WO2008023601A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2008023601A1
WO2008023601A1 PCT/JP2007/065832 JP2007065832W WO2008023601A1 WO 2008023601 A1 WO2008023601 A1 WO 2008023601A1 JP 2007065832 W JP2007065832 W JP 2007065832W WO 2008023601 A1 WO2008023601 A1 WO 2008023601A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
subpixel
voltage
period
display device
Prior art date
Application number
PCT/JP2007/065832
Other languages
French (fr)
Japanese (ja)
Inventor
Fumikazu Shimoshikiryoh
Masae Kitayama
Kentaro Irie
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2008530861A priority Critical patent/JP5043847B2/en
Priority to US12/310,360 priority patent/US8638282B2/en
Priority to EP07792475.1A priority patent/EP2056286B1/en
Priority to CN200780031269.4A priority patent/CN101506866B/en
Publication of WO2008023601A1 publication Critical patent/WO2008023601A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/04Display protection
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device with improved viewing angle dependency of y characteristics.
  • a liquid crystal display device is a flat display device having excellent features such as high definition, thinness, light weight, and low power consumption.
  • liquid crystal display devices have been improved in display performance, production capacity, and price for other display devices.
  • the market scale is expanding rapidly as competitiveness increases.
  • a conventional twisted 'nematic' mode (TN mode) liquid crystal display device the long axis of liquid crystal molecules having positive dielectric anisotropy is substantially parallel to the substrate surface,
  • the alignment treatment is performed so that the substrate is twisted approximately 90 degrees along the thickness direction of the liquid crystal layer.
  • the twist alignment tilt alignment
  • the amount of transmitted light is controlled by utilizing the change in optical rotation accompanying the change in orientation of liquid crystal molecules due to voltage.
  • a TN mode liquid crystal display device While such a TN mode liquid crystal display device has a wide production margin and excellent productivity, it has a problem in display performance, particularly viewing angle characteristics. Specifically, when the display surface of a TN mode liquid crystal display device is observed from an oblique direction, the contrast ratio of the display is significantly reduced, and multiple tones from black to white are clearly observed when viewed from the front. The problem is that the brightness difference between gradations becomes very unclear when the image is observed from an oblique direction. Furthermore, the phenomenon that the gradation characteristics of the display are reversed and a darker portion when observed from the front is observed brighter when observed from an oblique direction (so-called gradation inversion phenomenon) is also a problem.
  • liquid crystal display devices with improved viewing angle characteristics in TN mode liquid crystal display devices include in-plane 'switching' mode (IPS mode), multi-domain 'vertical' aligned 'mode (MVA mode), shaft Liquid crystal display devices such as the symmetric alignment mode (ASM mode) have been developed.
  • IPS mode in-plane 'switching' mode
  • MVA mode multi-domain 'vertical' aligned 'mode
  • ASM mode shaft Liquid crystal display devices
  • LCDs wide viewing angle mode
  • the ⁇ characteristic is the gradation dependence of the display luminance.
  • the fact that the ⁇ characteristic is different between the front direction and the diagonal direction means that the gradation display state differs depending on the observation direction. This is especially a problem when displaying TV or displaying TV broadcasts.
  • the effective voltage of the liquid crystal layer of the second sub-pixel is made different from the effective voltage of the liquid crystal layer of the first sub-pixel in the intermediate luminance display.
  • the brightness of the 1 sub-pixel and the brightness of the 2nd sub-pixel are made different, thereby improving the viewing angle dependency of the ⁇ characteristic.
  • the transmittance of the liquid crystal layer changes according to the absolute value of the effective voltage regardless of the direction of the electric field applied to the liquid crystal layer (the direction of the lines of electric force).
  • the clarity of the first subpixel and the second subpixel is inverted every vertical scanning period (eg, the first subscanning period in the first vertical scanning period).
  • the luminance of the pixel is higher than that of the second sub-pixel, and the luminance of the second sub-pixel is higher than that of the first sub-pixel in the second vertical scanning period), and the direction of the electric field applied to the liquid crystal layer are inverted every vertical scanning period. If one subpixel of a plurality of subpixels is always bright, the display may appear rough.
  • the first subpixel and the second subpixel are displayed every vertical scanning period. By reversing the brightness of the sub-pixel This prevents display roughness.
  • multi-pixel display display or driving for improving the viewing angle dependency of the ⁇ characteristic by making the luminances of the plurality of sub-pixels different
  • multi-pixel driving It may be called area gradation display, area gradation drive, or the like.
  • Patent Document 1 JP 2004-62146 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-295160 (US Pat. No. 6958791) Disclosure of Invention
  • the absolute value of the effective voltage applied to the first subpixel is larger than the absolute value of the effective voltage applied to the second subpixel in a certain vertical scanning period.
  • the electric field applied to the liquid crystal layer is directed from the subpixel electrode side to the counter electrode side (the state where the electric field is First polarity ”).
  • the absolute value of the effective voltage applied to the second subpixel is larger than the absolute value of the effective voltage applied to the first subpixel, and the second subpixel is more than the first subpixel.
  • the electric field applied to the liquid crystal layer is directed from the counter electrode side to the sub-pixel electrode side (the state where the electric field is directed in this way is called “second polarity”).
  • the absolute value of the effective voltage applied to the first sub-pixel is larger than the absolute value of the effective voltage applied to the second sub-pixel, and the first sub-pixel becomes the second sub-pixel.
  • the absolute value of the effective voltage applied to the second subpixel becomes larger than the absolute value of the effective voltage applied to the first subpixel.
  • the second subpixel is brighter than the first subpixel and has the second polarity.
  • the effective voltage applied to the first sub-pixel When the absolute value of is large, it is exclusively the first polarity, and when the absolute value of the effective voltage applied to the second subpixel is large, it is exclusively the second polarity, so the effective voltage applied to the first subpixel
  • the average value of is the first polarity and the average value of the effective voltage applied to the second subpixel is the second polarity.
  • the pixel is applied to the liquid crystal layer by AC driving (the first polarity voltage and the second polarity voltage having the same absolute value are alternately applied). The average voltage is zero. If the average voltage does not become zero due to AC driving, the average voltage is set to zero by adjusting the counter voltage.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a liquid crystal display device in which occurrence of reliability problems such as display roughness and burn-in is suppressed. .
  • the liquid crystal display device of the present invention is a liquid crystal display device including a plurality of pixels each including a first subpixel and a second subpixel, and each of the first subpixel and the second subpixel.
  • Each includes a counter electrode, a sub-pixel electrode, and a liquid crystal layer disposed between the counter electrode and the sub-pixel electrode, and the first sub-pixel and the second sub-pixel are provided.
  • the subpixel electrodes are respectively separate first and second subpixel electrodes, and the counter electrodes of the first and second subpixels are a common single electrode;
  • the first sub-pixel and the first sub-pixel and the first sub-pixel and at least two of the even vertical scanning periods are displayed.
  • the brightness of the second sub-pixel is different, and the first sub-pixel and the second sub-pixel have a second polarity and a length of the first polarity period in which the polarity of the even number of vertical scanning periods is the first polarity.
  • the average value of the effective voltage applied to the liquid crystal layer of the first subpixel in each of the first polarity period and the second polarity period equal to the length of the second polarity period that is polar Effective voltage applied to the liquid crystal layer of the second subpixel The difference between the average value is substantially zero.
  • the effective voltage applied to the liquid crystal layer of the first subpixel in each of the plurality of pixels is VLspa, and the effective voltage applied to the liquid crystal layer of the second subpixel.
  • VLspb of the four consecutive vertical scanning periods two vertical scanning periods are the first polarity period, and the remaining two vertical scanning periods are the second polarity period, and the first polarity Of the two vertical scanning periods of at least one of the period and the second polarity period, one satisfies I VLspa I> I VLspb
  • an effective voltage applied to the liquid crystal layer of the first subpixel is VLspa, and an effective voltage applied to the liquid crystal layer of the second subpixel.
  • VLspb of the four consecutive vertical scanning periods two vertical scanning periods are the first polarity period, and the remaining two vertical scanning periods are the second polarity period, and the first polarity
  • the value of VI Lspa I and the value of I VLspb I in one of the two vertical scanning periods of the period and at least one of the second polarity periods are the values of I in the other vertical scanning period. It is equal to the value of VLspb I and I VLs pa I respectively.
  • is equal to the number of vertical scanning periods satisfying I VLspa I ⁇ I VLspb
  • the plurality of pixels are arranged in a matrix in a plurality of row directions and a plurality of column directions, and in each of the plurality of pixels, the first sub pixel and the second sub pixel are arranged. Pixels are arranged along the column direction.
  • the voltage of the first subpixel electrode and the second subpixel electrode changes according to a voltage change of the corresponding auxiliary capacitance line.
  • the voltage of the auxiliary capacitance line corresponding to the first subpixel electrode is the voltage of the auxiliary capacitance line corresponding to the second subpixel electrode. Change in different directions.
  • the voltage of the second subpixel electrode of a pixel of the plurality of pixels and the voltage of the first subpixel electrode of a pixel adjacent to the certain pixel in the column direction Changes according to the voltage change of the common auxiliary capacitance line.
  • the voltage of the second subpixel electrode of a pixel of the plurality of pixels and the voltage of the first subpixel electrode of a pixel adjacent in the column direction of the pixel Changes according to the voltage change of different auxiliary capacitance wirings.
  • the first subpixel electrode is connected to the same signal line as the second subpixel electrode via a corresponding switching element.
  • the first subpixel electrode is connected to a first signal line via a first switching element
  • the second subpixel electrode is a first electrode. It is connected to the second signal line through two switching elements.
  • one of the two vertical scanning periods of the first polarity period and the second polarity period is one in which one of the two vertical scanning periods satisfies I VLspa I> I VLspb
  • the other is a vertical scanning period that satisfies I VLspa I ⁇ I VLspb
  • V Lspb I is inverted every one vertical scanning period, and the first subpixel and the second subpixel The subpixel polarity is inverted every two vertical scan periods.
  • the frame frequency is 60Hz.
  • V Lspb I is inverted every two vertical scanning periods, and the first subpixel and the second subpixel The polarity of the subpixel is inverted every vertical scanning period.
  • the frame frequency is 120Hz.
  • V Lspb I is inverted every two vertical scanning periods, and the first subpixel and the second subpixel When the polarity of the sub-pixel is inverted every two vertical scanning periods and the polarity of the first sub-pixel and the second sub-pixel is inverted, the magnitude relationship between I VLspa I and I VLspb
  • one of the two vertical scanning periods of the first polarity period and the second polarity period is a vertical scanning period that satisfies I VLspa I> I VLspb
  • the voltage of the auxiliary capacitance line corresponding to the first subpixel electrode and the second subpixel electrode is a first level and a second level that is higher than the first level. And a third level that is higher in voltage than the second level.
  • the first subpixel electrode has a display area equal to that of the second subpixel electrode.
  • FIG. 1 is a schematic diagram showing the structure of a first embodiment of a liquid crystal display device according to the present invention.
  • FIG. 2 is a schematic block diagram of a liquid crystal panel in the liquid crystal display device of the first embodiment.
  • FIG. 3 (a) is a schematic plan view of one pixel in the liquid crystal display device of the first embodiment
  • FIG. 3 (b) is a schematic cross-sectional view of one subpixel.
  • FIG.4 Brightness, polarity, and effective voltage of the first and second subpixels in a conventional liquid crystal display device
  • A is a schematic diagram showing changes in brightness and polarity and polarity of the first and second subpixels, and (b) is applied to the liquid crystal layer of the first subpixel.
  • FIG. 6C is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer of the second sub-pixel.
  • FIG. 5 Schematic diagram showing changes in brightness, polarity, and effective voltage of the first and second sub-pixels in another conventional liquid crystal display device, and (a) shows the brightness and polarity of the first and second sub-pixels.
  • (B) is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer of the first subpixel
  • (c) is a schematic diagram showing the change of the effective voltage applied to the liquid crystal layer of the second subpixel. It is a schematic diagram showing a change in effective voltage.
  • FIG. 6 is a schematic view showing changes in brightness, polarity, and effective voltage of the first and second subpixels in the liquid crystal display device of the first embodiment.
  • FIG. 6 (a) is a diagram of the first and second subpixels.
  • FIG. 4 is a schematic diagram showing changes in brightness and polarity,
  • (b) is a schematic diagram showing changes in effective voltage applied to the liquid crystal layer of the first subpixel,
  • (c) is a schematic diagram of the second subpixel. It is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer.
  • FIG. 7 is a schematic diagram showing an example of a pixel structure of the liquid crystal display device of the first embodiment.
  • FIG. 8 is an equivalent circuit diagram of one pixel in the liquid crystal display device of the first embodiment.
  • FIG. 9 is a diagram showing an example of various voltage waveforms used for driving the liquid crystal display device of the first embodiment.
  • FIG. 10 A diagram showing the relationship of effective voltages applied to the liquid crystal layer of the sub-pixel in the liquid crystal display device of the first embodiment.
  • FIG. 11 It is a diagram showing the ⁇ characteristic of the liquid crystal display device of the first embodiment, (a) is a diagram showing the ⁇ characteristic at the right 60 ° viewing angle, and (b) is the diagram showing the ⁇ property at the 60 ° viewing angle at the upper right.
  • FIG. 11 It is a diagram showing the ⁇ characteristic of the liquid crystal display device of the first embodiment, (a) is a diagram showing the ⁇ characteristic at the right 60 ° viewing angle, and (b) is the diagram showing the ⁇ property at the 60 ° viewing angle at the upper right.
  • FIG. 12 A diagram showing an example of various voltage waveforms over a plurality of vertical scanning periods in the liquid crystal display device of the first embodiment.
  • FIG. 15 is a diagram showing examples of various voltage waveforms in the liquid crystal display device of the first embodiment.
  • FIG. 16 A diagram illustrating examples of various voltage waveforms over a plurality of vertical scanning periods in the liquid crystal display device of the first embodiment.
  • FIG. 17 is a schematic diagram showing the change in brightness and darkness and polarity of subpixels in the liquid crystal display device of the first embodiment, and the initial auxiliary capacitance voltage in the vertical scanning period of each subpixel.
  • FIG. 5 is a diagram showing an example of various voltage waveforms over a plurality of vertical scanning periods in the liquid crystal display device of the first embodiment.
  • 19 (a) and 19 (c) are diagrams showing examples of various voltage waveforms over a plurality of vertical scanning periods in the liquid crystal display device of the first embodiment.
  • FIG. 20 A diagram showing an example of various voltage waveforms over a plurality of vertical scanning periods in the liquid crystal display device of the first embodiment.
  • FIG. 21 is a diagram showing an example of various voltage waveforms over a plurality of vertical scanning periods in the liquid crystal display device of the first embodiment.
  • FIG. 22 is a schematic diagram showing brightness and darkness and polarity of subpixels in the liquid crystal display device according to the first embodiment, and changes in the auxiliary capacitance voltage at the beginning of each subpixel during the vertical scanning period
  • FIG. 23 is an example of an equivalent circuit diagram of the liquid crystal display device of the first embodiment.
  • FIG. 24 is a diagram showing examples of various voltage waveforms in the liquid crystal display device of the first embodiment.
  • FIG. 25 is a schematic diagram showing an example of a pixel structure of the liquid crystal display device of the first embodiment.
  • FIG. 26 is a schematic diagram showing changes in brightness, polarity, and effective voltage of the first and second subpixels in the second embodiment of the liquid crystal display device according to the present invention, and (a) shows the first and second subpixels.
  • FIG. 4B is a schematic diagram showing changes in effective voltage applied to the liquid crystal layer of the first sub-pixel
  • FIG. It is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer of the pixel.
  • FIG. 27 is a schematic diagram showing brightness and darkness and polarity of subpixels in the liquid crystal display device according to the second embodiment, and changes in the auxiliary capacitance voltage at the beginning of each subpixel during the vertical scanning period.
  • FIG. 28 is a schematic diagram showing changes in brightness, polarity, and effective voltage of the first and second subpixels in the third embodiment of the liquid crystal display device according to the present invention, and (a) shows the first and second subpixels.
  • FIG. 4B is a schematic diagram showing changes in effective voltage applied to the liquid crystal layer of the first sub-pixel
  • FIG. It is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer of the pixel.
  • FIG. 29 is a diagram showing an example of various voltage waveforms in the liquid crystal display device of the third embodiment.
  • 30 Brightness and polarity of subpixels in the liquid crystal display device of the third embodiment, and the vertical of each subpixel.
  • FIG. 31 is a schematic diagram showing changes in the initial auxiliary capacitance voltage during the scanning period. 31] Schematic showing changes in brightness, polarity, and effective voltage of the first and second subpixels in the fourth embodiment of the liquid crystal display device according to the present invention.
  • (A) is a schematic diagram showing changes in brightness and polarity of the first and second subpixels, and (b) is an effective voltage applied to the liquid crystal layer of the first subpixel.
  • FIG. 7C is a schematic diagram showing a change
  • FIG. 10C is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer of the second subpixel.
  • FIG. 32 is a schematic diagram showing brightness and darkness and polarity of subpixels in the liquid crystal display device according to the fourth embodiment, and changes in the auxiliary capacitance voltage at the beginning of each subpixel in the vertical scanning period.
  • FIG. 10 is a schematic diagram showing changes in brightness, polarity, and effective voltage of first and second sub-pixels in the fifth embodiment of the display device, and (a) shows changes in brightness and polarity of first and second sub-pixels.
  • (B) is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer of the first subpixel, and (c) is a schematic diagram showing the change of the effective voltage applied to the liquid crystal layer of the second subpixel.
  • FIG. 6 is a schematic diagram showing changes in effective voltage.
  • FIG. 34 is a diagram showing examples of various voltage waveforms in the liquid crystal display device of the fifth embodiment.
  • FIG. 35 is a schematic diagram showing brightness and darkness and polarity of sub-pixels in the liquid crystal display device of the fifth embodiment, and changes in the auxiliary capacitance voltage at the beginning of each sub-pixel in the vertical scanning period.
  • FIG. 36 is a schematic diagram showing changes in brightness, polarity, and effective voltage of the first and second subpixels in the sixth embodiment of the liquid crystal display device according to the present invention, and (a) shows the first and second subpixels.
  • FIG. 4B is a schematic diagram showing changes in effective voltage applied to the liquid crystal layer of the first sub-pixel
  • FIG. It is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer of the pixel.
  • FIG. 37 is a schematic diagram showing brightness and darkness and polarity of sub-pixels in the liquid crystal display device of the sixth embodiment, and changes in the auxiliary capacitance voltage at the beginning of each sub-pixel in the vertical scanning period.
  • FIG. 37] Liquid crystal according to the present invention
  • FIG. 10 is a schematic diagram showing changes in brightness, polarity, and effective voltage of first and second subpixels in the seventh embodiment of the display device, and (a) shows changes in brightness, polarity and polarity of first and second subpixels.
  • (B) is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer of the first subpixel
  • (c) is a schematic diagram showing the change of the effective voltage applied to the liquid crystal layer of the second subpixel.
  • FIG. 6 is a schematic diagram showing changes in effective voltage.
  • FIG. 39A is a schematic diagram showing the change in brightness and polarity of subpixels in a certain frame of the liquid crystal display device of the seventh embodiment, and the change in auxiliary capacitance voltage at the beginning of each subpixel in the vertical scanning period.
  • FIG. 39B is a schematic diagram showing brightness and darkness and polarity of subpixels in the next frame of the liquid crystal display device of the seventh embodiment, and changes in the auxiliary capacitance voltage at the beginning of each subpixel during the vertical scanning period.
  • FIG. 40 is a diagram showing an example of various voltage waveforms in the liquid crystal display device of the seventh embodiment.
  • FIG. 1 shows a liquid crystal display device 100 of the present embodiment.
  • the liquid crystal panel 100A of the liquid crystal display device 100 includes a display unit 110 having a plurality of pixels arranged in a matrix of a plurality of rows and columns, and a drive circuit that drives the display 110. 120 and.
  • Each pixel of the display unit 110 includes a liquid crystal layer and a plurality of electrodes that apply a voltage to the liquid crystal layer.
  • the drive circuit 120 generates a drive signal based on the inputted input video signal.
  • FIG. 3 (a) is a schematic plan view of the electrode structure of one pixel
  • FIG. 3 (b) is a schematic cross-sectional view of one subpixel.
  • Fig. 3 (b) corresponds to a cross section taken along line 3B-3B 'in Fig. 3 (a).
  • one pixel 10 has a first sub-pixel 10a and a second sub-pixel 10b arranged along the column direction.
  • the first sub-pixel 10a includes a liquid crystal layer 13, a first sub-pixel electrode 18a, and a counter electrode 17 that faces the first sub-pixel electrode 18a through the liquid crystal layer 13. Have.
  • FIG. 3 (b) is a schematic plan view of the electrode structure of one pixel
  • FIG. 3 (b) is a schematic cross-sectional view of one subpixel.
  • Fig. 3 (b) corresponds to a cross section taken along line 3B-3B 'in Fig. 3 (a).
  • the first sub-pixel 10a includes a liquid crystal layer 13, a first sub-
  • the force second subpixel 10b which shows the configuration of the first subpixel 10a
  • the counter electrode 17 is typically one electrode common to all the pixels 10.
  • different voltages can be applied to the first sub-pixel electrode 18a and the second sub-pixel electrode 18b, whereby the effective voltage of the liquid crystal layer of the first sub-pixel 10a is changed to the second sub-pixel electrode 18b. This is done by making it different from the effective voltage of the liquid crystal layer of pixel 10b.
  • FIG. 4 the brightness and darkness of subpixels in the liquid crystal display device of Patent Document 1
  • the change in the direction of the field and the change in the effective voltage applied to the liquid crystal layers of the first and second subpixels will be described.
  • 1 to 6 indicate periods, and each period indicates a vertical scanning period.
  • the “vertical scanning period” is defined as a period from when a scanning line for writing a display signal voltage is selected until the scanning line is selected for writing a next display signal voltage. I will decide.
  • one frame period in the case of an input video signal for non-interlace driving and one field period in the case of an input video signal for interlace driving are referred to as “vertical scanning period of the input video signal”.
  • one vertical scanning period in a liquid crystal display device corresponds to one vertical scanning period of an input video signal.
  • the power to explain the case where one vertical scanning period of the liquid crystal panel corresponds to one vertical scanning period of the input video signal is not limited to this.
  • one vertical scanning period of the input video signal Also applicable to so-called double speed drive (vertical scanning frequency is 120Hz), which allocates 2 vertical scanning periods (eg 2 X l / 120se C ) of the liquid crystal panel to the scanning period (eg l / 60sec) it can.
  • double speed drive vertical scanning frequency is 120Hz
  • 2 vertical scanning periods eg 2 X l / 120se C
  • the scanning period eg l / 60sec
  • the length of each vertical scanning period is equal.
  • the difference (period) between the time when a certain scanning line is selected and the time when the next scanning line is selected is called one horizontal scanning period (1H).
  • the upper and lower rectangles are the first and second sub-pixels, respectively, and among the first and second sub-pixels, the brighter sub-pixel is shown in white, Subpixels with lower brightness are shown in black.
  • “+” and “one” indicate the polarity of the display signal voltage based on the common voltage supplied to the counter electrode when the corresponding scanning line is selected.
  • “+” indicates that an electric field in which the potential of the first subpixel electrode and the second subpixel electrode is higher than the potential of the counter electrode is directed from the subpixel electrode side to the counter electrode side.
  • “one” indicates that an electric field in which the potential of the first subpixel electrode and the second subpixel electrode is lower than the potential of the counter electrode is directed from the counter electrode side to the subpixel electrode side.
  • “+” is also referred to as the first polarity
  • “ ⁇ ” is also referred to as the second polarity
  • “+” and “ ⁇ ” are also collectively referred to as the polarity.
  • a period of “+” is also referred to as a first polarity period
  • a period of “ ⁇ ” is also referred to as a second polarity period.
  • periods 1, 3 and 5 are the first polarity period
  • periods 2, 4 and 6 are the second polarity period.
  • the luminance of the first subpixel is higher than the luminance of the second subpixel in all periods 1 to 6.
  • FIG. 4B and FIG. 4C show the effective voltages VLspa and VLspb for each vertical scanning period applied to the liquid crystal layers of the first and second subpixels in the liquid crystal display device of Patent Document 1. Each is indicated by a bold line.
  • the effective voltages VLspa and VLspb applied to the liquid crystal layers of the first and second subpixels are the effective difference between the voltage of the first and second subpixel electrodes and the voltage Vc of the counter electrode. It is shown that the voltage Vc is constant.
  • FIGS. 4 (b) and 4 (c) by changing the voltage of the auxiliary capacitance wiring, the first and second The voltage applied to the liquid crystal layer of the subpixel may be changed within the same vertical scanning period.
  • the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode, and the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is 2
  • the absolute value of the effective voltage applied to the liquid crystal layer of the sub-pixel is larger than (I VLspa I> I VLspb
  • the effective voltages VLspa and VLspb applied to the liquid crystal layers of the first subpixel and the second subpixel change.
  • the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the first sub-pixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second sub-pixel (I VLspa I> I VLspb
  • the brightness and polarity of the first and second sub-pixels are the same as the brightness and polarity of the first and second sub-pixels in period 1 and period 2.
  • the luminance of the first subpixel is always higher than the luminance of the second subpixel, and the brightness of the subpixel is visually recognized, resulting in a rough display. Looks.
  • the periods 1, 3, and 5 are the first poles.
  • Periods 2, 4, and 6 are second polarity periods, and the polarity is inverted every vertical scanning period.
  • the luminance of the first subpixel is higher than the luminance of the second subpixel in periods 1, 3, and 5, and the luminance of the second subpixel is the second in periods 2, 4, and 6. It is higher than the luminance of one subpixel.
  • the effective voltages VLspa and VLspb in each vertical scanning period applied to the liquid crystal layers of the first and second subpixels are indicated by bold lines, respectively.
  • the first and second sub-pixels are changed by changing the voltage of the auxiliary capacitance line.
  • the voltage applied to the liquid crystal layer may be changed within the same vertical scanning period.
  • period 1 the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb
  • the effective voltages VLspa and VLspb of the liquid crystal layers of the first and second subpixels change.
  • the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I ⁇ I VLspb
  • the brightness and polarity of the first and second subpixels are the same as the brightness and polarity of the first and second subpixels in period 1 and period 2.
  • the polarity is inverted every vertical scanning period and the brightness of the sub-pixel is inverted every vertical scanning period.
  • the pixel and the second sub-pixel each have a brighter period than the other, and as a result, it is possible to suppress the display roughness.
  • the period in which the first subpixel is brighter than the second subpixel is always the first polarity period, and the second subpixel is more than the first subpixel. Since the bright period is always the second polarity period, as can be understood from FIGS.
  • the first sub-scan over a plurality of vertical scanning periods (for example, periods 1 to 4) is used.
  • the liquid crystal layer of the pixel The effective voltage VLspa is higher than the counter electrode voltage Vc.
  • the average of the effective voltage VLspb of the liquid crystal layer of the second subpixel over a plurality of vertical scanning periods (eg, periods;! To 4) is opposite.
  • the liquid crystal display device 100 of the present embodiment the brightness of the subpixel and the change in the direction of the electric field, and the effect applied to the liquid crystal layers of the first and second subpixels A change in voltage will be described.
  • periods 1, 2, 5 and 6 are the first polarity period
  • periods 3 and 4 are the second polarity period.
  • the first polarity period is a period in which the voltage of the first and second subpixel electrodes is higher than the voltage of the counter electrode, and the voltage of the first and second subpixel electrodes is in the second polarity period.
  • the period is lower than the voltage of the counter electrode.
  • two of the four vertical scanning periods are the first polarity period, and the remaining two are the second polarity period.
  • period 1 and period 2 are the first polarity period
  • period 3 and period 4 are the second polarity period.
  • the effective voltages VLspa and VLspb in each vertical scanning period applied to the liquid crystal layers of the first and second subpixels are indicated by bold lines, respectively.
  • the voltage of the auxiliary capacitance wiring is changed to be applied to the liquid crystal layers of the first and second subpixels. The voltage may be changed within the same vertical scanning period.
  • 6 (b) and 6 (c) are based on the voltage Vc of the counter electrode, so that the voltage Vc of the counter electrode is shown to be constant regardless of time. Vc may vary with time.
  • period 1 the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb
  • the effective voltages VLspa and VLspb of the liquid crystal layers of the first and second subpixels change.
  • the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLsp a I ⁇ I VLspb I) . Therefore, as shown in FIG. 6 (a), period 2 is the first polarity period, and the second subpixel is brighter than the first subpixel.
  • the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb
  • the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I ⁇ I VLspb
  • the contrast and polarity of the first and second sub-pixels are the repetition of the contrast and polarity of the first and second sub-pixels in the period;
  • two vertical scanning periods among the four consecutive vertical scanning periods are the first polarity periods.
  • one is a vertical scanning period satisfying I VLspa I> I VLspb I (for example, period 1)
  • the other is a vertical scanning period satisfying I VLspa I ⁇ I VLspb I (for example, period 2).
  • the remaining two of the four consecutive vertical scanning periods are the second polarity period.
  • one is a vertical scanning period that satisfies I VLsp a I> I VLspb I (for example, period 3), and the other is a vertical scanning period that satisfies I VLspa I ⁇ I VLspb I (for example, period 4).
  • the brightness of the sub-pixel is inverted every vertical scanning period, and the polarity is inverted every two vertical scanning periods. (Brightness, polarity) of 1 sub-pixel changes in order of (bright, +), (dark, +), (bright,-), (dark, 1).
  • Polarity changes in the order of ( ⁇ , +), (bright, +), ( ⁇ ,-), (bright, one) .
  • “bright” indicates brighter than the other sub-pixel
  • “ ⁇ ” indicates higher than the other sub-pixel.
  • the brightness of the sub-pixels is inverted every vertical scanning period, so that display roughness can be suppressed.
  • both the first polarity period and the second polarity period satisfy (I VLspa I> I VLspb
  • this embodiment is preferably applied to a liquid crystal display device using a vertical alignment type liquid crystal layer including a nematic liquid crystal material having negative dielectric anisotropy.
  • the liquid crystal layer included in each subpixel preferably includes four domains in which the azimuth directions in which the liquid crystal molecules tilt when a voltage is applied differ from each other by about 90 ° (MVA mode).
  • the liquid crystal layer included in each sub-pixel may be a liquid crystal layer that has an axially symmetric orientation at least when voltage is applied! /, (ASM mode).
  • the liquid crystal display device 100 includes a liquid crystal panel 100A, and phase difference compensation elements (typically phase difference compensation plates) 20a and 20b provided on both sides of the liquid crystal panel 100A.
  • the polarizing plate 30a and 30b are disposed so as to sandwich them, and the backlight 40 is provided.
  • the transmission axes (also referred to as “polarization axes”) of the polarizing plates 30a and 30b are arranged so as to be orthogonal to each other (crossed Nicols arrangement), and are formed on the liquid crystal layer 13 of the liquid crystal panel 100A (see FIG. 3B). Black display is performed in a state where no voltage is applied (vertical alignment state).
  • the liquid crystal display device 100 is a normally black mode liquid crystal display device.
  • the phase difference compensating elements 20a and 20b are provided to improve the viewing angle characteristics of the liquid crystal display device, and are optimally designed using a known technique. Specifically, in the black display state, optimization is performed so that the difference in luminance (black luminance) between oblique observation and front observation in all azimuth directions is minimized.
  • the scanning line 12 is disposed between the first subpixel electrode 18a and the second subpixel electrode 18b.
  • a certain force S is applied on the substrate 11a to apply a predetermined voltage to each of the first and second sub-pixel electrodes 18a and 18b at a predetermined timing.
  • TFTs (not shown in Fig. 3) and circuits for driving them are formed.
  • the other substrate l ib is provided with a color filter or the like as necessary.
  • FIGS. 3 (a) and 3 (b) The basic configuration and operation of an MVA mode liquid crystal display device are disclosed in, for example, Japanese Patent Application Laid-Open No. 11-242225.
  • the subpixel electrode 18a formed on the glass substrate 11a is provided with slits 18s, and the subpixel electrode 18a and the counter electrode 17 form a liquid crystal layer.
  • An oblique electric field is generated at 13.
  • a rib 19 protruding toward the liquid crystal layer 13 is provided on the surface of the glass substrate ib on which the counter electrode 17 is provided.
  • the liquid crystal layer 13 is made of a nematic liquid crystal material having negative dielectric anisotropy, and is a vertical alignment film (not shown) formed so as to cover the counter electrode 17, the rib 19, and the sub-pixel electrodes 18a and 18b. ) To obtain a substantially vertical alignment state when no voltage is applied.
  • the vertically aligned liquid crystal molecules can be stably tilted in a predetermined direction by the surface (inclined side surface) of the rib 19 and the oblique electric field.
  • the rib 19 is inclined in a mountain shape toward the center of the rib, and the liquid crystal molecules are aligned substantially perpendicular to the inclined surface. Therefore, the liquid crystal molecules by the rib 19 Distribution of the tilt angle (angle formed by the substrate surface and the major axis of the liquid crystal molecules) occurs.
  • the slit 18s regularly changes the direction of the electric field applied to the liquid crystal layer. As a result, due to the action of the ribs 19 and slits 18s, the alignment direction of the liquid crystal molecules when an electric field is applied is aligned in the directions indicated by the arrows shown in FIG. Therefore, it is possible to obtain a favorable viewing angle characteristic having a symmetrical characteristic in the vertical and horizontal directions.
  • the rectangular display surface of the liquid crystal panel 100A is typically arranged in the left-right direction in the longitudinal direction, and the transmission axis of the polarizing plate 30a is set parallel to the longitudinal direction.
  • the pixel 10 is arranged in a direction in which the longitudinal direction of the pixel 10 is orthogonal to the longitudinal direction of the liquid crystal panel 100A.
  • the first subpixel 10a and the second subpixel 10b have the same area, and in each subpixel, the first rib extending in the first direction and the first subpixel 10b A second rib extending in a second direction substantially orthogonal to the first direction, and the first rib and the second rib are arranged symmetrically with respect to a center line parallel to the scanning line 12 in each subpixel.
  • the arrangement of the ribs in one subpixel and the arrangement of the ribs in the other subpixel are symmetrical with respect to the center line perpendicular to the scanning line 12.
  • the liquid crystal molecules are aligned in the four directions of upper right, upper left, lower left, and lower right in each sub-pixel, and the entire pixel including the first sub-pixel and the second sub-pixel. Since the areas of the respective liquid crystal domains are substantially the same, it is possible to obtain a good viewing angle characteristic having symmetrical characteristics. This effect is remarkable when the area of the pixel is small. Furthermore, it is preferable to adopt a configuration in which the interval between the center lines parallel to the scanning lines in each sub-pixel is equal to about one half of the array pitch of the scanning lines.
  • the pixel 10 has two sub-pixels 10a and 10b, and the sub-pixel electrodes 18a and 18b of the sub-pixels 10a and 10b have TFT 16a, TFT 16b, and Auxiliary capacitors (CS) 22a and 22b are connected.
  • the gate electrodes of the TFT 16a and TFT 16b are connected to the scanning line 12, and the source electrodes are connected to a common (identical) signal line 14.
  • Auxiliary capacity 22a and 22b are auxiliary capacity wiring (CS bus line) 24a and auxiliary capacity, respectively. Connected to wiring 24b.
  • the auxiliary capacitors 22a and 22b are provided between the auxiliary capacitor electrode electrically connected to the sub-pixel electrodes 18a and 18b and the auxiliary capacitor counter electrode electrically connected to the auxiliary capacitor wires 24a and 24b, respectively.
  • the insulating layer (not shown) is formed.
  • the storage capacitor counter electrodes of the storage capacitors 22a and 22b are independent from each other, and different storage capacitor counter voltages can be supplied from the storage capacitor lines 24a and 24b, respectively.
  • FIG. 8 shows an equivalent circuit of one pixel 10 in the liquid crystal display device 100.
  • the liquid crystal layers of the respective subpixels 10a and 10b are represented as liquid crystal layers 13a and 13b.
  • the liquid crystal capacitance formed by the subpixel electrodes 18a and 18b, the liquid crystal layers 13a and 13b, and the counter electrode 17 (common to the subpixels 10a and 10b) is represented as Clca and Clcb.
  • the capacitance values of the liquid crystal capacitances Clca and Clcb are CLC (V), and the value of CLC (V) depends on the effective voltage (V) applied to the liquid crystal layers of the sub-pixels 10a and 10b.
  • auxiliary capacitors 22a and 22b that are independently connected to the liquid crystal capacitors of the sub-pixels 10a and 10b are represented as Ccsa and Ccsb, respectively, and these capacitance values are the same value CCS.
  • one electrode of each of the liquid crystal capacitor Clca and the auxiliary capacitor Ccsa is connected to the drain electrode of the TFT 16a that functions as a switching element of the sub-pixel 10a, and the other electrode of the liquid crystal capacitor Clca.
  • the electrode is connected to the counter electrode 17, and the other electrode of the auxiliary capacitor Ccsa is connected to the auxiliary capacitor line 24a.
  • one electrode of each of the liquid crystal capacitor Clcb and the auxiliary capacitor Ccsb is connected to the drain electrode of the TFT 16b functioning as a switching element of the sub-pixel 10b, and the other electrode of the liquid crystal capacitor Clcb.
  • the electrode is connected to the counter electrode 17, and the other electrode of the auxiliary capacitor Ccsb is connected to the auxiliary capacitor line 24b.
  • the gate electrodes of TFT16a and TFT16b are both connected to scanning line 12, and the source electrodes are connected to signal line 14.
  • FIG. 9 schematically shows changes in each voltage for driving the liquid crystal display device 100 of the present embodiment within a certain vertical scanning period.
  • Vs represents the voltage of the signal line 14
  • Vcsa represents the voltage of the auxiliary capacitance line 24a
  • Vcsb represents the voltage of the auxiliary capacitance line 24b
  • Vg represents the voltage of the scanning line 12
  • Vlca represents the first voltage.
  • Vlcb 2 shows the voltage of the sub-pixel electrode 18b.
  • the broken line in the figure indicates the voltage C OMMON (Vc) of the counter electrode 17.
  • the voltage Vcsa of the auxiliary capacitance wiring 24a changes periodically in the range of Vc—Vad to Vc + Vad, and the voltage Vcsb of the auxiliary capacitance wiring 24b also changes periodically in the range of Vc—Vad force, etc. Change.
  • the voltage Vcsb of the auxiliary capacitance wiring 24b has a waveform that is 180 degrees out of phase with the voltage Vcsa of the auxiliary capacitance wiring 24a.
  • Vlca Vs -Vd
  • Vlcb Vs -Vd
  • Vcsa Vc—Vad
  • Vcsb Vc + Vad
  • the voltage Vcsa of the auxiliary capacitor wiring 24a connected to the auxiliary capacitor Ccsa is ⁇ . ⁇ ⁇ & (1 pcs, etc. + ⁇ & (2 in 1 & 2 (increase by 1 minute, auxiliary capacity wiring connected to auxiliary capacity Ccsb 24b voltage Vcsb from Vc + Vad to Vc-Vad 2
  • Vlca and Vlcb of the first and second sub-pixel electrodes are reduced by the voltage change of the auxiliary capacitance lines 24a and 24b, respectively.
  • Vlca Vs -Vd + 2 XKX Vad
  • Vlcb Vs Vd— 2 X K X Vad
  • the voltage Vcsa of the auxiliary capacitance wiring 24a changes from Vc + Vad to Vc— Vad
  • the voltage Vcsb of the auxiliary capacitance wiring 24b changes from Vc—Vad to Vc + Vad by 2 X Vad.
  • the voltages Vlca and Vlcb of the first and second subpixel electrodes are
  • Vlca Vs Vd + 2 X K X Vad
  • Vlcb Vs Vd— 2 X K X Vad
  • Vlca Vs -Vd
  • Vlcb Vs -Vd
  • Vlca Vs -Vd
  • Vlcb Vs -Vd
  • Vlca Vs Vd + 2 X K X Vad
  • Vlcb Vs Vd— 2 X K X Vad
  • Vlcb Vs -Vd-K X Vad
  • Vl Vs-Vd + K XVad-Vc
  • V2 Vs-Vd-K XVad-Vc
  • FIG. 10 schematically shows the relationship between VI and V2 in the liquid crystal display device 100 of the present embodiment.
  • the value of ⁇ increases as the value of VI decreases.
  • the reason why ⁇ varies depending on VI or V2 is that the capacitance value CLC (V) of the liquid crystal capacitance varies depending on the voltage.
  • FIG. 11 (a) shows the ⁇ characteristic at the viewing angle of 60 ° to the right in the liquid crystal display device 100 of the present embodiment
  • FIG. 11 (b) shows the upper right 60 in the liquid crystal display device 100 of the present embodiment. It shows the ⁇ characteristic at the angle of view.
  • FIGS. 11 (a) and 11 (b) also show ⁇ characteristics when the same voltage is applied to the subpixels 10a and 10b for comparison. As can be understood from FIGS. 11 (a) and 11 (b), the gradation characteristics of the liquid crystal display device 100 of the present embodiment are compared with the case where the voltages of the two subpixel electrodes are equal.
  • different effective voltages can be applied to the liquid crystal layers of different sub-pixels by changing each voltage as shown in FIG. 9 within one vertical scanning period. Diagonally Can improve the gamma characteristics.
  • Vg represents the voltage of the scanning line 12
  • Vcsa represents the voltage of the first auxiliary capacitance line 24a
  • Vcsb represents the voltage of the second auxiliary capacitance line 24b
  • VLspa represents the first subpixel.
  • the effective voltage applied to the liquid crystal layer 13a of 10a is shown
  • VLspb shows the effective voltage applied to the liquid crystal layer 13b of the second subpixel 10b.
  • the vertical scanning period is a period from when a certain scanning line is selected until the next scanning line is selected. In FIG. 12, this period is indicated by V-Total.
  • FIG. 12 shows the change in voltage Vd caused by the pull-in phenomenon described with reference to FIG.
  • the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines have a display period AH and an adjustment period BH.
  • the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines change periodically with a period (in this case, 20H) in the display period AH as one period, and the period of the display period AH in the adjustment period BH. Varies by one period in different periods (here 36H or 26H).
  • the sum of the display period AH and the adjustment period BH is equal to the vertical scanning period (V—Total).
  • the display period AH starts when the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines change after the start of the vertical scanning period corresponding to a certain frame
  • the adjustment period BH is It ends when the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines change after the vertical scanning period corresponding to the frame ends.
  • the frame frequency is 60 Hz, for example.
  • FIG. 12 shows changes in voltage during four vertical scanning periods.
  • the four vertical scanning periods are referred to as the first to fourth vertical scanning periods, respectively, and the display period AH and the adjustment period BH corresponding to each vertical scanning period are respectively displayed in the first to fourth displays.
  • the voltage Vcsa of the auxiliary capacitance line 24a changes to a higher voltage (VcH)
  • the voltage Vcsb of the auxiliary capacitance line 24b changes to a lower voltage (VcU, and conversely, the voltage Vcsa is lower
  • VcU When changing to VcU, Vcsb changes to a higher voltage (VcH), and the difference between VcH and VcL corresponds to 2 XVad described with reference to Figure 9.
  • the voltage Vg of the scanning line 12 changes from VgL to VgH at the time when the voltage Vcsa of the first auxiliary capacitance line 24a is VcL and the voltage V csb of the second auxiliary capacitance line 24b is VcH.
  • the first vertical scanning period starts and the first and second subpixel electrodes 18a and 18b are charged. Since the voltage Vs of the signal line 14 is higher than the voltage Vc of the counter electrode 17 while the voltage Vg of the scanning line 12 is VgH, the voltage of the first subpixel electrode 18a and the second subpixel electrode 18b is charged as a result of charging. It becomes higher than the voltage Vc of the counter electrode 17. Thereafter, when the voltage Vg of the scanning line 12 returns from VgH to VgL again, the charging of the first and second subpixel electrodes 18a and 18b ends.
  • the first display period AH starts when the voltage Vcsa of the first auxiliary capacitance line 24a increases and the voltage Vcsb of the second auxiliary capacitance line 24b decreases.
  • the first display period AH the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b increase or decrease every 10H and periodically change with 20H as one cycle.
  • the first adjustment period BH starts.
  • the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b increase or decrease at 18H. Since the voltages of the first and second subpixel electrodes 18a and 18b change according to the change of the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b, the first subpixel in the first vertical scanning period.
  • the absolute value of the effective voltage applied to the liquid crystal layer 13a of 10a is larger than the absolute value of the effective voltage applied to the liquid crystal layer 13b of the second subpixel 10b, and the first subpixel 10a is more than the second subpixel 10b. Will also be brighter.
  • the voltage Vg of the scanning line 12 is VgL force, To VgH.
  • the voltage Vg of the scanning line 12 changes to VgH, the first vertical scanning period ends and the second vertical scanning period starts, and the first and second subpixel electrodes 18a and 18b are charged. Done.
  • the voltage Vg of the scanning line 12 is VgH, the voltage Vs of the signal line 14 is higher than the voltage Vc of the counter electrode 17, so that the charging results in the first subpixel electrode 18a and the second subpixel electrode 18b.
  • the voltage is higher than the voltage Vc of the counter electrode 17.
  • the voltage Vcsa of the first auxiliary capacitance line 24a decreases to VcL
  • the voltage Vcsb of the second auxiliary capacitance line 24b increases to VcH.
  • the voltages Vcsa and Vcsb of the first and second auxiliary capacitance springs 24a and 24b increase or decrease every 10H and change periodically with 20H as one cycle
  • the second adjustment period In BH the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b increase or decrease at 13H. Since the voltages of the first and second subpixel electrodes 18a and 18b change according to the change in the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b, the second subpixel 10b in the second vertical scanning period.
  • the absolute value of the effective voltage applied to the liquid crystal layer 13b of the first subpixel 10a is larger than the absolute value of the effective voltage applied to the liquid crystal layer 13a of the first subpixel 10a, and the second subpixel 10b is the first subpixel 10a. It becomes brighter than.
  • the voltage Vg of the scanning line 12 is VgL force also changes to VgH.
  • the second vertical scanning period ends and the third vertical scanning period starts, and the first and second subpixel electrodes 18a and 18b are charged. Done.
  • the voltage Vs of the signal line 14 is lower than the voltage Vc of the counter electrode 17 while the voltage Vg of the scanning line 12 is VgH, the voltage of the first subpixel electrode 18a and the second subpixel electrode 18b is charged as a result of charging. Becomes lower than the voltage Vc of the counter electrode 17. Thereafter, when the voltage Vg of the scanning line 12 returns from VgH to VgL again, the charging of the first and second subpixel electrodes 18a and 18b is completed.
  • the voltage Vcsa of the first auxiliary capacitance line 24a decreases to VcL
  • the voltage Vcsb of the second auxiliary capacitance line 24b increases to VcH.
  • the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b increase or decrease every 10H, and change periodically with 20H as one cycle, and the third adjustment period BH Then, the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b increase or decrease at 18H.
  • the voltage Vg of the scanning line 12 is VgL force also changes to VgH.
  • the third vertical scanning period ends and the fourth vertical scanning period starts, and the first and second subpixel electrodes 18a and 18b are charged. Done.
  • the voltage Vs of the signal line 14 is lower than the voltage Vc of the counter electrode 17 while the voltage Vg of the scanning line 12 is VgH, the voltage of the first subpixel electrode 18a and the second subpixel electrode 18b is charged as a result of charging. Becomes lower than the voltage Vc of the counter electrode 17. Thereafter, when the voltage Vg of the scanning line 12 returns from VgH to VgL again, the charging of the first and second subpixel electrodes 18a and 18b is completed.
  • the voltage Vcsa of the first auxiliary capacitance line 24a increases to VcH
  • the voltage Vcsb of the second auxiliary capacitance line 24b decreases to VcL.
  • the third adjustment period BH ends and the fourth display period AH starts.
  • the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b increase or decrease every 10H and change periodically with 20H as one period.
  • the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b increase or decrease at 13H. Since the voltages of the first and second subpixel electrodes 18a and 18b change according to changes in the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b, the second sub-capacitor wirings 24a and 24b change in the second vertical scanning period.
  • the absolute value of the effective voltage applied to the liquid crystal layer 13b of the pixel 10b is larger than the absolute value of the effective voltage applied to the liquid crystal layer 13a of the first subpixel 10a, and the second subpixel 10b is the first subpixel. Brighter than 10a.
  • the (brightness, polarity) of the first sub-pixel changes in order of (bright, +), ( ⁇ , +), (bright, one), ( ⁇ , one), and , (Brightness, Polarity) of the second subpixel changes in the order of ( ⁇ , +), (Bright, +), ( ⁇ , 1), (Bright, 1).
  • Figure 6 (a) It changes as shown in. In this way, by changing the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines, it is possible to suppress deterioration in display quality in the liquid crystal display device in which the viewing angle dependency of the ⁇ characteristic is improved. it can.
  • the magnitude relationship between the potentials of the pixel electrode and the counter electrode is reversed at regular intervals, and the direction of the electric field applied to the liquid crystal layer Is set to reverse at regular intervals.
  • the direction of the electric field applied to the liquid crystal layer is reversed from the light source side to the observer side and from the observer side to the light source side. To do.
  • setting the voltage to be an AC voltage is called “AC drive method”.
  • the period of inversion of the direction of the electric field applied to the liquid crystal layer is twice (for example, 66.667 ms) two frame periods (for example, 33.333 ms). That is, in the liquid crystal display device of this embodiment, the direction of the electric field applied to the liquid crystal layer is reversed for every two frame images to be displayed. Therefore, when displaying a still image, if the electric field strength (applied voltage) does not exactly match the direction of each electric field, that is, the electric field strength changes every time the electric field direction changes, As the electric field strength changes, the luminance of the pixel changes, causing a problem that the display flickers.
  • these “inversion drives” include ones in which the pixel cycle to be inverted is a checkered pattern inversion (one-line inversion for each row and column) (one-dot inversion), or 1 There are various forms such as polarity inversion every 2 rows and 1 column (2 rows, 1 column, dot inversion) as well as those with line inversion (inversion for each row) (1 line inversion). Set as appropriate.
  • the first condition is that the absolute value of the effective voltage applied to the liquid crystal layer is matched as much as possible in each electric field direction (polarity of each applied voltage). That is, as in the case of the reliability problem described above, the average value of the voltage applied to the liquid crystal layer should be as close to zero as possible.
  • the second condition is that pixels having different directions of the electric field applied to the liquid crystal layer are arranged adjacent to each other in each frame period.
  • the third condition is that subpixels brighter than the other subpixel are randomly arranged in the same frame as much as possible.
  • the most preferable display is to arrange subpixels that are brighter than the other subpixel so that they are not adjacent to each other in the column and row directions. In other words, the subpixels that are brighter than the other subpixel are arranged in a checkered pattern. Is to place.
  • liquid crystal display device of the present embodiment satisfies the above three conditions.
  • the liquid crystal display device 100 of the present embodiment has a pixel arrangement suitable for one-dot inversion driving that satisfies the above conditions. Explain that you have it.
  • FIG. 13 shows an equivalent circuit of the liquid crystal display device 100.
  • each pixel has the structure shown in FIG. 7 and FIG.
  • the pixels are arranged in a matrix.
  • the pixel in the nth row and the mth column is referred to as a pixel n ⁇ m, and the two subpixels included in the pixel n ⁇ m are subpixel n ⁇ m—.
  • the liquid crystal display device 100 is provided with ten auxiliary capacity trunk lines CS;! To CS10, and each sub-pixel is connected to the auxiliary capacity line CS;! To CS10 via an auxiliary capacity line (CS bus line). Any force, connected to one.
  • the storage capacitor main line CS2 includes the subpixels 1 -aB, 1 -bB, 1— c— ⁇ ... In the first pixel row and the subpixels 2 — a— A, 2 — b— A in the second pixel row , 2-c -A- ..., and a subpixel is connected to the same auxiliary capacitance trunk line via the same auxiliary capacitance wiring as a subpixel included in another pixel adjacent to the subpixel. Yes.
  • the first and second sub-pixels 1 a-A and la-B included in the pixel 1-a specified by the scanning line G1 and the signal line Sa will be described.
  • the first and second subpixels 1a-A and 1a-B have liquid crystal capacitors CLCl-a-A and CLCl-a-B, and auxiliary capacitors CCSl-a-A and CCS1-a-B. Yes.
  • the liquid crystal capacitance consists of the sub-pixel electrode and the counter electrode ComLC.
  • the auxiliary capacitance is constituted by an auxiliary capacitance electrode, an insulating film, and an auxiliary capacitance counter electrode (ComCSl, ComCS2).
  • the first and second sub-pixels 1a-A and la-B are connected to the common signal line Sa via the corresponding TFT1-&-Hachibobicho FT1-a-B, respectively.
  • TFT1—a—A and TFT1 a—B are on / off controlled by the voltage supplied to the common scanning line G1, and when the two TFTs are in the on state, the first and second subpixels 1 — A— A voltage is supplied from the common signal line Sa to the subpixel electrode and the auxiliary capacitance electrode of each of A and la B.
  • auxiliary capacitor counter electrode of subpixel 1—a—A is connected to auxiliary capacitor main line CS1 via auxiliary capacitor wiring (CS bus line) CS1, and the auxiliary capacitor counter electrode of subpixel 1 a—B is connected to the auxiliary capacitor.
  • Wiring (CS bus line) Connected to the auxiliary capacity trunk line CS2 via CS2.
  • FIG. 13 is a configuration in which one sub-capacitor wiring or one scanning line is shared by two subpixels, and has the advantage that the pixel aperture ratio can be increased. ing.
  • FIG. 14 shows the clarity and polarity of sub-pixels that changed within the effective scanning period of a frame.
  • FIG. 14 shows pixels in the! Th to 12th rows and the af columns.
  • FIG. 15 shows waveforms of various voltages (signals) for driving the liquid crystal display device having the configuration shown in FIG.
  • Vsa represents the voltage of the signal line Sa
  • Vsb represents the voltage of the signal line Sb
  • V g represents the voltages of the scanning lines G1 to G12
  • Vcs ;! to VcslO represents the auxiliary capacity trunk line.
  • FIG. 15 shows a voltage waveform within one vertical scanning period.
  • the liquid crystal display device having the configuration of FIG. 13 is driven by a voltage having the waveform shown in FIG.
  • the voltage Vsa of the signal line Sa and the voltage Vsb of the signal line Sb oscillate with a constant period and a constant amplitude, respectively.
  • the period of oscillation of the voltages Vsa and Vsb is 2 horizontal scanning periods (2H).
  • the voltage Vsb of the signal line Sb changes so that the phase is 180 degrees different from the voltage Vsa of the signal line Sa.
  • the period when the voltages Vsa and Vsb are higher than the voltage of the counter electrode is shown as “+”, and the period when the voltages are low is shown as “ ⁇ ”.
  • a liquid crystal display using TFT In the device, after the voltage of the signal line is transmitted to the subpixel electrode via the TFT, a pulling phenomenon that changes due to the influence of the change of the scanning line voltage Vg occurs.
  • the voltage of the counter electrode is set in consideration of the pulling phenomenon.
  • the voltages of the signal springs Sc and Se change in the same manner as the voltage Vsa of the signal line Sa, and the voltages of the signal lines Sd and Sf change in the same manner as the voltage Vsb of the signal line Sb. To do.
  • the period force is the horizontal scanning period (1H).
  • voltages Vcs ;! to VcslO of the auxiliary capacity trunk line CS ;! to CS 10 have the same amplitude and cycle.
  • the period of amplitude is 20H.
  • the voltages Vcs 3 and Vcs4 have the same relationship as the voltages Vcsl and Vcs2.
  • the voltages Vcs3 and Vcs4 change by 2H after the change occurs in the voltages Vcsl and Vcs2. It shifts and changes.
  • the liquid crystal capacitances CLC1 a-A and CLC1—a—B of the sub-pixels 1 a ⁇ A and l ⁇ a ⁇ B are electrically connected to the signal line Sa.
  • the insulation of the liquid crystal capacitors CLC1—a—A and CLC1—aB is terminated.
  • the first change in the auxiliary capacitor main line CS 1 voltage Vcs 1 is an increase, and the first change in the auxiliary capacitor main line CS2 voltage Vcs2 is a decrease.
  • the voltages Vcsl and Vcs2 repeat increasing and decreasing every 10H.
  • the absolute value of the pressure is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the subpixel 1a-B electrically connected to the auxiliary capacitor main line CS2.
  • the effective voltage applied to the liquid crystal layer of each sub-pixel is the first voltage change of the corresponding auxiliary capacitance trunk line after the corresponding scan line voltage changes from VgH to VgL.
  • the voltage of the corresponding scanning line is higher than the voltage of the corresponding signal line when VgH and the initial voltage change of the corresponding auxiliary capacitance trunk line is a decrease
  • the voltage of the corresponding scanning line It drops below the voltage of the corresponding signal line when the voltage force is SVgH.
  • the symbol attached to the voltage of the signal line when the corresponding scanning line is selected is +, the voltage change of the auxiliary capacitance trunk line is applied to the liquid crystal layer when the voltage change is in the increasing direction.
  • the absolute value of the effective voltage is larger than when the voltage change is decreasing.
  • the effective voltage applied to the liquid crystal layer when the voltage change of the auxiliary capacity trunk line is in the increasing direction.
  • the absolute value of is smaller than when the voltage change is decreasing.
  • FIG. 14 shows the brightness and polarity of a sub-pixel that has changed within an effective scanning period of a certain frame.
  • the symbol “bright” indicates that the sub-pixel is brighter than the other sub-pixel, that is, the absolute value of the effective voltage applied to the liquid crystal layer of the sub-pixel is larger than the other.
  • the symbol “ ⁇ ” indicates that the sub-pixel is darker than the other sub-pixel, that is, the absolute value of the effective voltage applied to the liquid crystal layer of the sub-pixel is smaller than the other.
  • the symbol “+” indicates that the voltage of the subpixel electrode is higher than the voltage of the counter electrode, and the symbol “one” indicates that the voltage of the subpixel electrode is lower than the voltage of the counter electrode.
  • the two sub-pixels included in one pixel are the two sub-pixels included in one pixel.
  • the force is adjacent to the pixel with the lower row number and the pixel with the higher row number.
  • the subpixel adjacent to the pixel with the lower row number is indicated as “A”
  • the subpixel adjacent to the pixel with the higher row number is indicated as “B”! /.
  • the clarity and polarity of the sub-pixels 2-a-A and 2-a-B included in the pixel 2-a will be described.
  • the voltage Vg2 of the scanning line G2 is VgH
  • the voltage Vsa of the signal line Sa is lower than the voltage of the counter electrode. Therefore, the polarity of sub-pixels 2-a-A and 2-a-B is-.
  • the voltages Vcs2 and Vcs3 of the auxiliary capacitance main lines CS2 and CS3 corresponding to the subpixels 2—a—A and 2—a—B are shown in FIG.
  • the liquid crystal display device of the present embodiment satisfies the above three conditions.
  • the liquid crystal display device of the present embodiment satisfies the first condition.
  • each pixel has sub-pixels having different effective voltages to the liquid crystal layer.
  • the bright sub-pixel that is, the sub-pixel shown as “bright” in FIG. 14, has a dominant influence on the display quality such as the power S and the display flicker.
  • the first condition is imposed on the sub-pixels indicated as follows.
  • the first condition will be described with reference to each voltage waveform shown in FIG. Figure 15 shows the voltages VLspl-a-A and VLsp2-a-A applied to the liquid crystal layers of “bright” subpixels 1 a A, 2-a A, with different electric field directions (polarities).
  • VLspl-a-A and VLsp2-a-A shown in Fig. 15 the solid line is the voltage of the subpixel electrode of subpixel 1a-A and 2-a-A, and the broken line is the voltage of the counter electrode. Since the effective voltage applied to the layer is the voltage difference between the solid line and the broken line, the effective voltage (a certain level) applied to the liquid crystal layer can be set to V in each electric field direction by appropriately setting the counter electrode voltage.
  • the first condition can be satisfied by matching the amount of charge charged in the liquid crystal capacitor as much as possible.
  • each pixel has a sub-pixel having a different effective voltage to the liquid crystal layer. Therefore, in addition to the second condition being imposed on the pixel, the effective voltage The second condition is also imposed on equal subpixels. In particular, as in the case of the second condition, it is important to satisfy the second condition for a bright sub-pixel, that is, a sub-pixel indicated by the symbol “bright” in FIG.
  • the symbols “+” and “one” indicating the polarity (electric field direction) of each sub-pixel are, for example, (+, ⁇ ), (+ ,-), (+,-) And 2 pixels (2 ⁇ 1]) cycle, and in the column direction (vertical direction), for example, (+,-), (+,-), ( Inverted in the cycle of +,-), (+,-) and 2 pixels (2 rows).
  • the symbols “+” and “one” indicating the polarity (electric field direction) of each sub-pixel are, for example, (+, ⁇ ), (+ ,-), (+,-) And 2 pixels (2 ⁇ 1]) cycle, and in the column direction (vertical direction), for example, (+,-), (+,-), ( Inverted in the cycle of +,-), (+,-) and 2 pixels (2 rows).
  • dot inversion which satisfies the second condition.
  • a bright sub-pixel that is, a sub-pixel indicated by the symbol “bright” in FIG. 14 is confirmed.
  • the subpixels in the same row for example, the subpixels 1—a—A, 1 b—A, and l—c— ⁇ ... in the first row are indicated by the symbol “bright”. All subpixels have a polarity of “+”.
  • the subpixels in the same column for example, the subpixels in the first column 1 a— ⁇ , 1 a— ⁇ , 2— a— ⁇ , 2— a — B, 3— a
  • the polarity of the sub-pixel indicated by the symbol “bright” is “ten”, “ “-”, “10”, “-” are inverted in a cycle of 2 pixels (2 rows).
  • a subpixel unit with a particularly high luminance order shows a state called line inversion, which satisfies the second condition.
  • the sub-pixels indicated by the symbol “ ⁇ ” are also arranged with the same regularity and satisfy the second condition.
  • the third condition is that subpixels having the same luminance order among subpixels having different luminances are arranged so as not to be adjacent to each other as much as possible.
  • Figure 14 if you look at a total of 4 subpixels in 2 rows and 2 columns (for example, subpixel 1— a —A, 1— a —B, 1—b—A, 1—b—B) , "Bright”, “Dark” in the column direction, and “Dark”, “Bright” in the column direction of the next row.
  • the sub-pixels are arranged so that the sub-pixel group is spread over the entire surface. That is, as shown in FIG. 14, the symbols “bright” and “ ⁇ ” are arranged in a checkered pattern in units of subpixels, and it can be seen that the third condition is satisfied.
  • the liquid crystal display device of the present embodiment described with reference to FIG. 14 and FIG. 15 satisfies all the three conditions described above, and thus realizes a high-quality display that prevents flickering. That's the power S.
  • the voltage of the signal line changes so as to be inverted from the waveform shown in FIG. 15 with respect to the voltage of the scanning line, and the voltage of the storage capacitor main line changes.
  • the waveform changes so as to be reversed from the waveform shown in FIG.
  • the polarity of each sub-pixel is reversed without changing the brightness of each sub-pixel as compared with each sub-pixel shown in FIG.
  • the voltage of the signal line changes with respect to the voltage of the scanning line, and the voltage of the auxiliary capacity main line changes so as to reverse the waveform shown in FIG. It changes in the same way as the waveform shown in FIG. For this reason, in this frame, the contrast and polarity of each sub-pixel are reversed as compared with each sub-pixel shown in FIG.
  • Vcs ;! to Vcs6 indicate the voltages of the auxiliary capacity trunk lines CS 1 to CS6, Vg;! To Vg3 indicate the voltages of the scanning lines G1 to G3, and VLspl—a—A to VLsp3—a—B are Indicates the effective voltage applied to the liquid crystal layer of sub-pixels 1a-A to 3-a-B.
  • four consecutive frames are assumed to be frames n, n + 1, n + 2, and n + 3.
  • FIG. 16 also shows the vertical scanning period of the input video signal.
  • the effective scanning period (V—Disp) in which each pixel in the liquid crystal panel 100A (see FIG. 1) is selected for each row and no pixel in the liquid crystal panel 100A is selected. It consists of a vertical blanking period (V-Blank), and the effective scanning period is determined by the display area (the number of rows of effective pixels) of the liquid crystal panel 100A.
  • vertical scanning period means “vertical scanning period of liquid crystal panel” and is referred to as “vertical scanning period” (ie, “vertical scanning period of liquid crystal panel”).
  • Direct scanning period is used in a different meaning from “vertical scanning period of input video signal”.
  • the “vertical scanning period of the input video signal” is a period of one frame or one field, and means a period starting and ending at a time common to each pixel.
  • the “vertical scanning period” is as described above. The period from when a scan line is written to write the display signal voltage to when the scan line is selected to write the next display signal voltage, depending on the corresponding scan line. Start at a different time and end at a different time.
  • the start time and end time of the “vertical scanning period” differ depending on the row of pixels.
  • the scanning lines are sequentially selected from the first row, and when the scanning line is selected, the voltage of the corresponding subpixel electrode changes, A vertical scanning period in the sub-pixel is started.
  • the vertical scanning period of the input video signal is the effective scanning period (V—Disp) and the vertical blanking period (V—Blank). Starting from the middle of the effective scanning period, passing through the vertical blanking period, the effective running of frame n + 1 It continues until the middle of the cocoon period. Next, when the corresponding scanning line is selected, the next vertical scanning period in the subpixel starts. Note that the length of the “vertical scanning period” is the same as the length of the “vertical scanning period of the input video signal” for any pixel.
  • subpixels 1—a—A have (bright, positive), (bright, +), ( ⁇ , +), (bright, -), ( ⁇ , one) in order, and subpixel 1 a -B (brightness, polarity) is ( ⁇ , +), (bright, +), ( ⁇ ,-), (bright, one) It changes in order.
  • Subpixel 2-a-A's (brightness, polarity, polarity) changes in order of (bright,-), ( ⁇ ,-), (bright, +), ( ⁇ , +), and subpixel 2 -(Brightness, Polarity) of a B changes in the order of ( ⁇ ,-), (bright,-), ( ⁇ , +), (bright, +).
  • FIG. 17 shows changes in the clarity and polarity of the subpixels 1 A and 1 a—B and the voltage of the first auxiliary capacitance line in the vertical scanning period of the subpixels 1 a—A and 1 a—B.
  • the polarities of the subpixels 1 a—A and 1—a B are +, and the voltage change of the first auxiliary capacitance line during the vertical scanning period of the subpixel 1 a—A
  • the change in voltage is increased (“ ⁇ ”), and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of subpixel 1 a— ⁇ is reduced (“I”).
  • the subpixels 1 a A and 1 a—B have a positive polarity, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the subpixel 1 a—A decreases (“i )), The change in the voltage of the first auxiliary capacitance line in the vertical scanning period of the sub-pixel 1a-B is an increase (“ ⁇ ”).
  • the subpixels 1a-A and 1a-B have the same polarity, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the subpixel 1a-A decreases. (“ ⁇ ”), the change in the voltage of the first auxiliary capacitance line in the vertical scanning period of the sub-pixel 1a-B is increased (“ ⁇ ”).
  • the sub-pixel 1 a A (polarity, voltage change at the beginning of the auxiliary capacitance wiring) extends from frame n to n + 3 (+, ⁇ ), (+, ⁇ ) It changes in the order of, (1, ⁇ ), (1, ⁇ ), and different combinations appear in order.
  • sub-pixel 1 a The voltage change at the beginning of the wiring changes from frame n to n + 3 in the order of (+, ⁇ ), (+, ⁇ ), (1, ⁇ ), (1,). Combinations with different voltage changes in the auxiliary capacitor wiring that have the same polarity as ⁇ appear in order.
  • the voltage of the auxiliary capacitance line is the force S periodically changed with 20H as one period in the display period, and the present invention is not limited to this.
  • the voltage of the auxiliary capacitance line may change with 16H as one cycle in the display period.
  • the voltage of the auxiliary capacitance line changes every 13H in the first and third adjustment periods BH
  • the voltage of the auxiliary capacitance line changes every 9H in the second and fourth adjustment periods BH.
  • the voltage of the auxiliary capacitance line may change with 24H as one period in the display period.
  • the voltage of the auxiliary capacitance line changes every 15H in the first and third adjustment periods BH
  • the voltage of the auxiliary capacitance line changes every 21H in the second and fourth adjustment periods BH.
  • the voltage change time of the auxiliary capacitor wiring during period BH can be changed as appropriate according to the value of V—total.
  • the voltage of the auxiliary capacitance line is changed by one cycle in the adjustment period.
  • the present invention is not limited to this.
  • the voltage of the auxiliary capacitance wiring may change periodically with 2H as one cycle in each adjustment period, or 1H as one cycle as shown in Fig. 19 (b). It may change periodically.
  • the auxiliary capacitor wiring voltage may be maintained at an average of VcH and VcL during the adjustment period, as shown in FIG. 19 (c).
  • one adjustment period may exist for two vertical scanning periods corresponding to two frames.
  • each vertical scanning period is 810H
  • the auxiliary capacitance voltage Vcs ;! to Vcs3 changes periodically with 20H as one period in the display period, and changes every 5H in the adjustment period.
  • a half-period period is provided as an adjustment period for the voltage of the auxiliary capacitance line.
  • each adjustment period is an even multiple of the horizontal scanning period, but the present invention is not limited to this.
  • Each adjustment period may be an odd multiple of the horizontal scanning period.
  • the first and third adjustment periods are 37H and the second and fourth adjustment periods are 27H, the brightness and polarity of the sub-pixels are the same as in the case of an even multiple of the horizontal scanning period.
  • the display roughness can be suppressed by inverting.
  • the same storage capacitor line is connected to two subpixels of adjacent pixels, but the present invention is not limited to this.
  • Different auxiliary capacitance lines may be provided for two subpixels of adjacent pixels, and the voltage of the auxiliary capacitance lines may be changed individually.
  • FIG. 22 shows the clarity and polarity of subpixels that changed within the effective scan period of a frame.
  • FIG. 22 shows the pixels in the first to sixth rows and the af columns.
  • the liquid crystal display device 100 is provided with ten auxiliary capacity trunk lines CS;!
  • the auxiliary capacity main line CS1 is the sub-pixel 1-a in the first pixel row.
  • — A, 1 -bA, 1 c— ⁇ ⁇ ' connected to sub-pixel 6—a—A, 6 -bA, 6—c ⁇ ⁇ in the 6th pixel row, auxiliary capacity main line CS2
  • auxiliary capacity main line CS2 Are the subpixels 1 a— ⁇ , 1 -bB, 1 c ⁇ ...
  • the storage capacitor main line CS3 is connected to the sub-pixels 2a-A, 2b-A, and 2c-A in the second pixel row.
  • a certain subpixel and a subpixel included in another pixel adjacent to the subpixel are connected to different auxiliary capacitance trunk lines.
  • the two subpixels are electrically independent.
  • FIG. 23 shows an equivalent circuit of the liquid crystal display device 100 having the configuration shown in FIG. 22, and FIG. 24 shows waveforms of various voltages (signals) for driving the liquid crystal display device.
  • Vsa represents the voltage of the signal line Sa
  • Vsb represents the voltage of the signal line Sb
  • Vgl to Vgl2 represents the voltages of the scanning lines G1 to G12
  • Vcs ;! to VcslO represents the auxiliary capacitance main line CS.
  • VLspl—a—A to VLsp2—b—B represents the effective voltage applied to the liquid crystal layer of sub-pixel 1—a—A—2—b—B.
  • Figure 24 shows one vertical It is a voltage waveform within a scanning period.
  • voltages Vcs ;! to VcslO of the auxiliary capacity trunk line CS ;! to CS 10 have the same amplitude and cycle.
  • the period of amplitude is 10H.
  • the voltage Vcsl and Vcs2 have the relationship that when one voltage changes to VcH, the other voltage changes to VcL, and when one voltage changes to VcL, the other voltage changes to VcH.
  • Voltages Vcs3 and Vcs4, voltages Vcs5 and Vcs6, voltages Vcs7 and Vcs8, and voltages Vcs9 and VcslO have the same relationship. As understood from FIG.
  • the sub-pixels in different rows are connected to different storage capacitor trunk lines, so that the voltage applied to the liquid crystal layer of the sub-pixel in each of the plurality of pixels is increased at the same time. Or it can be reduced.
  • the liquid crystal display device having the configuration shown in FIG. 22 is driven with the voltage waveform shown in FIG. 24, all of the above three conditions are satisfied, so high-quality display that prevents flickering is achieved. Can be realized.
  • the voltage of the signal line changes so as to reverse the waveform shown in Fig. 24 with respect to the voltage of the scanning line. It changes in the same way as the waveform shown in FIG. For this reason, in this frame, the clarity and polarity of each sub-pixel are inverted as compared with each sub-pixel shown in FIG. Thus, also in the liquid crystal display layer having the configuration shown in FIG. 22, the viewing angle dependency of the ⁇ characteristic can be improved and the deterioration of the display quality can be suppressed.
  • the force in which the common signal spring 14 is provided for the sub-pixels 10a and 10b included in the same pixel 10 is not limited to this.
  • Different signal lines may be provided for sub-pixels included in the same pixel. In this case, different effective voltages can be applied to the liquid crystal layer of the sub-pixel by changing the voltage of the signal line without changing the voltage of the auxiliary capacitance wiring for each sub-pixel.
  • FIG. 25 shows the pixel 10 in which the signal lines 14a and 14b are provided for the two sub-pixels 10a and 10b, respectively.
  • the pixel 10 has two subpixel electrodes 18a and 18b connected to different signal lines 14a and 14b via corresponding TFTs 16a and 16b, respectively. Since the sub-pixels 10a and 10b constitute one pixel 10, the gates of the TFTs 16a and 16b are connected to a common scanning line (gate bus line) 12 and are turned on / off by the same scanning signal. A signal voltage (gradation voltage) is supplied to the signal lines (source bus lines) 14a and 14b so as to satisfy the above relationship.
  • the gates of TFTs 16a and 16b are preferably shared.
  • the voltage of the counter electrode is shown constant regardless of time, but the present invention is not limited to this.
  • the voltage of the counter electrode may change with time.
  • the effective voltage S of the first sub-pixel and the effective voltage of the second sub-pixel are shown to be different over a wide gradation range, and the present invention is not limited to this.
  • the effective voltage of each sub-pixel is within a specific gradation range (for example, 36 gradations to 128 gradations in the case of 256 gradation display in which gradations from black to white are divided into 0 gradations to 255 gradations). It suffices if they are different in the gradation range.
  • the liquid crystal display device 100 of the present embodiment is different from the liquid crystal display device of the first embodiment in the order of changes in brightness, polarity, and effective voltage of subpixels in four consecutive vertical scanning periods.
  • the description overlapping that of the first embodiment is omitted.
  • periods 1, 4 and 5 are first polarity periods
  • periods 2, 3 and 6 are second polarity periods.
  • two are the first polarity periods and the remaining two are the second polarity periods.
  • period 1 and period 4 are the first polarity period
  • period 2 and period 3 are the second polarity period.
  • a period satisfying I VLspa I> I VLspb I here, period 1
  • the second polarity period includes a period that satisfies I VLspa I> I VLspb
  • the effective voltages VLspa and VLspb in each vertical scanning period applied to the liquid crystal layers of the first and second subpixels are indicated by bold lines.
  • the effective voltages VLspa and VLspb applied to the liquid crystal layers of the first and second subpixels are effective values of the difference between the voltage of the first and second subpixel electrodes and the voltage Vc of the counter electrode. It is shown that the voltage Vc is constant.
  • period 1 the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is the second subimage. It is larger than the absolute value of the effective voltage applied to the elementary liquid crystal layer (I VLspa I> I VLspb
  • period 2 the voltages of the first subpixel electrode and the second subpixel electrode are lower than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I ⁇ I VLspb
  • period 3 the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb
  • period 4 the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I ⁇ I VLspb
  • the contrast and polarity of the first and second sub-pixels are the same as those of the first and second sub-pixels in the periods 1 to 4.
  • (brightness, polarity) of the first subpixel is (bright, +), ( ⁇ ,-), (bright,-), ( ⁇ , +)
  • the (brightness, polarity) of the second sub-pixel changes in the order of ( ⁇ , +), (bright, one), ( ⁇ , one), (bright, +).
  • the brightness of the subpixel is inverted every vertical scanning period, and the polarity is inverted every two vertical scanning periods.
  • the brightness of the sub-pixels is inverted every vertical scanning period, so that display roughness can be suppressed.
  • both the first polarity period and the second polarity period have a period in which the first subpixel is brighter than the second subpixel.
  • the average of the effective voltage VLspa and the average of the effective voltage VLspb over a plurality of vertical scanning periods are substantially equal, and the average of the effective voltages VLsp a and VLspb is adjusted by adjusting the counter voltage. Both can be reduced to zero, and as a result, occurrence of reliability problems such as burn-in can be suppressed.
  • FIG. 27 shows changes in brightness and polarity of the first and second subpixels and the voltage of the first auxiliary capacitance line in the vertical scanning period of the first and second subpixels.
  • four consecutive frames are shown as frames n, n + 1, n + 2, and n + 3.
  • the polarity of the first and second subpixels is +, and the change in voltage of the first auxiliary capacitance line in the vertical scanning period of the first subpixel increases ( “ ⁇ ”), the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is reduced (“I”).
  • the first and second subpixels have the same polarity, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel is increased (“ ⁇ ”).
  • the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is reduced (“”).
  • Fig. 6 (a) that is referred to for describing the first embodiment, the subpixel brightness and darkness in the period 2 to 5 when it is assumed that the first subpixel and the second subpixel are interchanged.
  • the polarity matches the clarity and polarity of the sub-pixels in periods 1 to 4 shown in Fig. 26 (a). Therefore, when the display area of the first subpixel electrode is equal to the display area of the second subpixel electrode, the liquid crystal display device of the present embodiment has substantially the same effect as the liquid crystal display device of the first embodiment. .
  • liquid crystal display device 100 is different from the liquid crystal display device described above in the order of changes in brightness, polarity, and effective voltage of subpixels in four consecutive vertical scanning periods. In the following description, duplicate descriptions are omitted to avoid redundancy.
  • the periods 1, 3 and 5 are the first polarity period
  • the periods 2, 4 and 6 are the second polarity period. It is.
  • two are the first polarity periods and the other two are the second polarity periods.
  • periods 1 to 4 in FIG. 28A periods 1 and 3 are first polarity periods
  • periods 2 and 4 are second polarity periods.
  • here, period 1
  • the effective voltages VLspa and VLspb in each vertical scanning period applied to the liquid crystal layers of the first and second subpixels are indicated by bold lines.
  • the effective voltages VLspa and VLspb applied to the liquid crystal layers of the first and second subpixels are effective values of the difference between the voltage of the first and second subpixel electrodes and the voltage Vc of the counter electrode. It is shown that the voltage Vc is constant.
  • period 1 the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb
  • period 2 the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is the second subimage. It is larger than the absolute value of the effective voltage applied to the elementary liquid crystal layer (I VLspa I> I VLspb
  • period 3 the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I ⁇ I VLspb
  • period 4 the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I ⁇ I VLspb
  • the contrast and polarity of the first and second sub-pixels are the same as those of the first and second sub-pixels in the periods 1 to 4.
  • the frame frequency is 120 Hz, for example.
  • (brightness, polarity) of the first sub-pixel is (bright, +), (bright,-), ( ⁇ , +), ( ⁇ , one)
  • the (brightness, polarity) of the second sub-pixel changes in the order of ( ⁇ , +), ( ⁇ , one), (bright, +), (bright, one).
  • the brightness of the subpixel is inverted every two vertical scanning periods, and the polarity is inverted every vertical scanning period.
  • the brightness of the sub-pixels is inverted every two vertical scanning periods, so that the rough display can be suppressed.
  • the first and second subpixels are! As shown in FIGS. 28 (b) and 28 (c), the average of the effective voltage VLspa and the effective voltage VLspb over a plurality of vertical scanning periods (for example, periods 1 to 4) are The average is almost equal, and the average of the effective voltages VLspa and VLspb can be made zero by adjusting the counter voltage. As a result, the occurrence of reliability problems such as burn-in can be suppressed. .
  • FIG. 29 the change in effective voltage applied to the liquid crystal layer of the first and second subpixels over a plurality of vertical scanning periods will be described. In FIG.
  • Vg indicates the voltage of the scanning line
  • Vcsa indicates the voltage of the first auxiliary capacitance line
  • Vcsb indicates the voltage of the second auxiliary capacitance line
  • VLspa is applied to the liquid crystal layer of the first subpixel.
  • VLspb represents the effective voltage applied to the liquid crystal layer of the second subpixel.
  • the voltage of the first and second auxiliary capacitance lines increases or decreases every 10H in the display period AH and changes periodically with 20H as one period.
  • the voltage of the first and second auxiliary capacitance lines increases or decreases every 18H during the first and third adjustment periods BH, and increases or decreases every 13H during the second and fourth adjustment periods BH. .
  • the effective voltage applied to the liquid crystal layers of the first and second sub-pixels changes according to the change in the voltage of the first and second auxiliary capacitance lines. Changes in order of (bright, +), (bright,-), ( ⁇ , +), ( ⁇ , one), and the (sub-light, polarity) of the second subpixel is ( ⁇ , +) , ( ⁇ ,-), (bright, +), (bright,-). In this way, the brightness and polarity of the first and second sub-pixels change as shown in FIG. 28 (a), so the liquid crystal display device of this embodiment also improves the viewing angle dependency of the seven characteristics. In such a liquid crystal display device, it is possible to suppress deterioration in display quality.
  • FIG. 30 shows changes in brightness and polarity of the first and second subpixels and the voltage of the first auxiliary capacitance line in the vertical scanning period of the first and second subpixels.
  • four consecutive frames are indicated as frames n, n + 1, n + 2, and n + 3.
  • the polarities of the first and second subpixels are +, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel increases ( “ ⁇ ”), the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is reduced (“I”).
  • the polarities of the first and second subpixels are one, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel is reduced (“i”).
  • the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is an increase ("de").
  • the voltage of the first auxiliary capacitance line in the vertical scanning period of the first and second subpixels As can be understood from the comparison between FIG. 17 and FIG. 30, in the liquid crystal display device of this embodiment, the voltage of the first auxiliary capacitance line in the vertical scanning period of the first and second subpixels.
  • the change of is the same as that of the liquid crystal display device of Embodiment 1, but the change of polarity is different from that of the liquid crystal display device of Embodiment 1.
  • the difference in period in which the brightness of the sub-pixels is reversed in the liquid crystal display device of the present embodiment and the liquid crystal display device of the first embodiment will be described.
  • the brightness of the sub-pixel is inverted every two vertical scanning periods as shown in FIG. 28, whereas in the liquid crystal display device of the first embodiment, as shown in FIG.
  • the brightness of the sub-pixel is inverted every vertical scanning period. Therefore, in the liquid crystal display device of the present embodiment, the period in which the brightness of the subpixels is inverted is twice as long as that of the liquid crystal display device of the first embodiment.
  • the vertical scanning period becomes too short, the orientation of the liquid crystal molecules cannot be changed sufficiently within one vertical scanning period, and as a result, the predetermined luminance may not be reached.
  • the vertical scanning period is too short compared with the response speed of the liquid crystal molecules, the luminance difference between the sub-pixels cannot be sufficiently obtained, and the effect of improving the viewing angle dependency of the ⁇ characteristic is reduced.
  • Table 1 shows the display quality when the frame frequency is changed for Patent Document 1, Patent Document 2, Embodiment 1, and the liquid crystal display device of the present embodiment.
  • the display quality is!, The thing is “ ⁇ ”, the display quality is good! /, And the thing is indicated by “X”! /.
  • the liquid crystal display device of Patent Document 1 has a good viewing angle improvement effect for all frame frequencies, while the display is rough for all frame frequencies. Has a problem.
  • the liquid crystal display device of Patent Document 2 cannot be used for industrial products because of reliability problems.
  • the liquid crystal display devices of Embodiments 1 and 3 do not have the reliability problem that has been a problem in Patent Document 2, and are problematic for use as industrial products. Furthermore, the liquid crystal display devices of Embodiments 1 and 3 solve the problem of display roughness that is a problem in Patent Document 1.
  • the liquid crystal display devices of Embodiments 1 and 3 are compared, it is possible to make an optimal selection for the frame frequency in terms of the effect of improving the viewing angle characteristics and the flickering of the display.
  • Table 1 in the liquid crystal display device of the first embodiment, good display quality was obtained when the frame frequency was 60 Hz or more and 90 Hz or less, whereas in the liquid crystal display device of the present embodiment, If the frame frequency is 120Hz or higher, No display could be realized.
  • the frame frequency is 120 Hz, it is experimentally confirmed that the effect of improving the viewing angle dependency of the ⁇ characteristic can be obtained. It is preferable to improve the response speed by using a liquid crystal material or a driving method.
  • the liquid crystal display device 100 of this embodiment is different from the above-described liquid crystal display device in the order of changes in brightness, polarity, and effective voltage of subpixels in four consecutive vertical scanning periods. In the following description, duplicate descriptions are omitted to avoid redundancy.
  • the periods 1, 3, and 5 are the first polarity period
  • the periods 2, 4, and 6 are the second polarity period. It is.
  • two are the first polarity periods and the other two are the second polarity periods.
  • period 1 and period 3 are the first polarity period
  • period 2 and period 4 are the second polarity period.
  • the second polarity period includes a period satisfying I VLspa
  • the effective voltages VLspa and VLspb in each vertical scanning period applied to the liquid crystal layers of the first and second subpixels are indicated by bold lines.
  • the effective voltages VLspa and VLspb applied to the liquid crystal layers of the first and second subpixels are effective values of the difference between the voltage of the first and second subpixel electrodes and the voltage Vc of the counter electrode. It is shown that the voltage Vc is constant.
  • period 1 the voltage of the first subpixel electrode and the second subpixel electrode is equal to the voltage of the counter electrode. Higher than.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb
  • period 2 the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I ⁇ I VLspb
  • period 3 the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I ⁇ I VLspb
  • period 4 the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb
  • the contrast and polarity of the first and second sub-pixels are the same as those of the first and second sub-pixels in the periods 1 to 4.
  • (brightness, polarity) of the first subpixel is (bright, +), ( ⁇ ,), ( ⁇ , +), (bright, one).
  • the second subpixel (brightness, polarity) changes in the order of ( ⁇ , +), (bright, one), (bright, +), ( ⁇ , one).
  • the frame frequency is, for example, 12 OHz.
  • FIG. 32 shows changes in light and darkness and polarity of the first and second subpixels and the voltage of the first auxiliary capacitance line in the vertical scanning period of the first and second subpixels.
  • frames are shown as frames n, n + 1, n + 2, and n + 3.
  • the polarity of the first and second subpixels is + in frame n, and the change in voltage of the first auxiliary capacitance line in the vertical scanning period of the first subpixel increases ( “ ⁇ ”), the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is reduced (“I”).
  • the first and second subpixels have the same polarity, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel is increased (“ ⁇ ”).
  • the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is reduced (“”).
  • the brightness of the sub-pixels is inverted every two vertical scanning periods, so that display roughness can be suppressed.
  • the brightness of the first and second subpixels is inverted in both the first polarity period and the second polarity period.
  • the average of the effective voltage VLspa and the average of the effective voltage VLspb over a plurality of vertical scanning periods are almost equal.
  • the average of the effective voltages VLspa and VLspb can both be made zero, and as a result, the occurrence of reliability problems such as burn-in can be suppressed.
  • FIG. 28 (a) referred to for describing the liquid crystal display device of Embodiment 3 the brightness and polarity of the sub-pixels in the period 2 to 5 when the polarity is assumed to be reversed are shown in FIG. 3 1 This coincides with the clarity and polarity of the sub-pixel in the period 1 to 4 shown in (a). Therefore, the liquid crystal display device of the present embodiment has substantially the same effect as the liquid crystal display device of the third embodiment.
  • the clarity and polarity of the subpixels 1 a—A and 1 a—B Changes as shown in periods 1 to 4 in Fig. 31 (a), the brightness and polarity of sub-pixels 2-a-A and 2-a-B change in periods 2-5 in Fig. 28 (a). It changes as shown.
  • the liquid crystal display device 100 of the present embodiment is different from the above-described liquid crystal display device in the order of changes in the clarity, polarity, and effective voltage of subpixels in four consecutive vertical scanning periods. In the following description, redundant description is omitted to avoid redundancy.
  • the periods 1, 4 and 5 are the first polarity period
  • the periods 2, 3 and 6 are the second polarity period. It is.
  • two are the first polarity periods and the other two are the second polarity periods.
  • period 1 and period 4 are the first polarity period
  • period 2 and period 3 are the second polarity period.
  • (here, period 1) and a period satisfying I VLspa I ⁇ I VLspb
  • (here, period 2)
  • (here, period There is 3).
  • the effective voltages VLspa and VLspb in each vertical scanning period applied to the liquid crystal layers of the first and second subpixels are indicated by bold lines.
  • the effective voltages VLspa and VLspb applied to the liquid crystal layers of the first and second subpixels are effective values of the difference between the voltage of the first and second subpixel electrodes and the voltage Vc of the counter electrode. It is shown that the voltage Vc is constant.
  • period 1 the voltage of the first subpixel electrode and the second subpixel electrode is the voltage of the counter electrode. Higher than.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb
  • period 2 the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb
  • period 3 the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I ⁇ I VLspb
  • period 4 the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I ⁇ I VLspb
  • the contrast and polarity of the first and second sub-pixels are the same as those of the first and second sub-pixels in the periods 1 to 4.
  • the frame frequency is 120 Hz, for example.
  • (brightness, polarity) of the first subpixel is (bright, +), (bright,-), ( ⁇ ,-), ( ⁇ , +)
  • the (brightness, polarity) of the second sub-pixel changes in the order of ( ⁇ , +), ( ⁇ , one), (bright, one), (bright, +).
  • the brightness of the subpixel is inverted every two vertical scanning periods, and the polarity is changed by 2 vertical when the brightness of the subpixel is inverted and when one vertical scanning period is shifted. Inverted every scanning period.
  • the brightness of the sub-pixel is inverted every two vertical scanning periods, so that display roughness is suppressed. Can do.
  • the brightness of the first and second subpixels is inverted in both the first polarity period and the second polarity period.
  • the average of the effective voltage VLspa and the average of the effective voltage VLspb over a plurality of vertical scanning periods are substantially equal, By adjusting the counter voltage, the average of the effective voltages VLspa and VLspb can both be closed, and as a result, the occurrence of reliability problems such as burn-in can be suppressed.
  • Vg represents the voltage of the scanning line
  • Vcsa represents the voltage of the first auxiliary capacitance line
  • Vcsb represents the voltage of the second auxiliary capacitance line
  • VLspa represents the liquid crystal layer of the first subpixel
  • VLspb represents the effective voltage applied to the liquid crystal layer of the second subpixel.
  • the voltage of the first and second auxiliary capacitance lines increases or decreases every 10H in the display period AH and changes periodically with 20H as one cycle.
  • the voltage of the first and second auxiliary capacitance lines increases or decreases every 18H during the first to fourth adjustment periods BH.
  • FIG. 35 shows changes in brightness and polarity of the first and second subpixels and the voltage of the first auxiliary capacitance line in the vertical scanning period of the first and second subpixels.
  • four consecutive frames are shown as frames n, n + l, n + 2, and n + 3.
  • the polarity of the first and second subpixels is +, and the change in the voltage of the first auxiliary capacitance line in the vertical scanning period of the first subpixel increases ( “ ⁇ ”), the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is reduced (“I”).
  • the polarities of the first and second subpixels are one, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel is reduced (“i”).
  • the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is an increase ("de").
  • the effective voltage applied to the liquid crystal layers of the first and second subpixels changes in accordance with the change in the voltage of the first and second auxiliary capacitance lines, so that the first subpixels (Brightness, polarity) changes in order of (brightness, +), (brightness,-), (darkness,-), (darkness, +), and (lightness, polarity, polarity) of the second sub-pixel , ( ⁇ , +), ( ⁇ ,-), (bright,-) (bright, +). Therefore, also in the liquid crystal display device according to the present embodiment, it is possible to suppress the deterioration in display quality in the liquid crystal display device in which the viewing angle dependency of the seven characteristics is improved.
  • the liquid crystal display device 100 of the present embodiment is different from the above-described liquid crystal display device in the order of changes in the clarity, polarity, and effective voltage of subpixels in four consecutive vertical scanning periods. In the following description, redundant description is omitted to avoid redundancy.
  • the periods 1, 2, 5 and 6 are the first polarity period
  • the periods 3 and 4 are the second polarity period. is there.
  • two are the first polarity periods and the remaining two are the second polarity periods.
  • period 1 and period 2 are the first polarity period
  • period 3 and period 4 are the second polarity period.
  • (here, period 1) and a period that satisfies I VLspa I ⁇ I VLspb
  • (here, period 4) and a period satisfying I VLspa I ⁇ I VLspb
  • the effective voltages VLspa and VLspb in each vertical scanning period applied to the liquid crystal layers of the first and second subpixels are indicated by bold lines.
  • the effective voltages VLspa and VLspb applied to the liquid crystal layers of the first and second subpixels are effective values of the difference between the voltage of the first and second subpixel electrodes and the voltage Vc of the counter electrode. It is shown that the voltage Vc is constant.
  • period 1 the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb
  • period 2 the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I ⁇ I VLspb
  • the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode. Further, the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is lower than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I ⁇ I VLspb
  • period 4 the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb
  • the contrast and polarity of the first and second sub-pixels are the same as those of the first and second sub-pixels in the periods 1 to 4.
  • (brightness, polarity) of the first subpixel is (bright, +), ( ⁇ , +), ( ⁇ ,-), (bright, one)
  • the second subpixel (brightness, polarity) is ( ⁇ , +) , (Ming, +), (Ming, One), ( ⁇ , One).
  • the brightness of the subpixel is inverted every two vertical scanning periods, and the polarity is shifted by two vertical directions while being shifted by one vertical scanning period from that when the brightness of the subpixel is inverted. Inverted every scanning period.
  • the brightness of the sub-pixels is inverted every two vertical scanning periods, so that display roughness can be suppressed.
  • the brightness of the first and second subpixels is inverted in both the first polarity period and the second polarity period.
  • the average of the effective voltage VLspa and the average of the effective voltage VLspb over a plurality of vertical scanning periods are almost equal.
  • FIG. 37 shows changes in brightness and polarity of the first and second subpixels and the voltage of the first auxiliary capacitance line in the vertical scanning period of the first and second subpixels.
  • four consecutive frames are indicated as frames n, n + 1, n + 2, and n + 3.
  • the polarity of the first and second subpixels is +, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel increases ( “ ⁇ ”), the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is reduced (“I”).
  • frame ⁇ + 1 the polarity of the first and second subpixels is +, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel is reduced (“i”).
  • the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is an increase ("de").
  • the clarity and polarity of the subpixels 1 a—A and 1 a—B Changes as shown in periods 1 to 4 in Fig. 36 (a), the brightness and polarity of sub-pixels 2-a-A and 2-a-B change in periods 2-5 in Fig. 33 (a). It changes as shown.
  • the liquid crystal display device of the present embodiment is different from the liquid crystal display devices of Embodiments 1 to 6 in that the luminance of the sub-pixel changes via the intermediate luminance.
  • duplicate descriptions are omitted to avoid redundancy.
  • the periods 1, 3 and 5 are the first polarity period
  • the periods 2, 4 and 6 are the second polarity period.
  • two are the first polarity periods and the remaining two are the second polarity periods.
  • period 1 and period 3 are the first polarity period
  • period 2 and period 4 are the second polarity period.
  • the first polarity period is a period that satisfies I VLspa I> I VLspb I (here, period 1) and a period that satisfies I VLspa
  • Period is VLspa equal to VLspb V, period (period 2 and 4).
  • the effective voltages VLspa and VLspb in each vertical scanning period applied to the liquid crystal layers of the first and second subpixels are indicated by bold lines.
  • Liquid crystal layer of the first and second subpixels The effective voltages VLspa and VLspb applied to are the effective values of the difference between the voltage of the first and second subpixel electrodes and the voltage Vc of the counter electrode.
  • the voltage Vc of the counter electrode is shown to be constant. is doing.
  • period 1 the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb
  • period 2 the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode.
  • period 3 the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode.
  • the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I ⁇ I VLspb
  • the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode.
  • the brightness and polarity of the first and second subpixels are the same as the brightness and polarity of the first and second subpixels in periods 1 to 4.
  • (brightness, polarity) of the first subpixel is (bright, +), (middle,-), ( ⁇ , +), (middle, one).
  • the (brightness, polarity) of the second sub-pixel changes in the order of ( ⁇ , +), (middle,-), (bright, +), (middle, one).
  • “medium” indicates that the brightness (luminance) of the first sub-pixel is equal to the brightness (luminance) of the second sub-pixel.
  • the average effective voltage VLspa over a plurality of vertical scanning periods (for example, periods 1 to 4) is calculated.
  • the average of the effective voltage VLspb is almost equal, and the average of the effective voltages VLspa and VLspb can be made zero by adjusting the counter voltage, resulting in the occurrence of reliability problems such as burning. Can be suppressed.
  • FIG. 39A, 39B, and 40 changes in the effective voltage applied to the liquid crystal layer of the subpixel in the liquid crystal display device of the present embodiment will be described with reference to FIGS. 39A, 39B, and 40.
  • FIG. In the following description, four consecutive frames (vertical scanning period) are defined as frames n, n + 1, n + 2, and n + 3.
  • FIG. 39A shows the brightness and polarity of each sub-pixel changed in frame n
  • FIG. 39B shows the brightness and polarity of each sub-pixel changed in frame n + 1.
  • the liquid crystal display device of the present embodiment has a pixel array as shown in FIGS. 39A and 39B. This is the same as the pixel array described in the liquid crystal display device of Embodiment 1 with reference to FIG. It is the same. Therefore, duplicate descriptions are omitted to avoid overcomplicating the description.
  • 12 auxiliary capacity trunk lines are provided in the liquid crystal display device of this embodiment.
  • the auxiliary capacity lines connected to each of the 12 auxiliary capacity trunk lines are CS1 and CS2, respectively. , CS3, '"Shows 312.
  • each sub-pixel changes to an intermediate luminance, and the polarity of each sub-pixel is inverted to the same polarity as shown in FIG. 39B.
  • liquid crystal display device of the present embodiment it will be described that the three conditions described above are satisfied in order to suppress flicker.
  • the voltage of each signal line and the voltage of the counter electrode are appropriately set.
  • the effective voltage applied to the liquid crystal layer in each electric field direction is matched as much as possible, and the first condition is satisfied.
  • pixels having different polarities are arranged adjacent to each other, and the second condition is satisfied.
  • subpixels brighter than the other subpixel are randomized as much as possible, specifically, as shown in FIG. 39A, the symbols “bright” and “ ⁇ ” are displayed. They are arranged in a checkered pattern in sub-pixel units and satisfy the third condition.
  • Table 2 shows the display quality when the frame frequency was changed for the liquid crystal display devices of Embodiments 1, 3 and this embodiment.
  • “ ⁇ ” indicates that the display quality is good and “X” indicates that the display quality is not good.
  • the frame frequency is set to 90 Hz or higher, good display quality can be obtained with the force S.
  • the voltage of the signal line, the voltage of the first and second auxiliary capacitance trunk lines, the voltage of the scanning line, and the voltage of the first and second auxiliary capacitance trunk lines in the liquid crystal display device of the present embodiment The change in effective voltage applied to the liquid crystal layer of the sub-pixel that changes according to the voltage change will be described for sub-pixels 1-a-A and 1-a-B surrounded by broken lines in FIGS. 39A and 39B.
  • FIG. 40 the voltage of the signal line, the voltage of the first and second auxiliary capacitance trunk lines, the voltage of the scanning line, and the voltage of the first and second auxiliary capacitance trunk lines in the liquid crystal display device of the present embodiment.
  • Vsa represents the voltage of the signal spring Sa
  • Vsb represents the voltage of the signal spring Sb
  • Vcsl represents the voltage of the first auxiliary capacity trunk line CS1
  • Vcs2 represents the voltage of the second auxiliary capacity trunk line CS2
  • Vgl indicates the voltage of the scanning line G1
  • VLspl-a-A and VLspl-a-B indicate effective voltages applied to the liquid crystal layers of the sub-pixels 1a-A and 1a-B.
  • Figure 40 shows four frames! Each voltage waveform at ⁇ n + 3 is shown in Figure 38, Figure
  • Each polarity is reversed to (+,-, +,-).
  • the writing operation for each frame starts when the voltage Vgl force SVgH (high level) of the scanning line G1 is reached.
  • One vertical running period (V—Total) of the input video signal is 801H.
  • the voltage Vcsl of the first auxiliary capacitance trunk line CS1 has a waveform that alternates between the first level (VL1), second level (VL2), third level (VL3), and second level (VL2) every 6H. Yes, voltages Vcsl and Vcs2 are 180 ° out of phase with each other.
  • the auxiliary capacitance After the voltage Vgl of the scanning line G1 becomes VgL (low level), the auxiliary capacitance The period until the voltage Vcsl and Vcs2 levels change for the first time is 3H.
  • the scanning line G1 is selected when the voltage Vcsl of the first auxiliary capacitance main line drops from the second level and is maintained at the first level (the scanning line voltage Vg is VgH). It is).
  • the scanning line G1 is selected, a voltage higher than the voltage of the counter electrode is applied to the subpixel electrodes of the subpixels 1A and 1a-B. After the voltage Vgl of the scanning line G1 returns to VgL, the voltage Vcsl of the first auxiliary capacitance trunk line changes periodically.
  • the voltage Vgl of the scanning line G1 returns from VgH to VgL
  • the voltage Vcsl of the first auxiliary capacitance trunk line is VL1
  • the voltage Vcs2 of the second auxiliary capacitance trunk line is VL3. Since the average voltage VL2 of the first and second auxiliary capacitance trunk lines Vcsl and Vcs2 is higher than VL1 and lower than VL3, the absolute value of the effective voltage applied to the liquid crystal layer of subpixel 1a-A is Thus, the absolute value of the effective voltage applied to the liquid crystal layer of the sub-pixel 1a-B becomes larger. As a result, the subpixel 1—a—A becomes brighter than the subpixel l a—B.
  • the scanning line G1 is selected when the voltage Vcsl of the first auxiliary capacitance trunk line is decreased from the third level and maintained at the second level (the voltage Vg of the scanning line is VgH).
  • the scanning line G1 is selected, a voltage lower than the voltage of the counter electrode is applied to the subpixel electrodes of the subpixels 1A and 1a-B. After the voltage Vgl of the scanning line G1 returns to VgL, the voltage Vcsl of the first auxiliary capacitance trunk line changes periodically.
  • the scanning line G1 is selected when the voltage Vcsl of the first auxiliary capacitance trunk line rises from the second level to the third level (the scanning line voltage Vgl becomes VgH). )
  • the scanning line G1 is selected, a voltage higher than the voltage of the counter electrode is applied to the subpixel electrodes of the subpixels 1A and 1a-B.
  • the voltage Vgl of the scanning line G1 returns from VgH to VgL
  • the voltage Vcsl of the first auxiliary capacitance trunk line is VL3
  • the voltage V cs2 of the second auxiliary capacitance trunk line is VL1
  • the subpixel 1a-A The absolute value of the effective voltage applied to the liquid crystal layer is smaller than the absolute value of the effective voltage applied to the liquid crystal layer of the sub-pixel 1a-B.
  • the subpixel 1—a—A is larger than the subpixel 1—aB.
  • the scanning line G1 is selected after the voltage Vcsl of the first auxiliary capacitance trunk line has increased from the first level to the second level (the scanning line voltage Vg becomes VgH). .
  • the scanning line G1 is selected, a voltage lower than the voltage of the counter electrode is applied to the subpixel electrodes of the subpixels 1A and 1a-B.
  • the voltages Vcsl and Vcs2 of the first and second auxiliary capacitance trunk lines are VL2, so the effective voltage applied to the liquid crystal layer of the sub-pixel 1a-A Is equal to the absolute value of the effective voltage applied to the liquid crystal layer of sub-pixel 1 a—B, so that the brightness of sub-pixel 1 a—A is the same as that of sub-pixel 1 a—B. Is equal to
  • subpixel 1—a—A is (bright, +), (middle,-), ( ⁇ , +), (middle , One), and subpixels 1—a—B (brightness, polarity) are in the order of ( ⁇ , +), (middle,-), (bright, +), (middle, one) To change.
  • subpixel 2—a—A (brightness, polarity) is in order of (bright, one), (middle, +), (),-), (middle, +). To change.
  • the brightness of the sub-pixel is changed for each of the vertical, scanning periods of bright, medium, dark, and medium, and the polarity is inverted for each vertical scanning period. Roughness can be suppressed.
  • both the first polarity period and the second polarity period have a period in which the first subpixel is brighter than the second subpixel. Because As shown in FIG. 38 (b) and FIG. 38 (c), the average of the effective voltage VLspa and the average of the effective voltage VLspb over a plurality of vertical scanning periods (for example, periods 1 to 4) are substantially equal. By adjusting the direction voltage, the average of the effective voltages VLspa and VLspb can both be made zero, and as a result, the occurrence of reliability problems such as burn-in can be suppressed.
  • the number of sub-pixels constituting one pixel is two.
  • the present invention is not limited to this, and the number of sub-pixels is not limited to this. It may be 3 or more.
  • the effect of improving the shift amount of the ⁇ characteristic increases.
  • the number of divisions By increasing the number of pixel divisions from 2 to 4, the change in the amount of deviation with respect to the change in display gradation becomes smoother and the display quality is further improved.
  • the greater the number of divisions the lower the transmittance (front) when displaying white. In particular, when the number of divisions is increased from 2 to 4, the decrease in transmittance during white display is significant.
  • the display area of one subpixel is significantly reduced.
  • the number of divisions may be appropriately adjusted according to the use of the liquid crystal display device. The improvement effect is most noticeable in the difference between the case without pixel division and the case with two pixel divisions (in the case of two subpixels), and white display as the number of subpixels increases.
  • the number of subpixels per pixel is preferably two.
  • a configuration may be adopted in which the voltage Vcs is independently supplied to each of the auxiliary capacitance lines.
  • the voltage Vcs needs to change the level at least once after the scanning line voltage is set to the low level within one vertical scanning period.
  • a voltage Vcs is independently supplied to each auxiliary capacitance wiring that is twice the scanning line and each auxiliary capacitance wiring, once after the scanning line voltage is set to a low level.
  • the vibration of the voltage Vcs of the plurality of auxiliary capacitance lines connected to one auxiliary capacitance trunk line is adopted. The advantage is that the amplitudes can be matched exactly. Of course, there is also an advantage that the circuit configuration can be simplified rather than providing a large number of independent voltages.
  • one pixel is obtained by applying a multi-pixel driving method described in Patent Document 1, that is, a rectangular wave voltage to the CS bus line.
  • the force S that adopts the method of making the luminance of the two sub-pixels different from each other, the present invention is not limited to this.
  • the main points of the present invention are the following two points, and an embodiment that satisfies these two points is not limited to the above-described embodiment.
  • the first point of the present invention is that the luminance of each subpixel is averaged over a certain period of time by replacing the luminance of the subpixels constituting one pixel so that the luminance difference between the subpixels becomes substantially zero.
  • the objective is to optimize the temporal change in luminance of each sub-pixel.
  • the second essential point of the present invention is that the polarity of the subpixels is inverted so that the value obtained by averaging the voltages applied to the subpixels over a certain period of time is substantially equal for all the subpixels. It is to optimize the change in effective voltage applied (change in brightness). From the viewpoint of reliability, it is desirable that the difference in average effective voltage between subpixels is IV or less.
  • liquid crystal display devices that satisfy the above two points include four frames that combine pixel polarity (+, 1) and sub-pixel brightness (bright, ⁇ ), (bright, +), (Ming, 1), ((, +), ( ⁇ , 1) contain the same amount within a certain period.
  • liquid crystal display device in a configuration having intermediate brightness, (bright, +), (dark, +) and (middle,-), (middle,-) or (bright, one), ( ⁇ , in one) and (one), (in, some force s containing equal amounts of four frames within a certain time period one).
  • the present invention is not limited to the liquid crystal display devices of the above-described embodiments;! To 7, and the polarity and luminance of the sub-pixel may be controlled for each frame.
  • the TFT element of each subpixel may be a liquid crystal display device that is driven by an independent data signal or scanning signal for each subpixel.
  • the liquid crystal display device of the present invention may be a liquid crystal display device in which the luminance is controlled by an independent data signal for each sub-pixel and driven by a common scanning line.
  • the luminance and polarity of each sub-pixel can be controlled by supplying the luminance and polarity of the sub-pixel with independent data signals.
  • the liquid crystal display device of the present invention may be a liquid crystal display device in which the TFT element of each subpixel controls the luminance with a common data signal for each subpixel and is driven by a separate scanning line. .
  • the time of one frame is further divided, the luminance and polarity corresponding to each subpixel are supplied to the data signal, and the scanning time or timing is set for each subpixel (time division within one frame). Therefore, it is possible to control the brightness and polarity of each sub-pixel.
  • liquid crystal display device of the present invention there is provided a large-sized or high-definition liquid crystal display device with extremely high display quality in which the viewing angle dependency of the ⁇ characteristic is improved.
  • the liquid crystal display device of the present invention is suitably used as a large television receiver of, for example, 30 type or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

A liquid crystal display device includes a plurality of pixels, each of which has a first sub-pixel and a second sub-pixel. When display of a predetermined intermediate gradation is performed over continuous four or more even-number vertical scan periods, at least during two vertical scan periods among the even-number vertical scan periods: the first sub-pixel and the second sub-pixel have different luminance values; for each of the first sub-pixel and the second sub-pixel, among the even-number vertical scan periods, the length of a first polarity period during which the polarity is the first polarity is identical to the length of a second polarity period during which the polarity is the second polarity; and a difference between the average value of the effective voltage applied to the liquid crystal layer of the first sub-pixel and the average value of the effective voltage applied to the liquid crystal layer of the second sub-pixel is substantially zero.

Description

明 細 書  Specification
液晶表示装置  Liquid crystal display
技術分野  Technical field
[0001] 本発明は液晶表示装置に関し、より詳細には、 y特性の視野角依存性を改善した 液晶表示装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device with improved viewing angle dependency of y characteristics.
背景技術  Background art
[0002] 液晶表示装置は、高精細、薄型、軽量および低消費電力等の優れた特長を有する 平面表示装置であり、近年、表示性能の向上、生産能力の向上および他の表示装 置に対する価格競争力の向上に伴い、市場規模が急速に拡大している。  A liquid crystal display device is a flat display device having excellent features such as high definition, thinness, light weight, and low power consumption. In recent years, liquid crystal display devices have been improved in display performance, production capacity, and price for other display devices. The market scale is expanding rapidly as competitiveness increases.
[0003] 従来一般的であったッイステッド 'ネマテイク'モード (TNモード)の液晶表示装置で は、正の誘電率異方性を持つ液晶分子の長軸が、基板表面に対して略平行で、且 つ、液晶層の厚さ方向に沿って上下の基板間で略 90度捻れるように配向処理が施 されている。この液晶層に電圧を印加すると、液晶分子が電界に平行に立ち上がり、 捻れ配向(ツイスト配向)が解消される。 TNモードの液晶表示装置では、電圧による 液晶分子の配向変化に伴う旋光性の変化を利用することにより、透過光量が制御さ れる。  [0003] In a conventional twisted 'nematic' mode (TN mode) liquid crystal display device, the long axis of liquid crystal molecules having positive dielectric anisotropy is substantially parallel to the substrate surface, In addition, the alignment treatment is performed so that the substrate is twisted approximately 90 degrees along the thickness direction of the liquid crystal layer. When a voltage is applied to the liquid crystal layer, the liquid crystal molecules rise in parallel to the electric field, and the twist alignment (twist alignment) is eliminated. In a TN mode liquid crystal display device, the amount of transmitted light is controlled by utilizing the change in optical rotation accompanying the change in orientation of liquid crystal molecules due to voltage.
[0004] このような TNモードの液晶表示装置は、生産マージンが広く生産性に優れている 一方、表示性能とりわけ視野角特性の点で問題があった。具体的には、 TNモードの 液晶表示装置の表示面を斜め方向から観測すると、表示のコントラスト比が著しく低 下し、正面からの観測で黒から白までの複数の階調が明瞭に観測される画像を斜め 方向から観測すると階調間の輝度差が著しく不明瞭となる点が問題であった。さらに 、表示の階調特性が反転し、正面からの観測でより暗い部分が斜め方向からの観測 ではより明るく観測される現象(いわゆる、階調反転現象)も問題であった。  [0004] While such a TN mode liquid crystal display device has a wide production margin and excellent productivity, it has a problem in display performance, particularly viewing angle characteristics. Specifically, when the display surface of a TN mode liquid crystal display device is observed from an oblique direction, the contrast ratio of the display is significantly reduced, and multiple tones from black to white are clearly observed when viewed from the front. The problem is that the brightness difference between gradations becomes very unclear when the image is observed from an oblique direction. Furthermore, the phenomenon that the gradation characteristics of the display are reversed and a darker portion when observed from the front is observed brighter when observed from an oblique direction (so-called gradation inversion phenomenon) is also a problem.
[0005] 近年、 TNモードの液晶表示装置における視野角特性を改善した液晶表示装置と して、インプレイン 'スイッチング 'モード(IPSモード)、マルチドメイン 'バーティカル' ァラインド'モード(MVAモード)、軸対称配向モード (ASMモード)等の液晶表示装 置が開発されている。これらの新規なモード (広視野角モード)の液晶表示装置では 、視野角特性に関する上記の具体的な問題点、すなわち、表示面を斜め方向から観 測した場合における表示コントラスト比の著しい低下、および、表示階調の反転とい つた問題点が解決されてレ、る。 [0005] In recent years, liquid crystal display devices with improved viewing angle characteristics in TN mode liquid crystal display devices include in-plane 'switching' mode (IPS mode), multi-domain 'vertical' aligned 'mode (MVA mode), shaft Liquid crystal display devices such as the symmetric alignment mode (ASM mode) have been developed. In these new modes (wide viewing angle mode) LCDs The above-mentioned specific problems related to viewing angle characteristics, that is, the significant decrease in the display contrast ratio when the display surface is observed obliquely and the inversion of the display gradation are solved. The
[0006] しかしながら、液晶表示装置の表示品位の改善が進む状況下にお!/、て、今日では 視野角特性の問題点として、正面観測時の γ特性と斜め観測時の Ί特性が異なる 点、すなわち Ί特性の視野角依存性の問題が新たに顕在化してきた。ここで、 γ特 性とは表示輝度の階調依存性であり、 γ特性が正面方向と斜め方向で異なるという ことは、階調表示状態が観測方向によって異なることとなるため、写真等の画像を表 示する場合や、また TV放送等を表示する場合に特に問題となる。 [0006] However, in a situation where the display quality of liquid crystal display devices is being improved! Today, as a problem of viewing angle characteristics, the gamma characteristics during frontal observation and the wrinkle characteristics during oblique observation are different. That is, the problem of the viewing angle dependency of the wrinkle characteristic has been newly revealed. Here, the γ characteristic is the gradation dependence of the display luminance. The fact that the γ characteristic is different between the front direction and the diagonal direction means that the gradation display state differs depending on the observation direction. This is especially a problem when displaying TV or displaying TV broadcasts.
[0007] γ特性の視野角依存性を改善するための方法として、 1つの画素に 2つ以上の副 画素を設け、中間輝度表示において一方の副画素の輝度を他方とは異ならせること により、 γ特性の視野角依存性を改善する方法が知られている(例えば、特許文献 1 および特許文献 2参照)。  [0007] As a method for improving the viewing angle dependency of the γ characteristic, by providing two or more sub-pixels in one pixel and making the luminance of one sub-pixel different from the other in intermediate luminance display, Methods for improving the viewing angle dependency of the γ characteristic are known (see, for example, Patent Document 1 and Patent Document 2).
[0008] 特許文献 1に開示されている液晶表示装置では、中間輝度表示において第 2副画 素の液晶層の実効電圧を第 1副画素の液晶層の実効電圧とは異ならせることにより、 第 1副画素の輝度と第 2副画素の輝度を異ならせ、これにより、 γ特性の視野角依存 性を改善している。液晶層の透過率は、液晶層に印加される電界の向き(電気力線 の向き)にかかわらず、実効電圧の絶対値に応じて変化するので、特許文献 1に開示 されている液晶表示装置では、液晶層に印加される電界の向きを垂直走査期間ごと に交互に反転させることにより、直流成分 (DCレベル)の偏りを抑制し、焼きつき等の 信頼性上の問題を解決して!/、る。  In the liquid crystal display device disclosed in Patent Document 1, the effective voltage of the liquid crystal layer of the second sub-pixel is made different from the effective voltage of the liquid crystal layer of the first sub-pixel in the intermediate luminance display. The brightness of the 1 sub-pixel and the brightness of the 2nd sub-pixel are made different, thereby improving the viewing angle dependency of the γ characteristic. The transmittance of the liquid crystal layer changes according to the absolute value of the effective voltage regardless of the direction of the electric field applied to the liquid crystal layer (the direction of the lines of electric force). Therefore, the liquid crystal display device disclosed in Patent Document 1 Then, by reversing the direction of the electric field applied to the liquid crystal layer alternately every vertical scanning period, the bias of the direct current component (DC level) is suppressed and the problem of reliability such as burn-in is solved! /
[0009] また、特許文献 2に開示されている液晶表示装置では、第 1副画素と第 2副画素の 明喑を垂直走査期間ごとに反転させる(例えば、第 1垂直走査期間において第 1副 画素の輝度を第 2副画素の輝度よりも高くし、第 2垂直走査期間において第 2副画素 の輝度を第 1副画素の輝度よりも高くする)とともに、液晶層に印加される電界の向き を垂直走査期間ごとに反転させている。複数の副画素のうち一方の副画素が常に明 るいと、表示がざらついてみえることがある力 特許文献 2に開示されている液晶表示 装置では、垂直走査期間ごとに第 1副画素と第 2副画素の明暗を反転させることによ り、表示のざらつきを防止している。 [0009] In addition, in the liquid crystal display device disclosed in Patent Document 2, the clarity of the first subpixel and the second subpixel is inverted every vertical scanning period (eg, the first subscanning period in the first vertical scanning period). The luminance of the pixel is higher than that of the second sub-pixel, and the luminance of the second sub-pixel is higher than that of the first sub-pixel in the second vertical scanning period), and the direction of the electric field applied to the liquid crystal layer Are inverted every vertical scanning period. If one subpixel of a plurality of subpixels is always bright, the display may appear rough. In the liquid crystal display device disclosed in Patent Document 2, the first subpixel and the second subpixel are displayed every vertical scanning period. By reversing the brightness of the sub-pixel This prevents display roughness.
[0010] なお、以上のように、複数の副画素の輝度を異ならせることにより、 γ特性の視野角 依存性を改善する表示または駆動を、本明細書において、マルチ画素表示、マルチ 画素駆動、面積階調表示、面積階調駆動などと呼ぶことがある。 [0010] Note that, as described above, display or driving for improving the viewing angle dependency of the γ characteristic by making the luminances of the plurality of sub-pixels different is referred to as multi-pixel display, multi-pixel driving, It may be called area gradation display, area gradation drive, or the like.
特許文献 1:特開 2004— 62146号公報  Patent Document 1: JP 2004-62146 A
特許文献 2 :特開 2003— 295160号公報 (米国特許第 6958791号明細書) 発明の開示  Patent Document 2: Japanese Patent Laid-Open No. 2003-295160 (US Pat. No. 6958791) Disclosure of Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 特許文献 1の液晶表示装置では、中間輝度表示において第 1副画素の輝度が第 2 副画素の輝度よりも常に高いので、副画素の明暗が視認され、表示がざらついてみ えること力 sfcる。 [0011] In the liquid crystal display device of Patent Document 1, since the luminance of the first subpixel is always higher than the luminance of the second subpixel in the intermediate luminance display, the brightness of the subpixel is visually recognized and the display looks rough. Force s fc.
[0012] また、特許文献 2の液晶表示装置では、液晶層に印加される電界の向きと副画素 の明暗を垂直走査期間ごとに反転させているため、一方の副画素が他方の副画素よ りも明るいときに液晶層に印加される電界の向きは常に同じである。  [0012] In addition, in the liquid crystal display device of Patent Document 2, since the direction of the electric field applied to the liquid crystal layer and the brightness of the subpixel are inverted every vertical scanning period, one subpixel is different from the other subpixel. The direction of the electric field applied to the liquid crystal layer when it is brighter is always the same.
[0013] 例えば、特許文献 2の液晶表示装置では、ある垂直走査期間で、第 1副画素に印 加される実効電圧の絶対値が第 2副画素に印加される実効電圧の絶対値よりも大き くなり、第 1副画素が第 2副画素よりも明るいときに、液晶層に印加される電界が副画 素電極側から対向電極側に向いている(電界がこのように向く状態を「第 1極性」とい う)。次の垂直走査期間では、第 2副画素に印加される実効電圧の絶対値が第 1副画 素に印加される実効電圧の絶対値よりも大きくなり、第 2副画素が第 1副画素よりも明 るくなり、液晶層に印加される電界は対向電極側から副画素電極側に向いている(電 界がこのように向く状態を「第 2極性」という)。また、次の垂直走査期間では、第 1副 画素に印加される実効電圧の絶対値が第 2副画素に印加される実効電圧の絶対値 よりも大きくなり、第 1副画素が第 2副画素よりも明るくなり、第 1極性となり、さらに次の 垂直走査期間では、第 2副画素に印加される実効電圧の絶対値が第 1副画素に印 加される実効電圧の絶対値よりも大きくなり、第 2副画素が第 1副画素よりも明るくなり 、第 2極性となる。  [0013] For example, in the liquid crystal display device of Patent Document 2, the absolute value of the effective voltage applied to the first subpixel is larger than the absolute value of the effective voltage applied to the second subpixel in a certain vertical scanning period. When the first subpixel is brighter than the second subpixel, the electric field applied to the liquid crystal layer is directed from the subpixel electrode side to the counter electrode side (the state where the electric field is First polarity ”). In the next vertical scanning period, the absolute value of the effective voltage applied to the second subpixel is larger than the absolute value of the effective voltage applied to the first subpixel, and the second subpixel is more than the first subpixel. The electric field applied to the liquid crystal layer is directed from the counter electrode side to the sub-pixel electrode side (the state where the electric field is directed in this way is called “second polarity”). In the next vertical scanning period, the absolute value of the effective voltage applied to the first sub-pixel is larger than the absolute value of the effective voltage applied to the second sub-pixel, and the first sub-pixel becomes the second sub-pixel. Becomes the first polarity, and in the next vertical scanning period, the absolute value of the effective voltage applied to the second subpixel becomes larger than the absolute value of the effective voltage applied to the first subpixel. The second subpixel is brighter than the first subpixel and has the second polarity.
[0014] 以上のように、特許文献 2の液晶表示装置では、第 1副画素に印加される実効電圧 の絶対値が大きいときは専ら第 1極性であり、第 2副画素に印加される実効電圧の絶 対値が大きいときは専ら第 2極性であるため、第 1副画素に印加される実効電圧の平 均値は第 1極性となり、第 2副画素に印加される実効電圧の平均値は第 2極性となる [0014] As described above, in the liquid crystal display device of Patent Document 2, the effective voltage applied to the first sub-pixel. When the absolute value of is large, it is exclusively the first polarity, and when the absolute value of the effective voltage applied to the second subpixel is large, it is exclusively the second polarity, so the effective voltage applied to the first subpixel The average value of is the first polarity and the average value of the effective voltage applied to the second subpixel is the second polarity.
[0015] なお、一般的な液晶表示装置では、画素に印加される電圧の平均値がゼロでない 状態、すなわち、画素に印加される電圧に直流電圧成分が残っている状態で長時間 同一の画像を表示しつづけると、その後表示画像を切り替えても以前に長時間表示 しつづけていた画像が残る、焼きつきと呼ばれる現象が発生する。この焼きつきを回 避するために、一般的な液晶表示装置では、画素を交流駆動(絶対値の等しい第 1 極性電圧、第 2極性電圧を交互に印加する)することで液晶層に印加される電圧の 平均値をゼロにしている。また、交流駆動によって電圧の平均値がゼロとならない場 合、さらに対向電圧の調整を行うことにより、電圧の平均値をゼロにしている。 [0015] Note that, in a general liquid crystal display device, the same image for a long time in a state where the average value of the voltage applied to the pixel is not zero, that is, in a state where a DC voltage component remains in the voltage applied to the pixel. If you continue to display, an image that has been displayed for a long time will remain even if the display image is switched afterwards, causing a phenomenon called burn-in. In order to avoid this burn-in, in a general liquid crystal display device, the pixel is applied to the liquid crystal layer by AC driving (the first polarity voltage and the second polarity voltage having the same absolute value are alternately applied). The average voltage is zero. If the average voltage does not become zero due to AC driving, the average voltage is set to zero by adjusting the counter voltage.
[0016] しかしながら、特許文献 2の液晶表示装置において、第 1副画素および第 2副画素 の実効電圧の平均値が異なるため、対向電圧を調整したとしても、ゼロにすることが できるのは一方の副画素のみであり、他方の副画素についての電圧の平均直をゼロ に調整することができない。この場合、調整できな力、つた副画素において焼きつきが 生じ、その結果、表示装置全体として、焼きつきの発生を抑制することができない。し たがって、特許文献 2の液晶表示装置では、第 1、第 2副画素に印加される電圧の平 均値を共にゼロにすることができず、焼きつき等の信頼性上の不具合を発生するとい つた問題がある。  [0016] However, in the liquid crystal display device of Patent Document 2, since the average value of the effective voltages of the first subpixel and the second subpixel are different, even if the counter voltage is adjusted, it can be reduced to zero. This is only the sub-pixel, and the average voltage of the other sub-pixel cannot be adjusted to zero. In this case, an image that cannot be adjusted and burn-in occurs in the sub-pixel, and as a result, the image display cannot be suppressed as a whole display device. Therefore, in the liquid crystal display device disclosed in Patent Document 2, the average value of the voltage applied to the first and second sub-pixels cannot be made zero, resulting in reliability problems such as burn-in. Then there are problems.
[0017] 本発明は、上記課題を鑑みてなされたものであり、その目的は、表示のざらつきお よび焼きつき等の信頼性上の問題の発生を抑制した液晶表示装置を提供することに ある。  The present invention has been made in view of the above problems, and an object thereof is to provide a liquid crystal display device in which occurrence of reliability problems such as display roughness and burn-in is suppressed. .
課題を解決するための手段  Means for solving the problem
[0018] 本発明の液晶表示装置は、それぞれが、第 1副画素および第 2副画素を含む複数 の画素を備えた液晶表示装置であって、前記第 1副画素および前記第 2副画素のそ れぞれは、対向電極と、副画素電極と、前記対向電極と前記副画素電極との間に配 置された液晶層とを有しており、前記第 1副画素および前記第 2副画素のそれぞれの 前記副画素電極は、それぞれ別個の第 1副画素電極および第 2副画素電極であり、 前記第 1副画素および前記第 2副画素のそれぞれの前記対向電極は共通の単一電 極であり、連続する 4以上の偶数の垂直走査期間にわたつて所定の中間階調の表示 を行う場合に、前記偶数の垂直走査期間のうちの少なくとも 2つの垂直走査期間に おいて前記第 1副画素および前記第 2副画素の輝度は異なり、前記第 1副画素およ び前記第 2副画素のそれぞれについて前記偶数の垂直走査期間のうちの極性が第 1極性である第 1極性期間の長さと第 2極性である第 2極性期間の長さとが等しぐ前 記第 1極性期間および前記第 2極性期間のそれぞれにおいて前記第 1副画素の前 記液晶層に印加される実効電圧の平均値と前記第 2副画素の前記液晶層に印加さ れる実効電圧の平均値との差が実質的にゼロである。 [0018] The liquid crystal display device of the present invention is a liquid crystal display device including a plurality of pixels each including a first subpixel and a second subpixel, and each of the first subpixel and the second subpixel. Each includes a counter electrode, a sub-pixel electrode, and a liquid crystal layer disposed between the counter electrode and the sub-pixel electrode, and the first sub-pixel and the second sub-pixel are provided. Each of the pixels The subpixel electrodes are respectively separate first and second subpixel electrodes, and the counter electrodes of the first and second subpixels are a common single electrode; When displaying a predetermined intermediate gradation over four or more consecutive vertical scanning periods, the first sub-pixel and the first sub-pixel and the first sub-pixel and at least two of the even vertical scanning periods are displayed. The brightness of the second sub-pixel is different, and the first sub-pixel and the second sub-pixel have a second polarity and a length of the first polarity period in which the polarity of the even number of vertical scanning periods is the first polarity. The average value of the effective voltage applied to the liquid crystal layer of the first subpixel in each of the first polarity period and the second polarity period equal to the length of the second polarity period that is polar Effective voltage applied to the liquid crystal layer of the second subpixel The difference between the average value is substantially zero.
[0019] ある実施形態において、前記複数の画素のそれぞれにおいて、前記第 1副画素の 前記液晶層に印加される実効電圧を VLspaとし、前記第 2副画素の前記液晶層に 印加される実効電圧を VLspbとすると、連続する 4つの垂直走査期間のうち、 2つの 垂直走査期間は前記第 1極性期間であり、残りの 2つの垂直走査期間は前記第 2極 性期間であり、前記第 1極性期間および前記第 2極性期間のうち少なくとも一方の前 記 2つの垂直走査期間のうち、一方は I VLspa I > I VLspb |を満たし、他方は | VLspa I < I VLspb |を満たす。  In one embodiment, the effective voltage applied to the liquid crystal layer of the first subpixel in each of the plurality of pixels is VLspa, and the effective voltage applied to the liquid crystal layer of the second subpixel. VLspb of the four consecutive vertical scanning periods, two vertical scanning periods are the first polarity period, and the remaining two vertical scanning periods are the second polarity period, and the first polarity Of the two vertical scanning periods of at least one of the period and the second polarity period, one satisfies I VLspa I> I VLspb |, and the other satisfies | VLspa I <I VLspb |.
[0020] ある実施形態において、前記複数の画素のそれぞれにおいて、前記第 1副画素の 前記液晶層に印加される実効電圧を VLspaとし、前記第 2副画素の前記液晶層に 印加される実効電圧を VLspbとすると、連続する 4つの垂直走査期間のうち、 2つの 垂直走査期間は前記第 1極性期間であり、残りの 2つの垂直走査期間は前記第 2極 性期間であり、前記第 1極性期間および前記第 2極性期間のうち少なくとも一方の前 記 2つの垂直走査期間のうちの一方の垂直走査期間における V I Lspa Iの値およ び I VLspb Iの値は、他方の垂直走査期間における I VLspb Iの値および I VLs pa I のィ直とそれぞれ等しい。  In one embodiment, in each of the plurality of pixels, an effective voltage applied to the liquid crystal layer of the first subpixel is VLspa, and an effective voltage applied to the liquid crystal layer of the second subpixel. VLspb of the four consecutive vertical scanning periods, two vertical scanning periods are the first polarity period, and the remaining two vertical scanning periods are the second polarity period, and the first polarity The value of VI Lspa I and the value of I VLspb I in one of the two vertical scanning periods of the period and at least one of the second polarity periods are the values of I in the other vertical scanning period. It is equal to the value of VLspb I and I VLs pa I respectively.
[0021] ある実施形態において、前記 4つの垂直走査期間のうち I VLspa | > | VLspb | を満たす垂直走査期間の数は I VLspa I < I VLspb |を満たす垂直走査期間の 数と等しい。 [0022] ある実施形態において、前記複数の画素は、複数の行方向および複数の列方向 にマトリクス状に配置されており、前記複数の画素のそれぞれにおいて、前記第 1副 画素および前記第 2副画素は前記列方向に沿って配置されている。 In one embodiment, among the four vertical scanning periods, the number of vertical scanning periods satisfying I VLspa |> | VLspb | is equal to the number of vertical scanning periods satisfying I VLspa I <I VLspb |. [0022] In one embodiment, the plurality of pixels are arranged in a matrix in a plurality of row directions and a plurality of column directions, and in each of the plurality of pixels, the first sub pixel and the second sub pixel are arranged. Pixels are arranged along the column direction.
[0023] ある実施形態において、前記複数の画素のそれぞれにおいて、前記第 1副画素電 極および前記第 2副画素電極の電圧は、対応する補助容量配線の電圧変化に応じ て変化する。  In one embodiment, in each of the plurality of pixels, the voltage of the first subpixel electrode and the second subpixel electrode changes according to a voltage change of the corresponding auxiliary capacitance line.
[0024] ある実施形態において、前記複数の画素のそれぞれにおいて、前記第 1副画素電 極に対応する補助容量配線の電圧は、前記第 2副画素電極に対応する補助容量配 線の電圧とは異なる方向に変化する。  In one embodiment, in each of the plurality of pixels, the voltage of the auxiliary capacitance line corresponding to the first subpixel electrode is the voltage of the auxiliary capacitance line corresponding to the second subpixel electrode. Change in different directions.
[0025] ある実施形態において、前記複数の画素のうちのある画素の前記第 2副画素電極 の電圧、および、前記ある画素の前記列方向に隣接する画素の前記第 1副画素電 極の電圧は、共通の補助容量配線の電圧変化に応じて変化する。  In one embodiment, the voltage of the second subpixel electrode of a pixel of the plurality of pixels and the voltage of the first subpixel electrode of a pixel adjacent to the certain pixel in the column direction. Changes according to the voltage change of the common auxiliary capacitance line.
[0026] ある実施形態において、前記複数の画素のうちのある画素の前記第 2副画素電極 の電圧、および、前記ある画素の前記列方向に隣接する画素の前記第 1副画素電 極の電圧は、異なる補助容量配線の電圧変化に応じて変化する。  [0026] In one embodiment, the voltage of the second subpixel electrode of a pixel of the plurality of pixels and the voltage of the first subpixel electrode of a pixel adjacent in the column direction of the pixel. Changes according to the voltage change of different auxiliary capacitance wirings.
[0027] ある実施形態において、前記複数の画素のそれぞれにおいて、前記第 1副画素電 極は対応するスイッチング素子を介して前記第 2副画素電極と同じ信号線に接続さ れている。  In one embodiment, in each of the plurality of pixels, the first subpixel electrode is connected to the same signal line as the second subpixel electrode via a corresponding switching element.
[0028] ある実施形態において、前記複数の画素のそれぞれにおいて、前記第 1副画素電 極は第 1スィッチング素子を介して第 1信号線に接続されており、前記第 2副画素電 極は第 2スイッチング素子を介して第 2信号線に接続されている。  In one embodiment, in each of the plurality of pixels, the first subpixel electrode is connected to a first signal line via a first switching element, and the second subpixel electrode is a first electrode. It is connected to the second signal line through two switching elements.
[0029] ある実施形態にお!/、て、前記第 1極性期間および前記第 2極性期間のそれぞれの 前記 2つの垂直走査期間のうち、一方は I VLspa I > I VLspb |を満たす垂直走 查期間であり、他方は I VLspa I < I VLspb |を満たす垂直走査期間である。  [0029] In one embodiment, one of the two vertical scanning periods of the first polarity period and the second polarity period is one in which one of the two vertical scanning periods satisfies I VLspa I> I VLspb | The other is a vertical scanning period that satisfies I VLspa I <I VLspb |.
[0030] ある実施形態において、前記複数の画素のそれぞれにおいて、 I VLspa |と | V Lspb Iとの大小関係を 1垂直走査期間ごとに反転するとともに、前記第 1副画素およ び前記第 2副画素の極性を 2垂直走査期間ごとに反転する。  In one embodiment, in each of the plurality of pixels, the magnitude relationship between I VLspa | and | V Lspb I is inverted every one vertical scanning period, and the first subpixel and the second subpixel The subpixel polarity is inverted every two vertical scan periods.
[0031] ある実施形態において、フレーム周波数は 60Hzである。 [0032] ある実施形態において、前記複数の画素のそれぞれにおいて、 I VLspa |と | V Lspb Iとの大小関係を 2垂直走査期間ごとに反転するとともに、前記第 1副画素およ び前記第 2副画素の極性を 1垂直走査期間ごとに反転する。 [0031] In an embodiment, the frame frequency is 60Hz. In one embodiment, in each of the plurality of pixels, the magnitude relationship between I VLspa | and | V Lspb I is inverted every two vertical scanning periods, and the first subpixel and the second subpixel The polarity of the subpixel is inverted every vertical scanning period.
[0033] ある実施形態において、フレーム周波数は 120Hzである。  [0033] In an embodiment, the frame frequency is 120Hz.
[0034] ある実施形態において、前記複数の画素のそれぞれにおいて、 I VLspa |と | V Lspb Iとの大小関係を 2垂直走査期間ごとに反転するとともに、前記第 1副画素およ び前記第 2副画素の極性を 2垂直走査期間ごとに反転し、前記第 1副画素および前 記第 2副画素の極性を反転するときとは異なるときに I VLspa Iと I VLspb |との大 小関係の反転を行う。  In one embodiment, in each of the plurality of pixels, the magnitude relationship between I VLspa | and | V Lspb I is inverted every two vertical scanning periods, and the first subpixel and the second subpixel When the polarity of the sub-pixel is inverted every two vertical scanning periods and the polarity of the first sub-pixel and the second sub-pixel is inverted, the magnitude relationship between I VLspa I and I VLspb | Invert.
[0035] ある実施形態において、前記第 1極性期間および前記第 2極性期間の一方の前記 2つの垂直走査期間のうち、一方は I VLspa I > I VLspb |を満たす垂直走査期 間であり、他方は I VLspa I < I VLspb |を満たす垂直走査期間であり、前記第 1 極性期間および前記第 2極性期間の他方の前記 2つの垂直走査期間のそれぞれに おいて、 VLspaは VLspbと等しい。  [0035] In one embodiment, one of the two vertical scanning periods of the first polarity period and the second polarity period is a vertical scanning period that satisfies I VLspa I> I VLspb | Is a vertical scanning period satisfying I VLspa I <I VLspb |, and VLspa is equal to VLspb in each of the other two vertical scanning periods of the first polarity period and the second polarity period.
[0036] ある実施形態において、前記第 1副画素電極および前記第 2副画素電極に対応す る補助容量配線の電圧は、第 1レベルと、前記第 1レベルよりも高電圧の第 2レベルと 、前記第 2レベルよりも高電圧の第 3レベルとの間で変化する。  In one embodiment, the voltage of the auxiliary capacitance line corresponding to the first subpixel electrode and the second subpixel electrode is a first level and a second level that is higher than the first level. And a third level that is higher in voltage than the second level.
[0037] ある実施形態において、前記第 1副画素電極は前記第 2副画素電極と等しい表示 面積を有している。  [0037] In one embodiment, the first subpixel electrode has a display area equal to that of the second subpixel electrode.
発明の効果  The invention's effect
[0038] 本発明によれば、表示のざらつきおよび焼きつき等の信頼性上の問題の発生を抑 制した液晶表示装置を提供することができる。  [0038] According to the present invention, it is possible to provide a liquid crystal display device in which the occurrence of reliability problems such as display roughness and burn-in is suppressed.
図面の簡単な説明  Brief Description of Drawings
[0039] [図 1]本発明による液晶表示装置の第 1実施形態の構造を示す模式図である。  FIG. 1 is a schematic diagram showing the structure of a first embodiment of a liquid crystal display device according to the present invention.
[図 2]第 1実施形態の液晶表示装置における液晶パネルの模式的ブロック図である。  FIG. 2 is a schematic block diagram of a liquid crystal panel in the liquid crystal display device of the first embodiment.
[図 3] (a)は、第 1実施形態の液晶表示装置における 1つの画素の模式的平面図であ り、(b)は、 1つの副画素の模式的断面図である。  FIG. 3 (a) is a schematic plan view of one pixel in the liquid crystal display device of the first embodiment, and FIG. 3 (b) is a schematic cross-sectional view of one subpixel.
[図 4]従来の液晶表示装置における第 1、第 2副画素の明暗、極性および実効電圧 の変化を示す模式図であり、(a)は、第 1、第 2副画素の明暗および極性の変化を示 す模式図であり、(b)は、第 1副画素の液晶層に印加される実効電圧の変化を示す 模式図であり、(c)は、第 2副画素の液晶層に印加される実効電圧の変化を示す模 式図である。 [Fig.4] Brightness, polarity, and effective voltage of the first and second subpixels in a conventional liquid crystal display device (A) is a schematic diagram showing changes in brightness and polarity and polarity of the first and second subpixels, and (b) is applied to the liquid crystal layer of the first subpixel. FIG. 6C is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer of the second sub-pixel.
園 5]別の従来の液晶表示装置における第 1、第 2副画素の明暗、極性および実効 電圧の変化を示す模式図であり、(a)は、第 1、第 2副画素の明暗および極性の変化 を示す模式図であり、(b)は、第 1副画素の液晶層に印加される実効電圧の変化を 示す模式図であり、(c)は、第 2副画素の液晶層に印加される実効電圧の変化を示 す模式図である。 5] Schematic diagram showing changes in brightness, polarity, and effective voltage of the first and second sub-pixels in another conventional liquid crystal display device, and (a) shows the brightness and polarity of the first and second sub-pixels. (B) is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer of the first subpixel, and (c) is a schematic diagram showing the change of the effective voltage applied to the liquid crystal layer of the second subpixel. It is a schematic diagram showing a change in effective voltage.
[図 6]第 1実施形態の液晶表示装置における第 1、第 2副画素の明暗、極性および実 効電圧の変化を示す模式図であり、(a)は、第 1、第 2副画素の明暗および極性の変 化を示す模式図であり、(b)は、第 1副画素の液晶層に印加される実効電圧の変化 を示す模式図であり、(c)は、第 2副画素の液晶層に印加される実効電圧の変化を 示す模式図である。  FIG. 6 is a schematic view showing changes in brightness, polarity, and effective voltage of the first and second subpixels in the liquid crystal display device of the first embodiment. FIG. 6 (a) is a diagram of the first and second subpixels. FIG. 4 is a schematic diagram showing changes in brightness and polarity, (b) is a schematic diagram showing changes in effective voltage applied to the liquid crystal layer of the first subpixel, and (c) is a schematic diagram of the second subpixel. It is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer.
[図 7]第 1実施形態の液晶表示装置の画素構造の一例を示す模式図である。  FIG. 7 is a schematic diagram showing an example of a pixel structure of the liquid crystal display device of the first embodiment.
園 8]第 1実施形態の液晶表示装置における 1つの画素の等価回路図である。 FIG. 8] is an equivalent circuit diagram of one pixel in the liquid crystal display device of the first embodiment.
[図 9]第 1実施形態の液晶表示装置の駆動に用いられる各種の電圧波形の一例を示 す図である。 FIG. 9 is a diagram showing an example of various voltage waveforms used for driving the liquid crystal display device of the first embodiment.
園 10]第 1実施形態の液晶表示装置における副画素の液晶層に印加される実効電 圧の関係を示す図である。 FIG. 10] A diagram showing the relationship of effective voltages applied to the liquid crystal layer of the sub-pixel in the liquid crystal display device of the first embodiment.
園 11]第 1実施形態の液晶表示装置の γ特性を示す図であり、(a)は右 60度視角で の Ί特性を示す図であり、 (b)は右上 60度視角の γ特性を示す図である。 11] It is a diagram showing the γ characteristic of the liquid crystal display device of the first embodiment, (a) is a diagram showing the Ί characteristic at the right 60 ° viewing angle, and (b) is the diagram showing the γ property at the 60 ° viewing angle at the upper right. FIG.
園 12]第 1実施形態の液晶表示装置における複数の垂直走査期間にわたった各種 の電圧波形の一例を示す図である。 FIG. 12] A diagram showing an example of various voltage waveforms over a plurality of vertical scanning periods in the liquid crystal display device of the first embodiment.
園 13]第 1実施形態の液晶表示装置の等価回路図の一例である。 13] It is an example of an equivalent circuit diagram of the liquid crystal display device of the first embodiment.
園 14]第 1実施形態の液晶表示装置における複数の副画素の配歹 IJ、明暗および極 性を示す模式図である。 14] A schematic diagram showing an arrangement IJ, brightness and darkness of a plurality of subpixels in the liquid crystal display device of the first embodiment.
[図 15]第 1実施形態の液晶表示装置における各種の電圧波形の一例を示す図であ 園 16]第 1実施形態の液晶表示装置における複数の垂直走査期間にわたった各種 の電圧波形の一例を示す図である。 FIG. 15 is a diagram showing examples of various voltage waveforms in the liquid crystal display device of the first embodiment. FIG. 16] A diagram illustrating examples of various voltage waveforms over a plurality of vertical scanning periods in the liquid crystal display device of the first embodiment.
[図 17]第 1実施形態の液晶表示装置における副画素の明暗および極性、ならびに、 各副画素の垂直走査期間における始めの補助容量電圧の変化を示す模式図である 園 is] ωおよび (b)は、第 1実施形態の液晶表示装置における複数の垂直走査期 間にわたった各種の電圧波形の一例を示す図である。  FIG. 17 is a schematic diagram showing the change in brightness and darkness and polarity of subpixels in the liquid crystal display device of the first embodiment, and the initial auxiliary capacitance voltage in the vertical scanning period of each subpixel. FIG. 5 is a diagram showing an example of various voltage waveforms over a plurality of vertical scanning periods in the liquid crystal display device of the first embodiment.
[図 19] (a) (c)は、第 1実施形態の液晶表示装置における複数の垂直走査期間に わたった各種の電圧波形の一例を示す図である。  19 (a) and 19 (c) are diagrams showing examples of various voltage waveforms over a plurality of vertical scanning periods in the liquid crystal display device of the first embodiment.
園 20]第 1実施形態の液晶表示装置における複数の垂直走査期間にわたった各種 の電圧波形の一例を示す図である。 FIG. 20] A diagram showing an example of various voltage waveforms over a plurality of vertical scanning periods in the liquid crystal display device of the first embodiment.
[図 21]第 1実施形態の液晶表示装置における複数の垂直走査期間にわたった各種 の電圧波形の一例を示す図である。  FIG. 21 is a diagram showing an example of various voltage waveforms over a plurality of vertical scanning periods in the liquid crystal display device of the first embodiment.
[図 22]第 1実施形態の液晶表示装置における副画素の明暗および極性、ならびに、 各副画素の垂直走査期間における始めの補助容量電圧の変化を示す模式図である  FIG. 22 is a schematic diagram showing brightness and darkness and polarity of subpixels in the liquid crystal display device according to the first embodiment, and changes in the auxiliary capacitance voltage at the beginning of each subpixel during the vertical scanning period
[図 23]第 1実施形態の液晶表示装置の等価回路図の一例である。 FIG. 23 is an example of an equivalent circuit diagram of the liquid crystal display device of the first embodiment.
[図 24]第 1実施形態の液晶表示装置における各種の電圧波形の一例を示す図であ  FIG. 24 is a diagram showing examples of various voltage waveforms in the liquid crystal display device of the first embodiment.
[図 25]第 1実施形態の液晶表示装置の画素構造の一例を示す模式図である。 FIG. 25 is a schematic diagram showing an example of a pixel structure of the liquid crystal display device of the first embodiment.
園 26]本発明による液晶表示装置の第 2実施形態における第 1、第 2副画素の明暗、 極性および実効電圧の変化を示す模式図であり、(a)は、第 1、第 2副画素の明暗お よび極性の変化を示す模式図であり、(b)は、第 1副画素の液晶層に印加される実 効電圧の変化を示す模式図であり、(c)は、第 2副画素の液晶層に印加される実効 電圧の変化を示す模式図である。 26] FIG. 26 is a schematic diagram showing changes in brightness, polarity, and effective voltage of the first and second subpixels in the second embodiment of the liquid crystal display device according to the present invention, and (a) shows the first and second subpixels. FIG. 4B is a schematic diagram showing changes in effective voltage applied to the liquid crystal layer of the first sub-pixel, and FIG. It is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer of the pixel.
[図 27]第 2実施形態の液晶表示装置における副画素の明暗および極性、ならびに、 各副画素の垂直走査期間における始めの補助容量電圧の変化を示す模式図である 園 28]本発明による液晶表示装置の第 3実施形態における第 1、第 2副画素の明暗、 極性および実効電圧の変化を示す模式図であり、(a)は、第 1、第 2副画素の明暗お よび極性の変化を示す模式図であり、(b)は、第 1副画素の液晶層に印加される実 効電圧の変化を示す模式図であり、(c)は、第 2副画素の液晶層に印加される実効 電圧の変化を示す模式図である。 FIG. 27 is a schematic diagram showing brightness and darkness and polarity of subpixels in the liquid crystal display device according to the second embodiment, and changes in the auxiliary capacitance voltage at the beginning of each subpixel during the vertical scanning period. 28] FIG. 28 is a schematic diagram showing changes in brightness, polarity, and effective voltage of the first and second subpixels in the third embodiment of the liquid crystal display device according to the present invention, and (a) shows the first and second subpixels. FIG. 4B is a schematic diagram showing changes in effective voltage applied to the liquid crystal layer of the first sub-pixel, and FIG. It is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer of the pixel.
[図 29]第 3実施形態の液晶表示装置における各種の電圧波形の一例を示す図であ 園 30]第 3実施形態の液晶表示装置における副画素の明暗および極性、ならびに、 各副画素の垂直走査期間における始めの補助容量電圧の変化を示す模式図である 園 31]本発明による液晶表示装置の第 4実施形態における第 1、第 2副画素の明暗、 極性および実効電圧の変化を示す模式図であり、(a)は、第 1、第 2副画素の明暗お よび極性の変化を示す模式図であり、(b)は、第 1副画素の液晶層に印加される実 効電圧の変化を示す模式図であり、(c)は、第 2副画素の液晶層に印加される実効 電圧の変化を示す模式図である。  FIG. 29 is a diagram showing an example of various voltage waveforms in the liquid crystal display device of the third embodiment. 30] Brightness and polarity of subpixels in the liquid crystal display device of the third embodiment, and the vertical of each subpixel. FIG. 31 is a schematic diagram showing changes in the initial auxiliary capacitance voltage during the scanning period. 31] Schematic showing changes in brightness, polarity, and effective voltage of the first and second subpixels in the fourth embodiment of the liquid crystal display device according to the present invention. (A) is a schematic diagram showing changes in brightness and polarity of the first and second subpixels, and (b) is an effective voltage applied to the liquid crystal layer of the first subpixel. FIG. 7C is a schematic diagram showing a change, and FIG. 10C is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer of the second subpixel.
[図 32]第 4実施形態の液晶表示装置における副画素の明暗および極性、ならびに、 各副画素の垂直走査期間における始めの補助容量電圧の変化を示す模式図である 園 33]本発明による液晶表示装置の第 5実施形態における第 1、第 2副画素の明暗、 極性および実効電圧の変化を示す模式図であり、(a)は、第 1、第 2副画素の明暗お よび極性の変化を示す模式図であり、(b)は、第 1副画素の液晶層に印加される実 効電圧の変化を示す模式図であり、(c)は、第 2副画素の液晶層に印加される実効 電圧の変化を示す模式図である。  FIG. 32 is a schematic diagram showing brightness and darkness and polarity of subpixels in the liquid crystal display device according to the fourth embodiment, and changes in the auxiliary capacitance voltage at the beginning of each subpixel in the vertical scanning period. FIG. 10 is a schematic diagram showing changes in brightness, polarity, and effective voltage of first and second sub-pixels in the fifth embodiment of the display device, and (a) shows changes in brightness and polarity of first and second sub-pixels. (B) is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer of the first subpixel, and (c) is a schematic diagram showing the change of the effective voltage applied to the liquid crystal layer of the second subpixel. FIG. 6 is a schematic diagram showing changes in effective voltage.
[図 34]第 5実施形態の液晶表示装置における各種の電圧波形の一例を示す図であ  FIG. 34 is a diagram showing examples of various voltage waveforms in the liquid crystal display device of the fifth embodiment.
[図 35]第 5実施形態の液晶表示装置における副画素の明暗および極性、ならびに、 各副画素の垂直走査期間における始めの補助容量電圧の変化を示す模式図である 園 36]本発明による液晶表示装置の第 6実施形態における第 1、第 2副画素の明暗、 極性および実効電圧の変化を示す模式図であり、(a)は、第 1、第 2副画素の明暗お よび極性の変化を示す模式図であり、(b)は、第 1副画素の液晶層に印加される実 効電圧の変化を示す模式図であり、(c)は、第 2副画素の液晶層に印加される実効 電圧の変化を示す模式図である。 FIG. 35 is a schematic diagram showing brightness and darkness and polarity of sub-pixels in the liquid crystal display device of the fifth embodiment, and changes in the auxiliary capacitance voltage at the beginning of each sub-pixel in the vertical scanning period. 36] FIG. 36 is a schematic diagram showing changes in brightness, polarity, and effective voltage of the first and second subpixels in the sixth embodiment of the liquid crystal display device according to the present invention, and (a) shows the first and second subpixels. FIG. 4B is a schematic diagram showing changes in effective voltage applied to the liquid crystal layer of the first sub-pixel, and FIG. It is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer of the pixel.
[図 37]第 6実施形態の液晶表示装置における副画素の明暗および極性、ならびに、 各副画素の垂直走査期間における始めの補助容量電圧の変化を示す模式図である 園 38]本発明による液晶表示装置の第 7実施形態における第 1、第 2副画素の明暗、 極性および実効電圧の変化を示す模式図であり、(a)は、第 1、第 2副画素の明暗お よび極性の変化を示す模式図であり、(b)は、第 1副画素の液晶層に印加される実 効電圧の変化を示す模式図であり、(c)は、第 2副画素の液晶層に印加される実効 電圧の変化を示す模式図である。  FIG. 37 is a schematic diagram showing brightness and darkness and polarity of sub-pixels in the liquid crystal display device of the sixth embodiment, and changes in the auxiliary capacitance voltage at the beginning of each sub-pixel in the vertical scanning period. FIG. 37] Liquid crystal according to the present invention FIG. 10 is a schematic diagram showing changes in brightness, polarity, and effective voltage of first and second subpixels in the seventh embodiment of the display device, and (a) shows changes in brightness, polarity and polarity of first and second subpixels. (B) is a schematic diagram showing a change in effective voltage applied to the liquid crystal layer of the first subpixel, and (c) is a schematic diagram showing the change of the effective voltage applied to the liquid crystal layer of the second subpixel. FIG. 6 is a schematic diagram showing changes in effective voltage.
園 39A]第 7実施形態の液晶表示装置のあるフレームにおける副画素の明暗および 極性、ならびに、各副画素の垂直走査期間における始めの補助容量電圧の変化を 示す模式図である。 FIG. 39A] is a schematic diagram showing the change in brightness and polarity of subpixels in a certain frame of the liquid crystal display device of the seventh embodiment, and the change in auxiliary capacitance voltage at the beginning of each subpixel in the vertical scanning period.
[図 39B]第 7実施形態の液晶表示装置の次のフレームにおける副画素の明暗および 極性、ならびに、各副画素の垂直走査期間における始めの補助容量電圧の変化を 示す模式図である。  FIG. 39B is a schematic diagram showing brightness and darkness and polarity of subpixels in the next frame of the liquid crystal display device of the seventh embodiment, and changes in the auxiliary capacitance voltage at the beginning of each subpixel during the vertical scanning period.
[図 40]第 7実施形態の液晶表示装置における各種の電圧波形の一例を示す図であ 符号の説明  FIG. 40 is a diagram showing an example of various voltage waveforms in the liquid crystal display device of the seventh embodiment.
10 画素  10 pixels
10a, 10b 畐幌素  10a, 10b
13 液晶層  13 Liquid crystal layer
17 対向電極  17 Counter electrode
18a, 18b 畐幌素電極 100 液晶表示装置 18a, 18b 100 liquid crystal display
100A 液晶パネル  100A LCD panel
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0041] (実施形態 1)  [Embodiment 1]
以下、図面を参照して、本発明による液晶表示装置の第 1実施形態を説明する。  Hereinafter, a first embodiment of a liquid crystal display device according to the present invention will be described with reference to the drawings.
[0042] まず、図 1〜図 3を参照して、本実施形態の液晶表示装置 100の構成を概略的に 説明する。図 1に、本実施形態の液晶表示装置 100を示す。液晶表示装置 100の液 晶パネル 100Aは、図 2に示すように、複数の行方向および列方向のマトリクス状に 配列された複数の画素を有する表示部 110と、表示部 110を駆動する駆動回路 120 とを備えている。表示部 110の各画素は、液晶層と、液晶層に電圧を印加する複数 の電極とを有している。駆動回路 120は、入力された入力映像信号に基づいて駆動 信号を生成する。  First, the configuration of the liquid crystal display device 100 of the present embodiment will be schematically described with reference to FIGS. FIG. 1 shows a liquid crystal display device 100 of the present embodiment. As shown in FIG. 2, the liquid crystal panel 100A of the liquid crystal display device 100 includes a display unit 110 having a plurality of pixels arranged in a matrix of a plurality of rows and columns, and a drive circuit that drives the display 110. 120 and. Each pixel of the display unit 110 includes a liquid crystal layer and a plurality of electrodes that apply a voltage to the liquid crystal layer. The drive circuit 120 generates a drive signal based on the inputted input video signal.
[0043] 図 3 (a)は 1つの画素の電極構造の模式的平面図であり、図 3 (b)は 1つの副画素 の模式的断面図である。図 3 (b)は、図 3 (a)の 3B— 3B '線に沿った断面に相当する 。図 3 (a)に示すように、 1つの画素 10は、列方向に沿うように配置された第 1副画素 10aと第 2副画素 10bとを有している。図 3 (b)に示すように、第 1副画素 10aは、液晶 層 13と、第 1副画素電極 18aと、液晶層 13を介して第 1副画素電極 18aと対向する 対向電極 17とを有する。なお、図 3 (b)には、第 1副画素 10aの構成を示している力 第 2副画素 10bも同様の構成を有している。対向電極 17は、典型的には、全ての画 素 10に対して共通の 1つの電極である。本実施形態の液晶表示装置 100では、第 1 副画素電極 18aおよび第 2副画素電極 18bに異なる電圧が印加され得、それにより、 第 1副画素 10aの液晶層の実効電圧を、第 2副画素 10bの液晶層の実効電圧と異な らせることでさる。  FIG. 3 (a) is a schematic plan view of the electrode structure of one pixel, and FIG. 3 (b) is a schematic cross-sectional view of one subpixel. Fig. 3 (b) corresponds to a cross section taken along line 3B-3B 'in Fig. 3 (a). As shown in FIG. 3 (a), one pixel 10 has a first sub-pixel 10a and a second sub-pixel 10b arranged along the column direction. As shown in FIG. 3 (b), the first sub-pixel 10a includes a liquid crystal layer 13, a first sub-pixel electrode 18a, and a counter electrode 17 that faces the first sub-pixel electrode 18a through the liquid crystal layer 13. Have. In FIG. 3B, the force second subpixel 10b, which shows the configuration of the first subpixel 10a, has the same configuration. The counter electrode 17 is typically one electrode common to all the pixels 10. In the liquid crystal display device 100 of the present embodiment, different voltages can be applied to the first sub-pixel electrode 18a and the second sub-pixel electrode 18b, whereby the effective voltage of the liquid crystal layer of the first sub-pixel 10a is changed to the second sub-pixel electrode 18b. This is done by making it different from the effective voltage of the liquid crystal layer of pixel 10b.
[0044] 次いで、図 4〜図 6を参照して、特許文献 1および特許文献 2の液晶表示装置と比 較しながら、本実施形態の液晶表示装置 100における副画素の明暗および電界の 向き(電気力線の向き)の変化を説明する。なお、ここでは、説明を簡略化するために 、画素が所定の中間階調を数フレームにわたって表示すると仮定する。  Next, referring to FIG. 4 to FIG. 6, as compared with the liquid crystal display devices of Patent Document 1 and Patent Document 2, the brightness of the subpixels and the direction of the electric field in the liquid crystal display device 100 of this embodiment ( The change in the direction of the electric field lines will be described. Here, in order to simplify the description, it is assumed that a pixel displays a predetermined intermediate gradation over several frames.
[0045] まず、図 4を参照して、特許文献 1の液晶表示装置における副画素の明暗および電 界の向きの変化、ならびに、第 1および第 2副画素の液晶層に印加される実効電圧 の変化を説明する。図 4 (a)において 1〜6は期間を示しており、各期間は垂直走査 期間を示している。なお、「垂直走査期間」とは、表示信号電圧を書き込むためにあ る走査線が選択されてから、次の表示信号電圧を書き込むためにその走査線が選 択されるまでの期間と定義することにする。また、ノンインターレース駆動用の入力映 像信号の場合の 1フレーム期間、および、インターレース駆動用の入力映像信号の 場合の 1フィールド期間を「入力映像信号の垂直走査期間」と呼ぶ。通常、液晶表示 装置における 1垂直走査期間は、入力映像信号の 1垂直走査期間に対応する。以下 では、簡単のために、液晶パネルの 1垂直走査期間が入力映像信号の 1垂直走査期 間に対応する場合について説明する力 本発明はこれに限定されず、例えば、入力 映像信号の 1垂直走査期間(例えば、 l/60sec)に対して、液晶パネルの 2垂直走 查期間(例えば、 2 X l/120seC)を割り当てる、いわゆる 2倍速駆動(垂直走査周波 数が 120Hz)などにも適用できる。また、ここでは、各垂直走査期間の長さは等しいと する。なお、各垂直走査期間内において、ある走査線を選択する時刻と、その次の 走査線を選択する時刻との差 (期間)を 1水平走査期間(1H)という。 First, referring to FIG. 4, the brightness and darkness of subpixels in the liquid crystal display device of Patent Document 1 The change in the direction of the field and the change in the effective voltage applied to the liquid crystal layers of the first and second subpixels will be described. In FIG. 4 (a), 1 to 6 indicate periods, and each period indicates a vertical scanning period. The “vertical scanning period” is defined as a period from when a scanning line for writing a display signal voltage is selected until the scanning line is selected for writing a next display signal voltage. I will decide. In addition, one frame period in the case of an input video signal for non-interlace driving and one field period in the case of an input video signal for interlace driving are referred to as “vertical scanning period of the input video signal”. Usually, one vertical scanning period in a liquid crystal display device corresponds to one vertical scanning period of an input video signal. In the following, for the sake of simplicity, the power to explain the case where one vertical scanning period of the liquid crystal panel corresponds to one vertical scanning period of the input video signal is not limited to this. For example, one vertical scanning period of the input video signal Also applicable to so-called double speed drive (vertical scanning frequency is 120Hz), which allocates 2 vertical scanning periods (eg 2 X l / 120se C ) of the liquid crystal panel to the scanning period (eg l / 60sec) it can. Here, it is assumed that the length of each vertical scanning period is equal. In each vertical scanning period, the difference (period) between the time when a certain scanning line is selected and the time when the next scanning line is selected is called one horizontal scanning period (1H).
[0046] 図 4 (a)において上側および下側の矩形はそれぞれ第 1および第 2副画素であり、 第 1副画素および第 2副画素のうち、より輝度の高い副画素を白で示し、より輝度の 低い副画素を黒で示している。また、図 4 (a)において、「 +」、「一」は、対応する走査 線が選択されたときの対向電極に供給される共通電圧を基準とした表示信号電圧の 極性を示している。ここでは、「 +」は、第 1副画素電極および第 2副画素電極の電位 が対向電極の電位よりも高ぐ電界が副画素電極側から対向電極側に向いているこ とを示す。一方、「一」は、第 1副画素電極および第 2副画素電極の電位が対向電極 の電位よりも低ぐ電界が対向電極側から副画素電極側に向いていることを示す。以 下の説明において、「 +」を第 1極性、「―」を第 2極性とも称し、「 +」および「―」を総 称して極性とも称する。また、「 +」となる期間を第 1極性期間と、「―」となる期間を第 2極性期間とも称する。 In FIG. 4 (a), the upper and lower rectangles are the first and second sub-pixels, respectively, and among the first and second sub-pixels, the brighter sub-pixel is shown in white, Subpixels with lower brightness are shown in black. In FIG. 4 (a), “+” and “one” indicate the polarity of the display signal voltage based on the common voltage supplied to the counter electrode when the corresponding scanning line is selected. Here, “+” indicates that an electric field in which the potential of the first subpixel electrode and the second subpixel electrode is higher than the potential of the counter electrode is directed from the subpixel electrode side to the counter electrode side. On the other hand, “one” indicates that an electric field in which the potential of the first subpixel electrode and the second subpixel electrode is lower than the potential of the counter electrode is directed from the counter electrode side to the subpixel electrode side. In the following description, “+” is also referred to as the first polarity, “−” is also referred to as the second polarity, and “+” and “−” are also collectively referred to as the polarity. In addition, a period of “+” is also referred to as a first polarity period, and a period of “−” is also referred to as a second polarity period.
[0047] 特許文献 1の液晶表示装置では、図 4 (a)に示すように、期間 1、 3および 5は第 1極 性期間であり、期間 2、 4および 6は第 2極性期間であり、極性は垂直走査期間毎に 反転する。また、図 4 (a)に示すように、特許文献 1の液晶表示装置では、すべての期 間 1〜6において第 1副画素の輝度は第 2副画素の輝度よりも高い。 In the liquid crystal display device of Patent Document 1, as shown in FIG. 4 (a), periods 1, 3 and 5 are the first polarity period, and periods 2, 4 and 6 are the second polarity period. , Polarity every vertical scanning period Invert. Further, as shown in FIG. 4A, in the liquid crystal display device of Patent Document 1, the luminance of the first subpixel is higher than the luminance of the second subpixel in all periods 1 to 6.
[0048] 図 4 (b)および図 4 (c)に、特許文献 1の液晶表示装置において、第 1、第 2副画素 の液晶層に印加される各垂直走査期間の実効電圧 VLspa、 VLspbをそれぞれ太線 で示す。第 1、第 2副画素の液晶層に印加される実効電圧 VLspa、 VLspbは、第 1、 第 2副画素電極の電圧と対向電極の電圧 Vcとの差の実効 であり、ここでは対向電 極の電圧 Vcが一定であるように示している。なお、図 4 (b)および図 4 (c)には特に示 していないが、特許文献 1に開示されているように、補助容量配線の電圧を変化させ ることにより、第 1、第 2副画素の液晶層に印加される電圧を同一垂直走査期間内で 変化させてもよい。 FIG. 4B and FIG. 4C show the effective voltages VLspa and VLspb for each vertical scanning period applied to the liquid crystal layers of the first and second subpixels in the liquid crystal display device of Patent Document 1. Each is indicated by a bold line. The effective voltages VLspa and VLspb applied to the liquid crystal layers of the first and second subpixels are the effective difference between the voltage of the first and second subpixel electrodes and the voltage Vc of the counter electrode. It is shown that the voltage Vc is constant. Although not specifically shown in FIGS. 4 (b) and 4 (c), as disclosed in Patent Document 1, by changing the voltage of the auxiliary capacitance wiring, the first and second The voltage applied to the liquid crystal layer of the subpixel may be changed within the same vertical scanning period.
[0049] 期間 1において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも高く、また、第 1副画素の液晶層に印加される実効電圧の絶対値は、第 2副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I > I VLspb | )。したがって、図 4 (a)に示すように、期間 1は、第 1極性期間であり、第 1副画素は第 2副画素よりも明るい。期間 1から期間 2に移行するとき、第 1副画素および第 2副画 素の液晶層に印加される実効電圧 VLspa、 VLspbは変化する。期間 2において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧よりも低い。また、第 1 副画素の液晶層に印加される実効電圧の絶対値は第 2副画素の液晶層に印加され る実効電圧の絶対値よりも大きい( I VLspa I > I VLspb | )。したがって、図 4 (a) に示すように、期間 2は、第 2極性期間であり、第 1副画素は第 2副画素よりも明るい。  [0049] In period 1, the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode, and the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is 2 The absolute value of the effective voltage applied to the liquid crystal layer of the sub-pixel is larger than (I VLspa I> I VLspb |). Therefore, as shown in FIG. 4A, the period 1 is the first polarity period, and the first subpixel is brighter than the second subpixel. When the period 1 shifts to the period 2, the effective voltages VLspa and VLspb applied to the liquid crystal layers of the first subpixel and the second subpixel change. In period 2, the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the first sub-pixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second sub-pixel (I VLspa I> I VLspb |). Therefore, as shown in FIG. 4A, the period 2 is the second polarity period, and the first subpixel is brighter than the second subpixel.
[0050] 期間 3以降、第 1、第 2副画素の明暗および極性は、期間 1および期間 2における第 1、第 2副画素の明暗および極性の繰り返しとなる。特許文献 1の液晶表示装置では 、図 4 (a)に示したように、第 1副画素の輝度は第 2副画素の輝度よりも常に高くなつ て副画素の明暗が視認され、表示がざらついて見える。  [0050] After period 3, the brightness and polarity of the first and second sub-pixels are the same as the brightness and polarity of the first and second sub-pixels in period 1 and period 2. In the liquid crystal display device of Patent Document 1, as shown in FIG. 4 (a), the luminance of the first subpixel is always higher than the luminance of the second subpixel, and the brightness of the subpixel is visually recognized, resulting in a rough display. Looks.
[0051] 次いで、図 5を参照して、特許文献 2の液晶表示装置における副画素の明暗およ び電界の向きの変化、ならびに、第 1および第 2副画素の液晶層に印加される実効 電圧の変化を説明する。  [0051] Next, referring to FIG. 5, in the liquid crystal display device of Patent Document 2, changes in brightness and electric field direction of the subpixel, and the effective applied to the liquid crystal layers of the first and second subpixels. A change in voltage will be described.
[0052] 図 5 (a)に示すように、特許文献 2の液晶表示装置でも、期間 1、 3および 5は第 1極 性期間であり、期間 2、 4および 6は第 2極性期間であり、極性は垂直走査期間毎に 反転する。また、特許文献 2の液晶表示装置では、期間 1、 3および 5において第 1副 画素の輝度は第 2副画素の輝度よりも高ぐ期間 2、 4および 6において第 2副画素の 輝度は第 1副画素の輝度よりも高い。 [0052] As shown in FIG. 5 (a), even in the liquid crystal display device of Patent Document 2, the periods 1, 3, and 5 are the first poles. Periods 2, 4, and 6 are second polarity periods, and the polarity is inverted every vertical scanning period. In the liquid crystal display device of Patent Document 2, the luminance of the first subpixel is higher than the luminance of the second subpixel in periods 1, 3, and 5, and the luminance of the second subpixel is the second in periods 2, 4, and 6. It is higher than the luminance of one subpixel.
[0053] 図 5 (b)および図 5 (c)に、第 1、第 2副画素の液晶層に印加される各垂直走査期間 の実効電圧 VLspa、 VLspbをそれぞれ太線で示す。なお、図 5 (b)および図 5 (c)に は特に示していないが、特許文献 1に開示されているように、補助容量配線の電圧を 変化させることにより、第 1、第 2副画素の液晶層に印加される電圧を同一垂直走査 期間内で変化させてもよい。  In FIG. 5 (b) and FIG. 5 (c), the effective voltages VLspa and VLspb in each vertical scanning period applied to the liquid crystal layers of the first and second subpixels are indicated by bold lines, respectively. Although not particularly shown in FIGS. 5 (b) and 5 (c), as disclosed in Patent Document 1, the first and second sub-pixels are changed by changing the voltage of the auxiliary capacitance line. The voltage applied to the liquid crystal layer may be changed within the same vertical scanning period.
[0054] 期間 1において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも高い。また、第 1副画素の液晶層に印加される実効電圧の絶対値は第 2副画素 の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I > I VLspb | ) 。したがって、図 5 (a)に示すように、期間 1は第 1極性期間であり、第 1副画素は第 2 副画素よりも明るい。期間 1から期間 2に移行するとき、第 1、第 2副画素の液晶層の 実効電圧 VLspa、 VLspbは変化する。期間 2において、第 1副画素電極および第 2 副画素電極の電圧は対向電極の電圧よりも低い。また、第 2副画素の液晶層に印加 される実効電圧の絶対値は第 1副画素の液晶層に印加される実効電圧の絶対値より も大きい( I VLspa I < I VLspb | )。したがって、図 5 (a)に示すように、期間 2は 第 2極性期間であり、また、第 2副画素は第 1副画素よりも明るい。  [0054] In period 1, the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb |). Therefore, as shown in FIG. 5A, period 1 is the first polarity period, and the first subpixel is brighter than the second subpixel. When transitioning from period 1 to period 2, the effective voltages VLspa and VLspb of the liquid crystal layers of the first and second subpixels change. In period 2, the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I <I VLspb |). Accordingly, as shown in FIG. 5A, the period 2 is the second polarity period, and the second subpixel is brighter than the first subpixel.
[0055] 期間 3以降、第 1、第 2副画素の明暗および極性は、期間 1および期間 2における第 1、第 2副画素の明暗および極性の繰り返しとなる。特許文献 2の液晶表示装置では 、極性を垂直走査期間毎に反転するとともに副画素の明暗を垂直走査期間毎に反 転しているので、特許文献 1の液晶表示装置とは異なり、第 1副画素および第 2副画 素がそれぞれ他方よりも明るい期間があり、結果として、表示のざらつきを抑制するこ と力 Sできる。し力、しながら、特許文献 2の液晶表示装置では、第 1副画素が第 2副画素 よりも明るい期間は常に第 1極性期間であり、また、第 2副画素が第 1副画素よりも明 るい期間は常に第 2極性期間であるため、図 5 (b)および図 5 (c)から理解されるよう に、複数の垂直走査期間(例えば、期間 1〜4)にわたつた第 1副画素の液晶層の実 効電圧 VLspaの平均は対向電極の電圧 Vcよりも高ぐまた、複数の垂直走査期間( 例えば、期間;!〜 4)にわたつた第 2副画素の液晶層の実効電圧 VLspbの平均は対 向電極の電圧 Vcよりも低い。したがって、特許文献 2の液晶表示装置では、副画素 ごとに直流成分 (DCレベル)の偏りが残存しており、この偏りにより、焼きつき等の信 頼性上の問題が発生する。 After period 3, the brightness and polarity of the first and second subpixels are the same as the brightness and polarity of the first and second subpixels in period 1 and period 2. In the liquid crystal display device of Patent Document 2, the polarity is inverted every vertical scanning period and the brightness of the sub-pixel is inverted every vertical scanning period. The pixel and the second sub-pixel each have a brighter period than the other, and as a result, it is possible to suppress the display roughness. However, in the liquid crystal display device of Patent Document 2, the period in which the first subpixel is brighter than the second subpixel is always the first polarity period, and the second subpixel is more than the first subpixel. Since the bright period is always the second polarity period, as can be understood from FIGS. 5 (b) and 5 (c), the first sub-scan over a plurality of vertical scanning periods (for example, periods 1 to 4) is used. The liquid crystal layer of the pixel The effective voltage VLspa is higher than the counter electrode voltage Vc. The average of the effective voltage VLspb of the liquid crystal layer of the second subpixel over a plurality of vertical scanning periods (eg, periods;! To 4) is opposite. Lower than electrode voltage Vc. Therefore, in the liquid crystal display device of Patent Document 2, a bias of the DC component (DC level) remains for each sub-pixel, and this bias causes a problem in reliability such as burn-in.
[0056] 次いで、図 6を参照して、本実施形態の液晶表示装置 100における副画素の明暗 および電界の向きの変化、ならびに、第 1および第 2副画素の液晶層に印加される実 効電圧の変化を説明する。  Next, referring to FIG. 6, in the liquid crystal display device 100 of the present embodiment, the brightness of the subpixel and the change in the direction of the electric field, and the effect applied to the liquid crystal layers of the first and second subpixels A change in voltage will be described.
[0057] 図 6 (a)に示すように、本実施形態の液晶表示装置 100において、期間 1、 2、 5お よび 6は第 1極性期間であり、期間 3、 4は第 2極性期間である。なお、上述したように 、第 1極性期間は第 1、第 2副画素電極の電圧が対向電極の電圧よりも高い期間で あり、第 2極性期間は第 1、第 2副画素電極の電圧が対向電極の電圧よりも低い期間 である。ここで、連続する 4つの垂直走査期間をみると、 4つの垂直走査期間のうち、 2つは第 1極性期間であり、残りの 2つは第 2極性期間である。例えば、図 6 (a)にお ける期間 1〜4では、期間 1および期間 2は第 1極性期間であり、期間 3および期間 4 は第 2極性期間である。  As shown in FIG. 6 (a), in the liquid crystal display device 100 of the present embodiment, periods 1, 2, 5 and 6 are the first polarity period, and periods 3 and 4 are the second polarity period. is there. As described above, the first polarity period is a period in which the voltage of the first and second subpixel electrodes is higher than the voltage of the counter electrode, and the voltage of the first and second subpixel electrodes is in the second polarity period. The period is lower than the voltage of the counter electrode. Here, looking at four consecutive vertical scanning periods, two of the four vertical scanning periods are the first polarity period, and the remaining two are the second polarity period. For example, in periods 1 to 4 in FIG. 6 (a), period 1 and period 2 are the first polarity period, and period 3 and period 4 are the second polarity period.
[0058] 図 6 (b)および図 6 (c)に、第 1、第 2副画素の液晶層に印加される各垂直走査期間 の実効電圧 VLspa、 VLspbをそれぞれ太線で示す。なお、本実施形態においても、 特許文献 1および特許文献 2に開示されているのと同様に、補助容量配線の電圧を 変化させることにより、第 1、第 2副画素の液晶層に印加される電圧を同一垂直走査 期間内で変化させてもよい。また、図 6 (b)および図 6 (c)では、対向電極の電圧 Vcを 基準にしているため、対向電極の電圧 Vcが時間によらず一定であるように示してい る力 対向電極の電圧 Vcは時間に応じて変化してもよい。  In FIG. 6 (b) and FIG. 6 (c), the effective voltages VLspa and VLspb in each vertical scanning period applied to the liquid crystal layers of the first and second subpixels are indicated by bold lines, respectively. Note that, in this embodiment as well, as disclosed in Patent Document 1 and Patent Document 2, the voltage of the auxiliary capacitance wiring is changed to be applied to the liquid crystal layers of the first and second subpixels. The voltage may be changed within the same vertical scanning period. 6 (b) and 6 (c) are based on the voltage Vc of the counter electrode, so that the voltage Vc of the counter electrode is shown to be constant regardless of time. Vc may vary with time.
[0059] 期間 1において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも高い。また、第 1副画素の液晶層に印加される実効電圧の絶対値は第 2副画素 の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I > I VLspb | ) 。したがって、図 6 (a)に示すように、期間 1は第 1極性期間であり、第 1副画素は第 2 副画素よりも明るい。 [0060] 期間 1から期間 2に移行するとき、第 1、第 2副画素の液晶層の実効電圧 VLspa、 V Lspbは変化する。期間 2において、第 1副画素電極および第 2副画素電極の電圧は 対向電極の電圧よりも高い。また、第 2副画素の液晶層に印加される実効電圧の絶 対値は、第 1副画素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLsp a I < I VLspb I )。したがって、図 6 (a)に示すように、期間 2は第 1極性期間であり 、また、第 2副画素は第 1副画素よりも明るい。 [0059] In period 1, the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb |). Therefore, as shown in FIG. 6A, period 1 is the first polarity period, and the first subpixel is brighter than the second subpixel. [0060] When the period 1 shifts to the period 2, the effective voltages VLspa and VLspb of the liquid crystal layers of the first and second subpixels change. In period 2, the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode. The absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLsp a I <I VLspb I) . Therefore, as shown in FIG. 6 (a), period 2 is the first polarity period, and the second subpixel is brighter than the first subpixel.
[0061] 期間 3において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも低い。また、第 1副画素の液晶層に印加される実効電圧の絶対値は、第 2副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I > I VLspb | )。したがって、図 6 (a)に示すように、期間 3は第 2極性期間であり、第 1副画素は第 2 副画素よりも明るい。  In period 3, the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb |). Therefore, as shown in FIG. 6A, the period 3 is the second polarity period, and the first subpixel is brighter than the second subpixel.
[0062] 期間 4において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも低い。また、第 2副画素の液晶層に印加される実効電圧の絶対値は、第 1副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I < I VLspb | )。したがって、図 6 (a)に示すように、期間 4は第 2極性期間であり、第 2副画素は第 1 副画素よりも明るい。以下、期間 5以降、第 1、第 2副画素の明暗および極性は、期間 ;!〜 4における第 1、第 2副画素の明暗および極性の繰り返しとなる。  In period 4, the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I <I VLspb |). Therefore, as shown in FIG. 6A, the period 4 is the second polarity period, and the second subpixel is brighter than the first subpixel. Hereinafter, after the period 5, the contrast and polarity of the first and second sub-pixels are the repetition of the contrast and polarity of the first and second sub-pixels in the period;
[0063] 以上のように、本実施形態の液晶表示装置 100において、連続する 4つの垂直走 查期間のうち 2つの垂直走査期間は第 1極性期間である。このうち、一方は I VLspa I > I VLspb Iを満たす垂直走査期間であり(例えば、期間 1)、他方は I VLspa I < I VLspb Iを満たす垂直走査期間である(例えば、期間 2)。また、連続する 4 つの垂直走査期間のうち残りの 2つは第 2極性期間である。このうち、一方は I VLsp a I > I VLspb Iを満たす垂直走査期間であり(例えば、期間 3)、他方は I VLspa I < I VLspb Iを満たす垂直走査期間である(例えば、期間 4)。図 6(a)から理解さ れるように、本実施形態の液晶表示装置 100では、副画素の明暗を垂直走査期間 毎に反転するとともに、極性を 2垂直走査期間毎に反転しており、第 1副画素の(明る さ、極性)は、(明、 + )、(暗、 + )、(明、 -)、(暗、一)と順番に変化し、また、第 2副 画素の(明暗、極性)は、(喑、 + )、(明、 + )、(喑、―)、(明、一)の順番に変化する 。ここで、「明」は他方の副画素よりも明るいことを示し、「喑」は他方の副画素よりも喑 いことを示している。副画素の実効電圧がこのように変化することにより、第 1極性期 間および第 2極性期間のそれぞれにおいて第 1副画素の液晶層に印加される実効 電圧の平均値と第 2副画素の液晶層に印加される実効電圧の平均値との差が実質 的にゼロになる。 [0063] As described above, in the liquid crystal display device 100 of the present embodiment, two vertical scanning periods among the four consecutive vertical scanning periods are the first polarity periods. Among these, one is a vertical scanning period satisfying I VLspa I> I VLspb I (for example, period 1), and the other is a vertical scanning period satisfying I VLspa I <I VLspb I (for example, period 2). The remaining two of the four consecutive vertical scanning periods are the second polarity period. Among these, one is a vertical scanning period that satisfies I VLsp a I> I VLspb I (for example, period 3), and the other is a vertical scanning period that satisfies I VLspa I <I VLspb I (for example, period 4). As can be understood from FIG. 6 (a), in the liquid crystal display device 100 of the present embodiment, the brightness of the sub-pixel is inverted every vertical scanning period, and the polarity is inverted every two vertical scanning periods. (Brightness, polarity) of 1 sub-pixel changes in order of (bright, +), (dark, +), (bright,-), (dark, 1). , Polarity) changes in the order of (喑, +), (bright, +), (喑,-), (bright, one) . Here, “bright” indicates brighter than the other sub-pixel, and “喑” indicates higher than the other sub-pixel. By changing the effective voltage of the sub-pixel in this way, the average value of the effective voltage applied to the liquid crystal layer of the first sub-pixel and the liquid crystal of the second sub-pixel in each of the first polarity period and the second polarity period. The difference from the average effective voltage applied to the layer is virtually zero.
[0064] 本実施形態の液晶表示装置 100では、特許文献 1の液晶表示装置とは異なり、副 画素の明暗が垂直走査期間毎に反転するので、表示のざらつきを抑制することがで きる。また、本実施形態の液晶表示装置 100では、特許文献 2の液晶表示装置とは 異なり、第 1極性期間および第 2極性期間のいずれも( I VLspa I > I VLspb | )を 満たす期間と、 ( I VLspa I < I VLspb | )を満たす期間とを有するので、図 6 (b) および図 6 (c)から理解されるように、複数の垂直走査期間(例えば、期間 1〜4)にわ たった実効電圧 VLspaの平均および実効電圧 VLspbの平均をともにゼロにすること 力できる。また、たとえ、実効電圧 VLspa、 VLspbの平均がゼロにならなくても、実効 電圧 VLspaの平均と実効電圧 VLspbの平均がほぼ等し!/、ので、対向電圧を調整す ることにより、実効電圧 VLspa、 VLspbの平均をともにゼロに調整することができる。 このように実効電圧の平均がゼロにすることにより、焼きつき等の信頼性上の問題の 発生を抑制することができる。なお、上記の関係を満足するように異なる電圧を第 1、 第 2副画素の液晶層に印加する構成には種々の構成があり得る。  In the liquid crystal display device 100 of the present embodiment, unlike the liquid crystal display device of Patent Document 1, the brightness of the sub-pixels is inverted every vertical scanning period, so that display roughness can be suppressed. Also, in the liquid crystal display device 100 of the present embodiment, unlike the liquid crystal display device of Patent Document 2, both the first polarity period and the second polarity period satisfy (I VLspa I> I VLspb |), I VLspa I <I VLspb |), and as can be understood from FIGS. 6 (b) and 6 (c), a plurality of vertical scanning periods (for example, periods 1 to 4) Both the average of effective voltage VLspa and the average of effective voltage VLspb can be made zero. Even if the average of the effective voltages VLspa and VLspb does not become zero, the average of the effective voltage VLspa and the average of the effective voltage VLspb are almost equal! /, So the effective voltage can be adjusted by adjusting the counter voltage. Both VLspa and VLspb averages can be adjusted to zero. Thus, by making the average effective voltage zero, occurrence of reliability problems such as burn-in can be suppressed. There may be various configurations for applying different voltages to the liquid crystal layers of the first and second subpixels so as to satisfy the above relationship.
[0065] また、本実施形態は、負の誘電異方性を有するネマチック液晶材料を含む垂直配 向型液晶層を利用する液晶表示装置に適用することが好ましい。特に、それぞれの 副画素に含まれる液晶層が、電圧印加時に液晶分子の傾斜する方位角方向が互い に約 90° 異なる 4つのドメインを含むことが好ましい(MVAモード)。あるいは、それ ぞれの副画素に含まれる液晶層が、少なくとも電圧印加時に軸対称配向をとる液晶 層であってもよ!/、(ASMモード)。  In addition, this embodiment is preferably applied to a liquid crystal display device using a vertical alignment type liquid crystal layer including a nematic liquid crystal material having negative dielectric anisotropy. In particular, the liquid crystal layer included in each subpixel preferably includes four domains in which the azimuth directions in which the liquid crystal molecules tilt when a voltage is applied differ from each other by about 90 ° (MVA mode). Alternatively, the liquid crystal layer included in each sub-pixel may be a liquid crystal layer that has an axially symmetric orientation at least when voltage is applied! /, (ASM mode).
[0066] 以下では、本実施形態による MVAモードの液晶表示装置 100をさらに詳細に説 明する。  Hereinafter, the MVA mode liquid crystal display device 100 according to the present embodiment will be described in more detail.
[0067] 図 1に示すように、液晶表示装置 100は、液晶パネル 100Aと、液晶パネル 100A の両側に設けられた位相差補償素子(典型的には位相差補償板) 20aおよび 20bと 、これらを挟むように配置された偏光板 30aおよび 30bと、バックライト 40とを有する。 偏光板 30aおよび 30bの透過軸(「偏光軸」ともいう。)は、互いに直交するように配置 (クロスニコル配置)されており、液晶パネル 100Aの液晶層 13 (図 3 (b)参照)に電圧 が印加されていない状態(垂直配向状態)において黒表示を行う。したがって、液晶 表示装置 100はノーマリブラックモードの液晶表示装置である。位相差補償素子 20a および 20bは液晶表示装置の視野角特性を良好にするために設けられており、公知 の技術を用いて最適に設計される。具体的には、黒表示状態において、全ての方位 角方向における斜め観測時と正面観測時との輝度(黒輝度)の差が最小となるように 最適化される。 [0067] As shown in FIG. 1, the liquid crystal display device 100 includes a liquid crystal panel 100A, and phase difference compensation elements (typically phase difference compensation plates) 20a and 20b provided on both sides of the liquid crystal panel 100A. The polarizing plate 30a and 30b are disposed so as to sandwich them, and the backlight 40 is provided. The transmission axes (also referred to as “polarization axes”) of the polarizing plates 30a and 30b are arranged so as to be orthogonal to each other (crossed Nicols arrangement), and are formed on the liquid crystal layer 13 of the liquid crystal panel 100A (see FIG. 3B). Black display is performed in a state where no voltage is applied (vertical alignment state). Therefore, the liquid crystal display device 100 is a normally black mode liquid crystal display device. The phase difference compensating elements 20a and 20b are provided to improve the viewing angle characteristics of the liquid crystal display device, and are optimally designed using a known technique. Specifically, in the black display state, optimization is performed so that the difference in luminance (black luminance) between oblique observation and front observation in all azimuth directions is minimized.
[0068] 図 3 (a)に示すように、第 1副画素電極 18aと第 2副画素電極 18bとの間には走査線 12が配置されている。なお、当然のことではある力 S、基板 11a上には、第 1、第 2副画 素電極 18aおよび 18bそれぞれに所定のタイミングで所定の電圧を印加するために 、走査線 12、信号線および TFT (図 3には不図示)、さらにはこれらを駆動するため の回路等が形成されている。また、他方の基板 l ibには、必要に応じて、カラーフィ ルタ等が設けられる。  As shown in FIG. 3 (a), the scanning line 12 is disposed between the first subpixel electrode 18a and the second subpixel electrode 18b. Of course, a certain force S is applied on the substrate 11a to apply a predetermined voltage to each of the first and second sub-pixel electrodes 18a and 18b at a predetermined timing. TFTs (not shown in Fig. 3) and circuits for driving them are formed. The other substrate l ib is provided with a color filter or the like as necessary.
[0069] 次いで、図 3 (a)および図 3 (b)を参照しながら、 MVAモードの液晶表示装置 100 における 1つの画素の構造を説明する。 MVAモードの液晶表示装置の基本的な構 成および動作については、例えば、特開平 11— 242225号公報に開示されている。  Next, the structure of one pixel in the MVA mode liquid crystal display device 100 will be described with reference to FIGS. 3 (a) and 3 (b). The basic configuration and operation of an MVA mode liquid crystal display device are disclosed in, for example, Japanese Patent Application Laid-Open No. 11-242225.
[0070] 図 3 (b)に示すように、ガラス基板 11a上に形成された副画素電極 18aにはスリット 1 8sが設けられており、この副画素電極 18aと対向電極 17とにより、液晶層 13に斜め 電界が生成される。また、対向電極 17が設けられているガラス基板 l ibの表面には、 液晶層 13側に突き出たリブ 19が設けられている。液晶層 13は、負の誘電異方性を 有するネマチック液晶材料で構成されており、対向電極 17、リブ 19および副画素電 極 18aおよび 18bを覆うように形成されている垂直配向膜(不図示)によって、電圧無 印加時に略垂直配向状態をとる。リブ 19の表面 (傾斜した側面)および上記斜め電 界によって、垂直配向した液晶分子を所定の方向に安定に倒すことができる。  As shown in FIG. 3 (b), the subpixel electrode 18a formed on the glass substrate 11a is provided with slits 18s, and the subpixel electrode 18a and the counter electrode 17 form a liquid crystal layer. An oblique electric field is generated at 13. A rib 19 protruding toward the liquid crystal layer 13 is provided on the surface of the glass substrate ib on which the counter electrode 17 is provided. The liquid crystal layer 13 is made of a nematic liquid crystal material having negative dielectric anisotropy, and is a vertical alignment film (not shown) formed so as to cover the counter electrode 17, the rib 19, and the sub-pixel electrodes 18a and 18b. ) To obtain a substantially vertical alignment state when no voltage is applied. The vertically aligned liquid crystal molecules can be stably tilted in a predetermined direction by the surface (inclined side surface) of the rib 19 and the oblique electric field.
[0071] 図 3 (b)に示すように、リブ 19はリブの中心に向かって山型に傾斜しており、液晶分 子はその傾斜面に対して略垂直に配向している。従って、リブ 19によって液晶分子 のチルト角度(基板表面と液晶分子の長軸の成す角度)の分布が発生する。また、ス リット 18sは液晶層に印加される電界の方向を規則的に変化させている。その結果、 このリブ 19、スリット 18sの作用によって電界印加時の液晶分子の配向方向は、図 3 ( a)に示した矢印の方向、すなわち、右上、左上、左下、右下の 4方向に配向するため 上下左右対称な特性を有する良好な視野角特性を得ることができる。なお、液晶パ ネル 100Aの矩形の表示面は、典型的には、長手方向を左右方向に配置され、偏光 板 30aの透過軸は長手方向に平行に設定される。一方、画素 10は、画素 10の長手 方向が液晶パネル 100Aの長手方向に直交する方向に配置される。 As shown in FIG. 3B, the rib 19 is inclined in a mountain shape toward the center of the rib, and the liquid crystal molecules are aligned substantially perpendicular to the inclined surface. Therefore, the liquid crystal molecules by the rib 19 Distribution of the tilt angle (angle formed by the substrate surface and the major axis of the liquid crystal molecules) occurs. The slit 18s regularly changes the direction of the electric field applied to the liquid crystal layer. As a result, due to the action of the ribs 19 and slits 18s, the alignment direction of the liquid crystal molecules when an electric field is applied is aligned in the directions indicated by the arrows shown in FIG. Therefore, it is possible to obtain a favorable viewing angle characteristic having a symmetrical characteristic in the vertical and horizontal directions. Note that the rectangular display surface of the liquid crystal panel 100A is typically arranged in the left-right direction in the longitudinal direction, and the transmission axis of the polarizing plate 30a is set parallel to the longitudinal direction. On the other hand, the pixel 10 is arranged in a direction in which the longitudinal direction of the pixel 10 is orthogonal to the longitudinal direction of the liquid crystal panel 100A.
[0072] 図 3 (a)に示すように、第 1副画素 10aおよび第 2副画素 10bの面積を同じにし、そ れぞれの副画素において、第 1方向に延びる第 1リブと、第 1方向と略直交する第 2 方向に延びる第 2リブとを含み、第 1リブと第 2リブは、それぞれの副画素内において 、走査線 12に平行な中心線に対して対称に配置されており、かつ、一方の副画素内 のリブの配置と他方の副画素内のリブの配置とが、走査線 12に直交する中心線に対 して対称である配置とすることが好ましい。このような配置にすることによって、それぞ れの副画素内で液晶分子が右上、左上、左下、右下の 4方向に配向し、かつ、第 1 副画素および第 2副画素を含む画素全体について、それぞれの液晶ドメインの面積 が実質的に同じなるので、上下左右対称な特性を有する良好な視野角特性を得るこ とができる。この効果は、画素の面積が小さいときに顕著である。さらに、それぞれの 副画素における走査線に平行な中心線の間隔が走査線の配列ピッチの約 2分の 1と 等しレ、構成を採用することが好ましレ、。  [0072] As shown in FIG. 3 (a), the first subpixel 10a and the second subpixel 10b have the same area, and in each subpixel, the first rib extending in the first direction and the first subpixel 10b A second rib extending in a second direction substantially orthogonal to the first direction, and the first rib and the second rib are arranged symmetrically with respect to a center line parallel to the scanning line 12 in each subpixel. In addition, it is preferable that the arrangement of the ribs in one subpixel and the arrangement of the ribs in the other subpixel are symmetrical with respect to the center line perpendicular to the scanning line 12. With this arrangement, the liquid crystal molecules are aligned in the four directions of upper right, upper left, lower left, and lower right in each sub-pixel, and the entire pixel including the first sub-pixel and the second sub-pixel. Since the areas of the respective liquid crystal domains are substantially the same, it is possible to obtain a good viewing angle characteristic having symmetrical characteristics. This effect is remarkable when the area of the pixel is small. Furthermore, it is preferable to adopt a configuration in which the interval between the center lines parallel to the scanning lines in each sub-pixel is equal to about one half of the array pitch of the scanning lines.
[0073] 次に、図 7〜図 9を参照して、本実施形態の液晶表示装置 100における 1つの画素 10の具体的な構造、および、この画素 10に含まれる 2つの副画素 10a、 10bの液晶 層に異なる電圧を印加することを説明する。  Next, referring to FIGS. 7 to 9, the specific structure of one pixel 10 in the liquid crystal display device 100 of the present embodiment, and the two sub-pixels 10a and 10b included in the pixel 10 are described. Explain that different voltages are applied to the liquid crystal layer.
[0074] 図 7に示すように、画素 10は、 2つの副画素 10aおよび 10bを有しており、副画素 1 0a、 10bの副画素電極 18a、 18bには、それぞれ TFT16a、 TFT 16b,および補助 容量(CS) 22a、 22bが接続されている。 TFT16aおよび TFT16bのゲ―ト電極は走 查線 12に接続され、ソース電極は共通の(同一の)信号線 14に接続されている。補 助容量 22a、 22bは、それぞれ補助容量配線 (CSバス'ライン) 24aおよび補助容量 配線 24bに接続されている。補助容量 22aおよび 22bは、それぞれ副画素電極 18a および 18bに電気的に接続された補助容量電極と、補助容量配線 24aおよび 24bに 電気的に接続された補助容量対向電極と、これらの間に設けられた絶縁層(不図示) によって形成されている。補助容量 22aおよび 22bの補助容量対向電極は互いに独 立しており、それぞれ補助容量配線 24aおよび 24bから互いに異なる補助容量対向 電圧が供給され得る。 [0074] As shown in FIG. 7, the pixel 10 has two sub-pixels 10a and 10b, and the sub-pixel electrodes 18a and 18b of the sub-pixels 10a and 10b have TFT 16a, TFT 16b, and Auxiliary capacitors (CS) 22a and 22b are connected. The gate electrodes of the TFT 16a and TFT 16b are connected to the scanning line 12, and the source electrodes are connected to a common (identical) signal line 14. Auxiliary capacity 22a and 22b are auxiliary capacity wiring (CS bus line) 24a and auxiliary capacity, respectively. Connected to wiring 24b. The auxiliary capacitors 22a and 22b are provided between the auxiliary capacitor electrode electrically connected to the sub-pixel electrodes 18a and 18b and the auxiliary capacitor counter electrode electrically connected to the auxiliary capacitor wires 24a and 24b, respectively. The insulating layer (not shown) is formed. The storage capacitor counter electrodes of the storage capacitors 22a and 22b are independent from each other, and different storage capacitor counter voltages can be supplied from the storage capacitor lines 24a and 24b, respectively.
[0075] 図 8に、液晶表示装置 100における 1つの画素 10の等価回路を示す。この等価回 路において、それぞれの副画素 10aおよび 10bの液晶層を液晶層 13aおよび 13bと して表している。また、副画素電極 18aおよび 18bと、液晶層 13aおよび 13bと、対向 電極 17 (副画素 10aおよび 10bに対して共通)によって形成される液晶容量を Clca、 Clcbとして表している。液晶容量 Clcaおよび Clcbの静電容量値は CLC (V)であり、 CLC (V)の値は、副画素 10a、 10bの液晶層に印加される実効電圧 (V)に依存する 。また、各副画素 10aおよび 10bの液晶容量にそれぞれ独立に接続されている補助 容量 22a、 22bを Ccsa、 Ccsbと表しており、この静電容量値を同一の値 CCSとする。  FIG. 8 shows an equivalent circuit of one pixel 10 in the liquid crystal display device 100. In this equivalent circuit, the liquid crystal layers of the respective subpixels 10a and 10b are represented as liquid crystal layers 13a and 13b. The liquid crystal capacitance formed by the subpixel electrodes 18a and 18b, the liquid crystal layers 13a and 13b, and the counter electrode 17 (common to the subpixels 10a and 10b) is represented as Clca and Clcb. The capacitance values of the liquid crystal capacitances Clca and Clcb are CLC (V), and the value of CLC (V) depends on the effective voltage (V) applied to the liquid crystal layers of the sub-pixels 10a and 10b. In addition, auxiliary capacitors 22a and 22b that are independently connected to the liquid crystal capacitors of the sub-pixels 10a and 10b are represented as Ccsa and Ccsb, respectively, and these capacitance values are the same value CCS.
[0076] 第 1副画素 10aにおいて、液晶容量 Clcaおよび補助容量 Ccsaのそれぞれの一方 の電極は副画素 10aのスイッチング素子として機能する TFT16aのドレイン電極に接 続されており、液晶容量 Clcaの他方の電極は対向電極 17に接続され、補助容量 Cc saの他方の電極は補助容量配線 24aに接続されている。また、第 2副画素 10bにお いて、液晶容量 Clcbおよび補助容量 Ccsbのそれぞれの一方の電極は副画素 10b のスイッチング素子として機能する TFT16bのドレイン電極に接続されており、液晶 容量 Clcbの他方の電極は対向電極 17に接続され、補助容量 Ccsbの他方の電極は 補助容量配線 24bに接続されている。 TFT16aおよび TFT16bのゲート電極はいず れも走査線 12に接続されており、ソース電極はいずれも信号線 14に接続されている In the first sub-pixel 10a, one electrode of each of the liquid crystal capacitor Clca and the auxiliary capacitor Ccsa is connected to the drain electrode of the TFT 16a that functions as a switching element of the sub-pixel 10a, and the other electrode of the liquid crystal capacitor Clca. The electrode is connected to the counter electrode 17, and the other electrode of the auxiliary capacitor Ccsa is connected to the auxiliary capacitor line 24a. In the second sub-pixel 10b, one electrode of each of the liquid crystal capacitor Clcb and the auxiliary capacitor Ccsb is connected to the drain electrode of the TFT 16b functioning as a switching element of the sub-pixel 10b, and the other electrode of the liquid crystal capacitor Clcb. The electrode is connected to the counter electrode 17, and the other electrode of the auxiliary capacitor Ccsb is connected to the auxiliary capacitor line 24b. The gate electrodes of TFT16a and TFT16b are both connected to scanning line 12, and the source electrodes are connected to signal line 14.
Yes
[0077] 図 9に、本実施形態の液晶表示装置 100を駆動するための各電圧のある垂直走査 期間内における変化を模式的に示す。図 9において、 Vsは信号線 14の電圧を示し、 Vcsaは補助容量配線 24aの電圧を示し、 Vcsbは補助容量配線 24bの電圧を示し、 Vgは走査線 12の電圧を示し、 Vlcaは第 1副画素電極 18aの電圧を示し、 Vlcbは第 2副画素電極 18bの電圧を示している。また、図中の破線は、対向電極 17の電圧 C OMMON (Vc)を示している。補助容量配線 24aの電圧 Vcsaは、 Vc—Vadから Vc + Vadの範囲で周期的に変化し、また、補助容量配線 24bの電圧 Vcsbも Vc—Vad 力、ら Vc + Vadの範囲で周期的に変化する。補助容量配線 24bの電圧 Vcsbは、補助 容量配線 24aの電圧 Vcsaと 180度位相が異なる波形になっている。 FIG. 9 schematically shows changes in each voltage for driving the liquid crystal display device 100 of the present embodiment within a certain vertical scanning period. In FIG. 9, Vs represents the voltage of the signal line 14, Vcsa represents the voltage of the auxiliary capacitance line 24a, Vcsb represents the voltage of the auxiliary capacitance line 24b, Vg represents the voltage of the scanning line 12, and Vlca represents the first voltage. Indicates the voltage of the subpixel electrode 18a, Vlcb 2 shows the voltage of the sub-pixel electrode 18b. Further, the broken line in the figure indicates the voltage C OMMON (Vc) of the counter electrode 17. The voltage Vcsa of the auxiliary capacitance wiring 24a changes periodically in the range of Vc—Vad to Vc + Vad, and the voltage Vcsb of the auxiliary capacitance wiring 24b also changes periodically in the range of Vc—Vad force, etc. Change. The voltage Vcsb of the auxiliary capacitance wiring 24b has a waveform that is 180 degrees out of phase with the voltage Vcsa of the auxiliary capacitance wiring 24a.
[0078] 以下、図 9を参照しながら、図 8に示した等価回路の動作を説明する。 Hereinafter, the operation of the equivalent circuit shown in FIG. 8 will be described with reference to FIG.
[0079] 時刻 T1のとき走査線 12の電圧 Vgが VgLから VgHに変化することにより、 TFT16a と TFT16bが同時に導通状態(オン状態)となり、副画素 10a、 10bの副画素電極 18 a、 18bに信号泉 14の電圧 Vs力 云達され、畐 'J画素 10a、 10bの ί夜晶容量 Clca、 Clcb に充電が行われる。同様にそれぞれの副画素の補助容量 Ccsa、 Ccsbにも信号線 1 4から充電が行われる。 [0079] At time T1, when the voltage Vg of the scanning line 12 changes from VgL to VgH, the TFT 16a and the TFT 16b are simultaneously turned on (on state), and the sub-pixel electrodes 18a and 18b of the sub-pixels 10a and 10b are turned on. The voltage Vs force of the signal spring 14 is transmitted, and charging is performed on the night-time crystal capacities Clca and Clcb of the J pixels 10a and 10b. Similarly, the auxiliary capacitors Ccsa and Ccsb of each subpixel are charged from the signal line 14.
[0080] 次に、時刻 T2のとき走査線 12の電圧 Vgが VgHから VgLに変化することにより、 T FT16aと TFT16bが同時に非導通状態(オフ状態)となり、副画素 10a、 10bの液晶 容量 Clca、 Clcb,補助容量 Ccsa、 Ccsbはいずれも、信号線 14と電気的に絶縁され る。なお、この直後 TFT16a、 TFT16bの有する寄生容量等の影響による引き込み 現象のために、第 1、第 2副画素電極 18a、 18bの電圧 Vlca、 Vlcbは概ね同一の電 圧 Vdだけ低下し、  [0080] Next, when the voltage Vg of the scanning line 12 changes from VgH to VgL at time T2, TFT16a and TFT16b are simultaneously turned off (off state), and the liquid crystal capacitance Clca of the subpixels 10a and 10b Clcb and auxiliary capacitors Ccsa and Ccsb are all electrically insulated from the signal line 14. Immediately after this, due to the pull-in phenomenon due to the influence of the parasitic capacitance etc. of TFT16a, TFT16b, the voltages Vlca, Vlcb of the first and second subpixel electrodes 18a, 18b decrease by almost the same voltage Vd,
Vlca=Vs -Vd  Vlca = Vs -Vd
Vlcb=Vs -Vd  Vlcb = Vs -Vd
となる。このとき、それぞれの補助容量配線の電圧 Vcsa、 Vcsbは  It becomes. At this time, the voltages Vcsa and Vcsb of each auxiliary capacitance line are
Vcsa = Vc—Vad  Vcsa = Vc—Vad
Vcsb = Vc + Vad  Vcsb = Vc + Vad
である。  It is.
[0081] 時刻 T3において、補助容量 Ccsaに接続された補助容量配線 24aの電圧 Vcsaは ¥。ー¥&(1カ、ら¥。 + ¥&(1に2 ¥&(1分だけ増加し、補助容量 Ccsbに接続された補助 容量配線 24bの電圧 Vcsbは Vc + Vadから Vc—Vadに 2 XVad分だけ減少する。補 助容量配線 24aおよび 24bの電圧変化に伴い、第 1、第 2副画素電極の電圧 Vlca、 Vlcbは、それぞれ、 Vlca=Vs -Vd + 2 X K X Vad [0081] At time T3, the voltage Vcsa of the auxiliary capacitor wiring 24a connected to the auxiliary capacitor Ccsa is ¥.ー ¥ & (1 pcs, etc. + ¥ & (2 in 1 & 2 (increase by 1 minute, auxiliary capacity wiring connected to auxiliary capacity Ccsb 24b voltage Vcsb from Vc + Vad to Vc-Vad 2 The voltage Vlca and Vlcb of the first and second sub-pixel electrodes are reduced by the voltage change of the auxiliary capacitance lines 24a and 24b, respectively. Vlca = Vs -Vd + 2 XKX Vad
Vlcb=Vs Vd— 2 X K X Vad  Vlcb = Vs Vd— 2 X K X Vad
へ変化する。但し、 K = CCS/ (CLC (V) + CCS)である。  To change. However, K = CCS / (CLC (V) + CCS).
[0082] 時刻 T4では、補助容量配線 24aの電圧 Vcsaが Vc + Vadから Vc— Vadへ、補助 容量配線 24bの電圧 Vcsbが Vc—Vadから Vc + Vadへ、 2 X Vad分だけ変化し、こ れにより、第 1、第 2副画素電極の電圧 Vlca、 Vlcbは、 [0082] At time T4, the voltage Vcsa of the auxiliary capacitance wiring 24a changes from Vc + Vad to Vc— Vad, and the voltage Vcsb of the auxiliary capacitance wiring 24b changes from Vc—Vad to Vc + Vad by 2 X Vad. As a result, the voltages Vlca and Vlcb of the first and second subpixel electrodes are
Vlca=Vs Vd + 2 X K X Vad  Vlca = Vs Vd + 2 X K X Vad
Vlcb=Vs Vd— 2 X K X Vad  Vlcb = Vs Vd— 2 X K X Vad
から、  From
Vlca=Vs -Vd  Vlca = Vs -Vd
Vlcb=Vs -Vd  Vlcb = Vs -Vd
へ変化する。  To change.
[0083] 時刻 T5では、補助容量配線 24aの電圧 Vcsaが Vc— Vadから Vc + Vadへ、補助 容量配線 24bの電圧 Vcsbが Vc + Vadから Vc—Vadへ、 2 X Vad分だけ変化し、第 1、第 2副画素電極の電圧 Vlca、 Vlcbもまた、  [0083] At time T5, the voltage Vcsa of the auxiliary capacitance line 24a changes from Vc—Vad to Vc + Vad, and the voltage Vcsb of the auxiliary capacitance line 24b changes from Vc + Vad to Vc—Vad by 2 X Vad. 1. The voltage Vlca and Vlcb of the second subpixel electrode are also
Vlca=Vs -Vd  Vlca = Vs -Vd
Vlcb=Vs -Vd  Vlcb = Vs -Vd
から、  From
Vlca=Vs Vd + 2 X K X Vad  Vlca = Vs Vd + 2 X K X Vad
Vlcb=Vs Vd— 2 X K X Vad  Vlcb = Vs Vd— 2 X K X Vad
へ変化する。  To change.
[0084] Vcsa, Vcsb, Vic a, Vlcbは、水平走査時間 1Hの整数倍の間隔毎に上記 T4、 Τ5 における変化を交互に繰り返す。上記 Τ4、 Τ5の繰り返し間隔を 1Hの 1倍とするか、 2倍とするか、 3倍とするかあるいはそれ以上とするかは液晶表示装置の駆動方法( 極性反転方法等)や表示状態(ちらつき、表示のざらつき感等)を鑑みて適宜設定す ればよい。この繰り返しは次に画素 10が書き換えられるとき、すなわち T1に等価な時 間になるまで継続される。従って、第 1、第 2副画素電極の電圧 Vlca、 Vlcbの平均電 圧は、それぞれ、 Vlca=Vs -Vd + K XVad [0084] Vcsa, Vcsb, Vica, and Vlcb alternately repeat the changes in T4 and Τ5 at intervals of an integral multiple of the horizontal scanning time 1H. Whether the repetition interval of Τ4 and Τ5 is 1 time, 2 times, 3 times, or more than 1H depends on the driving method of the liquid crystal display device (polarity inversion method, etc.) and display state ( It may be set appropriately in view of flickering, display roughness, etc. This repetition continues until the next pixel 10 is rewritten, that is, until a time equivalent to T1 is reached. Therefore, the average voltages Vlca and Vlcb of the first and second subpixel electrodes are respectively Vlca = Vs -Vd + K XVad
Vlcb=Vs -Vd-K X Vad  Vlcb = Vs -Vd-K X Vad
となる。  It becomes.
[0085] よって、副画素 10a、 10bの液晶層 13a、 13bに印加される実効電圧 VI (=VLspa )、 V2 (=VLspb)は、それぞれ、第 1副画素電極 18aの電圧と対向電極 17の電圧と の差、第 2副画素電極 18bの電圧と対向電極 17の電圧との差であり、すなわち、 Accordingly, the effective voltages VI (= VLspa) and V2 (= VLspb) applied to the liquid crystal layers 13a and 13b of the subpixels 10a and 10b are respectively the voltages of the first subpixel electrode 18a and the counter electrode 17 Is the difference between the voltage of the second subpixel electrode 18b and the voltage of the counter electrode 17, that is,
VI =VLspa=Vlca— Vcom VI = VLspa = Vlca— Vcom
V2 = VLspb = Vlcb - Vcom  V2 = VLspb = Vlcb-Vcom
すなわち、  That is,
Vl =Vs-Vd + K XVad-Vc  Vl = Vs-Vd + K XVad-Vc
V2=Vs-Vd-K XVad-Vc  V2 = Vs-Vd-K XVad-Vc
となる。従って、副画素 10aおよび 10bのそれぞれの液晶層 13aおよび 13bに印加さ れる実効電圧の差 AV(=V1—V2)は、 AV= 2 X K XVad (但し、 K=CCS/ (CL C (V) + CCS) )となり、液晶層 13aおよび 13bに互いに異なる電圧を印加することが できる。  It becomes. Therefore, the effective voltage difference AV (= V1−V2) applied to the liquid crystal layers 13a and 13b of the sub-pixels 10a and 10b is AV = 2 XK XVad (where K = CCS / (CL C (V) + CCS)), and different voltages can be applied to the liquid crystal layers 13a and 13b.
[0086] 図 10に、本実施形態の液晶表示装置 100における VIと V2との関係を模式的に示 す。図 10から理解されるように、本実施形態の液晶表示装置 100では、 VIの値が小 さいほど Δνの値が大きい。なお、 Δνの値が VIあるいは V2に依存して変化するの は、液晶容量の静電容量値 CLC (V)が電圧に依存して変化するためである。  [0086] FIG. 10 schematically shows the relationship between VI and V2 in the liquid crystal display device 100 of the present embodiment. As understood from FIG. 10, in the liquid crystal display device 100 of the present embodiment, the value of Δν increases as the value of VI decreases. The reason why Δν varies depending on VI or V2 is that the capacitance value CLC (V) of the liquid crystal capacitance varies depending on the voltage.
[0087] 図 11 (a)に、本実施形態の液晶表示装置 100における右 60度視角での γ特性を 示しており、図 11 (b)に、本実施形態の液晶表示装置 100における右上 60度視角 での γ特性を示している。図 11 (a)および図 11 (b)には、また、比較のために副画素 10a、 10bに同一の電圧を印加した場合の γ特性も示している。図 11 (a)および図 1 1 (b)から理解されるように、本実施形態の液晶表示装置 100の階調特性は、 2つの 副画素電極の電圧を等しくした場合と比べて、縦軸の値 =横軸の値である正面方向 の階調特性(γ = 2. 2)により近くなり、 γ特性が改善されている。以上のように、 1つ の垂直走査期間内において、各電圧を図 9に示したように変化させることにより、異な る副画素の液晶層に異なる実効電圧を印加することができ、それにより、斜め方向か ら観測した際の γ特性を改善することができる。 FIG. 11 (a) shows the γ characteristic at the viewing angle of 60 ° to the right in the liquid crystal display device 100 of the present embodiment, and FIG. 11 (b) shows the upper right 60 in the liquid crystal display device 100 of the present embodiment. It shows the γ characteristic at the angle of view. FIGS. 11 (a) and 11 (b) also show γ characteristics when the same voltage is applied to the subpixels 10a and 10b for comparison. As can be understood from FIGS. 11 (a) and 11 (b), the gradation characteristics of the liquid crystal display device 100 of the present embodiment are compared with the case where the voltages of the two subpixel electrodes are equal. The value of = is closer to the gradation characteristic in the front direction (γ = 2.2), which is the value on the horizontal axis, and the γ characteristic is improved. As described above, different effective voltages can be applied to the liquid crystal layers of different sub-pixels by changing each voltage as shown in FIG. 9 within one vertical scanning period. Diagonally Can improve the gamma characteristics.
[0088] 以下、図 12を参照して、図 7および図 8を参照して説明した 1つの画素 10に印加す る電圧の複数の垂直走査期間にわたる変化を説明する。  Hereinafter, with reference to FIG. 12, a change in a voltage applied to one pixel 10 described with reference to FIGS. 7 and 8 over a plurality of vertical scanning periods will be described.
[0089] 図 12において、 Vgは走査線 12の電圧を示し、 Vcsaは第 1補助容量配線 24aの電 圧を示し、 Vcsbは第 2補助容量配線 24bの電圧を示し、 VLspaは第 1副画素 10aの 液晶層 13aに印加される実効電圧を示し、 VLspbは第 2副画素 10bの液晶層 13bに 印加される実効電圧を示している。上述したように、垂直走査期間は、ある走査線が 選択され、次にその走査線が選択されるまでの期間であり、図 12においてその期間 を V— Totalで示している。なお、図 12には、図 9を参照して説明した引き込み現象 によって生じる電圧 Vdの変化を示して!/、な!/、。  In FIG. 12, Vg represents the voltage of the scanning line 12, Vcsa represents the voltage of the first auxiliary capacitance line 24a, Vcsb represents the voltage of the second auxiliary capacitance line 24b, and VLspa represents the first subpixel. The effective voltage applied to the liquid crystal layer 13a of 10a is shown, and VLspb shows the effective voltage applied to the liquid crystal layer 13b of the second subpixel 10b. As described above, the vertical scanning period is a period from when a certain scanning line is selected until the next scanning line is selected. In FIG. 12, this period is indicated by V-Total. FIG. 12 shows the change in voltage Vd caused by the pull-in phenomenon described with reference to FIG.
[0090] また、第 1、第 2補助容量配線の電圧 Vcsa、 Vcsbは、表示期間 AHと調整期間 BH とを有している。第 1、第 2補助容量配線の電圧 Vcsa、 Vcsbは、表示期間 AHにお いてある期間(ここでは、 20H)を 1周期として周期的に変化し、調整期間 BHにおい て表示期間 AHの期間とは異なる期間(ここでは、 36Hまたは 26H)で 1周期変化す る。表示期間 AHと調整期間 BHとの和は、垂直走査期間 (V— Total)に等しい。ま た、ここでは、表示期間 AHは、あるフレームに対応する垂直走査期間が開始した後 、第 1、第 2補助容量配線の電圧 Vcsa、 Vcsbが変化したときに開始し、調整期間 BH は、そのフレームに対応する垂直走査期間が終了した後、第 1、第 2補助容量配線の 電圧 Vcsa、 Vcsbが変化したときに終了する。本実施形態において、フレーム周波数 は、例えば、 60Hzである。  [0090] Further, the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines have a display period AH and an adjustment period BH. The voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines change periodically with a period (in this case, 20H) in the display period AH as one period, and the period of the display period AH in the adjustment period BH. Varies by one period in different periods (here 36H or 26H). The sum of the display period AH and the adjustment period BH is equal to the vertical scanning period (V—Total). Here, the display period AH starts when the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines change after the start of the vertical scanning period corresponding to a certain frame, and the adjustment period BH is It ends when the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines change after the vertical scanning period corresponding to the frame ends. In the present embodiment, the frame frequency is 60 Hz, for example.
[0091] 図 12には、 4つの垂直走査期間における電圧の変化を示している。以下の説明に おいて、 4つの垂直走査期間をそれぞれ第 1〜第 4垂直走査期間と称し、各垂直走 查期間に対応する表示期間 AH、調整期間 BHを、それぞれ、第 1〜第 4表示期間 A H、第 1〜第 4調整期間 BHと称する。また、ここでも、補助容量配線 24aの電圧 Vcsa 力 り高い電圧 (VcH)に変化すると、補助容量配線 24bの電圧 Vcsbはより低い電 圧 (VcUに変化し、反対に、 Vcsaがより低い電圧 (VcUに変化すると、 Vcsbはより 高い電圧 (VcH)に変化する。なお、 VcHと VcLとの差は図 9を参照して説明した 2 XVadに対応している。 [0092] 第 1補助容量配線 24aの電圧 Vcsaが VcLであり、第 2補助容量配線 24bの電圧 V csbが VcHである時刻において、走査線 12の電圧 Vgは VgLから VgHに変化する。 走査線 12の電圧 Vgが VgHに変化したことに伴い、第 1垂直走査期間が開始すると ともに、第 1、第 2副画素電極 18a、 18bへの充電が行われる。走査線 12の電圧 Vg が VgHである間、信号線 14の電圧 Vsは対向電極 17の電圧 Vcよりも高いため、充電 の結果、第 1副画素電極 18aおよび第 2副画素電極 18bの電圧は対向電極 17の電 圧 Vcよりも高くなる。その後、走査線 12の電圧 Vgが VgHから再び VgLに戻ると、第 1、第 2副画素電極 18a、 18bへの充電は終了する。 FIG. 12 shows changes in voltage during four vertical scanning periods. In the following description, the four vertical scanning periods are referred to as the first to fourth vertical scanning periods, respectively, and the display period AH and the adjustment period BH corresponding to each vertical scanning period are respectively displayed in the first to fourth displays. Period AH, first to fourth adjustment period BH. Also here, when the voltage Vcsa of the auxiliary capacitance line 24a changes to a higher voltage (VcH), the voltage Vcsb of the auxiliary capacitance line 24b changes to a lower voltage (VcU, and conversely, the voltage Vcsa is lower ( When changing to VcU, Vcsb changes to a higher voltage (VcH), and the difference between VcH and VcL corresponds to 2 XVad described with reference to Figure 9. The voltage Vg of the scanning line 12 changes from VgL to VgH at the time when the voltage Vcsa of the first auxiliary capacitance line 24a is VcL and the voltage V csb of the second auxiliary capacitance line 24b is VcH. As the voltage Vg of the scanning line 12 changes to VgH, the first vertical scanning period starts and the first and second subpixel electrodes 18a and 18b are charged. Since the voltage Vs of the signal line 14 is higher than the voltage Vc of the counter electrode 17 while the voltage Vg of the scanning line 12 is VgH, the voltage of the first subpixel electrode 18a and the second subpixel electrode 18b is charged as a result of charging. It becomes higher than the voltage Vc of the counter electrode 17. Thereafter, when the voltage Vg of the scanning line 12 returns from VgH to VgL again, the charging of the first and second subpixel electrodes 18a and 18b ends.
[0093] その後、第 1補助容量配線 24aの電圧 Vcsaが VcHに増加し、第 2補助容量配線 2 4bの電圧 Vcsbが VcLに減少する。ここでは、第 1補助容量配線 24aの電圧 Vcsaが 増加、および、第 2補助容量配線 24bの電圧 Vcsbが減少するときが第 1表示期間 A Hの開始である。第 1表示期間 AHにおいて、第 1、第 2補助容量配線 24a、 24bの電 圧 Vcsa、 Vcsbは 10Hごとに増加または減少して 20Hを 1周期として周期的に変化 する。第 1表示期間 AHが終了すると、第 1調整期間 BHが開始する。第 1調整期間 B Hにおいて、第 1、第 2補助容量配線 24a、 24bの電圧 Vcsa、 Vcsbは 18Hで増加ま たは減少する。第 1、第 2補助容量配線 24a、 24bの電圧 Vcsa、 Vcsbの変化に応じ て第 1、第 2副画素電極 18a、 18bの電圧が変化するため、第 1垂直走査期間におい て第 1副画素 10aの液晶層 13aに印加される実効電圧の絶対値は第 2副画素 10bの 液晶層 13bに印加される実効電圧の絶対値よりも大きくなり、第 1副画素 10aは第 2 副画素 10bよりも明るくなる。  Thereafter, the voltage Vcsa of the first auxiliary capacitance line 24a increases to VcH, and the voltage Vcsb of the second auxiliary capacitance line 24b decreases to VcL. Here, the first display period AH starts when the voltage Vcsa of the first auxiliary capacitance line 24a increases and the voltage Vcsb of the second auxiliary capacitance line 24b decreases. In the first display period AH, the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b increase or decrease every 10H and periodically change with 20H as one cycle. When the first display period AH ends, the first adjustment period BH starts. In the first adjustment period BH, the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b increase or decrease at 18H. Since the voltages of the first and second subpixel electrodes 18a and 18b change according to the change of the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b, the first subpixel in the first vertical scanning period. The absolute value of the effective voltage applied to the liquid crystal layer 13a of 10a is larger than the absolute value of the effective voltage applied to the liquid crystal layer 13b of the second subpixel 10b, and the first subpixel 10a is more than the second subpixel 10b. Will also be brighter.
[0094] 第 1調整期間 BHにおいて第 1補助容量配線 24aの電圧 Vcsaが VcHであり、第 2 補助容量配線 24bの電圧 Vcsbが VcLである時刻に、走査線 12の電圧 Vgは、 VgL 力、ら VgHに変化する。走査線 12の電圧 Vgが VgHに変化したことに伴い、第 1垂直 走査期間が終了して第 2垂直走査期間が開始するとともに、第 1、第 2副画素電極 18 a、 18bへの充電が行われる。走査線 12の電圧 Vgが VgHである間、信号線 14の電 圧 Vsが対向電極 17の電圧 Vcよりも高いため、充電の結果、第 1副画素電極 18aお よび第 2副画素電極 18bの電圧は対向電極 17の電圧 Vcよりも高くなる。その後、走 查線 12の電圧 Vgが VgHから再び VgLに戻ると、第 1、第 2副画素電極 18a、 18bへ の充電は終了する。 [0094] At the time when the voltage Vcsa of the first auxiliary capacitance line 24a is VcH and the voltage Vcsb of the second auxiliary capacitance line 24b is VcL in the first adjustment period BH, the voltage Vg of the scanning line 12 is VgL force, To VgH. As the voltage Vg of the scanning line 12 changes to VgH, the first vertical scanning period ends and the second vertical scanning period starts, and the first and second subpixel electrodes 18a and 18b are charged. Done. While the voltage Vg of the scanning line 12 is VgH, the voltage Vs of the signal line 14 is higher than the voltage Vc of the counter electrode 17, so that the charging results in the first subpixel electrode 18a and the second subpixel electrode 18b. The voltage is higher than the voltage Vc of the counter electrode 17. After that, when the voltage Vg of the scanning line 12 returns from VgH to VgL again, it goes to the first and second subpixel electrodes 18a and 18b. Charging ends.
[0095] その後、第 1補助容量配線 24aの電圧 Vcsaが VcLに減少し、第 2補助容量配線 2 4bの電圧 Vcsbが VcHに増加する。第 1補助容量配線 24aの電圧 Vcsaが減少、お よび、第 2補助容量配線 24bの電圧 Vcsbが増加するとき、第 1調整期間が終了し、 第 2表示期間 AHが開始する。第 2表示期間 AHにおいても、第 1、第 2補助容量配 泉 24a、 24bの電圧 Vcsa、 Vcsbは 10Hごとに増加または減少して 20Hを 1周期とし て周期的に変化し、第 2調整期間 BHでは、第 1、第 2補助容量配線 24a、 24bの電 圧 Vcsa、 Vcsbは 13Hで増加または減少する。第 1、第 2補助容量配線 24a、 24bの 電圧 Vcsa、 Vcsbの変化に応じて第 1、第 2副画素電極 18a、 18bの電圧が変化する ため、第 2垂直走査期間において第 2副画素 10bの液晶層 13bに印加される実効電 圧の絶対値は第 1副画素 10aの液晶層 13aに印加される実効電圧の絶対値よりも大 きくなり、第 2副画素 10bは第 1副画素 10aよりも明るくなる。  Thereafter, the voltage Vcsa of the first auxiliary capacitance line 24a decreases to VcL, and the voltage Vcsb of the second auxiliary capacitance line 24b increases to VcH. When the voltage Vcsa of the first auxiliary capacitance line 24a decreases and the voltage Vcsb of the second auxiliary capacitance line 24b increases, the first adjustment period ends and the second display period AH starts. Also in the second display period AH, the voltages Vcsa and Vcsb of the first and second auxiliary capacitance springs 24a and 24b increase or decrease every 10H and change periodically with 20H as one cycle, and the second adjustment period In BH, the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b increase or decrease at 13H. Since the voltages of the first and second subpixel electrodes 18a and 18b change according to the change in the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b, the second subpixel 10b in the second vertical scanning period. The absolute value of the effective voltage applied to the liquid crystal layer 13b of the first subpixel 10a is larger than the absolute value of the effective voltage applied to the liquid crystal layer 13a of the first subpixel 10a, and the second subpixel 10b is the first subpixel 10a. It becomes brighter than.
[0096] 次いで、第 2調整期間 BHにおいて第 1補助容量配線 24aの電圧 Vcsaが VcHであ り、第 2補助容量配線 24bの電圧 Vcsbが VcLである時刻に、走査線 12の電圧 Vgは 、 VgL力も VgHに変化する。走査線 12の電圧 Vgが VgHに変化したことに伴い、第 2 垂直走査期間が終了して第 3垂直走査期間が開始するとともに、第 1、第 2副画素電 極 18a、 18bへの充電が行われる。走査線 12の電圧 Vgが VgHである間、信号線 14 の電圧 Vsが対向電極 17の電圧 Vcよりも低いため、充電の結果、第 1副画素電極 18 aおよび第 2副画素電極 18bの電圧は対向電極 17の電圧 Vcよりも低くなる。その後、 走査線 12の電圧 Vgが VgHから再び VgLに戻ると、第 1、第 2副画素電極 18a、 18b への充電は終了する。  [0096] Next, at the time when the voltage Vcsa of the first auxiliary capacitance line 24a is VcH and the voltage Vcsb of the second auxiliary capacitance line 24b is VcL in the second adjustment period BH, the voltage Vg of the scanning line 12 is VgL force also changes to VgH. As the voltage Vg of the scanning line 12 changes to VgH, the second vertical scanning period ends and the third vertical scanning period starts, and the first and second subpixel electrodes 18a and 18b are charged. Done. Since the voltage Vs of the signal line 14 is lower than the voltage Vc of the counter electrode 17 while the voltage Vg of the scanning line 12 is VgH, the voltage of the first subpixel electrode 18a and the second subpixel electrode 18b is charged as a result of charging. Becomes lower than the voltage Vc of the counter electrode 17. Thereafter, when the voltage Vg of the scanning line 12 returns from VgH to VgL again, the charging of the first and second subpixel electrodes 18a and 18b is completed.
[0097] その後、第 1補助容量配線 24aの電圧 Vcsaが VcLに減少し、第 2補助容量配線 2 4bの電圧 Vcsbが VcHに増加する。第 1補助容量配線 24aの電圧 Vcsaが減少、お よび、第 2補助容量配線 24bの電圧 Vcsbが増加するとき、第 2調整期間 BHが終了 し、第 3表示期間 AHが開始する。第 3表示期間 AHにおいて、第 1、第 2補助容量配 泉 24a、 24bの電圧 Vcsa、 Vcsbは 10Hごとに増加または減少して 20Hを 1周期とし て周期的に変化し、第 3調整期間 BHでは、第 1、第 2補助容量配線 24a、 24bの電 圧 Vcsa、 Vcsbは 18Hで増加または減少する。第 1、第 2補助容量配線 24a、 24bの 電圧 Vcsa、 Vcsbの変化に応じて第 1、第 2副画素電極 18a、 18bの電圧が変化する ため、第 3垂直走査期間において第 1副画素 10aの液晶層 13aに印加される実効電 圧の絶対値は第 2副画素 10bの液晶層 13bに印加される実効電圧の絶対値よりも大 きくなり、第 1副画素 10aは第 2副画素 10bよりも明るくなる。 Thereafter, the voltage Vcsa of the first auxiliary capacitance line 24a decreases to VcL, and the voltage Vcsb of the second auxiliary capacitance line 24b increases to VcH. When the voltage Vcsa of the first auxiliary capacitance line 24a decreases and the voltage Vcsb of the second auxiliary capacitance line 24b increases, the second adjustment period BH ends and the third display period AH starts. During the third display period AH, the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b increase or decrease every 10H, and change periodically with 20H as one cycle, and the third adjustment period BH Then, the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b increase or decrease at 18H. 1st and 2nd auxiliary capacitance wiring 24a, 24b Since the voltages of the first and second subpixel electrodes 18a and 18b change according to changes in the voltages Vcsa and Vcsb, the effective voltage applied to the liquid crystal layer 13a of the first subpixel 10a in the third vertical scanning period The absolute value is larger than the absolute value of the effective voltage applied to the liquid crystal layer 13b of the second subpixel 10b, and the first subpixel 10a is brighter than the second subpixel 10b.
[0098] 次いで、第 3調整期間 BHにおいて第 1補助容量配線 24aの電圧 Vcsaが VcLであ り、第 2補助容量配線 24bの電圧 Vcsbが VcHである時刻に、走査線 12の電圧 Vgは 、 VgL力も VgHに変化する。走査線 12の電圧 Vgが VgHに変化したことに伴い、第 3 垂直走査期間が終了して第 4垂直走査期間が開始するとともに、第 1、第 2副画素電 極 18a、 18bへの充電が行われる。走査線 12の電圧 Vgが VgHである間、信号線 14 の電圧 Vsが対向電極 17の電圧 Vcよりも低いため、充電の結果、第 1副画素電極 18 aおよび第 2副画素電極 18bの電圧は対向電極 17の電圧 Vcよりも低くなる。その後、 走査線 12の電圧 Vgが VgHから再び VgLに戻ると、第 1、第 2副画素電極 18a、 18b への充電は終了する。 [0098] Next, at the time when the voltage Vcsa of the first auxiliary capacitance line 24a is VcL and the voltage Vcsb of the second auxiliary capacitance line 24b is VcH in the third adjustment period BH, the voltage Vg of the scanning line 12 is VgL force also changes to VgH. As the voltage Vg of the scanning line 12 changes to VgH, the third vertical scanning period ends and the fourth vertical scanning period starts, and the first and second subpixel electrodes 18a and 18b are charged. Done. Since the voltage Vs of the signal line 14 is lower than the voltage Vc of the counter electrode 17 while the voltage Vg of the scanning line 12 is VgH, the voltage of the first subpixel electrode 18a and the second subpixel electrode 18b is charged as a result of charging. Becomes lower than the voltage Vc of the counter electrode 17. Thereafter, when the voltage Vg of the scanning line 12 returns from VgH to VgL again, the charging of the first and second subpixel electrodes 18a and 18b is completed.
[0099] その後、第 1補助容量配線 24aの電圧 Vcsaが VcHに増加し、第 2補助容量配線 2 4bの電圧 Vcsbが VcLに減少する。第 1補助容量配線 24aの電圧 Vcsaが増加、およ び、第 2補助容量配線 24bの電圧 Vcsbが減少するとき、第 3調整期間 BHが終了し、 第 4表示期間 AHが開始する。第 4表示期間 AHにおいて、第 1、第 2補助容量配線 24a, 24bの電圧 Vcsa、 Vcsbは 10Hごとに増加または減少して 20Hを 1周期として 周期的に変化し、第 4調整期間 BHでは、第 1、第 2補助容量配線 24a、 24bの電圧 Vcsa, Vcsbは 13Hで増加または減少する。第 1、第 2補助容量配線 24a、 24bの電 圧 Vcsa、 Vcsbの変化に応じて第 1、第 2副画素電極 18a、 18bの電圧が変化するた め、第 4垂直走査期間において第 2副画素 10bの液晶層 13bに印加される実効電圧 の絶対値は第 1副画素 10aの液晶層 13aに印加される実効電圧の絶対値よりも大き くなり、第 2副画素 10bは第 1副画素 10aよりも明るくなる。第 5垂直走査期間以降、各 電圧は、図 12に示した第 1〜第 4垂直走査期間と同様に変化する。  Thereafter, the voltage Vcsa of the first auxiliary capacitance line 24a increases to VcH, and the voltage Vcsb of the second auxiliary capacitance line 24b decreases to VcL. When the voltage Vcsa of the first auxiliary capacitance line 24a increases and the voltage Vcsb of the second auxiliary capacitance line 24b decreases, the third adjustment period BH ends and the fourth display period AH starts. In the fourth display period AH, the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b increase or decrease every 10H and change periodically with 20H as one period.In the fourth adjustment period BH, The voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b increase or decrease at 13H. Since the voltages of the first and second subpixel electrodes 18a and 18b change according to changes in the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines 24a and 24b, the second sub-capacitor wirings 24a and 24b change in the second vertical scanning period. The absolute value of the effective voltage applied to the liquid crystal layer 13b of the pixel 10b is larger than the absolute value of the effective voltage applied to the liquid crystal layer 13a of the first subpixel 10a, and the second subpixel 10b is the first subpixel. Brighter than 10a. After the fifth vertical scanning period, each voltage changes in the same manner as in the first to fourth vertical scanning periods shown in FIG.
[0100] 以上のように、第 1副画素の(明暗、極性)は、(明、 + )、(喑、 + )、(明、一)、(喑、 一)と順番に変化し、また、第 2副画素の(明暗、極性)は、(喑、 + )、(明、 + )、(喑、 一)、(明、一)の順番に変化し、第 1および第 2副画素の明暗および極性は、図 6 (a) に示したように変化する。このようにして、第 1、第 2補助容量配線の電圧 Vcsa、 Vcs bを変化させることにより、 γ特性の視野角依存性を向上させた液晶表示装置におい て表示品位の低下を抑制することができる。 [0100] As described above, the (brightness, polarity) of the first sub-pixel changes in order of (bright, +), (喑, +), (bright, one), (喑, one), and , (Brightness, Polarity) of the second subpixel changes in the order of (喑, +), (Bright, +), (喑, 1), (Bright, 1). Figure 6 (a) It changes as shown in. In this way, by changing the voltages Vcsa and Vcsb of the first and second auxiliary capacitance lines, it is possible to suppress deterioration in display quality in the liquid crystal display device in which the viewing angle dependency of the γ characteristic is improved. it can.
[0101] なお、ここまで説明してきたように、本実施形態の液晶表示装置では、画素電極と 対向電極との電位の大小関係が一定時間毎に反転し、液晶層に印加される電界の 向きが一定時間毎に反転するように設定している。この場合、対向電極と画素電極と を異なる基板に設けた典型的な液晶表示装置では、液晶層に印加される電界の向 きは光源側から観測者側、観測者側から光源側へと反転する。以上のように、電圧が 交流電圧となるように設定することは「交流駆動法」と呼ばれる。本実施形態の液晶 表示装置では、液晶層に印加される電界の向きの反転の周期は、 2フレーム期間( 例えば 33· 333ms)の 2倍(例えば 66· 667ms)である。すなわち、本実施形態の液 晶表示装置では表示する 2枚のフレーム画像毎に液晶層に印加される電界の向きが 反転することになる。従って、静止画を表示する場合、各々の電界の向きで電界強度 (印加電圧)を正確に一致してなければ、すなわち、電界の向きが変わるたび毎に電 界強度が変化してしまうと、電界強度の変化に伴って画素の輝度が変化してしまい、 表示がちらつくといった問題が発生する。  [0101] As described so far, in the liquid crystal display device of the present embodiment, the magnitude relationship between the potentials of the pixel electrode and the counter electrode is reversed at regular intervals, and the direction of the electric field applied to the liquid crystal layer Is set to reverse at regular intervals. In this case, in a typical liquid crystal display device in which the counter electrode and the pixel electrode are provided on different substrates, the direction of the electric field applied to the liquid crystal layer is reversed from the light source side to the observer side and from the observer side to the light source side. To do. As described above, setting the voltage to be an AC voltage is called “AC drive method”. In the liquid crystal display device of this embodiment, the period of inversion of the direction of the electric field applied to the liquid crystal layer is twice (for example, 66.667 ms) two frame periods (for example, 33.333 ms). That is, in the liquid crystal display device of this embodiment, the direction of the electric field applied to the liquid crystal layer is reversed for every two frame images to be displayed. Therefore, when displaying a still image, if the electric field strength (applied voltage) does not exactly match the direction of each electric field, that is, the electric field strength changes every time the electric field direction changes, As the electric field strength changes, the luminance of the pixel changes, causing a problem that the display flickers.
[0102] このちらつきを防止するためには、各々の電界の向きの電界強度(印加電圧)を正 確に一致させる必要がある。し力、しながら、工業的に生産される液晶表示装置におい ては、各々の電界の向きについて電界強度を正確に一致させることは困難であるた め、表示領域内に互いに異なる電界の向きを有する画素を隣接して配置して、画素 の輝度を空間的に平均化する効果を利用することにより、ちらつきを低減している。こ の方法は、一般的には、「ドット反転」あるいは「ライン反転」と呼ばれている。なお、こ れらの「反転駆動」には、反転する画素周期が 1画素単位での市松模様状の反転(1 行毎および 1列毎の極性反転)のもの(1ドット反転)、あるいは 1ライン状の反転(1行 毎の反転)のもの(1ライン反転)だけでなぐ 2行毎および 1列毎の極性反転(2行 1列 ドット反転)等様々な形態があり、必要に応じて適宜設定される。  [0102] In order to prevent this flickering, the electric field strengths (applied voltages) in the respective electric field directions must be matched exactly. However, in a liquid crystal display device produced industrially, it is difficult to accurately match the electric field strength for each electric field direction. Flickering is reduced by arranging pixels adjacent to each other and utilizing the effect of spatially averaging the luminance of the pixels. This method is generally called “dot inversion” or “line inversion”. Note that these “inversion drives” include ones in which the pixel cycle to be inverted is a checkered pattern inversion (one-line inversion for each row and column) (one-dot inversion), or 1 There are various forms such as polarity inversion every 2 rows and 1 column (2 rows, 1 column, dot inversion) as well as those with line inversion (inversion for each row) (1 line inversion). Set as appropriate.
[0103] 以上から、ちらつきを防止するためには、以下に示す 3つの条件を満たすことが好 ましい。 [0104] 第 1の条件は、各々の電界の向き (各々の印加電圧の極性)において液晶層に印加 される実効電圧の絶対値をできるだけ一致させることである。すなわち、上述した信 頼性上の問題の場合と同様に液晶層に印加される電圧の平均値をできるだけゼロに 近づけることである。 [0103] From the above, in order to prevent flickering, it is preferable to satisfy the following three conditions. [0104] The first condition is that the absolute value of the effective voltage applied to the liquid crystal layer is matched as much as possible in each electric field direction (polarity of each applied voltage). That is, as in the case of the reliability problem described above, the average value of the voltage applied to the liquid crystal layer should be as close to zero as possible.
[0105] 第 2の条件は、各フレーム期間において、液晶層に印加される電界の向きの異なる 画素を隣接して配置することである。  [0105] The second condition is that pixels having different directions of the electric field applied to the liquid crystal layer are arranged adjacent to each other in each frame period.
[0106] 第 3の条件は、同じフレーム内において、他方の副画素よりも明るい副画素を可能 な限りランダムに配置することである。表示上最も好ましいのは、他方の副画素よりも 明るい副画素が互いに列方向、および行方向に隣接しないように配置すること、言い 換えれば、他方の副画素よりも明るい副画素を市松状に配置することである。  [0106] The third condition is that subpixels brighter than the other subpixel are randomly arranged in the same frame as much as possible. The most preferable display is to arrange subpixels that are brighter than the other subpixel so that they are not adjacent to each other in the column and row directions. In other words, the subpixels that are brighter than the other subpixel are arranged in a checkered pattern. Is to place.
[0107] 以下に、本実施形態の液晶表示装置が上記 3つの条件を満たすことを説明する。  Hereinafter, it will be described that the liquid crystal display device of the present embodiment satisfies the above three conditions.
具体的に 3つの条件を満たすことを説明するのに先だち、図 13および図 14を参照し て、本実施形態の液晶表示装置 100が、上記条件を満たす 1ドット反転駆動に適し た画素配列を有してレ、ることを説明する。  Prior to explaining that the three conditions are specifically satisfied, referring to FIG. 13 and FIG. 14, the liquid crystal display device 100 of the present embodiment has a pixel arrangement suitable for one-dot inversion driving that satisfies the above conditions. Explain that you have it.
[0108] 図 13に、液晶表示装置 100の等価回路を示す。図 13において、各画素は、図 7お よび図 8に示した構造を有している。画素はマトリクス状に配置されており、以下の説 明において、第 n行第 m列の画素を画素 n— mと示し、画素 n— mに含まれる 2つの 副画素を副画素 n— m— A、 n— m— Bと示す。  FIG. 13 shows an equivalent circuit of the liquid crystal display device 100. In FIG. 13, each pixel has the structure shown in FIG. 7 and FIG. The pixels are arranged in a matrix. In the following description, the pixel in the nth row and the mth column is referred to as a pixel n−m, and the two subpixels included in the pixel n−m are subpixel n−m—. A, n—m—B.
[0109] 液晶表示装置 100には 10本の補助容量幹線 CS;!〜 CS10が設けられており、各 副画素は、補助容量配線(CSバスライン)を介して補助容量幹線 CS;!〜 CS10のい ずれ力、 1つに接続されている。例えば、補助容量幹線 CS2は、第 1画素行の副画素 1 -a-B, 1 -b-B, 1— c— Β · · ·と第 2画素行の副画素 2— a— A, 2— b— A, 2— c -A- · ·と接続されており、ある副画素は、その副画素に隣接する別の画素に含ま れる副画素と同じ補助容量配線を介して同じ補助容量幹線に接続されている。  [0109] The liquid crystal display device 100 is provided with ten auxiliary capacity trunk lines CS;! To CS10, and each sub-pixel is connected to the auxiliary capacity line CS;! To CS10 via an auxiliary capacity line (CS bus line). Any force, connected to one. For example, the storage capacitor main line CS2 includes the subpixels 1 -aB, 1 -bB, 1— c— Β... In the first pixel row and the subpixels 2 — a— A, 2 — b— A in the second pixel row , 2-c -A- ..., and a subpixel is connected to the same auxiliary capacitance trunk line via the same auxiliary capacitance wiring as a subpixel included in another pixel adjacent to the subpixel. Yes.
[0110] ここで、走査線 G1および信号線 Saによって特定される画素 1— aに含まれる第 1、 第 2副画素 1 a—A、 l—a— Bの構成を説明する。第 1、第 2副画素 1 a—A、 1 a— Bは、液晶容量 CLCl— a—Aおよび CLCl— a— Bと、補助容量 CCSl— a—A および CCS1— a— Bを有している。液晶容量は、副画素電極と対向電極 ComLCと これらの間に設けられた液晶層とによって構成されており、補助容量は、補助容量電 極と、絶縁膜と、補助容量対向電極(ComCSl、 ComCS2)とで構成されている。 Here, the configuration of the first and second sub-pixels 1 a-A and la-B included in the pixel 1-a specified by the scanning line G1 and the signal line Sa will be described. The first and second subpixels 1a-A and 1a-B have liquid crystal capacitors CLCl-a-A and CLCl-a-B, and auxiliary capacitors CCSl-a-A and CCS1-a-B. Yes. The liquid crystal capacitance consists of the sub-pixel electrode and the counter electrode ComLC. The auxiliary capacitance is constituted by an auxiliary capacitance electrode, an insulating film, and an auxiliary capacitance counter electrode (ComCSl, ComCS2).
[0111] 第 1、第 2副画素 1 a—A、 l a— Bは、それぞれ対応する TFT1—&ー八ぉょび丁 FT1— a— Bを介して共通の信号線 Saに接続されている。 TFT1— a— Aおよび TFT 1 a— Bは、共通の走査線 G1に供給される電圧によってオン/オフ制御され、 2つ の TFTがオン状態にあるときに、第 1、第 2副画素 1— a— A、 l a Bのそれぞれが 有する副画素電極および補助容量電極に、共通の信号線 Saから電圧が供給される 。副画素 1— a— Aの補助容量対向電極は補助容量配線 (CSバスライン) CS1を介し て補助容量幹線 CS1に接続されており、副画素 1 a— Bの補助容量対向電極は補 助容量配線 (CSバスライン) CS2を介して補助容量幹線 CS2に接続されている。以 上のように、図 13に示した構成は、一本の補助容量配線、または一本の走査線を 2 つの副画素で共有する構成であり、画素の開口率を高くできる利点を有している。  [0111] The first and second sub-pixels 1a-A and la-B are connected to the common signal line Sa via the corresponding TFT1-&-Hachibobicho FT1-a-B, respectively. . TFT1—a—A and TFT1 a—B are on / off controlled by the voltage supplied to the common scanning line G1, and when the two TFTs are in the on state, the first and second subpixels 1 — A— A voltage is supplied from the common signal line Sa to the subpixel electrode and the auxiliary capacitance electrode of each of A and la B. The auxiliary capacitor counter electrode of subpixel 1—a—A is connected to auxiliary capacitor main line CS1 via auxiliary capacitor wiring (CS bus line) CS1, and the auxiliary capacitor counter electrode of subpixel 1 a—B is connected to the auxiliary capacitor. Wiring (CS bus line) Connected to the auxiliary capacity trunk line CS2 via CS2. As described above, the configuration shown in FIG. 13 is a configuration in which one sub-capacitor wiring or one scanning line is shared by two subpixels, and has the advantage that the pixel aperture ratio can be increased. ing.
[0112] 図 14に、あるフレームの有効走査期間内に変化した副画素の明喑および極性を示 す。図 14には、第;!〜 12行および第 a〜f列の画素を示している。図 15に、図 13に 示した構成を有する液晶表示装置を駆動するための各種電圧 (信号)の波形を示す 。図 15において、 Vsaは信号線 Saの電圧を示し、 Vsbは信号線 Sbの電圧を示し、 V g;!〜 Vgl2は走査線 G1〜G12の電圧を示し、 Vcs;!〜 VcslOは補助容量幹線 CS1 〜CS 10の電圧を示し、 VLspl— a— A〜VLsp2— b— Bは対応する副画素の液晶 層に印加される実効電圧を示している。なお、図 15に示されているのは、 1つの垂直 走査期間内の電圧波形である。  [0112] Figure 14 shows the clarity and polarity of sub-pixels that changed within the effective scanning period of a frame. FIG. 14 shows pixels in the! Th to 12th rows and the af columns. FIG. 15 shows waveforms of various voltages (signals) for driving the liquid crystal display device having the configuration shown in FIG. In FIG. 15, Vsa represents the voltage of the signal line Sa, Vsb represents the voltage of the signal line Sb, V g ;! to Vgl2 represents the voltages of the scanning lines G1 to G12, and Vcs ;! to VcslO represents the auxiliary capacity trunk line. The voltages of CS1 to CS10 are shown, and VLspl—a—A to VLsp2—b—B denotes the effective voltage applied to the liquid crystal layer of the corresponding subpixel. FIG. 15 shows a voltage waveform within one vertical scanning period.
[0113] 図 13の構成を有する液晶表示装置は、図 15に示した波形を有する電圧で駆動さ れる。以下の説明では、説明が過度に複雑になるのを避けるために、全ての画素が 同じ中間調を表示すると仮定する。全ての画素が同じ中間調を表示する場合、図 15 に示すように信号線 Saの電圧 Vsaおよび信号線 Sbの電圧 Vsbはそれぞれ、一定周 期および一定振幅で振動する。電圧 Vsa、 Vsbの振動の周期は 2水平走査期間(2H )である。信号線 Sbの電圧 Vsbは、信号線 Saの電圧 Vsaと位相が 180度異なるように 変化する。図 15には、電圧 Vsa、 Vsbが対向電極の電圧よりも高い期間を「 +」、低 い期間を「―」と示している。図 9を参照して上述したように、 TFTを用いた液晶表示 装置では、信号線の電圧が TFTを介して副画素電極に伝達された後、走査線の電 圧 Vgの変化の影響を受けて変化する引き込み現象が発生する。対向電極の電圧は 、引き込み現象を考慮して設定される。また、図 15には示していないが、信号泉 Sc、 Seの電圧は信号線 Saの電圧 Vsaと同様に変化し、信号線 Sd、 Sfの電圧は信号線 S bの電圧 Vsbと同様に変化する。なお、上述したように、ある走査線の電圧 Vgがロー レベル (VgU力、らハイレベル (VgH)に切替わる時刻から、その次の走査線の電圧 V gが VgLから VgHに切替わる時刻までの期間力 水平走査期間(1H)である。 [0113] The liquid crystal display device having the configuration of FIG. 13 is driven by a voltage having the waveform shown in FIG. In the following description, it is assumed that all pixels display the same halftone to avoid overcomplicating the description. When all the pixels display the same halftone, as shown in FIG. 15, the voltage Vsa of the signal line Sa and the voltage Vsb of the signal line Sb oscillate with a constant period and a constant amplitude, respectively. The period of oscillation of the voltages Vsa and Vsb is 2 horizontal scanning periods (2H). The voltage Vsb of the signal line Sb changes so that the phase is 180 degrees different from the voltage Vsa of the signal line Sa. In FIG. 15, the period when the voltages Vsa and Vsb are higher than the voltage of the counter electrode is shown as “+”, and the period when the voltages are low is shown as “−”. As described above with reference to FIG. 9, a liquid crystal display using TFT In the device, after the voltage of the signal line is transmitted to the subpixel electrode via the TFT, a pulling phenomenon that changes due to the influence of the change of the scanning line voltage Vg occurs. The voltage of the counter electrode is set in consideration of the pulling phenomenon. Although not shown in FIG. 15, the voltages of the signal springs Sc and Se change in the same manner as the voltage Vsa of the signal line Sa, and the voltages of the signal lines Sd and Sf change in the same manner as the voltage Vsb of the signal line Sb. To do. As described above, from the time when the voltage Vg of a certain scanning line is switched to a low level (VgU force or high level (VgH)) to the time when the voltage Vg of the next scanning line is switched from VgL to VgH. The period force is the horizontal scanning period (1H).
[0114] 図 15に示すように、補助容量幹線 CS;!〜 CS 10の電圧 Vcs;!〜 VcslOは、同一の 振幅および周期で振幅している。ここでは、振幅の周期は 20Hである。電圧 Vcslと Vcs2とでは、一方の電圧が VcHに変化すると他方の電圧が VcLに変化し、一方の 電圧が VcLに変化すると他方の電圧が VcHに変化する関係になっている。電圧 Vcs 3と Vcs4、電圧 Vcs5と Vcs6、電圧 Vcs7と Vcs8、電圧¥じ39と¥じ310も、電圧 Vcsl と Vcs2と同様の関係を有している。また、電圧 Vcs3、 Vcs4は、電圧 Vcs l、 Vcs2に おいて変化が生じたときよりも 2Hだけ後に変化し、以下、電圧 Vcs5および Vcs6、電 圧 Vcs7および Vcs8、電圧 Vcs9および Vcs lOと 2Hずつずれて変化する。  As shown in FIG. 15, voltages Vcs ;! to VcslO of the auxiliary capacity trunk line CS ;! to CS 10 have the same amplitude and cycle. Here, the period of amplitude is 20H. In the voltage Vcsl and Vcs2, when one voltage changes to VcH, the other voltage changes to VcL, and when one voltage changes to VcL, the other voltage changes to VcH. The voltages Vcs 3 and Vcs4, voltages Vcs5 and Vcs6, voltages Vcs7 and Vcs8, and voltages 39 and 310 have the same relationship as the voltages Vcsl and Vcs2. In addition, the voltages Vcs3 and Vcs4 change by 2H after the change occurs in the voltages Vcsl and Vcs2. It shifts and changes.
[0115] 走査線の電圧 Vgが VgL力、ら VgHに変化すると、この走査線に接続されている TF Tがオン状態となり、この TFTに接続されている副画素に、対応する走査線の電圧 V sが供給される。次いで、走査線の電圧が VgLに変化した後、補助容量幹線の電圧 が変化し、かつ、この補助容量幹線の電圧の変化量 (変化方向、変化量の符号を含 む)が副画素に対して互いに異なっているので、副画素の液晶層に印加される実効 電圧が異なる。  [0115] When the scanning line voltage Vg changes to VgL force or VgH, the TFT connected to the scanning line is turned on, and the voltage of the scanning line corresponding to the sub-pixel connected to the TFT is turned on. V s is supplied. Next, after the scanning line voltage changes to VgL, the auxiliary capacity trunk line voltage changes, and the amount of change in the auxiliary capacity trunk line voltage (including the change direction and the change amount sign) Therefore, the effective voltages applied to the liquid crystal layers of the sub-pixels are different.
[0116] ここで、例示として、副画素 1 a— Aおよび副画素 1 a— Bの各電圧の変化を説 明する。走査線 G1の電圧 Vglが VgLから VgHに変化すると、副画素 l— a—A、 1 — a— Bの液晶容量 CLC1— a— A、 CLC1— a— Bに充電が行われる。走査線 G1の 電圧 Vglが VgHであるとき、信号線 Saの電圧 Vsaは +であり、副画素 l— a—A、 1 a— Bの液晶容量 CLC1 a— A、 CLC1 a— Bは対向電極よりも高い電位に充 電される。その後、走査線 G1の電圧 Vglが VgHから VgLに変化すると、副画素 1 a—A、 l— a— Bの液晶容量 CLC1 a—A、 CLC1— a— Bは信号線 Saと電気的に 絶縁され、液晶容量 CLC1— a— A、 CLC1— a Bの充電は終了する。走査線 G1 の電圧 Vglが VgHから VgLに変化した後、補助容量幹線 CS 1の電圧 Vcs 1の最初 の変化は増加であり、補助容量幹線 CS2の電圧 Vcs2の最初の変化は減少であり、 その後、電圧 Vcsl、 Vcs2は、それぞれの 10Hごとに増加および減少を繰り返す。し たがって、走査線 G1および信号線 Saによって特定される画素 1— aのうちの補助容 量幹線 CS 1に電気的に接続された副画素 1 a— Aの液晶層に印加された実効電 圧の絶対値は,補助容量幹線 CS2に電気的に接続された副画素 1 a— Bの液晶 層に印加された実効電圧の絶対値よりも大きくなる。 Here, as an example, changes in the voltages of the subpixel 1 a-A and the subpixel 1 a-B will be described. When the voltage Vgl of the scanning line G1 changes from VgL to VgH, the liquid crystal capacitors CLC1—a—A and CLC1— a— B of the sub-pixels l— a— A and 1— a— B are charged. When the voltage Vgl of the scanning line G1 is VgH, the voltage Vsa of the signal line Sa is +, and the sub-pixel l— a — A, 1 a— B liquid crystal capacitance CLC1 a— A, CLC1 a— B is the counter electrode Is charged to a higher potential. After that, when the voltage Vgl of the scanning line G1 changes from VgH to VgL, the liquid crystal capacitances CLC1 a-A and CLC1—a—B of the sub-pixels 1 a−A and l− a− B are electrically connected to the signal line Sa. The insulation of the liquid crystal capacitors CLC1—a—A and CLC1—aB is terminated. After the voltage Vgl on the scan line G1 changes from VgH to VgL, the first change in the auxiliary capacitor main line CS 1 voltage Vcs 1 is an increase, and the first change in the auxiliary capacitor main line CS2 voltage Vcs2 is a decrease. The voltages Vcsl and Vcs2 repeat increasing and decreasing every 10H. Therefore, the effective current applied to the liquid crystal layer of the sub-pixel 1 a—A electrically connected to the auxiliary capacity main line CS 1 of the pixels 1—a specified by the scanning line G1 and the signal line Sa. The absolute value of the pressure is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the subpixel 1a-B electrically connected to the auxiliary capacitor main line CS2.
[0117] このように、各副画素の液晶層に印加される実効電圧は、対応する走査線の電圧 が VgHから VgLに変化した後、対応する補助容量幹線の最初の電圧変化が増加で ある場合には、対応する走査線の電圧が VgHの時の対応する信号線の電圧よりも増 加し、対応する補助容量幹線の最初の電圧変化が低下である場合には、対応する 走査線の電圧力 SVgHの時の対応する信号線の電圧よりも低下する。その結果、対応 する走査線が選択されたときの信号線の電圧に付した記号が +である場合には、補 助容量幹線の上記電圧変化が増加方向であると、液晶層に印加される実効電圧の 絶対値は、上記電圧変化が減少方向の場合よりも大きくなる。また、対応する走査線 が選択されたときの信号線の電圧に付した記号が一である場合には、補助容量幹線 の上記電圧変化が増加方向であると、液晶層に印加される実効電圧の絶対値は、上 記電圧変化が減少方向の場合よりも小さくなる。  [0117] Thus, the effective voltage applied to the liquid crystal layer of each sub-pixel is the first voltage change of the corresponding auxiliary capacitance trunk line after the corresponding scan line voltage changes from VgH to VgL. In this case, when the voltage of the corresponding scanning line is higher than the voltage of the corresponding signal line when VgH and the initial voltage change of the corresponding auxiliary capacitance trunk line is a decrease, the voltage of the corresponding scanning line It drops below the voltage of the corresponding signal line when the voltage force is SVgH. As a result, when the symbol attached to the voltage of the signal line when the corresponding scanning line is selected is +, the voltage change of the auxiliary capacitance trunk line is applied to the liquid crystal layer when the voltage change is in the increasing direction. The absolute value of the effective voltage is larger than when the voltage change is decreasing. In addition, when the symbol attached to the voltage of the signal line when the corresponding scanning line is selected is 1, the effective voltage applied to the liquid crystal layer when the voltage change of the auxiliary capacity trunk line is in the increasing direction. The absolute value of is smaller than when the voltage change is decreasing.
[0118] 上述したように、図 14には、あるフレームの有効走査期間内に変化した副画素の明 喑および極性を示している。図 14において、記号「明」は、副画素が他方の副画素よ りも明るいこと、すなわち、副画素の液晶層に印加される実効電圧の絶対値が他方よ りも大きいことを示しており、記号「喑」は、副画素が他方の副画素よりも暗いこと、す なわち、副画素の液晶層に印加される実効電圧の絶対値が他方よりも小さいことを示 している。また、図 14において、記号「 +」は、副画素電極の電圧が対向電極の電圧 よりも高いことを示し、記号「一」は、副画素電極の電圧が対向電極の電圧よりも低い ことを示している。なお、 1つの画素に含まれる 2つの副画素は、行番号のより小さい 画素と行番号のより大きい画素とに隣接している力 1つの画素に含まれる 2つの副 画素のうち、より行番号の小さい画素と隣接する副画素を「A」と示し、より行番号の大 きレ、画素と隣接する副画素を「B」と示して!/、る。 [0118] As described above, FIG. 14 shows the brightness and polarity of a sub-pixel that has changed within an effective scanning period of a certain frame. In FIG. 14, the symbol “bright” indicates that the sub-pixel is brighter than the other sub-pixel, that is, the absolute value of the effective voltage applied to the liquid crystal layer of the sub-pixel is larger than the other. The symbol “喑” indicates that the sub-pixel is darker than the other sub-pixel, that is, the absolute value of the effective voltage applied to the liquid crystal layer of the sub-pixel is smaller than the other. In FIG. 14, the symbol “+” indicates that the voltage of the subpixel electrode is higher than the voltage of the counter electrode, and the symbol “one” indicates that the voltage of the subpixel electrode is lower than the voltage of the counter electrode. Show. Note that the two sub-pixels included in one pixel are the two sub-pixels included in one pixel. The force is adjacent to the pixel with the lower row number and the pixel with the higher row number. Of the pixels, the subpixel adjacent to the pixel with the lower row number is indicated as “A”, and the subpixel adjacent to the pixel with the higher row number is indicated as “B”! /.
[0119] 次いで、図 14および図 15を参照して、各副画素の明喑および極性を説明する。 Next, the clarity and polarity of each sub-pixel will be described with reference to FIG. 14 and FIG.
[0120] まず、画素 1 aに含まれる副画素 1 a— Aおよび副画素 1 a— Bの明喑および 極性を説明する。図 15から理解されるように、走査線 G1の電圧 Vglが VgHである期 間、信号線 Saの電圧 Vsaは対向電極の電圧よりも高い。したがって、副画素 1 Aおよび副画素 1— a— Bの極性は +である。また、走査線 G1の電圧 Vglが VgHか ら VgLに変化したときの、それぞれの副画素に対応する補助容量幹線 CS1、 CS2の 電圧 Vcsl、 Vcs2は、図 15に矢印(左から 1番目の矢印)で示した位置の状態にある 。従って、図 15から理解されるように、走査線 G1の電圧 Vglが VgHから VgLに変化 した後、副画素 1— a— Aの電圧 Vcslの最初の変化は増加であり(これを「U」として 示している。)、副画素 1 a— Bの補助容量幹線 CS2の電圧 Vcs2の最初の変化は 減少である(これを「D」として示している。)ので、副画素 1— a— Aの実効電圧は増加 し、副画素 1 a— Bの実効電圧は減少し、副画素 1 a— Aは副画素 1 a— Bよりも 明るくなる。 [0120] First, the clarity and polarity of the sub-pixel 1a-A and sub-pixel 1a-B included in the pixel 1a will be described. As can be seen from FIG. 15, during the period when the voltage Vgl of the scanning line G1 is VgH, the voltage Vsa of the signal line Sa is higher than the voltage of the counter electrode. Therefore, the polarities of the subpixel 1 A and the subpixel 1—a—B are +. In addition, when the voltage Vgl of the scanning line G1 changes from VgH to VgL, the voltages Vcsl and Vcs2 of the auxiliary capacitance trunk lines CS1 and CS2 corresponding to the respective subpixels are shown by arrows (first arrow from the left) in FIG. ) In the position indicated by. Therefore, as can be understood from FIG. 15, after the voltage Vgl of the scanning line G1 changes from VgH to VgL, the initial change of the voltage Vcsl of the subpixel 1—a—A is an increase (this is expressed as “U” ), Because the first change in the voltage Vcs2 of the auxiliary capacitor trunk CS2 of subpixel 1 a—B is decreasing (this is shown as “D”), so subpixel 1—a—A The effective voltage of the subpixel 1a-B decreases, and the subpixel 1a-A becomes brighter than the subpixel 1a-B.
[0121] 次いで、画素 2— aに含まれる副画素 2— a— Aおよび 2— a— Bの明喑および極性 を説明する。図 15に示すように、走査線 G2の電圧 Vg2が VgHとなる期間、信号線 S aの電圧 Vsaは対向電極の電圧よりも低い。したがって、副画素 2— a— Aおよび 2— a —Bの極性は—である。また、走査線 G2の電圧 Vg2が VgHから VgLに変化した後、 それぞれの副画素 2— a— Aおよび 2— a— Bに対応する補助容量幹線 CS2、 CS3の 電圧 Vcs2、 Vcs3は、図 15に矢印(左から 2番目の矢印)で示した位置の状態にある 。従って、図 15から理解されるように、走査線 G1の電圧 Vglが VgHから VgLに変化 した後、副画素 2— a— Aの補助容量幹線 CS2の電圧 Vcs2の最初の電圧変化は、 減少(「D」)であり、副画素 2— a— Bの補助容量幹線 CS3の電圧 Vcs3の最初の電 圧変化は、増加(「U」)である。従って、副画素 2— a— Aの実効電圧の絶対値は増 加し、副画素 2— a— Bの実効電圧の絶対値は減少し、副画素 2— a— Aは副画素 2 a— Bよりも明るくなる。  Next, the clarity and polarity of the sub-pixels 2-a-A and 2-a-B included in the pixel 2-a will be described. As shown in FIG. 15, during the period when the voltage Vg2 of the scanning line G2 is VgH, the voltage Vsa of the signal line Sa is lower than the voltage of the counter electrode. Therefore, the polarity of sub-pixels 2-a-A and 2-a-B is-. In addition, after the voltage Vg2 of the scanning line G2 changes from VgH to VgL, the voltages Vcs2 and Vcs3 of the auxiliary capacitance main lines CS2 and CS3 corresponding to the subpixels 2—a—A and 2—a—B are shown in FIG. Is in the position indicated by the arrow (second arrow from the left). Therefore, as can be understood from FIG. 15, after the voltage Vgl of the scanning line G1 changes from VgH to VgL, the first voltage change of the voltage Vcs2 of the auxiliary capacitor main line CS2 of the subpixel 2—a—A decreases ( “D”), and the first voltage change of the voltage Vcs3 of the auxiliary capacity main line CS3 of the subpixel 2—a—B is an increase (“U”). Therefore, the absolute value of the effective voltage of subpixel 2—a—A increases, the absolute value of the effective voltage of subpixel 2—a—B decreases, and subpixel 2—a—A is subpixel 2a—. Brighter than B.
[0122] 次いで、画素 1 bに含まれる副画素 1 b— Aおよび副画素 1 b— Bの明喑およ び極性を説明する。走査線 G1の電圧 Vglが VgHであるとき、信号線 Sbの電圧 Vsb は対向電極の電圧よりも低い。したがって、副画素 1 b— Aおよび副画素 1 b— B の極性は一である。また、走査線 G1の電圧 Vglが VgH力も VgLに変化したとき、そ れぞれの副画素 1 b— A、副画素 1 b— Bに対応する補助容量幹線 CS1、 CS2の 電圧 Vcsl、 Vcs2は、図 15に矢印(左から 1番目の矢印)で示した位置の状態にある 。従って、図 15から理解されるように、走査線 G1の電圧 Vglが VgHから VgLに変化 した後、副画素 1 b— Aの補助容量幹線の電圧の最初の電圧変化は、増加(「U」) であり、副画素 1 b— Bの補助容量幹線 CS2の電圧 Vcs2の最初の電圧変化は、減 少(「0」)である。従って、副画素 l—b— Aの液晶層に印加される実効電圧の絶対値 は減少し、副画素 1 b— Bの実効電圧の絶対値は増加し、副画素 1 b— Bは副画 素 1 b— Aよりも明るくなる。 Next, the brightness and brightness of subpixel 1 b—A and subpixel 1 b—B included in pixel 1 b And the polarity. When the voltage Vgl of the scanning line G1 is VgH, the voltage Vsb of the signal line Sb is lower than the voltage of the counter electrode. Therefore, the polarities of the sub-pixel 1 b—A and the sub-pixel 1 b—B are one. In addition, when the voltage Vgl of the scanning line G1 changes to the VgH force VgL, the voltages Vcsl and Vcs2 of the storage capacitor main lines CS1 and CS2 corresponding to the subpixels 1b—A and 1b—B are respectively Figure 15 shows the position indicated by the arrow (the first arrow from the left). Therefore, as can be understood from FIG. 15, after the voltage Vgl of the scanning line G1 changes from VgH to VgL, the initial voltage change of the auxiliary capacity trunk voltage of the subpixel 1 b—A increases (“U” ), And the first voltage change of the voltage Vcs2 of the auxiliary capacity main line CS2 of the subpixel 1b—B is a decrease (“0”). Therefore, the absolute value of the effective voltage applied to the liquid crystal layer of the subpixel l—b—A decreases, the absolute value of the effective voltage of the subpixel 1 b—B increases, and the subpixel 1 b—B Element 1 b— Brighter than A.
[0123] 次いで、画素 2— bに含まれる副画素 2— b— Aおよび 2— b— Bの明喑および極性 を説明する。図 15に示すように、走査線 G2の電圧 Vg2が VgHとなる期間、信号線 S bの電圧 Vsbは対向電極の電圧よりも高い。したがって、副画素 2— b— Aおよび 2— 1^ー:6の極性は+でぁる。また、走査線 G2の電圧 Vg2が VgHから VgLに変化した後 、それぞれの副画素 2 b— Aおよび 2 b— Bに対応する補助容量幹線 CS2、 CS3 の電圧 Vcs2、 Vcs3は、図 15に矢印(左から 2番目の矢印)で示した位置の状態にあ る。従って、図 15から理解されるように、走査線 G1の電圧 Vglが VgH力も VgLに変 化した後、副画素 2 b— Aの補助容量幹線 CS2の電圧 Vcs2の最初の電圧変化は 、減少(「D」)であり、副画素 2 b— Bの補助容量幹線 CS3の電圧 Vcs3の最初の電 圧変化は、増加(「U」)である。従って、副画素 2— b— Aの実効電圧は減少し、副画 素 2— b— Bの実効電圧は増加し、副画素 2— b— Bは副画素 2— b— Aよりも明るくな る。以上から、各副画素の明暗および極性は、図 14に示したようになる。  [0123] Next, the clarity and polarity of sub-pixels 2-b-A and 2-b-B included in pixel 2-b will be described. As shown in FIG. 15, during the period when the voltage Vg2 of the scanning line G2 is VgH, the voltage Vsb of the signal line Sb is higher than the voltage of the counter electrode. Therefore, the polarity of subpixels 2—b—A and 2—1 ^-: 6 is +. Further, after the voltage Vg2 of the scanning line G2 changes from VgH to VgL, the voltages Vcs2 and Vcs3 of the auxiliary capacity trunk lines CS2 and CS3 corresponding to the respective sub-pixels 2 b—A and 2 b—B are shown by arrows in FIG. It is in the position indicated by (second arrow from the left). Therefore, as understood from FIG. 15, after the voltage Vgl of the scanning line G1 is changed to the VgH force VgL, the first voltage change of the voltage Vcs2 of the auxiliary capacitor main line CS2 of the subpixel 2b—A is reduced ( “D”), and the first voltage change of the voltage Vcs3 of the auxiliary capacity main line CS3 of the subpixel 2b—B is an increase (“U”). Therefore, the effective voltage of subpixel 2-b-A decreases, the effective voltage of subpixel 2-b-B increases, and subpixel 2-b-B is brighter than subpixel 2-b-A. The From the above, the contrast and polarity of each sub-pixel are as shown in FIG.
[0124] 以下、本実施形態の液晶表示装置が上述した 3つの条件を満たすことを説明する 。まず、本実施形態の液晶表示装置が第 1の条件を満足することを説明する。  Hereinafter, it will be described that the liquid crystal display device of the present embodiment satisfies the above three conditions. First, it will be described that the liquid crystal display device of the present embodiment satisfies the first condition.
[0125] まず、第 1の条件を満足すること、すなわち、各々の電界の向きにおいて各副画素 の液晶層に印加される実効電圧の絶対値が一致することを説明する。ここで、本実 施形態の液晶表示装置におレ、ては、各画素が液晶層への実効電圧の異なる副画素 を有している力 S、表示のちらつきといった表示品位に支配的な影響を与えるのは明る い副画素、すなわち図 14において「明」と示した副画素であるため、特に、記号「明」 と示した副画素に対して第 1の条件が課せられることになる。 First, it will be described that the first condition is satisfied, that is, that the absolute value of the effective voltage applied to the liquid crystal layer of each subpixel matches in each electric field direction. Here, in the liquid crystal display device of this embodiment, each pixel has sub-pixels having different effective voltages to the liquid crystal layer. The bright sub-pixel, that is, the sub-pixel shown as “bright” in FIG. 14, has a dominant influence on the display quality such as the power S and the display flicker. The first condition is imposed on the sub-pixels indicated as follows.
[0126] 第 1の条件に関して、図 15に示した各電圧波形を参照しながら説明する。図 15に は電界の向き(極性)の異なる「明」の副画素 1 a A、 2— a Aの液晶層に印加さ れる電圧 VLspl— a—A、 VLsp2— a—Aを示している。図 15に示した VLspl— a— A、 VLsp2— a—Aにおいて、実線は副画素 1 a—A、 2— a— Aの副画素電極の電 圧、破線は対向電極の電圧であり、液晶層に印加される実効電圧は実線と破線の電 圧差となるため、対向電極の電圧を適宜設定することにより、各々の電界の向きにお V、て液晶層に印加される実効電圧(あるレ、は液晶容量に充電される電荷量)をできる だけ一致させることにより、第 1の条件を満足することができる。  The first condition will be described with reference to each voltage waveform shown in FIG. Figure 15 shows the voltages VLspl-a-A and VLsp2-a-A applied to the liquid crystal layers of “bright” subpixels 1 a A, 2-a A, with different electric field directions (polarities). In VLspl-a-A and VLsp2-a-A shown in Fig. 15, the solid line is the voltage of the subpixel electrode of subpixel 1a-A and 2-a-A, and the broken line is the voltage of the counter electrode. Since the effective voltage applied to the layer is the voltage difference between the solid line and the broken line, the effective voltage (a certain level) applied to the liquid crystal layer can be set to V in each electric field direction by appropriately setting the counter electrode voltage. The first condition can be satisfied by matching the amount of charge charged in the liquid crystal capacitor as much as possible.
[0127] 次に、第 2の条件を満足すること、すなわち、各フレーム期間において極性の異な る画素が隣接して配置されていることを説明する。但し、本実施形態の液晶表示装 置においては、各画素が液晶層への実効電圧の異なる副画素を有しているので、画 素について第 2の条件が課せられるのに加え、実効電圧の等しい副画素同士に対し ても第 2の条件が課せられる。とりわけ、上記第 2の条件の場合と同様に、明るい副画 素、すなわち図 14において記号「明」と示した副画素に対して第 2の条件を満たすこ とが重要となる。  Next, it will be described that the second condition is satisfied, that is, that pixels having different polarities are arranged adjacent to each other in each frame period. However, in the liquid crystal display device of the present embodiment, each pixel has a sub-pixel having a different effective voltage to the liquid crystal layer. Therefore, in addition to the second condition being imposed on the pixel, the effective voltage The second condition is also imposed on equal subpixels. In particular, as in the case of the second condition, it is important to satisfy the second condition for a bright sub-pixel, that is, a sub-pixel indicated by the symbol “bright” in FIG.
[0128] 図 14に示したように、各副画素の極性(電界の向き)を示す記号「 +」および「一」は 行方向(水平方向)には、例えば(+、―)、( +、―)、( +、―)と 2画素(2歹 1])周期で 反転しており、列方向(垂直方向に)にも、例えば、( +、—)、( +、—)、( +、—)、( +、―)と 2画素(2行)周期で反転している。すなわち、画素単位でみるとドット反転と 呼ばれる状態を呈しており、第 2の条件を満足している。  As shown in FIG. 14, the symbols “+” and “one” indicating the polarity (electric field direction) of each sub-pixel are, for example, (+, −), (+ ,-), (+,-) And 2 pixels (2 歹 1]) cycle, and in the column direction (vertical direction), for example, (+,-), (+,-), ( Inverted in the cycle of +,-), (+,-) and 2 pixels (2 rows). In other words, when viewed in pixel units, it shows a state called dot inversion, which satisfies the second condition.
[0129] 次に、明るい副画素、すなわち図 14において記号「明」で示した副画素について確 認する。図 14に示したように、同一行の副画素、例えば第 1行の副画素 1— a— A、 1 b—A、 l—c— Α· · .を見ると記号「明」で示した副画素の極性はすべて「 +」である 、同一列の副画素、例えば第 1列の副画素 1 a— Α、 1 a— Β、 2— a— Α、 2— a —B、 3— a—A、 3— a— B、 · · ·を見ると、記号「明」で示した副画素の極性は「十」、「 ―」、「十」、「-」と 2画素(2行)周期で反転している。すなわち、とりわけ重要な輝度 順位の高い副画素単位でみるとライン反転と呼ばれる状態を呈しており、第 2の条件 を満たしている。また、記号「喑」で示した副画素も同様の規則性をもって配置されて おり、第 2の条件を満足している。 Next, a bright sub-pixel, that is, a sub-pixel indicated by the symbol “bright” in FIG. 14 is confirmed. As shown in FIG. 14, the subpixels in the same row, for example, the subpixels 1—a—A, 1 b—A, and l—c—Α ... in the first row are indicated by the symbol “bright”. All subpixels have a polarity of “+”. The subpixels in the same column, for example, the subpixels in the first column 1 a— Α, 1 a— Β, 2— a— Α, 2— a — B, 3— a If you look at —A, 3—a—B,…, the polarity of the sub-pixel indicated by the symbol “bright” is “ten”, “ “-”, “10”, “-” are inverted in a cycle of 2 pixels (2 rows). In other words, a subpixel unit with a particularly high luminance order shows a state called line inversion, which satisfies the second condition. The sub-pixels indicated by the symbol “喑” are also arranged with the same regularity and satisfy the second condition.
[0130] 次に、第 3の条件を満たすことを説明する。第 3の条件は、積極的に輝度を異なら せた副画素の内で輝度順位が同じ副画素ができるだけ互いに隣接しないように配置 することである。図 14において、 2つの行および 2つ列の合計 4個の副画素(例えば、 副画素 1— a— A、 1— a— B、 1— b— A、 1— b— B)を見ると、列方向に「明」、「暗」、 次の行の列方向に「暗」、「明」と配置されており、この 4個の副画素を 1つの副画素群 とよぶとすると、複数の副画素は、上記副画素群が全面に敷き詰められるように配置 されている。すなわち、図 14に示すように、「明」および「喑」の記号が副画素単位で 市松模様状に配置されており、第 3の条件を満たしていることがわかる。 Next, it will be described that the third condition is satisfied. The third condition is that subpixels having the same luminance order among subpixels having different luminances are arranged so as not to be adjacent to each other as much as possible. In Figure 14, if you look at a total of 4 subpixels in 2 rows and 2 columns (for example, subpixel 1— a —A, 1— a —B, 1—b—A, 1—b—B) , "Bright", "Dark" in the column direction, and "Dark", "Bright" in the column direction of the next row. When these four subpixels are called one subpixel group, The sub-pixels are arranged so that the sub-pixel group is spread over the entire surface. That is, as shown in FIG. 14, the symbols “bright” and “喑” are arranged in a checkered pattern in units of subpixels, and it can be seen that the third condition is satisfied.
[0131] このように、図 14および図 15を参照しながら説明した本実施形態の液晶表示装置 は、上述した 3つの条件を全て満足するので、ちらつきを防止した高品位の表示を実 現すること力 Sでさる。  As described above, the liquid crystal display device of the present embodiment described with reference to FIG. 14 and FIG. 15 satisfies all the three conditions described above, and thus realizes a high-quality display that prevents flickering. That's the power S.
[0132] なお、図 14および図 15を参照して、あるフレームの有効走査期間内に変化した副 画素の明喑および極性ならびに電圧波形を示したが、次のフレームでは、各走査線 の電圧に対して、信号線の電圧は、それぞれ、図 15に示した波形と同様に変化する 1S 補助容量幹線の電圧は、それぞれ、図 15に示した波形とは反転するように変化 する。このため、このフレームでは、図 14に示した各副画素と比較して、各副画素の 極性は変化することなぐ各副画素の明暗が反転する。  [0132] Note that, with reference to FIG. 14 and FIG. 15, the clarity and polarity of the sub-pixel and the voltage waveform changed within the effective scanning period of a certain frame are shown. In the next frame, the voltage of each scanning line is shown. On the other hand, the voltage of the signal line changes in the same manner as the waveform shown in FIG. 15, and the voltage of the 1S storage capacitor trunk line changes so as to be inverted from the waveform shown in FIG. Therefore, in this frame, as compared with each subpixel shown in FIG. 14, the brightness of each subpixel is inverted without changing the polarity of each subpixel.
[0133] さらに次のフレームでは、走査線の電圧に対して、信号線の電圧は、それぞれ、図 15に示した波形とは反転するように変化するとともに、補助容量幹線の電圧は、それ ぞれ、図 15に示した波形とは反転するように変化する。このため、このフレームでは、 図 14に示した各副画素と比較して、各副画素の明暗は変化することなぐ各副画素 の極性が反転する。  Further, in the next frame, the voltage of the signal line changes so as to be inverted from the waveform shown in FIG. 15 with respect to the voltage of the scanning line, and the voltage of the storage capacitor main line changes. Thus, the waveform changes so as to be reversed from the waveform shown in FIG. For this reason, in this frame, the polarity of each sub-pixel is reversed without changing the brightness of each sub-pixel as compared with each sub-pixel shown in FIG.
[0134] さらに次のフレームでは、走査線の電圧に対して、信号線の電圧は、それぞれ、図 15に示した波形とは反転するように変化する力 補助容量幹線の電圧は、それぞれ 、図 15に示した波形と同様に変化する。このため、このフレームでは、図 14に示した 各副画素と比較して、各副画素の明暗および極性が反転する。 Further, in the next frame, the voltage of the signal line changes with respect to the voltage of the scanning line, and the voltage of the auxiliary capacity main line changes so as to reverse the waveform shown in FIG. It changes in the same way as the waveform shown in FIG. For this reason, in this frame, the contrast and polarity of each sub-pixel are reversed as compared with each sub-pixel shown in FIG.
[0135] 次いで、図 16を参照して、本実施形態の液晶表示装置における複数の画素につ いての電圧の変化を説明する。図 16において、 Vcs;!〜 Vcs6は補助容量幹線 CS 1 〜CS6の電圧を示し、 Vg;!〜 Vg3は走査線 G1〜G3の電圧を示し、 VLspl— a—A 〜VLsp3— a— Bは副画素 1 a— A〜3— a— Bの液晶層に印加される実効電圧を 示す。なお、以下の説明において、連続する 4つのフレームをフレーム n、 n+ l、 n + 2、 n+ 3とする。 Next, with reference to FIG. 16, a change in voltage for a plurality of pixels in the liquid crystal display device of the present embodiment will be described. In FIG. 16, Vcs ;! to Vcs6 indicate the voltages of the auxiliary capacity trunk lines CS 1 to CS6, Vg;! To Vg3 indicate the voltages of the scanning lines G1 to G3, and VLspl—a—A to VLsp3—a—B are Indicates the effective voltage applied to the liquid crystal layer of sub-pixels 1a-A to 3-a-B. In the following description, four consecutive frames are assumed to be frames n, n + 1, n + 2, and n + 3.
[0136] 図 16には、また、入力映像信号の垂直走査期間を示している。入力映像信号の垂 直走査期間は、液晶パネル 100A (図 1参照)内の各画素が行毎に選択される有効 走査期間(V— Disp)と、液晶パネル 100A内のいずれの画素も選択されない垂直 帰線期間(V— Blank)とからなっており、有効走査期間は液晶パネル 100Aの表示 エリア(有効な画素の行数)により決定される。  FIG. 16 also shows the vertical scanning period of the input video signal. In the vertical scanning period of the input video signal, the effective scanning period (V—Disp) in which each pixel in the liquid crystal panel 100A (see FIG. 1) is selected for each row and no pixel in the liquid crystal panel 100A is selected. It consists of a vertical blanking period (V-Blank), and the effective scanning period is determined by the display area (the number of rows of effective pixels) of the liquid crystal panel 100A.
[0137] 本明細書において、単に「垂直走査期間」という場合、「垂直走査期間」は「液晶パ ネルの垂直走査期間」を意味しており、「垂直走査期間」(すなわち「液晶パネルの垂 直走査期間」)は、「入力映像信号の垂直走査期間」とは別の意味で用いている。「入 力映像信号の垂直走査期間」は、 1フレームまたは 1フィールドの期間であり、各画素 に共通の時刻で開始し、終了する期間を意味するが、「垂直走査期間」は、上述した ように、表示信号電圧を書き込むためにある走査線が選択されてから、次の表示信 号電圧を書き込むためにその走査線が選択されるまでの期間を意味し、対応する走 查線に応じて異なる時刻に開始し、異なる時刻に終了する。  In this specification, when simply referred to as “vertical scanning period”, “vertical scanning period” means “vertical scanning period of liquid crystal panel” and is referred to as “vertical scanning period” (ie, “vertical scanning period of liquid crystal panel”). “Direct scanning period”) is used in a different meaning from “vertical scanning period of input video signal”. The “vertical scanning period of the input video signal” is a period of one frame or one field, and means a period starting and ending at a time common to each pixel. The “vertical scanning period” is as described above. The period from when a scan line is written to write the display signal voltage to when the scan line is selected to write the next display signal voltage, depending on the corresponding scan line. Start at a different time and end at a different time.
[0138] 図 16では、画素の行に応じて「垂直走査期間」の開始時刻および終了時刻が異な ることを斜めの線で示している。図 16から理解されるように、 1つのフレーム内におい て、走査線は第 1行目から順番に選択されていき、走査線が選択されると、対応する 副画素電極の電圧が変化し、その副画素における垂直走査期間が開始される。上 述したように、入力映像信号の垂直走査期間は有効走査期間 (V— Disp)と垂直帰 線期間(V— Blank)とからなっている力 ある副画素の垂直走査期間は、フレーム n の有効走査期間の途中から開始し、垂直帰線期間を経て、フレーム n+ 1の有効走 查期間の途中まで続く。次いで、対応する走査線が選択されると、当該副画素にお ける次の垂直走査期間が開始する。なお、いずれの画素についても「垂直走査期間 」の長さは「入力映像信号の垂直走査期間」の長さと同じである。 In FIG. 16, it is indicated by diagonal lines that the start time and end time of the “vertical scanning period” differ depending on the row of pixels. As understood from FIG. 16, in one frame, the scanning lines are sequentially selected from the first row, and when the scanning line is selected, the voltage of the corresponding subpixel electrode changes, A vertical scanning period in the sub-pixel is started. As described above, the vertical scanning period of the input video signal is the effective scanning period (V—Disp) and the vertical blanking period (V—Blank). Starting from the middle of the effective scanning period, passing through the vertical blanking period, the effective running of frame n + 1 It continues until the middle of the cocoon period. Next, when the corresponding scanning line is selected, the next vertical scanning period in the subpixel starts. Note that the length of the “vertical scanning period” is the same as the length of the “vertical scanning period of the input video signal” for any pixel.
[0139] 図 16力も理解されるように、フレーム nから n + 3において、副画素 1— a— Aの(明 喑、極性)は(明、 + )、(喑、 + )、(明、 -)、(喑、一)と順番に変化し、副画素 1 a -Bの(明暗、極性)は (喑、 + )、(明、 + )、(喑、 -)、(明、一)の順番に変化する。 また、副画素 2 - a—Aの(明暗、極性)は(明、 -)、(喑、 -)、(明、 + )、(喑、 + )と 順番に変化し、また、副画素 2 - a Bの(明暗、極性)は、(喑、 -)、(明、 -)、(喑、 + )、(明、 + )の順番に変化する。  [0139] As can be seen from FIG. 16, in frames n to n + 3, subpixels 1—a—A have (bright, positive), (bright, +), (喑, +), (bright, -), (喑, one) in order, and subpixel 1 a -B (brightness, polarity) is (喑, +), (bright, +), (喑,-), (bright, one) It changes in order. Subpixel 2-a-A's (brightness, polarity, polarity) changes in order of (bright,-), (喑,-), (bright, +), (喑, +), and subpixel 2 -(Brightness, Polarity) of a B changes in the order of (喑,-), (bright,-), (喑, +), (bright, +).
[0140] 図 17に、副画素 1 A、 1 a— Bの明喑および極性ならびに副画素 1 a— A 、 1 a— Bの垂直走査期間における始めの補助容量配線の電圧の変化を示す。図 17に示すように、フレーム nにおいて副画素 1 a— A、 1—a Bの極性は +であり、 かつ、副画素 1 a— Aの垂直走査期間における始めの補助容量配線の電圧の変 化は増加(「 ΐ」)で、副画素 1 a— Βの垂直走査期間における始めの補助容量配線 の電圧の変化は減少(「 I」)である。また、フレーム n+ 1において副画素 1 a A、 1 a— Bの極性は +であり、かつ、副画素 1 a— Aの垂直走査期間における始め の補助容量配線の電圧の変化は減少(「 i」)で、副画素 1 a— Bの垂直走査期間 における始めの補助容量配線の電圧の変化は増加(「†」)である。  FIG. 17 shows changes in the clarity and polarity of the subpixels 1 A and 1 a—B and the voltage of the first auxiliary capacitance line in the vertical scanning period of the subpixels 1 a—A and 1 a—B. As shown in FIG. 17, in the frame n, the polarities of the subpixels 1 a—A and 1—a B are +, and the voltage change of the first auxiliary capacitance line during the vertical scanning period of the subpixel 1 a—A The change in voltage is increased (“ΐ”), and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of subpixel 1 a—Β is reduced (“I”). In the frame n + 1, the subpixels 1 a A and 1 a—B have a positive polarity, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the subpixel 1 a—A decreases (“i )), The change in the voltage of the first auxiliary capacitance line in the vertical scanning period of the sub-pixel 1a-B is an increase (“†”).
[0141] フレーム n+ 2において副画素 1 a— A、 1 a— Bの極性は一であり、かつ、副画 素 1 a— Aの垂直走査期間における始めの補助容量配線の電圧の変化は減少(「 丄」)で、副画素 1 a— Bの垂直走査期間における始めの補助容量配線の電圧の変 化は増加(「†」)である。また、フレーム n + 3において副画素 1 a—A、 l a— Bの 極性は一であり、かつ、副画素 1 a— Aの垂直走査期間における始めの補助容量 配線の電圧の変化は増加(「 ΐ」)で、副画素 1 a— Βの垂直走査期間における始め の補助容量配線の電圧の変化は減少(「 I」)である。  [0141] In frame n + 2, the subpixels 1a-A and 1a-B have the same polarity, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the subpixel 1a-A decreases. (“丄”), the change in the voltage of the first auxiliary capacitance line in the vertical scanning period of the sub-pixel 1a-B is increased (“†”). In frame n + 3, the polarities of the sub-pixels 1 a-A and la-B are one, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the sub-pixel 1 a-A increases (“ ΐ ”), the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of subpixel 1 a- 減少 is reduced (“ I ”).
[0142] 以上のように、副画素 1 a— Aの(極性、補助容量配線の始めの電圧変化)は、フ レーム nから n + 3にわたつて(+、 † )、 ( +、 丄)、 (一、 丄)、 (一、 ΐ )の順番に変化 し、異なる組み合わせが順番に現れる。一方、副画素 1 a— Βの(極性、補助容量 配線の始めの電圧変化)は、フレーム nから n+ 3にわたつて(+、 丄)、(+、 ΐ )、(一 、 ΐ )、 (一、 )の順番に変化し、副画素 1 a— Αと極性が等しぐ補助容量配線の 電圧変化が異なる組み合わせが順番に現れる。 [0142] As described above, the sub-pixel 1 a—A (polarity, voltage change at the beginning of the auxiliary capacitance wiring) extends from frame n to n + 3 (+, †), (+, 丄) It changes in the order of, (1, 丄), (1, ΐ), and different combinations appear in order. On the other hand, sub-pixel 1 a— The voltage change at the beginning of the wiring changes from frame n to n + 3 in the order of (+, 丄), (+, ΐ), (1, に), (1,). Combinations with different voltage changes in the auxiliary capacitor wiring that have the same polarity as Α appear in order.
[0143] なお、上述した説明では、補助容量配線の電圧は表示期間において 20Hを 1周期 として周期的に変化した力 S、本発明はこれに限定されない。補助容量配線の電圧は 、図 18 (a)に示すように表示期間において 16Hを 1周期として変化してもよい。この 場合、例えば、第 1および第 3調整期間 BHにおいて補助容量配線の電圧は 13Hご とに変化し、第 2および第 4調整期間 BHにおいて補助容量配線の電圧は 9Hごとに 変化する。あるいは、補助容量配線の電圧は、図 18 (b)に示すように、表示期間に おいて 24Hを 1周期として変化してもよい。この場合、例えば、第 1および第 3調整期 間 BHにおいて補助容量配線の電圧は 15Hごとに変化し、第 2および第 4調整期間 BHにおいて補助容量配線の電圧は 21Hごとに変化する。期間 BHの補助容量配線 の電圧変化の時間は V— totalの値によって適宜変更可能である。  [0143] In the above description, the voltage of the auxiliary capacitance line is the force S periodically changed with 20H as one period in the display period, and the present invention is not limited to this. As shown in FIG. 18A, the voltage of the auxiliary capacitance line may change with 16H as one cycle in the display period. In this case, for example, the voltage of the auxiliary capacitance line changes every 13H in the first and third adjustment periods BH, and the voltage of the auxiliary capacitance line changes every 9H in the second and fourth adjustment periods BH. Alternatively, as shown in FIG. 18 (b), the voltage of the auxiliary capacitance line may change with 24H as one period in the display period. In this case, for example, the voltage of the auxiliary capacitance line changes every 15H in the first and third adjustment periods BH, and the voltage of the auxiliary capacitance line changes every 21H in the second and fourth adjustment periods BH. The voltage change time of the auxiliary capacitor wiring during period BH can be changed as appropriate according to the value of V—total.
[0144] また、上述した説明では、補助容量配線の電圧は調整期間において 1周期変化し た力 本発明はこれに限定されない。補助容量配線の電圧は、図 19 (a)に示すよう に各調整期間において 2Hを 1周期として周期的に変化してもよいし、図 19 (b)に示 すように 1Hを 1周期として周期的に変化してもよい。あるいは、補助容量配線の電圧 は、図 19 (c)に示すように、調整期間において VcHと VcLとの平均に維持されてもよ い。  [0144] Further, in the above description, the voltage of the auxiliary capacitance line is changed by one cycle in the adjustment period. The present invention is not limited to this. As shown in Fig. 19 (a), the voltage of the auxiliary capacitance wiring may change periodically with 2H as one cycle in each adjustment period, or 1H as one cycle as shown in Fig. 19 (b). It may change periodically. Alternatively, the auxiliary capacitor wiring voltage may be maintained at an average of VcH and VcL during the adjustment period, as shown in FIG. 19 (c).
[0145] また、上述した説明では、 1つのフレームに対応する 1つの垂直走査期間に対して  [0145] Further, in the above description, for one vertical scanning period corresponding to one frame.
1つの調整期間が存在したが、本発明はこれに限定されない。図 20に示すように、 2 つのフレームに対応する 2つの垂直走査期間に対して 1つの調整期間が存在しても よい。図 20では、各垂直走査期間は 810Hであり、補助容量電圧 Vcs;!〜 Vcs3は表 示期間において 20Hを 1周期として周期的に変化し、調整期間において 5Hごとに変 化する。このように、 2つの垂直走査期間(810H X 2 = 1620H)が表示期間におけ る 1周期(20H)の整数倍である場合、補助容量配線の電圧に調整期間として半周 期の期間を設けるとともに極性を 2垂直走査期間ごとに反転することにより、図 17を 参照して説明したように、第 3垂直走査期間において始めの補助容量電圧の変化を 第 1垂直走査期間における始めの補助容量電圧の変化と異ならすことができ、それ により、図 6 (a)に示したように、副画素の明暗および極性を変化させることができる。 Although there is one adjustment period, the present invention is not limited to this. As shown in FIG. 20, one adjustment period may exist for two vertical scanning periods corresponding to two frames. In Fig. 20, each vertical scanning period is 810H, and the auxiliary capacitance voltage Vcs ;! to Vcs3 changes periodically with 20H as one period in the display period, and changes every 5H in the adjustment period. In this way, when the two vertical scanning periods (810H X 2 = 1620H) are an integral multiple of one period (20H) in the display period, a half-period period is provided as an adjustment period for the voltage of the auxiliary capacitance line. By reversing the polarity every two vertical scanning periods, as explained with reference to FIG. This can be different from the first change of the auxiliary capacitance voltage in the first vertical scanning period, and as a result, the brightness and polarity of the sub-pixel can be changed as shown in FIG. 6 (a).
[0146] また、上述した説明では、各調整期間は、水平走査期間の偶数倍であつたが、本 発明はこれに限定されない。各調整期間は水平走査期間の奇数倍であってもよい。 図 21に示すように、第 1および第 3調整期間が 37H、第 2および第 4調整期間が 27 Hであっても、水平走査期間の偶数倍である場合と同様に副画素の明暗および極性 を反転することで、表示のざらつきを抑制することができる。  [0146] In the above description, each adjustment period is an even multiple of the horizontal scanning period, but the present invention is not limited to this. Each adjustment period may be an odd multiple of the horizontal scanning period. As shown in Fig. 21, even if the first and third adjustment periods are 37H and the second and fourth adjustment periods are 27H, the brightness and polarity of the sub-pixels are the same as in the case of an even multiple of the horizontal scanning period. The display roughness can be suppressed by inverting.
[0147] また、上述した説明では、隣接する画素の 2つの副画素に同じ補助容量配線が接 続されていたが、本発明はこれに限定されない。隣接する画素の 2つの副画素に対 して異なる補助容量配線を設けて、補助容量配線の電圧を個別に変化させてもよい [0147] In the above description, the same storage capacitor line is connected to two subpixels of adjacent pixels, but the present invention is not limited to this. Different auxiliary capacitance lines may be provided for two subpixels of adjacent pixels, and the voltage of the auxiliary capacitance lines may be changed individually.
Yes
[0148] 図 22に、あるフレームの有効走査期間内に変化した副画素の明喑および極性を示 す。図 22には、第 1〜6行および第 a〜f列の画素を示している。ここでも、液晶表示 装置 100には 10本の補助容量幹線 CS;!〜 CS 10が設けられており、図 22に示すよ うに、補助容量幹線 CS1は、第 1画素行の副画素 1—a— A, 1 -b-A, 1 c—Α· · '、第 6画素行の副画素 6— a— A, 6 -b-A, 6— c Α· · ·に接続されており、補助容 量幹線 CS2は、第 1画素行の副画素 1 a— Β, 1 -b-B, 1 c Β· · ·、第 6画素 行の副画素 6— a— B, 6 -b-B, 6—。— Β· · ·に接続されている。また、補助容量幹 線 CS3は、第 2画素行の副画素 2 a—A, 2 b—A, 2 c— Aに接続されている。 このように、図 22に示した構成を有する液晶表示装置 100では、ある副画素と、その 副画素に隣接する別の画素に含まれる副画素とは、それぞれ異なる補助容量幹線 に接続されており、 2つの副画素は電気的に独立している。  [0148] Figure 22 shows the clarity and polarity of subpixels that changed within the effective scan period of a frame. FIG. 22 shows the pixels in the first to sixth rows and the af columns. Again, the liquid crystal display device 100 is provided with ten auxiliary capacity trunk lines CS;! To CS 10, and as shown in FIG. 22, the auxiliary capacity main line CS1 is the sub-pixel 1-a in the first pixel row. — A, 1 -bA, 1 c—Α · ', connected to sub-pixel 6—a—A, 6 -bA, 6—c Α ·· in the 6th pixel row, auxiliary capacity main line CS2 Are the subpixels 1 a— Β, 1 -bB, 1 c Β... Of the first pixel row, and the subpixels 6—a—B, 6 -bB, 6— of the sixth pixel row. — Connected to Β ····. The storage capacitor main line CS3 is connected to the sub-pixels 2a-A, 2b-A, and 2c-A in the second pixel row. In this way, in the liquid crystal display device 100 having the configuration shown in FIG. 22, a certain subpixel and a subpixel included in another pixel adjacent to the subpixel are connected to different auxiliary capacitance trunk lines. The two subpixels are electrically independent.
[0149] 図 23に、図 22に示した構成を有する液晶表示装置 100の等価回路を示し、図 24 に、この液晶表示装置を駆動するための各種電圧(信号)の波形を示す。図 24にお いて、 Vsaは信号線 Saの電圧を示し、 Vsbは信号線 Sbの電圧を示し、 Vgl~Vgl2 は走査線 G1〜G12の電圧を示し、 Vcs;!〜 VcslOは補助容量幹線 CS;!〜 CS10の 電圧を示し、 VLspl— a— A〜VLsp2— b— Bは副画素 1— a— A〜2— b— Bの液晶 層に印加される実効電圧を示している。なお、図 24に示されているのは、 1つの垂直 走査期間内の電圧波形である。 FIG. 23 shows an equivalent circuit of the liquid crystal display device 100 having the configuration shown in FIG. 22, and FIG. 24 shows waveforms of various voltages (signals) for driving the liquid crystal display device. In FIG. 24, Vsa represents the voltage of the signal line Sa, Vsb represents the voltage of the signal line Sb, Vgl to Vgl2 represents the voltages of the scanning lines G1 to G12, and Vcs ;! to VcslO represents the auxiliary capacitance main line CS. ;! To CS10, VLspl—a—A to VLsp2—b—B represents the effective voltage applied to the liquid crystal layer of sub-pixel 1—a—A—2—b—B. Note that Figure 24 shows one vertical It is a voltage waveform within a scanning period.
[0150] 図 24に示すように、補助容量幹線 CS;!〜 CS 10の電圧 Vcs;!〜 VcslOは同一の振 幅および周期で振幅している。ここでは、振幅の周期は 10Hである。電圧 Vcslと Vc s2とでは、一方の電圧を VcHに変化すると他方の電圧が VcLに変化し、一方の電 圧を VcLに変化すると他方の電圧が VcHに変化する関係になっている。電圧 Vcs3 と Vcs4、電圧 Vcs5と Vcs6、電圧 Vcs7と Vcs8、電圧 Vcs9と VcslOも同様の関係を 有している。図 24から理解されるように、走査線 G1の電圧 Vglが VgLになった後、 電圧 Vcslは増加「†」し、電圧 Vcs2は減少「 」する。また、図 24力、ら理解されるよう に、走査線 G2の電圧 Vg2が VgLになった後、電圧 Vcs3は減少「丄」し、電圧 Vcs4 は増カロ「†」する。 As shown in FIG. 24, voltages Vcs ;! to VcslO of the auxiliary capacity trunk line CS ;! to CS 10 have the same amplitude and cycle. Here, the period of amplitude is 10H. The voltage Vcsl and Vcs2 have the relationship that when one voltage changes to VcH, the other voltage changes to VcL, and when one voltage changes to VcL, the other voltage changes to VcH. Voltages Vcs3 and Vcs4, voltages Vcs5 and Vcs6, voltages Vcs7 and Vcs8, and voltages Vcs9 and VcslO have the same relationship. As understood from FIG. 24, after the voltage Vgl of the scanning line G1 becomes VgL, the voltage Vcsl increases “†” and the voltage Vcs2 decreases “”. As can be understood from FIG. 24, after the voltage Vg2 of the scanning line G2 becomes VgL, the voltage Vcs3 decreases “丄” and the voltage Vcs4 increases “†”.
[0151] 図 22に示した構成では、異なる行の副画素は異なる補助容量幹線に接続されてい るため、複数の画素のそれぞれにおいて副画素の液晶層に印加される電圧を同じ時 刻に増加または減少させることができる。なお、この場合も、図 22に示した構成の液 晶表示装置を図 24に示した電圧波形で駆動させることにより、上述した 3つの条件を 全て満足するので、ちらつきを防止した高品位の表示を実現することができる。  [0151] In the configuration shown in FIG. 22, the sub-pixels in different rows are connected to different storage capacitor trunk lines, so that the voltage applied to the liquid crystal layer of the sub-pixel in each of the plurality of pixels is increased at the same time. Or it can be reduced. In this case as well, since the liquid crystal display device having the configuration shown in FIG. 22 is driven with the voltage waveform shown in FIG. 24, all of the above three conditions are satisfied, so high-quality display that prevents flickering is achieved. Can be realized.
[0152] なお、ここまで、図 22〜図 24を参照して、あるフレームの有効走査期間内に変化し た副画素の明喑および極性ならびに電圧波形を説明した力 S、次のフレームでは、各 走査線の電圧に対して、信号線の電圧は、それぞれ、図 24に示した波形と同様に変 化するが、補助容量幹線の電圧は、それぞれ、図 24に示した波形とは反転するよう に変化する。このため、このフレームでは、図 22に示した各副画素と比較して、各副 画素の極性は変化することなぐ各副画素の明暗が反転する。  [0152] Heretofore, with reference to FIG. 22 to FIG. 24, the force S explaining the clarity and polarity of the sub-pixel and the voltage waveform changed within the effective scanning period of a certain frame, For each scanning line voltage, the signal line voltage changes in the same way as the waveform shown in FIG. 24, but the storage capacitor main line voltage is inverted from the waveform shown in FIG. It changes as follows. Therefore, in this frame, as compared with each subpixel shown in FIG. 22, the brightness of each subpixel is inverted without changing the polarity of each subpixel.
[0153] さらに次のフレームでは、走査線の電圧に対して、信号線の電圧は、それぞれ、図 24に示した波形とは反転するように変化するとともに、補助容量幹線の電圧は、それ ぞれ、図 24に示した波形とは反転するように変化する。このため、このフレームでは、 図 22に示した各副画素と比較して、各副画素の明暗は変化することなぐ各副画素 の極性が反転する。  [0153] In the next frame, the voltage of the signal line changes so as to be inverted from the waveform shown in Fig. 24 with respect to the voltage of the scanning line, and the voltage of the storage capacitor main line changes. Therefore, it changes so as to be reversed from the waveform shown in FIG. For this reason, in this frame, the polarity of each sub-pixel is reversed without changing the brightness of each sub-pixel as compared with each sub-pixel shown in FIG.
[0154] さらに次のフレームでは、走査線の電圧に対して、信号線の電圧は、それぞれ、図 24に示した波形とは反転するように変化する力 補助容量幹線の電圧は、それぞれ 、図 24に示した波形と同様に変化する。このため、このフレームでは、図 22に示した 各副画素と比較して、各副画素の明喑および極性が反転する。このようにして、図 22 に示した構成の液晶表示層においても、 γ特性の視野角依存性を向上させるととも に、表示品位の低下を抑制することができる。 [0154] In the next frame, the voltage of the signal line changes so as to reverse the waveform shown in Fig. 24 with respect to the voltage of the scanning line. It changes in the same way as the waveform shown in FIG. For this reason, in this frame, the clarity and polarity of each sub-pixel are inverted as compared with each sub-pixel shown in FIG. Thus, also in the liquid crystal display layer having the configuration shown in FIG. 22, the viewing angle dependency of the γ characteristic can be improved and the deterioration of the display quality can be suppressed.
[0155] また、上述した説明では、図 8に示したように、同じ画素 10に含まれる副画素 10a, 10bに対して共通の信号泉 14が設けられていた力 本発明はこれに限定されない。 同じ画素に含まれる副画素に対して異なる信号線を設けてもよい。この場合、補助容 量配線の電圧を副画素ごとに異ならせなくても、信号線の電圧を異ならせることにより 、副画素の液晶層に異なる実効電圧を印加することができる。  Further, in the above description, as shown in FIG. 8, the force in which the common signal spring 14 is provided for the sub-pixels 10a and 10b included in the same pixel 10 is not limited to this. . Different signal lines may be provided for sub-pixels included in the same pixel. In this case, different effective voltages can be applied to the liquid crystal layer of the sub-pixel by changing the voltage of the signal line without changing the voltage of the auxiliary capacitance wiring for each sub-pixel.
[0156] 図 25に、 2つの副画素 10a、 10bのそれぞれに対して信号線 14a、 14bが設けられ た画素 10を示す。図 25に示すように、画素 10は、互いに異なる信号線 14aおよび 1 4bに、それぞれ対応する TFT16aおよび 16bを介して接続された 2つの副画素電極 18aおよび 18bを有している。副画素 10aおよび 10bは、 1つの画素 10を構成するの で、 TFT16aおよび 16bのゲートは共通の走査線(ゲートバスライン) 12に接続され、 同じ走査信号によってオン/オフ制御される。信号線(ソースバスライン) 14aおよび 14bには、上記の関係を満足するように信号電圧(階調電圧)が供給される。なお、 T FT16aおよび 16bのゲートは共用する構成にすることが好ましい。  FIG. 25 shows the pixel 10 in which the signal lines 14a and 14b are provided for the two sub-pixels 10a and 10b, respectively. As shown in FIG. 25, the pixel 10 has two subpixel electrodes 18a and 18b connected to different signal lines 14a and 14b via corresponding TFTs 16a and 16b, respectively. Since the sub-pixels 10a and 10b constitute one pixel 10, the gates of the TFTs 16a and 16b are connected to a common scanning line (gate bus line) 12 and are turned on / off by the same scanning signal. A signal voltage (gradation voltage) is supplied to the signal lines (source bus lines) 14a and 14b so as to satisfy the above relationship. The gates of TFTs 16a and 16b are preferably shared.
[0157] なお、上述した説明では、対向電極の電圧を時間によらず一定に示したが、本発 明はこれに限定されない。対向電極の電圧は時間に応じて変化してもよい。  In the above description, the voltage of the counter electrode is shown constant regardless of time, but the present invention is not limited to this. The voltage of the counter electrode may change with time.
[0158] また、図 10には、第 1副画素の実効電圧と第 2副画素の実効電圧とは広い階調範 囲にわたって異なるように示した力 S、本発明はこれに限定されない。各副画素の実効 電圧は、特定の階調範囲(例えば、黒〜白までの階調を 0階調〜 255階調に分割し た 256階調表示の場合における 36階調〜 128階調の階調範囲)において異なって いればよい。  [0158] In FIG. 10, the effective voltage S of the first sub-pixel and the effective voltage of the second sub-pixel are shown to be different over a wide gradation range, and the present invention is not limited to this. The effective voltage of each sub-pixel is within a specific gradation range (for example, 36 gradations to 128 gradations in the case of 256 gradation display in which gradations from black to white are divided into 0 gradations to 255 gradations). It suffices if they are different in the gradation range.
[0159] また、上述した説明では、ノーマリブラックモードの液晶表示装置、特に、 MVAモ ードの液晶表示装置の表示品位を改善できることを示した力 本発明はこれに限定 されず、 IPSモードの液晶表示装置に適用することもできる。 γ特性の視野角依存性 の問題は、 IPSモードよりも、 MVAモードや ASMモードにおいて顕著である。一方、 IPSモードは、 MVAモードや ASMモードに比べて正面観測時のコントラスト比の高 いパネルを生産性良く製造することが難しい。これらの点から、特に MVAモードや A SMモードの液晶表示装置における γ特性の視野角依存性を改善することが望まれ [0159] Further, in the above description, power indicating that display quality of a normally black mode liquid crystal display device, in particular, an MVA mode liquid crystal display device can be improved. The present invention is not limited to this, and the IPS mode It can also be applied to the liquid crystal display device. The problem of viewing angle dependence of γ characteristics is more prominent in MVA mode and ASM mode than in IPS mode. on the other hand, In the IPS mode, it is difficult to produce a panel with a high contrast ratio during front observation with high productivity compared to the MVA mode and ASM mode. From these points, it is desirable to improve the viewing angle dependency of the γ characteristics, especially in liquid crystal display devices of MVA mode and ASM mode.
[0160] (実施形態 2) [0160] (Embodiment 2)
以下、本発明による液晶表示装置 100の第 2実施形態を説明する。本実施形態の 液晶表示装置 100は、連続する 4つの垂直走査期間における副画素の明暗、極性 および実効電圧の変化の順番の点で実施形態 1の液晶表示装置とは異なる。以下 の説明では、冗長さを避けるために、実施形態 1と重複する説明を省略する。  Hereinafter, a second embodiment of the liquid crystal display device 100 according to the present invention will be described. The liquid crystal display device 100 of the present embodiment is different from the liquid crystal display device of the first embodiment in the order of changes in brightness, polarity, and effective voltage of subpixels in four consecutive vertical scanning periods. In the following description, in order to avoid redundancy, the description overlapping that of the first embodiment is omitted.
[0161] 図 26を参照して、本実施形態の液晶表示装置 100における副画素の明暗および 電界の向きの変化、ならびに、第 1および第 2副画素の液晶層に印加される実効電 圧の変化を説明する。  [0161] Referring to FIG. 26, in the liquid crystal display device 100 of the present embodiment, the brightness of the subpixels and the change in the direction of the electric field, and the effective voltage applied to the liquid crystal layers of the first and second subpixels. Explain the change.
[0162] 図 26 (a)に示すように、期間 1、 4および 5は第 1極性期間であり、期間 2、 3および 6 は第 2極性期間である。ここで、連続する 4つの垂直走査期間をみると、 2つは第 1極 性期間であり、残りの 2つは第 2極性期間である。例えば、図 26 (a)における期間 1〜 4では、期間 1および期間 4は第 1極性期間であり、期間 2および期間 3は第 2極性期 間である。本実施形態の液晶表示装置 100において、第 1極性期間には、 I VLspa I > I VLspb Iを満たす期間(ここでは、期間 1)と、 I VLspa | < | VLspb |を満 たす期間(ここでは、期間 4)とがある。また、液晶表示装置 100において、第 2極性期 間には、 I VLspa I > I VLspb |を満たす期間(ここでは、期間 3)と、 | VLspa | < I VLspb Iを満たす期間(ここでは、期間 2)とがある。  [0162] As shown in FIG. 26 (a), periods 1, 4 and 5 are first polarity periods, and periods 2, 3 and 6 are second polarity periods. Here, looking at four consecutive vertical scanning periods, two are the first polarity periods and the remaining two are the second polarity periods. For example, in periods 1 to 4 in FIG. 26 (a), period 1 and period 4 are the first polarity period, and period 2 and period 3 are the second polarity period. In the liquid crystal display device 100 of the present embodiment, in the first polarity period, a period satisfying I VLspa I> I VLspb I (here, period 1) and a period satisfying I VLspa | <| VLspb | Then there is a period 4). In the liquid crystal display device 100, the second polarity period includes a period that satisfies I VLspa I> I VLspb | (here, period 3) and a period that satisfies | VLspa | <I VLspb I (here, the period There is 2).
[0163] 図 26 (b)および図 26 (c)に、第 1、第 2副画素の液晶層に印加される各垂直走査 期間の実効電圧 VLspa、 VLspbをそれぞれ太線で示す。第 1、第 2副画素の液晶層 に印加される実効電圧 VLspa、 VLspbは、第 1、第 2副画素電極の電圧と対向電極 の電圧 Vcとの差の実効値であり、ここでは対向電極の電圧 Vcが一定であるように示 している。  In FIG. 26 (b) and FIG. 26 (c), the effective voltages VLspa and VLspb in each vertical scanning period applied to the liquid crystal layers of the first and second subpixels are indicated by bold lines. The effective voltages VLspa and VLspb applied to the liquid crystal layers of the first and second subpixels are effective values of the difference between the voltage of the first and second subpixel electrodes and the voltage Vc of the counter electrode. It is shown that the voltage Vc is constant.
[0164] 期間 1において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも高い。また、第 1副画素の液晶層に印加される実効電圧の絶対値は、第 2副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I > I VLspb | )。したがって、図 26 (a)に示すように、期間 1は第 1極性期間であり、また、第 1副画 素は第 2副画素よりも明るい。 [0164] In period 1, the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode. The absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is the second subimage. It is larger than the absolute value of the effective voltage applied to the elementary liquid crystal layer (I VLspa I> I VLspb |). Therefore, as shown in FIG. 26 (a), period 1 is the first polarity period, and the first sub-pixel is brighter than the second sub-pixel.
[0165] 期間 2において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも低い。また、第 2副画素の液晶層に印加される実効電圧の絶対値は、第 1副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I < I VLspb | )。したがって、図 26 (a)に示すように、期間 2は第 2極性期間であり、また、第 2副画 素は第 1副画素よりも明るい。  [0165] In period 2, the voltages of the first subpixel electrode and the second subpixel electrode are lower than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I <I VLspb |). Accordingly, as shown in FIG. 26 (a), period 2 is the second polarity period, and the second sub-pixel is brighter than the first sub-pixel.
[0166] 期間 3において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも低い。また、第 1副画素の液晶層に印加される実効電圧の絶対値は、第 2副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I > I VLspb | )。したがって、図 26 (a)に示すように、期間 3は第 2極性期間であり、また、第 1副画 素は第 2副画素よりも明るい。  [0166] In period 3, the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb |). Therefore, as shown in FIG. 26 (a), period 3 is the second polarity period, and the first subpixel is brighter than the second subpixel.
[0167] 期間 4において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも高い。また、第 2副画素の液晶層に印加される実効電圧の絶対値は、第 1副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I < I VLspb | )。したがって、図 26 (a)に示すように、期間 4は第 1極性期間であり、また、第 2副画 素は第 1副画素よりも明るい。期間 5以降、第 1、第 2副画素の明暗および極性は、期 間 1〜4における第 1、第 2副画素の明暗および極性の繰り返しとなる。  [0167] In period 4, the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I <I VLspb |). Therefore, as shown in FIG. 26 (a), period 4 is the first polarity period, and the second subpixel is brighter than the first subpixel. After the period 5, the contrast and polarity of the first and second sub-pixels are the same as those of the first and second sub-pixels in the periods 1 to 4.
[0168] 以上から、図 26 (a)に示すように、第 1副画素の(明暗、極性)は(明、 + )、(喑、 - )、(明、―)、(喑、 + )と順番に変化し、また、第 2副画素の(明暗、極性)は(喑、 + ) 、(明、一)、(喑、一)、(明、 + )の順番に変化する。このように、本実施形態の液晶 表示装置では、副画素の明暗を垂直走査期間毎に反転するとともに、極性を 2垂直 走査期間毎に反転している。本実施形態の液晶表示装置では、実施形態 1の液晶 表示装置と同様に、副画素の明暗が垂直走査期間毎に反転するので、表示のざら つきを抑制することができる。また、本実施形態の液晶表示装置では、実施形態 1の 液晶表示装置と同様に、第 1極性期間および第 2極性期間のいずれも第 1副画素が 第 2副画素よりも明るい期間を有しているので、図 26 (b)および図 26 (c)に示すよう に、複数の垂直走査期間(例えば、期間 1〜4)にわたつた実効電圧 VLspaの平均と 実効電圧 VLspbの平均とがほぼ等しくなり、対向電圧の調整により、実効電圧 VLsp a、 VLspbの平均を共にゼロにすることができ、その結果、焼きつき等の信頼性上の 問題の発生を抑制することができる。 [0168] From the above, as shown in Fig. 26 (a), (brightness, polarity) of the first subpixel is (bright, +), (喑,-), (bright,-), (喑, +) In addition, the (brightness, polarity) of the second sub-pixel changes in the order of (喑, +), (bright, one), (喑, one), (bright, +). Thus, in the liquid crystal display device of this embodiment, the brightness of the subpixel is inverted every vertical scanning period, and the polarity is inverted every two vertical scanning periods. In the liquid crystal display device according to the present embodiment, as in the liquid crystal display device according to the first embodiment, the brightness of the sub-pixels is inverted every vertical scanning period, so that display roughness can be suppressed. In the liquid crystal display device of the present embodiment, as in the liquid crystal display device of the first embodiment, both the first polarity period and the second polarity period have a period in which the first subpixel is brighter than the second subpixel. As shown in Fig. 26 (b) and Fig. 26 (c) Furthermore, the average of the effective voltage VLspa and the average of the effective voltage VLspb over a plurality of vertical scanning periods (for example, periods 1 to 4) are substantially equal, and the average of the effective voltages VLsp a and VLspb is adjusted by adjusting the counter voltage. Both can be reduced to zero, and as a result, occurrence of reliability problems such as burn-in can be suppressed.
[0169] 図 27に、第 1、第 2副画素の明暗および極性ならびに第 1、第 2副画素の垂直走査 期間における始めの補助容量配線の電圧の変化を示す。図 27において、連続する 4つのフレームをフレーム n、 n+ l、 n + 2、 n + 3と示している。  FIG. 27 shows changes in brightness and polarity of the first and second subpixels and the voltage of the first auxiliary capacitance line in the vertical scanning period of the first and second subpixels. In FIG. 27, four consecutive frames are shown as frames n, n + 1, n + 2, and n + 3.
[0170] 図 27に示すように、フレーム nにおいて第 1、第 2副画素の極性は +であり、かつ、 第 1副画素の垂直走査期間における始めの補助容量配線の電圧の変化は増加(「 ΐ」)で、第 2副画素の垂直走査期間における始めの補助容量配線の電圧の変化は 減少(「 I」)である。また、フレーム η+ 1において第 1、第 2副画素の極性は一であり 、かつ、第 1副画素の垂直走査期間における始めの補助容量配線の電圧の変化は 増加(「 ΐ」)で、第 2副画素の垂直走査期間における始めの補助容量配線の電圧の 変化は減少(「 」)である。  As shown in FIG. 27, in frame n, the polarity of the first and second subpixels is +, and the change in voltage of the first auxiliary capacitance line in the vertical scanning period of the first subpixel increases ( “Ϊ́”), the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is reduced (“I”). In the frame η + 1, the first and second subpixels have the same polarity, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel is increased (“ΐ”). The change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is reduced (“”).
[0171] フレーム η+ 2において第 1、第 2副画素の極性は一であり、かつ、第 1副画素の垂 直走査期間における始めの補助容量配線の電圧の変化は減少(「 i」)で、第 2副画 素の垂直走査期間における始めの補助容量配線の電圧の変化は増加(「 ΐ」)であ る。また、フレーム n+ 3において第 1、第 2副画素の極性は +であり、かつ、第 1副画 素の垂直走査期間における始めの補助容量配線の電圧の変化は減少(「 i」)で、 第 2副画素の垂直走査期間における始めの補助容量配線の電圧の変化は増加(「 †」)である。  [0171] In frame η + 2, the polarity of the first and second subpixels is one, and the change in voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel is reduced ("i") Thus, the change in the voltage of the first auxiliary capacitance line in the vertical scanning period of the second sub-pixel is an increase (“ΐ”). In frame n + 3, the polarities of the first and second subpixels are +, and the change in voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel is reduced (“i”). The change in the voltage of the first auxiliary capacitance line in the vertical scanning period of the second subpixel is an increase (“†”).
[0172] なお、実施形態 1を説明するのに参照した図 6 (a)において、第 1副画素と第 2副画 素とを入れ換えたと仮定した場合の期間 2〜5おける副画素の明暗および極性は、 図 26 (a)に示した期間 1〜4における副画素の明喑および極性と一致する。したがつ て、第 1副画素電極の表示面積が第 2副画素電極の表示面積と等しい場合、本実施 形態の液晶表示装置は、実施形態 1の液晶表示装置と実質的に同じ効果を奏する。  [0172] In Fig. 6 (a) that is referred to for describing the first embodiment, the subpixel brightness and darkness in the period 2 to 5 when it is assumed that the first subpixel and the second subpixel are interchanged. The polarity matches the clarity and polarity of the sub-pixels in periods 1 to 4 shown in Fig. 26 (a). Therefore, when the display area of the first subpixel electrode is equal to the display area of the second subpixel electrode, the liquid crystal display device of the present embodiment has substantially the same effect as the liquid crystal display device of the first embodiment. .
[0173] (実施形態 3)  [0173] (Embodiment 3)
以下、本発明による液晶表示装置 100の第 3実施形態を説明する。本実施形態の 液晶表示装置 100は、連続する 4つの垂直走査期間における副画素の明暗、極性 および実効電圧の変化の順番の点で上述した液晶表示装置とは異なる。以下の説 明では、冗長さを避けるために重複する説明を省略する。 Hereinafter, a third embodiment of the liquid crystal display device 100 according to the present invention will be described. Of this embodiment The liquid crystal display device 100 is different from the liquid crystal display device described above in the order of changes in brightness, polarity, and effective voltage of subpixels in four consecutive vertical scanning periods. In the following description, duplicate descriptions are omitted to avoid redundancy.
[0174] 図 28を参照して、本実施形態の液晶表示装置 100における副画素の明暗および 極性の変化、ならびに、第 1および第 2副画素の液晶層に印加される実効電圧の変 化を説明する。 Referring to FIG. 28, changes in brightness and polarity of subpixels and changes in effective voltage applied to the liquid crystal layers of the first and second subpixels in liquid crystal display device 100 of the present embodiment are shown. explain.
[0175] 図 28 (a)に示すように、本実施形態の液晶表示装置 100において、期間 1、 3およ び 5は第 1極性期間であり、期間 2、 4および 6は第 2極性期間である。ここで、連続す る 4つの垂直走査期間をみると、 2つは第 1極性期間であり、残りの 2つは第 2極性期 間である。例えば、図 28 (a)における期間 1〜4では、期間 1および期間 3は第 1極性 期間であり、期間 2および期間 4は第 2極性期間である。本実施形態の液晶表示装 置 100において、第 1極性期間には、 I VLspa | > | VLspb |を満たす期間(ここ では、期間 1)と、 I VLspa I < I VLspb |を満たす期間(ここでは、期間 3)とがある 。また、液晶表示装置 100において、第 2極性期間には、 I VLspa | > | VLspb | を満たす期間(ここでは、期間 2)と、 I VLspa I < I VLspb |を満たす期間(ここで は、期間 4)とがある。  As shown in FIG. 28 (a), in the liquid crystal display device 100 of the present embodiment, the periods 1, 3 and 5 are the first polarity period, and the periods 2, 4 and 6 are the second polarity period. It is. Here, looking at four consecutive vertical scanning periods, two are the first polarity periods and the other two are the second polarity periods. For example, in periods 1 to 4 in FIG. 28A, periods 1 and 3 are first polarity periods, and periods 2 and 4 are second polarity periods. In the liquid crystal display device 100 of the present embodiment, in the first polarity period, a period satisfying I VLspa |> | VLspb | (here, period 1) and a period satisfying I VLspa I <I VLspb | There is a period 3). In the liquid crystal display device 100, in the second polarity period, a period satisfying I VLspa |> | VLspb | (here, period 2) and a period satisfying I VLspa I <I VLspb | (here, period There is 4).
[0176] 図 28 (b)および図 28 (c)に、第 1、第 2副画素の液晶層に印加される各垂直走査 期間の実効電圧 VLspa、 VLspbをそれぞれ太線で示す。第 1、第 2副画素の液晶層 に印加される実効電圧 VLspa、 VLspbは、第 1、第 2副画素電極の電圧と対向電極 の電圧 Vcとの差の実効値であり、ここでは対向電極の電圧 Vcが一定であるように示 している。  In FIG. 28 (b) and FIG. 28 (c), the effective voltages VLspa and VLspb in each vertical scanning period applied to the liquid crystal layers of the first and second subpixels are indicated by bold lines. The effective voltages VLspa and VLspb applied to the liquid crystal layers of the first and second subpixels are effective values of the difference between the voltage of the first and second subpixel electrodes and the voltage Vc of the counter electrode. It is shown that the voltage Vc is constant.
[0177] 期間 1において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも高い。また、第 1副画素の液晶層に印加される実効電圧の絶対値は、第 2副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I > I VLspb | )。したがって、図 28 (a)に示すように、期間 1は第 1極性期間であり、また、第 1副画 素は第 2副画素よりも明るい。  [0177] In period 1, the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb |). Therefore, as shown in FIG. 28 (a), period 1 is the first polarity period, and the first sub-pixel is brighter than the second sub-pixel.
[0178] 期間 2において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも低い。また、第 1副画素の液晶層に印加される実効電圧の絶対値は、第 2副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I > I VLspb | )。したがって、図 28 (a)に示すように、期間 2は第 2極性期間であり、また、第 1副画 素は第 2副画素よりも明るい。 [0178] In period 2, the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode. The absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is the second subimage. It is larger than the absolute value of the effective voltage applied to the elementary liquid crystal layer (I VLspa I> I VLspb |). Therefore, as shown in FIG. 28 (a), period 2 is the second polarity period, and the first sub-pixel is brighter than the second sub-pixel.
[0179] 期間 3において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも高い。また、第 2副画素の液晶層に印加される実効電圧の絶対値は、第 1副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I < I VLspb | )。したがって、図 28 (a)に示すように、期間 3は第 1極性期間であり、また、第 2副画 素は第 1副画素よりも明るい。  [0179] In period 3, the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I <I VLspb |). Therefore, as shown in FIG. 28 (a), period 3 is the first polarity period, and the second subpixel is brighter than the first subpixel.
[0180] 期間 4において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも低い。また、第 2副画素の液晶層に印加される実効電圧の絶対値は、第 1副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I < I VLspb | )。したがって、図 28 (a)に示すように、期間 4は第 2極性期間であり、また、第 2副画 素は第 1副画素よりも明るい。期間 5以降、第 1、第 2副画素の明暗および極性は、期 間 1〜4における第 1、第 2副画素の明暗および極性の繰り返しとなる。本実施形態の 液晶表示装置において、フレーム周波数は例えば 120Hzである。  [0180] In period 4, the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I <I VLspb |). Therefore, as shown in FIG. 28 (a), period 4 is the second polarity period, and the second subpixel is brighter than the first subpixel. After the period 5, the contrast and polarity of the first and second sub-pixels are the same as those of the first and second sub-pixels in the periods 1 to 4. In the liquid crystal display device of the present embodiment, the frame frequency is 120 Hz, for example.
[0181] 以上から、図 28 (a)に示すように、第 1副画素の(明暗、極性)は(明、 + )、(明、 - )、(喑、 + )、(喑、一)と順番に変化し、また、第 2副画素の(明暗、極性)は(喑、 + ) 、(喑、一)、(明、 + )、(明、一)の順番に変化する。このように、本実施形態の液晶 表示装置では、副画素の明暗を 2垂直走査期間毎に反転するとともに、極性を垂直 走査期間毎に反転している。本実施形態の液晶表示装置では、特許文献 1の液晶 表示装置とは異なり、副画素の明暗が 2垂直走査期間毎に反転するので、表示のざ らっきを抑制することができる。また、本実施形態の液晶表示装置では、特許文献 2 の液晶表示装置とは異なり、第 1極性期間および第 2極性期間の!/、ずれにお!/、ても 第 1、第 2副画素の明暗が反転するので、図 28 (b)および図 28 (c)に示すように、複 数の垂直走査期間(例えば、期間 1〜4)にわたつた実効電圧 VLspaの平均と実効 電圧 VLspbの平均とがほぼ等しくなり、対向電圧の調整により、実効電圧 VLspa、 V Lspbの平均を共にゼロにすることができ、その結果、焼きつき等の信頼性上の問題 の発生を抑制することができる。 [0182] 次いで、図 29を参照して、複数の垂直走査期間にわたった第 1、第 2副画素の液 晶層に印加される実効電圧の変化を説明する。図 29において、 Vgは走査線の電圧 を示し、 Vcsaは第 1補助容量配線の電圧を示し、 Vcsbは第 2補助容量配線の電圧 を示し、 VLspaは第 1副画素の液晶層に印加される実効電圧を示し、 VLspbは第 2 副画素の液晶層に印加される実効電圧を示している。ここでは、第 1、第 2補助容量 配線の電圧は、表示期間 AHにおいて 10Hごとに増加または減少して 20Hを 1周期 として周期的に変化する。また、第 1、第 2補助容量配線の電圧は、第 1、第 3調整期 間 BHにおいて 18Hごとに増加または減少し、第 2、第 4調整期間 BHにおいて 13H ごとに増加または減少している。 [0181] From the above, as shown in Fig. 28 (a), (brightness, polarity) of the first sub-pixel is (bright, +), (bright,-), (喑, +), (喑, one) In addition, the (brightness, polarity) of the second sub-pixel changes in the order of (喑, +), (喑, one), (bright, +), (bright, one). Thus, in the liquid crystal display device of this embodiment, the brightness of the subpixel is inverted every two vertical scanning periods, and the polarity is inverted every vertical scanning period. In the liquid crystal display device of the present embodiment, unlike the liquid crystal display device of Patent Document 1, the brightness of the sub-pixels is inverted every two vertical scanning periods, so that the rough display can be suppressed. Further, in the liquid crystal display device of the present embodiment, unlike the liquid crystal display device of Patent Document 2, the first and second subpixels are! As shown in FIGS. 28 (b) and 28 (c), the average of the effective voltage VLspa and the effective voltage VLspb over a plurality of vertical scanning periods (for example, periods 1 to 4) are The average is almost equal, and the average of the effective voltages VLspa and VLspb can be made zero by adjusting the counter voltage. As a result, the occurrence of reliability problems such as burn-in can be suppressed. . Next, with reference to FIG. 29, the change in effective voltage applied to the liquid crystal layer of the first and second subpixels over a plurality of vertical scanning periods will be described. In FIG. 29, Vg indicates the voltage of the scanning line, Vcsa indicates the voltage of the first auxiliary capacitance line, Vcsb indicates the voltage of the second auxiliary capacitance line, and VLspa is applied to the liquid crystal layer of the first subpixel. VLspb represents the effective voltage applied to the liquid crystal layer of the second subpixel. Here, the voltage of the first and second auxiliary capacitance lines increases or decreases every 10H in the display period AH and changes periodically with 20H as one period. The voltage of the first and second auxiliary capacitance lines increases or decreases every 18H during the first and third adjustment periods BH, and increases or decreases every 13H during the second and fourth adjustment periods BH. .
[0183] 第 1、第 2補助容量配線の電圧の変化に応じて第 1、第 2副画素の液晶層に印加さ れる実効電圧が変化することにより、第 1副画素の(明暗、極性)は、(明、 + )、(明、 -)、(喑、 + )、(喑、一)と順番に変化し、また、第 2副画素の(明暗、極性)は、(喑、 + )、(喑、―)、(明、 + )、(明、 -)の順番に変化する。このようにして、第 1および第 2副画素の明暗および極性は、図 28 (a)に示したように変化するので、本実施形態 の液晶表示装置でも、 7特性の視野角依存性を向上させた液晶表示装置において 表示品位の低下を抑制することができる。  [0183] The effective voltage applied to the liquid crystal layers of the first and second sub-pixels changes according to the change in the voltage of the first and second auxiliary capacitance lines. Changes in order of (bright, +), (bright,-), (喑, +), (喑, one), and the (sub-light, polarity) of the second subpixel is (副, +) , (喑,-), (bright, +), (bright,-). In this way, the brightness and polarity of the first and second sub-pixels change as shown in FIG. 28 (a), so the liquid crystal display device of this embodiment also improves the viewing angle dependency of the seven characteristics. In such a liquid crystal display device, it is possible to suppress deterioration in display quality.
[0184] 図 30に、第 1、第 2副画素の明暗および極性ならびに第 1、第 2副画素の垂直走査 期間における始めの補助容量配線の電圧の変化を示す。図 30において、連続する 4つのフレームをフレーム n、 n+ l、 n + 2、 n + 3と示している。  FIG. 30 shows changes in brightness and polarity of the first and second subpixels and the voltage of the first auxiliary capacitance line in the vertical scanning period of the first and second subpixels. In FIG. 30, four consecutive frames are indicated as frames n, n + 1, n + 2, and n + 3.
[0185] 図 30に示すように、フレーム nにおいて第 1、第 2副画素の極性は +であり、かつ、 第 1副画素の垂直走査期間における始めの補助容量配線の電圧の変化は増加(「 ΐ」)で、第 2副画素の垂直走査期間における始めの補助容量配線の電圧の変化は 減少(「 I」)である。また、フレーム η+ 1において第 1、第 2副画素の極性は一であり 、かつ、第 1副画素の垂直走査期間における始めの補助容量配線の電圧の変化は 減少(「 i」)で、第 2副画素の垂直走査期間における始めの補助容量配線の電圧の 変化は増加(「で」)である。  As shown in FIG. 30, in frame n, the polarities of the first and second subpixels are +, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel increases ( “Ϊ́”), the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is reduced (“I”). In frame η + 1, the polarities of the first and second subpixels are one, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel is reduced (“i”). The change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is an increase ("de").
[0186] フレーム n+ 2において第 1、第 2副画素の極性は +であり、かつ、第 1副画素の垂 直走査期間における始めの補助容量配線の電圧の変化は減少(「 i」)で、第 2副画 素の垂直走査期間における始めの補助容量配線の電圧の変化は増加(「†」)であ る。また、フレーム η+ 3において第 1、第 2副画素の極性は一であり、かつ、第 1副画 素の垂直走査期間における始めの補助容量配線の電圧の変化は増加(「 ΐ」)で、 第 2副画素の垂直走査期間における始めの補助容量配線の電圧の変化は減少(「[0186] In frame n + 2, the polarity of the first and second subpixels is +, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel is reduced ("i"). , Second sub-picture The change in the voltage of the first auxiliary capacitance line during the elementary vertical scanning period is an increase (“†”). In frame η + 3, the polarity of the first and second sub-pixels is one, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first sub-pixel increases (“「 ”). The change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel decreases ("
I」 )でめる。 I ")
[0187] なお、図 17と図 30との比較から理解されるように、本実施形態の液晶表示装置に おいて、第 1、第 2副画素の垂直走査期間における始めの補助容量配線の電圧の変 化は実施形態 1の液晶表示装置と同じであるが、極性の変化は実施形態 1の液晶表 示装置とは異なる。  As can be understood from the comparison between FIG. 17 and FIG. 30, in the liquid crystal display device of this embodiment, the voltage of the first auxiliary capacitance line in the vertical scanning period of the first and second subpixels. The change of is the same as that of the liquid crystal display device of Embodiment 1, but the change of polarity is different from that of the liquid crystal display device of Embodiment 1.
[0188] ここで、本実施形態の液晶表示装置および実施形態 1の液晶表示装置にお!/、て副 画素の明暗が反転する周期の違いを説明する。本実施形態の液晶表示装置では、 図 28に示したように副画素の明暗は 2垂直走査期間ごとに反転するのに対して、実 施形態 1の液晶表示装置では、図 6に示したように副画素の明暗は 1垂直走査期間 ごとに反転する。したがって、本実施形態の液晶表示装置では、実施形態 1の液晶 表示装置よりも副画素の明暗が反転する周期が 2倍遅い。上述してきたように、副画 素の明暗を反転させることによってざらつきを低減させることができる力 副画素の明 暗の反転周期が短いほどざらつきの低減効果は高い。一方、垂直走査期間が短くな りすぎると、液晶分子の配向が一垂直走査期間内に十分に変化できず、その結果、 所定の輝度に到達しないことがある。このように液晶分子の応答速度に比して垂直走 查期間が短すぎると、副画素間の輝度差が十分に得られず、 γ特性の視野角依存 性を改善する効果が低減する。  [0188] Here, the difference in period in which the brightness of the sub-pixels is reversed in the liquid crystal display device of the present embodiment and the liquid crystal display device of the first embodiment will be described. In the liquid crystal display device of the present embodiment, the brightness of the sub-pixel is inverted every two vertical scanning periods as shown in FIG. 28, whereas in the liquid crystal display device of the first embodiment, as shown in FIG. On the other hand, the brightness of the sub-pixel is inverted every vertical scanning period. Therefore, in the liquid crystal display device of the present embodiment, the period in which the brightness of the subpixels is inverted is twice as long as that of the liquid crystal display device of the first embodiment. As described above, the power that can reduce the roughness by reversing the brightness of the sub-pixel. The shorter the inversion period of the sub-pixel, the higher the effect of reducing the roughness. On the other hand, if the vertical scanning period becomes too short, the orientation of the liquid crystal molecules cannot be changed sufficiently within one vertical scanning period, and as a result, the predetermined luminance may not be reached. Thus, if the vertical scanning period is too short compared with the response speed of the liquid crystal molecules, the luminance difference between the sub-pixels cannot be sufficiently obtained, and the effect of improving the viewing angle dependency of the γ characteristic is reduced.
[0189] 表 1に、特許文献 1、特許文献 2、実施形態 1および本実施形態の液晶表示装置に ついてフレーム周波数を変化させたときの表示品位を示す。表 1において、表示品位 力は!、ものを「〇」で、表示品位がよくな!/、ものを「 X」で示して!/、る。  [0189] Table 1 shows the display quality when the frame frequency is changed for Patent Document 1, Patent Document 2, Embodiment 1, and the liquid crystal display device of the present embodiment. In Table 1, the display quality is!, The thing is “◯”, the display quality is good! /, And the thing is indicated by “X”! /.
[0190] [表 1] フレーム周波数 50H z 60H z 75 H z 90H z 1 20H z [0190] [Table 1] Frame frequency 50H z 60H z 75 H z 90H z 1 20H z
特許文献 1  Patent Literature 1
視野角改善効果 〇 O O 〇 〇  Viewing angle improvement effect O O O O O
ざらつぎ X X X X X  Rough next X X X X X
ちらつぎ (フリッカー) 〇 o o 〇 〇  Flickering ○ o o ○ ○
信頼性 〇 〇 〇 〇 O 特許文献 2  Reliability ○ ○ ○ ○ O Patent Document 2
視野角改善効果 O 〇 〇 〇 X  Viewing angle improvement effect O ○ ○ ○ X
ざらつき 〇 〇 o 〇 O  Roughness ○ ○ o ○ O
ちらつぎ (フ |リッカー) 〇 o o 〇 〇  Flicker Next (F | Ricker) 〇 o o 〇 〇
信頼性 X X X X X 実施形態 1 (図 6参照)  Reliability X X X X X Embodiment 1 (See Fig. 6)
視野角改善効果 〇 o 〇 O X  Viewing angle improvement effect ○ o ○ O X
ざらつき 〇 〇 〇 〇 o  Roughness ○ ○ ○ ○ o
ちらつき (フリッカー) X 〇 o O 〇  Flicker X 〇 o O 〇
信頼性 O o 〇 〇 〇 実施形態 3 (Ξ28参照)  Reliability O o 〇 〇 〇 Embodiment 3 (See Ξ28)
視野角改善効果 〇 〇 o 〇 〇  Viewing angle improvement effect ○ ○ o ○ ○
ざらつき O 〇 〇 O 〇  Roughness O ○ ○ O ○
ちらつき (フリッカー) X X X X 〇  Flicker X X X X 〇
信頼性 〇 〇 〇 〇 o  Reliability ○ ○ ○ ○ o
[0191] 表 1によれば、特許文献 1の液晶表示装置は全てのフレーム周波数に対して良好 な視野角改善効果を得ている、一方で全てのフレーム周波数に対して表示がざらつ くといった課題を有している。また、特許文献 2の液晶表示装置では、信頼性上の課 題があるため工業的な生産品に用いることはできない。 [0191] According to Table 1, the liquid crystal display device of Patent Document 1 has a good viewing angle improvement effect for all frame frequencies, while the display is rough for all frame frequencies. Has a problem. In addition, the liquid crystal display device of Patent Document 2 cannot be used for industrial products because of reliability problems.
[0192] 実施形態 1、 3の液晶表示装置はいずれも、特許文献 2で問題となっていた信頼性 上の問題は生じず、工業製品として用いることについては問題なレ、。さらに、実施形 態 1、 3の液晶表示装置は特許文献 1で問題となっている表示のざらつきといった問 題も解決している。  [0192] The liquid crystal display devices of Embodiments 1 and 3 do not have the reliability problem that has been a problem in Patent Document 2, and are problematic for use as industrial products. Furthermore, the liquid crystal display devices of Embodiments 1 and 3 solve the problem of display roughness that is a problem in Patent Document 1.
[0193] しかしながら、実施形態 1と実施形態 3の液晶表示装置を比較すると、視野角特性 の改善効果と表示のちらつき (フリッカー)の点でフレーム周波数に対して最適な選択 をすることカできる。表 1に示すように、実施形態 1の液晶表示装置では、フレーム周 波数が 60Hz以上 90Hz以下であれば、良好な表示品位が得られたのに対して、本 実施形態の液晶表示装置では、フレーム周波数が 120Hz以上であればちらつきの ない表示を実現することができた。なお、本実施形態の液晶表示装置においてフレ ーム周波数が 120Hzであれば γ特性の視野角依存性を改善する効果が得られるこ とを実験的に確認している力 それ以上のフレーム周波数については、液晶材料や 駆動方法によって応答速度を向上させることが好ましい。 However, when the liquid crystal display devices of Embodiments 1 and 3 are compared, it is possible to make an optimal selection for the frame frequency in terms of the effect of improving the viewing angle characteristics and the flickering of the display. As shown in Table 1, in the liquid crystal display device of the first embodiment, good display quality was obtained when the frame frequency was 60 Hz or more and 90 Hz or less, whereas in the liquid crystal display device of the present embodiment, If the frame frequency is 120Hz or higher, No display could be realized. In addition, in the liquid crystal display device of this embodiment, if the frame frequency is 120 Hz, it is experimentally confirmed that the effect of improving the viewing angle dependency of the γ characteristic can be obtained. It is preferable to improve the response speed by using a liquid crystal material or a driving method.
[0194] (実施形態 4)  [0194] (Embodiment 4)
以下、本発明による液晶表示装置 100の第 4実施形態を説明する。本実施形態の 液晶表示装置 100は、連続する 4つの垂直走査期間における副画素の明暗、極性 および実効電圧の変化の順番の点で上述した液晶表示装置とは異なる。以下の説 明では、冗長さを避けるために重複する説明を省略する。  Hereinafter, a fourth embodiment of the liquid crystal display device 100 according to the present invention will be described. The liquid crystal display device 100 of this embodiment is different from the above-described liquid crystal display device in the order of changes in brightness, polarity, and effective voltage of subpixels in four consecutive vertical scanning periods. In the following description, duplicate descriptions are omitted to avoid redundancy.
[0195] 図 31を参照して、本実施形態の液晶表示装置 100における副画素の明暗および 極性の変化、ならびに、第 1および第 2副画素の液晶層に印加される実効電圧の変 化を説明する。  Referring to FIG. 31, changes in brightness and polarity of subpixels and changes in effective voltage applied to the liquid crystal layers of the first and second subpixels in liquid crystal display device 100 of the present embodiment are shown. explain.
[0196] 図 31 (a)に示すように、本実施形態の液晶表示装置 100において、期間 1、 3およ び 5は第 1極性期間であり、期間 2、 4および 6は第 2極性期間である。ここで、連続す る 4つの垂直走査期間をみると、 2つは第 1極性期間であり、残りの 2つは第 2極性期 間である。例えば、図 31 (a)における期間 〜 4では、期間 1および期間 3は第 1極性 期間であり、期間 2および期間 4は第 2極性期間である。本実施形態の液晶表示装 置 100において、第 1極性期間には、 I VLspa | > | VLspb |を満たす期間(ここ では、期間 1)と、 I VLspa I < I VLspb |を満たす期間(ここでは、期間 3)とがある 。また、液晶表示装置 100において、第 2極性期間には、 I VLspa | > | VLspb | を満たす期間(ここでは、期間 4)と、 I VLspa I < I VLspb |を満たす期間(ここで は、期間 2)とがある。  [0196] As shown in Fig. 31 (a), in the liquid crystal display device 100 of the present embodiment, the periods 1, 3, and 5 are the first polarity period, and the periods 2, 4, and 6 are the second polarity period. It is. Here, looking at four consecutive vertical scanning periods, two are the first polarity periods and the other two are the second polarity periods. For example, in period ˜4 in FIG. 31 (a), period 1 and period 3 are the first polarity period, and period 2 and period 4 are the second polarity period. In the liquid crystal display device 100 of the present embodiment, in the first polarity period, a period satisfying I VLspa |> | VLspb | (here, period 1) and a period satisfying I VLspa I <I VLspb | There is a period 3). In the liquid crystal display device 100, the second polarity period includes a period satisfying I VLspa |> | VLspb | (here, period 4) and a period satisfying I VLspa I <I VLspb | (here, the period There is 2).
[0197] 図 31 (b)および図 31 (c)に、第 1、第 2副画素の液晶層に印加される各垂直走査 期間の実効電圧 VLspa、 VLspbをそれぞれ太線で示す。第 1、第 2副画素の液晶層 に印加される実効電圧 VLspa、 VLspbは、第 1、第 2副画素電極の電圧と対向電極 の電圧 Vcとの差の実効値であり、ここでは対向電極の電圧 Vcが一定であるように示 している。  In FIG. 31 (b) and FIG. 31 (c), the effective voltages VLspa and VLspb in each vertical scanning period applied to the liquid crystal layers of the first and second subpixels are indicated by bold lines. The effective voltages VLspa and VLspb applied to the liquid crystal layers of the first and second subpixels are effective values of the difference between the voltage of the first and second subpixel electrodes and the voltage Vc of the counter electrode. It is shown that the voltage Vc is constant.
[0198] 期間 1において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも高い。また、第 1副画素の液晶層に印加される実効電圧の絶対値は、第 2副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I > I VLspb | )。したがって、図 31 (a)に示すように、期間 1は第 1極性期間であり、また、第 1副画 素は第 2副画素よりも明るい。 [0198] In period 1, the voltage of the first subpixel electrode and the second subpixel electrode is equal to the voltage of the counter electrode. Higher than. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb |). Therefore, as shown in FIG. 31 (a), period 1 is the first polarity period, and the first sub-pixel is brighter than the second sub-pixel.
[0199] 期間 2において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも低い。また、第 2副画素の液晶層に印加される実効電圧の絶対値は、第 1副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I < I VLspb | )。したがって、図 31 (a)に示すように、期間 2は第 2極性期間であり、また、第 2副画 素は第 1副画素よりも明るい。  [0199] In period 2, the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I <I VLspb |). Therefore, as shown in FIG. 31 (a), period 2 is the second polarity period, and the second sub-pixel is brighter than the first sub-pixel.
[0200] 期間 3において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも高い。また、第 2副画素の液晶層に印加される実効電圧の絶対値は、第 1副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I < I VLspb | )。したがって、図 31 (a)に示すように、期間 3は第 1極性期間であり、また、第 2副画 素は第 1副画素よりも明るい。  [0200] In period 3, the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I <I VLspb |). Therefore, as shown in FIG. 31 (a), period 3 is the first polarity period, and the second sub-pixel is brighter than the first sub-pixel.
[0201] 期間 4において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも低い。また、第 1副画素の液晶層に印加される実効電圧の絶対値は、第 2副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I > I VLspb | )。したがって、図 31 (a)に示すように、期間 4は第 2極性期間であり、また、第 1副画 素は第 2副画素よりも明るい。期間 5以降、第 1、第 2副画素の明暗および極性は、期 間 1〜4における第 1、第 2副画素の明暗および極性の繰り返しとなる。  [0201] In period 4, the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb |). Therefore, as shown in FIG. 31 (a), period 4 is the second polarity period, and the first sub-pixel is brighter than the second sub-pixel. After the period 5, the contrast and polarity of the first and second sub-pixels are the same as those of the first and second sub-pixels in the periods 1 to 4.
[0202] 以上から、図 31 (a)に示すように、第 1副画素の(明暗、極性)は(明、 + )、(喑、 )、(喑、 + )、(明、一)と順番に変化し、また、第 2副画素の(明暗、極性)は(喑、 + ) 、(明、一)、(明、 + )、(喑、一)の順番に変化する。このように、本実施形態の液晶 表示装置では、副画素の明暗を 2垂直走査期間毎に反転するとともに、極性を垂直 走査期間毎に反転している。本実施形態において、フレーム周波数は、例えば、 12 OHzである。  [0202] From the above, as shown in Fig. 31 (a), (brightness, polarity) of the first subpixel is (bright, +), (喑,), (喑, +), (bright, one). The second subpixel (brightness, polarity) changes in the order of (喑, +), (bright, one), (bright, +), (喑, one). Thus, in the liquid crystal display device of this embodiment, the brightness of the subpixel is inverted every two vertical scanning periods, and the polarity is inverted every vertical scanning period. In the present embodiment, the frame frequency is, for example, 12 OHz.
[0203] 図 32に、第 1、第 2副画素の明暗および極性ならびに第 1、第 2副画素の垂直走査 期間における始めの補助容量配線の電圧の変化を示す。図 32において、連続する 4つのフレームをフレーム n、 n+ l、 n + 2、 n + 3と示している。 [0203] FIG. 32 shows changes in light and darkness and polarity of the first and second subpixels and the voltage of the first auxiliary capacitance line in the vertical scanning period of the first and second subpixels. In Figure 32, it continues Four frames are shown as frames n, n + 1, n + 2, and n + 3.
[0204] 図 32に示すように、フレーム nにおいて第 1、第 2副画素の極性は +であり、かつ、 第 1副画素の垂直走査期間における始めの補助容量配線の電圧の変化は増加(「 ΐ」)で、第 2副画素の垂直走査期間における始めの補助容量配線の電圧の変化は 減少(「 I」)である。また、フレーム η+ 1において第 1、第 2副画素の極性は一であり 、かつ、第 1副画素の垂直走査期間における始めの補助容量配線の電圧の変化は 増加(「 ΐ」)で、第 2副画素の垂直走査期間における始めの補助容量配線の電圧の 変化は減少(「 」)である。 [0204] As shown in FIG. 32, the polarity of the first and second subpixels is + in frame n, and the change in voltage of the first auxiliary capacitance line in the vertical scanning period of the first subpixel increases ( “Ϊ́”), the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is reduced (“I”). In the frame η + 1, the first and second subpixels have the same polarity, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel is increased (“ΐ”). The change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is reduced (“”).
[0205] フレーム η+ 2において第 1、第 2副画素の極性は +であり、かつ、第 1副画素の垂 直走査期間における始めの補助容量配線の電圧の変化は減少(「 i」)で、第 2副画 素の垂直走査期間における始めの補助容量配線の電圧の変化は増加(「 ΐ」)であ る。また、フレーム n+ 3において第 1、第 2副画素の極性は一であり、かつ、第 1副画 素の垂直走査期間における始めの補助容量配線の電圧の変化は減少(「 i」)で、 第 2副画素の垂直走査期間における始めの補助容量配線の電圧の変化は増加(「 †」)である。 [0205] In frame η + 2, the polarity of the first and second subpixels is +, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel is reduced ("i") Thus, the change in the voltage of the first auxiliary capacitance line in the vertical scanning period of the second sub-pixel is an increase (“ΐ”). In frame n + 3, the polarities of the first and second sub-pixels are one, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first sub-pixel decreases (“i”). The change in the voltage of the first auxiliary capacitance line in the vertical scanning period of the second subpixel is an increase (“†”).
[0206] 本実施形態の液晶表示装置では、実施形態 3の液晶表示装置と同様に、副画素 の明暗が 2垂直走査期間毎に反転するので、表示のざらつきを抑制することができる 。また、本実施形態の液晶表示装置では、実施形態 3の液晶表示装置と同様に、第 1極性期間および第 2極性期間のいずれにおいても第 1、第 2副画素の明暗が反転 するので、図 31 (b)および図 31 (c)に示すように、複数の垂直走査期間(例えば、期 間 1〜4)にわたつた実効電圧 VLspaの平均と実効電圧 VLspbの平均とがほぼ等し くなり、対向電圧の調整により、実効電圧 VLspa、 VLspbの平均を共にゼロにするこ とができ、その結果、焼きつき等の信頼性上の問題の発生を抑制することができる。  [0206] In the liquid crystal display device of the present embodiment, as in the liquid crystal display device of the third embodiment, the brightness of the sub-pixels is inverted every two vertical scanning periods, so that display roughness can be suppressed. Further, in the liquid crystal display device of the present embodiment, as in the liquid crystal display device of the third embodiment, the brightness of the first and second subpixels is inverted in both the first polarity period and the second polarity period. As shown in Fig. 31 (b) and Fig. 31 (c), the average of the effective voltage VLspa and the average of the effective voltage VLspb over a plurality of vertical scanning periods (for example, periods 1 to 4) are almost equal. By adjusting the counter voltage, the average of the effective voltages VLspa and VLspb can both be made zero, and as a result, the occurrence of reliability problems such as burn-in can be suppressed.
[0207] なお、実施形態 3の液晶表示装置を説明するのに参照した図 28 (a)において、極 性を反転させると仮定した場合の期間 2〜5おける副画素の明暗および極性は、図 3 1 (a)に示した期間 1〜4における副画素の明喑および極性と一致する。したがって、 本実施形態の液晶表示装置は、実施形態 3の液晶表示装置と実質的に同じ効果を 奏する。 [0208] なお、実施形態 3の液晶表示装置において、図 14および図 15を参照して説明した ようにドット反転駆動を行う場合、副画素 1 a— A、 1 a— Bの明喑および極性が図 31 (a)の期間 1〜4に示すように変化するとき、副画素 2— a— A、 2— a— Bの明暗お よび極性は、図 28 (a)の期間 2〜 5に示すように変化する。 [0207] In FIG. 28 (a) referred to for describing the liquid crystal display device of Embodiment 3, the brightness and polarity of the sub-pixels in the period 2 to 5 when the polarity is assumed to be reversed are shown in FIG. 3 1 This coincides with the clarity and polarity of the sub-pixel in the period 1 to 4 shown in (a). Therefore, the liquid crystal display device of the present embodiment has substantially the same effect as the liquid crystal display device of the third embodiment. In the liquid crystal display device of Embodiment 3, when performing dot inversion driving as described with reference to FIGS. 14 and 15, the clarity and polarity of the subpixels 1 a—A and 1 a—B Changes as shown in periods 1 to 4 in Fig. 31 (a), the brightness and polarity of sub-pixels 2-a-A and 2-a-B change in periods 2-5 in Fig. 28 (a). It changes as shown.
[0209] (実施形態 5)  [0209] (Embodiment 5)
以下、本発明による液晶表示装置の第 5実施形態を説明する。本実施形態の液晶 表示装置 100は、連続する 4つの垂直走査期間における副画素の明喑、極性および 実効電圧の変化の順番の点で上述した液晶表示装置とは異なる。以下の説明では 、冗長さを避けるために重複する説明を省略する。  Hereinafter, a liquid crystal display device according to a fifth embodiment of the present invention will be described. The liquid crystal display device 100 of the present embodiment is different from the above-described liquid crystal display device in the order of changes in the clarity, polarity, and effective voltage of subpixels in four consecutive vertical scanning periods. In the following description, redundant description is omitted to avoid redundancy.
[0210] 図 33を参照して、本実施形態の液晶表示装置 100における副画素の明暗および 極性の変化、ならびに、第 1および第 2副画素の液晶層に印加される実効電圧の変 化を説明する。  [0210] Referring to FIG. 33, changes in brightness and polarity of subpixels and changes in effective voltage applied to the liquid crystal layers of the first and second subpixels in the liquid crystal display device 100 of the present embodiment will be described. explain.
[0211] 図 33 (a)に示すように、本実施形態の液晶表示装置 100において、期間 1、 4およ び 5は第 1極性期間であり、期間 2、 3および 6は第 2極性期間である。ここで、連続す る 4つの垂直走査期間をみると、 2つは第 1極性期間であり、残りの 2つは第 2極性期 間である。例えば、図 33 (a)における期間 1〜4では、期間 1および期間 4は第 1極性 期間であり、期間 2および期間 3は第 2極性期間である。本実施形態の液晶表示装 置 100において、第 1極性期間には、 I VLspa | > | VLspb |を満たす期間(ここ では、期間 1)と、 I VLspa I < I VLspb |を満たす期間(ここでは、期間 4)とがある 。また、液晶表示装置 100において、第 2極性期間には、 I VLspa | > | VLspb | を満たす期間(ここでは、期間 2)と、 I VLspa I < I VLspb |を満たす期間(ここで は、期間 3)とがある。  [0211] As shown in FIG. 33 (a), in the liquid crystal display device 100 of the present embodiment, the periods 1, 4 and 5 are the first polarity period, and the periods 2, 3 and 6 are the second polarity period. It is. Here, looking at four consecutive vertical scanning periods, two are the first polarity periods and the other two are the second polarity periods. For example, in periods 1 to 4 in FIG. 33 (a), period 1 and period 4 are the first polarity period, and period 2 and period 3 are the second polarity period. In the liquid crystal display device 100 of the present embodiment, in the first polarity period, a period satisfying I VLspa |> | VLspb | (here, period 1) and a period satisfying I VLspa I <I VLspb | There is a period 4). In the liquid crystal display device 100, in the second polarity period, a period satisfying I VLspa |> | VLspb | (here, period 2) and a period satisfying I VLspa I <I VLspb | (here, period There is 3).
[0212] 図 33 (b)および図 33 (c)に、第 1、第 2副画素の液晶層に印加される各垂直走査 期間の実効電圧 VLspa、 VLspbをそれぞれ太線で示す。第 1、第 2副画素の液晶層 に印加される実効電圧 VLspa、 VLspbは、第 1、第 2副画素電極の電圧と対向電極 の電圧 Vcとの差の実効値であり、ここでは対向電極の電圧 Vcが一定であるように示 している。  In FIG. 33 (b) and FIG. 33 (c), the effective voltages VLspa and VLspb in each vertical scanning period applied to the liquid crystal layers of the first and second subpixels are indicated by bold lines. The effective voltages VLspa and VLspb applied to the liquid crystal layers of the first and second subpixels are effective values of the difference between the voltage of the first and second subpixel electrodes and the voltage Vc of the counter electrode. It is shown that the voltage Vc is constant.
[0213] 期間 1において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも高い。また、第 1副画素の液晶層に印加される実効電圧の絶対値は、第 2副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I > I VLspb | )。したがって、図 33 (a)に示すように、期間 1は第 1極性期間であり、また、第 1副画 素は第 2副画素よりも明るい。 [0213] In period 1, the voltage of the first subpixel electrode and the second subpixel electrode is the voltage of the counter electrode. Higher than. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb |). Therefore, as shown in FIG. 33 (a), period 1 is the first polarity period, and the first subpixel is brighter than the second subpixel.
[0214] 期間 2において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも低い。また、第 1副画素の液晶層に印加される実効電圧の絶対値は、第 2副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I > I VLspb | )。したがって、図 33 (a)に示すように、期間 2は第 2極性期間であり、また、第 1副画 素は第 2副画素よりも明るい。  [0214] In period 2, the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb |). Therefore, as shown in FIG. 33 (a), period 2 is the second polarity period, and the first sub-pixel is brighter than the second sub-pixel.
[0215] 期間 3において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも低い。また、第 2副画素の液晶層に印加される実効電圧の絶対値は、第 1副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I < I VLspb | )。したがって、図 33 (a)に示すように、期間 3は第 2極性期間であり、また、第 2副画 素は第 1副画素よりも明るい。  [0215] In period 3, the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I <I VLspb |). Therefore, as shown in FIG. 33 (a), period 3 is the second polarity period, and the second sub-pixel is brighter than the first sub-pixel.
[0216] 期間 4において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも高い。また、第 2副画素の液晶層に印加される実効電圧の絶対値は、第 1副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I < I VLspb | )。したがって、図 33 (a)に示すように、期間 4は第 1極性期間であり、また、第 2副画 素は第 1副画素よりも明るい。期間 5以降、第 1、第 2副画素の明暗および極性は、期 間 1〜4における第 1、第 2副画素の明暗および極性の繰り返しとなる。本実施形態の 液晶表示装置においてフレーム周波数は例えば 120Hzである。  [0216] In period 4, the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I <I VLspb |). Therefore, as shown in FIG. 33 (a), period 4 is the first polarity period, and the second subpixel is brighter than the first subpixel. After the period 5, the contrast and polarity of the first and second sub-pixels are the same as those of the first and second sub-pixels in the periods 1 to 4. In the liquid crystal display device of this embodiment, the frame frequency is 120 Hz, for example.
[0217] 以上から、図 33 (a)に示すように、第 1副画素の(明暗、極性)は(明、 + )、(明、 - )、(喑、―)、(喑、 + )と順番に変化し、また、第 2副画素の(明暗、極性)は(喑、 + ) 、(喑、一)、(明、一)、(明、 + )の順番に変化する。このように、本実施形態の液晶 表示装置では、副画素の明暗を 2垂直走査期間毎に反転するとともに、副画素の明 暗の反転するときと 1垂直走査期間ずれたときに極性を 2垂直走査期間毎に反転し ている。本実施形態の液晶表示装置では、特許文献 1の液晶表示装置とは異なり、 副画素の明暗が 2垂直走査期間毎に反転するので、表示のざらつきを抑制すること ができる。また、本実施形態の液晶表示装置では、特許文献 2の液晶表示装置とは 異なり、第 1極性期間および第 2極性期間のいずれにおいても第 1、第 2副画素の明 暗が反転するので、図 33 (b)および図 33 (c)に示すように、複数の垂直走査期間( 例えば、期間;!〜 4)にわたつた実効電圧 VLspaの平均と実効電圧 VLspbの平均と がほぼ等しくなり、対向電圧の調整により、実効電圧 VLspa、 VLspbの平均を共にゼ 口にすることができ、その結果、焼きつき等の信頼性上の問題の発生を抑制すること ができる。 [0217] From the above, as shown in Fig. 33 (a), (brightness, polarity) of the first subpixel is (bright, +), (bright,-), (喑,-), (喑, +) In addition, the (brightness, polarity) of the second sub-pixel changes in the order of (喑, +), (喑, one), (bright, one), (bright, +). Thus, in the liquid crystal display device of the present embodiment, the brightness of the subpixel is inverted every two vertical scanning periods, and the polarity is changed by 2 vertical when the brightness of the subpixel is inverted and when one vertical scanning period is shifted. Inverted every scanning period. In the liquid crystal display device of the present embodiment, unlike the liquid crystal display device of Patent Document 1, the brightness of the sub-pixel is inverted every two vertical scanning periods, so that display roughness is suppressed. Can do. Also, in the liquid crystal display device of this embodiment, unlike the liquid crystal display device of Patent Document 2, the brightness of the first and second subpixels is inverted in both the first polarity period and the second polarity period. As shown in FIG. 33 (b) and FIG. 33 (c), the average of the effective voltage VLspa and the average of the effective voltage VLspb over a plurality of vertical scanning periods (for example, periods;! To 4) are substantially equal, By adjusting the counter voltage, the average of the effective voltages VLspa and VLspb can both be closed, and as a result, the occurrence of reliability problems such as burn-in can be suppressed.
[0218] 次いで、図 34を参照して、複数の垂直走査期間にわたる電圧の変化を説明する。  Next, with reference to FIG. 34, a change in voltage over a plurality of vertical scanning periods will be described.
[0219] 図 34において、 Vgは走査線の電圧を示し、 Vcsaは第 1補助容量配線の電圧を示 し、 Vcsbは第 2補助容量配線の電圧を示し、 VLspaは第 1副画素の液晶層に印加さ れる実効電圧を示し、 VLspbは第 2副画素の液晶層に印加される実効電圧を示して いる。ここでは、第 1、第 2補助容量配線の電圧は、表示期間 AHにおいて 10Hごと に増加または減少して 20Hを 1周期として周期的に変化する。また、第 1、第 2補助 容量配線の電圧は、第 1〜第 4調整期間 BHにおいて 18Hごとに増加または減少す [0219] In FIG. 34, Vg represents the voltage of the scanning line, Vcsa represents the voltage of the first auxiliary capacitance line, Vcsb represents the voltage of the second auxiliary capacitance line, and VLspa represents the liquid crystal layer of the first subpixel. , VLspb represents the effective voltage applied to the liquid crystal layer of the second subpixel. Here, the voltage of the first and second auxiliary capacitance lines increases or decreases every 10H in the display period AH and changes periodically with 20H as one cycle. In addition, the voltage of the first and second auxiliary capacitance lines increases or decreases every 18H during the first to fourth adjustment periods BH.
[0220] 図 35に、第 1、第 2副画素の明暗および極性ならびに第 1、第 2副画素の垂直走査 期間における始めの補助容量配線の電圧の変化を示す。図 35において、連続する 4つのフレームをフレーム n、 n+ l、 n + 2、 n + 3と示している。 [0220] FIG. 35 shows changes in brightness and polarity of the first and second subpixels and the voltage of the first auxiliary capacitance line in the vertical scanning period of the first and second subpixels. In FIG. 35, four consecutive frames are shown as frames n, n + l, n + 2, and n + 3.
[0221] 図 35に示すように、フレーム nにおいて第 1、第 2副画素の極性は +であり、かつ、 第 1副画素の垂直走査期間における始めの補助容量配線の電圧の変化は増加(「 ΐ」)で、第 2副画素の垂直走査期間における始めの補助容量配線の電圧の変化は 減少(「 I」)である。また、フレーム η+ 1において第 1、第 2副画素の極性は一であり 、かつ、第 1副画素の垂直走査期間における始めの補助容量配線の電圧の変化は 減少(「 i」)で、第 2副画素の垂直走査期間における始めの補助容量配線の電圧の 変化は増加(「で」)である。  As shown in FIG. 35, in frame n, the polarity of the first and second subpixels is +, and the change in the voltage of the first auxiliary capacitance line in the vertical scanning period of the first subpixel increases ( “Ϊ́”), the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is reduced (“I”). In frame η + 1, the polarities of the first and second subpixels are one, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel is reduced (“i”). The change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is an increase ("de").
[0222] フレーム n+ 2において第 1、第 2副画素の極性は一であり、かつ、第 1副画素の垂 直走査期間における始めの補助容量配線の電圧の変化は増加(「 ΐ」)で、第 2副画 素の垂直走査期間における始めの補助容量配線の電圧の変化は減少(「 i」)であ る。また、フレーム n+ 3において第 1、第 2副画素の極性は +であり、かつ、第 1副画 素の垂直走査期間における始めの補助容量配線の電圧の変化は減少(「 i」)で、 第 2副画素の垂直走査期間における始めの補助容量配線の電圧の変化は増加(「 †」)である。 [0222] In frame n + 2, the polarity of the first and second subpixels is one, and the change in voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel is increased ("「 "). In the vertical scanning period of the second sub-pixel, the change in the voltage of the first auxiliary capacitance line is decreased (“i”). The In frame n + 3, the polarities of the first and second subpixels are +, and the change in voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel is reduced (“i”). The change in the voltage of the first auxiliary capacitance line in the vertical scanning period of the second subpixel is an increase (“†”).
[0223] 以上のように、第 1、第 2補助容量配線の電圧の変化に応じて第 1、第 2副画素の液 晶層に印加される実効電圧が変化することにより、第 1副画素の(明暗、極性)は、 ( 明、 + )、(明、 -)、(暗、 -)、(暗、 + )と順番に変化し、また、第 2副画素の(明暗、 極性)は、(喑、 + )、(喑、―)、(明、 -) (明、 + )、の順番に変化する。したがって、 本実施形態の液晶表示装置でも、 7特性の視野角依存性を向上させた液晶表示装 置において表示品位の低下を抑制することができる。  [0223] As described above, the effective voltage applied to the liquid crystal layers of the first and second subpixels changes in accordance with the change in the voltage of the first and second auxiliary capacitance lines, so that the first subpixels (Brightness, polarity) changes in order of (brightness, +), (brightness,-), (darkness,-), (darkness, +), and (lightness, polarity, polarity) of the second sub-pixel , (喑, +), (喑,-), (bright,-) (bright, +). Therefore, also in the liquid crystal display device according to the present embodiment, it is possible to suppress the deterioration in display quality in the liquid crystal display device in which the viewing angle dependency of the seven characteristics is improved.
[0224] (実施形態 6)  [0224] (Embodiment 6)
以下、本発明による液晶表示装置の第 6実施形態を説明する。本実施形態の液晶 表示装置 100は、連続する 4つの垂直走査期間における副画素の明喑、極性および 実効電圧の変化の順番の点で上述した液晶表示装置とは異なる。以下の説明では 、冗長さを避けるために重複する説明を省略する。  Hereinafter, a sixth embodiment of the liquid crystal display device according to the present invention will be described. The liquid crystal display device 100 of the present embodiment is different from the above-described liquid crystal display device in the order of changes in the clarity, polarity, and effective voltage of subpixels in four consecutive vertical scanning periods. In the following description, redundant description is omitted to avoid redundancy.
[0225] 図 36を参照して、本実施形態の液晶表示装置 100における副画素の明暗および 極性の変化、ならびに、第 1および第 2副画素の液晶層に印加される実効電圧の変 化を説明する。  Referring to FIG. 36, changes in brightness and polarity of the subpixels and changes in the effective voltage applied to the liquid crystal layers of the first and second subpixels in the liquid crystal display device 100 of the present embodiment will be described. explain.
[0226] 図 36 (a)に示すように、本実施形態の液晶表示装置 100において、期間 1、 2、 5お よび 6は第 1極性期間であり、期間 3、 4は第 2極性期間である。ここで、連続する 4つ の垂直走査期間をみると、 2つは第 1極性期間であり、残りの 2つは第 2極性期間であ る。例えば、図 36 (a)における期間 1〜4では、期間 1および期間 2は第 1極性期間で あり、期間 3および期間 4は第 2極性期間である。本実施形態の液晶表示装置 100に おいて、第 1極性期間には、 I VLspa I > I VLspb |を満たす期間(ここでは、期 間 1)と、 I VLspa I < I VLspb |を満たす期間(ここでは、期間 2)とがある。また、 液晶表示装置 100において、第 2極性期間には、 I VLspa | > | VLspb |を満た す期間(ここでは、期間 4)と、 I VLspa I < I VLspb |を満たす期間(ここでは、期 間 3)とがある。 [0227] 図 36 (b)および図 36 (c)に、第 1、第 2副画素の液晶層に印加される各垂直走査 期間の実効電圧 VLspa、 VLspbをそれぞれ太線で示す。第 1、第 2副画素の液晶層 に印加される実効電圧 VLspa、 VLspbは、第 1、第 2副画素電極の電圧と対向電極 の電圧 Vcとの差の実効値であり、ここでは対向電極の電圧 Vcが一定であるように示 している。 As shown in FIG. 36 (a), in the liquid crystal display device 100 of the present embodiment, the periods 1, 2, 5 and 6 are the first polarity period, and the periods 3 and 4 are the second polarity period. is there. Here, looking at four consecutive vertical scanning periods, two are the first polarity periods and the remaining two are the second polarity periods. For example, in periods 1 to 4 in FIG. 36 (a), period 1 and period 2 are the first polarity period, and period 3 and period 4 are the second polarity period. In the liquid crystal display device 100 of the present embodiment, in the first polarity period, a period that satisfies I VLspa I> I VLspb | (here, period 1) and a period that satisfies I VLspa I <I VLspb | Here, there is a period 2). Further, in the liquid crystal display device 100, in the second polarity period, a period satisfying I VLspa |> | VLspb | (here, period 4) and a period satisfying I VLspa I <I VLspb | Between 3). In FIG. 36 (b) and FIG. 36 (c), the effective voltages VLspa and VLspb in each vertical scanning period applied to the liquid crystal layers of the first and second subpixels are indicated by bold lines. The effective voltages VLspa and VLspb applied to the liquid crystal layers of the first and second subpixels are effective values of the difference between the voltage of the first and second subpixel electrodes and the voltage Vc of the counter electrode. It is shown that the voltage Vc is constant.
[0228] 期間 1において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも高い。また、第 1副画素の液晶層に印加される実効電圧の絶対値は、第 2副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I > I VLspb | )。したがって、図 36 (a)に示すように、期間 1は第 1極性期間であり、また、第 1副画 素は第 2副画素よりも明るい。  [0228] In period 1, the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb |). Therefore, as shown in FIG. 36 (a), period 1 is the first polarity period, and the first sub-pixel is brighter than the second sub-pixel.
[0229] 期間 2において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも高い。また、第 2副画素の液晶層に印加される実効電圧の絶対値は、第 1副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I < I VLspb | )。したがって、図 36 (a)に示すように、期間 2は第 1極性期間であり、また、第 2副画 素は第 1副画素よりも明るい。  [0229] In period 2, the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I <I VLspb |). Therefore, as shown in FIG. 36 (a), period 2 is the first polarity period, and the second subpixel is brighter than the first subpixel.
[0230] 期間 3において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも低い。また、第 1副画素の液晶層に印加される実効電圧の絶対値は、第 2副画 素の液晶層に印加される実効電圧の絶対値よりも低い( I VLspa I < I VLspb | ) 。したがって、図 36 (a)に示すように、期間 3は第 2極性期間であり、また、第 2副画素 は第 1副画素よりも明るい。  [0230] In period 3, the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode. Further, the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is lower than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I <I VLspb |). Therefore, as shown in FIG. 36 (a), the period 3 is the second polarity period, and the second subpixel is brighter than the first subpixel.
[0231] 期間 4において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも低い。また、第 1副画素の液晶層に印加される実効電圧の絶対値は、第 2副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I > I VLspb | )。したがって、図 36 (a)に示すように、期間 4は第 2極性期間であり、また、第 1副画 素は第 2副画素よりも明るい。期間 5以降、第 1、第 2副画素の明暗および極性は、期 間 1〜4における第 1、第 2副画素の明暗および極性の繰り返しとなる。  [0231] In period 4, the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb |). Therefore, as shown in FIG. 36 (a), period 4 is the second polarity period, and the first sub-pixel is brighter than the second sub-pixel. After the period 5, the contrast and polarity of the first and second sub-pixels are the same as those of the first and second sub-pixels in the periods 1 to 4.
[0232] 以上から、図 36 (a)に示すように、第 1副画素の(明暗、極性)は(明、 + )、(喑、 + )、(喑、―)、(明、一)と順番に変化し、また、第 2副画素の(明暗、極性)は(喑、 + ) 、(明、 + )、(明、一)、(喑、一)の順番に変化する。このように、本実施形態の液晶 表示装置では、副画素の明暗を 2垂直走査期間毎に反転するとともに、副画素の明 暗の反転するときと 1垂直走査期間ずらした状態で極性を 2垂直走査期間毎に反転 している。本実施形態の液晶表示装置では、実施形態 5の液晶表示装置と同様に、 副画素の明暗が 2垂直走査期間毎に反転するので、表示のざらつきを抑制すること ができる。また、本実施形態の液晶表示装置では、実施形態 5の液晶表示装置と同 様に、第 1極性期間および第 2極性期間のいずれにおいても第 1、第 2副画素の明暗 が反転するので、図 36 (b)および図 36 (c)に示すように、複数の垂直走査期間(例 えば、期間:!〜 4)にわたつた実効電圧 VLspaの平均と実効電圧 VLspbの平均とが ほぼ等しくなり、対向電圧の調整により、実効電圧 VLspa、 VLspbの平均を共にゼロ にすること力 Sでき、その結果、焼きつき等の信頼性上の問題の発生を抑制することが できる。 [0232] From the above, as shown in Fig. 36 (a), (brightness, polarity) of the first subpixel is (bright, +), (喑, +), (喑,-), (bright, one) And the second subpixel (brightness, polarity) is (喑, +) , (Ming, +), (Ming, One), (喑, One). As described above, in the liquid crystal display device according to the present embodiment, the brightness of the subpixel is inverted every two vertical scanning periods, and the polarity is shifted by two vertical directions while being shifted by one vertical scanning period from that when the brightness of the subpixel is inverted. Inverted every scanning period. In the liquid crystal display device of the present embodiment, as in the liquid crystal display device of the fifth embodiment, the brightness of the sub-pixels is inverted every two vertical scanning periods, so that display roughness can be suppressed. Further, in the liquid crystal display device of the present embodiment, as in the liquid crystal display device of the fifth embodiment, the brightness of the first and second subpixels is inverted in both the first polarity period and the second polarity period. As shown in Fig. 36 (b) and Fig. 36 (c), the average of the effective voltage VLspa and the average of the effective voltage VLspb over a plurality of vertical scanning periods (eg, periods:! To 4) are almost equal. By adjusting the counter voltage, it is possible to reduce the average of the effective voltages VLspa and VLspb to zero. As a result, the occurrence of reliability problems such as burn-in can be suppressed.
[0233] 図 37に、第 1、第 2副画素の明暗および極性ならびに第 1、第 2副画素の垂直走査 期間における始めの補助容量配線の電圧の変化を示す。図 37において、連続する 4つのフレームをフレーム n、 n+ l、 n + 2、 n + 3と示している。  [0233] FIG. 37 shows changes in brightness and polarity of the first and second subpixels and the voltage of the first auxiliary capacitance line in the vertical scanning period of the first and second subpixels. In FIG. 37, four consecutive frames are indicated as frames n, n + 1, n + 2, and n + 3.
[0234] 図 37に示すように、フレーム nにおいて第 1、第 2副画素の極性は +であり、かつ、 第 1副画素の垂直走査期間における始めの補助容量配線の電圧の変化は増加(「 ΐ」)で、第 2副画素の垂直走査期間における始めの補助容量配線の電圧の変化は 減少(「 I」)である。また、フレーム η+ 1において第 1、第 2副画素の極性は +であり 、かつ、第 1副画素の垂直走査期間における始めの補助容量配線の電圧の変化は 減少(「 i」)で、第 2副画素の垂直走査期間における始めの補助容量配線の電圧の 変化は増加(「で」)である。  As shown in FIG. 37, in frame n, the polarity of the first and second subpixels is +, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel increases ( “Ϊ́”), the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is reduced (“I”). In frame η + 1, the polarity of the first and second subpixels is +, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first subpixel is reduced (“i”). The change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel is an increase ("de").
[0235] フレーム n+ 2において第 1、第 2副画素の極性は一であり、かつ、第 1副画素の垂 直走査期間における始めの補助容量配線の電圧の変化は増加(「 ΐ」)で、第 2副画 素の垂直走査期間における始めの補助容量配線の電圧の変化は減少(「 i」)であ る。また、フレーム n+ 3において第 1、第 2副画素の極性は一であり、かつ、第 1副画 素の垂直走査期間における始めの補助容量配線の電圧の変化は減少(「 i」)で、 第 2副画素の垂直走査期間における始めの補助容量配線の電圧の変化は増加(「 †」)である。 [0235] In frame n + 2, the polarity of the first and second sub-pixels is one, and the change in voltage of the first auxiliary capacitance line during the vertical scanning period of the first sub-pixel is increased ("ΐ"). In the vertical scanning period of the second sub-pixel, the change in the voltage of the first auxiliary capacitance line is decreased (“i”). In frame n + 3, the polarities of the first and second sub-pixels are one, and the change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the first sub-pixel decreases (“i”). The change in the voltage of the first auxiliary capacitance line during the vertical scanning period of the second subpixel increases (“ † ”).
[0236] なお、図 36 (a)において第 1副画素と第 2副画素とを入れ換えると仮定した場合の 期間 2〜5における副画素の明暗および極性は、実施形態 5を説明するために参照 した図 33 (a)に示した期間 1〜4における副画素の明暗および極性と一致する。した がって、第 1副画素電極の表示面積が第 2副画素電極の表示面積と等しい場合、本 実施形態の液晶表示装置は、実施形態 5の液晶表示装置と実質的に同じ効果を奏 する。  [0236] Note that the contrast and polarity of subpixels in periods 2 to 5 when it is assumed that the first subpixel and the second subpixel are interchanged in FIG. 36 (a) are referred to for describing the fifth embodiment. This corresponds to the brightness and polarity of the sub-pixels in periods 1 to 4 shown in Fig. 33 (a). Therefore, when the display area of the first subpixel electrode is equal to the display area of the second subpixel electrode, the liquid crystal display device of the present embodiment has substantially the same effect as the liquid crystal display device of the fifth embodiment. To do.
[0237] なお、実施形態 6の液晶表示装置において、図 14および図 15を参照して説明した ようにドット反転駆動を行う場合、副画素 1 a— A、 1 a— Bの明喑および極性が図 36 (a)の期間 1〜4に示すように変化するとき、副画素 2— a— A、 2— a— Bの明暗お よび極性は、図 33 (a)の期間 2〜5に示すように変化する。  In the liquid crystal display device of Embodiment 6, when performing dot inversion driving as described with reference to FIGS. 14 and 15, the clarity and polarity of the subpixels 1 a—A and 1 a—B Changes as shown in periods 1 to 4 in Fig. 36 (a), the brightness and polarity of sub-pixels 2-a-A and 2-a-B change in periods 2-5 in Fig. 33 (a). It changes as shown.
[0238] (実施形態 7)  [0238] (Embodiment 7)
以下、本発明による液晶表示装置の第 7実施形態を説明する。本実施形態の液晶 表示装置は、副画素の輝度が中間輝度を介して変化する点で実施形態 1〜6の液 晶表示装置とは異なる。以下の説明では、冗長さを避けるために重複する説明を省 略する。  Hereinafter, a seventh embodiment of the liquid crystal display device according to the present invention will be described. The liquid crystal display device of the present embodiment is different from the liquid crystal display devices of Embodiments 1 to 6 in that the luminance of the sub-pixel changes via the intermediate luminance. In the following description, duplicate descriptions are omitted to avoid redundancy.
[0239] 図 38を参照して、本実施形態の液晶表示装置 100における副画素の明暗および 極性の変化、ならびに、第 1および第 2副画素の液晶層に印加される実効電圧の変 化を説明する。図 38 (a)に示すように、本実施形態の液晶表示装置 100において、 期間 1、 3および 5は第 1極性期間であり、期間 2、 4および 6は第 2極性期間である。 ここで、連続する 4つの垂直走査期間をみると、 2つは第 1極性期間であり、残りの 2 つは第 2極性期間である。例えば期間 1〜4では、期間 1および期間 3が第 1極性期 間であり、期間 2および期間 4が第 2極性期間である。また、第 1極性期間は、 I VLs pa I > I VLspb Iを満たす期間(ここでは、期間 1)および I VLspa | < | VLspb Iを満たす期間(ここでは、期間 3)であり、第 2極性期間は、 VLspaが VLspbと等し V、期間(期間 2および 4)である。  Referring to FIG. 38, changes in brightness and polarity of subpixels and changes in effective voltage applied to the liquid crystal layers of the first and second subpixels in liquid crystal display device 100 of the present embodiment are shown. explain. As shown in FIG. 38 (a), in the liquid crystal display device 100 of the present embodiment, the periods 1, 3 and 5 are the first polarity period, and the periods 2, 4 and 6 are the second polarity period. Here, looking at four consecutive vertical scanning periods, two are the first polarity periods and the remaining two are the second polarity periods. For example, in periods 1 to 4, period 1 and period 3 are the first polarity period, and period 2 and period 4 are the second polarity period. The first polarity period is a period that satisfies I VLspa I> I VLspb I (here, period 1) and a period that satisfies I VLspa | <| VLspb I (here, period 3). Period is VLspa equal to VLspb V, period (period 2 and 4).
[0240] 図 38 (b)および図 38 (c)に、第 1、第 2副画素の液晶層に印加される各垂直走査 期間の実効電圧 VLspa、 VLspbをそれぞれ太線で示す。第 1、第 2副画素の液晶層 に印加される実効電圧 VLspa、 VLspbは、第 1、第 2副画素電極の電圧と対向電極 の電圧 Vcとの差の実効値であり、ここでは対向電極の電圧 Vcが一定であるように示 している。 In FIG. 38 (b) and FIG. 38 (c), the effective voltages VLspa and VLspb in each vertical scanning period applied to the liquid crystal layers of the first and second subpixels are indicated by bold lines. Liquid crystal layer of the first and second subpixels The effective voltages VLspa and VLspb applied to are the effective values of the difference between the voltage of the first and second subpixel electrodes and the voltage Vc of the counter electrode. Here, the voltage Vc of the counter electrode is shown to be constant. is doing.
[0241] 期間 1において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも高い。また、第 1副画素の液晶層に印加される実効電圧の絶対値は、第 2副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I > I VLspb | )。したがって、図 38 (a)に示すように、期間 1は第 1極性期間であり、また、第 1副画 素は第 2副画素よりも明るい。  [0241] In period 1, the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel (I VLspa I> I VLspb |). Accordingly, as shown in FIG. 38 (a), period 1 is the first polarity period, and the first sub-pixel is brighter than the second sub-pixel.
[0242] 期間 2において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも低い。また、第 1副画素の液晶層に印加される実効電圧は、第 2副画素の液晶 層に印加される実効電圧と等しい(VLspa=VLspb)。したがって、図 38 (a)に示す ように、期間 2は第 2極性期間であり、また、第 1副画素の明るさは第 2副画素の明るさ と等しい。  [0242] In period 2, the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode. The effective voltage applied to the liquid crystal layer of the first subpixel is equal to the effective voltage applied to the liquid crystal layer of the second subpixel (VLspa = VLspb). Therefore, as shown in FIG. 38 (a), period 2 is the second polarity period, and the brightness of the first subpixel is equal to the brightness of the second subpixel.
[0243] 期間 3において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも高い。また、第 2副画素の液晶層に印加される実効電圧の絶対値は、第 1副画 素の液晶層に印加される実効電圧の絶対値よりも大きい( I VLspa I < I VLspb | )。したがって、図 38 (a)に示すように、期間 3は第 1極性期間であり、また、第 2副画 素は第 1副画素よりも明るい。  [0243] In period 3, the voltage of the first subpixel electrode and the second subpixel electrode is higher than the voltage of the counter electrode. In addition, the absolute value of the effective voltage applied to the liquid crystal layer of the second subpixel is larger than the absolute value of the effective voltage applied to the liquid crystal layer of the first subpixel (I VLspa I <I VLspb |). Accordingly, as shown in FIG. 38 (a), period 3 is the first polarity period, and the second sub-pixel is brighter than the first sub-pixel.
[0244] 期間 4において、第 1副画素電極および第 2副画素電極の電圧は対向電極の電圧 よりも低い。また、第 1副画素の液晶層に印加される実効電圧は、第 2副画素の液晶 層に印加される実効電圧と等しい(VLspa=VLspb)。したがって、図 38 (a)に示す ように、期間 4は第 2極性期間であり、また、第 1副画素の明るさは第 2副画素の明るさ と等しい。期間 5以降、第 1、第 2副画素の明暗および極性は、期間 1〜4における第 1、第 2副画素の明暗および極性の繰り返しとなる。  [0244] In period 4, the voltage of the first subpixel electrode and the second subpixel electrode is lower than the voltage of the counter electrode. The effective voltage applied to the liquid crystal layer of the first subpixel is equal to the effective voltage applied to the liquid crystal layer of the second subpixel (VLspa = VLspb). Therefore, as shown in FIG. 38 (a), the period 4 is the second polarity period, and the brightness of the first subpixel is equal to the brightness of the second subpixel. After period 5, the brightness and polarity of the first and second subpixels are the same as the brightness and polarity of the first and second subpixels in periods 1 to 4.
[0245] 以上から、図 38 (a)に示すように、第 1副画素の(明暗、極性)は(明、 + )、(中、 - )、(喑、 + )、(中、一)と順番に変化し、また、第 2副画素の(明暗、極性)は(喑、 + ) 、(中、―)、(明、 + )、(中、一)の順番に変化する。ここで、「中」は、第 1副画素の明 るさ (輝度)が第 2副画素の明るさ (輝度)と等しいことを示す。このように、本実施形態 の液晶表示装置では、副画素の輝度を垂直走査期間毎に中間輝度を介して 3段階 に変化させるともに、極性を垂直走査期間毎に反転している。 [0245] From the above, as shown in Fig. 38 (a), (brightness, polarity) of the first subpixel is (bright, +), (middle,-), (喑, +), (middle, one). In addition, the (brightness, polarity) of the second sub-pixel changes in the order of (喑, +), (middle,-), (bright, +), (middle, one). Here, “medium” indicates that the brightness (luminance) of the first sub-pixel is equal to the brightness (luminance) of the second sub-pixel. Thus, this embodiment In this liquid crystal display device, the luminance of the sub-pixel is changed in three steps via the intermediate luminance every vertical scanning period, and the polarity is inverted every vertical scanning period.
[0246] 本実施形態の液晶表示装置では、副画素の明暗が反転するので、表示のざらつき を抑制すること力 Sできる。また、本実施形態の液晶表示装置では、図 38 (b)および図 38 (c)に示すように、複数の垂直走査期間(例えば、期間 1〜4)にわたつた実効電 圧 VLspaの平均と実効電圧 VLspbの平均とがほぼ等しくなり、対向電圧の調整によ り、実効電圧 VLspa、 VLspbの平均を共にゼロにすることができ、その結果、焼きつ き等の信頼性上の問題の発生を抑制することができる。  [0246] In the liquid crystal display device of the present embodiment, since the brightness of the sub-pixels is inverted, it is possible to suppress the display roughness. Further, in the liquid crystal display device of the present embodiment, as shown in FIGS. 38 (b) and 38 (c), the average effective voltage VLspa over a plurality of vertical scanning periods (for example, periods 1 to 4) is calculated. The average of the effective voltage VLspb is almost equal, and the average of the effective voltages VLspa and VLspb can be made zero by adjusting the counter voltage, resulting in the occurrence of reliability problems such as burning. Can be suppressed.
[0247] 次いで、図 39A、図 39Bおよび図 40を参照しながら、本実施形態の液晶表示装置 における副画素の液晶層に印加される実効電圧の変化を説明する。なお、以下の説 明において、連続する 4つのフレーム(垂直走査期間)をフレーム n、 n+ l、 n + 2、 n + 3とする。  Next, changes in the effective voltage applied to the liquid crystal layer of the subpixel in the liquid crystal display device of the present embodiment will be described with reference to FIGS. 39A, 39B, and 40. FIG. In the following description, four consecutive frames (vertical scanning period) are defined as frames n, n + 1, n + 2, and n + 3.
[0248] 図 39Aに、フレーム nにおいて変化した各副画素の明喑および極性を示し、図 39B に、フレーム n+ 1において変化した各副画素の明喑および極性を示す。本実施形 態の液晶表示装置は、図 39Aおよび図 39Bに示すような画素配列を有しているが、 これは、図 14を参照して実施形態 1の液晶表示装置において説明した画素配列と同 様である。したがって、説明を過度に複雑にすることを避けるために、重複する説明 を省略する。なお、本実施形態の液晶表示装置では 12本の補助容量幹線が設けら れており、図 39Aおよび図 39Bにおいて、 12本の各補助容量幹線に接続された補 助容量配線をそれぞれ CS1、 CS2、 CS3、 ' "じ312と示している。  FIG. 39A shows the brightness and polarity of each sub-pixel changed in frame n, and FIG. 39B shows the brightness and polarity of each sub-pixel changed in frame n + 1. The liquid crystal display device of the present embodiment has a pixel array as shown in FIGS. 39A and 39B. This is the same as the pixel array described in the liquid crystal display device of Embodiment 1 with reference to FIG. It is the same. Therefore, duplicate descriptions are omitted to avoid overcomplicating the description. In the liquid crystal display device of this embodiment, 12 auxiliary capacity trunk lines are provided. In FIG. 39A and FIG. 39B, the auxiliary capacity lines connected to each of the 12 auxiliary capacity trunk lines are CS1 and CS2, respectively. , CS3, '"Shows 312.
[0249] 例示として、画素 1 a、 1 b、 2— a、 2— bに含まれる副画素の明喑および極性の 変化を説明する。フレーム nでは、図 39Aに示すように、画素 1 aおよび画素 2— b の極性は第 1極性( + )であり、画素 1 bおよび画素 2— aの極性は第 2極性(一)で ある。また、副画素 1— a— A、 1 b— B、 2— a— A、 2— b— Bは他方の副画素よりも 明るい。次いで、フレーム n+ 1では、図 39Bに示すように、各副画素は中間輝度に 変化し、各副画素の極性はフレーム nのときと反転する。次いで、フレーム n+ 2では 、各副画素の極性はフレーム n+ 1のときとは反転し、図 39Aに示したのと同様となり 、副画素の明喑は、図 39Aに示したのと反転する。次いで、フレーム n+ 3では、図 3 9Bに示したのと同様に、各副画素は中間輝度に変化し、また、各副画素の極性は図 39Bに示したのと同じ極性になるように反転する。 [0249] As an example, changes in the clarity and polarity of subpixels included in the pixels 1a, 1b, 2-a, 2-b will be described. In frame n, as shown in Figure 39A, the polarity of pixel 1a and pixel 2-b is the first polarity (+), and the polarity of pixel 1b and pixel 2-a is the second polarity (one) . Also, sub-pixels 1-a-A, 1b-B, 2-a-A, 2-b-B are brighter than the other sub-pixels. Next, in frame n + 1, as shown in FIG. 39B, each sub-pixel changes to intermediate luminance, and the polarity of each sub-pixel is inverted from that in frame n. Next, in frame n + 2, the polarity of each subpixel is inverted from that in frame n + 1, and is the same as shown in FIG. 39A, and the clarity of the subpixel is inverted as shown in FIG. 39A. Then in frame n + 3, figure 3 In the same manner as shown in 9B, each sub-pixel changes to an intermediate luminance, and the polarity of each sub-pixel is inverted to the same polarity as shown in FIG. 39B.
[0250] ここで、本実施形態の液晶表示装置において、ちらつきを抑制するために上述した 3つの条件を満たすことを説明する。  Here, in the liquid crystal display device of the present embodiment, it will be described that the three conditions described above are satisfied in order to suppress flicker.
[0251] また、本実施形態の液晶表示装置では、図 15を参照して説明した実施形態 1の液 晶表示装置と同様に、各信号線の電圧および対向電極の電圧を適宜設定すること により、各々の電界の向きにおいて液晶層に印加される実効電圧をできるだけ一致 させており、第 1の条件を満たしている。また、本実施形態の液晶表示装置では、図 3 9Aおよび図 39Bに示すように、極性の異なる画素を隣接して配置しており、第 2の条 件を満たしている。また、本実施形態の液晶表示装置では、他方の副画素よりも明る い副画素が可能な限りランダムに、具体的には、図 39Aに示すように、「明」および「 喑」の記号が副画素単位で市松模様状に配置されており、第 3の条件を満たしてい  [0251] In the liquid crystal display device of the present embodiment, similarly to the liquid crystal display device of Embodiment 1 described with reference to FIG. 15, the voltage of each signal line and the voltage of the counter electrode are appropriately set. The effective voltage applied to the liquid crystal layer in each electric field direction is matched as much as possible, and the first condition is satisfied. Further, in the liquid crystal display device of the present embodiment, as shown in FIGS. 39A and 39B, pixels having different polarities are arranged adjacent to each other, and the second condition is satisfied. Further, in the liquid crystal display device of the present embodiment, subpixels brighter than the other subpixel are randomized as much as possible, specifically, as shown in FIG. 39A, the symbols “bright” and “喑” are displayed. They are arranged in a checkered pattern in sub-pixel units and satisfy the third condition.
[0252] 表 2に、実施形態 1、実施形態 3および本実施形態の液晶表示装置についてフレ ーム周波数を変化させたときの表示品位を示す。表 2において、表示品位がよいもの を「〇」で、表示品位がよくないものを「X」で示している。表 2に示すように、本実施形 態の液晶表示装置では、フレーム周波数を 90Hz以上にすれば、良好な表示品位を 得ること力 Sでさる。 [0252] Table 2 shows the display quality when the frame frequency was changed for the liquid crystal display devices of Embodiments 1, 3 and this embodiment. In Table 2, “○” indicates that the display quality is good and “X” indicates that the display quality is not good. As shown in Table 2, in the liquid crystal display device of this embodiment, if the frame frequency is set to 90 Hz or higher, good display quality can be obtained with the force S.
[0253] [表 2] [0253] [Table 2]
フレーム周波数 50H z 60H z 75 H z 90H z 1 20H z 実施形態 1 (図 6参照) Frame frequency 50H z 60H z 75H z 90H z 1 20H z Embodiment 1 (See Fig. 6)
視野角改善効果 O o 〇 〇 X  Viewing angle improvement effect O o 〇 〇 X
さらつき 〇 〇 O 〇 〇  Sticky 〇 〇 O 〇 〇
ちらつぎ (フりッカー) X 〇 O O 〇  Flicker X 〇 O O 〇
信頼性 〇 〇 〇 O 〇 実施形態 3 (Ξ28参照)  Reliability ○ ○ ○ O ○ Embodiment 3 (See Ξ28)
視野角改善効果 〇 o o 〇 〇 さらつき O 〇 〇 〇 o ちらつき (フリッカー) X X X X 〇 信頼性 〇 〇 〇 O 〇 実施形態 7 (図 38参照)  Viewing angle improvement effect ○ o o ○ ○ Dullness O ○ ○ ○ o Flicker (flicker) X X X X ○ Reliability ○ ○ ○ O ○ Embodiment 7 (Refer to Fig. 38)
視野角改善効果 o 〇 〇 o o ざらつぎ o 〇 〇 〇 o ちらつき (フリッカー) X X X 〇 〇 信頼性 〇 o 〇 〇 o  Viewing angle improvement effect o ○ ○ o o Roughness o ○ ○ ○ o Flicker (flicker) X X X ○ ○ Reliability ○ o ○ ○ o
[0254] 図 40を参照して、本実施形態の液晶表示装置における信号線の電圧、第 1、第 2 補助容量幹線の電圧、走査線の電圧、および、第 1、第 2補助容量幹線の電圧変化 に応じて変化する副画素の液晶層に印加される実効電圧の変化を、図 39Aおよび 図 39Bにおいて破線で囲んだ副画素 1— a— A、 1— a— Bについて説明する。図 40 において、 Vsaは信号泉 Saの電圧を示し、 Vsbは信号泉 Sbの電圧を示し、 Vcslは 第 1補助容量幹線 CS1の電圧を示し、 Vcs2は第 2補助容量幹線 CS2の電圧を示し 、 Vglは走査線 G1の電圧を示し、 VLspl— a—A、 VLspl— a— Bは副画素 1 a— A、 1 a— Bの液晶層に印加される実効電圧を示している。 Referring to FIG. 40, the voltage of the signal line, the voltage of the first and second auxiliary capacitance trunk lines, the voltage of the scanning line, and the voltage of the first and second auxiliary capacitance trunk lines in the liquid crystal display device of the present embodiment. The change in effective voltage applied to the liquid crystal layer of the sub-pixel that changes according to the voltage change will be described for sub-pixels 1-a-A and 1-a-B surrounded by broken lines in FIGS. 39A and 39B. In FIG. 40, Vsa represents the voltage of the signal spring Sa, Vsb represents the voltage of the signal spring Sb, Vcsl represents the voltage of the first auxiliary capacity trunk line CS1, Vcs2 represents the voltage of the second auxiliary capacity trunk line CS2, Vgl indicates the voltage of the scanning line G1, and VLspl-a-A and VLspl-a-B indicate effective voltages applied to the liquid crystal layers of the sub-pixels 1a-A and 1a-B.
[0255] 図 40には、 4つのフレーム!!〜 n+ 3における各電圧波形が示されており、図 38、図  [0255] Figure 40 shows four frames! Each voltage waveform at ~ n + 3 is shown in Figure 38, Figure
39Aおよび図 39Bを参照して説明したように、副画素 1— a— Aの輝度を(明、中、喑 、中)、副画素 l a— Bの輝度を(喑、中、明、中)と変化させながら、それぞれの極 性を(+、―、 +、―)と反転させている。各フレームの書き込み動作は、走査線 G1の 電圧 Vgl力 SVgH (ハイレベル)となる時点から開始される。入力映像信号の 1垂直走 查期間(V— Total)は 801Hである。また、第 1補助容量幹線 CS1の電圧 Vcslは、 6 H毎に第 1レベル(VL1)、第 2レベル(VL2)、第 3レベル(VL3)、第 2レベル(VL2) が交互に切り替わる波形であり、電圧 Vcslと Vcs2は互いに 180° 位相が異なる。  As described with reference to 39A and 39B, the luminance of subpixel 1—a—A (bright, medium, 喑, medium) and the luminance of subpixel la—B (喑, medium, bright, medium) Each polarity is reversed to (+,-, +,-). The writing operation for each frame starts when the voltage Vgl force SVgH (high level) of the scanning line G1 is reached. One vertical running period (V—Total) of the input video signal is 801H. The voltage Vcsl of the first auxiliary capacitance trunk line CS1 has a waveform that alternates between the first level (VL1), second level (VL2), third level (VL3), and second level (VL2) every 6H. Yes, voltages Vcsl and Vcs2 are 180 ° out of phase with each other.
[0256] 図 40において、走査線 G1の電圧 Vglが VgL (ローレベル)になってから補助容量 配線の電圧 Vcsl、 Vcs2のレベルが最初に変化するまでの期間は 3Hである。第 1補 助容量幹線 CS 1の電圧 Vcslの表示期間(第 1波形の期間)の周期は 24Hであり、 振幅が一定値 (第 1レベル、第 2レベルおよび第 3レベル)となる期間はそれぞれ 6H であるので、 3Hは、補助容量配線の電圧 Vcsの振幅が一定値となる期間の半分(= 表示期間における周期の 4分の 1の期間)に相当する。 [0256] In FIG. 40, after the voltage Vgl of the scanning line G1 becomes VgL (low level), the auxiliary capacitance The period until the voltage Vcsl and Vcs2 levels change for the first time is 3H. The period of the first auxiliary capacitance main line CS 1 voltage Vcsl display period (the period of the first waveform) is 24H, and the period during which the amplitude is constant (first level, second level, and third level) Since it is 6H, 3H corresponds to half of the period when the amplitude of the voltage Vcs of the auxiliary capacitance wiring is a constant value (= a period of a quarter of the period in the display period).
[0257] フレーム n、 n + 2において走査線 G1が選択されているとき、信号線 Saの電圧 Vsa は対向電極の電圧よりも高い。また、フレーム n+ l、 n+ 3において走査線 G1が選択 されて!/、るとき、信号線 Saの電圧 Vsaは対向電極の電圧よりも低!/、。  [0257] When the scanning line G1 is selected in the frames n and n + 2, the voltage Vsa of the signal line Sa is higher than the voltage of the counter electrode. In addition, when the scanning line G1 is selected in the frames n + 1 and n + 3, the voltage Vsa of the signal line Sa is lower than the voltage of the counter electrode! /.
[0258] 以下、図 40を参照して、画素 1 aの副画素 1 a— A、 1 a— Bにおけるフレーム nからフレーム n + 3までの明喑および極性を説明する。  Hereinafter, with reference to FIG. 40, the clarity and polarity from the frame n to the frame n + 3 in the sub-pixels 1 a-A and 1 a-B of the pixel 1 a will be described.
[0259] フレーム nでは、第 1補助容量幹線の電圧 Vcslが第 2レベルから低下して第 1レべ ルに維持されているときに走査線 G1が選択されて(走査線の電圧 Vgが VgHとなつ て)いる。走査線 G1が選択されると、副画素 1 A、 1 a— Bの副画素電極に対 向電極の電圧よりも高い電圧が印加される。走査線 G1の電圧 Vglが VgLに戻った 後、第 1補助容量幹線の電圧 Vcslは周期的に変化する。走査線 G1の電圧 Vglが VgHから VgLに戻ったときの第 1補助容量幹線の電圧 Vcslは VL1であり、第 2補助 容量幹線の電圧 Vcs2は VL3である。第 1、第 2補助容量幹線の電圧 Vcsl、Vcs2の 平均電圧である VL2は VL1よりも高ぐ VL3よりも低いので、副画素 1 a— Aの液晶 層に印加される実効電圧の絶対値は、副画素 1 a— Bの液晶層に印加される実効 電圧の絶対値よりも大きくなる。それにより、副画素 1— a— Aは、副画素 l a— Bより も明るくなる。  [0259] In frame n, the scanning line G1 is selected when the voltage Vcsl of the first auxiliary capacitance main line drops from the second level and is maintained at the first level (the scanning line voltage Vg is VgH). It is). When the scanning line G1 is selected, a voltage higher than the voltage of the counter electrode is applied to the subpixel electrodes of the subpixels 1A and 1a-B. After the voltage Vgl of the scanning line G1 returns to VgL, the voltage Vcsl of the first auxiliary capacitance trunk line changes periodically. When the voltage Vgl of the scanning line G1 returns from VgH to VgL, the voltage Vcsl of the first auxiliary capacitance trunk line is VL1, and the voltage Vcs2 of the second auxiliary capacitance trunk line is VL3. Since the average voltage VL2 of the first and second auxiliary capacitance trunk lines Vcsl and Vcs2 is higher than VL1 and lower than VL3, the absolute value of the effective voltage applied to the liquid crystal layer of subpixel 1a-A is Thus, the absolute value of the effective voltage applied to the liquid crystal layer of the sub-pixel 1a-B becomes larger. As a result, the subpixel 1—a—A becomes brighter than the subpixel l a—B.
[0260] 次いで、フレーム n+ 1では、第 1補助容量幹線の電圧 Vcslが第 3レベルから低下 して第 2レベルに維持されているときに走査線 G1が選択される(走査線の電圧 Vgが VgHとなる)。走査線 G1が選択されると、副画素 1 A、 1 a— Bの副画素電極 に対向電極の電圧よりも低い電圧が印加される。走査線 G1の電圧 Vglが VgLに戻 つた後、第 1補助容量幹線の電圧 Vcslは周期的に変化する。走査線 G1の電圧 Vg 1が VgLに戻ったとき、第 1、第 2補助容量幹線の電圧 Vcsl、 Vcs2は第 1、第 2補助 容量幹線の電圧 Vcsl、 Vcs2の平均電圧と同じ VL2である。したがって、副画素 1 a— Aの液晶層に印加される実効電圧の絶対値は、副画素 1 a— Bの液晶層に印 加される実効電圧の絶対値と等しくなり、それにより、副画素 1 a— Aの明るさは、副 画素 1 a— Bの明るさと等しくなる。 [0260] Next, in frame n + 1, the scanning line G1 is selected when the voltage Vcsl of the first auxiliary capacitance trunk line is decreased from the third level and maintained at the second level (the voltage Vg of the scanning line is VgH). When the scanning line G1 is selected, a voltage lower than the voltage of the counter electrode is applied to the subpixel electrodes of the subpixels 1A and 1a-B. After the voltage Vgl of the scanning line G1 returns to VgL, the voltage Vcsl of the first auxiliary capacitance trunk line changes periodically. When the voltage Vg1 of the scanning line G1 returns to VgL, the voltages Vcsl and Vcs2 of the first and second auxiliary capacitance trunk lines are VL2 which is the same as the average voltage of the voltages Vcsl and Vcs2 of the first and second auxiliary capacitance trunk lines. Therefore, subpixel 1 The absolute value of the effective voltage applied to the liquid crystal layer of a—A is equal to the absolute value of the effective voltage applied to the liquid crystal layer of sub-pixel 1 a—B. The brightness is equal to the brightness of sub-pixel 1a-B.
[0261] 次いで、フレーム n + 2では、第 1補助容量幹線の電圧 Vcslが第 2レベルから第 3 レベルに上がったときに走査線 G1が選択されている(走査線の電圧 Vglが VgHとな る)。走査線 G1が選択されると、副画素 1 A、 1 a— Bの副画素電極に対向電 極の電圧よりも高い電圧が印加される。走査線 G1の電圧 Vglが VgHから VgLに戻 つたときの第 1補助容量幹線の電圧 Vcslは VL3であり、第 2補助容量幹線の電圧 V cs2は VL1であるので、副画素 1 a— Aの液晶層に印加される実効電圧の絶対値 は、副画素 1 a— Bの液晶層に印加される実効電圧の絶対値よりも小さくなる。それ により、副画素 1— a— Aは、副画素 1— a Bよりも喑くなる。  [0261] Next, in frame n + 2, the scanning line G1 is selected when the voltage Vcsl of the first auxiliary capacitance trunk line rises from the second level to the third level (the scanning line voltage Vgl becomes VgH). ) When the scanning line G1 is selected, a voltage higher than the voltage of the counter electrode is applied to the subpixel electrodes of the subpixels 1A and 1a-B. When the voltage Vgl of the scanning line G1 returns from VgH to VgL, the voltage Vcsl of the first auxiliary capacitance trunk line is VL3, and the voltage V cs2 of the second auxiliary capacitance trunk line is VL1, so that the subpixel 1a-A The absolute value of the effective voltage applied to the liquid crystal layer is smaller than the absolute value of the effective voltage applied to the liquid crystal layer of the sub-pixel 1a-B. As a result, the subpixel 1—a—A is larger than the subpixel 1—aB.
[0262] 次いで、フレーム n + 3では、第 1補助容量幹線の電圧 Vcslが第 1レベルから第 2 レベルに上がった後に走査線 G1が選択されている(走査線の電圧 Vgが VgHとなる )。走査線 G1が選択されると、副画素 1 A、 1 a— Bの副画素電極に対向電極 の電圧よりも低い電圧が印加される。走査線 G1の電圧 Vglが VgHから VgLに戻つ たときの第 1、第 2補助容量幹線の電圧 Vcsl、 Vcs2は VL2であるので、副画素 1 a— Aの液晶層に印加される実効電圧の絶対値は、副画素 1 a— Bの液晶層に印 加される実効電圧の絶対値と等しくなり、それにより、副画素 1 a— Aの明るさは、副 画素 1 a— Bの明るさと等しくなる。  [0262] Next, in frame n + 3, the scanning line G1 is selected after the voltage Vcsl of the first auxiliary capacitance trunk line has increased from the first level to the second level (the scanning line voltage Vg becomes VgH). . When the scanning line G1 is selected, a voltage lower than the voltage of the counter electrode is applied to the subpixel electrodes of the subpixels 1A and 1a-B. When the voltage Vgl of the scanning line G1 returns from VgH to VgL, the voltages Vcsl and Vcs2 of the first and second auxiliary capacitance trunk lines are VL2, so the effective voltage applied to the liquid crystal layer of the sub-pixel 1a-A Is equal to the absolute value of the effective voltage applied to the liquid crystal layer of sub-pixel 1 a—B, so that the brightness of sub-pixel 1 a—A is the same as that of sub-pixel 1 a—B. Is equal to
[0263] 図 40を参照した説明から理解されるように、副画素 1— a— Aの(明暗、極性)は(明 、 + )、(中、―)、(喑、 + )、(中、一)と順番に変化し、また、副画素 1— a— Bの(明暗 、極性)は (喑、 + )、(中、―)、(明、 + )、(中、一)の順番に変化する。また、ここでは 、図示しなかったが、副画素 2— a— Aの(明暗、極性)は(明、一)、(中、 + )、(喑、 -)、(中、 + )と順番に変化する。このように、本実施形態の液晶表示装置では、副 画素の明暗を明、中、喑、中と垂直走査期間毎に変化させるとともに、極性を垂直走 查期間毎に反転しており、表示のざらつきを抑制することができる。また、本実施形態 の液晶表示装置では、実施形態 1の液晶表示装置と同様に、第 1極性期間および第 2極性期間のいずれも第 1副画素が第 2副画素よりも明るい期間を有しているので、 図 38 (b)および図 38 (c)に示すように、複数の垂直走査期間(例えば、期間 1〜4) にわたつた実効電圧 VLspaの平均と実効電圧 VLspbの平均とがほぼ等しくなり、対 向電圧の調整により、実効電圧 VLspa、 VLspbの平均を共にゼロにすることができ、 その結果、焼きつき等の信頼性上の問題の発生を抑制することができる。 [0263] As can be understood from the description with reference to FIG. 40, the (brightness, polarity, polarity) of subpixel 1—a—A is (bright, +), (middle,-), (喑, +), (middle , One), and subpixels 1—a—B (brightness, polarity) are in the order of (喑, +), (middle,-), (bright, +), (middle, one) To change. Although not shown here, the subpixel 2—a—A (brightness, polarity) is in order of (bright, one), (middle, +), (),-), (middle, +). To change. As described above, in the liquid crystal display device according to the present embodiment, the brightness of the sub-pixel is changed for each of the vertical, scanning periods of bright, medium, dark, and medium, and the polarity is inverted for each vertical scanning period. Roughness can be suppressed. Further, in the liquid crystal display device of the present embodiment, as in the liquid crystal display device of the first embodiment, both the first polarity period and the second polarity period have a period in which the first subpixel is brighter than the second subpixel. Because As shown in FIG. 38 (b) and FIG. 38 (c), the average of the effective voltage VLspa and the average of the effective voltage VLspb over a plurality of vertical scanning periods (for example, periods 1 to 4) are substantially equal. By adjusting the direction voltage, the average of the effective voltages VLspa and VLspb can both be made zero, and as a result, the occurrence of reliability problems such as burn-in can be suppressed.
[0264] なお、上述した実施形態;!〜 7の液晶表示装置では、 1つの画素を構成する副画素 の数は 2つであつたが、本発明はこれに限られず、副画素の数を 3以上にしてもよい 。副画素の数が増加するにつれて、 γ特性のずれ量を改善する効果が大きくなる。 画素分割数を 2個から 4個に増やすことにより、表示階調の変化に対するずれ量の変 化が滑らかになり表示品位はさらに良好になる。但し、分割数が多くなるほど白表示 時の透過率(正面)が低下する。特に分割数を 2個から 4個に増やすと、白表示時の 透過率の低下は著しい。この著しい低下の主な理由は、 1つの副画素の表示面積が 著しく低下するからである。 Ί特性の視角依存性の改善効果と白表示時透過率とを 考慮して、液晶表示装置の用途などに応じて、分割数を適宜調整すればよい。なお 、改善効果が最も顕著に見られるのは、画素分割無しの場合と画素 2分割の場合(副 画素数 2個の場合)の差であり、副画素の数が増加することに伴う白表示時透過率の 低下および量産性の低下を考慮すると、 1つの画素あたりの副画素の数は 2つである ことが好ましい。 [0264] In the liquid crystal display devices of the above-described embodiments;! To 7, the number of sub-pixels constituting one pixel is two. However, the present invention is not limited to this, and the number of sub-pixels is not limited to this. It may be 3 or more. As the number of subpixels increases, the effect of improving the shift amount of the γ characteristic increases. By increasing the number of pixel divisions from 2 to 4, the change in the amount of deviation with respect to the change in display gradation becomes smoother and the display quality is further improved. However, the greater the number of divisions, the lower the transmittance (front) when displaying white. In particular, when the number of divisions is increased from 2 to 4, the decrease in transmittance during white display is significant. The main reason for this significant decrease is that the display area of one subpixel is significantly reduced. In consideration of the effect of improving the viewing angle dependency of the wrinkle characteristics and the white display transmittance, the number of divisions may be appropriately adjusted according to the use of the liquid crystal display device. The improvement effect is most noticeable in the difference between the case without pixel division and the case with two pixel divisions (in the case of two subpixels), and white display as the number of subpixels increases. Considering the decrease in hourly transmittance and the decrease in mass productivity, the number of subpixels per pixel is preferably two.
[0265] なお、図 13および図 14を参照して説明したように、補助容量配線のそれぞれに独 立に電圧 Vcsを供給する構成を採用してもよい。この場合においては、表示期間お よび調整期間における電圧 Vcsの波形の選択肢が増えるというメリットが得られる。た だし、電圧 Vcsは、 1垂直走査期間内に走査線の電圧がローレベルとされてから少な くとも 1回以上はレベル変化を行う必要がある。また、例えば、走査線の 2倍の補助容 量配線と各補助容量配線にそれぞれ独立に電圧 Vcsを供給する構成を備えた液晶 表示装置で、走査線の電圧がローレベルとされてから 1回だけ電圧 Vcsのレベル変 化を行う場合は、 1垂直走査期間内で、走査線の電圧がローレベルとされてから電圧 Vcsがレベル変化を行うまでの時間あるいは、電圧 Vcsのレベル変化を行った後、次 に走査線の電圧がハイレベルとされるまでの時間が全表示ラインにおいて等しく設定 することが望ましい。 [0266] 一方、複数の補助容量幹線のそれぞれに対して複数の補助容量配線を設ける構 成を採用すると、 1つの補助容量幹線に接続された当該複数の補助容量配線の電 圧 Vcsの振動の振幅を正確に一致させられるという利点が得られる。もちろん、多数 の独立な電圧を提供するよりも回路構成を簡単にできるという利点も得られる。 Note that, as described with reference to FIGS. 13 and 14, a configuration may be adopted in which the voltage Vcs is independently supplied to each of the auxiliary capacitance lines. In this case, there is an advantage that the number of choices for the waveform of voltage Vcs during the display period and adjustment period increases. However, the voltage Vcs needs to change the level at least once after the scanning line voltage is set to the low level within one vertical scanning period. In addition, for example, in a liquid crystal display device having a configuration in which a voltage Vcs is independently supplied to each auxiliary capacitance wiring that is twice the scanning line and each auxiliary capacitance wiring, once after the scanning line voltage is set to a low level. When changing the level of the voltage Vcs only, the time until the voltage Vcs changes the level after the scanning line voltage is set to the low level or the level of the voltage Vcs is changed within one vertical scanning period. After that, it is desirable that the time until the next scanning line voltage is set to the high level is set to be equal for all display lines. [0266] On the other hand, if a configuration in which a plurality of auxiliary capacitance lines are provided for each of the plurality of auxiliary capacitance trunk lines, the vibration of the voltage Vcs of the plurality of auxiliary capacitance lines connected to one auxiliary capacitance trunk line is adopted. The advantage is that the amplitudes can be matched exactly. Of course, there is also an advantage that the circuit configuration can be simplified rather than providing a large number of independent voltages.
[0267] さらに、上述した実施形態 1〜7の液晶表示装置では、特許文献 1に記載されたマ ルチ絵素駆動方法、即ち CSバスラインに矩形波状の電圧を印加することにより、一 画素を構成する 2つの副画素の輝度を異ならせる方式を採用していた力 S、本発明は これに限定されない。  [0267] Furthermore, in the liquid crystal display devices of Embodiments 1 to 7 described above, one pixel is obtained by applying a multi-pixel driving method described in Patent Document 1, that is, a rectangular wave voltage to the CS bus line. The force S that adopts the method of making the luminance of the two sub-pixels different from each other, the present invention is not limited to this.
[0268] 本発明の要点は次の 2点であり、この 2点を満足する実施形態は上記実施形態に 限定されない。  [0268] The main points of the present invention are the following two points, and an embodiment that satisfies these two points is not limited to the above-described embodiment.
[0269] 本発明の第 1の要点は、 1画素を構成する副画素の輝度を入れ替えることにより、 各副画素の輝度を一定時間で平均化して副画素間の輝度差を略ゼロとなるように各 副画素の輝度の時間変化を最適化することにある。  [0269] The first point of the present invention is that the luminance of each subpixel is averaged over a certain period of time by replacing the luminance of the subpixels constituting one pixel so that the luminance difference between the subpixels becomes substantially zero. The objective is to optimize the temporal change in luminance of each sub-pixel.
[0270] 本発明の第 2の要点は、各副画素に印加される電圧を一定時間で平均化した値が 全ての副画素で略等しくなるように副画素の極性反転を行い、液晶層に印加される 実効電圧の変化 (輝度の変化)を最適化することにある。なお、信頼性の観点から、 副画素間の平均実効電圧の差は IV以下であることが望ましい。  [0270] The second essential point of the present invention is that the polarity of the subpixels is inverted so that the value obtained by averaging the voltages applied to the subpixels over a certain period of time is substantially equal for all the subpixels. It is to optimize the change in effective voltage applied (change in brightness). From the viewpoint of reliability, it is desirable that the difference in average effective voltage between subpixels is IV or less.
[0271] 上記 2つの要点を満足する液晶表示装置の例としては画素の極性(+、一)と副画 素の明るさ(明、喑)を組み合わせた 4つのフレーム、(明、 + )、(明、一)、(喑、 + )、 (喑、一)を一定期間内で同量含むものがある。また、別の液晶表示装置としては明 暗の中間輝度を有する構成では(明、 + )、(暗、 + )と(中、―)、(中、 -)或いは (明 、一)、(喑、一)と(中、一)、(中、一)の 4つのフレームを一定期間内で同量含むもの 力 sある。 [0271] Examples of liquid crystal display devices that satisfy the above two points include four frames that combine pixel polarity (+, 1) and sub-pixel brightness (bright, 喑), (bright, +), (Ming, 1), ((, +), (喑, 1) contain the same amount within a certain period. As another liquid crystal display device, in a configuration having intermediate brightness, (bright, +), (dark, +) and (middle,-), (middle,-) or (bright, one), (喑, in one) and (one), (in, some force s containing equal amounts of four frames within a certain time period one).
[0272] 上記要点を満足するためには、上述した実施形態;!〜 7の液晶表示装置に限定さ れず、フレーム毎に副画素の極性と輝度を制御してもよい。例えば、各副画素の TF T素子が副画素毎に独立のデータ信号、走査信号で駆動する液晶表示装置であつ てもよい。  [0272] In order to satisfy the above points, the present invention is not limited to the liquid crystal display devices of the above-described embodiments;! To 7, and the polarity and luminance of the sub-pixel may be controlled for each frame. For example, the TFT element of each subpixel may be a liquid crystal display device that is driven by an independent data signal or scanning signal for each subpixel.
[0273] または、本発明の液晶表示装置は、図 25に示したように、各副画素の TFT素子が 副画素毎に独立のデータ信号で輝度を制御し、共通の走査線によって駆動される液 晶表示装置であってもよい。この場合、副画素の輝度および極性を独立のデータ信 号で供給することにより、各副画素の輝度および極性を制御することができる。 [0273] Alternatively, in the liquid crystal display device of the present invention, as shown in FIG. It may be a liquid crystal display device in which the luminance is controlled by an independent data signal for each sub-pixel and driven by a common scanning line. In this case, the luminance and polarity of each sub-pixel can be controlled by supplying the luminance and polarity of the sub-pixel with independent data signals.
[0274] あるいは、本発明の液晶表示装置は、各副画素の TFT素子が副画素毎に共通の データ信号で輝度を制御し、別個の走査線によって駆動される液晶表示装置であつ てもよい。この場合、 1フレームの時間をさらに分割し各副画素に対応した輝度と極 性をデータ信号に供給し、それぞれの副画素で走査時間或いはタイミングを設定す る(1フレーム内で時分割する)ことにより、各副画素の輝度および極性を制御するこ と力 Sできる。 [0274] Alternatively, the liquid crystal display device of the present invention may be a liquid crystal display device in which the TFT element of each subpixel controls the luminance with a common data signal for each subpixel and is driven by a separate scanning line. . In this case, the time of one frame is further divided, the luminance and polarity corresponding to each subpixel are supplied to the data signal, and the scanning time or timing is set for each subpixel (time division within one frame). Therefore, it is possible to control the brightness and polarity of each sub-pixel.
[0275] なお、参考のために、本願の基礎出願である特願 2006— 228476、および、それ に関連する特願 2006— 228475の開示内容を本明細書に援用する。  [0275] For reference, the disclosure of Japanese Patent Application No. 2006-228476, which is the basic application of the present application, and related Japanese Patent Application No. 2006-228475 are incorporated herein by reference.
産業上の利用可能性  Industrial applicability
[0276] 本発明によると、 γ特性の視野角依存性が改善された表示品位の極めて高い大型 あるいは高精細の液晶表示装置が提供される。本発明の液晶表示装置は、例えば 3 0型以上の大型のテレビ受像機として好適に用いられる。 [0276] According to the present invention, there is provided a large-sized or high-definition liquid crystal display device with extremely high display quality in which the viewing angle dependency of the γ characteristic is improved. The liquid crystal display device of the present invention is suitably used as a large television receiver of, for example, 30 type or more.

Claims

請求の範囲 The scope of the claims
[1] それぞれが、第 1副画素および第 2副画素を含む複数の画素を備えた液晶表示装 置であって、  [1] A liquid crystal display device including a plurality of pixels each including a first subpixel and a second subpixel,
前記第 1副画素および前記第 2副画素のそれぞれは、対向電極と、副画素電極と、 前記対向電極と前記副画素電極との間に配置された液晶層とを有しており、 前記第 1副画素および前記第 2副画素のそれぞれの前記副画素電極は、それぞれ 別個の第 1副画素電極および第 2副画素電極であり、前記第 1副画素および前記第 2副画素のそれぞれの前記対向電極は共通の単一電極であり、  Each of the first subpixel and the second subpixel includes a counter electrode, a subpixel electrode, and a liquid crystal layer disposed between the counter electrode and the subpixel electrode. The subpixel electrodes of each of the first subpixel and the second subpixel are separate first subpixel electrodes and second subpixel electrodes, respectively, and the first subpixel and the second subpixel, respectively. The counter electrode is a common single electrode,
連続する 4以上の偶数の垂直走査期間にわたって所定の中間階調の表示を行う場 合に、前記偶数の垂直走査期間のうちの少なくとも 2つの垂直走査期間において前 記第 1副画素および前記第 2副画素の輝度は異なり、前記第 1副画素および前記第 2副画素のそれぞれについて前記偶数の垂直走査期間のうちの極性が第 1極性で ある第 1極性期間の長さと第 2極性である第 2極性期間の長さとが等しぐ前記第 1極 性期間および前記第 2極性期間のそれぞれにおいて前記第 1副画素の前記液晶層 に印加される実効電圧の平均直と前記第 2副画素の前記液晶層に印加される実効 電圧の平均値との差が実質的にゼロである、液晶表示装置。  When displaying a predetermined intermediate gradation over four or more consecutive vertical scanning periods, the first sub-pixel and the second sub-pixel in at least two of the even vertical scanning periods. The luminance of the sub-pixels is different, and the first sub-pixel and the second sub-pixel have a first polarity period length and a second polarity, the polarity of the even number of vertical scanning periods being the first polarity. The average voltage of the effective voltage applied to the liquid crystal layer of the first subpixel and the second subpixel in each of the first polarity period and the second polarity period, which are equal in length to two polarity periods, A liquid crystal display device, wherein a difference from an average value of effective voltages applied to the liquid crystal layer is substantially zero.
[2] 前記複数の画素のそれぞれにおいて、前記第 1副画素の前記液晶層に印加される 実効電圧を VLspaとし、前記第 2副画素の前記液晶層に印加される実効電圧を VLs pbとすると、連続する 4つの垂直走査期間のうち、 2つの垂直走査期間は前記第 1極 性期間であり、残りの 2つの垂直走査期間は前記第 2極性期間であり、 [2] In each of the plurality of pixels, an effective voltage applied to the liquid crystal layer of the first subpixel is VLspa, and an effective voltage applied to the liquid crystal layer of the second subpixel is VLspb. Of the four consecutive vertical scanning periods, two vertical scanning periods are the first polarity period, and the remaining two vertical scanning periods are the second polarity period,
前記第 1極性期間および前記第 2極性期間のうち少なくとも一方の前記 2つの垂直 走査期間のうち、一方は I VLspa I > I VLspb |を満たし、他方は | VLspa | < I VLspb Iを満たす、請求項 1に記載の液晶表示装置。  One of the two vertical scanning periods of at least one of the first polarity period and the second polarity period satisfies I VLspa I> I VLspb |, and the other satisfies | VLspa | <I VLspb I Item 2. A liquid crystal display device according to item 1.
[3] 前記複数の画素のそれぞれにおいて、前記第 1副画素の前記液晶層に印加される 実効電圧を VLspaとし、前記第 2副画素の前記液晶層に印加される実効電圧を VLs pbとすると、連続する 4つの垂直走査期間のうち、 2つの垂直走査期間は前記第 1極 性期間であり、残りの 2つの垂直走査期間は前記第 2極性期間であり、 [3] In each of the plurality of pixels, an effective voltage applied to the liquid crystal layer of the first subpixel is VLspa, and an effective voltage applied to the liquid crystal layer of the second subpixel is VLspb. Of the four consecutive vertical scanning periods, two vertical scanning periods are the first polarity period, and the remaining two vertical scanning periods are the second polarity period,
前記第 1極性期間および前記第 2極性期間のうち少なくとも一方の前記 2つの垂直 走査期間のうちの一方の垂直走査期間における V I Lspa Iの値および I VLspb | の値は、他方の垂直走査期間における I VLspb Iの値および I VLspa |の値とそ れぞれ等し!/ \請求項 1に記載の液晶表示装置。 The two vertical directions of at least one of the first polarity period and the second polarity period The values of VI Lspa I and I VLspb | in one vertical scanning period are equal to the values of I VLspb I and I VLspa | in the other vertical scanning period! / The liquid crystal display device according to claim 1.
[4] 前記 4つの垂直走査期間のうち I VLspa | > | VLspb |を満たす垂直走査期間 の数は I VLspa I < I VLspb |を満たす垂直走査期間の数と等しい、請求項 2ま たは 3に記載の液晶表示装置。 [4] The number of vertical scanning periods satisfying I VLspa |> | VLspb | among the four vertical scanning periods is equal to the number of vertical scanning periods satisfying I VLspa I <I VLspb | A liquid crystal display device according to 1.
[5] 前記複数の画素は、複数の行方向および複数の列方向にマトリクス状に配置され ており、 [5] The plurality of pixels are arranged in a matrix in a plurality of row directions and a plurality of column directions,
前記複数の画素のそれぞれにおいて、前記第 1副画素および前記第 2副画素は前 記列方向に沿って配置されている、請求項 1から 4のいずれかに記載の液晶表示装 置。  5. The liquid crystal display device according to claim 1, wherein in each of the plurality of pixels, the first subpixel and the second subpixel are arranged along the column direction.
[6] 前記複数の画素のそれぞれにおいて、前記第 1副画素電極および前記第 2副画素 電極の電圧は、対応する補助容量配線の電圧変化に応じて変化する、請求項 1から [6] The voltage of the first subpixel electrode and the second subpixel electrode in each of the plurality of pixels changes according to a voltage change of a corresponding auxiliary capacitance line.
5の!/、ずれかに記載の液晶表示装置。 The liquid crystal display device described in 5! /.
[7] 前記複数の画素のそれぞれにおいて、前記第 1副画素電極に対応する補助容量 配線の電圧は、前記第 2副画素電極に対応する補助容量配線の電圧とは異なる方 向に変化する、請求項 6に記載の液晶表示装置。 [7] In each of the plurality of pixels, the voltage of the auxiliary capacitance line corresponding to the first subpixel electrode changes in a direction different from the voltage of the auxiliary capacitance line corresponding to the second subpixel electrode. The liquid crystal display device according to claim 6.
[8] 前記複数の画素のうちのある画素の前記第 2副画素電極の電圧、および、前記あ る画素の前記列方向に隣接する画素の前記第 1副画素電極の電圧は、共通の補助 容量配線の電圧変化に応じて変化する、請求項 5から 7のいずれかに記載の液晶表 示装置。 [8] The voltage of the second subpixel electrode of a certain pixel of the plurality of pixels and the voltage of the first subpixel electrode of a pixel adjacent to the certain pixel in the column direction are common auxiliary. The liquid crystal display device according to claim 5, wherein the liquid crystal display device changes according to a voltage change of the capacitor wiring.
[9] 前記複数の画素のうちのある画素の前記第 2副画素電極の電圧、および、前記あ る画素の前記列方向に隣接する画素の前記第 1副画素電極の電圧は、異なる補助 容量配線の電圧変化に応じて変化する、請求項 5から 7のいずれかに記載の液晶表 示装置。  [9] A voltage of the second subpixel electrode of a certain pixel of the plurality of pixels and a voltage of the first subpixel electrode of a pixel adjacent to the certain pixel in the column direction are different auxiliary capacitors. The liquid crystal display device according to claim 5, wherein the liquid crystal display device changes according to a voltage change of the wiring.
[10] 前記複数の画素のそれぞれにおいて、前記第 1副画素電極は対応するスィッチン グ素子を介して前記第 2副画素電極と同じ信号線に接続されている、請求項 1から 9 の!/、ずれかに記載の液晶表示装置。 [10] In each of the plurality of pixels, the first subpixel electrode is connected to the same signal line as the second subpixel electrode via a corresponding switching element. A liquid crystal display device according to any one of the above.
[11] 前記複数の画素のそれぞれにおいて、前記第 1副画素電極は第 1スイッチング素 子を介して第 1信号線に接続されており、前記第 2副画素電極は第 2スィッチング素 子を介して第 2信号線に接続されている、請求項 1から 5のいずれかに記載の液晶表 示装置。 [11] In each of the plurality of pixels, the first subpixel electrode is connected to a first signal line via a first switching element, and the second subpixel electrode is connected to a second switching element. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is connected to the second signal line.
[12] 前記第 1極性期間および前記第 2極性期間のそれぞれの前記 2つの垂直走査期 間のうち、一方は I VLspa I > I VLspb |を満たす垂直走査期間であり、他方は I VLspa I < I VLspb |を満たす垂直走査期間である、請求項 1から 11のいずれ かに記載の液晶表示装置。  [12] Of the two vertical scanning periods of each of the first polarity period and the second polarity period, one is a vertical scanning period that satisfies I VLspa I> I VLspb |, and the other is I VLspa I < 12. The liquid crystal display device according to claim 1, wherein the liquid crystal display device has a vertical scanning period that satisfies I VLspb |.
[13] 前記複数の画素のそれぞれにおいて、 I VLspa Iと I VLspb |との大小関係を 1 垂直走査期間ごとに反転するとともに、前記第 1副画素および前記第 2副画素の極 性を 2垂直走査期間ごとに反転する、請求項 1から 12のいずれかに記載の液晶表示 装置。  [13] In each of the plurality of pixels, the magnitude relationship between I VLspa I and I VLspb | is inverted every vertical scanning period, and the polarities of the first sub-pixel and the second sub-pixel are two vertical The liquid crystal display device according to claim 1, wherein the liquid crystal display device is inverted every scanning period.
[14] フレーム周波数は 60Hzである、請求項 1から 13のいずれかに記載の液晶表示装 置。  [14] The liquid crystal display device according to any one of claims 1 to 13, wherein the frame frequency is 60Hz.
[15] 前記複数の画素のそれぞれにおいて、 I VLspa Iと I VLspb |との大小関係を 2 垂直走査期間ごとに反転するとともに、前記第 1副画素および前記第 2副画素の極 性を 1垂直走査期間ごとに反転する、請求項 1から 12のいずれかに記載の液晶表示 装置。  [15] In each of the plurality of pixels, the magnitude relationship between I VLspa I and I VLspb | is inverted every two vertical scanning periods, and the polarities of the first sub-pixel and the second sub-pixel are 1 vertical The liquid crystal display device according to claim 1, wherein the liquid crystal display device is inverted every scanning period.
[16] フレーム周波数は 120Hzである、請求項 15に記載の液晶表示装置。  16. The liquid crystal display device according to claim 15, wherein the frame frequency is 120 Hz.
[17] 前記複数の画素のそれぞれにおいて、 I VLspa Iと I VLspb |との大小関係を 2 垂直走査期間ごとに反転するとともに、前記第 1副画素および前記第 2副画素の極 性を 2垂直走査期間ごとに反転し、  [17] In each of the plurality of pixels, the magnitude relationship between I VLspa I and I VLspb | is inverted every two vertical scanning periods, and the polarities of the first subpixel and the second subpixel are Inverts every scanning period,
前記第 1副画素および前記第 2副画素の極性を反転するときとは異なるときに I V When the polarity of the first subpixel and the second subpixel is different from that when the polarity is inverted, I V
Lspa Iと I VLspb |との大小関係の反転を行う、請求項 1から 12のいずれかに記 載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the magnitude relationship between Lspa I and I VLspb | is reversed.
[18] 前記第 1極性期間および前記第 2極性期間の一方の前記 2つの垂直走査期間のう ち、一方は I VLspa I > I VLspb |を満たす垂直走査期間であり、他方は | VLsp a I < I VLspb Iを満たす垂直走査期間であり、 前記第 1極性期間および前記第 2極性期間の他方の前記 2つの垂直走査期間の それぞれにおいて、 VLspaは VLspbと等しい、請求項 1から 11のいずれかに記載の 液晶表示装置。 [18] Of the two vertical scanning periods of one of the first polarity period and the second polarity period, one is a vertical scanning period that satisfies I VLspa I> I VLspb | and the other is | VLsp a I <I is a vertical scanning period satisfying VLspb I, 12. The liquid crystal display device according to claim 1, wherein VLspa is equal to VLspb in each of the other two vertical scanning periods of the first polarity period and the second polarity period.
前記第 1副画素電極および前記第 2副画素電極に対応する補助容量配線の電圧 は、第 1レベルと、前記第 1レベルよりも高電圧の第 2レベルと、前記第 2レベルよりも 高電圧の第 3レベルとの間で変化する、請求項 18に記載の液晶表示装置。  The voltages of the auxiliary capacitance lines corresponding to the first subpixel electrode and the second subpixel electrode are a first level, a second level higher than the first level, and a higher voltage than the second level. 19. The liquid crystal display device according to claim 18, wherein the liquid crystal display device varies between the third level and the third level.
前記第 1副画素電極は前記第 2副画素電極と等しい表示面積を有している、請求 項 1から 19のいずれかに記載の液晶表示装置。  20. The liquid crystal display device according to claim 1, wherein the first subpixel electrode has a display area equal to that of the second subpixel electrode.
PCT/JP2007/065832 2006-08-24 2007-08-13 Liquid crystal display device WO2008023601A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008530861A JP5043847B2 (en) 2006-08-24 2007-08-13 Liquid crystal display
US12/310,360 US8638282B2 (en) 2006-08-24 2007-08-13 Liquid crystal display device
EP07792475.1A EP2056286B1 (en) 2006-08-24 2007-08-13 Liquid crystal display device
CN200780031269.4A CN101506866B (en) 2006-08-24 2007-08-13 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006228476 2006-08-24
JP2006-228476 2006-08-24

Publications (1)

Publication Number Publication Date
WO2008023601A1 true WO2008023601A1 (en) 2008-02-28

Family

ID=39106687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065832 WO2008023601A1 (en) 2006-08-24 2007-08-13 Liquid crystal display device

Country Status (4)

Country Link
EP (3) EP2284828A1 (en)
JP (1) JP5043847B2 (en)
CN (1) CN101506866B (en)
WO (1) WO2008023601A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090244419A1 (en) * 2008-03-31 2009-10-01 Casio Computer Co., Ltd. Liquid crystal display device
WO2010119597A1 (en) * 2009-04-13 2010-10-21 シャープ株式会社 Display apparatus, liquid crystal display apparatus, drive method for display apparatus, and television receiver
US8379161B2 (en) 2008-07-14 2013-02-19 Casio Computer Co., Ltd. Liquid crystal display device
WO2015011933A1 (en) * 2013-07-26 2015-01-29 Sharp Kabushiki Kaisha Active matrix display device and method of driving same
WO2015186211A1 (en) * 2014-06-04 2015-12-10 堺ディスプレイプロダクト株式会社 Display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101855665B (en) * 2007-11-08 2013-03-27 Tp视觉控股有限公司 Driving pixels of a display
CN102483545A (en) * 2009-08-28 2012-05-30 夏普株式会社 Liquid crystal display
JP5538559B2 (en) * 2010-11-02 2014-07-02 シャープ株式会社 Display device
AU2013316621B2 (en) * 2012-09-13 2016-04-14 Sharp Kabushiki Kaisha Liquid crystal display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121144A (en) * 1993-10-20 1995-05-12 Nec Corp Liquid crystal display device
JP2003255306A (en) 2002-03-05 2003-09-10 Matsushita Electric Ind Co Ltd Method for driving liquid crystal display
JP2004021069A (en) * 2002-06-19 2004-01-22 Sharp Corp Active matrix substrate and display
JP2004085608A (en) * 2002-08-22 2004-03-18 Seiko Epson Corp Image display device, image display method, and image display program
JP2004325571A (en) * 2003-04-22 2004-11-18 Seiko Epson Corp Electro-optical device, its driving method, and electronic apparatus
JP2005189804A (en) * 2003-12-05 2005-07-14 Sharp Corp Liquid crystal display device
EP1818903A1 (en) 2004-11-05 2007-08-15 Sharp Kabushiki Kaisha Liquid crystal display apparatus and method for driving the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69838927T2 (en) 1997-06-12 2009-02-26 Sharp K.K. Display device with vertically aligned liquid crystal
KR100806901B1 (en) * 2001-09-03 2008-02-22 삼성전자주식회사 Liquid crystal display for wide viewing angle, and driving method thereof
JP3999081B2 (en) 2002-01-30 2007-10-31 シャープ株式会社 Liquid crystal display
JP4342200B2 (en) 2002-06-06 2009-10-14 シャープ株式会社 Liquid crystal display
KR100836986B1 (en) * 2003-03-31 2008-06-10 샤프 가부시키가이샤 Image processing method and liquid crystal display device using the same
CN101510034B (en) * 2003-12-05 2013-06-19 夏普株式会社 Liquid crystal display
JP4197322B2 (en) * 2004-01-21 2008-12-17 シャープ株式会社 Display device, liquid crystal monitor, liquid crystal television receiver and display method
WO2006070829A1 (en) * 2004-12-28 2006-07-06 Sharp Kabushiki Kaisha Liquid crystal device and drive method thereof
KR20060089831A (en) * 2005-02-04 2006-08-09 삼성전자주식회사 Driving apparatus of display device
JP4654705B2 (en) 2005-02-15 2011-03-23 パナソニック電工株式会社 Lighting device, lighting fixture, and lighting system
JP4860163B2 (en) 2005-02-15 2012-01-25 積水化学工業株式会社 Method for producing conductive fine particles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121144A (en) * 1993-10-20 1995-05-12 Nec Corp Liquid crystal display device
JP2003255306A (en) 2002-03-05 2003-09-10 Matsushita Electric Ind Co Ltd Method for driving liquid crystal display
JP2004021069A (en) * 2002-06-19 2004-01-22 Sharp Corp Active matrix substrate and display
JP2004085608A (en) * 2002-08-22 2004-03-18 Seiko Epson Corp Image display device, image display method, and image display program
JP2004325571A (en) * 2003-04-22 2004-11-18 Seiko Epson Corp Electro-optical device, its driving method, and electronic apparatus
JP2005189804A (en) * 2003-12-05 2005-07-14 Sharp Corp Liquid crystal display device
EP1818903A1 (en) 2004-11-05 2007-08-15 Sharp Kabushiki Kaisha Liquid crystal display apparatus and method for driving the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2056286A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090244419A1 (en) * 2008-03-31 2009-10-01 Casio Computer Co., Ltd. Liquid crystal display device
US8368626B2 (en) * 2008-03-31 2013-02-05 Casio Computer Co., Ltd. Liquid crystal display device
US8379161B2 (en) 2008-07-14 2013-02-19 Casio Computer Co., Ltd. Liquid crystal display device
WO2010119597A1 (en) * 2009-04-13 2010-10-21 シャープ株式会社 Display apparatus, liquid crystal display apparatus, drive method for display apparatus, and television receiver
JP5336581B2 (en) * 2009-04-13 2013-11-06 シャープ株式会社 Display device, liquid crystal display device, driving method of display device, and television receiver
JP2014002397A (en) * 2009-04-13 2014-01-09 Sharp Corp Display device, liquid crystal display device, and television receiver
US8872744B2 (en) 2009-04-13 2014-10-28 Sharp Kabushiki Kaisha Display apparatus, liquid crystal display apparatus, drive method for display apparatus, and television receiver
US9165517B2 (en) 2009-04-13 2015-10-20 Sharp Kabushiki Kaisha Methods for reducing ripples in data signal lines, display apparatus, liquid crystal display apparatus, and television receivers including the same
WO2015011933A1 (en) * 2013-07-26 2015-01-29 Sharp Kabushiki Kaisha Active matrix display device and method of driving same
JP2016526692A (en) * 2013-07-26 2016-09-05 シャープ株式会社 Active matrix display device and driving method thereof
WO2015186211A1 (en) * 2014-06-04 2015-12-10 堺ディスプレイプロダクト株式会社 Display device
US10114255B2 (en) 2014-06-04 2018-10-30 Sakai Display Products Corporation Display apparatus

Also Published As

Publication number Publication date
EP2284829A1 (en) 2011-02-16
CN101506866B (en) 2013-08-21
EP2056286A4 (en) 2009-09-16
EP2284828A1 (en) 2011-02-16
JPWO2008023601A1 (en) 2010-01-07
JP5043847B2 (en) 2012-10-10
EP2056286A1 (en) 2009-05-06
CN101506866A (en) 2009-08-12
EP2056286B1 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
US8638282B2 (en) Liquid crystal display device
JP4342200B2 (en) Liquid crystal display
KR100711230B1 (en) Liquid crystal display
US7791577B2 (en) Liquid crystal display device and method for driving the same
US7948463B2 (en) Liquid crystal display device
US8207926B2 (en) Liquid crystal display device
JP5284535B2 (en) Liquid crystal display
US7884890B2 (en) Liquid crystal display device
JP5043847B2 (en) Liquid crystal display
JPWO2008139695A1 (en) Liquid crystal display
WO2008038727A1 (en) Display device
JP5042270B2 (en) Liquid crystal display
JP2008158286A (en) Liquid crystal display device
WO2011105503A1 (en) Liquid crystal display device
JP2006171342A (en) Liquid crystal display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780031269.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792475

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530861

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12310360

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007792475

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU