WO2008018441A1 - Power supply device and power line communication device - Google Patents
Power supply device and power line communication device Download PDFInfo
- Publication number
- WO2008018441A1 WO2008018441A1 PCT/JP2007/065414 JP2007065414W WO2008018441A1 WO 2008018441 A1 WO2008018441 A1 WO 2008018441A1 JP 2007065414 W JP2007065414 W JP 2007065414W WO 2008018441 A1 WO2008018441 A1 WO 2008018441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- common mode
- power supply
- inductance
- power
- inductor
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/54—Systems for transmission via power distribution lines
- H04B3/56—Circuits for coupling, blocking, or by-passing of signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2203/00—Indexing scheme relating to line transmission systems
- H04B2203/54—Aspects of powerline communications not already covered by H04B3/54 and its subgroups
- H04B2203/5404—Methods of transmitting or receiving signals via power distribution lines
- H04B2203/5408—Methods of transmitting or receiving signals via power distribution lines using protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2203/00—Indexing scheme relating to line transmission systems
- H04B2203/54—Aspects of powerline communications not already covered by H04B3/54 and its subgroups
- H04B2203/5429—Applications for powerline communications
- H04B2203/5445—Local network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2203/00—Indexing scheme relating to line transmission systems
- H04B2203/54—Aspects of powerline communications not already covered by H04B3/54 and its subgroups
- H04B2203/5462—Systems for power line communications
- H04B2203/5483—Systems for power line communications using coupling circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2203/00—Indexing scheme relating to line transmission systems
- H04B2203/54—Aspects of powerline communications not already covered by H04B3/54 and its subgroups
- H04B2203/5462—Systems for power line communications
- H04B2203/5491—Systems for power line communications using filtering and bypassing
Definitions
- the present invention relates to a power supply device and a power line communication device.
- PLC Power Line Communication
- a multicarrier signal is generated using a plurality of subcarriers as in the OFDM (Orthogonal Frequency Division Multiplexing) method, and the multicarrier signal is transmitted through a power line.
- OFDM Orthogonal Frequency Division Multiplexing
- FIG. 28 is a diagram showing a current model on a transmission line such as a power line.
- the transmission line consists of a transmission line (Cl, C2) consisting of a pair of conductors that are balanced with respect to the ground (earth).
- a pair of voltage sources elO e20
- elO and e20 are the voltage generated from each voltage source (elO e20) whose characteristics such as waveform, amplitude, and phase are equal (each voltage is assumed to be “e”) 1 is given to each line (Cl C2).
- a load impedance (regular load) ZL force S is provided at the right end of the transmission line.
- the transmission line Cl C2
- differential (normal) mode currents (+ Id Id) flow in opposite directions.
- parasitic impedance (ground impedance) Z1 Z3 is interposed between the transmission line and the ground (earth).
- the impedance value of the parasitic impedance Z2 Z3 (this value is also expressed as Z2 Z3)
- the common mode current Ic which is the circulating current, flows through the parasitic impedance (ground impedance) Z1 Z3 and the ground.
- the current amount of the common mode current Ic can be expressed as follows.
- e represents each voltage generated from each voltage source (elO e20).
- Ic e-( ⁇ 2- ⁇ 3) / ( ⁇ 1 ⁇ ⁇ 2 + ⁇ 2 ⁇ ⁇ 3 + ⁇ 3 ⁇ ⁇ 1) ⁇ ⁇ ⁇ (1)
- This common mode current Ic is bifurcated and flows equally to each of the pair of transmission lines (Cl C2). Therefore, common mode current (current flow is Ic / 2) flows through each transmission line (Cl C2) in the same direction.
- a line for example, an Ethernet (registered trademark) twisted pair. If a dedicated cable (such as a cable) is used, the common mode current generated on the line is suppressed to a sufficiently low level, so there is no radiation problem.
- a dedicated cable such as a cable
- the present invention has been made in view of the above circumstances, and solves the problem of providing a power supply device and a power line communication device capable of suppressing a peak value of a common mode current. Means to do
- a power line connecting portion (400) that can be connected to a power line (900) having at least two transmission lines and transmitting power, and the power line connecting portion (400) are provided.
- a power supply unit (300) that receives the power supply via the power line connection unit (400) and an inductor unit (290: 291) provided between the power line connection unit (400) and the power supply unit (300),
- the inductor section (290; 291) has a first inductance (L 1), a first path (P 1) connected to one of the transmission lines, and the first inductance (L 1) Has a second inductance (L2) different from each other, and a power supply apparatus comprising a second path (P2) connected to a transmission line different from the transmission line connected to the first path (P1). It is provided.
- the present invention provides the power supply device according to the first, wherein the inductor section (290: 291) is provided in the first path (P1).
- a first inductor having an inductance (L 1) eg, 11a
- the second inductor (2) provided in the second path (P2)
- a power supply device comprising a second inductor (1 lb) having an inductance (L2) is provided.
- the power supply device according to the second aspect, wherein the first inductor (eg, 11a) includes a third inductor (l lal) having a predetermined inductance and A power supply device having a fourth inductor (1 la2) is provided.
- the first inductor eg, 11a
- the third inductor l lal
- a power supply device having a fourth inductor (1 la2) is provided.
- the third inductor and the fourth inductor are provided in the first path, and the inductance of the two paths is unbalanced, so that the inductance can be easily and finely adjusted, and the power supply The degree of balance in the section can be improved.
- the power supply device according to the first aspect, wherein the inductor section (290; 291) is a first coil provided in the first path (P1). Part (12a) and a common mode choke coil having a second coil part (12b) inserted in the second path (P2) and having a different number of turns from the first coil part (12a)
- a power supply device comprising (12) is provided.
- the fifth aspect of the present invention is the power supply device according to the first aspect, wherein the inductor section (290; 291) includes the first path (P1) and the second path (P2 ) And a common mode choke coil (13a) having the same number of turns, and the first path (P1) and the second path (P2)! / There is provided a power supply device including an inductor provided on either side.
- the inductance of the two paths is unbalanced using an inductor in addition to the common mode choke coil, so that the inductance value can be easily and finely adjusted. The degree can be improved.
- the present invention provides the power supply apparatus according to any one of the first to fifth aspects, wherein the inductor section (290; 291) at least removes an AC power supply frequency.
- Frequency band signal A power supply device having a characteristic of attenuating a signal is provided.
- the inductor unit can be used with a power to cut off unnecessary frequency band signals even when the power supply device is connected to a power line communication system that performs communication in a high frequency band using a power line.
- the present invention provides the power supply device according to any one of the first to sixth aspects, wherein the fuse (282) connected to the power line connection portion (400) and the inductor portion (290; 291) and a second common mode choke coil (21a) connected between the fuse and the first surge absorbing element (281). And a power supply device further comprising the above.
- the power supply apparatus according to the seventh aspect, wherein the second common mode choke coil (21a) has a self-resonance frequency of 20 megahertz or more. Is.
- the common mode current tends to increase as the frequency increases.
- Force S the common mode choke coil, the higher the self-resonant frequency, the lower the common mode current on the high frequency side. To do. Therefore, with this configuration, even when the power supply device is used in a short-wave power line communication system, the high-frequency side common mode current can be obtained by using the second common mode choke coil having a self-resonance frequency of 20 MHz or higher. Reduce force by S.
- the power supply device is provided between the fuse (282) and the second common mode choke coil (21a).
- a power supply apparatus further comprising a second surge absorbing element (22) having a capacity smaller than that of the first surge absorbing element (281) is provided.
- the present invention provides the power supply device according to any one of the first to ninth,
- the power supply connection unit (400) is provided with a power supply device including a power supply cable (601) in which at least two electric wires connected to each of the transmission lines are twisted.
- the present invention provides a power line communication device (100) comprising the power supply device described in any one of the first to tenth.
- the power S can be provided to provide a power line communication device that suppresses the peak value of the common mode current.
- a twelfth aspect of the present invention is the power line communication device (100) according to the eleventh aspect, wherein the transmission unit (1) outputs a transmission signal to be transmitted via the power line (900). And the secondary winding connected to the transmission section (1) and the branch section between the power line connection section (400) and the inductor section (290; 291) to transmit the transmission signal to the power line ( 900) is connected to the primary winding of the force plastic transformer (271), and the frequency band of the AC voltage is more dependent on the frequency band of the transmission signal.
- a capacitor section (272a, 272b) having high impedance and a third common mode choke coil (31) connected between the capacitor section (272a, 272b) and the transmitter section (1) are further added.
- a power line communication device is provided.
- the common mode choke coil is arranged in the signal system, even when the power supply device handles a large current, the common mode choke having a large common mode impedance without increasing the size of the common mode choke coil. A coil can be used, and the common mode current can be reduced.
- a thirteenth aspect of the present invention is the power line communication device (100) according to the twelfth aspect, wherein the third common mode choke coil (31) includes the capacitor unit and the force plastic transformer. A power line communication device connected between the primary winding is provided.
- the common mode choke coil can be arranged in the signal system.
- the power line communication device (100) according to the twelfth aspect, wherein the third common mode choke coil (21) includes the transmitter, the force plastic transformer ( 271) is connected to the secondary winding of the power line communication device.
- the common mode choke coil can be disposed in the signal system.
- the fifteenth aspect of the present invention is the power supply device according to the first aspect, wherein a ratio of the second inductance to the first inductance is 1.2;! To 2 A power supply is provided.
- the power supply device according to the fifteenth aspect, wherein the ratio of the second inductance to the first inductance is 1.3 to 2. It is provided.
- FIG. 1 is an external perspective view of a communication device according to an embodiment of the present invention.
- FIG. 3 is a rear view of the communication device according to the embodiment of the present invention.
- FIG. 4 is a block diagram showing an example of a basic hardware configuration of the communication device according to the embodiment of the present invention.
- FIG. 5 is an explanatory diagram showing an impedance adjuster of the communication device according to the first embodiment of the present invention.
- FIG. 9 shows a specific configuration of the impedance adjuster of the communication device according to the first embodiment of the present invention. Diagram showing the first example
- FIG. 10 A diagram showing a second example of the specific configuration of the impedance adjuster of the communication device according to the first embodiment of the present invention.
- FIG. 11 A diagram showing a third example of the specific configuration of the impedance adjuster of the communication device according to the first embodiment of the present invention.
- FIG. 13 is a configuration diagram showing a part of a communication apparatus according to a second embodiment of the present invention.
- FIG. 15 is a configuration diagram showing a part of a comparative example of a communication device according to the second embodiment of the present invention. 16] Frequency-common mode current of a comparative example of the communication device according to the second embodiment of the present invention. Diagram showing characteristics
- FIG. 19 is a configuration diagram showing a part of a modification of the communication device according to the second embodiment of the present invention.
- FIG. 20 has an unbalanced inductance in the communication device according to the second embodiment of the present invention. Diagram showing frequency common mode current characteristics when impedance amplifier is used
- FIG. 21 is a configuration diagram showing a part of a first example of a communication apparatus according to a third embodiment of the present invention.
- FIG. 22 is a part of a second example of a communication apparatus according to the third embodiment of the present invention.
- Fig. 23] is a diagram showing frequency common mode current characteristics of the communication device according to the third embodiment of the present invention.
- FIG. 24 is a diagram showing frequency common mode current characteristics when an impedance amplifier having an unbalanced inductance is used in the communication device according to the third embodiment of the present invention. 25] Explanatory drawing showing a power cable according to a fourth embodiment of the present invention
- FIG. 26 is a diagram showing frequency common mode current characteristics when the power cable according to the fourth embodiment of the present invention is used in the communication apparatus according to the second embodiment of the present invention.
- an impedance amplifier having an unbalanced inductance and a power cable according to the fourth embodiment of the present invention are used.
- ADC A / D converter
- VGA Variable amplifier
- a communication device As an example of a communication device, a communication device that uses a power line as a transmission line and performs broadband communication (2 to 30 MHz) of a multicarrier communication method will be described as an example.
- a PLC (Power Line Communication) modem one of the communication devices, will be explained.
- the communication apparatus 100 shown in FIGS. 1 to 3 has a housing 101, and a front surface of the housing 101 (as shown in FIGS. 1 and 2): LED (Light Emitting Diode )
- a display unit 104 having 104a, 104b, 104c is provided, and on the back of the housing 101, as shown in Fig. 3, a power connector 102 and a LAN (Local Area Network) such as RJ45 are used.
- a modular jack 103 is provided.
- the power connector 102 is a power cable 600 such as a parallel cable (for example, WF cable).
- a LAN cable (not shown) is connected to the modular jack 103.
- the communication device 100 includes a circuit module 200, a switching power supply 300, and an AC / DC conversion unit 301.
- the switching power supply 300 supplies various voltages (for example, +1.2 V, +3.3 V, +12 V) to the circuit module 200, and includes, for example, a line filter, a switching transformer, and a DC — Consists of DC converters (none shown).
- the AC / DC conversion unit 301 converts the AC power supplied from the power line 900 via the power connector 102 into DC and supplies it to the switching power supply 300.
- the switching power supply 300 and the AC / DC conversion unit 301 function as an example of a power supply unit that receives supply of power from the power line 900.
- the circuit module 200 includes a main IC (Integrated Circuit) 210, an AFE-IC (Analog Front End IC) 220, an Ethernet (registered trademark) PHY'IC (Physical Layer Integrated Circuit) 230, a memory 240, and a low pass.
- a filter (LPF) 251, a dry IC 252, a band pass filter (BPF) 260, a coupler 270, a surge-absorber 281, a fuse 282, and an impedance adjuster 290 are provided.
- the main IC 210 includes a CPU (Central Processing Unit) 211, a PLC-MAC (Power Line Communication Media Access Control layer) block 212, and a PLC * PHY (Power Line Communication Physical layer) block 213.
- the CPU 211 implements a 32-bit RISC (Reduced Instruction Set Computer) processor.
- PLC 'MA C block 212 manages the MAC layer (Media Access Control layer) of the transmission signal
- the PHY block 213 manages the PHY layer (Physical layer) of the transmission signal.
- the AFE-IC220 is a D / A converter (DAC: D / A Converter) 221, A / D converter
- ADC A / D Converter
- VGA variable amplifier
- the coupler 270 and the impedance adjuster 290 are a surge-absorber 281 and a fuse 2
- 82 is connected to the power connector 102 via a power cable 600 and a power plug 400.
- the power line 900 is connected through the outlet 500.
- the surge absorber 281 functions as an example of the first surge absorbing element.
- the circuit connected to the opposite side of the power connector 102 with the surge absorber 281 interposed therebetween is protected from a surge input from the power line 900 side.
- the surge absorber 281 has a capacitance value of 50 [pF] or more.
- the impedance amplifier 290 has a characteristic of attenuating at least a signal in a frequency band excluding the AC power supply frequency. From the signal supplied to the AC / DC conversion unit 301, for example, a signal of an unnecessary high frequency component as a power supply Can be cut off.
- the power line 900 has at least two transmission lines to transmit power.
- a power line that transmits single-phase AC power having a pair of transmission lines will be described as an example.
- the power connector 102, or the power connector, the power cable 600, and the power plug 400 function as an example of a power line connection unit that can be connected to the power line 600.
- the LA 270 includes a coin transformer 271 and coupling capacitors 272a and 272b.
- the CPU 211 uses the data and control program stored in the memory 90 to control the operation of the PLC 'MAC block 212 and the PLC' PHY block 213, and also controls the entire communication device 100. .
- the communication device 100 performs multicarrier communication using a plurality of subcarriers such as an OFDM (Orthogonal Frequency Division Multiplexing) method, and the digital signal processing for performing such transmission is performed by the main IC 210. Especially done with PLC 'PHY Block 213
- PLC 'PHY block 213, DAC221, VGA223, LPF251, dry IC25 2 operates as a transmitter 1.
- the PLC 'PHY block 213, ADC 12, VGA 224, and BPF 2 61 function as the receiver 2.
- a modem is shown as an example of a power line communication device.
- an electric device for example, a home appliance such as a television
- a modem that is not particularly limited to this may be used.
- FIG. 5 is a diagram showing an impedance adjuster of the communication apparatus according to the first embodiment, and the same reference numerals are given to portions overlapping with FIG.
- the power connector 102 is connected to the branch portion 299 by a pair of electric wires. Between the power connector 102 and the branch portion 299, a fuse 282 is inserted into one electric wire, and a surge absorber 281 is inserted between the pair of electric wires.
- Each of the pair of electric wires branches in two directions at the branching portion 299, one is connected to the force bra 270, and the other is connected to the AC / DC converting portion 301 via the impedance upper 291.
- the configuration beyond coupler 270 and AC / DC converter 301 as seen from branch 299 is the same as that in FIG.
- the impedance amplifier 291 has a characteristic of attenuating a signal in a frequency band excluding at least the AC power supply frequency, like the impedance amplifier 290 described with reference to FIG. However, the impedance amplifier 291 has a first inductance L1 and has a first path P1 connected to one of the transmission lines of the power line 600 and a second inductance L2, and the transmission line of the power line 600 And a second path P2 connected to one side.
- the first inductance L1 and the second inductance L2 are different values. That is, the impedance amplifier 291 has an unbalanced inductance.
- the impedance adjuster 291 functions as an example of an inductor unit provided between the power connector 102 and the AC / DC conversion unit 301.
- inductance refers to an induction coefficient
- inductor refers to a circuit element having a predetermined inductance.
- FIG. 6 is a diagram showing frequency common mode current characteristics when an impedance amplifier having a balanced inductance (inductance of 100 [ ⁇ H] for each path) is used.
- the two characteristics shown in FIG. 6 are the characteristics when the insertion direction of the power plug 400 into the outlet 500 is changed. That is, Figure 6 As can be seen, the difference in the common mode current depends on the direction in which the outlet plug is inserted.
- the signal of the power line communication device is a differential signal
- the wiring pattern and component constants are the same to improve the balance in order to improve the balance of the device itself.
- the communication device of the present embodiment intentionally destroys the inductance balance of the impedance adjuster 291 to change the LCL (Longitudinal Conversion Loss) in a specific frequency range, thereby changing the outlet. It reduces the common mode current difference that occurs depending on the direction in which the plug is inserted, and suppresses the peak value of the common mode current.
- LCL Longitudinal Conversion Loss
- FIGS. 7 to 8 are diagrams illustrating frequency common mode current (CMI) characteristics when an impedance amplifier having an unbalanced inductance is used.
- CMI frequency common mode current
- the impedance amplifier 291 has an unbalanced inductance, so that the level difference of the common mode current due to the outlet insertion direction is reduced and the common mode current is reduced. It can be seen that the peak value decreases.
- FIG. 9 is a diagram showing a first example of a specific configuration of the impedance amplifier.
- the impedance adjuster 291 includes an inductor 11a provided in the first path P1 and an inductor l ib provided in the second path P2.
- the inductor 11a functions as an example of a first inductor and has a first inductance L1.
- the inductor l ib functions as an example of a second inductor and has a second inductance L2.
- the inductors 11a and l ib are separately provided in each path, so that the degree of freedom of the mounting positions of the inductors 11a and l ib is high, and the inductance value can be easily adjusted. And force S.
- FIG. 10 is a diagram showing a second example of a specific configuration of the impedance amplifier.
- the impedance amplifier 291 includes an inductor l lal and an inductor l la2 provided in the first path P1, and an inductor l ib provided in the second path P2.
- the inductor l lal functions as an example of a third inductor, and has, for example, a second inductance L2.
- the inductor l la2 functions as an example of a fourth inductor, and has an inductance whose combined inductance with the inductor l lal becomes the first inductance L1.
- the inductor l ib functions as an example of a second inductor and has a second inductance L2.
- the inductance of inductor l lal is 100 [ ⁇ H]
- the inductance of inductor 11 a2 is 22 [ ⁇ H]
- the inductance of inductor 1 lb is 100 [ ⁇ H].
- the inductor l lal and the inductor l ib have equal inductances. Then, the inductance unbalance amount between the paths of the impedance amplifier 291 is adjusted by the inductor l ib. As a result, the inductance values of the first path and the second path can be easily adjusted with high strength, and the balance in the AC / DC conversion unit 302 can be improved.
- the inductance of the inductor l lal does not have to be the second inductance L2, and the inductor l lal and the inductor l la2 may be configured so that the combined inductance is L1.
- FIG. 11 is a diagram showing a third example of a specific configuration of the impedance amplifier.
- the impedance adjuster 291 includes a common mode choke coil 12.
- the common mode choke coil 12 includes a first coil part 12a provided in the first path P1 and a second coil provided in the second path P2 and having a different number of turns from the first coil part 12a. Part 12b.
- the impedance amplifier 291 can have an unbalanced characteristic in which the first path P1 has the first inductance Ll and the second path P2 has the second inductance L2. .
- FIG. 12 is a diagram showing a fourth example of a specific configuration of the impedance amplifier.
- the impedance amplifier 291 includes a common mode choke coil 13a inserted in each of the first path P1 and the second path P2 and having a coil portion having the same number of turns. And an inductor 13b provided in one of the first path P1 and the second path P2 (the first path P1 in FIG. 12).
- the impedance amplifier 291 is an inductor provided in the path of one of the forces in which the inductance is balanced in the first path P1 and the second path P2. By 13b, it has an unbalanced characteristic.
- the inductance values of the first path and the second path can be easily and finely adjusted, so that the balance in the AC / DC converter 302 can be improved.
- the inductance in the two paths for transmitting power is unbalanced.
- the difference in common mode current value due to the plugging direction of the outlet connected to the power line is suppressed, and the peak value of the common mode current is suppressed with the force S.
- FIG. 29 is a diagram showing frequency common mode current characteristics when an impedance amplifier having a balanced inductance (inductance of 220 [H] for each path) is used, and FIG. It is a figure which shows the frequency common mode current characteristic when the impedance amplifier which has the inductance (33 0 [H] inductance about each path
- the frequency range at which the common mode current was measured is 2 to 30 MHz, the same as in Figure 6.
- the two characteristics shown in Fig. 29 and 30 are the same when the direction of inserting the power plug 400 into the outlet 500 is changed. It is a characteristic. As is clear from Figs. 29 and 30, the common mode current varies depending on the direction in which the outlet plug is inserted. Therefore, the same tendency as in Fig. 6 can be achieved.
- the maximum CMI value is the maximum common-mode current value obtained in each measurement.
- the first average CMI value is the average value of the common mode current measured in the range of 2 to 30 MHz in the case of the first insertion direction.
- the second average CMI value is the average value of the common mode current measured in the range of 2 to 30 MHz in the second insertion direction.
- ACMI is the difference (absolute value) between the first average CMI value and the second average CMI value. The lower the ACMI value, the smaller the level difference of the common mode current depending on the outlet insertion direction, and the power supply balance is improved.
- FIGS. 31 to 42 are diagrams showing frequency common mode current (CMI) characteristics when an impedance amplifier having an unbalanced inductance is used.
- inductance L2 267 [ ⁇ H]
- inductance 2 288 [ ⁇ ⁇ 1]
- Fig. 43 45 shows the relationship between L2 / L1 and ACMI.
- Figure 43 to Figure 4 In FIG. 5, the broken line indicates the value of A CMI when L2 / L1 1.
- the impedance adjuster 291 has an unbalanced inductance, so that when L2 / L1 is in the range of 1 It can be seen that the peak value of the common mode current tends to decrease as the mode current level difference decreases. Specifically, the maximum CMI value can be confirmed to decrease by approximately 2% to 7% with two exceptions. The first average CMI value, with one exception, can be seen to decrease by approximately 1% to 11%. In addition, the value of A CMI can be confirmed to decrease by 4% to 83%, without exception. In Fig. 43 to Fig. 45, even when L2 / L1 is 1.2 or less, the force that can confirm that AC MI is below the broken line. When L2 / L1 is 1.2 or less, the common mode that greatly exceeds the regulatory value. Since current resonance occurs, the ratio between the first inductance and the second inductance is not appropriate.
- FIG. 13 is a configuration diagram illustrating a part of the communication apparatus according to the second embodiment.
- parts that are the same as those in FIG. 5 described in the first embodiment are given the same reference numerals.
- the communication apparatus includes a common mode choke coil 21 a that is connected between a surge absorber 281 and a fuse 282 and functions as an example of a second common mode choke coil.
- FIG. 14 is a diagram illustrating frequency common mode current characteristics of the communication device according to the second embodiment.
- the characteristic C200 is a characteristic when the common mode choke coil 21a as shown in FIG. 13 is not inserted, and the characteristic C201 is connected to the common mode choke coil 21a as shown in FIG. It is a characteristic when it is done.
- FIG. 15 is a configuration diagram showing a part of a comparative example of the communication device according to the second embodiment.
- the common mode choke coil 21b is It is connected to the rear stage of the Jab Sover 281.
- FIG. 16 is a diagram showing frequency common mode current characteristics of a comparative example of the communication device according to the second embodiment.
- the characteristic C200 is the same characteristic as the characteristic C200 of FIG. 14, and the characteristic C202 is a characteristic when the common mode choke coil 21b as shown in FIG. 15 is connected.
- the characteristic common mode current of the characteristic C201 is reduced by the characteristic C202.
- the common mode choke coil can reduce the common mode current when it is provided at the front stage as compared with the rear stage of the surge absorber 281 when viewed from the power connector 102.
- the common mode choke coil 21a is relatively resistant to surges, in the present embodiment, the common mode choke coil 21a is provided in the front stage when viewed from the power connector 102, thereby reducing the common mode current! /, High! /, The ability to get an effect.
- FIG. 17 is a diagram showing frequency impedance characteristics according to the number of turns of the common mode choke coil.
- the characteristics C21;! To C215 indicate the frequency impedance characteristics of common mode choke coils with different numbers of turns. It shows Tokusei C212, Tokusei C213, Tokusei C214, Tokusei C215.
- the impedance of the common mode choke coil increases as the number of turns increases. It can also be seen that as the number of turns increases, the frequency indicating the peak of the impedance value decreases, that is, the self-resonant frequency, which is a frequency changing from inductive to capacitive, decreases.
- Fig. 18 shows the frequency common mode current characteristics for each number of turns of the common mode choke coil.
- Fig. 18 (A) shows the characteristics C221
- Fig. 18 (B) shows the characteristics C222
- Fig. 18 ( C) The characteristic C223 is shown in FIG. 18D, and the characteristic C224 is shown.
- Characteristics C22;! To C224 indicate the frequency common mode current characteristics when the common mode choke coil 21a has a different number of turns.
- the characteristics C221, the characteristics C222, the characteristics C223, and the characteristics C2 24 are shown in order from the smallest number of turns of the common mode choke coil 21a.
- the number of turns of the common mode choke coil showing characteristics C221 to C224 is the same as the number of turns of the common mode choke coil showing characteristics C211 to C214.
- the common mode current does not depend on the number of turns and tends to increase as the frequency increases as a whole. Therefore, in order to suppress the peak value of the common mode current, it is necessary to reduce the common mode current on the high frequency side. Therefore, a common mode choke coil having a small number of turns, that is, a common mode choke coil having a high self-resonant frequency (preferably having a self-resonant frequency force of 3 ⁇ 40 [MHz] or more) as described in FIG. Is preferred!
- FIG. 19 is a configuration diagram showing a part of a modification of the communication device according to the second embodiment.
- the communication device of this modification includes a surge absorber 22 provided between the common mode choke coil 21a and the fuse 282 and functioning as an example of a second surge absorbing element. .
- the surge absorber 22 can protect the common mode choke coil 21a against surge while reducing the common mode current.
- the surge-absorber 22 it is preferable to use a glass tube type surge-absorber that is at least smaller than the capacitance value of the surge-absorber 281, for example, a small capacitance value of about 10 [pF].
- a glass tube type surge-absorber that is at least smaller than the capacitance value of the surge-absorber 281, for example, a small capacitance value of about 10 [pF].
- the impedance upper 290 having a balanced inductance characteristic is used as the impedance upper.
- the amplifier described in the first embodiment is used.
- An impedance amplifier 291 having a balanced inductance may be used.
- FIG. 20 is a diagram showing frequency common mode current characteristics when an impedance amplifier having an unbalanced inductance is used in the communication device according to the second embodiment.
- the characteristic C231 is a characteristic when the impedance upper 291 as shown in FIG. 5 is connected and the common mode choke coil 21a is not connected.
- the characteristic C232 is the impedance upper 290 in FIG. This is a characteristic when impedance impedance 291 is connected instead of.
- the common mode current is reduced by connecting the common mode choke coil 21a. Therefore, in addition to the effect of reducing the level difference of the common mode current caused by the power plug insertion direction and the effect of suppressing the peak value of the common mode current by using the impedance amplifier 291 having an unbalanced inductance, The common mode current can be suppressed.
- the common portion between the surge-absorber 281 and the fuse 282 in the portion corresponding to the power supply device for example, the portion from the power plug 500 to the switching power supply 300 via the branch portion 299.
- FIG. 21 is a configuration diagram illustrating a part of the first example of the communication device according to the third embodiment
- FIG. 22 is a configuration illustrating a part of the second example of the communication device according to the third embodiment.
- FIG. 21 and FIG. 22 parts that are the same as those in FIG. 4 or FIG.
- the communication device of the first example is connected between coupling capacitors 272a and 272b and a force plastic transformer 271 and functions as a third common mode choke coil.
- a common mode choke coil 31 is provided.
- the force plastic transformer 271 has a primary winding 271a and a secondary winding 271b.
- the secondary winding 271b is connected to the transmission unit 1 that outputs a transmission signal.
- the primary winding 271a is connected to the branch portion and superimposes the transmission signal on the power line 900.
- Capacitors 272a and 272b are connected to the primary spring 271a of the force balance 271 and have a higher impedance in the frequency band of the AC voltage depending on the frequency band of the transmission signal. Functions as an example.
- the coupling capacitors 272a and 272b separate the high-frequency power line communication signal from the signal flowing through the power line 900.
- the communication device of the second example is connected between the transmission unit 1 and the secondary winding 271b of the force plastic transformer 271 as a third common mode choke coil.
- a functioning common mode choke coil 31 is provided.
- FIG. 23 is a diagram showing frequency common mode current characteristics of the communication device according to the third embodiment.
- the characteristic C301 is a characteristic when the impedance upper 290 as shown in FIG. 4 is connected and the common mode choke coil 31 or 32 is not connected.
- the characteristic C302 is shown in FIGS. This is the characteristic when the common mode choke coil 31 or 32 as shown is connected.
- the communication device of the third embodiment is configured such that the common mode choke coils 31 and 32 have coupling couplings that cut off signals in the frequency band of the AC voltage. From the capacitors 272a and 272b, they are arranged in the signal system on the rear stage when viewed from the branch 299. Therefore, even when the power supply device handles a large current, it is possible to use a common mode choke coil having a large common mode impedance without increasing the size of the common mode choke coil, and the common mode current can be further reduced.
- the impedance upper 290 having a balanced inductance characteristic is used as the impedance upper.
- the amplifier described in the first embodiment is used.
- An impedance amplifier 291 having a balanced inductance may be used.
- FIG. 24 is a diagram showing frequency common mode current characteristics when an impedance amplifier having an unbalanced inductance is used in the communication device according to the third embodiment.
- the characteristic C231 is the characteristic when the impedance amplifier 291 as shown in FIG. 5 is connected and the common mode choke coil 31 or 32 is not connected.
- the characteristic C312 is the characteristic C312 in FIG. This is a characteristic when the impedance amplifier 291 is connected instead of the impedance amplifier 290.
- the common mode current is reduced by connecting the common mode choke coil 31 or 32. Therefore, in addition to the effect of reducing the common mode current level difference caused by the power plug insertion direction and the suppression of the peak value of the common mode current by using the impedance amplifier 291 having an unbalanced inductance, The common mode current can be suppressed.
- the common mode current can be reduced even if the power supply is in a power line communication device that handles a large current.
- FIG. 25 is an explanatory diagram showing a power cable according to the fourth embodiment.
- the power cable 601 has a pair of electric wires 4 1 and 42 connected to each of the transmission lines of the power line 900. And these electric wires 41 and 42 are twisted. This improves the balance in the power cable 601 and reduces the common mode current.
- FIG. 26 shows a power supply cable according to the fourth embodiment of the present invention in a communication apparatus according to the second embodiment. It is a figure which shows the frequency common mode current characteristic when one bull is used.
- a characteristic C401 is a characteristic when the power supply Cape 600, which is a parallel cable, is connected to the communication apparatus shown in FIG. 13, and a characteristic C402 is a characteristic when the power cable 601 is connected to the communication apparatus shown in FIG. It is a characteristic in the case of.
- the common mode current is reduced by connecting the power cable 601 in the form of a stranded wire to the power connector 102.
- FIG. 27 is a diagram showing frequency common mode current characteristics when an impedance upper having an unbalanced inductance and a power cable according to the fourth embodiment are used in the communication device according to the second embodiment. It is.
- the characteristic C232 is a characteristic when the power cable 600, which is a parallel cable, is connected to the communication device to which the impedance upper 291 is connected instead of the impedance upper 290 in FIG. 13, and the characteristic C412 These are characteristics when a stranded wire-shaped power cable 601 is connected to a communication apparatus to which the impedance upper 291 is connected instead of the impedance upper 290.
- the common mode current is reduced by connecting the stranded wire-shaped power cable 601. Therefore, in addition to the effect of reducing the level difference of the common mode current due to the insertion direction of the power plug and the suppression of the peak value of the common mode current by using the impedance amplifier 291 having an unbalanced inductance, The mode current can be suppressed.
- the use of a power cable having a stranded wire makes it possible to improve the balance and reduce the common mode current.
- the power supply device and power line communication device of the present invention suppress the peak value of common mode current. It is useful for a power line communication system using a short wave band.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Abstract
It is possible to provide a power supply device and a power line communication device capable of suppressing a peak value of a common mode current. A power connector (102) has a pair of transmission lines for making a connection to a power line for transmitting power. Power supplied from the power connector (102) is supplied via an impedance upper (291) to an AC/DC converter (301). The impedance upper (291) has a first inductance (L1) in a first path (P1) and a second inductance (L2) which is different from the first inductance (L1) in a second path (P2).
Description
明 細 書 Specification
電源装置及び電力線通信装置 Power supply device and power line communication device
技術分野 Technical field
[0001] 本発明は、電源装置及び電力線通信装置に関する。 The present invention relates to a power supply device and a power line communication device.
背景技術 Background art
[0002] 例えば家庭内等において、パーソナルコンピュータのような情報機器やテレビモニ タ、録画装置、画像再生装置、 IP (Internet Protocol )電話機などのような様々な電 気機器を所定の通信ネットワークを介して互いに通信可能な状態で接続することによ り、複数機器間の連係動作を容易に実現可能にするシステムが提案されている。し かし、家庭内等で有線通信によりデータ通信を行う場合には、通常は伝送路として使 用するケーブルやコネクタなどの配線を必要な箇所に敷設する必要があるため、通 信システムを構築する際に様々な工事が必要になることがある。 [0002] For example, in homes and the like, various electrical devices such as information devices such as personal computers, television monitors, recording devices, image playback devices, IP (Internet Protocol) telephones, etc. are connected via a predetermined communication network. There has been proposed a system that makes it possible to easily realize a cooperative operation between a plurality of devices by connecting them in a state where they can communicate with each other. However, when performing data communication by wired communication in the home, etc., it is usually necessary to lay wiring such as cables and connectors used as transmission lines at necessary places, so a communication system has been established. Various work may be necessary when doing.
[0003] 一方、家庭内等ではほとんどの場合は商用電源、例えば交流 100V (50/60Hz) を使用しているので、この電力を供給するための電力線が家庭内のあらゆる箇所に 既に敷設されている。従って、これらの電力線をデータ通信の伝送路に利用できれ ば、通信用の特別な配線を新たに設ける必要はなぐ通信に用いる機器を商用電源 のコンセントに差し込むだけで通信経路を確保することが可能になる。 [0003] On the other hand, in most cases, a commercial power supply, for example, AC 100V (50 / 60Hz), is used in homes and the like, and power lines for supplying this power are already laid in every part of the home. Yes. Therefore, if these power lines can be used as a data communication transmission line, it is not necessary to provide a special communication line, and it is possible to secure a communication path simply by plugging a device used for communication into a commercial power outlet. It becomes possible.
[0004] このような電力線を通信に利用する電力線通信の技術(PLC : Power Line Commun ication)については、各種の技術が知られている(例えば、特開 2000— 165304号 公報)。また現状では、国内外においては、所定の周波数帯域 (例えば、米国では、 1. 705MHz〜30MHz、 日本では、 2MHz〜30MHz)において、様々なメーカに おいて研究や開発が進められている。具体的には、 OFDM (Orthogonal Frequency Division Multiplexing :直交周波数分割多重)方式のように複数の副搬送波を用いて マルチキャリア信号を生成し、マルチキャリア信号を電力線で伝送することが想定さ れている。 [0004] Various technologies are known for power line communication technology (PLC: Power Line Communication) using such a power line for communication (for example, JP 2000-165304 A). At present, research and development are underway at various manufacturers in Japan and overseas in a specific frequency band (for example, 1.705 MHz to 30 MHz in the United States, 2 MHz to 30 MHz in Japan). Specifically, it is assumed that a multicarrier signal is generated using a plurality of subcarriers as in the OFDM (Orthogonal Frequency Division Multiplexing) method, and the multicarrier signal is transmitted through a power line. .
[0005] 図 28は、電力線等の伝送線路上の電流モデルを示す図である。伝送線路は、大 地(アース)に対して平衡である一対の導体からなる伝送線路(Cl、 C2)で構成され
[0006] 図 28では、伝送線路の左端に一対の電圧源(elO e20)が設けられている。 elO と e20とは波形、振幅、位相などの特性が等しぐ各電圧源(elO e20)から発生する 電圧(各々の電圧を" e"とする) 1 各線路(Cl C2)に与えられる。 FIG. 28 is a diagram showing a current model on a transmission line such as a power line. The transmission line consists of a transmission line (Cl, C2) consisting of a pair of conductors that are balanced with respect to the ground (earth). In FIG. 28, a pair of voltage sources (elO e20) is provided at the left end of the transmission line. elO and e20 are the voltage generated from each voltage source (elO e20) whose characteristics such as waveform, amplitude, and phase are equal (each voltage is assumed to be “e”) 1 is given to each line (Cl C2).
[0007] 伝送線路の右端には、負荷インピーダンス(正規の負荷) ZL力 S設けられてレ、る。伝 送線路(Cl C2)には、互いに逆向きの、ディファレンシャル(ノーマル)モード電流( + Id Id)が流れる。 [0007] A load impedance (regular load) ZL force S is provided at the right end of the transmission line. In the transmission line (Cl C2), differential (normal) mode currents (+ Id Id) flow in opposite directions.
[0008] ただし、伝送線路と大地(アース)との間には、寄生インピーダンス(対地インピーダ ンス) Z1 Z3が介在する。 However, parasitic impedance (ground impedance) Z1 Z3 is interposed between the transmission line and the ground (earth).
[0009] ここで、寄生インピーダンス Z2 Z3のインピーダンス値(この値も Z2 Z3と表記する[0009] Here, the impedance value of the parasitic impedance Z2 Z3 (this value is also expressed as Z2 Z3)
)が等しくないと、その寄生インピーダンス(対地インピーダンス) Z1 Z3ならびに大 地を介して循環電流である、コモンモード電流 Icが流れる。 ) Are not equal, the common mode current Ic, which is the circulating current, flows through the parasitic impedance (ground impedance) Z1 Z3 and the ground.
[0010] 平衡度が十分に高い伝送線路であれば、 Z2 = Z3とみなすことができ、コモンモー ド電流 Icは流れない。しかし、平衡度が比較的低い線路では、 Z2≠Z3となり、コモン モード電流 Icが流れる。 [0010] If the transmission line has a sufficiently high balance, it can be considered that Z2 = Z3, and the common mode current Ic does not flow. However, in a line with a relatively low balance, Z2 ≠ Z3, and the common mode current Ic flows.
[0011] コモンモード電流 Icの電流量は、以下のように表すことができる。以下の式(1)にお いて、 eは、各電圧源(elO e20)から発生する各電圧を示す。 [0011] The current amount of the common mode current Ic can be expressed as follows. In the following formula (1), e represents each voltage generated from each voltage source (elO e20).
[0012] Ic = e - (Ζ2-Ζ3) / (Ζ1 ·Ζ2 + Ζ2 ·Ζ3 + Ζ3 ·Ζ1) · · · (1) [0012] Ic = e-(Ζ2-Ζ3) / (Ζ1 · Ζ2 + Ζ2 · Ζ3 + Ζ3 · Ζ1) · · · (1)
[0013] このコモンモード電流 Icは、二股に分岐し、一対の伝送線路(Cl C2)の各々に同 等に流れる。よって、各伝送線路(Cl C2)には、同じ向きに、コモンモード電流(電 流量は Ic/2となる)が流れる。 [0013] This common mode current Ic is bifurcated and flows equally to each of the pair of transmission lines (Cl C2). Therefore, common mode current (current flow is Ic / 2) flows through each transmission line (Cl C2) in the same direction.
[0014] コモンモード電流 Icが流れると、線路からの輻射が生じる要因となる。すなわち、一 対の線路の各々に、同振幅かつ逆位相の信号を重畳した場合、平衡状態が保たれ て!/、た場合には各線路から放射される輻射成分は相殺される力 不平衡状態では、 完全な相殺がなされず、輻射成分が外部に漏れることがある。 [0014] When the common mode current Ic flows, it causes radiation from the line. In other words, when signals of the same amplitude and opposite phase are superimposed on each of the pair of lines, the balanced state is maintained! /, In which case the radiation component radiated from each line is canceled out. In the state, there is no complete cancellation, and radiation components may leak out.
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0015] 伝送線路として、平衡度が高!/、線路 (例えば、イーサネット(登録商標)のツイストぺ
ァケーブル等の通信専用の線路)を用いれば、線路上で発生するコモンモード電流 は充分低いレベルに抑制されるため、輻射の問題は生じない。 [0015] As a transmission line, the balance is high! /, A line (for example, an Ethernet (registered trademark) twisted pair). If a dedicated cable (such as a cable) is used, the common mode current generated on the line is suppressed to a sufficiently low level, so there is no radiation problem.
[0016] しかしながら、伝送線路として電力線が用いられる電力線通信システムでは、電力 線の平衡度は低いため、伝送線路上で発生するコモンモード電流が大きくなつてし まうという事情がある。 [0016] However, in a power line communication system in which a power line is used as a transmission line, there is a situation in which the common mode current generated on the transmission line becomes large because the balance of the power line is low.
[0017] 日本では、電力線通信に 2〜30MHzの周波数帯が認可される見通しである力 コ モンモード電流の準尖頭値の許容値が定められる予定となっている。したがって、電 力線通信に用いられる周波数帯域内におけるコモンモード電流のピーク値は、定め られた許容値以下に抑制する必要があるという事情がある。 [0017] In Japan, an allowable value of the quasi-peak value of the force common mode current, which is expected to be approved for the 2-30 MHz frequency band for power line communication, is scheduled. Therefore, there is a situation in which the peak value of the common mode current in the frequency band used for power line communication needs to be suppressed below a predetermined allowable value.
[0018] 本発明は、上記の事情に鑑みてなされたものであって、コモンモード電流のピーク 値を抑制することが可能な電源装置及び電力線通信装置を提供することを目的とす 課題を解決するための手段 [0018] The present invention has been made in view of the above circumstances, and solves the problem of providing a power supply device and a power line communication device capable of suppressing a peak value of a common mode current. Means to do
[0019] 本発明は、第 1に、少なくとも二つの伝送線路を有して電力を伝送する電力線(90 0)に、接続自在な電力線接続部(400)と、前記電力線接続部(400)を介して前記 電力の供給を受ける電力供給部(300)と、前記電力線接続部(400)と前記電力供 給部(300)との間に設けられるインダクタ部(290 : 291)とを備え、前記インダクタ部( 290 ; 291)は、第一のインダクタンス(L1)を有し、前記伝送線路のうちの一つに接 続する第一の経路 (P1)と、前記第一のインダクタンス(L1)とは異なる第二のインダ クタンス(L2)を有し、前記第一の経路 (P1)に接続される伝送線路とは異なる伝送線 路に接続する第二の経路 (P2)とを備える電源装置が提供されるものである。 In the present invention, first, a power line connecting portion (400) that can be connected to a power line (900) having at least two transmission lines and transmitting power, and the power line connecting portion (400) are provided. A power supply unit (300) that receives the power supply via the power line connection unit (400) and an inductor unit (290: 291) provided between the power line connection unit (400) and the power supply unit (300), The inductor section (290; 291) has a first inductance (L 1), a first path (P 1) connected to one of the transmission lines, and the first inductance (L 1) Has a second inductance (L2) different from each other, and a power supply apparatus comprising a second path (P2) connected to a transmission line different from the transmission line connected to the first path (P1). It is provided.
[0020] この構成により、例えば電源装置が単相電源に接続する場合にお!/、て、電源接続 部と電力供給部との間の二つの経路におけるインダクタンスがアンバランスとなること により、電力線に接続するコンセントの差込方向によるコモンモード電流値の差を抑 制し、コモンモード電流のピーク値を抑制することができる。 [0020] With this configuration, for example, when the power supply device is connected to a single-phase power supply! /, The inductance in the two paths between the power supply connection portion and the power supply portion becomes unbalanced. It is possible to suppress the difference in the common mode current value due to the plugging direction of the outlet connected to the, and to suppress the peak value of the common mode current.
[0021] 本発明は、第 2に、上記第 1に記載の電源装置であって、前記インダクタ部(290 : 2 91 )は、前記第一の経路 (P 1 )に設けられた前記第一のインダクタンス (L 1 )を有する 第一のインダクタ(例えば、 11a)と、前記第二の経路 (P2)に設けられた前記第二の
インダクタンス(L2)を有する第二のインダクタ(1 lb)とを備える電源装置が提供され るものである。 [0021] Secondly, the present invention provides the power supply device according to the first, wherein the inductor section (290: 291) is provided in the first path (P1). A first inductor having an inductance (L 1) (eg, 11a) and the second inductor (2) provided in the second path (P2) A power supply device comprising a second inductor (1 lb) having an inductance (L2) is provided.
[0022] この構成により、各経路において別々にインダクタが揷入されるので、実装位置の 自由度が高ぐインダクタンス値を容易に調整することができる。 [0022] With this configuration, an inductor is inserted separately in each path, so that an inductance value with a high degree of freedom in the mounting position can be easily adjusted.
[0023] 本発明は、第 3に、上記第 2に記載の電源装置であって、前記第一のインダクタ(例 えば、 11a)は、所定のインダクタンスを有する第三のインダクタ(l lal)および第四 のインダクタ(1 la2)を有する電源装置が提供されるものである。 [0023] Third, the power supply device according to the second aspect, wherein the first inductor (eg, 11a) includes a third inductor (l lal) having a predetermined inductance and A power supply device having a fourth inductor (1 la2) is provided.
[0024] この構成により、第一の経路に第三のインダクタ及び第四のインダクタを設けて、二 つの経路のインダクタンスをアンバランスにするので、インダクタンスを容易に、かつ 細かく調整可能となり、電源供給部における平衡度を向上させることができる。 [0024] With this configuration, the third inductor and the fourth inductor are provided in the first path, and the inductance of the two paths is unbalanced, so that the inductance can be easily and finely adjusted, and the power supply The degree of balance in the section can be improved.
[0025] 本発明は、第 4に、上記第 1に記載の電源装置であって、前記インダクタ部(290 ; 2 91)は、前記第一の経路 (P1)に設けられた第一のコイル部(12a)と、前記第二の経 路 (P2)に揷入され、前記第一のコイル部(12a)とは異なる巻き数の第二のコイル部 (12b)とを有するコモンモードチョークコイル(12)を備える電源装置が提供されるも のである。 [0025] Fourth, the power supply device according to the first aspect, wherein the inductor section (290; 291) is a first coil provided in the first path (P1). Part (12a) and a common mode choke coil having a second coil part (12b) inserted in the second path (P2) and having a different number of turns from the first coil part (12a) A power supply device comprising (12) is provided.
[0026] この構成により、コモンモードチョークコイルのみの一つの部品で、二つの経路のィ ンダクタンスをアンバランスにすることができるので、電源装置のばらつきを抑えること ができる。 [0026] With this configuration, the inductance of the two paths can be unbalanced with a single component of only the common mode choke coil, so that variations in the power supply device can be suppressed.
[0027] 本発明は、第 5に、上記第 1に記載の電源装置であって、前記インダクタ部(290 ; 2 91)は、前記第一の経路 (P1)及び前記第二の経路 (P2)の各々に設けられた、互い に同じ巻き数のコイル部を有するコモンモードチョークコイル(13a)と、前記第一の経 路 (P1)及び前記第二の経路 (P2)の!/、ずれか一方に設けられたインダクタとを備え る電源装置が提供されるものである。 [0027] The fifth aspect of the present invention is the power supply device according to the first aspect, wherein the inductor section (290; 291) includes the first path (P1) and the second path (P2 ) And a common mode choke coil (13a) having the same number of turns, and the first path (P1) and the second path (P2)! / There is provided a power supply device including an inductor provided on either side.
[0028] この構成により、コモンモードチョークコイルに加え、インダクタを用いて二つの経路 のインダクタンスをアンバランスにするので、インダクタンス値を容易に、かつ細かく調 整可能となるので、電源供給部における平衡度を向上させることができる。 [0028] With this configuration, the inductance of the two paths is unbalanced using an inductor in addition to the common mode choke coil, so that the inductance value can be easily and finely adjusted. The degree can be improved.
[0029] 本発明は、第 6に、上記第 1ないし第 5のいずれかに記載の電源装置であって、前 記インダクタ部(290 ; 291)は、少なくとも交流電源周波数を除!/、た周波数帯域の信
号を減衰させる特性を有する電源装置が提供されるものである。 [0029] Sixthly, the present invention provides the power supply apparatus according to any one of the first to fifth aspects, wherein the inductor section (290; 291) at least removes an AC power supply frequency. Frequency band signal A power supply device having a characteristic of attenuating a signal is provided.
[0030] この構成により、インダクタ部は、電源装置が電力線を用いて高周波帯域の通信を 行う電力線通信システムに接続される場合においても、不要な周波数帯域の信号を 遮断すること力でさる。 [0030] With this configuration, the inductor unit can be used with a power to cut off unnecessary frequency band signals even when the power supply device is connected to a power line communication system that performs communication in a high frequency band using a power line.
[0031] 本発明は、第 7に、上記第 1ないし第 6のいずれかに記載の電源装置であって、前 記電力線接続部(400)に接続されたヒューズ(282)と、前記インダクタ部(290 ; 291 )に接続された第一のサージ吸収素子(281)と、前記ヒューズと前記第一のサージ 吸収素子(281)との間に接続された第二のコモンモードチョークコイル(21a)とを更 に備える電源装置が提供されるものである。 [0031] Seventhly, the present invention provides the power supply device according to any one of the first to sixth aspects, wherein the fuse (282) connected to the power line connection portion (400) and the inductor portion (290; 291) and a second common mode choke coil (21a) connected between the fuse and the first surge absorbing element (281). And a power supply device further comprising the above.
[0032] この構成により、第一のサージ吸収素子において電力泉接続部とは反対側の回路 をサージに対して保護しつつ、コモンモードチョークコイルにおいてコモンモード電流 を低減すること力 Sできる。 [0032] With this configuration, it is possible to reduce the common mode current in the common mode choke coil while protecting the circuit on the opposite side of the power spring connection in the first surge absorbing element against the surge.
[0033] 本発明は、第 8に、上記第 7に記載の電源装置であって、前記第二のコモンモード チョークコイル(21a)は、 20メガヘルツ以上の自己共振周波数を有する電源装置が 提供されるものである。 [0033] Eighthly, according to the present invention, there is provided the power supply apparatus according to the seventh aspect, wherein the second common mode choke coil (21a) has a self-resonance frequency of 20 megahertz or more. Is.
[0034] 短波帯では、周波数が高くなるにつれてコモンモード電流が大きくなる傾向がある 力 S、コモンモードチョークコイルは、 自己共振周波数が高域にあるほど、高域側のコ モンモード電流を低減する。したがって、この構成により、電源装置が短波帯の電力 線通信システムに用いられたとしても、自己共振周波数が 20メガヘルツ以上の第二 のコモンモードチョークコイルを用いることにより、高域側のコモンモード電流を低減 すること力 Sでさる。 [0034] In the short wave band, the common mode current tends to increase as the frequency increases. Force S, the common mode choke coil, the higher the self-resonant frequency, the lower the common mode current on the high frequency side. To do. Therefore, with this configuration, even when the power supply device is used in a short-wave power line communication system, the high-frequency side common mode current can be obtained by using the second common mode choke coil having a self-resonance frequency of 20 MHz or higher. Reduce force by S.
[0035] 本発明は、第 9に、上記第 7又は第 8に記載の電源装置であって、前記ヒューズ (2 82)と前記第二のコモンモードチョークコイル(21a)との間に設けられ、前記第一の サージ吸収素子(281)の容量よりも小さい容量を有する第二のサージ吸収素子(22 )を更に備える電源装置が提供されるものである。 [0035] Ninthly, the power supply device according to the seventh or eighth aspect is provided between the fuse (282) and the second common mode choke coil (21a). A power supply apparatus further comprising a second surge absorbing element (22) having a capacity smaller than that of the first surge absorbing element (281) is provided.
[0036] この構成により、コモンモード電流を低減しつつ、第二のサージ吸収素子において 、サージに対して第二のコモンモードチョークコイルを保護することができる。 With this configuration, it is possible to protect the second common mode choke coil against a surge in the second surge absorbing element while reducing the common mode current.
[0037] 本発明は、第 10に、上記第 1ないし第 9のいずれかに記載の電源装置であって、
前記電源接続部(400)は、前記伝送線路の各々に接続する少なくとも二本の電線 が撚られた電源ケーブル(601)を備える電源装置が提供されるものである。 [0037] Tenthly, the present invention provides the power supply device according to any one of the first to ninth, The power supply connection unit (400) is provided with a power supply device including a power supply cable (601) in which at least two electric wires connected to each of the transmission lines are twisted.
[0038] この構成により、撚り線状態となっている電源ケーブルにより平衡度が向上するの で、コモンモード電流を低減することができる。 [0038] With this configuration, the balance is improved by the power supply cable in the stranded state, so that the common mode current can be reduced.
[0039] 本発明は、第 11に、上記第 1ないし第 10のいずれかに記載された電源装置を備え る電力線通信装置(100)が提供されるものである。 [0039] Eleventhly, the present invention provides a power line communication device (100) comprising the power supply device described in any one of the first to tenth.
[0040] この構成により、コモンモード電流のピーク値を抑制した電力線通信装置を提供す ること力 Sでさる。 [0040] With this configuration, the power S can be provided to provide a power line communication device that suppresses the peak value of the common mode current.
[0041] 本発明は、第 12に、上記第 11に記載の電力線通信装置(100)であって、前記電 力線 (900)を介して送信する送信信号を出力する送信部(1)と、前記送信部(1)に 接続された二次巻線と、前記電力線接続部(400)と前記インダクタ部(290; 291 )と の間の分岐部に接続されて前記送信信号を前記電力線(900)に重畳する一次巻線 とを有する力プラトランス (271)と、前記力プラトランス (271)の一次巻線に接続され 、前記送信信号の周波数帯域により前記交流電圧の周波数帯域の方が高いインピ 一ダンスを有するコンデンサ部(272a、 272b)と、前記コンデンサ部(272a、 272b) と前記送信部(1)との間に接続された第三のコモンモードチョークコイル(31)とを更 に備える電力線通信装置が提供されるものである。 [0041] A twelfth aspect of the present invention is the power line communication device (100) according to the eleventh aspect, wherein the transmission unit (1) outputs a transmission signal to be transmitted via the power line (900). And the secondary winding connected to the transmission section (1) and the branch section between the power line connection section (400) and the inductor section (290; 291) to transmit the transmission signal to the power line ( 900) is connected to the primary winding of the force plastic transformer (271), and the frequency band of the AC voltage is more dependent on the frequency band of the transmission signal. A capacitor section (272a, 272b) having high impedance and a third common mode choke coil (31) connected between the capacitor section (272a, 272b) and the transmitter section (1) are further added. A power line communication device is provided.
[0042] この構成により、コモンモードチョークコイルが信号系に配置されるので、電源装置 が大電流を扱う場合でも、コモンモードチョークコイルを大型化することなぐ大きなコ モンモードインピーダンスを有するコモンモードチョークコイルを用いることが可能とな り、コモンモード電流を低減することができる。 [0042] With this configuration, since the common mode choke coil is arranged in the signal system, even when the power supply device handles a large current, the common mode choke having a large common mode impedance without increasing the size of the common mode choke coil. A coil can be used, and the common mode current can be reduced.
[0043] 本発明は、第 13に、上記第 12に記載の電力線通信装置(100)であって、前記第 三のコモンモードチョークコイル(31)は、前記コンデンサ部と、前記力プラトランスの 1 次巻線との間に接続される電力線通信装置が提供されるものである。 [0043] A thirteenth aspect of the present invention is the power line communication device (100) according to the twelfth aspect, wherein the third common mode choke coil (31) includes the capacitor unit and the force plastic transformer. A power line communication device connected between the primary winding is provided.
[0044] この構成により、コモンモードチョークコイルを信号系に配置することができる。 With this configuration, the common mode choke coil can be arranged in the signal system.
[0045] 本発明は、第 14に、上記第 12に記載の電力線通信装置(100)であって、前記第 三のコモンモードチョークコイル(21)は、前記送信部と、前記力プラトランス(271)の 2次巻線との間に接続される電力線通信装置が提供されるものである。
[0046] この構成により、コモンモードチョークコイルを信号系に配置することができる。 [0045] In the fourteenth aspect, the power line communication device (100) according to the twelfth aspect, wherein the third common mode choke coil (21) includes the transmitter, the force plastic transformer ( 271) is connected to the secondary winding of the power line communication device. With this configuration, the common mode choke coil can be disposed in the signal system.
[0047] 本発明は、第 15に、上記第 1に記載の電源装置であって、前記第 2のインダクタン スと前記第 1のインダクタンスとの比は、 1. 2;!〜 2である電源装置が提供されるもの である。 [0047] The fifteenth aspect of the present invention is the power supply device according to the first aspect, wherein a ratio of the second inductance to the first inductance is 1.2;! To 2 A power supply is provided.
[0048] この構成により、コモンモード電流の抑制と、コンセント差込み方向による、コモンモ ード電流のレベル差を低減させることができる。 [0048] With this configuration, it is possible to suppress the common mode current and to reduce the level difference of the common mode current due to the outlet insertion direction.
[0049] 本発明は、第 16に、上記第 15に記載の電源装置であって、前記第 2のインダクタ ンスと前記第 1のインダクタンスとの比は、 1. 3〜2である電源装置が提供されるもの である。 [0049] Sixteenth, the power supply device according to the fifteenth aspect, wherein the ratio of the second inductance to the first inductance is 1.3 to 2. It is provided.
[0050] この構成により、コモンモード電流の抑制と、コンセント差込み方向による、コモンモ ード電流のレベル差を低減させることができる。 [0050] With this configuration, it is possible to suppress the common mode current and to reduce the level difference of the common mode current due to the outlet insertion direction.
発明の効果 The invention's effect
[0051] 本発明によれば、コモンモード電流のピーク値を抑制することが可能な電源装置及 び電力線通信装置を提供することができる。 [0051] According to the present invention, it is possible to provide a power supply device and a power line communication device capable of suppressing the peak value of the common mode current.
図面の簡単な説明 Brief Description of Drawings
[0052] [図 1]本発明の実施形態に係る通信装置の外観斜視図 [0052] FIG. 1 is an external perspective view of a communication device according to an embodiment of the present invention.
[図 2]本発明の実施形態に係る通信装置の正面図 FIG. 2 is a front view of a communication device according to an embodiment of the present invention.
[図 3]本発明の実施形態に係る通信装置の背面図 FIG. 3 is a rear view of the communication device according to the embodiment of the present invention.
[図 4]本発明の実施形態に係る通信装置の基本的なハードウェア構成の一例を示す ブロック図 FIG. 4 is a block diagram showing an example of a basic hardware configuration of the communication device according to the embodiment of the present invention.
[図 5]本発明の第 1の実施形態に係る通信装置のインピーダンスアツパを示す説明図 FIG. 5 is an explanatory diagram showing an impedance adjuster of the communication device according to the first embodiment of the present invention.
[図 6]バランスが取れて!/、るインダクタンス(LI =L2 = 100 μ Η)を有するインピーダ ンスァツバが用いられた場合の周波数 コモンモード電流特性を示す図 [Fig.6] Diagram showing frequency common-mode current characteristics when impedance impedance bar with balanced! /, Inductance (LI = L2 = 100 μΗ) is used
[図 7]アンバランスなインダクタンス(L1 = 100 ί Η, L2 = 122 iu H)を有するインピー ダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図 [Fig. 7] Diagram showing frequency common-mode current characteristics when an impedance amplifier with unbalanced inductance (L1 = 100 ί Η, L2 = 122 i u H) is used.
[図 8]アンバランスなインダクタンス(L1 = 100〃 H、 L2 = 147 μ Η)を有するインピー ダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図 [Figure 8] Diagram showing frequency common-mode current characteristics when an impedance amplifier with unbalanced inductance (L1 = 100 〃 H, L2 = 147 μ Η) is used
[図 9]本発明の第 1の実施形態に係る通信装置のインピーダンスアツパの具体的な構
成の第 1例を示す図 FIG. 9 shows a specific configuration of the impedance adjuster of the communication device according to the first embodiment of the present invention. Diagram showing the first example
園 10]本発明の第 1の実施形態に係る通信装置のインピーダンスアツパの具体的な 構成の第 2例を示す図 10] A diagram showing a second example of the specific configuration of the impedance adjuster of the communication device according to the first embodiment of the present invention.
園 11]本発明の第 1の実施形態に係る通信装置のインピーダンスアツパの具体的な 構成の第 3例を示す図 11] A diagram showing a third example of the specific configuration of the impedance adjuster of the communication device according to the first embodiment of the present invention.
園 12]本発明の第 1の実施形態に係る通信装置のインピーダンスアツパの具体的な 構成の第 4例を示す図 12] A diagram showing a fourth example of the specific configuration of the impedance adjuster of the communication device according to the first embodiment of the present invention.
[図 13]本発明の第 2の実施形態に係る通信装置の一部を示す構成図 FIG. 13 is a configuration diagram showing a part of a communication apparatus according to a second embodiment of the present invention.
園 14]本発明の第 2の実施形態に係る通信装置の周波数 コモンモード電流特性 を示す図 14] A diagram showing frequency common mode current characteristics of the communication device according to the second embodiment of the present invention.
[図 15]本発明の第 2の実施形態に係る通信装置の比較例の一部を示す構成図 園 16]本発明の第 2の実施形態に係る通信装置の比較例の周波数—コモンモード 電流特性を示す図 FIG. 15 is a configuration diagram showing a part of a comparative example of a communication device according to the second embodiment of the present invention. 16] Frequency-common mode current of a comparative example of the communication device according to the second embodiment of the present invention. Diagram showing characteristics
[図 17]コモンモードチョークコイルの巻き数別の周波数 インピーダンス特性を示す 図 [Figure 17] Diagram showing frequency impedance characteristics for each number of turns of common mode choke coil
[図 18]コモンモードチョークコイルの巻き数別の周波数 コモンモード電流特性を示 す図 [Fig.18] Frequency of common mode choke coil according to number of turns Common mode current characteristics
[図 19]本発明の第 2の実施形態に係る通信装置の変形例の一部を示す構成図 [図 20]本発明の第 2の実施形態に係る通信装置に、アンバランスなインダクタンスを 有するインピーダンスアツパが用いられた場合の周波数 コモンモード電流特性を 示す図 FIG. 19 is a configuration diagram showing a part of a modification of the communication device according to the second embodiment of the present invention. FIG. 20 has an unbalanced inductance in the communication device according to the second embodiment of the present invention. Diagram showing frequency common mode current characteristics when impedance amplifier is used
[図 21]本発明の第 3の実施形態に係る通信装置の第一例の一部を示す構成図 [図 22]本発明の第 3の実施形態に係る通信装置の第二例の一部を示す構成図 園 23]本発明の第 3の実施形態に係る通信装置の周波数 コモンモード電流特性 を示す図 FIG. 21 is a configuration diagram showing a part of a first example of a communication apparatus according to a third embodiment of the present invention. FIG. 22 is a part of a second example of a communication apparatus according to the third embodiment of the present invention. Fig. 23] is a diagram showing frequency common mode current characteristics of the communication device according to the third embodiment of the present invention.
[図 24]本発明の第 3の実施形態に係る通信装置に、アンバランスなインダクタンスを 有するインピーダンスアツパが用いられた場合の周波数 コモンモード電流特性を 示す図
園 25]本発明の第 4の実施形態に係る電源ケーブルを示す説明図 FIG. 24 is a diagram showing frequency common mode current characteristics when an impedance amplifier having an unbalanced inductance is used in the communication device according to the third embodiment of the present invention. 25] Explanatory drawing showing a power cable according to a fourth embodiment of the present invention
[図 26]本発明の第 2の実施形態に係る通信装置に本発明の第 4の実施形態に係る 電源ケーブルが用いられた場合の周波数 コモンモード電流特性を示す図 園 27]本発明の第 2の実施形態に係る通信装置に、アンバランスなインダクタンスを 有するインピーダンスアツパ及び本発明の第 4の実施形態に係る電源ケーブルが用 FIG. 26 is a diagram showing frequency common mode current characteristics when the power cable according to the fourth embodiment of the present invention is used in the communication apparatus according to the second embodiment of the present invention. For the communication device according to the second embodiment, an impedance amplifier having an unbalanced inductance and a power cable according to the fourth embodiment of the present invention are used.
V、られた場合の周波数 コモンモード電流特性を示す図 V, frequency when applied Common mode current characteristics
[図 28]伝送線路上の電流モデルを示す図 [Fig.28] Diagram showing current model on transmission line
[図 29]バランスが取れて!/、るインダクタンス(LI =L2 = 220 μ Η)を有するインピーダ ンスァツバが用いられた場合の周波数 コモンモード電流特性を示す図 [Fig.29] Diagram showing frequency common mode current characteristics when using impedance impedance bar with balanced (/ L2 = 220 μΗ) inductance!
[図 30]バランスが取れて!/、るインダクタンス(LI =L2 = 330 μ Η)を有するインピーダ ンスァツバが用いられた場合の周波数 コモンモード電流特性を示す図 [Fig.30] A graph showing the frequency common mode current characteristics when using an impedance transformer with balanced inductance (LI = L2 = 330 μΗ).
[図 31]アンバランスなインダクタンス(L1 = 100〃 H、 L2 = 133〃 Η)を有するインピ 一ダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図 [Fig.31] Diagram showing frequency common mode current characteristics when an impedance amplifier with unbalanced inductance (L1 = 100 〃 H, L2 = 133 〃 Η) is used.
[図 32]アンバランスなインダクタンス(L1 = 100〃 H、 L2 = 168〃 H)を有するインピ 一ダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図 [Fig.32] Diagram showing frequency common mode current characteristics when an impedance amplifier with unbalanced inductance (L1 = 100 〃 H, L2 = 168 〃 H) is used.
[図 33]アンバランスなインダクタンス(L1 = 100〃 H、 L2 = 200 μ Η)を有するインピ 一ダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図 [Fig.33] Frequency common mode current characteristics when an impedance amplifier with an unbalanced inductance (L1 = 100〃H, L2 = 200μΗ) is used.
[図 34]アンバランスなインダクタンス(L1 = 220〃 H、 L2 = 267〃 Η)を有するインピ 一ダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図 [Fig.34] Diagram showing frequency common mode current characteristics when an impedance amplifier with unbalanced inductance (L1 = 220〃 H, L2 = 267〃 Η) is used.
[図 35]アンバランスなインダクタンス(L1 = 220〃 H、 L2 = 288〃 Η)を有するインピ 一ダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図 [Fig.35] Diagram showing frequency common mode current characteristics when an impedance amplifier with unbalanced inductance (L1 = 220〃H, L2 = 288〃 Η) is used.
[図 36]アンバランスなインダクタンス(L1 = 220〃 H、 L2 = 320 μ Η)を有するインピ 一ダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図 [Fig.36] Diagram showing frequency common mode current characteristics when an impedance amplifier with unbalanced inductance (L1 = 220〃H, L2 = 320μ μ) is used.
[図 37]アンバランスなインダクタンス(L1 = 220〃 H、 L2 = 370〃 Η)を有するインピ 一ダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図 [Fig.37] Diagram showing frequency common mode current characteristics when an impedance amplifier with unbalanced inductance (L1 = 220〃H, L2 = 370〃 〃) is used.
[図 38]アンバランスなインダクタンス(L1 = 220 a H、 L2 = 440 μ Η)を有するインピ 一ダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図 [Fig.38] Diagram showing frequency common mode current characteristics when an impedance amplifier with unbalanced inductance (L1 = 220 a H, L2 = 440 μΗ) is used.
[図 39]アンバランスなインダクタンス(L1 = 330〃 H、 L2 = 398 μ Η)を有するインピ
一ダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図 [Fig.39] Impedance with unbalanced inductance (L1 = 330〃 H, L2 = 398 μΗ) Diagram showing frequency common mode current characteristics when one dance amplifier is used
[図 40]アンバランスなインダクタンス(L1 = 330 a H、 L2 = 430 μ Η)を有するインピ 一ダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図 [Fig.40] Frequency common mode current characteristics when impedance impedance with unbalanced inductance (L1 = 330 a H, L2 = 430 μΗ) is used.
[図 41]アンバランスなインダクタンス(L1 = 330 H H、 L2 = 480 μ Η)を有するインピ 一ダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図 [Fig.41] Diagram showing frequency common mode current characteristics when an impedance amplifier with unbalanced inductance (L1 = 330 H H, L2 = 480 μ μ) is used.
[図 42]アンバランスなインダクタンス(L1 = 330 a H、 L2 = 550 μ Η)を有するインピ 一ダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図 [Fig.42] Diagram showing frequency common mode current characteristics when an impedance amplifier with unbalanced inductance (L1 = 330 a H, L2 = 550 μ550) is used.
[図 43]L2/L1と Δ CMIの関係図(L1 = 100 H) [Fig.43] Relationship between L2 / L1 and Δ CMI (L1 = 100 H)
[図 44]L2/L1と Δ CMIの関係図(L1 = 220 μ Η) [Fig.44] Relationship between L2 / L1 and Δ CMI (L1 = 220 μ μ)
[図 45]L2/L1と Δ CMIの関係図(L1 = 330 μ Η) [Fig.45] Relationship between L2 / L1 and Δ CMI (L1 = 330 μΗ)
符号の説明 Explanation of symbols
1 送信部 1 Transmitter
2 受信部 2 Receiver
11a, l ib, 13b インダクタ 11a, l ib, 13b inductor
12, 13a, 21a, 21b, 31 , 32 コモンモードチョークコィノレ 12, 13a, 21a, 21b, 31, 32 Common mode choke coin
22, 281 サージァブソーバ 22, 281 Surge Absorber
41 , 42 電線 41 and 42 electric wires
100 通信装置 100 communication equipment
101 筐体 101 housing
102 電源コネクタ 102 Power connector
103 モジュラージャック 103 Modular jack
104 表示部 104 Display
104a, 104b, 104c LED 104a, 104b, 104c LED
200 回路モジユーノレ 200 circuit module
210 メイン IC 210 Main IC
211 CPU 211 CPU
212 PLC 'MACフ、、ロック 212 PLC 'MAC, lock
213 PLC 'PHYフ、、ロック
220 AFE-IC 213 PLC 'PHY F, lock 220 AFE-IC
221 D/A変換器 (DAC) 221 D / A converter (DAC)
222 A/D変換器 (ADC) 222 A / D converter (ADC)
223, 224 可変増幅器 (VGA) 223, 224 Variable amplifier (VGA)
230 イーサネット(登録商標) PHY'IC 230 Ethernet (registered trademark) PHY'IC
240 メモリ 240 memory
251 ローノ スフイノレタ 251 Rhino Sufinoleta
252 ドライバに 252 drivers
261 ノ ンドパスフイノレタ 261 ND
270 力ブラ 270 power bra
271 コイルトランス 271 Coil transformer
271a 一次巻線 271a Primary winding
271b 二次巻線 271b Secondary winding
272a , 272b カップリング用コンヲ'ンサ 272a, 272b Coupling console
282 ヒューズ 282 fuse
290, 291 インピーダンスアツパ 290, 291 Impedance adjustment
299 分岐部 299 bifurcation
300 スイッチング電原 300 Switching power source
301 AC/DC変換部 301 AC / DC converter
400 電源プラグ 400 Power plug
500 コンセント 500 outlet
600, 601 電源ケーブル 600, 601 Power cable
900 電力線 900 power line
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0054] 以下、本発明の実施形態に係る通信装置について、図面を参照して説明する。な お、通信装置の一例としては、伝送路として電力線を用い、マルチキャリア通信方式 の広帯域通信(2〜30MHz)を行う通信装置を例にとって説明する。 Hereinafter, a communication device according to an embodiment of the present invention will be described with reference to the drawings. As an example of a communication device, a communication device that uses a power line as a transmission line and performs broadband communication (2 to 30 MHz) of a multicarrier communication method will be described as an example.
[0055] はじめに、通信装置の概要について説明する。通信装置の一例として、電力線通
信装置の一つである PLC (Power Line Communication)モデムについて説明する。 First, an outline of the communication device will be described. As an example of a communication device, A PLC (Power Line Communication) modem, one of the communication devices, will be explained.
[0056] 図 1〜図 3に示す通信装置 100は、筐体 101を有しており、この筐体 101の前面に (ま、図 1及び図 2ίこ示すよう ίこ: LED (Light Emitting Diode) 104a, 104b, 104cを有 する表示部 104が設けられている。また、筐体 101の背面には、図 3に示すように電 源コネクタ 102、及び RJ45等の LAN (Local Area Network)用モジュラージャック 10 3が設けられている。 The communication apparatus 100 shown in FIGS. 1 to 3 has a housing 101, and a front surface of the housing 101 (as shown in FIGS. 1 and 2): LED (Light Emitting Diode ) A display unit 104 having 104a, 104b, 104c is provided, and on the back of the housing 101, as shown in Fig. 3, a power connector 102 and a LAN (Local Area Network) such as RJ45 are used. A modular jack 103 is provided.
[0057] 電源コネクタ 102は、平行ケーブル(例えば WFケーブル)等の電源ケーブル 600 [0057] The power connector 102 is a power cable 600 such as a parallel cable (for example, WF cable).
(図 4参照)が接続される。モジュラージャック 103には、図示しない LANケーブルが 接続される。 (See Fig. 4). A LAN cable (not shown) is connected to the modular jack 103.
[0058] 図 4に示すように、通信装置 100は、回路モジュール 200及びスイッチング電源 30 0及び AC/DC変換部 301を有している。 As shown in FIG. 4, the communication device 100 includes a circuit module 200, a switching power supply 300, and an AC / DC conversion unit 301.
[0059] スイッチング電源 300は、各種(例えば、 + 1. 2V、 + 3. 3V、 + 12V)の電圧を回 路モジュール 200に供給するものであり、例えば、ラインフィルタ、スイッチングトラン ス、及び DC— DCコンバータ(いずれも図示せず)を含んで構成される。 AC/DC変 換部 301は、電力線 900から電源コネクタ 102を介して供給された交流電源を直流 に変換し、スイッチング電源 300に供給する。なお、スイッチング電源 300及び AC/ DC変換部 301は、電力線 900からの電力の供給を受ける電力供給部の一例として 機能する。 [0059] The switching power supply 300 supplies various voltages (for example, +1.2 V, +3.3 V, +12 V) to the circuit module 200, and includes, for example, a line filter, a switching transformer, and a DC — Consists of DC converters (none shown). The AC / DC conversion unit 301 converts the AC power supplied from the power line 900 via the power connector 102 into DC and supplies it to the switching power supply 300. Note that the switching power supply 300 and the AC / DC conversion unit 301 function as an example of a power supply unit that receives supply of power from the power line 900.
[0060] 回路モジュール 200には、メイン IC (Integrated Circuit) 210、 AFE - IC (Analog Fr ont End IC) 220、イーサネット(登録商標) PHY' IC (Physical Layer Integrated Circ uit) 230、メモリ 240、 ローパスフィルタ(LPF) 251、ドライノく IC252、バンドパスフィ ノレタ(BPF) 260、カプラ 270、サージァブソーバ 281、ヒューズ 282、及びインピーダ ンスアツパ 290が設けられて!/、る。 [0060] The circuit module 200 includes a main IC (Integrated Circuit) 210, an AFE-IC (Analog Front End IC) 220, an Ethernet (registered trademark) PHY'IC (Physical Layer Integrated Circuit) 230, a memory 240, and a low pass. A filter (LPF) 251, a dry IC 252, a band pass filter (BPF) 260, a coupler 270, a surge-absorber 281, a fuse 282, and an impedance adjuster 290 are provided.
[0061] メイン IC210は、 CPU (Central Processing Unit) 211、 PLC - MAC (Power Line C ommunication Media Access Control layer)プロック 212、及び PLC * PHY (Power Li ne Communication Physical layer)ブロック 213を備えている。 CPU211は、 32ビット の RISC (Reduced Instruction Set Computer)プロセッサを実装している。 PLC ' MA Cブロック 212は、送信信号の MAC層(Media Access Control layer)を管理し、 PLC
.PHYブロック 213は、送信信号の PHY層(Physical layer)を管理する。 The main IC 210 includes a CPU (Central Processing Unit) 211, a PLC-MAC (Power Line Communication Media Access Control layer) block 212, and a PLC * PHY (Power Line Communication Physical layer) block 213. The CPU 211 implements a 32-bit RISC (Reduced Instruction Set Computer) processor. PLC 'MA C block 212 manages the MAC layer (Media Access Control layer) of the transmission signal, The PHY block 213 manages the PHY layer (Physical layer) of the transmission signal.
[0062] AFE-IC220は、 D/A変換器(DAC : D/A Converter) 221、 A/D変換 [0062] The AFE-IC220 is a D / A converter (DAC: D / A Converter) 221, A / D converter
器(ADC :A/D Converter) 222、及び可変増幅器(VGA: Variable Gain Amplifier (ADC: A / D Converter) 222 and variable amplifier (VGA)
) 223, 224を有して構成されている。 ) 223, 224.
[0063] カプラ 270及びインピーダンスアツパ 290は、サージァブソーバ 281及びヒューズ 2[0063] The coupler 270 and the impedance adjuster 290 are a surge-absorber 281 and a fuse 2
82を介して電源コネクタ 102に接続され、更に、電源ケーブル 600、電源プラグ 40082 is connected to the power connector 102 via a power cable 600 and a power plug 400.
、コンセント 500を介して電力線 900に接続される。 The power line 900 is connected through the outlet 500.
[0064] サージァブソーバ 281は、第一のサージ吸収素子の一例として機能するものであり[0064] The surge absorber 281 functions as an example of the first surge absorbing element.
、サージァブソーバ 281を挟んで電源コネクタ 102と反対側に接続された回路を、電 力線 900側から入力されるサージから保護する。なお、本実施形態では、サージアブ ソーノ 281は、 50 [pF]以上の容量値を有する。 The circuit connected to the opposite side of the power connector 102 with the surge absorber 281 interposed therebetween is protected from a surge input from the power line 900 side. In the present embodiment, the surge absorber 281 has a capacitance value of 50 [pF] or more.
[0065] インピーダンスアツパ 290は少なくとも交流電源周波数を除いた周波数帯域の信号 を減衰させる特性を有し、 AC/DC変換部 301へ供給する信号から、例えば電源と して不要な高周波成分の信号を遮断することができる。 [0065] The impedance amplifier 290 has a characteristic of attenuating at least a signal in a frequency band excluding the AC power supply frequency. From the signal supplied to the AC / DC conversion unit 301, for example, a signal of an unnecessary high frequency component as a power supply Can be cut off.
[0066] 電力線 900は少なくとも二つの伝送線路を有して電力を伝送するものであり、本実 施形態では一対の伝送線路を有する単相交流電力を伝送する電力線を例にとって 説明する。また、電源コネクタ 102、又は、電源コネクタと電源ケーブル 600と電源プ ラグ 400は、電力線 600に接続自在な電力線接続部の一例として機能する。 [0066] The power line 900 has at least two transmission lines to transmit power. In the present embodiment, a power line that transmits single-phase AC power having a pair of transmission lines will be described as an example. The power connector 102, or the power connector, the power cable 600, and the power plug 400 function as an example of a power line connection unit that can be connected to the power line 600.
[0067] カフ。ラ 270は、コィノレトランス 271と、カップリング用コンデンサ 272a、 272bとを有し て構成されている。 [0067] Cuff. The LA 270 includes a coin transformer 271 and coupling capacitors 272a and 272b.
[0068] なお、 CPU211は、メモリ 90に記憶されたデータ及び制御プログラムを利用して、 PLC 'MACブロック 212、及び PLC 'PHYブロック 213の動作を制御するとともに、 通信装置 100全体の制御も行う。 Note that the CPU 211 uses the data and control program stored in the memory 90 to control the operation of the PLC 'MAC block 212 and the PLC' PHY block 213, and also controls the entire communication device 100. .
[0069] 通信装置 100は、 OFDM (Orthogonal Frequency Division Multiplexing)方式等の 複数のサブキャリアを用いたマルチキャリア通信を行うものであり、このような伝送を行 うためのデジタル信号処理は、メイン IC210、特に PLC 'PHYブロック 213で行われ [0069] The communication device 100 performs multicarrier communication using a plurality of subcarriers such as an OFDM (Orthogonal Frequency Division Multiplexing) method, and the digital signal processing for performing such transmission is performed by the main IC 210. Especially done with PLC 'PHY Block 213
[0070] ここで、 PLC 'PHYブロック 213、 DAC221、 VGA223、 LPF251、ドライノく IC25
2は送信部 1として動作する。 PLC 'PHYブロック 213、 ADC12、 VGA224、 BPF2 61は、受信部 2として機能する。 [0070] Here, PLC 'PHY block 213, DAC221, VGA223, LPF251, dry IC25 2 operates as a transmitter 1. The PLC 'PHY block 213, ADC 12, VGA 224, and BPF 2 61 function as the receiver 2.
[0071] なお、上記の説明では、電力線通信装置の一例としてモデムを示したが、特にこれ に限る必要はなぐモデムを備えた電気機器 (例えばテレビなどの家電機器)であつ てもよい。 In the above description, a modem is shown as an example of a power line communication device. However, an electric device (for example, a home appliance such as a television) including a modem that is not particularly limited to this may be used.
[0072] (第 1の実施形態) [0072] (First embodiment)
図 5は、第 1の実施形態に係る通信装置のインピーダンスアツパを示す図であり、図 4と重複する部分については同一の符号を付す。図 5に示すように、電源コネクタ 10 2は、分岐部 299と一対の電線にて接続されている。電源コネクタ 102と分岐部 299 との間には、一方の電線にヒューズ 282が揷入されており、更に、一対の電線間にサ ージァブソーバ 281が揷入されている。一対の電線は各々が分岐部 299にて二方向 に分岐し、一方は力ブラ 270へ接続され、他方はインピーダンスアツパ 291を介して AC/DC変換部 301に接続されている。なお、分岐部 299から見てカプラ 270及び AC/DC変換部 301より先の構成は、図 4と同様である。 FIG. 5 is a diagram showing an impedance adjuster of the communication apparatus according to the first embodiment, and the same reference numerals are given to portions overlapping with FIG. As shown in FIG. 5, the power connector 102 is connected to the branch portion 299 by a pair of electric wires. Between the power connector 102 and the branch portion 299, a fuse 282 is inserted into one electric wire, and a surge absorber 281 is inserted between the pair of electric wires. Each of the pair of electric wires branches in two directions at the branching portion 299, one is connected to the force bra 270, and the other is connected to the AC / DC converting portion 301 via the impedance upper 291. The configuration beyond coupler 270 and AC / DC converter 301 as seen from branch 299 is the same as that in FIG.
[0073] インピーダンスアツパ 291は、図 4にて説明したインピーダンスアツパ 290と同様に、 少なくとも交流電源周波数を除いた周波数帯域の信号を減衰させる特性を有する。 ただし、インピーダンスアツパ 291は、第一のインダクタンス L1を有し、電力線 600の 伝送線路の一方に接続する第一の経路 P1と、第二のインダクタンス L2を有し、電力 線 600の伝送線路の一方に接続する第二の経路 P2とを備えるものである。第一のィ ンダクタンス L1と第二のインダクタンス L2とは異なる値である。すなわち、インピーダ ンスアツパ 291は、アンバランスなインダクタンスを有するものである。なお、インピー ダンスアツパ 291は、電源コネクタ 102と AC/DC変換部 301との間に設けられたィ ンダクタ部の一例として機能するものである。なお、以下の説明では、インダクタンス とは誘導係数をレ、い、インダクタとは所定のインダクタンスを有する回路素子をレ、う。 The impedance amplifier 291 has a characteristic of attenuating a signal in a frequency band excluding at least the AC power supply frequency, like the impedance amplifier 290 described with reference to FIG. However, the impedance amplifier 291 has a first inductance L1 and has a first path P1 connected to one of the transmission lines of the power line 600 and a second inductance L2, and the transmission line of the power line 600 And a second path P2 connected to one side. The first inductance L1 and the second inductance L2 are different values. That is, the impedance amplifier 291 has an unbalanced inductance. The impedance adjuster 291 functions as an example of an inductor unit provided between the power connector 102 and the AC / DC conversion unit 301. In the following description, inductance refers to an induction coefficient, and inductor refers to a circuit element having a predetermined inductance.
[0074] 図 6は、バランスが取れているインダクタンス(各経路について 100 [〃H]のインダク タンス)を有するインピーダンスアツパが用いられた場合の周波数 コモンモード電 流特性を示す図である。図 6に示される二つの特性は、電源プラグ 400のコンセント 5 00への差し込み方向を変えた場合におけるそれぞれの特性である。すなわち、図 6
力、ら明らかなように、コンセントプラグを差し込む方向によってコモンモード電流に差 が発生してしまう。 FIG. 6 is a diagram showing frequency common mode current characteristics when an impedance amplifier having a balanced inductance (inductance of 100 [〃H] for each path) is used. The two characteristics shown in FIG. 6 are the characteristics when the insertion direction of the power plug 400 into the outlet 500 is changed. That is, Figure 6 As can be seen, the difference in the common mode current depends on the direction in which the outlet plug is inserted.
[0075] 電力線通信装置の信号は差動信号である為、機器自身の平衡度をよくするために 配線パターンや部品定数を同じにしてバランスが良くなるように設計される。しかしな がら、部品配置や配線パターンを完全に左右対称にすることが難しく多少の不平衡 になってしまう。 [0075] Since the signal of the power line communication device is a differential signal, the wiring pattern and component constants are the same to improve the balance in order to improve the balance of the device itself. However, it is difficult to make the component arrangement and wiring pattern completely symmetric, resulting in some unbalance.
[0076] そこで、本実施形態の通信装置は、インピーダンスアツパ 291のインダクタンスのバ ランスを故意に崩すことにより、特定周波数範囲の LCL (Longitudinal Conversion Lo ss :縦方向変換損)を変化させ、コンセントプラグを差し込む方向によって発生するコ モンモード電流差を低減させると共に、コモンモード電流のピーク値を抑制するもの である。 Therefore, the communication device of the present embodiment intentionally destroys the inductance balance of the impedance adjuster 291 to change the LCL (Longitudinal Conversion Loss) in a specific frequency range, thereby changing the outlet. It reduces the common mode current difference that occurs depending on the direction in which the plug is inserted, and suppresses the peak value of the common mode current.
[0077] 図 7〜図 8は、アンバランスなインダクタンスを有するインピーダンスアツパが用いら れた場合の周波数 コモンモード電流(CMI)特性を示す図である。図 7は、インダク タンスし1 = 100 [〃^1]、インダクタンスし2 = 122 [〃^1]の場合、図 8は、インダクタン ス L1 = 100 [〃 H]、インダクタンス L2 = 147 [〃 H]の場合につ!/、て、電源プラグ 40 0のコンセント 500への差込方向を変えた場合におけるそれぞれの特性を示す。 FIGS. 7 to 8 are diagrams illustrating frequency common mode current (CMI) characteristics when an impedance amplifier having an unbalanced inductance is used. Figure 7 shows inductance 1 = 100 [〃 ^ 1] and inductance 2 = 122 [〃 ^ 1]. Figure 8 shows inductance L1 = 100 [〃 H] and inductance L2 = 147 [〃 In the case of [H], the respective characteristics when the insertion direction of the power plug 400 into the outlet 500 is changed are shown.
[0078] 図 7〜図 8に示されるように、インピーダンスアツパ 291がアンバランスなインダクタン スを有することにより、コンセント差込方向によるコモンモード電流のレベル差が小さく なると共に、コモンモード電流のピーク値が低減することが分かる。 [0078] As shown in FIGS. 7 to 8, the impedance amplifier 291 has an unbalanced inductance, so that the level difference of the common mode current due to the outlet insertion direction is reduced and the common mode current is reduced. It can be seen that the peak value decreases.
[0079] 次に、本実施形態のインピーダンスアツパ 291の具体的な構成例について説明す る。図 9は、インピーダンスアツパの具体的な構成の第 1例を示す図である。図 9に示 すように、インピーダンスアツパ 291は、第一の経路 P1に設けられたインダクタ 11aと 、第二の経路 P2に設けられたインダクタ l ibとを備える。そして、インダクタ 11aは第 一のインダクタの一例として機能するものであり、第一のインダクタンス L1を有する。 また、インダクタ l ibは第二のインダクタの一例として機能するものであり、第二のイン ダクタンス L2を有する。 Next, a specific configuration example of the impedance adjuster 291 of the present embodiment will be described. FIG. 9 is a diagram showing a first example of a specific configuration of the impedance amplifier. As shown in FIG. 9, the impedance adjuster 291 includes an inductor 11a provided in the first path P1 and an inductor l ib provided in the second path P2. The inductor 11a functions as an example of a first inductor and has a first inductance L1. The inductor l ib functions as an example of a second inductor and has a second inductance L2.
[0080] これにより、各経路において別々にインダクタ 11a, l ibが設けられるので、インダク タ 11a, l ibの実装位置の自由度が高ぐまた、インダクタンス値を容易に調整するこ
と力 Sできる。 [0080] As a result, the inductors 11a and l ib are separately provided in each path, so that the degree of freedom of the mounting positions of the inductors 11a and l ib is high, and the inductance value can be easily adjusted. And force S.
[0081] 図 10は、インピーダンスアツパの具体的な構成の第 2例を示す図である。図 10に示 すように、インピーダンスアツパ 291は、第一の経路 P1に設けられたインダクタ l lal 及びインダクタ l la2と、第二の経路 P2に設けられたインダクタ l ibとを備える。そし て、インダクタ l lalは第三のインダクタの一例として機能するものであり、例えば、第 二のインダクタンス L2を有する。また、インダクタ l la2は第四のインダクタの一例とし て機能するものであり、インダクタ l lalとの合成インダクタンスが第一のインダクタン ス L1となるインダクタンスを有する。また、インダクタ l ibは第二のインダクタの一例と して機能するものであり、第二のインダクタンス L2を有する。 FIG. 10 is a diagram showing a second example of a specific configuration of the impedance amplifier. As shown in FIG. 10, the impedance amplifier 291 includes an inductor l lal and an inductor l la2 provided in the first path P1, and an inductor l ib provided in the second path P2. The inductor l lal functions as an example of a third inductor, and has, for example, a second inductance L2. Further, the inductor l la2 functions as an example of a fourth inductor, and has an inductance whose combined inductance with the inductor l lal becomes the first inductance L1. The inductor l ib functions as an example of a second inductor and has a second inductance L2.
H]であるとき、インダクタ l lalのインダクタンスは 100 [〃 H]、インダクタ 11 a2のイン ダクタンスは 22 [〃 H]、インダクタ 1 lbのインダクタンスは 100 [〃 H]である。 H], the inductance of inductor l lal is 100 [〃 H], the inductance of inductor 11 a2 is 22 [〃 H], and the inductance of inductor 1 lb is 100 [〃 H].
[0083] つまり、インダクタ l lal及びインダクタ l ibは等しいインダクタンスを有するものであ り。そして、インピーダンスアツパ 291の経路間のインダクタンスのアンバランス量は、 インダクタ l ibにより調整されることとなる。これにより、第一の経路及び第二の経路の インダクタンス値を容易に、かつ細力、く調整可能となるので、 AC/DC変換部 302に おける平衡度を向上させることができる。 That is, the inductor l lal and the inductor l ib have equal inductances. Then, the inductance unbalance amount between the paths of the impedance amplifier 291 is adjusted by the inductor l ib. As a result, the inductance values of the first path and the second path can be easily adjusted with high strength, and the balance in the AC / DC conversion unit 302 can be improved.
[0084] なお、インダクタ l lalのインダクタンスは、第二のインダクタンス L2である必要はな く、インダクタ l lal及びインダクタ l la2は、その合成インダクタンスが L1となるように 構成されていればよい。 Note that the inductance of the inductor l lal does not have to be the second inductance L2, and the inductor l lal and the inductor l la2 may be configured so that the combined inductance is L1.
[0085] 図 11は、インピーダンスアツパの具体的な構成の第 3例を示す図である。図 11に示 すように、インピーダンスアツパ 291は、コモンモードチョークコイル 12を備える。コモ ンモードチョークコイル 12は、第一の経路 P1に設けられた第一のコイル部 12aと、第 二の経路 P2に設けられ、第一のコイル部 12aとは異なる巻き数の第二のコイル部 12 bとを有する。このようにして、インピーダンスアツパ 291は、第一の経路 P1が第一の インダクタンス Ll、第二の経路 P2が第二のインダクタンス L2を有する、インダクタン スがアンバランスな特性を備えることができる。 FIG. 11 is a diagram showing a third example of a specific configuration of the impedance amplifier. As shown in FIG. 11, the impedance adjuster 291 includes a common mode choke coil 12. The common mode choke coil 12 includes a first coil part 12a provided in the first path P1 and a second coil provided in the second path P2 and having a different number of turns from the first coil part 12a. Part 12b. In this manner, the impedance amplifier 291 can have an unbalanced characteristic in which the first path P1 has the first inductance Ll and the second path P2 has the second inductance L2. .
[0086] これにより、インピーダンスアツパ 291において、コモンモードチョークコイル 12のみ
の一つの部品で二つの経路のインダクタンスをアンバランスにすることができるので、 装置間のばらつきを抑えることができる。 [0086] As a result, only the common mode choke coil 12 is used in the impedance amplifier 291. Because the inductance of the two paths can be unbalanced with one component, variation between devices can be suppressed.
[0087] 図 12は、インピーダンスアツパの具体的な構成の第 4例を示す図である。図 12に示 すように、インピーダンスアツパ 291は、第一の経路 P1及び第二の経路 P2の各々に 揷入された、互いに同じ巻き数のコイル部を有するコモンモードチョークコイル 13aと 、第一の経路 P1及び第二の経路 P2のいずれか一方(図 12では第一の経路 P1)に 設けられたインダクタ 13bとを備える。 FIG. 12 is a diagram showing a fourth example of a specific configuration of the impedance amplifier. As shown in FIG. 12, the impedance amplifier 291 includes a common mode choke coil 13a inserted in each of the first path P1 and the second path P2 and having a coil portion having the same number of turns. And an inductor 13b provided in one of the first path P1 and the second path P2 (the first path P1 in FIG. 12).
[0088] インピーダンスアツパ 291は、コモンモードチョークコィノレ 13aにおいては、第一の 経路 P1及び第二の経路 P2にてインダクタンスのバランスが取れた状態である力 一 方の経路に設けられたインダクタ 13bにより、アンバランスな特性を有するものとなる。 [0088] In the common mode choke coin 13a, the impedance amplifier 291 is an inductor provided in the path of one of the forces in which the inductance is balanced in the first path P1 and the second path P2. By 13b, it has an unbalanced characteristic.
[0089] これにより、第一の経路及び第二の経路のインダクタンス値を容易に、かつ細かく 調整可能となるので、 AC/DC変換部 302における平衡度を向上させることができる Accordingly, the inductance values of the first path and the second path can be easily and finely adjusted, so that the balance in the AC / DC converter 302 can be improved.
〇 Yes
[0090] このように、電源装置に相当する部分 (例えば、電源プラグ 500から分岐部 299を 介してスイッチング電源 300までの部分)において、電力を伝送する二つの経路にお けるインダクタンスがアンバランスとなることにより、電力線に接続するコンセントの差 込方向によるコモンモード電流値の差を抑制し、コモンモード電流のピーク値を抑制 すること力 Sでさる。 [0090] Thus, in the portion corresponding to the power supply device (for example, the portion from the power plug 500 to the switching power supply 300 via the branching portion 299), the inductance in the two paths for transmitting power is unbalanced. Thus, the difference in common mode current value due to the plugging direction of the outlet connected to the power line is suppressed, and the peak value of the common mode current is suppressed with the force S.
[0091] 次に、バランスが取れているインダクタンスを有するインピーダンスアツパが用いら れた場合の周波数 コモンモード電流特性について、図 6以外の例について説明す [0091] Next, frequency common mode current characteristics when an impedance amplifier having a balanced inductance is used will be described for examples other than FIG.
[0092] 図 29は、バランスが取れているインダクタンス(各経路について 220 [ H]のインダ クタンス)を有するインピーダンスアツパが用いられた場合の周波数 コモンモード電 流特性を示す図、図 30は、バランスが取れているインダクタンス(各経路について 33 0 [ H]のインダクタンス)を有するインピーダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図である。コモンモード電流を測定した周波数の範 囲は、図 6の場合と同じ 2〜30MHzである。図 29、 30に示される二つの特性は、電 源プラグ 400のコンセント 500への差し込み方向を変えた場合におけるそれぞれの
特性である。図 29、 30から明らかなように、コンセントプラグを差し込む方向によって コモンモード電流に差が発生してしまう。したがって、図 6と同様の傾向を示している こと力 S理角早できる。 [0092] FIG. 29 is a diagram showing frequency common mode current characteristics when an impedance amplifier having a balanced inductance (inductance of 220 [H] for each path) is used, and FIG. It is a figure which shows the frequency common mode current characteristic when the impedance amplifier which has the inductance (33 0 [H] inductance about each path | route) which is balanced is used. The frequency range at which the common mode current was measured is 2 to 30 MHz, the same as in Figure 6. The two characteristics shown in Fig. 29 and 30 are the same when the direction of inserting the power plug 400 into the outlet 500 is changed. It is a characteristic. As is clear from Figs. 29 and 30, the common mode current varies depending on the direction in which the outlet plug is inserted. Therefore, the same tendency as in Fig. 6 can be achieved.
[0093] 図 6、図 29、図 30の測定の結果を次の表 1に示す。 [0093] The results of the measurements in FIGS. 6, 29, and 30 are shown in Table 1 below.
[0094] [表 1] [0094] [Table 1]
[0095] 表 1において、最大 CMI値は、各測定で得られた最大のコモンモード電流値のこと である。第 1の平均 CMI値は、第 1の差し込み方向の場合における 2〜30MHzの範 囲で測定されたコモンモード電流の平均値のことである。第 2の平均 CMI値は、第 2 の差し込み方向の場合における 2〜30MHzの範囲で測定されたコモンモード電流 の平均値のことである。 ACMIは、第 1の平均 CMI値と第 2の平均 CMI値との差分( 絶対値)のことである。この ACMIの値が低いほど、コンセント差込方向によるコモン モード電流のレベル差が小さくなり、電源装置の平衡度が向上する。 [0095] In Table 1, the maximum CMI value is the maximum common-mode current value obtained in each measurement. The first average CMI value is the average value of the common mode current measured in the range of 2 to 30 MHz in the case of the first insertion direction. The second average CMI value is the average value of the common mode current measured in the range of 2 to 30 MHz in the second insertion direction. ACMI is the difference (absolute value) between the first average CMI value and the second average CMI value. The lower the ACMI value, the smaller the level difference of the common mode current depending on the outlet insertion direction, and the power supply balance is improved.
[0096] 次に、アンバランスなインダクタンスを有するインピーダンスアツパが用いられた場 合の周波数 コモンモード電流特性について、図 7、図 8以外の例について説明す Next, frequency common mode current characteristics when an impedance amplifier having an unbalanced inductance is used will be described with reference to examples other than FIG. 7 and FIG.
[0097] 図 31〜図 42は、アンバランスなインダクタンスを有するインピーダンスアツパが用い られた場合の周波数 コモンモード電流(CMI)特性を示す図である。図 31は、イン ダクタンスし1=100[ ^1]、ィンダクタンスし2 =133[ ^1]の場合、図 32は、インタ、 クタンスし1=100[ ^1]、インダクタンスし2 =168[ ^1]の場合、図 33は、インダク タンスし1=100[〃^1]、インダクタンスし2 = 200[〃^1]の場合、図 34は、インダクタ ンスし1=220[〃^1]、インダクタンス L2 = 267[〃H]の場合、図 35は、インダクタン スし1=220[〃^1]、ィンダクタンスし2 = 288[〃^1]の場合、図 36は、インダクタンス し1=220[〃^1]、ィンダクタンスし2 = 320[〃^1]の場合、図 37は、インダクタンス L
1=220[〃^1]、ィンダクタンスし2 = 370[〃^1]の場合、図 38は、インダクタンス L1 = 220[〃Η]、インダクタンスし2 = 440[〃^1]の場合、図 39は、インダクタンス Ll= 330[〃^1]、ィンダクタンスし2 = 398[〃^1]の場合、図 40は、インダクタンス Ll = 33 0 [ H]、インダクタンス L2 = 430 [ H]の場合、図 41は、インダクタンス L1 = 330 [ H]、インダクタンスし2 = 480[ ^1]の場合、図 42は、インダクタンス L1 = 330 [ H]、ィンダクタンスL2 = 550[ί H]の場合にっぃて、電源プラグ 400のコンセント 50 0への差込方向を変えた場合におけるそれぞれの特性を示す。 FIGS. 31 to 42 are diagrams showing frequency common mode current (CMI) characteristics when an impedance amplifier having an unbalanced inductance is used. Figure 31 shows inductance 1 = 100 [^ 1] and inductance 2 = 133 [^ 1]. Figure 32 shows inductance 1 = 100 [^ 1], inductance 2 = 168 [ In the case of ^ 1], Fig. 33 shows an inductance of 1 = 100 [〃 ^ 1], inductance of 2 = 200 [〃 ^ 1], and Fig. 34 shows an inductance of 1 = 220 [〃 ^ 1]. When inductance L2 = 267 [〃H], Fig. 35 shows inductance 1 = 220 [〃 ^ 1], inductance 2 = 288 [〃 ^ 1], Fig. 36 shows inductance 1 = 220 [〃 ^ 1], inductance 2 = 320 [〃 ^ 1], Figure 37 shows inductance L If 1 = 220 [〃 ^ 1] and inductance 2 = 370 [〃 ^ 1], Figure 38 shows the diagram for inductance L1 = 220 [〃Η] and inductance 2 = 440 [〃 ^ 1]. 39 is inductance Ll = 330 [〃 ^ 1] and inductance 2 = 398 [〃 ^ 1]. Figure 40 is inductance Ll = 33 0 [H] and inductance L2 = 430 [H]. Figure 41 shows the case where inductance L1 = 330 [H] and inductance 2 = 480 [^ 1]. Figure 42 shows the case where inductance L1 = 330 [H] and inductance L2 = 550 [ ί H]. Each characteristic when the insertion direction of the power plug 400 into the outlet 500 is changed is shown.
[0098] 図 31〜図 42の測定結果を次の表 2に示す。 The measurement results of FIGS. 31 to 42 are shown in Table 2 below.
[0099] [表 2]
[0099] [Table 2]
H) 最大 CMI値 (dBwA) 第 1 CMI値 (dB iA) 第 2 CMHii(dB A) ACMKdBwA) L2/L1 共振 し 1 L2=100 27.56(@26.01 Hz) 11.89 9.45 2.44 1H) Maximum CMI value (dBwA) 1st CMI value (dB iA) 2nd CMHii (dB A) ACMKdBwA) L2 / L1 Resonance 1 L2 = 100 27.56 (@ 26.01 Hz) 11.89 9.45 2.44 1
Ll = 100,し 2=103.3 27.91(@22.62 Hz) 12.41 8,9フ 3.44 1.03Ll = 100, then 2 = 103.3 27.91 (@ 22.62 Hz) 12.41 8,9F 3.44 1.03
U = 100, L2=110 30.58(@20.17MHz) 11.92 8.98 2.94 1.1 有U = 100, L2 = 110 30.58 (@ 20.17MHz) 11.92 8.98 2.94 1.1 Yes
L1=100, L2=115 25.24(@24.12MHz) 11.67 9.55 2.12 1.15 有L1 = 100, L2 = 115 25.24 (@ 24.12MHz) 11.67 9.55 2.12 1.15 Yes
L1=100, L2=122 25.85(@26.99MHz) 11.95 9.59 2.36 1.22 し 1 = 100, L2=133 26.43(@22.90MHz) 11.71 9.92 1.79 1.33L1 = 100, L2 = 122 25.85 (@ 26.99MHz) 11.95 9.59 2.36 1.22 1 = 100, L2 = 133 26.43 (@ 22.90MHz) 11.71 9.92 1.79 1.33
L1=100, L2=147 25.93(@22.13MHz) 11.87 9.92 1.95 1.47L1 = 100, L2 = 147 25.93 (@ 22.13MHz) 11.87 9.92 1.95 1.47
L1=100, L2=150 26.28(@23.81MHz) 12.01 9.59 2.42 1.5L1 = 100, L2 = 150 26.28 (@ 23.81MHz) 12.01 9.59 2.42 1.5
L1=100. L2=168 25.89(@26.29MHz) 11.57 9.58 1.99 1.68 し 1=100, L2=200 25.86(@20.66MHz) 11.66 9.65 2.01 2L1 = 100.L2 = 168 25.89 (@ 26.29MHz) 11.57 9.58 1.99 1.68 and 1 = 100, L2 = 200 25.86 (@ 20.66MHz) 11.66 9.65 2.01 2
L1 = 100, L2=220 27.35(@23.63MHz) 12.93 9.23 3.7 2.2L1 = 100, L2 = 220 27.35 (@ 23.63MHz) 12.93 9.23 3.7 2.2
L1=100, L2=330 27.64C@22.86MHz) 13.45 8.77 4,68 3.3 (L1 = 100, L2 = 330 27.64C@22.86MHz) 13.45 8.77 4,68 3.3
L1=L2=220 26.25 C@21.88MHz) 12.36 9.67 2.69 1 (L1 = L2 = 220 26.25 C@21.88MHz) 12.36 9.67 2.69 1
L1=220, L2=223.3 28.24(@27.13MHz) 12.84 9.19 3.65 1.01L1 = 220, L2 = 223.3 28.24 (@ 27.13MHz) 12.84 9.19 3.65 1.01
L1=220, L2=224.7 32.20(@26.92 Hz) 13.58 8.87 4.71 1.02 有L1 = 220, L2 = 224.7 32.20 (@ 26.92 Hz) 13.58 8.87 4.71 1.02 Yes
L1=220, L2=226.8 33.53(@22.65MHz) 13.51 10.27 3.24 1.03 有L1 = 220, L2 = 226.8 33.53 (@ 22.65MHz) 13.51 10.27 3.24 1.03 Yes
L1=220. L2=230 31.96(@18.66MHz) 12.26 10.09 2.17 1.05 有L1 = 220.L2 = 230 31.96 (@ 18.66MHz) 12.26 10.09 2.17 1.05 Yes
L1=220, L2=235 26.40(@14.60MHz) 11.82 10.2 1.62 1.07 有L1 = 220, L2 = 235 26.40 (@ 14.60MHz) 11.82 10.2 1.62 1.07 Yes
Ll=220, L2=242 26.55(@23.25MHz) 11.82 10.29 1.53 1.1 有Ll = 220, L2 = 242 26.55 (@ 23.25MHz) 11.82 10.29 1.53 1.1 Yes
L1=220, L2=253 26.22(@24.01MHz) 11.56 10.33 1,23 1.15L1 = 220, L2 = 253 26.22 (@ 24.01MHz) 11.56 10.33 1,23 1.15
L1=220, L2=267 25.84(@22.62MHz) 11.6 10.47 1.13 1.21L1 = 220, L2 = 267 25.84 (@ 22.62MHz) 11.6 10.47 1.13 1.21
L1=220, L2=288 25.51(@22.65MHz) 11.51 10.54 0.97 1.31L1 = 220, L2 = 288 25.51 (@ 22.65MHz) 11.51 10.54 0.97 1.31
L1=220, L2=320 25.77(@24.02MHz) 11.55 10.47 1.08 1.45L1 = 220, L2 = 320 25.77 (@ 24.02MHz) 11.55 10.47 1.08 1.45
L1=220,し 2:370 25.56(@22.62MHz) 11.42 10.54 0.88 1.68L1 = 220, 2: 370 25.56 (@ 22.62MHz) 11.42 10.54 0.88 1.68
L1=220,し 2:440 26.50(@22.62MHz) 11.76 9.83 1.93 2 L1 = 220, 2: 440 26.50 (@ 22.62MHz) 11.76 9.83 1.93 2
L1=L2=330 26.92(@24.65MHz) 11.92 9.47 2.45 1 L1 = L2 = 330 26.92 (@ 24.65MHz) 11.92 9.47 2.45 1
L1=330, L2=334.7 35.26(@26.89MHz) 13.45 9.08 4.37 1.01 有L1 = 330, L2 = 334.7 35.26 (@ 26.89MHz) 13.45 9.08 4.37 1.01 Yes
L1=330, L2=336.8 34.31C@22.62MHz) 12.9 9.72 3.18 1.02 有(L1 = 330, L2 = 336.8 34.31C@22.62MHz) 12.9 9.72 3.18 1.02 Yes
LI 330' L2 340 30.1l(@18.45MHz) 11.89 9.76 2.13 1,03 有LI 330 'L2 340 30.1l (@ 18.45MHz) 11.89 9.76 2.13 1,03 Yes
L1=330, L2=345 27.44(@27.31 Hz) 11.18 9.83 1.35 1.05 有L1 = 330, L2 = 345 27.44 (@ 27.31 Hz) 11.18 9.83 1.35 1.05 Yes
L1=330, L2=352 27.33(@27.90 Hz) 11.16 9.81 1.35 1.07 有L1 = 330, L2 = 352 27.33 (@ 27.90 Hz) 11.16 9.81 1.35 1.07 Yes
L1=330, L2=363 26.70(@27.62MHz) 11.06 10.09 0.97 1.1 有L1 = 330, L2 = 363 26.70 (@ 27.62MHz) 11.06 10.09 0.97 1.1 Yes
L1=330, L2=377 28.19(@27.66 Hz) 10.98 10.26 0.72 1.14 有L1 = 330, L2 = 377 28.19 (@ 27.66 Hz) 10.98 10.26 0.72 1.14 Yes
L1=330. L2=398 25.53(@26.64MHz) 10,84 10.27 0.57 1.21L1 = 330.L2 = 398 25.53 (@ 26.64MHz) 10,84 10.27 0.57 1.21
L1=330.し 2=430 25.20(@27.87 Hz) 10.97 10.31 0.66 1.3L1 = 330.2 = 430 25.20 (@ 27.87 Hz) 10.97 10.31 0.66 1.3
L1=330, L2=480 25.85(@27.87 Hz) 10.63 10.23 0.4 1.45L1 = 330, L2 = 480 25.85 (@ 27.87 Hz) 10.63 10.23 0.4 1.45
L1=330, L2=550 25.54(@24.82 Hz) 11.24 10.22 1.02 1.67 L1 = 330, L2 = 550 25.54 (@ 24.82 Hz) 11.24 10.22 1.02 1.67
[0100] 表 2において、最大 CMI値等の定義は表 1の場合と同様である。また、 L2ZL1は、 第 2のインダクタンスと第 1のインダクタンスとの比である。また、共振は、法規制値を 大きく上回るコモンモード電流のことである。表 2では、各々の測定において確認され た共振の有無を示している。 [0100] In Table 2, the definition of the maximum CMI value etc. is the same as in Table 1. L2ZL1 is the ratio of the second inductance to the first inductance. Resonance is a common-mode current that greatly exceeds legal limits. Table 2 shows the presence or absence of resonance confirmed in each measurement.
[0101] また、図 43 45は、 L2/L1と ACMIの関係を示した図である。図 43は Ll = 100 [0101] Fig. 43 45 shows the relationship between L2 / L1 and ACMI. Figure 43 shows Ll = 100
, Η,図 44は: LI = 220 図 45は: LI = 330 Hとした場合を示す。図 43〜図 4
5において、破線は、 L2/L1 = 1としたときの A CMIの値を示している。 Figure 44 shows: LI = 220 Figure 45 shows: LI = 330 H. Figure 43 to Figure 4 In FIG. 5, the broken line indicates the value of A CMI when L2 / L1 = 1.
[0102] 図 31〜図 45および表 2から明らかなように、インピーダンスアツパ 291がアンバラン スなインダクタンスを有することにより、 L2/L1が 1 · 2〜2の範囲では、コンセント差 込方向によるコモンモード電流のレベル差が小さくなると共に、コモンモード電流のピ ーク値が減少傾向を示すことが分かる。具体的には、最大 CMI値は、 2つの例外を 除き、およそ 2%〜7%の低減が確認できる。第 1の平均 CMI値は、一つの例外を除 き、およそ 1 %〜; 11 %の低減が確認できる。また、 A CMIの値は、例外なぐ 4%〜8 3%の低減が確認できる。図 43〜図 45では、 L2/L1が 1. 2以下の場合でも、 A C MIが破線を下回ることが確認できる力 L2/L1が 1. 2以下の場合、法規制値を大 きく上回るコモンモード電流の共振が発生するため、第 1のインダクタンスと第 2のイン ダクタンスの比としては適当でない。 [0102] As is clear from Fig. 31 to Fig. 45 and Table 2, the impedance adjuster 291 has an unbalanced inductance, so that when L2 / L1 is in the range of 1 It can be seen that the peak value of the common mode current tends to decrease as the mode current level difference decreases. Specifically, the maximum CMI value can be confirmed to decrease by approximately 2% to 7% with two exceptions. The first average CMI value, with one exception, can be seen to decrease by approximately 1% to 11%. In addition, the value of A CMI can be confirmed to decrease by 4% to 83%, without exception. In Fig. 43 to Fig. 45, even when L2 / L1 is 1.2 or less, the force that can confirm that AC MI is below the broken line. When L2 / L1 is 1.2 or less, the common mode that greatly exceeds the regulatory value. Since current resonance occurs, the ratio between the first inductance and the second inductance is not appropriate.
[0103] (第 2の実施形態) [0103] (Second Embodiment)
図 13は、第 2の実施形態に係る通信装置の一部を示す構成図である。図 13にお いて、第 1の実施形態で説明した図 5と重複する部分については同一の符号を付す FIG. 13 is a configuration diagram illustrating a part of the communication apparatus according to the second embodiment. In FIG. 13, parts that are the same as those in FIG. 5 described in the first embodiment are given the same reference numerals.
〇 Yes
[0104] 図 13に示すように、通信装置は、サージァブソーバ 281と、ヒューズ 282との間に 接続され、第二のコモンモードチョークコイルの一例として機能するコモンモードチヨ ークコイル 21aを備える。 As shown in FIG. 13, the communication apparatus includes a common mode choke coil 21 a that is connected between a surge absorber 281 and a fuse 282 and functions as an example of a second common mode choke coil.
[0105] 図 14は、第 2の実施形態に係る通信装置の周波数 コモンモード電流特性を示す 図である。図 14において、特性 C200は、図 13に示すようなコモンモードチョークコィ ル 21aを揷入されていない場合の特性であり、特性 C201は、図 13に示すようなコモ ンモードチョークコイル 21aが接続された場合の特性である。 FIG. 14 is a diagram illustrating frequency common mode current characteristics of the communication device according to the second embodiment. In FIG. 14, the characteristic C200 is a characteristic when the common mode choke coil 21a as shown in FIG. 13 is not inserted, and the characteristic C201 is connected to the common mode choke coil 21a as shown in FIG. It is a characteristic when it is done.
[0106] 図 14に示すように、コモンモードチョークコイル 21aが接続されることにより、特に 15 As shown in FIG. 14, when the common mode choke coil 21a is connected, the
[MHz]以上の高域において、コモンモード電流が低減されているのが分かる。 It can be seen that the common mode current is reduced in the high range above [MHz].
[0107] 次に、コモンモードチョークコイルを接続する位置によるコモンモード電流の特性に ついて、比較例を用いて説明する。 Next, the characteristics of the common mode current depending on the position where the common mode choke coil is connected will be described using a comparative example.
[0108] 図 15は、第 2の実施形態に係る通信装置の比較例の一部を示す構成図である。図 FIG. 15 is a configuration diagram showing a part of a comparative example of the communication device according to the second embodiment. Figure
15に示すように、コモンモードチョークコイル 21bが、電源コネクタ 102から見てサー
ジァブソーバ 281の後段に接続されている。 As shown in FIG. 15, the common mode choke coil 21b is It is connected to the rear stage of the Jab Sover 281.
[0109] 図 16は、第 2の実施形態に係る通信装置の比較例の周波数 コモンモード電流 特性を示す図である。図 16において、特性 C200は、図 14の特性 C200と同様の特 性であり、特性 C202は、図 15に示すようなコモンモードチョークコイル 21bが接続さ れた場合の特性である。 FIG. 16 is a diagram showing frequency common mode current characteristics of a comparative example of the communication device according to the second embodiment. In FIG. 16, the characteristic C200 is the same characteristic as the characteristic C200 of FIG. 14, and the characteristic C202 is a characteristic when the common mode choke coil 21b as shown in FIG. 15 is connected.
[0110] 図 16に示すように、コモンモードチョークコイル 21bが接続されることにより、コモン モードチョークコイル 21aが接続された場合と同様に、特に 15 [MHz]以上の高域に ぉレ、て、コモンモード電流が低減されてレ、るのが分かる。 [0110] As shown in Fig. 16, when the common mode choke coil 21b is connected, the common mode choke coil 21a is connected, particularly in the high frequency range of 15 [MHz] or higher. It can be seen that the common mode current is reduced.
[0111] ここで、図 14に示す特性 C201と、図 16に示す特性 C202とを比較してみると、特 性 C202より、特性 C201の方力 コモンモード電流の低減されている。すなわち、コ モンモードチョークコイルは、電源コネクタ 102から見て、サージァブソーバ 281の後 段よりも、前段に設けた方がコモンモード電流を低減させることができることが分かる。 Here, comparing the characteristic C201 shown in FIG. 14 with the characteristic C202 shown in FIG. 16, the characteristic common mode current of the characteristic C201 is reduced by the characteristic C202. In other words, it can be seen that the common mode choke coil can reduce the common mode current when it is provided at the front stage as compared with the rear stage of the surge absorber 281 when viewed from the power connector 102.
[0112] コモンモードチョークコイル 21aは比較的サージに強いことから、本実施形態では、 コモンモードチョークコイル 21aを電源コネクタ 102から見て前段に設けることにより、 コモンモード電流の低減につ!/、て高!/、効果を得ること力 Sできる。 [0112] Since the common mode choke coil 21a is relatively resistant to surges, in the present embodiment, the common mode choke coil 21a is provided in the front stage when viewed from the power connector 102, thereby reducing the common mode current! /, High! /, The ability to get an effect.
[0113] 次に、コモンモードチョークコイルの巻き数によるコモンモード電流特性について説 明する。 Next, the common mode current characteristics depending on the number of turns of the common mode choke coil will be described.
[0114] 図 17は、コモンモードチョークコイルの巻き数別の周波数 インピーダンス特性を 示す図である。図 17において、特性 C21;!〜 C215は、それぞれ巻き数が異なるコモ ンモードチョークコイルの周波数 インピーダンス特性を示すものであり、巻き数が少 ないもの力、ら J噴に、特十生 C211、特十生 C212、特十生 C213、特十生 C214、特十生 C215を 示すものである。 FIG. 17 is a diagram showing frequency impedance characteristics according to the number of turns of the common mode choke coil. In Fig. 17, the characteristics C21;! To C215 indicate the frequency impedance characteristics of common mode choke coils with different numbers of turns. It shows Tokusei C212, Tokusei C213, Tokusei C214, Tokusei C215.
[0115] 図 17に示すように、コモンモードチョークコイルは、巻き数が多くなるにつれてイン ピーダンスが大きくなる。また、巻き数が多くなるにつれて、インピーダンスの値のピ ークを示す周波数が低くなる、すなわち、誘導性から容量性に変わる周波数である 自己共振周波数が低くなることが分かる。 [0115] As shown in Fig. 17, the impedance of the common mode choke coil increases as the number of turns increases. It can also be seen that as the number of turns increases, the frequency indicating the peak of the impedance value decreases, that is, the self-resonant frequency, which is a frequency changing from inductive to capacitive, decreases.
[0116] 図 18は、コモンモードチョークコイルの巻き数別の周波数 コモンモード電流特性 を示す図であり、図 18 (A)は特性 C221を、図 18 (B)は特性 C222を、図 18 (C)は
特性 C223を、図 18 (D)は特性 C224を示すものである。特性 C22;!〜 C224は、コ モンモードチョークコイル 21aとして、それぞれ巻き数が異なるものを用いた場合の周 波数 コモンモード電流特性を示すものである。そして、コモンモードチョークコイル 21aの巻き数が少ないものから順に、特性 C221、特性 C222、特性 C223、特性 C2 24を示すものである。なお、特性 C221〜特性 C224を示すコモンモードチョークコィ ルの巻き数はそれぞれ、特性 C211〜特性 C214を示すコモンモードチョークコイル の巻き数と同じものである。 [0116] Fig. 18 shows the frequency common mode current characteristics for each number of turns of the common mode choke coil. Fig. 18 (A) shows the characteristics C221, Fig. 18 (B) shows the characteristics C222, and Fig. 18 ( C) The characteristic C223 is shown in FIG. 18D, and the characteristic C224 is shown. Characteristics C22;! To C224 indicate the frequency common mode current characteristics when the common mode choke coil 21a has a different number of turns. The characteristics C221, the characteristics C222, the characteristics C223, and the characteristics C2 24 are shown in order from the smallest number of turns of the common mode choke coil 21a. The number of turns of the common mode choke coil showing characteristics C221 to C224 is the same as the number of turns of the common mode choke coil showing characteristics C211 to C214.
[0117] 図 18に示すように、コモンモードチョークコイルの巻き数が多い場合には、コモンモ ード電流は低域側で小さぐ高域側で大きくなる傾向を示す。一方、コモンモードチヨ ークコイルの巻き数が少ない場合には、コモンモード電流は低域側で大きぐ高域側 で小さくなる傾向を示す。 [0117] As shown in Fig. 18, when the number of turns of the common mode choke coil is large, the common mode current tends to increase on the low frequency side and increase on the high frequency side. On the other hand, when the number of turns of the common mode choke coil is small, the common mode current tends to increase on the low frequency side and decrease on the high frequency side.
[0118] ここで、コモンモード電流は、図 18に示すように、巻き数に依存せず、全体的として 周波数が高くなるにつれて大きくなる傾向を有する。したがって、コモンモード電流の ピーク値を抑制するためには、高域側のコモンモード電流を低減させる必要がある。 したがって、巻き数が少ないコモンモードチョークコイル、すなわち、図 17にて説明し たように、自己共振周波数が大きい (好ましくは自己共振周波数力 ¾0 [MHz]以上の )コモンモードチョークコイルが用いられることが好まし!/、。 Here, as shown in FIG. 18, the common mode current does not depend on the number of turns and tends to increase as the frequency increases as a whole. Therefore, in order to suppress the peak value of the common mode current, it is necessary to reduce the common mode current on the high frequency side. Therefore, a common mode choke coil having a small number of turns, that is, a common mode choke coil having a high self-resonant frequency (preferably having a self-resonant frequency force of ¾0 [MHz] or more) as described in FIG. Is preferred!
[0119] 図 19は、第 2の実施形態に係る通信装置の変形例の一部を示す構成図である。図 FIG. 19 is a configuration diagram showing a part of a modification of the communication device according to the second embodiment. Figure
13と重複する部分は同一の符号を付す。図 19に示すように、この変形例の通信装 置は、コモンモードチョークコイル 21aとヒューズ 282との間に設けられ、第二のサー ジ吸収素子の一例として機能するサージァブソーバ 22を備えるものである。 Portions that overlap with 13 are given the same reference numerals. As shown in FIG. 19, the communication device of this modification includes a surge absorber 22 provided between the common mode choke coil 21a and the fuse 282 and functioning as an example of a second surge absorbing element. .
[0120] このサージァブソーバ 22により、コモンモード電流を低減しつつ、コモンモードチヨ ークコイル 21aをサージに対して保護することができる。 [0120] The surge absorber 22 can protect the common mode choke coil 21a against surge while reducing the common mode current.
[0121] なお、サージァブソーバ 22は、少なくともサージァブソーバ 281の容量値よりも小さ い、例えば容量値が 10 [pF]程度の小さなガラス管式のサージァブソーバが用いら れることが好ましい。これにより、コモンモードチョークコイル 21aが、電源コネクタ 102 力も見てサージァブソーバ 281の前段に設置されることによるコモンモード電流の低 減効果に与える影響を小さくすることができる。なお、図 19に示される例において、
サージァブソーバ 281の代わりにコンデンサが用いられてもよい。 [0121] It should be noted that as the surge-absorber 22, it is preferable to use a glass tube type surge-absorber that is at least smaller than the capacitance value of the surge-absorber 281, for example, a small capacitance value of about 10 [pF]. As a result, the influence of the common mode choke coil 21a on the reduction effect of the common mode current caused by installing the common mode choke coil 21a in front of the surge absorber 281 with reference to the power connector 102 can be reduced. In the example shown in FIG. A capacitor may be used in place of the surge absorber 281.
[0122] 上記第 2の実施形態の説明では、インピーダンスアツパとして、バランスが取れてい るインダクタンス特性を有するインピーダンスアツパ 290が用いられた場合について 説明したが、第 1の実施形態で説明したアンバランスなインダクタンスを有するインピ 一ダンスアツパ 291が用いられてもよい。 [0122] In the description of the second embodiment, the case where the impedance upper 290 having a balanced inductance characteristic is used as the impedance upper has been described. However, the amplifier described in the first embodiment is used. An impedance amplifier 291 having a balanced inductance may be used.
[0123] 図 20は、第 2の実施形態に係る通信装置に、アンバランスなインダクタンスを有する インピーダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図 である。図 20において、特性 C231は、図 5に示すようなインピーダンスアツパ 291が 接続されると共にコモンモードチョークコイル 21aが接続されていない場合の特性で あり、特性 C232は、図 13においてインピーダンスアツパ 290の代わりにインピーダン スアツパ 291が接続された場合の特性である。 FIG. 20 is a diagram showing frequency common mode current characteristics when an impedance amplifier having an unbalanced inductance is used in the communication device according to the second embodiment. In FIG. 20, the characteristic C231 is a characteristic when the impedance upper 291 as shown in FIG. 5 is connected and the common mode choke coil 21a is not connected. The characteristic C232 is the impedance upper 290 in FIG. This is a characteristic when impedance impedance 291 is connected instead of.
[0124] 図 20に示すように、コモンモードチョークコイル 21aが接続されることにより、コモン モード電流が低減されているのが分かる。したがって、アンバランスなインダクタンス を有するインピーダンスアツパ 291を用いることによる、電源プラグ差込方向に起因し たコモンモード電流のレベル差の低減や、コモンモード電流のピーク値の抑制効果 に加え、更に、コモンモード電流を抑制することができる。 As shown in FIG. 20, it can be seen that the common mode current is reduced by connecting the common mode choke coil 21a. Therefore, in addition to the effect of reducing the level difference of the common mode current caused by the power plug insertion direction and the effect of suppressing the peak value of the common mode current by using the impedance amplifier 291 having an unbalanced inductance, The common mode current can be suppressed.
[0125] 第 2の実施形態によれば、電源装置に相当する部分 (例えば、電源プラグ 500から 分岐部 299を介してスイッチング電源 300までの部分)において、サージァブソーバ 281とヒューズ 282との間にコモンモードチョークコイル 21aを接続することにより、サ ージァブソーバ 281において電力線接続部とは反対側の回路をサージに対して保 護しつつ、コモンモードチョークコイル 21aにおいてコモンモード電流を低減すること ができる。 [0125] According to the second embodiment, the common portion between the surge-absorber 281 and the fuse 282 in the portion corresponding to the power supply device (for example, the portion from the power plug 500 to the switching power supply 300 via the branch portion 299). By connecting the mode choke coil 21a, it is possible to reduce the common mode current in the common mode choke coil 21a while protecting the circuit on the side opposite to the power line connecting portion in the surge absorber 281 against a surge.
[0126] (第 3の実施形態) [0126] (Third embodiment)
図 21は、第 3の実施形態に係る通信装置の第一例の一部を示す構成図であり、図 22は、第 3の実施形態に係る通信装置の第二例の一部を示す構成図である。図 21 及び図 22において、図 4又は図 5と重複する部分については同一の符号を付す。 FIG. 21 is a configuration diagram illustrating a part of the first example of the communication device according to the third embodiment, and FIG. 22 is a configuration illustrating a part of the second example of the communication device according to the third embodiment. FIG. In FIG. 21 and FIG. 22, parts that are the same as those in FIG. 4 or FIG.
[0127] 図 21に示すように、第一例の通信装置は、カップリング用コンデンサ 272a, 272b と、力プラトランス 271との間に接続され、第三のコモンモードチョークコイルとして機
能するコモンモードチョークコイル 31を備えるものである。 As shown in FIG. 21, the communication device of the first example is connected between coupling capacitors 272a and 272b and a force plastic transformer 271 and functions as a third common mode choke coil. A common mode choke coil 31 is provided.
[0128] 上記の構成を詳述すると、力プラトランス 271は一次巻線 271a及び二次巻線 271b を有する。二次巻線 271bは、送信信号を出力する送信部 1に接続される。また、一 次巻線 271aは、分岐部に接続されて送信信号を電力線 900に重畳する。 [0128] In detail, the force plastic transformer 271 has a primary winding 271a and a secondary winding 271b. The secondary winding 271b is connected to the transmission unit 1 that outputs a transmission signal. Further, the primary winding 271a is connected to the branch portion and superimposes the transmission signal on the power line 900.
[0129] カップ!;ング用コンデンサ 272a, 272bは、力プラ卜ランス 271の一次巻泉 271aに接 続され、送信信号の周波数帯域により交流電圧の周波数帯域の方が高いインピーダ ンスを有するコンデンサ部の一例として機能する。このカップリング用コンデンサ 272 a, 272bにより、電力線 900を流れる信号から高域の電力線通信信号とが分離され [0129] Capacitors 272a and 272b are connected to the primary spring 271a of the force balance 271 and have a higher impedance in the frequency band of the AC voltage depending on the frequency band of the transmission signal. Functions as an example. The coupling capacitors 272a and 272b separate the high-frequency power line communication signal from the signal flowing through the power line 900.
[0130] また、図 22に示すように、第二例の通信装置は、送信部 1と、力プラトランス 271の 二次巻線 271bとの間に接続され、第三のコモンモードチョークコイルとして機能する コモンモードチョークコイル 31を備えるものである。 Also, as shown in FIG. 22, the communication device of the second example is connected between the transmission unit 1 and the secondary winding 271b of the force plastic transformer 271 as a third common mode choke coil. A functioning common mode choke coil 31 is provided.
[0131] 図 23は第 3の実施形態に係る通信装置の周波数 コモンモード電流特性を示す 図である。図 23において、特性 C301は、図 4に示すようなインピーダンスアツパ 290 が接続されると共にコモンモードチョークコイル 31又は 32が接続されていない場合 の特性であり、特性 C302は、図 21 , 22に示すようなコモンモードチョークコイル 31 又は 32が接続された場合の特性である。 FIG. 23 is a diagram showing frequency common mode current characteristics of the communication device according to the third embodiment. In FIG. 23, the characteristic C301 is a characteristic when the impedance upper 290 as shown in FIG. 4 is connected and the common mode choke coil 31 or 32 is not connected. The characteristic C302 is shown in FIGS. This is the characteristic when the common mode choke coil 31 or 32 as shown is connected.
[0132] 図 23に示すように、コモンモードチョークコイル 31又は 32が接続されることにより、 特に 15 [MHz]以上の高域において、コモンモード電流が低減されているのが分か [0132] As shown in Fig. 23, it can be seen that the common mode current is reduced by connecting the common mode choke coil 31 or 32, particularly in the high band of 15 [MHz] or higher.
[0133] 通信装置の電源が大電流を扱う必要がある場合、電源コネクタ 102から分岐部 29 9を介してスイッチング電源 300までに至る電源系に、大電流が流れる必要がある。こ のような電源系にコモンモードチョークコイルを揷入する場合ことによりコモンモード 電流を低減させる場合、コモンモードチョークコイルを大型化する必要がある。したが つて、十分なコモンモードインピーダンスを有するコモンモードチョークコイルを用い ること力 S難しい。 When the power supply of the communication device needs to handle a large current, a large current needs to flow through the power supply system extending from the power connector 102 to the switching power supply 300 via the branch part 299. In order to reduce the common mode current by inserting the common mode choke coil into such a power supply system, it is necessary to enlarge the common mode choke coil. Therefore, it is difficult to use a common mode choke coil with sufficient common mode impedance.
[0134] そこで、第 3の実施形態の通信装置は、図 21及び図 22に示すように、コモンモード チョークコイル 31 , 32が、交流電圧の周波数帯域の信号が遮断するカップリング用コ
ンデンサ 272a, 272bより分岐部 299から見て後段側の信号系に配置されるもので ある。したがって、電源装置が大電流を扱う場合でも、コモンモードチョークコイルを 大型化することなぐ大きなコモンモードインピーダンスを有するコモンモードチョーク コイルを用いることが可能となり、コモンモード電流を更に低減することができる。 Therefore, as shown in FIGS. 21 and 22, the communication device of the third embodiment is configured such that the common mode choke coils 31 and 32 have coupling couplings that cut off signals in the frequency band of the AC voltage. From the capacitors 272a and 272b, they are arranged in the signal system on the rear stage when viewed from the branch 299. Therefore, even when the power supply device handles a large current, it is possible to use a common mode choke coil having a large common mode impedance without increasing the size of the common mode choke coil, and the common mode current can be further reduced.
[0135] 上記第 3の実施形態の説明では、インピーダンスアツパとして、バランスが取れてい るインダクタンス特性を有するインピーダンスアツパ 290が用いられた場合について 説明したが、第 1の実施形態で説明したアンバランスなインダクタンスを有するインピ 一ダンスアツパ 291が用いられてもよい。 [0135] In the description of the third embodiment, the case where the impedance upper 290 having a balanced inductance characteristic is used as the impedance upper has been described. However, the amplifier described in the first embodiment is used. An impedance amplifier 291 having a balanced inductance may be used.
[0136] 図 24は第 3の実施形態に係る通信装置に、アンバランスなインダクタンスを有する インピーダンスアツパが用いられた場合の周波数 コモンモード電流特性を示す図 である。図 24において、特性 C231は、図 5に示すようなインピーダンスアツパ 291が 接続されると共にコモンモードチョークコイル 31又は 32が接続されていない場合の 特性であり、特性 C312は、図 21又は 22においてインピーダンスアツパ 290の代わり にインピーダンスアツパ 291が接続された場合の特性である。 FIG. 24 is a diagram showing frequency common mode current characteristics when an impedance amplifier having an unbalanced inductance is used in the communication device according to the third embodiment. In FIG. 24, the characteristic C231 is the characteristic when the impedance amplifier 291 as shown in FIG. 5 is connected and the common mode choke coil 31 or 32 is not connected. The characteristic C312 is the characteristic C312 in FIG. This is a characteristic when the impedance amplifier 291 is connected instead of the impedance amplifier 290.
[0137] 図 24に示すように、コモンモードチョークコイル 31又は 32が接続されることにより、 コモンモード電流が低減されているのが分かる。したがって、アンバランスなインダク タンスを有するインピーダンスアツパ 291を用いることによる、電源プラグ差込方向に 起因したコモンモード電流のレベル差の低減や、コモンモード電流のピーク値の抑 制効果に加え、更に、コモンモード電流を抑制することができる。 As shown in FIG. 24, it can be seen that the common mode current is reduced by connecting the common mode choke coil 31 or 32. Therefore, in addition to the effect of reducing the common mode current level difference caused by the power plug insertion direction and the suppression of the peak value of the common mode current by using the impedance amplifier 291 having an unbalanced inductance, The common mode current can be suppressed.
[0138] このような本発明の第 3の実施形態によれば、電源が大電流を扱う電力線通信装 置にぉレ、ても、コモンモード電流を低減することができる。 [0138] According to the third embodiment of the present invention, the common mode current can be reduced even if the power supply is in a power line communication device that handles a large current.
[0139] (第 4の実施形態) [0139] (Fourth Embodiment)
図 25は、第 4の実施形態に係る電源ケーブルを示す説明図である。図 25に示すよ うに、電源ケーブル 601は、電力線 900の伝送線路の各々に接続する一対の電線 4 1 , 42を有するものである。そして、これらの電線 41 , 42は撚られている。これにより、 電源ケーブル 601における平衡度が向上し、コモンモード電流を低減することができ FIG. 25 is an explanatory diagram showing a power cable according to the fourth embodiment. As shown in FIG. 25, the power cable 601 has a pair of electric wires 4 1 and 42 connected to each of the transmission lines of the power line 900. And these electric wires 41 and 42 are twisted. This improves the balance in the power cable 601 and reduces the common mode current.
[0140] 図 26は、第 2の実施形態に係る通信装置に本発明の第 4の実施形態に係る電源ケ
一ブルが用いられた場合の周波数 コモンモード電流特性を示す図である。図 26 において、特性 C401は、図 13に示す通信装置に平行ケーブルである電源ケープ ノレ 600が接続された場合の特性であり、特性 C402は、図 13に示す通信装置に電源 ケーブル 601が接続された場合の特性である。図 26に示すように、電源コネクタ 102 に、撚り線状の電源ケーブル 601が接続されることにより、コモンモード電流が低減さ れているのが分かる。 FIG. 26 shows a power supply cable according to the fourth embodiment of the present invention in a communication apparatus according to the second embodiment. It is a figure which shows the frequency common mode current characteristic when one bull is used. In FIG. 26, a characteristic C401 is a characteristic when the power supply Cape 600, which is a parallel cable, is connected to the communication apparatus shown in FIG. 13, and a characteristic C402 is a characteristic when the power cable 601 is connected to the communication apparatus shown in FIG. It is a characteristic in the case of. As shown in FIG. 26, it can be seen that the common mode current is reduced by connecting the power cable 601 in the form of a stranded wire to the power connector 102.
[0141] 図 27は第 2の実施形態に係る通信装置に、アンバランスなインダクタンスを有する インピーダンスアツパ及び第 4の実施形態に係る電源ケーブルが用いられた場合の 周波数 コモンモード電流特性を示す図である。図 27において、特性 C232は、図 13においてインピーダンスアツパ 290の代わりにインピーダンスアツパ 291が接続さ れた通信装置に、平行ケーブルである電源ケーブル 600が接続された場合の特性 であり、特性 C412は、インピーダンスアツパ 290の代わりにインピーダンスアツパ 291 が接続された通信装置に、撚り線状の電源ケーブル 601が接続された場合の特性で ある。 [0141] FIG. 27 is a diagram showing frequency common mode current characteristics when an impedance upper having an unbalanced inductance and a power cable according to the fourth embodiment are used in the communication device according to the second embodiment. It is. In FIG. 27, the characteristic C232 is a characteristic when the power cable 600, which is a parallel cable, is connected to the communication device to which the impedance upper 291 is connected instead of the impedance upper 290 in FIG. 13, and the characteristic C412 These are characteristics when a stranded wire-shaped power cable 601 is connected to a communication apparatus to which the impedance upper 291 is connected instead of the impedance upper 290.
[0142] 図 27に示すように、撚り線状の電源ケーブル 601が接続されることにより、コモンモ ード電流が低減されているのが分かる。したがって、アンバランスなインダクタンスを 有するインピーダンスアツパ 291を用いることによる、電源プラグ差込方向に起因した コモンモード電流のレベル差の低減や、コモンモード電流のピーク値の抑制効果に 加え、更に、コモンモード電流を抑制することができる。 As shown in FIG. 27, it can be seen that the common mode current is reduced by connecting the stranded wire-shaped power cable 601. Therefore, in addition to the effect of reducing the level difference of the common mode current due to the insertion direction of the power plug and the suppression of the peak value of the common mode current by using the impedance amplifier 291 having an unbalanced inductance, The mode current can be suppressed.
[0143] このような第 4の実施形態によれば、撚り線状の電線を有する電源ケーブルが用い られることにより、平衡度が向上し、コモンモード電流を低減することができる。 [0143] According to such a fourth embodiment, the use of a power cable having a stranded wire makes it possible to improve the balance and reduce the common mode current.
[0144] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら 力、である。 [0144] Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. It is.
本出願は、 2006年 8月 8日出願の日本特許出願 No.2006-215726に基づくものであ り、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2006-215726 filed on Aug. 8, 2006, the contents of which are incorporated herein by reference.
産業上の利用可能性 Industrial applicability
[0145] 本発明の電源装置及び電力線通信装置は、コモンモード電流のピーク値を抑制す
ることが可能な効果を有し、短波帯を利用した電力線通信システム等に有用である。
The power supply device and power line communication device of the present invention suppress the peak value of common mode current. It is useful for a power line communication system using a short wave band.
Claims
[1] 少なくとも二つの伝送線路を有して電力を伝送する電力線に、接続自在な電力線 接続部と、 [1] A power line connection section that can be connected to a power line that has at least two transmission lines and transmits power; and
前記電力線接続部を介して前記電力の供給を受ける電力供給部と、 A power supply unit that receives supply of the power via the power line connection unit;
前記電力線接続部と前記電力供給部との間に設けられるインダクタ部と、を備え、 前記インダクタ部は、 An inductor unit provided between the power line connection unit and the power supply unit, the inductor unit,
第一のインダクタンスを有し、前記伝送線路のうちの一つに接続する第一の経路と 前記第一のインダクタンスとは異なる第二のインダクタンスを有し、前記第一の経路 に接続される伝送線路とは異なる伝送線路に接続する第二の経路と、を備える電源 装置。 A first path having a first inductance and connected to one of the transmission lines and a transmission having a second inductance different from the first inductance and connected to the first path And a second path connected to a transmission line different from the line.
[2] 請求項 1に記載の電源装置であって、 [2] The power supply device according to claim 1,
前記インダクタ部は、前記第一の経路に設けられた前記第一のインダクタンスを有 する第一のインダクタと、前記第二の経路に設けられた前記第二のインダクタンスを 有する第二のインダクタとを備える電源装置。 The inductor section includes a first inductor having the first inductance provided in the first path and a second inductor having the second inductance provided in the second path. Power supply provided.
[3] 請求項 2に記載の電源装置であって、 [3] The power supply device according to claim 2,
前記第一のインダクタは、所定のインダクタンスを有する第三のインダクタおよび第 四のインダクタを有する電源装置。 The first inductor is a power supply device having a third inductor and a fourth inductor having a predetermined inductance.
[4] 請求項 1に記載の電源装置であって、 [4] The power supply device according to claim 1,
前記インダクタ部は、前記第一の経路に設けられた第一のコイル部と、前記第二の 経路に揷入され、前記第一のコイル部とは異なる巻き数の第二のコイル部とを有する コモンモードチョークコィノレを備える電源装置。 The inductor section includes a first coil section provided in the first path, and a second coil section inserted in the second path and having a different number of turns from the first coil section. A power supply device comprising a common mode choke coin.
[5] 請求項 1に記載の電源装置であって、 [5] The power supply device according to claim 1,
前記インダクタ部は、 The inductor section is
前記第一の経路及び前記第二の経路の各々に設けられた、互いに同じ巻き数のコ ィル部を有するコモンモードチョークコイルと、 A common mode choke coil provided in each of the first path and the second path and having a coil portion with the same number of turns;
前記第一の経路及び前記第二の経路のいずれか一方に設けられたインダクタと、 を備える電源装置。
An inductor provided on either one of the first path and the second path.
[6] 請求項 1な!/、し 5の!/、ずれかに記載の電源装置であって、 [6] The power supply device according to claim 1! /, 5! /,
前記インダクタ部は、少なくとも交流電源周波数を除いた周波数帯域の信号を減衰 させる特性を有する電源装置。 The inductor unit is a power supply device having a characteristic of attenuating signals in a frequency band excluding at least an AC power supply frequency.
[7] 請求項 1な!/、し 6の!/、ずれかに記載の電源装置であって、 [7] The power supply apparatus according to claim 1! /, 6! /,
前記電力線接続部に接続されたヒューズと、 A fuse connected to the power line connection;
前記インダクタ部に接続された第一のサージ吸収素子と、 A first surge absorbing element connected to the inductor portion;
前記ヒューズと前記第一のサージ吸収素子との間に接続された第二のコモンモード チョークコイルと、 を更に備える電源装置。 And a second common mode choke coil connected between the fuse and the first surge absorbing element.
[8] 請求項 7に記載の電源装置であって、 [8] The power supply device according to claim 7,
前記第二のコモンモードチョークコイルは、 20メガヘルツ以上の自己共振周波数を 有する電源装置。 The second common mode choke coil is a power supply device having a self-resonant frequency of 20 megahertz or more.
[9] 請求項 7又は 8に記載の電源装置であって、 [9] The power supply device according to claim 7 or 8,
前記ヒューズと前記第二のコモンモードチョークコイルとの間に設けられ、前記第一 のサージ吸収素子の容量よりも小さい容量を有する第二のサージ吸収素子を更に備 える電源装置。 A power supply apparatus further comprising a second surge absorbing element provided between the fuse and the second common mode choke coil and having a capacity smaller than that of the first surge absorbing element.
[10] 請求項 1なレ、し 9の!/、ずれかに記載の電源装置であって、 [10] A power supply device according to claim 1 or 9! /,
前記電源接続部は、前記伝送線路の各々に接続する少なくとも二本の電線が撚ら れた電源ケーブルを備える電源装置。 The power supply unit includes a power cable in which at least two electric wires connected to each of the transmission lines are twisted.
[11] 請求項 1ないし 10のいずれかに記載された電源装置を備える電力線通信装置。 [11] A power line communication device comprising the power supply device according to any one of claims 1 to 10.
[12] 請求項 11に記載の電力線通信装置であって、 [12] The power line communication device according to claim 11,
前記電力線を介して送信する送信信号を出力する送信部と、 A transmission unit that outputs a transmission signal to be transmitted through the power line;
前記送信部に接続された二次巻線と、前記電力線接続部と前記インダクタ部との 間の分岐部に接続されて前記送信信号を前記電力線に重畳する一次巻線とを有す る力プラトランスと、 A force plug having a secondary winding connected to the transmission unit and a primary winding connected to a branch portion between the power line connection unit and the inductor unit to superimpose the transmission signal on the power line. With a transformer
前記力プラトランスの一次巻線に接続され、前記送信信号の周波数帯域により前記 交流電圧の周波数帯域の方が高いインピーダンスを有するコンデンサ部と、 前記コンデンサ部と前記送信部との間に接続された第三のコモンモードチョークコ ィルと、を更に備える電力線通信装置。
A capacitor part connected to a primary winding of the force plastic transformer, and having a higher impedance in the frequency band of the AC voltage depending on the frequency band of the transmission signal, and connected between the capacitor part and the transmission part A power line communication device further comprising a third common mode choke coil.
[13] 請求項 12に記載の電力線通信装置であって、 [13] The power line communication device according to claim 12,
前記第三のコモンモードチョークコイルは、前記コンデンサ部と、前記力プラトランス の 1次巻線との間に接続される電力線通信装置。 The third common mode choke coil is a power line communication device connected between the capacitor unit and a primary winding of the force plastic transformer.
[14] 請求項 12に記載の電力線通信装置であって、 [14] The power line communication device according to claim 12,
前記第三のコモンモードチョークコイルは、前記送信部と、前記力プラトランスの 2次 巻線との間に接続される電力線通信装置。 The third common mode choke coil is a power line communication device connected between the transmitter and a secondary winding of the force plastic transformer.
[15] 請求項 1記載の電源装置であって、 [15] The power supply device according to claim 1,
前記第 2のインダクタンスと前記第 1のインダクタンスとの比は、 1. 2;!〜 2である電 源装置。 The power supply apparatus according to claim 1, wherein a ratio of the second inductance to the first inductance is 1.2;
[16] 請求項 15記載の電源装置であって、 [16] The power supply device according to claim 15,
前記第 2のインダクタンスと前記第 1のインダクタンスとの比は、 1. 3〜2である電源 装置。
The power supply apparatus according to claim 1, wherein a ratio of the second inductance to the first inductance is 1.3 to 2.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-215726 | 2006-08-08 | ||
JP2006215726 | 2006-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008018441A1 true WO2008018441A1 (en) | 2008-02-14 |
Family
ID=39032971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/065414 WO2008018441A1 (en) | 2006-08-08 | 2007-08-07 | Power supply device and power line communication device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008018441A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4432570A1 (en) * | 2023-03-15 | 2024-09-18 | Hangzhou Lianxintong Semiconductor Co., Ltd. | Circuit structure to improve reliability of power line communication |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08140339A (en) * | 1994-11-11 | 1996-05-31 | Ricoh Co Ltd | Switching regulator |
JP2003283390A (en) * | 2002-03-25 | 2003-10-03 | Nippon Telegraph & Telephone East Corp | Inductor loading apparatus for power line carrier communication |
JP2004056766A (en) * | 2002-05-28 | 2004-02-19 | Matsushita Electric Works Ltd | Wiring appliance for power line communication |
JP2004228822A (en) * | 2003-01-22 | 2004-08-12 | Toyo Commun Equip Co Ltd | Electric lamp line transport apparatus |
JP2004248119A (en) * | 2003-02-17 | 2004-09-02 | Alps Electric Co Ltd | Plc modem |
JP2004356771A (en) * | 2003-05-27 | 2004-12-16 | Matsushita Electric Works Ltd | Impedance improving unit, distribution board, distribution breaker, and receptacle box |
JP2006014294A (en) * | 2004-05-27 | 2006-01-12 | Matsushita Electric Ind Co Ltd | Communication equipment, communication system, and communication method |
JP2006054761A (en) * | 2004-08-13 | 2006-02-23 | Matsushita Electric Works Ltd | Power line carrier communications apparatus |
-
2007
- 2007-08-07 WO PCT/JP2007/065414 patent/WO2008018441A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08140339A (en) * | 1994-11-11 | 1996-05-31 | Ricoh Co Ltd | Switching regulator |
JP2003283390A (en) * | 2002-03-25 | 2003-10-03 | Nippon Telegraph & Telephone East Corp | Inductor loading apparatus for power line carrier communication |
JP2004056766A (en) * | 2002-05-28 | 2004-02-19 | Matsushita Electric Works Ltd | Wiring appliance for power line communication |
JP2004228822A (en) * | 2003-01-22 | 2004-08-12 | Toyo Commun Equip Co Ltd | Electric lamp line transport apparatus |
JP2004248119A (en) * | 2003-02-17 | 2004-09-02 | Alps Electric Co Ltd | Plc modem |
JP2004356771A (en) * | 2003-05-27 | 2004-12-16 | Matsushita Electric Works Ltd | Impedance improving unit, distribution board, distribution breaker, and receptacle box |
JP2006014294A (en) * | 2004-05-27 | 2006-01-12 | Matsushita Electric Ind Co Ltd | Communication equipment, communication system, and communication method |
JP2006054761A (en) * | 2004-08-13 | 2006-02-23 | Matsushita Electric Works Ltd | Power line carrier communications apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4432570A1 (en) * | 2023-03-15 | 2024-09-18 | Hangzhou Lianxintong Semiconductor Co., Ltd. | Circuit structure to improve reliability of power line communication |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7501913B2 (en) | Power line communication apparatus and connecting device | |
US7633774B2 (en) | Power supply apparatus for suppressing attenuation of a transmission signal | |
US10097242B2 (en) | Power line communication apparatus including AC power socket | |
KR100719829B1 (en) | Power line terminating circuit and method, and power line relay device | |
EP1326348B1 (en) | Power line communication system and power line branching apparatus | |
US8040235B2 (en) | Relay apparatus and electric appliance | |
US8232666B2 (en) | External AC-DC coupling for communication interfaces | |
JPH10504948A (en) | Coupling telecommunication signals into balanced distribution networks. | |
MXPA03008859A (en) | Coupling circuit for power line communications. | |
JP2018534837A (en) | Improved DC power line communication system and method | |
JP2008067366A (en) | Power supply device and power line communication device | |
TW200404419A (en) | Common-mode signal suppressing circuit and normal-mode signal suppressing circuit | |
KR20080040354A (en) | Wideband blocking filter | |
US20040130413A1 (en) | Power supply system and method using analog coupling circuitry for power-line communications | |
WO2008018441A1 (en) | Power supply device and power line communication device | |
JP2008042596A (en) | Power cable and table tap | |
AU2016207976A1 (en) | Systems and methods for enhanced high frequency power bias tee designs | |
JP2010062887A (en) | Signal processing apparatus, and connecting apparatus | |
JP2010074632A (en) | High frequency signal supplying device | |
JP2003249879A (en) | Indoor wiring path | |
JP2004200928A (en) | Inter-power-line coupler | |
JP2004228656A (en) | Power line carrier system and plc signal transmitter | |
JP2017069916A (en) | Power line communication module | |
US20150139342A1 (en) | Apparatus for MIMO coupling power line signals into a three-conductor power supply network via two channels | |
JP2007142852A (en) | Adapter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07792083 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07792083 Country of ref document: EP Kind code of ref document: A1 |