WO2008020087A1 - Sistema óptico implantable, procedimiento para su desarrollo y aplicaciones - Google Patents

Sistema óptico implantable, procedimiento para su desarrollo y aplicaciones Download PDF

Info

Publication number
WO2008020087A1
WO2008020087A1 PCT/ES2006/000467 ES2006000467W WO2008020087A1 WO 2008020087 A1 WO2008020087 A1 WO 2008020087A1 ES 2006000467 W ES2006000467 W ES 2006000467W WO 2008020087 A1 WO2008020087 A1 WO 2008020087A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
implantable optical
cells
annular
implantable
Prior art date
Application number
PCT/ES2006/000467
Other languages
English (en)
French (fr)
Inventor
Nerea Garagorri Ganchegui
Iratxe Madarieta Pardo
Beatriz Olalde Graells
Original Assignee
Fundacion Inasmet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Inasmet filed Critical Fundacion Inasmet
Priority to PCT/ES2006/000467 priority Critical patent/WO2008020087A1/es
Priority to JP2009523308A priority patent/JP2010500064A/ja
Priority to CN2006800560365A priority patent/CN101522133B/zh
Priority to EP06807913A priority patent/EP2052698A4/en
Priority to US12/376,603 priority patent/US20100215720A1/en
Publication of WO2008020087A1 publication Critical patent/WO2008020087A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/148Implantation instruments specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/145Corneal inlays, onlays, or lenses for refractive correction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body

Definitions

  • the present invention has its field of application in the area of Ophthalmology. More specifically, this invention relates to an implantable optical system applied to corneal alterations, composed of a central optical part and a peripheral annular part comprising animal cells, which favors the integration of the implant into the patient's corneal tissue, as well as the method for obtaining it and its applications in eye disorders.
  • corneal blindness Disorders that affect the cornea constitute one of the main causes of blindness worldwide, preceded in order of general importance only by cataracts.
  • the epidemiology of corneal blindness is complicated and is accompanied by a variety of infectious and inflammatory eye diseases that cause corneal scars, which ultimately lead to blindness. Additionally, the prevalence of corneal diseases varies between different countries and even between different populations (1). Approximately 10 million people suffer corneal blindness worldwide (1, 3) due to both genetic and acquired conditions.
  • corneal transplant The technique that has obtained the most successes in the face of these corneal complications is the corneal transplant, whose success depends fundamentally on the type of patient or recipient. Corneal transplantation is successful in approximately 90% in patients considered "low risk" in countries developed (1). These are characterized by loss of vision due to corneal scars due to trauma, keratoconus or endothelial failures (due to dystrophies or previous operations). Despite this high success rate of corneal transplantation in these patients, there are important limitations with the techniques currently used; these include graft failures due to immunological rejections or endothelial dysfunction, significant astigmatism due to topographic irregularity, unpredictability of refractive error, and other less common although problematic ones such as suture infections, recurrent corneal diseases, etc.
  • corneal inflammatory diseases hereins simplex or zoster
  • dry eye Sjogren syndrome
  • severe and generalized superficial eye diseases e.g., scar pemfigoide eye, chemical / thermal burns, etc.
  • certain congenital abnormalities eg Peter's disease
  • Corneal blindness due to infection is endemic in many parts of the world; In developing countries, the situation worsens because they do not have eye banks (1, 2), postoperative medications or a social context necessary for routine postoperative check-ups.
  • porous materials for the improvement of the integration between the core (lens or central part) and the skirt (ring that surrounds the core or annular part) and between the skirt and the receptor tissue
  • porous materials include Teflon, Gore-Tex
  • Biological and tissue engineering techniques allow us to use cells as authors in the reconstruction of tissues. These cells, isolated from their tissue and in the presence of a support (of a synthetic, natural or mixed nature), are capable of generating an extracellular matrix morphologically similar to that native and composed of collagens and other adhesive fibers (45).
  • Hydrogels are good candidates for cell support. They are hydrophilic polymers that form three-dimensional networks with the ability to capture a lot of water without dissolving in it. They also exhibit good biocompatibility and high permeability to oxygen and other nutrients, being therefore materials of choice in cell therapy (38), tissue regeneration (39) and controlled release of active substances (65).
  • the photoencapsulation technique in addition to cells and cellular components, allows other types of components to be encapsulated in these photopolymerizable materials (64). It allows encapsulating particles that act as active substance release systems, such as the micro and / or nanospheres consisting of biodegradable polymers that allow controlling the release of drugs effectively within the desired therapeutic range. Hubbel and his group proposed the technique of photopolymerization to form controlled release materials and systems (65).
  • the controlled release systems of active substances have been used since the beginning of the 20th century (61) and were born due to the need to improve the administration of drugs. They are systems thanks to which the released dose can be controlled and systems capable of directing these active molecules specifically to target organs.
  • the use of poly-DL-lactic acid and / or poly-D-lactic-co-glycolic acid has prevailed due to the total absence of toxicity of the degradation products and their modular degradation rate (62).
  • the release of conventional active ingredients from polylactic / polyglycolic acid microspheres generally occurs by diffusion through the polymer matrix, as well as through the pores of the structure of the polymer. polymer.
  • the biodegradation of the polymer matrix and dissolution of the degraded polymer continuously changes the geometry of the microspheres and the texture of the polymer matrix.
  • the release model of active ingredients is a combination of diffusion and degradation.
  • This keratoprosthesis is composed of an optical central part and another annular part (core and skirt).
  • the main novelty is that the annular part, skirt, has cellular components capable of secreting collagen and proteoglycan fibers for a better integration of the implant and a maintenance of the corneal transparency and in that it has a system that doses chemical compounds directed to a particular function (for example anti-inflammatory substances, regenerators, etc.) creating a stabilizing microenvironment against the presence of the implant in the tissue.
  • this bicompartmental lens can be adapted to the patient's requirements and will depend on the pathological state of the stroma and the corneal epithelium. Also, due to its characteristics, the implant can be used in the development of other types of implants in patients with ocular disorders of different nature.
  • FIG. 1 General figure of the optical system seen in plane and in perspective.
  • Fig. 2 Scheme of different types of implants.
  • Ep Epithelium;
  • It is a): Anterior stroma;
  • It's m Medium stroma;
  • It is p
  • Posterior stroma Posterior stroma;
  • Endothelium Endothelium.
  • Fig. 3 Scheme of the process of obtaining biocompartmental lenses by photopolymerization.
  • Stage 1) Preparation of the solution of the central optical part (SOL. A), which consists of a polymer solution (SP) and a photoinitiator (Fl);
  • Stage 2) Preparation of the solution of the annular part or ring (SOL. B) composed of polymer solution (SP), photoinitiator (Fl), cells (C) and active spheres (E) as a therapeutic system;
  • Stage 3) Deposition of solutions A and B from stages 1) and 2) respectively in specific molds; and
  • Figure 4 Scheme of the photopolymerization stage for obtaining the biocompartmental lens. 1) Filling solutions A and B from phases 1 and 2 (figure 3) respectively; 2) Close the mold; 3) Polymerization and homogenization of the sample. 4) Opening of the lid and removal of the separator; 5) Closing the lid; 6) Polymerization and homogenization of the sample; 7) Opening of the lid and removal of the two compartment lens.
  • the main object of the invention is to provide a new implantable optical system model formed by an optical central part and an annular anchor part with live animal cells, including humans. Another object of the invention relates to the method for obtaining said implantable optical system.
  • the implantable optical system obtained by said method is also object of the invention.
  • Another object of the invention contemplates the use of the implantable optical system in corneal and crystalline disorders, specifically in the development of corneal implants, such as intrastromal lenses or keratoprostheses, and intraocular lenses.
  • the present invention provides a hybrid system composed of a mixture of synthetic materials with living materials, not biodegradable with biodegradable, inert substances with chemically active substances, combined in an implantable system that allows each of these compounds to perform their function.
  • a main aspect of the invention contemplates an implantable optical system comprising an optical central part and an annular anchoring part comprising live animal cells, including human cells.
  • the cells may come from the patient to be implanted and / or from a donor.
  • These cells depending on the degree of ocular disorder and the objective to be repaired, can be selected from among stem cells, primary keratocytes, fibroblasts, myofibroblasts, cells of different origin susceptible to differentiation to stromal cell, genetically modified cells capable of exerting a regenerative effect , as well as lens cells.
  • the cells incorporated in the ring are growing, proliferating and secreting components of the extracellular matrix forming interfibrillar bonds with other collagens and proteoglycans of the recipient tissue (of the patient) allowing 1) the subjection of the annular part to the host tissue and an improvement in the accommodation of the implant, which is particularly important since one of the most common causes of failure of the implants currently employed in the state of the art is the extrusion of the implant due to lack of implant-tissue adhesion and 2) a reparative effect on the part of living cells
  • the annular anchoring part further comprises a therapeutic controlled-release system comprising one or more active substances of ophthalmic interest directed to a particular function (for example anti-inflammatory, antibiotics, antivirals, antitumor drugs, etc.) .
  • this system can be micro and / or nano spheres, capsules or biodegradable micelles that encapsulate the active substances by means of different techniques.
  • the material of the central part is preferably of synthetic and non-biodegradable origin, complying with the optical requirements of a lens and can be designed to correct different refractive errors (myopia, farsightedness, presbyopia).
  • the material of the annular part acts as an element of attachment of the lens to the tissue and is a three-dimensional matrix capable of maintaining cells and other components in its interior and is preferably of synthetic or mixed origin and biodegradable or non-biodegradable.
  • the material of both the central part and the annular part is a polymeric material.
  • the components included in the annular anchoring part are immersed in said polymeric material.
  • the polymeric material is of the hydrogel type.
  • the polymerization mechanism of these hydrogels can be physical or chemical, ionic or covalent, driven by temperature changes, ionic changes, addition of bonding substances or radiation exposure.
  • hydrogels can polymerize both in vivo and in vitro in the presence of photoinitiators using visible or ultraviolet light, converting a liquid monomer to gel.
  • This type of hydrogels have advantages over other conventional polymerization techniques: control of space and time of the polymerization, short curing times (from less than a second to a few minutes) at ambient or physiological temperatures and a minimum heat production.
  • Another great advantage of photopolymerization is that hydrogels can be created in situ from their aqueous precursors in a minimally invasive way, for example using laparoscopic devices, catheters or subcutaneous injections with transdermal illumination.
  • photopolymerizable hydrogels have the advantage that they allow the photoencapsulation technique.
  • This technique in turn has the great virtue that it allows the incorporation of the cells in the initial phase of the gelation process, that is to say, it allows mixing cells and polymers in the liquid phase, so that when the gelification of the material starts the cells They are incorporated inside.
  • This is a great advantage for tissue engineering because it solves one of the limitations of this practice, which is the low effectiveness of adhesion by the cells to the materials in the initial phase of inoculation. This effectiveness is diminished when the support material is of porous matrix type, since the cells by simple weight and gravity fall without having the option to adhere to the material.
  • the physical method of polymerization of the hydrogel used is photopolymerization, which allows the photoencapsulation technique to form a hybrid system that forms part of the biocomponent lens ring and in which the cells and The micro / nanoparticles responsible for the release are formed prior to photoencapsulation in the hydrogel.
  • the photopolymerizable capacity of the hydrogels allows simultaneity in the processing of the material and the manufacturing of the implantable optical system.
  • the annular and central part comprise at least one common hydrogel type macromer, preferably an acrylic derivative of polyethylene glycol, such as polyethylene glycol diacrylate
  • the hydrogel type macromer may be copolymerizing other monomers / polymers in a differential manner in each part.
  • the common polymers are soluble in water and have polymerizable zones, preferably by means of a photoinitiator that is activated under UV or visible radiation, and which polymerizes by radical polymerization.
  • the possible polymerizable regions are acylates, diacrylates, oligoacrylates, methacrylates, dimethacrylates, oligomethacrylates or any other compound of biological origin sensitive to photopolymerization.
  • unsaturated polymers derived from both synthetic polymers such as poly (ethylene oxide), poly (ethylene glycol), poly (vinyl alcohol), poly (vinyl pyrrolidone), poly (amino acids) or derivatives of natural compounds such as alginate, hyaluronic acid, chondroitin sulfate, keratan sulfate and chitosan. Or the copolymerization of both types of compounds, such as for example the copolymer of poly (ethylene glycol) and hyaluronic acid.
  • the annular component can also be constituted by biodegradable polymers, said polymers have biodegradable regions, and preferably hydrolysable, such as, for example, the ester, peptide, anhydrides, orthoesters or phosphoester bonds.
  • hydrolysis sensitive polymers are aliphatic polyesters such as polyglycolic acid (PGA) and its polylactic acid (PLA) copolymers and their copolymers, or polycaprolactone and its copolymers, polyhydroxybutyrates (PHB), polyphosphazenes, polyorthoesters and polycyanoacrylates.
  • these may be of synthetic, semi-synthetic and / or natural origin.
  • those of synthetic origin are those derived from poly (acrylic acid) and those derived from polyesters, mainly Ia polyepsiloncaprolactone, poly (lactic acid) and copolymers of lactic acid and glycolic acid.
  • Other materials of semisynthetic origin are also used such as those cellulosic derivatives with different degrees of solubility, insoluble polymers such as ethyl celluloses and acetobutyrates of cellulose and pH-dependent solubility such as cellulose acetophthalates.
  • polyesters are used to manufacture the release systems.
  • Polyesters such as poly-D-lactic-co-glycolic acid and its derivatives, are particularly attractive for polymeric release controlled systems for their availability, biodegradability, non-toxicity, biocompatibility and for being easily combinable with a wide variety of active ingredients. .
  • the interfacial polymerization, the emulsion and evaporation of the solvent and the atomization Preferably, the solvent emulsion and evaporation technique is used.
  • anti-inflammatory drugs In relation to the active substances that are incorporated into the release system, anti-inflammatory drugs, antibiotics, antiviral drugs, antitumor drugs, etc. stand out mainly. of ophthalmic application. And others of more specific interest such as growth factors, growth factor inhibitors, other cytokines and inhibitors, etc. responsible for the corneal function.
  • this therapeutic system directs the release of the active compound for the benefit of tissue repair in the implanted area.
  • the release system is decomposing leaving gaps inside the base material of the ring, which are invaded by the cells and adhesive fibers of the matrix, enhancing the adhesive effect of said ring and favoring the integration of the implant in the stromal bed.
  • composition of the annular part or ring can have three variants:
  • Ring type 1 composed of cells encapsulated in the polymer solution
  • the concentration of cells and spheres included in the annular part may vary depending on the design of the system, the size of the spheres, the load / release of the active substance, etc.
  • the total solid mass of all the constituent components is comprised between 10 and 30% of the total volume of the formulation.
  • preparation of a solution A comprising a polymer solution for the formation of the optical central part
  • preparation of a solution B comprising a polymer solution and animal cells for the formation of the annular anchor part
  • C deposition of solutions A and B independently in specific molds that have a separator
  • removal of the separator and sealing of the central part with the annular part by polymerization to obtain a bicompartmental lens to.
  • Preparations from stages a) and b) are deposited in specific and exclusive molds for each optical system.
  • the design of the optical part depends fundamentally on the necessary refractive correction and the place of implantation of the lens, which also determines the design of the annular part ( Figure 2). Therefore, each lens will require a thickness and diameter of the specific optical and annular parts.
  • the lens has a thickness of the optical part comprised between 100 and 600 ⁇ m, a thickness of the annular part between 100 and 300 ⁇ m and a total diameter of between 6 and 10 mm, of which 4 -6 mm correspond to the optical part and 2-4 mm to the annular part.
  • solution B further comprises a therapeutic system capable of releasing one or more active substances in a controlled manner.
  • polymer solutions A and B further comprise photoinitiators that are activated, in steps d) and e) with UV or visible light.
  • photoinitiators that are activated, in steps d) and e) with UV or visible light.
  • they have short decomposition times, they are at least partially soluble in water and preserve good biocompatibility with cellular compounds.
  • the photoinitiators used in the photopolymerization are preferably of the type ⁇ -hydroxyketones, phenylglyoxylates, benzyl dimethyl ketals, alpha amino ketones, camphorquinones, such as, for example, 2-hydroxy-1- [4- (hydroxyethoxy) phenyl] -2-methyl-1 -propanone, or 2,2-dimethoxy-2-phenylacetophenone.
  • the initiation of the polymerization is accompanied by a UV light radiation with a wavelength in the range of 320-900 nm, preferably between 350-370 nm.
  • a UV light radiation with a wavelength in the range of 320-900 nm, preferably between 350-370 nm.
  • the material from which the mold is manufactured, as well as its design must allow the passage of UV light so that the light curing takes place in adequate and constant conditions.
  • Preferred materials are thermoplastic or thermoset polymeric materials, such as, for example, methyl polymethyl methacrylate polycarbonate, polyvinylchloride and inorganic glasses such as quartz with low or no UV light absorption
  • the polymerization is carried out in two phases: a first one, where two pseudogels corresponding to the optical part and the annular part are obtained separately, and a second phase that, with the removal of this separator, both optic and annular pseudogels take contact. allowing the cross-linking and joining of both parts of the lens (Figure 4).
  • the molds used can have:
  • a mobile separator which can be manual or automatic and which may or may not be incorporated in the mold lid itself that allows light curing.
  • the implantable optical system obtainable by the described procedure is contemplated.
  • the implantable system of the present invention allows the personalization of the lens depending on the individual needs of each patient.
  • compositions material, cells and active substances
  • design in terms of shape, curvature, etc.
  • the use of the implantable optical system described in corneal disorders is contemplated, specifically in the development of corneal implants, such as intrastromal lens, for correction of refractive defects for patients with healthy corneas; as implantation keratoprosthesis in the anterior stromal part for patients with defects in more superficial areas (epithelium and anterior stromal part) and as implantation keratoprosthesis in the posterior stromal part after epithelial and stroma trepanation for patients with complete stromal defects ( Figure 2).
  • corneal implants such as intrastromal lens
  • Example 1 The following is an example, without considering a limitation of an embodiment of the present invention: Example 1
  • poly (ethylene glycol) diacrylate (PEGDA) of weight average molecular weight of 3400, was used in a weight / volume ratio of 10% in PBS.
  • PEGDA poly (ethylene glycol) diacrylate
  • 2- hydroxy ⁇ 1- [4- (hydroxyethoxy) phenyl] -2-methyl ⁇ 1-propanone was used, in a proportion of 0.05% weight / volume with respect to the polymer solution.
  • the initiator solution was prepared just before its use in 70% ethanol, and kept on ice avoiding the incidence of light.
  • the procedure for obtaining the base polymer solution of the annular part was performed similarly to that described in phase 1. However, since in this case the polymer solution receives cells, and to limit possible cytotoxicity effects, it was limited to add the initiator at the time of incorporation of the mixture into the mold for subsequent exposure to UV light.
  • Biodegradable spheres loaded with an active substance were used as a therapeutic controlled release system. In this case, it was raised
  • PLGA polylactic-glycolic acid
  • dexamethasone steroidal anti-inflammatory widely used in ophthalmology
  • dexamethasone internal organic phase
  • dichloromethane aqueous external phase
  • the organic / water (O / A) emulsion that was obtained was homogenized in a Polytron homogenizer at 5000 rpm for 2 minutes. Then the volume was completed by adding more aqueous phase and homogenized again at the same rate for 1 minute. Subsequently, this mixture was incorporated into an aqueous solution of greater volume (water and emulsifier) for 3-4 hours under stirring and at room temperature until complete evaporation of the solvent. The mature spheres were washed several times with distilled water. The granulometric fractions were separated by sieving. Finally they lyophilized for storage at 2-4 0 C under vacuum. Next, two different embodiments of this type of release system are described:
  • the organic phase composed of 800 mg of 50:50 PLGA (inherent viscosity: 0.17-0.24 dL / g), 2ml of dichloromethane and 80-160 mg dexamethasone, was stirred for 1 minute and subjected to ultrasound keeping it on ice for another minute. This solution was added dropwise over an aqueous phase composed of 5ml of polyvinyl alcohol (PVA) to the
  • the organic phase composed of 800 mg of 50:50 PLGA (inherent viscosity: 0.17-0.24 dL / g) in 15ml of dichloromethane and 200mg of dexamethasone dissolved in 15ml of acetone, this organic phase was stirred for 5 minutes and subsequently added dropwise on a 200 ml aqueous phase composed of 5% polyvinyl alcohol (Pm 72000).
  • the emulsion was formed by ultrasounding it at 6OW for 10 minutes and keeping it on ice. Evaporation of the solvent was carried out by magnetic stirring for 12 hours at room temperature. Mature nanospheres were washed 3 times with distilled water and recovered by centrifugation at 35,000 rpm for 1 hour at 4 0 C. Finally lyophilized for storage at 2-4 0 C under vacuum.
  • the area Prior to the enucleation of the eyes, the area was washed with iodized solution and saline.
  • the cornea was removed using a scalpel (n ° 12) and collected in DMEM-F12 culture medium with an antibiotic solution composed of 1% penicillin and streptomycin keeping them on ice.
  • the corneas were quartered and introduced into an enzymatic medium of collagenase (3.3 mg collagenase (SIGMA. Ref. C8176) in 1 ml of DMEM-F12) for 30-45 minutes at 142 rpm and at 37 0 C.
  • collagenase 3.3 mg collagenase (SIGMA. Ref. C8176) in 1 ml of DMEM-F12
  • a mixture composed of the polymeric solution of PEGDA containing the photoinitiator and PLGA spheres loaded with dexamethasone was prepared. After keeping this composition on a shaker for one minute, it was poured onto the cell pellet previously obtained after centrifugation of a keratocyte cell suspension for 10 minutes at 4 0 C.
  • Samples were obtained with 80% constant aqueous content, and 20% solid matter composed of 10% PEGDA, 5% spheres (with a diameter between 500 nm and 100 ⁇ m) and 5% cells (with a diameter of approximately 20 ⁇ m).
  • the bicompartmental lens thus obtained had a diameter of 7 mm (4 mm of central part and 3 mm of annular part) and a thickness of 0.200 mm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cardiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)

Abstract

La presente invención se refiere a un sistema óptico implantable formado por una parte central óptica y una parte anular de anclaje donde dicha parte anular comprende células animales, incluidas células humanas, lo que favorece la integración del implante en el tejido ocular del paciente, así como un sistema que dosifica compuestos químicos dirigidos a una función particular, creando un microambiente estabilizador frente a la presencia del implante en el tejido. Asimismo, se contempla el método para su obtención, por polimerización del sistema, y sus aplicaciones en diferentes tipos de alteraciones oculares.

Description

SISTEMA ÓPTICO IMPLANTABLE, PROCEDIMIENTO PARA SU DESARROLLO Y APLICACIONES
CAMPO DE LA INVENCIÓN
La presente invención tiene su campo de aplicación en el área de Ia Oftalmología. Más concretamente, esta invención se refiere a un sistema óptico implantable aplicado a las alteraciones corneales, compuesto de una parte central óptica y una parte anular periférica que comprende células animales, Io que favorece Ia integración del implante en el tejido corneal del paciente, así como el método para su obtención y sus aplicaciones en desórdenes oculares.
ANTECEDENTES
Los desórdenes que afectan a Ia cornea constituyen una de las causas principales de ceguera a nivel mundial, precedidas en orden de importancia general únicamente por las cataratas. La epidemiología de Ia ceguera corneal es complicada y está acompañada de una variedad de enfermedades oculares infecciosas e inflamatorias que causan cicatrices corneales, las cuales finalmente conducen a Ia ceguera. Adicionalmente, Ia prevalencia de las enfermedades corneales varía entre diferentes países e incluso entre diferentes poblaciones (1 ). Aproximadamente 10 millones de personas sufren ceguera corneal en todo el mundo (1 ,3) debido tanto a condiciones genéticas como adquiridas.
La técnica que más éxitos ha obtenido frente a estas complicaciones corneales es el transplante corneal, cuyo éxito depende fundamentalmente del tipo de paciente o receptor. El transplante corneal es exitoso en un 90% aproximadamente en pacientes considerados de "bajo riesgo" en países desarrollados (1 ). Éstos se caracterizan por sufrir pérdida de visión debido a cicatrices corneales por trauma, queratoconos o fallos endoteliales (debido a distrofias o previas operaciones). A pesar de este alto porcentaje de éxito del transplante corneal en estos pacientes, existen importantes limitaciones con las técnicas que actualmente se utilizan; éstas incluyen fallos en injertos debido a rechazos inmunológicos o disfunción endotelial, significativo astigmatismo debido a irregularidad topográfica, impredecibilidad del error refractivo, y otras menos comunes aunque problemáticas como infecciones en suturas, enfermedades corneales recurrentes, etc.
La probabilidad de supervivencia del transplante corneal disminuye significativamente en pacientes considerados de "alto riesgo" que sufren enfermedades inflamatorias corneales (herpes simplex o zoster), ojo seco (síndrome Sjogren), enfermedades oculares superficiales severas y generalizadas (Síndrome de Stevens Johnson, pemfigoide cicatricial ocular, quemaduras químicas/térmicas, etc.) y ciertas anormalidades congénitas (ej. enfermedad de Peter) donde el porcentaje de éxito se aproxima a cero. La misma cifra resulta si se hace pronóstico en pacientes que previamente han sufrido rechazo de origen inmunológico. La ceguera corneal debido a infección (especialmente tracoma) es endémica en muchas partes del mundo; en países en desarrollo Ia situación se agrava ya que no disponen de bancos de ojos (1 ,2), medicamentos postoperatorios ni de un contexto social necesario para las revisiones postoperatorias rutinarias.
Se estima que actualmente en EEUU se realizan aproximadamente 40.000 transplantes corneales. En España, Ia cifra es de aproximadamente 1.500 con un aumento del 10% anual. Estas cifras podrían variar ya que recientemente están emergiendo ciertas tendencias que están reduciendo Ia habilidad donativa de tejidos corneales debido a 1 ) el incremento de tests serológicos requeridos por los sistemas de los bancos de ojos y 2) el incremento de personas que se someten a cirugía refractiva (4,5,6). La ceguera corneal está considerada particularmente trágica y frustrante ya que Ia mayoría de los pacientes que Ia sufren tienen intactas Ia retina y el nervio óptico. Lo ideal seria obtener comeas artificiales que sustituyeran completamente a las corneas procedentes de donantes humanos. Así, desde hace tiempo se tiene Ia esperanza de que se pueda desarrollar alguna forma de cornea artificial o queratoprótesis que dé respuesta a las necesidades de los pacientes.
La historia de las queratoprótesis se inicia en el siglo XVIII (7,8). La era moderna de estos desarrollos comienza en el año 1950 con Ia utilización de varias formas del material metacrilato de metilo (PMMA). Entre ellos destacan las prótesis de Dohlman, Strampelli y Cardona, compuestos de una parte central óptica rígida de PMMA que perfora Ia cornea Ia cual se rodea de diferentes tejidos para conseguir el anclaje de Ia prótesis
(9,10,11 ,12,13). El reto común con estos implantes ha sido el mantenimiento de Ia claridad óptica, Ia biointegración en el tejido receptor y Ia prevención de Ia extrusión. Los sistemas de anclaje de las prótesis de Dohlman y Cardona combinan diferentes procedimientos y tejidos (ej. fascia, esclera, periostio, etc.) para minimizar Ia extrusión. Estos planteamientos comparten importantes complicaciones, entre las que se incluyen extrusión, endoftalmitis, glaucoma y desprendimiento de retina (14,15,16).
Una de las últimas tendencias en este tipo de implantes es Ia incorporación de materiales porosos para Ia mejora de Ia integración entre el core (lente o parte central) y el skirt (anillo que rodea al core o parte anular) y entre el skirt y el tejido receptor. Entre estos materiales se incluyen Teflon, Gore-Tex
(42,43,44), Dacron, fibra de carbono y caucho (7,17,18). Procedimientos relacionados han utilizado materiales blandos y/o modificaciones en sus superficies con Ia intención de aumentar Ia biointegración (19,20,21 ,22,23). El grupo de Chirila, líder en Ia Investigación de queratoprótesis de Ia pasada década, ha desarrollado un nuevo implante (Chirila KPro) basado en el uso de un polímero hidrófilo, el metacrilato de 2 hidroxietilo o PHEMA, el cual es utilizado para un skirt poroso (esponja de PHEMA) y un core transparente (PHEMA gel). Ambos componentes "core y skirt" se unen gracias a una malla polimérica que penetra en ambas partes evitando de este modo grietas, filtraciones y el crecimiento de tejido en esta interfase (8,3,24,25,26,27). Pero han existido complicaciones postoperatorias en animales de experimentación y Ia mayoría de ellas han sido causadas por Ia falta de fuerza mecánica del material que contribuye a Ia rotura del skirt en las suturas quirúrgicas. Por desgracia esta carencia es inherente de las esponjas de PHEMA. Posteriormente se desarrolló el KPro tipo II, con las mismas características pero más fina que Ia anterior con el fin de reducir Ia dependencia entre Ia tapa de Ia conjuntiva y Ia resistencia mecánica de Ia esponja a las suturas. Fue implantado en 10 pacientes y aunque los resultados fueron muchos más satisfactorios que con Ia prótesis KPro tipo I, se observaron inflamaciones recurrentes en Ia cornea. Esta prótesis KPro tipo Il ha dado lugar a otra nueva queratoprótesis conocida como AlphaCorTM (65, 66) recientemente aprobada por Ia agencia americana Food and Drug Administration (n ° reg. K013756) (28).
Sin embargo, a pesar de las mejoras en el diseño de los dispositivos y materiales empleados, las complicaciones relacionadas con el mantenimiento de Ia claridad óptica, el recubrimiento epitelial, Ia escasa integración tisular y Ia extrusión han impedido que las queratoprótesis actuales sean clínicamente eficaces (3,7,15,29,30,31).
Otra alternativa está en el desarrollo de capas corneales in vitro. En el año
1999 Griffith y su equipo reconstruyeron Ia cornea utilizando técnicas biológicas para recrear un epitelio, un estroma y una capa de endotelio
(36,33). Desarrollaron una multicapa a base de células inmortalizadas Ia cual morfológicamente mantuvo Ia organización nativa del tejido (37). También en el mismo año, Germain y su equipo desarrollaron epitelio, cultivando células epiteliales en geles de colágeno (32). Mostraron epitelio con un grosor de 4-5 capas celulares en adición a una membrana basal aunque no llegaron a reconstruir corneas enteras.
Recientemente Marmo y Back han propuesto Ia utilización de células epiteliales o células madre Nímbales sobre el cuerpo de una lente para activar Ia epitelización corneal. Incluso proponen Ia utilización de porciones de epitelio como recubrimiento activo (72).
Las técnicas biológicas y de ingeniería tisular nos permiten utilizar a las células como autores en Ia reconstrucción de los tejidos. Estas células, aisladas de su tejido y en presencia de un soporte (de naturaleza sintética, natural o mixta) son capaces de ir generando una matriz extracelular morfológicamente similar a Ia nativa y compuesta de colágenos y otras fibras adhesivas (45).
Los hidrogeles son buenos candidatos como soporte celular. Son polímeros hidrofílicos que forman redes tridimensionales con habilidad de captar mucha agua sin disolverse en ella. Además exhiben buena biocompatibilidad y alta permeabilidad al oxígeno y otros nutrientes, siendo por todo ello materiales de elección en terapia celular (38), regeneración de tejidos (39) y liberación controlada de sustancias activas (65).
Estas ventajas han impulsado a Ia utilización de los hidrogeles fotopolimerizables como materiales encapsulantes, soportes celulares y recubrimientos en aplicaciones dirigidas a Ia prevención (prevención de trombosis 58, 59), diagnóstico (recubrimiento de biosensores 60) y terapéutica: encapsulación de células procedentes del cartílago (45), hueso
(46), médula ósea (47,48,49,50), tejido embrionario (51), páncreas (52), válvulas cardíacas (53), etc; encapsulación de DNA (54), nucleótidos (55), factores de crecimiento (56) y otras proteínas(57), etc.
La técnica de fotoencapsulación, además de células y componentes celulares, permite encapsular otro tipo de componentes en estos materiales fotopolimerizables (64). Permite encapsular partículas que actúan como sistemas de liberación de sustancias activas, como son las micro y/o nanoesferas consistentes de polímeros biodegradables que permiten controlar Ia liberación de fármacos efectivamente dentro del rango terapéutico deseado. Hubbel y su grupo propusieron Ia técnica de Ia fotopolimerización para formar materiales y sistemas de liberación controlada (65).
Los sistemas de liberación controlada de sustancias activas se vienen utilizando desde principios del siglo XX (61 ) y nacieron por Ia necesidad de mejorar Ia administración de fármacos. Son sistemas gracias a los cuales se puede controlar Ia dosis liberada y sistemas capaces de dirigir estas moléculas activas específicamente a órganos diana.
A nivel ocular estos sistemas han sido investigados para diversos propósitos terapéuticos. Principalmente los reclamos son implantes biodegradables para tratar desórdenes en retina, vitreo o glaucoma con una amplia gama de agentes terapéuticos (66-71 ).
Entre los materiales biodegradables, el uso de ácido poli-DL-láctico y/o ácido poli-D-láctico-co-glicólico ha prevalecido por Ia ausencia total de toxicidad de los productos de degradación y su modulable velocidad de degradación (62). La liberación de principios activos convencionales desde microesferas de ácido poliláctico/poliglicólico generalmente ocurre por difusión a través de Ia matriz del polímero, así como a través de los poros de Ia estructura del polímero. Sin embargo, Ia biodegradación de Ia matriz del polímero y disolución del polímero degradado continuamente cambia Ia geometría de Ia microesferas y Ia textura de Ia matriz del polímero. Como resultado, el modelo de liberación de principios activos es una combinación de difusión y degradación. (63)
A Ia luz de las necesidades y limitaciones del estado de Ia técnica, los autores de Ia presente invención, partiendo de Ia utilización simultánea de hidrogeles y técnicas biológicas, han desarrollado un nuevo modelo de queratoprótesis avanzando en el concepto de implante estromal, dotando a
Ia queratoprótesis tradicional de inteligencia biológica y haciéndola susceptible de ser modulada dependiendo de las condiciones del tejido receptor y de las necesidades específicas de cada paciente, de manera que Ia misma queratoprótesis cumpla una doble función, óptica y terapéutica.
Esta queratoprótesis está compuesta de una parte central óptica y otra parte anular (core y skirt). La principal novedad reside en que Ia parte anular, skirt, dispone de componentes celulares capaces de secretar fibras colágenas y proteoglicanos para una mejor integración del implante y un mantenimiento de Ia transparencia corneal y en que dispone de un sistema que dosifica compuestos químicos dirigidos a una función particular (por ejemplo sustancias antiinflamatorias, regeneradoras, etc) creando un microambiente estabilizador frente a Ia presencia del implante en el tejido.
El diseño de esta lente bicompartimental puede ser adaptado a los requerimientos del paciente y dependerá del estado patológico del estroma y del epitelio corneal. Asimismo, por sus características, el implante puede emplearse en el desarrollo de otro tipo de implantes en pacientes con desórdenes oculares de distinta naturaleza.
BREVE DESCRIPCIÓN DE LAS FIGURAS Fig. 1 : Figura general del sistema óptico visto en plano y en perspectiva. A: corresponde a Ia parte óptica central, B: corresponde a Ia parte anular que incluye células (B1) y esferas activas (B2).
Fϊg. 2. Esquema de diferentes tipos de implantes. A) y B) Lentes de implantación en estroma anterior; C) Lente de implantación en estroma medio; y D) Lente de implantación en estroma posterior. (Ep): Epitelio; (Es a): Estroma anterior; (Es m): Estroma medio; (Es p): Estroma posterior; (En) Endotelio.
Fig. 3. Esquema del proceso de obtención de las lentes biocompartimentales por fotopolimerización. Etapa 1 ) Preparación de Ia solución de Ia parte central óptica (SOL. A), que consiste en una solución polimérica (SP) y un fotoiniciador (Fl); Etapa 2) Preparación de Ia solución de Ia parte anular o anillo (SOL. B) compuesta de solución polimérica (SP), fotoiniciador (Fl), células (C) y esferas activas (E) como sistema terapéutico; Etapa 3) Deposición de las soluciones A y B procedentes de las etapas 1 ) y 2) respectivamente en moldes específicos; y Etapa 4) Fotopolimerización del sistema con luz UV para Ia obtención de una lente bicompartimental.
Figura 4. Esquema de Ia etapa de fotopolimerización para Ia obtención de Ia lente biocompartimental. 1 ) Llenado de las soluciones A y B procedentes de las fases 1 y 2 (figura 3) respectivamente; 2) Cierre del molde; 3) Polimerización y homogenización de Ia muestra. 4) Apertura de Ia tapa y retirada del separador; 5) Cierre de Ia tapa; 6) Polimerización y homogenización de Ia muestra; 7) Apertura de Ia tapa y extracción de Ia lente bicompartimental.
Figura 5. Imagen tridimensional del hidrogel PEGDA (H) conteniendo células vivas estromales primarias (CEP) captada por microscopía confocal a 63X. OBJETO DE LA INVENCIÓN
El objeto principal de Ia invención es proporcionar un nuevo modelo de sistema óptico implantable formado por una parte central óptica y una parte anular de anclaje con células vivas animales, incluidas humanas. Otro objeto de Ia invención se refiere al procedimiento para Ia obtención de dicho sistema óptico implantable.
Es también objeto de Ia invención el sistema óptico implantable obtenido por dicho procedimiento.
Finalmente, otro objeto de Ia invención contempla el empleo del sistema óptico implantable en desórdenes corneales y del cristalino, concretamente en el desarrollo de implantes corneales, tales como lentes intraestromales o queratoprótesis, y de lentes intraoculares.
DESCRIPCIÓN DE LA INVENCIÓN
Para cubrir las necesidades del actual estado de Ia técnica, en relación con las queratoprótesis tradicionales, los autores de Ia presente invención han desarrollado un nuevo modelo de sistema óptico implantable basándose tanto en el diseño del implante como en Ia naturaleza del desorden corneal.
En base a esto, Ia presente invención proporciona un sistema híbrido compuesto de una mezcla de materiales sintéticos con materiales vivos, no biodegradables con biodegradables, sustancias inertes con sustancias químicamente activas, reunidos en un sistema implantable que permite a cada uno de estos compuestos realizar su función. Un aspecto principal de Ia invención contempla un sistema óptico implantable que comprende una parte central óptica y una parte anular de anclaje que comprende células vivas animales, incluidas células humanas.
En una realización particular, las células pueden proceder del paciente que va a ser implantado y/o de un donante. Estas células, dependiendo del grado de desorden ocular y del objetivo a reparar, pueden ser seleccionadas de entre células madre, queratocitos primarios, fibroblastos, miofibroblastos, células de diferente origen susceptibles de diferenciación a célula estromal, células modificadas genéticamente capaces de ejercer un efecto regenerativo, así como células del cristalino.
Las células incorporadas en el anillo van creciendo, proliferando y secretando componentes de Ia matriz extracelular formando enlaces interfibrilares con otros colágenos y proteoglicanos del tejido receptor (del paciente) permitiendo 1 ) Ia sujeción de Ia parte anular al tejido hospedador y una mejora en Ia acomodación del implante, Io que es particularmente importante ya que una de las causas más comunes de fallo de los implantes actualmente empleados en el estado de Ia técnica es la extrusión del implante por falta de adhesión implante-tejido y 2) un efecto reparador por parte de las células vivas.
En una realización preferida de Ia presente invención, Ia parte anular de anclaje comprende adicionalmente un sistema terapéutico de liberación controlada que comprende una o más sustancias activas de interés oftálmico dirigidas a una función particular (por ejemplo antiinflamatorios, antibióticos, antivirales, antitumorales, etc). En una realización particular de Ia invención, este sistema puede ser de tipo micro y/o nano esferas, cápsulas o micelas biodegradables que encapsulan las sustancias activas por medio de diferentes técnicas. En relación con los materiales que componen Ia lente, el material de Ia parte central es preferiblemente de origen sintético y no biodegradable, cumpliendo con los requerimientos ópticos de una lente y pudiendo ser diseñado para corregir diferentes errores refractivos (miopía, hipermetropía, presbicia). Por otra parte, el material de Ia parte anular actúa como elemento de unión de Ia lente al tejido y es una matriz tridimensional capaz de mantener células y otros componentes en su interior y preferiblemente es de origen sintético o mixto y biodegradable o no biodegradable.
En una realización particular de Ia invención, el material tanto de Ia parte central como de Ia parte anular es un material polimérico. Así, en una realización preferida, los componentes comprendidos en Ia parte anular de anclaje están inmersos en dicho material polimérico.
En otra realización particular, el material polimérico es de tipo hidrogel. El mecanismo de polimerización de estos hidrogeles puede ser físico o químico, iónico o covalente, dirigido por cambios de temperatura, cambios iónicos, adición de sustancias enlazantes o exposición a una radiación.
Algunos tipos de hidrogeles pueden polimerizar tanto in vivo como in vitro en presencia de fotoiniciadores utilizando luz visible o ultravioleta, convirtiendo un monómero líquido a gel. Este tipo de hidrogeles presentan ventajas sobre otras técnicas de polimerización convencionales: control de espacio y tiempo de Ia polimerización, tiempos cortos de curado (desde menos de un segundo a pocos minutos) a temperaturas ambiente o fisiológicas y una mínima producción de calor. Otra gran ventaja de Ia fotopolimerización es que los hidrogeles pueden ser creados in situ a partir de sus precursores acuosos en un modo mínimamente invasivo, por ejemplo utilizando aparatos de laparoscopia, catéteres ó inyecciones subcutáneas con iluminación transdérmica. Además, los hidrogeles fotopolimerizables tienen Ia ventaja de que permiten Ia técnica de Ia fotoencapsulación. Esta técnica a su vez tiene Ia gran virtud de que permite Ia incorporación de las células en Ia fase inicial del proceso de gelificación, es decir permite mezclar células y polímeros en fase líquida, por Io que cuando se inicia Ia gelificación del material las células ya van incorporadas en su interior. Esto es una gran ventaja para Ia ingeniería tisular debido a que solventa una de las limitaciones de esta práctica, que es Ia baja efectividad de adhesión por parte de las células a los materiales en Ia fase inicial de inoculación. Esta efectividad se ve disminuida cuando el material soporte es de tipo matriz poroso, ya que las células por simple peso y gravedad caen sin tener opción a adherirse al material.
Así, en una realización particular de Ia invención, el método físico de polimerización del hidrogel empleado es Ia fotopolimerización, que permite Ia técnica de Ia fotoencapsulación para formar un sistema híbrido que forme parte del anillo de Ia lente biocomponente y en el que las células y las micro/nanopartículas responsables de Ia liberación estén formadas previas a Ia fotoencapsulación en el hidrogel.
Además, Ia capacidad fotopolimerizable de los hidrogeles permite simultaneidad en el procesado del material y Ia fabricación del sistema óptico ¡mplantable.
En una realización preferida de la invención, Ia parte anular y central comprenden al menos un macrómero tipo hidrogel común, preferiblemente un derivado acrílico del polietilen glicol, como el diacrilato de polietilenglicol
(PEGDA), para facilitar el sellado posterior de ambas partes de Ia lente. En una realización particular, el macrómero tipo hidrogel puede estar copolimerizando otros monómeros/polímeros de un modo diferencial en cada parte. Los polímeros comunes son solubles en agua y presentan zonas polimerizables, preferiblemente por medio de un fotoiniciador que se activa bajo Ia radiación UV o visible, y que polimeriza mediante una polimerización radicalaria. Las posibles regiones polimerizables son acilatos, diacrilatos, oligoacrilatos, metacrilatos, dimetacrilatos, oligometacrilatos o cualquier otro compuesto de origen biológico sensible a Ia fotopolimerización.
Un ejemplo son los polímeros insaturados derivados tanto de polímeros sintéticos como el poli (etilen oxido), poli (etilen glicol), poli (vinil alcohol), poli (vinilpirrolidona), poli (amino ácidos) o derivados de compuestos naturales como el alginato, ácido hialurónico, condroitin sulfato, keratan sulfato y quitosano. O Ia copolimerización de ambos tipos de compuestos, como por ejemplo el caso del copolímero de poli (etilen glicol) y ácido hialurónico.
Por otra parte, el componente anular puede además estar constituido por polímeros biodegradables, dichos polímeros presentan regiones biodegradables, y preferiblemente hidrolizables, como por ejemplo, los enlaces éster, peptídico, anhídridos, ortoésteres o fosfoéster. Los posibles polímeros sensibles de hidrólisis son los poliésteres alifáticos como el ácido poliglicólico (PGA) y sus copolímeros ácido poliláctico (PLA) y sus copolímeros, o policaprolactona y sus copolímeros, los polihidroxibutiratos (PHB), polifosfacenos, poliortoésteres y policianoacrilatos.
En relación con los materiales componentes del sistema terapéutico de liberación, éstos pueden ser de origen sintético, semisintético y/o natural.
Entre aquellos de origen sintético los más utilizados son los derivados del poli (ácido acrílico) y los derivados de poliésteres principalmente Ia poliepsiloncaprolactona, el poli (acido láctico) y los copolímeros del ácido láctico y el ácido glicólico. También se emplean otros materiales de origen semisintético como aquellos derivados celulósicos con diferentes grados de solubilidad, polímeros insolubles como etilcelulosas y acetobutiratos de celulosa y de solubilidad dependiente del pH como acetoftalatos de celulosa. También cabe hacer mención a aquellos polímeros de origen natural principalmente de naturaleza proteica como Ia gelatina y Ia albúmina y de naturaleza polisacárida como los alginatos, el dextrano, Ia goma arábiga y el quitosano.
En Ia presente invención, de manera preferida, se emplean poliésteres para fabricar los sistemas de liberación. Los poliésteres, como el ácido poli-D- láctico-co-glicólico y sus derivados, son particularmente atractivos para sistemas poliméricos de liberación controlada por su disponibilidad, biodegradabilidad, no toxicidad, biocompatibilidad y por ser fácilmente combinables con una amplia variedad de principios activos.
Las técnicas de encapsulación que se utilizan para que estos materiales citados retengan sustancias activas son fundamentalmente Ia coacervación,
Ia polimerización interfacial, Ia emulsión y evaporación del disolvente y Ia atomización. De manera preferida, se utiliza Ia técnica de emulsión y evaporación del disolvente.
En relación a las sustancias activas que van incorporadas en el sistema de liberación destacan principalmente los fármacos antiinflamatorios, antibióticos, antivirales, antitumorales, etc. de aplicación oftálmica. Y otras de interés más específico como son los factores de crecimiento, inhibidores de factores de crecimiento, otras citoquinas e inhibidores, etc. responsables de Ia función corneal.
De este modo este sistema terapéutico dirige Ia liberación del compuesto activo en beneficio de Ia reparación tisular en Ia zona implantada. A su vez, al estar formado por un material biodegradable, el sistema de liberación se va descomponiendo dejando huecos dentro del material base del anillo, que son invadidos por las células y fibras- adhesivas de Ia matriz, potenciando el efecto adhesivo de dicho anillo y favoreciendo Ia integración del implante en el lecho estromal.
En base a las características descritas, Ia composición de Ia parte anular o anillo puede tener tres variantes:
- Anillo tipo 1 : compuesto de células encapsuladas en Ia solución polimérica;
- Anillo tipo 2: compuesto de esferas activas encapsuladas en Ia solución polimérica; y
- Anillo tipo 3: compuesto de células y esferas activas encapsuladas en Ia solución polimérica (figura 1 ).
La concentración celular y de esferas comprendidas en Ia parte anular puede variar dependiendo del diseño del sistema, el tamaño de las esferas, Ia carga/liberación de Ia sustancia activa, etc. Para preservar una buena permeabilidad al paso de nutrientes en el anillo, en realizaciones preferidas de Ia invención Ia masa sólida total de todos los componentes integrantes está comprendida entre el 10 y el 30 % del volumen total de Ia formulación. Así se obtienen composiciones que preservan un 70-90 % de contenido acuoso constante, preferiblemente el 80%.
En otro aspecto principal de Ia invención se contempla el procedimiento para el desarrollo del sistema óptico implantable objeto de Ia invención que comprende las siguientes etapas:
a. preparación de una solución A que comprende una solución polimérica para Ia formación de la parte central óptica; b. preparación de una solución B que comprende una solución polimérica y células animales para Ia formación de Ia parte anular de anclaje; c. deposición de las soluciones A y B de forma independiente en moldes específicos que disponen de un separador; d. polimerización del sistema obtenido en c) para Ia obtención de pseudogeles individuales correspondientes a Ia parte central y anular respectivamente; y e. retirada del separador y sellado de Ia parte central con Ia parte anular por polimerización para Ia obtención de una lente bicompartimental.
Las preparaciones procedentes de las etapas a) y b) se depositan en moldes específicos y exclusivos para cada sistema óptico. El diseño de Ia parte óptica depende fundamentalmente de Ia corrección refractiva necesaria y del lugar de implantación de Ia lente, que también determina el diseño de Ia parte anular (figura 2). Por ello cada lente requerirá de un grosor y diámetro de las partes óptica y anular específicos. En realizaciones preferidas de Ia invención, Ia lente tiene un grosor de Ia parte óptica comprendido entre 100 y 600 μm, un grosor de Ia parte anular de entre 100 y 300 μm y un diámetro total de entre 6 y 10 mm, de los que 4-6 mm corresponden a Ia parte óptica y 2-4 mm a Ia parte anular.
En una realización preferida, Ia solución B comprende adicionalmente un sistema terapéutico capaz de liberar una o más sustancias activas de manera controlada.
En otra realización particular, las soluciones poliméricas A y B comprenden adicionalmente fotoiniciadores que se activan, en las etapas d) y e) con luz UV o visible. Además, presentan tiempos cortos de descomposición, son por Io menos, parcialmente solubles en agua y preservan una buena biocompatibilidad con los compuestos celulares. Los fotoiniciadores empleados en Ia fotopolimerización son preferiblemente del tipo α-hidroxicetonas, fenilglioxilatos, bencil dimetil cetales, alfa amino cetonas, canforoquinonas, como por ejemplo, 2-hidroxi-1- [4-(hidroxietoxi) fenil] -2-metil-1-propanona, o 2,2- dimetoxi-2-fenilacetofenona.
La iniciación de Ia polimerización viene acompañada por una radiación de luz UV con una longitud de onda en el rango de 320-900 nm, preferiblemente entre 350-370 nm. En estos casos, el material del que está fabricado el molde, así como su diseño, deberán permitir el paso de Ia luz UV para que Ia fotopolimerización se de en condiciones adecuadas y constantes. Los materiales preferidos son materiales poliméricos termoplásticos o termoestables, como por ejemplo polimetil metacrilato de metilo policarbonato, policloruro de vinilo y vidrios inorgánicos como el cuarzo con baja o nula absorción de Ia luz UV
La polimerización se lleva a cabo en dos fases: una primera, donde se obtienen dos pseudogeles correspondientes a Ia parte óptica y a Ia parte anular por separado, y una segunda fase que, con Ia retirada de este separador, ambos pseudogeles óptico y anular toman contacto permitiendo el entrecruzamiento y unión de ambas partes de Ia lente (Figura 4).
Los moldes empleados pueden disponer de:
- un separador móvil, que puede ser manual o automático y que puede estar o no incorporado en Ia propia tapa del molde que permite Ia fotopolimerización.
- un sistema acoplado que permite el movimiento del molde con el fin de simultanear Ia fotopolimerización y Ia homogenización de las muestras. En otro aspecto principal de Ia invención se contempla el sistema óptico implantable obtenible por el procedimiento descrito.
El sistema implantable de Ia presente invención permite Ia personalización de Ia lente dependiendo de las necesidades individuales de cada paciente.
Éste puede ser adaptado por Ia elección de diferentes composiciones (material, células y sustancias activas), así como por Ia elección de diferentes diseños en cuanto a forma, curvatura, etc.
Así, en un aspecto principal de Ia invención se contempla el uso del sistema óptico implantable descrito en desórdenes corneales, concretamente en el desarrollo de implantes corneales, tales como lente intraestromal, para corrección de defectos refractivos para pacientes con córneas sanas; como queratoprótesis de implantación en parte estromal anterior para pacientes con defectos en zonas mas superficiales (epitelio y parte estromal anterior) y como queratoprótesis de implantación en parte estromal posterior tras trepanación de epitelio y estroma para pacientes con defectos de estroma completo (figura 2).
Además, se contempla el uso del sistema óptico implantable descrito en otro tipo de alteraciones oculares, como los desórdenes del cristalino, aplicado al desarrollo de lentes intraoculares.
La invención aquí descrita es susceptible de variaciones y modificaciones no descritas de forma específica en esta solicitud. Sin embargo, Ia invención incluye todas estas posibles variaciones y modificaciones que se derivan del estado de Ia técnica y que por tanto son obvias para un experto en Ia materia.
A continuación presentamos a modo de ejemplo, sin que se considere limitativo un ejemplo de realización de Ia presente invención: Ejemplo 1
Procedimiento de obtención de una lente bicompartimental por fotopolimerización (figura 3)
ETAPA 1 Preparación de Ia parte central óptica (SOLUCIÓN A)
Como material base de Ia parte óptica y Ia parte anular se empleó poli (etilen glicol) diacrilato (PEGDA), de peso molecular promedio en peso de 3400, en una proporción peso/volumen de 10% en PBS. Como iniciador se empleó 2- hidroxi~1-[4-(hidrox¡etoxi) fenil] -2-metil~1-propanona, en una proporción de 0.05% peso/volumen respecto a Ia solución polimérica. La solución de iniciador se preparó justo antes de su utilización en etanol al 70%, y se mantuvo en hielo evitando Ia incidencia de Ia luz.
ETAPA 2) Preparación de Ia parte anular o anillo tipo 3 (SOLUCIÓN B)
Obtención de Ia solución polimérica
El procedimiento para Ia obtención de la solución polimérica base de Ia parte anular se realizó de forma similar al descrito en Ia fase 1. Sin embargo, dado que en este caso Ia solución polimérica recibe células, y para limitar posibles efectos de citotoxicidad, se limitó a añadir el iniciador en el momento de Ia incorporación de Ia mezcla en el molde para su posterior exposición a Ia luz UV.
Obtención del sistema de terapéutico de liberación
Se emplearon esferas biodegradables cargadas de una sustancia activa como sistema terapéutico de liberación controlada. En este caso, se planteó
Ia obtención de micro y/o nanoesferas de ácido poliláctico-glicólico (PLGA) cargadas de dexametasona (antiinflamatorio esteroídico ampliamente utilizado en oftalmología) y Ia utilización de Ia técnica de micro/nanoencapsulación basada en Ia evaporación del disolvente a partir de una emulsión Fase Oleosa/Fase Acuosa (O/A) que conlleva Ia dispersión de una solución orgánica de polímero y fármaco en una fase acuosa continua.
Para ello, al polímero, disuelto en diclorometano, se Ie añadió una cantidad determinada de dexametasona (fase interna orgánica). La mezcla se homogenizó por ultrasonidos durante un minuto y se añadió sobre un volumen determinado de agua y agente emulsificante (fase externa acuosa).
La emulsión orgánico/agua (O/A) que se obtuvo se homogenizó en un homogenizador Polytron a 5000 rpm durante 2 minutos. Seguidamente se completó el volumen añadiendo más fase acuosa y se volvió a homogenizar a Ia misma velocidad durante 1 minuto. Posteriormente, esta mezcla se incorporó en una solución acuosa de mayor volumen (agua y emulsificante) durante 3-4 horas en agitación y a temperatura ambiente hasta Ia completa evaporación del disolvente. Las esferas maduras, se lavaron varias veces con agua destilada. Las fracciones granulométricas se separaron por tamización. Por último se liofilizaron para su almacenamiento entre 2-40C a vacío. A continuación, se describen dos realizaciones diferentes de este tipo de sistema de liberación:
- Microesferas PLGA cargadas de dexametasona
La fase orgánica, compuesta por 800 mg de PLGA 50:50 (viscosidad inherente: 0.17-0.24 dL/g), 2ml de diclorometano y 80-160 mg dexametasona, se agitó durante 1 minuto y se sometió a ultrasonidos manteniéndolo en hielo durante otro minuto. Esta solución se añadió gota a gota sobre una fase acuosa compuesta por 5ml de polivinil alcohol (PVA) al
1 % (Pm 72000) y se homogenizó durante 2 minutos a 5000 rpm. Se completó el volumen con polivinil alcohol al 0.1 % hasta 15ml y se volvió a homogenizar durante 1 minuto más. Esta emulsión se incorporó en un volumen de 2OmI de PVA al 0.1 % y se agitó magnéticamente durante 3-4 horas. Las microesferas maduras se lavaron 3 veces con agua destilada, se tamizaron y se recuperaron por filtración aquellas de tamaño entre 20-50μm. Por último se liofilizaron para su almacenamiento entre 2-40C a vacío.
- Nanoesferas PLGA cargadas de dexametasona
La fase orgánica, compuesta por 800 mg de PLGA 50:50 (viscosidad inherente: 0.17-0.24 dL/g) en 15ml de diclorometano y 200mg de dexametasona disuelta en 15ml de acetona, se agitó durante 5 minutos esta fase orgánica y posteriormente se añadió gota a gota sobre una fase acuosa de 200 mi compuesta por polivinil alcohol (Pm 72000) al 5%. La emulsión se formó sometiéndola a ultrasonidos a 6OW durante 10 minutos y manteniéndola en hielo. La evaporación del disolvente se llevó a cabo mediante agitación magnética durante 12 horas a temperatura ambiente. Las nanoesferas maduras se lavaron 3 veces con agua destilada y se recuperaron por centrifugación a 35.000 rpm durante 1 hora y a 40C. Por último se liofilizaron para su almacenamiento entre 2-40C a vacío.
Obtención de células estromales primarias
Previa a Ia enucleación de los ojos se lavó Ia zona con solución yodada y suero salino. Se procedió a Ia extracción de córneas utilizando un bisturí (n° 12) y a su recolección en medio de cultivo DMEM-F12 con una solución antibiótica compuesta de 1 % de penicilina y estreptomicina manteniéndolas en hielo. Las córneas fueron cuarteadas e introducidas en un medio enzimático de colagenasa (3,3 mg colagenasa (SIGMA. Ref. C8176) en 1 ml de DMEM-F12) durante 30-45 minutos a 142 rpm y a 370C. El contenido de esta 1a digestión se filtró y el tejido resultante se volvió a resuspender en un nuevo medio de colagenasa para llevar a cabo otra digestión que duró 1 hora en las mismas condiciones anteriores (2a digestión). Tras un segundo filtrado (conservando el sobrenadante) Ia operación se repitió y el contenido retenido en el filtro se volvió a resuspender en nuevo medio enzimático durante 2 horas y media a 142 rpm y a 370C. Tras esta 3a digestión se recogió el sobrenadante. Los medios procedentes de las digestiones 2o y 3o que llevaban queratocitos estromales fueron recolectados, centrifugados y resuspendidos en una conocida cantidad de DMEM-F12 para medir Ia viabilidad celular. Llegados a este punto, hay dos opciones 1 ) encapsular los queratocitos primarios (como veremos en los siguientes apartados) o incubarlos para obtener fibroblastos, también susceptibles de encapsulación.
Obtención del sistema queratocitos primarios-esferas de PLGA cargadas con dexametasona-hidrogel PEGDA
Se preparó una mezcla compuesta de Ia solución polimérica de PEGDA conteniendo el fotoiniciador y esferas de PLGA cargadas con dexametasona. Tras mantener esta composición en un agitador durante un minuto se vertió sobre Ia pastilla celular previamente obtenida tras Ia centrifugación de una suspensión celular de queratocitos durante 10 minutos a 40C.
Se obtuvieron muestras con un 80% de contenido acuoso constante, y un 20% de materia sólida compuesta de 10% PEGDA, 5% de esferas (con un diámetro entre 500 nm y 100 μm) y 5% de células (con un diámetro de aproximadamente 20 μm).
La viabilidad celular de las células encapsuladas en el hidrogel PEGDA fue estudiada utilizando un derivado del clorometilo fluorescente el cual difunde libremente a través de las membranas de las células vivas. La señal roja visualizada a 560 nm indicó que las células son capaces de mantenerse vivas dentro del hidrogel (figura 5). ETAPAS 3) y 4) Deposición de las soluciones en moldes específicos y fotopolimerización del sistema para Ia obtención de una lente bicompartimental (figura 4).
Se incorporaron las soluciones A y B en las correspondientes cavidades del molde (4.1 ). Tras cerrar el molde (4.2) se sometieron a movimiento para Ia homogenización de las muestras y se expusieron a luz UV para iniciar Ia fotopolimerización (4.3). Así, en esta primera etapa, se obtuvieron dos pseudogeles individuales correspondientes a Ia parte óptica y a Ia parte anular bajo una luz UV de intensidad 4 mW/cm2 y λ= 365 nm durante 1-2 minutos.
Tras Ia apertura del molde y retirada del separador (4.4), en una segunda etapa se llevó a cabo el entrecruzamiento y Ia unión de ambos pseudogeles óptico y anular gracias a Ia retirada del separador y al mantenimiento del sistema a Ia exposición de una luz UV de intensidad 4 mW/cm2 y λ= 365 nm durante 3-5 minutos más (4.5), permitiendo finalmente, tras Ia apertura del molde, Ia obtención de Ia lente bicompartimental o querataprótesis (4.7).
La lente bicompartimental así obtenida presentó un diámetro de 7 mm (4 mm de parte central y 3 mm de parte anular) y un grosor de 0.200 mm.
BIBLIOGRAFÍA
I . Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. BuII World Health Organ 2001 ; 79(3):214-221 2. Aiken-O'Neill, P. and MJ. Mannis, Summary of corneal transplant activity Eye Bank Association of America. Cornea, 2002. 21 (1 ): p. 1-3. 3. Chirila, T.V., An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Biomaterials, 2001. 22: p. 3311-3317. 4. Carlsson, DJ. , et al., Bioengineered corneas: how cióse are we? Curr
Opin Ophthalmol, 2003. 14(4): p. 192-7.
5. America, E.B.A.O., Eye Banking Statistical Report. 1999, Eye Bank Association of America: Washington, DC.
6. Li, F., et al., Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation. Proc Nati Acad Sci U S A,
2003. 100(26): p. 15346-51.
7. Hicks CR, Fitton JH, Chirila TV, Crawford GJ, Constable IJ. Keratoprostheses: advancing toward a true artificial cornea. Surv Ophthalmol 1997; 42(2):175-189. 8. Hicks C, Crawford G, Chirila T, Wiffen S, Vijayasekaran S, Lou X et al.
Development and clinical assessment of an artificial cornea. Prog Retin Eye Res 2000; 19(2):149-170.
9. Marchi V, Ricci R, Pecorella I, Ciardi A, Di Tondo U. Osteo-odonto- keratoprosthesis. Description of surgical technique with results in 85 patients. Cornea 1994; 13(2): 125-130.
10. Doane MG, Dohlman CH, Bearse G. Fabrication of a keratoprosthesis. Cornea 1996; 15(2): 179-184.
I I . Teichmann KD, al Hussain HM, Karcioglu ZA. Long-term complications of Strampelli's osteo-odonto-keratoprosthesis. Aust N Z J Ophthalmol 1996; 24(2):158-159. 12. Cardona H. Keratoprosthesis with a plástic fiber meshwork supporting píate. Report of an experimental and comparative histologic study. Am J Ophthalmol 1967; 64(2):228-233.
13. Khan AO. Visual sensation in cataract surgery. Ophthalmology 2001 ; 108(12):2157-2158.
14. Hicks CR, Lou X, Platten S, Clayton AB, Vijayasekaran S, Fitton HJ et al. Keratoprosthesis results in animáis: an update. Aust N Z J Ophthalmol 1997; 25 SuppM :S50-S52.
15. Dohlman CH, Terada H. Keratoprosthesis in pemphigoid and Stevens- Johnson syndrome. Adv Exp Med Biol 1998; 438:1021-1025.
16. Nouri M, Terada H, Alfonso EC, Foster CS, Durand ML, Dohlman CH. Endophthalmitis after keratoprosthesis: incidence, bacterial causes, and risk factors. Arch Ophthalmol 2001 ; 119(4):484-489.
17. Hsiue GH, Lee SD, Chang PC. Platelet adhesión and cellular interaction with poly(ethylene oxide) immobilized onto silicone rubber membrane surfaces. J Biomater Sci Polym Ed 1996; 7(10):839-855.
18. Pintucci S, Perilli R, Formisano G, Caiazza S. Influence of dacron tissue thickness on the performance of the Pintucci biointegrable keratoprosthesis: an in vitro and in vivo study. Cornea 2001 ; 20(6):647-650. 19. Crawford GJ, Constable IJ, Chirila TV, Vijayasekaran S, Thompson
DE. Tissue interaction with hydrogel sponges implanted in the rabbit cornea. Cornea 1993; 12(4):348-357.
20. Hicks CR, Chirila TV, Dalton PD, Clayton AB, Vijayasekaran S, Crawford GJ et al. Keratoprosthesis: preliminary results of an artificial corneal button as a full-thickness implant in the rabbit model. Aust N Z J Ophthalmol
1996; 24(3):297-303.
21. Hicks CR, Vijayasekaran S, Chirila TV, Platten ST, Crawford GJ, Constable IJ. Implantation of PHEMA keratoprostheses after alkali burns in rabbit eyes. Cornea 1998; 17(3):301-308. 22. Hicks CR, Chirila TV1 Clayton AB, Fitton JH, Vijayasekaran S, Dalton PD et al. Clinical results of implantation of the Chirila keratoprosthesis in rabbits. Br J Ophthalmol 1998; 82(1 ): 18-25.
23. Sandeman SR, Faragher RG, Alien MC, Uu C, Lloyd AW. Novel materials to enhance keratoprosthesis integration. Br J Ophthalmol 2000;
84(6):640-644.
24. Legeais JM, Renard G, Parel JM, Savoldelli M, Pouliquen Y. Keratoprosthesis with biocolonizable microporous fluorocarbon haptic. Preliminary results in a 24-patient study. Arch Ophthalmol 1995; 113(6):757- 763.
25. Renard G, Cetinel B, Legeais JM, Savoldelli M, Durand J, Pouliquen Y. Incorporation of a fluorocarbon polymer implanted at the posterior surface of the rabbit cornea. J Biomed Mater Res 1996; 31 (2):193-1999
26. Renard G. [Artificial cornea]. BuII Acad Nati Med 1996; 180(3):659- 665.
27. Caldwell DR. The soft keratoprosthesis. Trans Am Ophthalmol Soc 1997; 95:751-802.
28. Hicks CR, Crawford GJ, Lou X, Tan DT, Snibson GR, Sutton G et al. Corneal replacement using a synthetic hydrogel cornea, AlphaCor: device, preliminary outcomes and complications. Eye 2003; 17(3):385-392.
29. Dohlman, C, A recollection from Boston. Experimental Eye Research, 2004. 78(3): p.xxi-xxii.
30. Hicks, CR. and GJ. Crawford, Melting after keratoprosthesis implantation: the effects of medroxyprogesterone. Cornea, 2003. 22(6): p. 497-500.
31. Hicks, C. R., et al., Outcomes of implantation of an artificial cornea alphacor: effects of prior ocular herpes simplex infection. Cornea, 2002. 21 (7): p. 685-690.
32. Germain, L., et al., Reconstructed human cornea produced in vitro by tissue engineering. Pathobiology, 1999. 67(3): p. 140-7. 33. Griffith, M., et al., Functional human corneal equivalents constructed from cell lines. Science, 1999. 286(5447): p. 2169-72.
34. Orwin, EJ. and A. Hubel, In vitro culture characteristics of corneal epithelial,endothel¡al, and keratocyte cells in a native collagen matrix. Tissue Eng, 2000. 6(4): p.307-19.
35. Schneider, A.I., K. Maier-Reif, and T. Graeve, Constructing an ¡n vitro cornea from cultures of the three specific corneal cell types. In Vitro CeII Dev Biol Anim, 1999.35(9): p. 515-26.
36. Griffith, M. et al. "Artificial Cornea". U.S. 6.645.715, november 11th, 2003. Appl. 09/624909, july 24th, 2000. p45.
37. Cukierman, E., et al., Taking cell-matrix adhesions to the third dimensión. Science, 2001. 294(5547): p. 1708-12.
38. Scharp, D. et al. Implantaron of encapsulated biological materials for treating diseases. US20040136971 , JuIy 15th, 2004. Appl. 10/684,859, Oct. 14th, 2003. p. 1-66.
39. Bhatia, S. N. et al. Three dimensional cell patterned biopolymer scaffolds and method of making the same. US20050169962, Aug. 4th, 2005. Appl. 11/035,394, Jan. 12th, 2005. p. 1-25.
40. Chirila, T.V. et al. Keratoprosthesis. US 5300116, April 5th, 2004. Appl. 931027, Aug. 14th, 1992.
41. Chirila, T.V. et al. Method of producing a Keratoprosthesis. US 5458819, Oct. 17th ,1995. Appl. 170379, Dec. 20th, 1993.
42. Caldwell Delmar, R. et al. Intraocular prótesis. US 4865601 , Sept 12th, 1989. Appl. 70783, JuI. 7th, 1987. 43. Caldwell Delmar, R. et al. Intraocular prótesis. US 4932968, June
12th, 1990. Appl. 391887, Aug. 9th, 1989.
44. Jacob-Labarre, J. Intraocular prótesis. US 5282851 , Feb. 1 st, 1994. Appl. 837483, feb. 18th, 1992.
45. Elisseeff J, Mclntosh W, Anseth K, Riley S, Ragan P, Langer R. Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi- interpenetrating networks. Journal of Biomedical Materials Research 2000;51 (2)
46. Wang D, Williams CG, Yan F, Cher N, Lee H, Elisseeff JH. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Engineering 2005; 11(1-2):201-213.
47. Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J. In Vitro Chondrogenesis of Bone Marrow-Derived Mesenchymal Stem CeIIs in a Photopolymerizing Hydrogel. Tissue Engineering 2003; 9(4): 679-688
48. Nuttelman CR, Tripodi MC, Anseth KS. Synthetic hydrogel niches that promote hMSC viability. Matrix Biology 2005;24(3):208-218.
49. Miles-Thomas J, Elisseeff JH, Morales N, Frimberger D, Gearhart JP, Lakshmanan Y. Human stem cells in a photopolymerizable hydrogel: The next generation of engineered tissue. Journal of Urology 2004; 171 (4 Supplement):46. 50. Alhadlaq A, Elisseeff JH, Hong L, Williams CG, Caplan Al, Sharma B,
Kopher RA, Tomkoria S, Lennon DP, López A, Mao, Jeremy J. Adult stem cell driven génesis of human-shaped articular condyle. Annals of Biomedical Engineering 2004;32(7): 911-923.
51. Bryant, Stephanie J.; Nuttelman, Charles R.; Anseth, Kristi S.. Cytocompatibility of UV and visible light photoinitiating systems on cultured
NIH/3T3 fibroblasts in vitro. Journal of Biomaterials Science Polymer Edition, (200O) VoI. 11 , No. 5
52. Cruise, Gregory M.; Hegre, Orion D.; Scharp, David S.; Hubbell, Jeffrey A.. A sensitivity study of the key parameters in the interfacial photopolymerization of poly(ethylene glycol) diacrylate from porcine islets.
Biotechnology and Bioengineering, (1998) VoI. 57, No. 6, pp. 655-665.
53. Masters, Kristyn S.; Shah, Darshita N.; Leinwand, Leslie A.; Anseth, Kristi S. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials (2005), 26(15), 2517-2525 54. Quick, Deborah J.; Anseth, Kristi S. DNA delivery from photocrosslinked PEG hydrogels: encapsulation efficiency, reléase profiles, and DNA quality. Journal of ControIIed Reléase, (April 28 2004) VoI. 96, No. 2, pp. 341-351.
55. Ramakumar, Sanjay [Reprint Author]; Phull, Hardeep; Purves, Todd; Funk, Joel; Copeland, Duan; Ulreich, Judith B.; Lai, Li-Wen; Lien, Yeong- Hau. Howard Novel delivery of oligonucleotides using a topical hydrogel tissue sealant in a murine partial nephrectomy model. Journal of Urology, (SEP 2005) VoI. 174, No. 3, pp. 1133-1136.
56. Elisseeff, Jennifer; Mclntosh, Winnette; Fu, Karen; Blunk, Torsten; Langer, Robert. Controlled-release of IGF-I and TGF-β1 in a photopolymerizing hydrogel for cartilage tissue engineering. Journal of
Orthopaedic Research (2001 ), 19(6), 1098-1104
57. Patton, Jaqunda N.; Palmer, Andre F. Photopolymerization of Bovine Hemoglobin Entrapped Nanoscale Hydrogel Particles within Liposomal Reactors for Use as an Artificial Blood Substitute. Biomacromolecules (2005), 6(1 ), 414-424
58. Hill-West JL, Chowdhury SM, Slepian MJ, Hubbell JA. Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers. Proc Nati Acad Sci U S A 1994; 91 (13):5967-5971.
59. West JL, Hubbell JA. Separation of the arterial wall from blood contact using hydrogel barriers reduces intimal thickening after balloon injury in the rat: the roles of medial and luminal factors in arterial healing. Proc Nati Acad Sci U S A 1996; 93(23):13188-13193.
60. Quinn CP, Pathak CP, Heiler A, Hubbell JA. Photo-crosslinked copolymers of 2-hydroxyethyl methacrylate, poly(ethylene glycol) tetra- acrylate and ethylene dimethacrylate for improving biocompatibility of biosensors. Biomaterials 1995; 16(5):389-396.
61. Edman P. Solid microspheres as drug delivery systems. En: Sartoreli AC, ed. Methods of drug delivery. New York:Pergamon Press;1985:23.
62. Julienne MC, Alonso Ma J, Gómez JL, Benoit JP. Preparation of poly (DL lactide/glycolide) nanoparticles of controlled particle size distribution: application of experimental designs. Drug Dev Ind Pharm 1992;(18):1063. 63. Shen Wu X. Preparation, characterization, and drug delivery applications of microspheres based on biodegradable lactic/glycolic acid polymers. En: Wise LM, Trantolo DJ, Altobelli DE, Yaszemski MJ, Gresser JD, Schwartz, eds. Encyclopedic handbook of biomaterials and bioengineering. New York: Marcel Dekker; 1995:1151-200.
64. Hubbel JA. et al. GeIs for encapsulation of biological materials US 5801033, September 1st, 1998; App. US480678, june 7th, 1995. p 32.
65. Hubbel JA, et al. Photopolymerizable biodegradable hydrogels as tissue contaction materials as controlled-release carriers. US2002091229, JuIy 11 th, 2002. App. 10/021508, October 22, 2001.
66. Lee DA. Drug delivery device (US19894863457).
67. Ohtorl A, et al. Controlled-release pharmaceutical preparation for intra- ocular implan! EP 0488401 , June 3rd, 1992. App. EP91120586.2, November 11th, 1989. 68. Wong VG. Biodegradable ocular implants. US 5164188, November
17th, 1992. App. 440344, November 22, 1989.
69. Huang GT, et al. Sustained reléase intraocular implants and related methods. US2005244468, November 3rd, 2005. App. US10837356, April 30th,
2004. 70. Hughes PM, Malone et al. Macromolecule-containing sustained reléase intraocular implants and relate methods. US2005281861 , December
22, 2005. App. 1116698, april 27, 2005.
71. Jiménez AM, et al. Implants and microspheres for the sustained reléase of drugs for ophtalmic use and preparation methods thereof. WO2006/028361 , march 16, 2006.
72. Marmo JC and Back A. Device and Methods for Impriving Vision US 2005/0080484, April 14, 2005. App. 10661400, September 12, 2003.

Claims

REIVINDICACIONES
1. Sistema óptico implantable que comprende una parte central óptica y una parte anular de anclaje caracterizado porque dicha parte anular comprende células animales, incluidas células humanas.
2. Sistema óptico implantable, según Ia reivindicación 1 , caracterizado porque las células proceden del paciente que va a ser implantado y/o de un donante.
3. Sistema óptico implantable, según las reivindicaciones 1 ó 2, caracterizado porque las células se seleccionan entre células madre, queratocitos primarios, fibroblastos, miofibroblastos, células modificadas genéticamente capaces de ejercer un efecto regenerativo y células del cristalino.
4. Sistema óptico implantable, según cualquiera de las reivindicaciones anteriores, caracterizado porque Ia parte anular de anclaje comprende adicionalmente un sistema terapéutico de liberación controlada que comprende una o más sustancias activas.
5. Sistema óptico implantable, según Ia reivindicación 4, caracterizado porque el sistema terapéutico es de tipo micro y/o nano esferas, cápsulas o micelas biodegradables.
6. Sistema óptico implantable, según cualquiera de las reivindicaciones anteriores, caracterizado porque el material componente de Ia parte óptica es de origen sintético y no biodegradable.
7. Sistema óptico implantable, según cualquiera de las reivindicaciones anteriores, caracterizado porque el material componente de Ia parte anular es de origen sintético, natural o mixto y biodegradable o no biodegradable.
8. Sistema óptico implantable, según las reivindicaciones 6 y 7, caracterizado porque el material componente de Ia parte central y anular es un material polimérico.
9. Sistema óptico implantable, según Ia reivindicación 8, caracterizado porque los componentes comprendidos en Ia parte anular de anclaje están inmersos en el material polimérico.
10. Sistema óptico implantable, según Ia reivindicación 9, caracterizado porque el material polimérico tanto de Ia parte central como de Ia parte anular es un material polimérico tipo hidrogel.
11. Sistema óptico implantable, según Ia reivindicación 10, caracterizado porque Ia parte anular y central comprenden al menos un macrómero tipo hidrogel común.
12. Sistema óptico implantable, según Ia reivindicación 11 caracterizado porque el macrómero está copolimerizando otros monómeros y/o polímeros de un modo diferencial en cada parte.
13. Sistema óptico implantable, según Ia reivindicación 12, caracterizado porque dicho macrómero es un derivado acrílico de polietilenglicol.
14. Sistema óptico implantable, según Ia reivindicación 13, caracterizado porque dicho macrómero es diacrilato de polietilenglicol (PEGDA).
15. Sistema óptico implantable, según cualquiera de las reivindicaciones 10-14, caracterizado porque el hidrogel polimeriza por métodos físicos o químicos.
16. Sistema óptico implantable, según Ia reivindicación 15, caracterizado porque el método físico empleado es Ia fotopolimerización.
17. Sistema óptico implantable, según cualquiera de las reivindicaciones anteriores, caracterizado porque Ia composición de Ia parte anular tiene un porcentaje de contenido acuoso que varía entre el 70 y 90%.
18. Procedimiento para el desarrollo de un sistema óptico implantable, según las reivindicaciones 1-17, caracterizado porque comprende las siguientes etapas:
a. preparación de una solución A que comprende una solución polimérica para Ia formación de Ia parte central óptica; b. preparación de una solución B que comprende una solución polimérica y células animales para Ia formación de Ia parte anular de anclaje; c. deposición de las soluciones A y B de forma independiente en moldes específicos que disponen de un separador; d. polimerización del sistema obtenido en c) para Ia obtención de pseudogeles individuales correspondientes a Ia parte central y anular respectivamente; y e. retirada del separador y sellado de Ia parte central con Ia parte anular por polimerización para Ia obtención de una lente bicompartimental.
19. Procedimiento según Ia reivindicación 18 caracterizado porque Ia solución B comprende adicionalmente un sistema terapéutico capaz de liberar una o más sustancias activas de manera controlada.
20. Procedimiento según Ia reivindicación 18 caracterizado porque las soluciones A y B comprenden adicionalmente un fotoiniciador.
21. Procedimiento según Ia reivindicación 20 caracterizado porque las etapas d) y e) se llevan a cabo con luz UV o visible.
22. Procedimiento según Ia reivindicación 21 caracterizado porque Ia luz UV tiene una longitud de onda en el rango de 320-900 nm.
23. Procedimiento según Ia reivindicación 22 caracterizado porque Ia luz
UV tiene una longitud de onda en el rango 350-370 nm.
24. Sistema óptico implantable obtenible por el procedimiento de las reivindicaciones 18-23.
25. Uso de un sistema óptico implantable, según las reivindicaciones 1-17 y 24 en desórdenes corneales.
26. Uso de sistema óptico implantable según Ia reivindicación 25 en el desarrollo de implantes corneales.
27. Uso de un sistema óptico implantable, según Ia reivindicación 26, en el desarrollo de una lente intraestromal o queratoprótesis.
28. Uso de un sistema óptico implantable, según Ia reivindicación 1 en desórdenes del cristalino.
29. Uso de un sistema óptico implantable, según Ia reivindicación 28 en el desarrollo de una lente intraocular.
PCT/ES2006/000467 2006-08-08 2006-08-08 Sistema óptico implantable, procedimiento para su desarrollo y aplicaciones WO2008020087A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/ES2006/000467 WO2008020087A1 (es) 2006-08-08 2006-08-08 Sistema óptico implantable, procedimiento para su desarrollo y aplicaciones
JP2009523308A JP2010500064A (ja) 2006-08-08 2006-08-08 埋込み型光学システム、その開発および適用のための手順
CN2006800560365A CN101522133B (zh) 2006-08-08 2006-08-08 可植入的光学系统,其开发和应用的方法
EP06807913A EP2052698A4 (en) 2006-08-08 2006-08-08 IMPLANTABLE OPTICAL SYSTEM, DEVELOPMENT METHOD AND APPLICATIONS
US12/376,603 US20100215720A1 (en) 2006-08-08 2006-08-08 Implantable optical system, method for developing it and applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2006/000467 WO2008020087A1 (es) 2006-08-08 2006-08-08 Sistema óptico implantable, procedimiento para su desarrollo y aplicaciones

Publications (1)

Publication Number Publication Date
WO2008020087A1 true WO2008020087A1 (es) 2008-02-21

Family

ID=39081974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000467 WO2008020087A1 (es) 2006-08-08 2006-08-08 Sistema óptico implantable, procedimiento para su desarrollo y aplicaciones

Country Status (5)

Country Link
US (1) US20100215720A1 (es)
EP (1) EP2052698A4 (es)
JP (1) JP2010500064A (es)
CN (1) CN101522133B (es)
WO (1) WO2008020087A1 (es)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2723588A1 (en) 2008-05-12 2009-11-19 University Of Utah Research Foundation Intraocular drug delivery device and associated uses
US9877973B2 (en) 2008-05-12 2018-01-30 University Of Utah Research Foundation Intraocular drug delivery device and associated methods
US10064819B2 (en) 2008-05-12 2018-09-04 University Of Utah Research Foundation Intraocular drug delivery device and associated methods
US9095404B2 (en) 2008-05-12 2015-08-04 University Of Utah Research Foundation Intraocular drug delivery device and associated methods
US8469934B2 (en) * 2010-01-27 2013-06-25 Alcon Research, Ltd. Pulsatile peri-corneal drug delivery device
EP3427693B1 (en) * 2010-09-30 2020-06-24 KeraMed, Inc. Reversibly deformable artificial cornea
US10667903B2 (en) 2013-01-15 2020-06-02 Medicem Institute s.r.o. Bioanalogic intraocular lens
US10441676B2 (en) 2013-01-15 2019-10-15 Medicem Institute s.r.o. Light-adjustable hydrogel and bioanalogic intraocular lens
GB201519811D0 (en) * 2015-11-10 2015-12-23 Univ Belfast Ocular compositions
DE102017112085A1 (de) * 2017-06-01 2018-12-06 Carl Zeiss Meditec Ag Künstliche Augenlinse mit darin ausgebildetem Medikamentendepot und Verfahren zum Herstellen einer künstlichen Augenlinse
DE102017112087A1 (de) 2017-06-01 2018-12-06 Carl Zeiss Meditec Ag Künstliche Augenlinse mit lasererzeugter doppelbrechender Struktur sowie Verfahren zum Herstellen einer künstlichen Augenlinse
CN109265592B (zh) * 2018-09-07 2020-08-07 清华大学深圳研究生院 具有高抗氧化性的角膜接触镜及其制备方法
CN109157305B (zh) * 2018-09-25 2021-05-25 广州锐澄医疗技术有限公司 复合人工角膜及其制备方法
CN115671389B (zh) * 2022-09-15 2024-01-30 北京航空航天大学 用于内皮移植的复合型人工角膜及其制备和使用方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863457A (en) 1986-11-24 1989-09-05 Lee David A Drug delivery device
US4865601A (en) 1987-07-07 1989-09-12 Caldwell Delmar R Intraocular prostheses
EP0333344A2 (en) * 1988-03-02 1989-09-20 Minnesota Mining And Manufacturing Company Corneal implants and manufacture and use thereof
US4932968A (en) 1987-07-07 1990-06-12 Caldwell Delmar R Intraocular prostheses
EP0488401A1 (en) 1990-11-30 1992-06-03 Senju Pharmaceutical Co., Ltd. A controlled-release pharmaceutical preparation for intra-ocular implant
US5164188A (en) 1989-11-22 1992-11-17 Visionex, Inc. Biodegradable ocular implants
US5282851A (en) 1987-07-07 1994-02-01 Jacob Labarre Jean Intraocular prostheses
US5300116A (en) 1992-08-05 1994-04-05 Lions Eye Institute Of Western Australia Keratoprosthesis
US5801033A (en) 1992-02-28 1998-09-01 The Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US20020091229A1 (en) 1992-02-28 2002-07-11 Board Of Regents, The University Of Texas System Texas Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US6645715B1 (en) 1998-01-23 2003-11-11 University Of Ottawa Artificial cornea
US20040136971A1 (en) 2002-10-11 2004-07-15 David Scharp Implantation of encapsulated biological materials for treating diseases
US20050080484A1 (en) 2002-09-13 2005-04-14 Ocular Sciences, Inc. Devices and methods for improving vision
US20050169962A1 (en) 2002-07-12 2005-08-04 Bhatia Sangeeta N. Three dimensional cell patterned bioploymer scaffolds and method of making the same
US20050244468A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Sustained release intraocular implants and related methods
US20050281861A1 (en) 2004-04-30 2005-12-22 Allergan, Inc. Macromolecule-containing sustained release intraocular implants and related methods
WO2006028361A1 (es) 2004-09-09 2006-03-16 Arturo Jimenez Bayardo Implantes y microesferas de liberación prolongada de fármacos de uso oftálmico y metodos para prepararlos

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027954A (ja) * 1988-03-04 1990-01-11 Alcon Surgical Inc 着色周辺部付きレンズの製造方法
JP3084309B2 (ja) * 1991-10-31 2000-09-04 康博 小池 視力矯正用レンズの製造方法
DE19508922C2 (de) * 1994-03-14 1999-10-14 Norbert Schrage Hornhautprothese
AU726819B2 (en) * 1996-03-29 2000-11-23 Desmos, Inc. Cellular attachment to laminin 5-coated trans-epithelial appliances
JP3779801B2 (ja) * 1997-09-12 2006-05-31 株式会社メニコン 眼内レンズの製造方法
US6544286B1 (en) * 2000-07-18 2003-04-08 Tissue Engineering Refraction, Inc. Pre-fabricated corneal tissue lens method of corneal overlay to correct vision
SE0102543D0 (sv) * 2001-07-16 2001-07-16 Pharmacia Groningen Bv Compositions capable of forming hydrogels in the eye
ITPD20020064A1 (it) * 2002-03-12 2003-09-12 Fidia Advanced Biopolymers Srl Derivati esterei dell'acido ialuronico per la preparazione di idrogelda utilizzare in campo biomedico, sanitario e chirurgico e come sistem
JP2005532094A (ja) * 2002-06-18 2005-10-27 ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ 人工角膜
US20060287721A1 (en) * 2004-10-05 2006-12-21 David Myung Artificial cornea

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863457A (en) 1986-11-24 1989-09-05 Lee David A Drug delivery device
US4865601A (en) 1987-07-07 1989-09-12 Caldwell Delmar R Intraocular prostheses
US4932968A (en) 1987-07-07 1990-06-12 Caldwell Delmar R Intraocular prostheses
US5282851A (en) 1987-07-07 1994-02-01 Jacob Labarre Jean Intraocular prostheses
EP0333344A2 (en) * 1988-03-02 1989-09-20 Minnesota Mining And Manufacturing Company Corneal implants and manufacture and use thereof
US5164188A (en) 1989-11-22 1992-11-17 Visionex, Inc. Biodegradable ocular implants
EP0488401A1 (en) 1990-11-30 1992-06-03 Senju Pharmaceutical Co., Ltd. A controlled-release pharmaceutical preparation for intra-ocular implant
US5801033A (en) 1992-02-28 1998-09-01 The Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US20020091229A1 (en) 1992-02-28 2002-07-11 Board Of Regents, The University Of Texas System Texas Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5458819A (en) 1992-08-05 1995-10-17 Lions Eye Institute Of Western Australia, Incorporated Method of producing a keratoprosthesis
US5300116A (en) 1992-08-05 1994-04-05 Lions Eye Institute Of Western Australia Keratoprosthesis
US6645715B1 (en) 1998-01-23 2003-11-11 University Of Ottawa Artificial cornea
US20050169962A1 (en) 2002-07-12 2005-08-04 Bhatia Sangeeta N. Three dimensional cell patterned bioploymer scaffolds and method of making the same
US20050080484A1 (en) 2002-09-13 2005-04-14 Ocular Sciences, Inc. Devices and methods for improving vision
US20040136971A1 (en) 2002-10-11 2004-07-15 David Scharp Implantation of encapsulated biological materials for treating diseases
US20050244468A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Sustained release intraocular implants and related methods
US20050281861A1 (en) 2004-04-30 2005-12-22 Allergan, Inc. Macromolecule-containing sustained release intraocular implants and related methods
WO2006028361A1 (es) 2004-09-09 2006-03-16 Arturo Jimenez Bayardo Implantes y microesferas de liberación prolongada de fármacos de uso oftálmico y metodos para prepararlos

Non-Patent Citations (72)

* Cited by examiner, † Cited by third party
Title
AIKEN-O'NEILL, P.; M.J. MANNIS: "Summary of comeal transplant activity Eye Bank Association of America", CORNEA, vol. 21, no. 1, 2002, pages 1 - 3
ALHADLAQ A ET AL.: "Adult stem cell driven genesis of human-shaped articular condyle", ANNALS OF BIOMEDICAL ENGINEERING, vol. 32, no. 7, 2004, pages 911 - 923
AMERICA, E.B.A.O.: "Eye Bank Association of America", EYE BANKING STATISTICAL REPORT, 1999
BHATIA, S.N. ET AL., THREE DIMENSIONAL CELL PATTERNED BIOPOLYMER SCAFFOLDS AND METHOD OF MAKING THE SAME
BRYANT, STEPHANIE J.; NUTTELMAN, CHARLES R.; ANSETH, KRISTI S.: "Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro", JOURNAL OF BIOMATERIALS SCIENCE POLYMER EDITION, vol. 11, no. 5, 2000
CALDWELL DELMAR, R. ET AL., INTRAOCULAR PROTESTS
CALDWELL DR: "The soft keratoprosthesis", TRANS AM OPHTHALMOL SOC, vol. 95, 1997, pages 751 - 802
CARDONA H.: "Keratoprosthesis with a plastic fiber meshwork supporting plate. Report of an experimental and comparative histologic study", AM J OPHTHALMOL, vol. 64, no. 2, 1967, pages 228 - 233
CARLSSON, D.J. ET AL.: "Bioengineered corneas: how close are we?", CURR OPIN OPHTHALMOL, vol. 14, no. 4, 2003, pages 192 - 7
CHIRILA, T.V. ET AL., KERATOPROSTHESIS
CHIRILA, T.V. ET AL., METHOD OF PRODUCING A KERATOPROSTHESIS
CHIRILA, T.V.: "An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application", BIOMATERIALS, vol. 22, 2001, pages 3311 - 3317
CRAWFORD GJ ET AL.: "Tissue interaction with hydrogel sponges implanted in the rabbit cornea", CORNEA, vol. 12, no. 4, 1993, pages 348 - 357
CRUISE, GREGORY M. ET AL.: "A sensitivity study of the key parameters in the interfacial photopolymerization of poly(ethylene glycol) diacrylate from porcine islets", BIOTECHNOLOGY AND BIOENGINEERING, vol. 57, no. 6, 1998, pages 655 - 665
CUKIERMAN, E. ET AL.: "Taking cell-matrix adhesions to the third dimension", SCIENCE, vol. 294, no. 5547, 2001, pages 1708 - 12
DOANE MG; DOHLMAN CH; BEARSE G: "Fabrication of a keratoprosthesis", CORNEA, vol. 15, no. 2, 1996, pages 179 - 184
DOHLMAN CH; TERADA H: "Keratoprosthesis in pemphigoid and Stevens-Johnson syndrome", ADV EXP MED BIOL, vol. 438, 1998, pages 1021 - 1025
DOHLMAN, C.: "A recollection from Boston", EXPERIMENTAL EYE RESEARCH, vol. 78, no. 3, 2004, pages XXI - XXII
EDMAN P: "Methods of drug delivery", 1985, PERGAMON PRESS, article "Solid microspheres as drug delivery systems", pages: 23
ELISSEEFF J ET AL.: "Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi- interpenetrating networks", JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, vol. 51, no. 2, 2000
ELISSEEFF, JENNIFER ET AL.: "Controlled-release of IGF-I and TGF-pl in a photopolymerizing hydrogel for cartilage tissue engineering", JOURNAL OF ORTHOPAEDIC RESEARCH, vol. 19, no. 6, 2001, pages 1098 - 1104
GERMAIN, L. ET AL.: "Reconstructed human cornea produced in vitro by tissue engineering", PATHOBIOLOGY, vol. 67, no. 3, pages 140 - 7
GRIFFITH, M. ET AL., ARTIFICIAL CORNEA
GRIFFITH, M. ET AL.: "Functional human corneal equivalents constructed from cell lines", SCIENCE, vol. 286, no. 5447, 1999, pages 2169 - 72
HICKS C ET AL.: "Development and clinical assessment of an artificial cornea", PROG RETIN EYE RES, vol. 19, no. 2, 2000, pages 149 - 170
HICKS CR ET AL.: "Clinical results of implantation of the Chirila keratoprosthesis in rabbits", BR J OPHTHALMOL, vol. 82, no. 1, 1998, pages 18 - 25
HICKS CR ET AL.: "Corneal replacement using a synthetic hydrogel cornea, AlphaCor: device, preliminary outcomes and complications", EYE, vol. 17, no. 3, 2003, pages 385 - 392
HICKS CR ET AL.: "Implantation of PHEMA keratoprostheses after alkali burns in rabbit eyes", CORNEA, vol. 17, no. 3, 1998, pages 301 - 308
HICKS CR ET AL.: "Keratoprostheses: advancing toward a true artificial cornea", SURV OPHTHALMOL, vol. 42, no. 2, 1997, pages 175 - 189
HICKS CR ET AL.: "Keratoprosthesis results in animals: an update", AUST N Z J OPHTHALMOL, no. 1, 1997, pages S50 - S52
HICKS CR ET AL.: "Keratoprosthesis: preliminary results of an artificial corneal button as a full-thickness implant in the rabbit model", AUST N Z J OPHTHALMOL, vol. 24, no. 3, 1996, pages 297 - 303
HICKS, C.R. ET AL.: "Outcomes of implantation of an artificial cornea alphacor: effects of prior ocular herpes simplex infection", CORNEA, vol. 21, no. 7, pages 685 - 690
HICKS, C.R.; G.J. CRAWFORD: "Melting after keratoprosthesis implantation: the effects of medroxyprogesterone", CORNEA, vol. 22, no. 6, 2003, pages 497 - 500
HILL-WEST JL ET AL.: "Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers", PROC NATL ACAD SCI U S A, vol. 91, no. 13, 1994, pages 5967 - 5971
HSIUE GH; LEE SD; CHANG PC: "Platelet adhesion and cellular interaction with poly(ethylene oxide) immobilized onto silicone rubber membrane surfaces", J BIOMATER SCI POLYM ED, vol. 7, no. 10, 1996, pages 839 - 855
HUANG GT ET AL., SUSTAINED RELEASE INTRAOCULAR IMPLANTS AND RELATED METHODS
HUBBEL JA ET AL., PHOTOPOLYMERIZABLE BIODEGRADABLE HYDROGELS AS TISSUE CONTACTION MATERIALS AS CONTROLLED-RELEASE CARRIERS
HUBBEL JA. ET AL., GELS FOR ENCAPSULATION OF BIOLOGICAL MATERIALS
HUGHES PM ET AL., MALONE ET AL. MACROMOLECULE-CONTAINING SUSTAINED RELEASE INTRAOCULAR IMPLANTS AND RELATED METHODS
JACOB-LABARRE, J., INTRAOCULAR PROTESTS
JIMENEZ AM ET AL., IMPLANTS AND MICROSPHERES FOR THE SUSTAINED RELEASE OF DRUGS FOR OPHTHALMIC USE AND PREPARATION METHODS THEREOF
JULIENNE MC ET AL.: "Preparation of poly (DL lactide/glycolide) nanoparticles of controlled particle size distribution: application of experimental designs", DRUG DEV IND PHARM, vol. 18, 1992, pages 1063
KHAN AO: "Visual sensation in cataract surgery", OPHTHALMOLOGY, vol. 108, no. 12, 2001, pages 2157 - 2158
LEE DA, DRUG DELIVERY DEVICE
LEGEAIS JM ET AL.: "Keratoprosthesis with biocolonizable microporous fluorocarbon haptic. Preliminary results in a 24-patient study", ARCH OPHTHALMOL, vol. 113, no. 6, 1995, pages 757 - 763
LI, F. ET AL.: "Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation", PROC NATL ACAD SCI USA, vol. 100, no. 26, 2003, pages 15346 - 51
MARCHI V ET AL.: "Osteo-odonto-keratoprosthesis", CORNEA, vol. 13, no. 2, 1994, pages 125 - 130
MARMO JC; BACK A, DEVICE AND METHODS FOR IMPROVING VISION
MASTERS, KRISTYN S. ET AL.: "Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells", BIOMATERIALS, vol. 26, no. 15, 2005, pages 2517 - 2525
MILES-THOMAS J ET AL.: "Human stem cells in a photopolymerizable hydrogel: The next generation of engineered tissue", JOURNAL OF UROLOGY, vol. 171, no. 4, 2004, pages 46
NOURI M ET AL.: "Endophthalmitis after keratoprosthesis: incidence, bacterial causes, and risk factors", ARCH OPHTHALMOL, vol. 119, no. 4, 2001, pages 484 - 489
NUTTELMAN CR; TRIPODI MC; ANSETH KS: "Synthetic hydrogel niches that promote hMSC viability", MATRIX BIOLOGY, vol. 24, no. 3, 2005, pages 208 - 218
OHTORI A ET AL., CONTROLLED-RELEASE PHARMACEUTICAL PREPARATION FOR INTRA-OCULAR IMPLANT
ORWIN, E.J.; A. HUBEL: "In vitro culture characteristics of corneal epithelial, endothelial, and keratocyte cells in a native collagen matrix", TISSUE ENG, vol. 6, no. 4, 2000, pages 307 - 19
PATTON, JAQUNDA N.; PALMER, ANDRE F.: "Photopolymerization of Bovine Hemoglobin Entrapped Nanoscale Hydrogel Particles within Liposomal Reactors for Use as an Artificial Blood Substitute", BIOMACROMOLECULES, vol. 6, no. 1, 2005, pages 414 - 424
PINTUCCI S ET AL.: "Influence of dacron tissue thickness on the performance of the Pintucci biointegrable keratoprosthesis: an in vitro and in vivo study", CORNEA, vol. 20, no. 6, 2001, pages 647 - 650
QUICK, DEBORAH J.; ANSETH, KRISTI S.: "DNA delivery from photocrosslinked PEG hydrogels: encapsulation efficiency, release profiles, and DNA quality", JOURNAL OF CONTROLLED RELEASE, vol. 96, no. 2, 28 April 2004 (2004-04-28), pages 341 - 351
QUINN CP ET AL.: "Photo-crosslinked copolymers of 2-hydroxyethyl methacrylate, poly(ethylene glycol) tetraacrylate and ethylene dimethacrylate for improving biocompatibility of biosensors", BIOMATERIALS, vol. 16, no. 5, 1995, pages 389 - 396
RAMAKUMAR, SANJAY ET AL.: "Howard Novel delivery of oligonucleotides using a topical hydrogel tissue sealant in a murine partial nephrectomy model", JOURNAL OF UROLOGY, vol. 174, no. 3, September 2005 (2005-09-01), pages 1133 - 1136
RENARD G ET AL.: "Incorporation of a fluorocarbon polymer implanted at the posterior surface of the rabbit cornea", J BIOMED MATER RES, vol. 31, no. 2, 1996, pages 193 - 1999
RENARD G.: "Artificial cornea", BULL ACAD NATL MED, vol. 180, no. 3, 1996, pages 659 - 665
SANDEMAN SR ET AL.: "Novel materials to enhance keratoprosthesis integration", BR J OPHTHALMOL, vol. 84, no. 6, 2000, pages 640 - 644
SCHARP, D. ET AL., IMPLANTATION OF ENCAPSULATED BIOLOGICAL MATERIALS FOR TREATING DISEASES
SCHNEIDER, A.I.; K. MAIER-REIF; T. GRAEVE: "Constructing an in vitro cornea from cultures of the three specific corneal cell types", IN VITRO CELL DEV BIOL ANIM, vol. 35, no. 9, 1999, pages 515 - 26
See also references of EP2052698A4
SHEN WU X: "Encyclopedic handbook of biomaterials and bioengineering", 1995, MARCEL DEKKER, article "Preparation, characterization, and drug delivery applications of microspheres based on biodegradable lactic/glycolic acid polymers", pages: 1151 - 200
TEICHMANN KD; AL HUSSAIN HM; KARCIOGLU ZA: "Long-term complications of Strampelli's osteo-odonto-keratoprosthesis", AUST N Z J OPHTHALMOL, vol. 24, no. 2, 1996, pages 158 - 159
WANG D ET AL.: "Bioresponsive phosphoester hydrogels for bone tissue engineering", TISSUE ENGINEERING, vol. 11, no. 1-2, 2005, pages 201 - 213
WEST JL; HUBBELL JA: "Separation of the arterial wall from blood contact using hydrogel barriers reduces intimal thickening after balloon injury in the rat: the roles of medial and luminal factors in arterial healing", PROC NATL ACAD SCI U S A, vol. 93, no. 23, 1996, pages 13188 - 13193
WHITCHER JP; SRINIVASAN M; UPADHYAY MP: "Corneal blindness: a global perspective", BULL WORLD HEALTH ORGAN, vol. 79, no. 3, 2001, pages 214 - 221
WILLIAMS CG ET AL.: "In Vitro Chondrogenesis of Bone Marrow-Derived Mesenchymal Stem Cells in a Photopolymerizing Hydrogel", TISSUE ENGINEERING, vol. 9, no. 4, 2003, pages 679 - 688
WONG VG, BIODEGRADABLE OCULAR IMPLANTS

Also Published As

Publication number Publication date
CN101522133A (zh) 2009-09-02
JP2010500064A (ja) 2010-01-07
EP2052698A4 (en) 2010-01-06
CN101522133B (zh) 2012-08-08
US20100215720A1 (en) 2010-08-26
EP2052698A1 (en) 2009-04-29

Similar Documents

Publication Publication Date Title
WO2008020087A1 (es) Sistema óptico implantable, procedimiento para su desarrollo y aplicaciones
Khosravimelal et al. Hydrogels as emerging materials for cornea wound healing
Mahdavi et al. Bioengineering approaches for corneal regenerative medicine
Mobaraki et al. Corneal repair and regeneration: current concepts and future directions
Trujillo-de Santiago et al. Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications
Chen et al. Biomaterials for corneal bioengineering
CA2848405C (en) Fabrication of gelatin hydrogel sheet for the transplantation of corneal endothelium
Holland et al. Artificial cornea: past, current, and future directions
Wang et al. Decellularized porcine cornea-derived hydrogels for the regeneration of epithelium and stroma in focal corneal defects
Sun et al. Construction and evaluation of collagen-based corneal grafts using polycaprolactone to improve tension stress
Lace et al. Biomaterials for ocular reconstruction
Hancox et al. The progress in corneal translational medicine
Lai et al. Functional biomedical polymers for corneal regenerative medicine
CN107007879A (zh) 一种活性人工角膜及其制备方法
Li et al. Applications of hydrogel materials in different types of corneal wounds
Prasathkumar et al. The Design and Developments of Protein‐Polysaccharide Biomaterials for Corneal Tissue Engineering
Zheng et al. Recent Advances in Ocular Therapy by Hydrogel Biomaterials
Jorge E et al. In vivo Biocompatibility of Chitosan and Collagen–Vitrigel Membranes for Corneal Scaffolding: a Comparative Analysis
Griffith et al. Corneal regenerative medicine: corneal substitutes for transplantation
Sasseville et al. Biomaterials used for tissue engineering of barrier-forming cell monolayers in the eye
Lohchab et al. Bridging the gap: The promise of corneal bioengineering and regeneration
Singh et al. Tissue Engineering Therapies for Ocular Regeneration
Venugopal et al. Stem cellebased therapeutic approaches toward corneal
Krishnaswami et al. Functional biomaterials for corneal tissue regeneration
Venugopal et al. Stem cell–based therapeutic approaches toward corneal regeneration

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680056036.5

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06807913

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009523308

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006807913

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12376603

Country of ref document: US