchtmoduls 1 kann beispielsweise nach der eigentlichen Herstellung durch Vereinzeln, wie zum Beispiel mittels Zersägen, festgelegt werden. Vorteilhafterweise ist in jeder Kavität 5 ein Leuchtdioden-Chip 3 und ein Sensor 8 angeordnet, wobei der Sensor 8 beispielsweise durch eine PN beziehungsweise PIN-Diode realisiert ist. Durch Verwendung der Siliziumoxid-Schicht wird die Wärmeabfuhr vorteilhaft verbessert und somit ermöglicht, dass auf einer kleineren Fläche eine höhere Lichtleistung erzeugt werden kann. Durch eine geeignete Anordnung der Leuchtdioden-Chips 3 kann vorteilhafterweise bereits auf Leuchtmodulebene die gesetzlich vorgeschriebene Hell-Dunkel-Grenze mit einem 15-Grad-Anstieg abgebildet werden. Die Kavitäten 5 können nach dem Aufbringen des Leuchtdioden-Chips 3 entweder mit einem Phosphor- Konversionsgel oder einer optisch inerten Masse aufgefüllt werden, um aus dem Blau- oder UV-emittierten Licht der Leuchtdioden-Chips 3 weißes Licht zu erzeugen. Es ist denkbar, dass eine geeignete Primäroptik, die das erzeugte Licht auf die Straße projiziert, auf das Leuchtmodul gemoldet wird. Die Ansteuerung der einzelnen
Leuchtdioden-Chips 3 ist vorteilhafterweise in dem Siliziumsubstrat 2 integriert. Unterschiedliche Zusatzfunktionen, wie zum Beispiel ein Dimmen oder ein punktuelles Ausschalten einzelner Leuchtdioden- Chips 3 ist ebenfalls vorteilhafterweise in und/oder an dem Siliziumsubstrat realisiert.

Claims

Ansprüche
1. Leuchtmodul mit mindestens einer auf einem Substrat angeordneten Leuchtdiode (LED), wobei das Substrat als Siliziumsubstrat und die Leuchtdiode als Leuchtdioden-Chip ausgebildet ist, dadurch gekennzeichnet, dass sich zwischen dem Siliziumsubstrat (2) und dem Leuchtdioden- Chip (3) eine Siliziumoxid-Schicht (12) befindet.
2. Leuchtmodul nach Anspruch 1 , dadurch gekennzeichnet, dass auf der Siliziumoxid-Schicht (12) eine Metallisierung (13) als elektrischer und/oder thermischer Kontakt für den Leuchtdioden-Chip (3) aufgebracht ist.
3. Leuchtmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf der Rückseite (14) des Siliziumsubstrats (2) eine Siliziumoxid-Schicht aufgebracht ist.
4. Leuchtmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere Leuchtdioden-Chips
(3) beabstandet voneinander auf dem Siliziumsubstrat (2) angeordnet sind.
5. Leuchtmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leuchtdioden-Chips (3) so angeordnet sind, dass die für Kraftfahrzeugscheinwerfer vorgeschriebene Hell-Dunkel-Grenze realisiert ist.
6. Leuchtmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass je ein Leuchtdioden-Chip (3) in einer an der Vorderseite (4) des Siliziumsubstrats (2) ausgebildeten Kavität (5) angeordnet ist.
7. Leuchtmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kavität (5) eine Ätzkavität ist.
8. Leuchtmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf mindestens einer Flanke (7) der Kavität (5) eine Metallisierung (13) aufgebracht ist.
9. Leuchtmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf der Rückseite (14) des
Siliziumsubstrats (2) eine Metallisierung (13) aufgebracht ist.
10. Leuchtmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf der Rückseite (14) des Siliziumsubstrats (2) eine Klebstoffschicht und/oder Lötschicht aufgebracht ist.
11. Leuchtmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an der Rückseite (14) des Siliziumsubstrats (2) ein Kühlkörper (15) angeordnet ist.
12. Leuchtmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens ein Sensor (8) auf dem Siliziumsubstrat (2) angeordnet und/oder integriert ist.
13. Leuchtmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sensor (8) im Bereich von seitlich austretendem Streulicht des Leuchtdioden-Chips (3) angeordnet ist.
14. Leuchtmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für jeden Leuchtdioden-Chip (3) mindestens ein Sensor (8) vorgesehen ist.
15. Leuchtmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sensor (8) in der Kavität (5) ausgebildet ist.
16. Leuchtmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf und/oder in dem Silizium- Substrat (2) mindestens eine weitere Zusatzfunktionen integriert ist.
17. Verfahren zum Herstellen eines Leuchtmoduls, insbesondere nach einem oder mehreren der vorhergehenden Ansprüche, mit folgenden Schritten:
- Aufbringen/Erzeugen mindestens einer Siliziumoxid- Schicht auf das Siliziumsubstrat,
- Aufbringen einer Metallisierung auf die Siliziumoxid- Schicht,
- Aufbringung mindestens eines Leuchtdioden-Chips auf die Metallisierung.
PCT/EP2007/057834 2006-08-30 2007-07-30 Leuchtmodul WO2008025625A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07788036A EP2059949A1 (de) 2006-08-30 2007-07-30 Leuchtmodul

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006040641A DE102006040641A1 (de) 2006-08-30 2006-08-30 Leuchtmodul
DE102006040641.9 2006-08-30

Publications (1)

Publication Number Publication Date
WO2008025625A1 true WO2008025625A1 (de) 2008-03-06

Family

ID=38477050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/057834 WO2008025625A1 (de) 2006-08-30 2007-07-30 Leuchtmodul

Country Status (3)

Country Link
EP (1) EP2059949A1 (de)
DE (1) DE102006040641A1 (de)
WO (1) WO2008025625A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015104506A1 (de) * 2015-03-25 2016-09-29 Hella Kgaa Hueck & Co. Beleuchtungsvorrichtung für Fahrzeuge
EP1988577B1 (de) * 2007-04-30 2017-04-05 Tridonic Jennersdorf GmbH Leuchtdiode-Modul mit Siliziumplattform
EP3324437A1 (de) * 2016-11-16 2018-05-23 Melexis Technologies NV Vorrichtung mit lichtemittierenden dioden
WO2018103880A1 (de) * 2016-12-08 2018-06-14 Inova Semiconductors Gmbh Kompakte leuchtdioden-anordnung

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008025923B4 (de) * 2008-05-30 2020-06-18 Osram Opto Semiconductors Gmbh Strahlungsemittierende Vorrichtung
DE102008043345A1 (de) 2008-10-31 2010-05-06 Robert Bosch Gmbh Leuchtmodul
DE202010016958U1 (de) 2010-12-23 2011-06-27 Automotive Lighting Reutlingen GmbH, 72762 Leuchtmodul für eine Beleuchtungseinrichtung eines Kraftfahrzeugs mit auf einem Silizium-Substrat angeordneten Halbleiterlichtquellen
DE102015104499A1 (de) * 2015-03-25 2016-09-29 Hella Kgaa Hueck & Co. Beleuchtungsvorrichtung für Fahrzeuge
DE102017114011B4 (de) 2017-06-22 2021-09-16 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches bauelement

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137121A (en) * 1997-10-01 2000-10-24 Mitsubishi Denki Kabushiki Kaisha Integrated semiconductor light generating and detecting device
US6534794B1 (en) * 1999-08-05 2003-03-18 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting unit, optical apparatus and optical disk system having heat sinking means and a heating element incorporated with the mounting system
EP1324396A1 (de) * 2000-09-29 2003-07-02 Sanyo Electric Co., Ltd. Optische empfangsvorrichtung und fotohalbleiteranordnung mit dieser vorrichtung
US20030218666A1 (en) * 2002-05-22 2003-11-27 Thoughtbeam, Inc. Projection print engine and method for forming same
EP1400747A2 (de) * 2002-09-18 2004-03-24 DaimlerChrysler AG Scheinwerfer mit pyramidenstumpfförmigen Reflektorstrukturen
US20050180698A1 (en) * 2004-02-12 2005-08-18 Ralf Hauffe Light transmitting modules with optical power monitoring
DE102005008339A1 (de) * 2004-02-23 2005-10-06 Stanley Electric Co. Ltd. Leuchtdiode (LED) und Herstellungsverfahren dafür
WO2006012842A2 (de) * 2004-07-26 2006-02-09 Osram Opto Semiconductors Gmbh Elektromagnetische strahlung emittierendes optoelektronisches bauelement und leuchtmodul

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137121A (en) * 1997-10-01 2000-10-24 Mitsubishi Denki Kabushiki Kaisha Integrated semiconductor light generating and detecting device
US6534794B1 (en) * 1999-08-05 2003-03-18 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting unit, optical apparatus and optical disk system having heat sinking means and a heating element incorporated with the mounting system
EP1324396A1 (de) * 2000-09-29 2003-07-02 Sanyo Electric Co., Ltd. Optische empfangsvorrichtung und fotohalbleiteranordnung mit dieser vorrichtung
US20030218666A1 (en) * 2002-05-22 2003-11-27 Thoughtbeam, Inc. Projection print engine and method for forming same
EP1400747A2 (de) * 2002-09-18 2004-03-24 DaimlerChrysler AG Scheinwerfer mit pyramidenstumpfförmigen Reflektorstrukturen
US20050180698A1 (en) * 2004-02-12 2005-08-18 Ralf Hauffe Light transmitting modules with optical power monitoring
DE102005008339A1 (de) * 2004-02-23 2005-10-06 Stanley Electric Co. Ltd. Leuchtdiode (LED) und Herstellungsverfahren dafür
WO2006012842A2 (de) * 2004-07-26 2006-02-09 Osram Opto Semiconductors Gmbh Elektromagnetische strahlung emittierendes optoelektronisches bauelement und leuchtmodul

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1988577B1 (de) * 2007-04-30 2017-04-05 Tridonic Jennersdorf GmbH Leuchtdiode-Modul mit Siliziumplattform
DE102015104506A1 (de) * 2015-03-25 2016-09-29 Hella Kgaa Hueck & Co. Beleuchtungsvorrichtung für Fahrzeuge
EP3324437A1 (de) * 2016-11-16 2018-05-23 Melexis Technologies NV Vorrichtung mit lichtemittierenden dioden
US10020294B2 (en) 2016-11-16 2018-07-10 Melexis Technologies Nv Device with light emitting diodes
WO2018103880A1 (de) * 2016-12-08 2018-06-14 Inova Semiconductors Gmbh Kompakte leuchtdioden-anordnung
CN109417069A (zh) * 2016-12-08 2019-03-01 伊诺瓦半导体有限责任公司 紧凑型发光二极管的配置装置
US10688926B2 (en) 2016-12-08 2020-06-23 Inova Semiconductors Gmbh Compact light-emitting diode arrangement
EP3465754B1 (de) * 2016-12-08 2021-01-13 INOVA Semiconductors GmbH Kompakte leuchtdioden-anordnung
CN109417069B (zh) * 2016-12-08 2022-09-27 伊诺瓦半导体有限责任公司 紧凑型发光二极管的配置装置

Also Published As

Publication number Publication date
EP2059949A1 (de) 2009-05-20
DE102006040641A1 (de) 2008-03-13

Similar Documents

Publication Publication Date Title
EP2059949A1 (de) Leuchtmodul
EP1771891B1 (de) Lichtemittierendes bauelement und leuchtmodul
EP1923626B1 (de) LED-Modul mit integrierter Ansteuerung
EP2130225B1 (de) Licht emittierendes modul
EP2258000B1 (de) Optoelektronisches halbleiterbauteil und verfahren zur herstellung eines optoelektronischen halbleiterbauteils
DE102004044149A1 (de) Hochleistungs-Leuchtdiodenvorrichtung
DE112009001543B4 (de) Herstellung kompakter optoelektronischer Baugruppen
DE112014005960B4 (de) Adaptiver Scheinwerfer für ein Kraftfahrzeug mit optoelektronischen Halbleiterbauteilen
CN105575955A (zh) 发光装置以及配光可变前照灯系统
DE102005045587A1 (de) Baugruppe mit einem Licht emittierenden Halbleiterelement
DE102005049685A1 (de) Multifunktions-Kfz-Scheinwerfermodul insbesondere für den Frontbereich eines Fahrzeugs
WO2008014771A1 (de) Beleuchtungsanordnung
DE202009018965U1 (de) Effiziente LED-Anordnung
DE102006038099A1 (de) Licht emittierende Vorrichtung
DE102008025491A1 (de) Optoelektronisches Halbleiterbauteil und Leiterplatte
EP2469596A2 (de) Leuchtmodul für eine Beleuchtungseinrichtung eines Kraftfahrzeugs mit auf einem Silizium-Substrat angeordneten Halbleiterlichtquellen
EP1905287A2 (de) Gehäuse für ein elektromagnetische strahlung emittierendes optoelektronisches bauelement, elektromagnetische strahlung emittierendes bauelement und verfahren zum herstellen eines gehäuses oder eines bauelements
EP2339900A2 (de) Lichtmodul für eine Beleuchtungseinrichtung eines Kraftfahrzeugs sowie Beleuchtungseinrichtung mit einem solchen Lichtmodul
EP2999056B1 (de) Steckverbindung zur elektrischen Kontaktierung von Leiterbahnträgern in Fahrzeugleuchten, insbesondere von Metallkernplatinen
DE102017102619A1 (de) Led-einheit
DE102006059702A1 (de) Optoelektronisches Bauelement
WO2013064405A1 (de) Beleuchtungseinrichtung mit halbleiterlichtquellen
DE102008054490A1 (de) Stromversorgungssteuergerät für Glühkerzen
DE102006038552A1 (de) Beleuchtungsmodul und Verfahren zur Herstellung eines Beleuchtungsmoduls
DE102008054235A1 (de) Optoelektronisches Bauteil

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2007788036

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007788036

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07788036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: RU