WO2008018384A1 - Dryer - Google Patents

Dryer Download PDF

Info

Publication number
WO2008018384A1
WO2008018384A1 PCT/JP2007/065265 JP2007065265W WO2008018384A1 WO 2008018384 A1 WO2008018384 A1 WO 2008018384A1 JP 2007065265 W JP2007065265 W JP 2007065265W WO 2008018384 A1 WO2008018384 A1 WO 2008018384A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
head
gas
gear
water tank
Prior art date
Application number
PCT/JP2007/065265
Other languages
French (fr)
Japanese (ja)
Inventor
Hirokazu Ohe
Takeo Noguchi
Susumu Kitamura
Shohzoh Tanaka
Minoru Matsuse
Takashi Tsujimoto
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008018384A1 publication Critical patent/WO2008018384A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/26Heating arrangements, e.g. gas heating equipment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/206Heat pump arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/02Domestic laundry dryers having dryer drums rotating about a horizontal axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/24Condensing arrangements

Definitions

  • the present invention relates to a dryer.
  • conventionally used laundry drying methods generally use a heating means such as an electric heater or gas while rotating a rotating tub containing a laundry containing moisture. Drying is performed by supplying heated warm air.
  • a heating means such as an electric heater or gas
  • Drying is performed by supplying heated warm air.
  • a water-cooled dehumidifying drier described in Japanese Patent Application Laid-Open No. 63-122500 (Patent Document 1)
  • high-humidity air during and / or after drying can be exhausted as it is.
  • it is cooled and dehumidified by air or tap water outside the machine, and it is recirculated by air cooling or water-cooled and heat exchange dehumidified and then returned to the heating means.
  • the amount of power consumption increases in proportion to the power that can be considered to increase the heat capacity of a heating means such as a heater.
  • Patent Document 2 in order to reduce the power consumption and the amount of water used, a heat pump device is provided in the circulation path of air used for drying laundry.
  • a drying method has also been proposed in which a condenser (corresponding to the heating means described above) and an evaporator (corresponding to the cooling and dehumidifying means described above) are provided and heat and cold are effectively used. According to this drying method using a heat pump, air can be heated and cooled and dehumidified without using a heater or water, so that power consumption can be reduced and water can be saved.
  • JP 2004-215943 Patent Document 3
  • JP 2005-40316 Patent text
  • a heat pump is used that stabilizes a safe state by preventing the amount of heat of the circulating air from increasing by exhausting the circulating air in the air circulation path used to dry clothes.
  • a clothes dryer and a dryer with a washing function are listed!
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2006-212117
  • Patent Document 6 JP 2006-61353 A
  • Patent Document 6 describes a clothes drying apparatus using a heat pump that stops the operation of the compressor for a predetermined time after the drying operation is interrupted. Has been. By doing so, the load on the compressor is reduced when the drying operation and the interruption of the drying operation are repeated in a short time, and the return of the hot air temperature by the heat pump device is accelerated.
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2006-272024 (Patent Document 7) and Japanese Patent Application Laid-Open No. 2005-261703 (Patent Document 8) disclose that a compressor is started in advance before entering a drying process. A washing and drying machine using a heat pump is described which reduces the time required for the drying process.
  • Patent Document 1 Japanese Patent Laid-Open No. 63-122500
  • Patent Document 2 Japanese Patent Laid-Open No. 60-220097
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-215943
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2005-40316
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2006-212117
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2006-61353
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2006-272024
  • Patent Document 8 Japanese Unexamined Patent Application Publication No. 2005-261703
  • Patent Document 4 2005-40316 are power pumps that exhaust the circulating air with a high amount of heat to the outside. Unnecessary amount of heat generated by the steam or steam contained in the circulating air is discharged into the room where the dryer is installed, which may increase the amount of heat in the entire room or cause condensation due to the discharged steam. is there.
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2006-272024 (Patent Document 7) and Japanese Patent Application Laid-Open No. 2005-261703 (Patent Document 8)
  • a compressor is previously set before entering the drying process. Doing so will generate unnecessary heat and noise, and increase power consumption.
  • an object of the present invention is to provide a dryer with low noise and high efficiency!
  • a dryer includes a container for storing an object to be dried, a circulation path for allowing a gas to flow into the container, and a gas discharged from the container inside the container.
  • a circulation path for allowing the gas flowing in the circulation path a first heat exchange section for heating the gas flowing through the circulation path, a second heat exchange section for cooling the gas flowing through the circulation path, and a heating head
  • a Stirling engine including a heat absorption head the first heat exchange section performs heat exchange so as to heat the gas with the heat generation head of the Stirling engine, and the second heat exchange section includes the Stirling engine. Heat exchange is performed so that the gas is cooled by the endothermic head of the engine.
  • heat is generated by a condensing unit that compresses a refrigerant by a compressor to change from gas to liquid, and an evaporation unit that expands the refrigerant to change from liquid to gas.
  • a condensing unit that compresses a refrigerant by a compressor to change from gas to liquid
  • an evaporation unit that expands the refrigerant to change from liquid to gas.
  • the Stirling engine compresses a working gas such as helium in the compression space by reciprocating the displacer in the cylinder to heat the heat generating head, and expands the heat generating head in the expansion space. Cooling.
  • a working gas such as helium
  • the working gas remains in a gaseous state and moves only between the compression space and the expansion space.
  • the compression space and the expansion space are arranged at both ends of one cylinder. In this case, the working gas reciprocates from one end of the cylinder to the other end while maintaining the gaseous state. .
  • the responsiveness of the Stirling engine is higher than that of the heat pump.
  • the time required from the start of driving the Stirling engine until the heat generating head and the heat absorbing head reach a predetermined temperature is the same as the time when the evaporation unit and the condensing unit are at a predetermined temperature after the heat pump is started. It is shorter than the time required to become.
  • the Stirling engine has a wider output control range than the heat pump.
  • Inverter compressors used in heat pumps can control output in the range of 30% to 100%, but in Stirling engines, theoretically, output can be controlled in the range of 0% to 100%. I can do it. For this reason, the excess heat of the circulating air is not increased excessively from the latter stage to the final stage of the drying process, so there is no need to exhaust the circulating air to the outside.
  • the vibration system of the heat pump used in the conventional dryer is a complicated vibration system including rotation vibration because a compressor is used for compression and expansion of the refrigerant.
  • a Stirling engine has a simple vibration system compared to a heat pump. That is, in a Stirling engine, only a linear motion of reciprocation of a piston and a displacer is performed.
  • the Stirling engine has a simple vibration system, and therefore can easily absorb vibration.
  • vibration can be easily suppressed by providing a vibration absorbing member such as a panel having the co-frequency of the displacer vibration as the natural frequency.
  • vibration can be easily suppressed, so noise due to vibration is less likely to occur.
  • vibration and noise can be reduced, and usability that does not deteriorate the indoor environment in which the dryer is installed, that is, use and saving immediately.
  • Energy that is, energy consumption can be effectively reduced, and a dryer that can easily save energy can be provided.
  • the dryer according to the present invention is provided so as to cover the container, and includes a water tank for containing water.
  • the container is rotatably supported in the water tank and is accommodated inside the container. It is structured so that the object to be dried can be washed in the container! Are preferred.
  • the Stirling engine is a simple structure that can generate cold heat with a Stirling engine alone that requires a compressor and refrigerant piping used for heat pumps.
  • the heat generating head is arranged in the circulation path to constitute the first heat exchange unit.
  • the endothermic head is disposed in the circulation path and constitutes a second heat exchange section.
  • a heat transfer path from the heat generating head to the first heat exchanging part or a cold air transfer path from the heat absorbing head to the second heat exchanging part becomes unnecessary, and It is possible to reduce the number of parts and make it easy to manufacture a heating and dehumidifying device, as well as a heat transfer path from the heat generating head to the first heat exchanging part, or a cool air transfer from the heat absorbing head to the second heat exchanging part. It is possible to provide a highly reliable dryer that can prevent damage to piping due to vibration in the route.
  • the heat generating head is disposed in the circulation path to constitute the first heat exchanging portion, and the heat absorption head is disposed in the circulation path, It is preferable to configure the heat exchange section.
  • the dryer according to the present invention includes a connecting pipe disposed between the heat generating head and the heat absorbing head, and the connecting pipe is disposed coaxially with the heat generating head and the heat absorbing head, and is connected to the heat generating head and the heat absorbing head. It is preferable that the head and connecting pipe are placed in the circulation path.
  • the circulation path can be shortened to suppress pressure deficits,
  • the force S reduces the heat effect between the heat generating head and the heat absorbing head by the air layer around the connecting pipe.
  • FIG. 1 is a perspective view schematically showing an overall appearance of a washing / drying machine as Embodiment 1-1 of the present invention.
  • FIG. 2 is a side sectional view schematically showing a cross section of the washing / drying machine of FIG. 1 as viewed from the direction of line II-II.
  • FIG. 3 is a cross-sectional view showing an overall cross section of a Stirling engine.
  • FIG. 4 is a perspective view showing the entire body of the heating and dehumidifying device.
  • FIG. 5 is a cross-sectional view showing an outline when the washing / drying machine is viewed from the direction of the line VV in FIG.
  • FIG. 6 is a side sectional view schematically showing a side section of a washing / drying machine as Embodiment 1-2 of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing a cross section of the washing / drying machine as viewed from the back.
  • FIG. 8 is a perspective view showing another embodiment of the main body of the heating and dehumidifying device provided in the washing and drying machine as Embodiment 1-3 of the present invention.
  • FIG. 9 is a perspective view showing another embodiment of the main body of the heating and dehumidifying device provided in the washing and drying machine as Embodiment 14 of the present invention.
  • FIG. 10 is a cross-sectional view showing the configuration of the water supply / drainage system of the drum type washer / dryer according to Embodiment 21 of the present invention.
  • FIG. 11 is a cross-sectional view showing a configuration of a drying processing system of a drum-type washing / drying machine according to Embodiment 21 of the present invention.
  • FIG. 12 is an enlarged view of the main part of FIG.
  • FIG. 13 is a schematic view of a clutch mechanism in a disengaged state.
  • FIG. 14 is a schematic diagram of the coupling state of the clutch mechanism and the power transmission mechanism as seen from A in FIG.
  • FIG. 15 is an enlarged view of a main part showing a 0 ° rotation state of the crankshaft.
  • FIG. 16 is an enlarged view of a main part showing a 90 ° rotation state of the crankshaft.
  • FIG. 21 is a sectional view taken along line BB in FIG.
  • FIG. 23 is a CC cross-sectional view of FIG.
  • Fig. 24 is an enlarged view of the main part showing a state in which the crankshaft has rotated 90 ° from the state of Fig. 23.
  • Fig. 25 is an enlarged view of the main part showing a state in which the crankshaft has been rotated 180 ° from the state of Fig. 23.
  • Fig. 26 is an enlarged view of the main part showing a state in which the crankshaft has been rotated 270 ° from the state of FIG.
  • FIG. 29 is a sectional view taken along the line DD of FIG. 28.
  • FIG. 30 is a schematic diagram of the clutch mechanism in a disengaged state.
  • FIG. 32 is a cross-sectional view taken along the line EE in FIG.
  • Fig. 33 Enlarged view of the main part showing the crankshaft rotated 90 ° from the state of Fig. 32.
  • Ord 34 Enlarged view of the main portion showing the crankshaft rotated 180 ° from the state of Fig. 32. is there.
  • FIG. 35 is an enlarged view of essential parts showing a state where the crankshaft has been rotated 270 ° from the state of FIG. 32.
  • FIG. 36 is a diagram showing a temporal change in temperature on the high temperature side measured immediately after the start of driving of the Stirling engine and the heat pump.
  • FIG. 37 is a diagram showing a temporal change in temperature on the high temperature side from the start of driving of the Stirling engine and the heat pump until reaching a predetermined temperature.
  • FIG. 38 is a diagram showing the time change of the temperature that changes in 10 seconds with respect to the temperature on the high temperature side measured immediately after the start of driving of the Stirling engine and the heat pump.
  • FIG.39 Changes in the temperature of the high and low temperatures of the Stirling engine and the high and low temperatures of the heat pump measured at 10-second intervals immediately after the start of driving the Stirling engine and heat pump.
  • FIG. 1 is a perspective view schematically showing the overall appearance of a washing / drying machine as Embodiment 1-1 of the present invention
  • FIG. 2 shows the washing / drying machine of FIG. 1 as viewed from the direction of line II-II.
  • FIG. 6 is a side sectional view schematically showing a cross section.
  • the washing and drying machine 200 includes a main body 210, a water tank 220 attached to the inside of the main body 210, and a container for storing laundry as an object to be dried.
  • a container for storing laundry as an object to be dried As an aquarium
  • An outer door 201 is attached to the front surface of the main body 210.
  • An inner door 203 is attached inside the outer door 201.
  • the inner door 203 has a central portion made of transparent glass so that the inside of the rotary drum 230 can be seen, and has a recessed bowl shape or a so-called basin shape.
  • a door packing 204 made of an elastic material such as rubber is fitted and fixed to the peripheral wall of the water tank 220 on the laundry input port 202 side.
  • the door packing 204 is brought into close contact with the peripheral edge of the inner door 203 so that the water tank 220 is sealed.
  • the rotating drum 230 is supported so as to rotate around the shaft portion 231 inside the water tank 220.
  • the drum type washing and drying machine 200 has a double structure composed of the water tank 220 and the rotating drum 230.
  • the rotary drum 230 includes a drum body 232 that forms an inner peripheral wall surface at the center in the rotation axis direction, a drum lid 233 that forms an opening at one end, and a drum bottom 234 that forms an inner bottom wall surface at the other end.
  • it is made from stainless steel plate.
  • An uneven surface such as a rib is formed on the drum bottom 234 by pressing to attach a structural component such as the shaft 231 and support a desired load, thereby improving the strength of the bottom wall surface.
  • a number of small holes 235 for water supply, drainage, and ventilation are provided in the peripheral wall and bottom of the rotary drum 230.
  • a fluid balancer 205 is fixed to the outer peripheral edge of the drum lid 233 to prevent vibration during rotation.
  • the shaft portion 231 includes a shaft of a drum rotation drive motor 236 for rotating the rotary drum 230.
  • the rotation of the drum rotation drive motor 236 is controlled by an inverter circuit.
  • the water tank 220 is elastically supported by a coil spring (not shown) from the upper part and by an anti-vibration damper (not shown) from the lower part.
  • a water supply path 209 connected to tap water is disposed above the water tank 220, and is connected to the water tank 220 via the detergent case 207.
  • a water supply valve 208 is provided in the middle of the water supply route 209, and the supply of tap water to the water tank 220 is controlled by opening and closing the water supply valve 208.
  • a drain valve 206 is provided at the bottom of the water tank 220, and washing liquid and the like can be drained from the water tank 220 to the outside of the main body 210 by opening and closing the drain valve 206.
  • FIG. 3 is a cross-sectional view showing an entire cross section of the Stirling engine.
  • the cylinders 110 and 111 are central to the assembly of the Stirling engine 100.
  • the axes of the cylinders 110 and 111 are aligned on the same line.
  • a piston 112 is inserted into the cylinder 110 and a displacer 113 is inserted into the cylinder 111.
  • the piston 112 and the displacer 113 reciprocate without contacting the inner surfaces of the cylinders 110 and 111 by the gas bearing mechanism.
  • the piston 112 and the displacer 113 move with a predetermined phase difference.
  • a cup-shaped magnet holder 114 is provided at one end of the piston 112.
  • a displacer rod 115 projects from one end of the displacer 113.
  • the displacer rod 115 passes through the piston 112 and the magnet holder 114 so as to slide freely in the axial direction.
  • the cylinder 110 holds the linear motor 120 outside the portion corresponding to the operation region of the piston 112.
  • the linear motor 120 is inserted into an outer space J yoke 122 having an inner 121, an inner yoke 123 provided in contact with the outer peripheral surface of the cylinder 110, and an annular space between the outer yoke 122 and the inner yoke 123. It has a ring-shaped magnet 124 and synthetic resin end brackets 125 and 126 that hold the outer yoke 122 and the inner yoke 123 in a predetermined positional relationship.
  • the central portion of the spring 130 is fixed to the hub portion of the magnet holder 114.
  • the center portion of the spring 131 is fixed to the displacer rod 115.
  • the outer periphery of the springs 130 and 131 is fixed to the end bracket 126.
  • a spacer 132 is disposed between the outer peripheries of the springs 130 and 131, so that the springs 130 and 131 maintain a certain distance.
  • the springs 130 and 131 are disc-shaped materials with spiral cuts, and the displacer 113 is resonated with a predetermined phase difference (ideally about 90 ° phase difference) with respect to the piston 112. To play a role.
  • a heat generating head 140 and a heat absorbing head 141 are arranged outside the portion of the cylinder 111 corresponding to the operating region of the displacer 113.
  • the heat generating head 140 has a ring shape and the heat absorbing head 141 has a cap shape, both of which are made of a metal having good heat conductivity such as copper or a copper alloy.
  • the exothermic head 140 and the endothermic head 141 have ring-shaped internal heat exchangers 142 and 143 interposed, respectively. It is supported on the outside of the cylinder 111 in a round shape.
  • Each of the internal heat exchangers 142 and 143 has air permeability, and transfers the heat of the working gas passing through the interior to the heat generating head 140 and the heat absorbing head 141.
  • a space surrounded by the heat generating head 140, the cylinders 110 and 111, the piston 112, the displacer 113, and the internal heat exchanger 142 becomes a compression space 145.
  • the space surrounded by the heat absorbing head 141, the cylinder 111, the displacer 113, and the internal heat exchanger 143 becomes an expansion space 146.
  • a regenerator 147 is disposed between the internal heat exchangers 142 and 143.
  • the regenerator 147 is a resin film wound in a cylindrical shape, and a number of minute protrusions are scattered on one side of the film to form a gap corresponding to the height of the protrusion between the films. It is supposed to be a path.
  • the outside of the regenerator 147 is wrapped around the regenerator tube 148 force S, and an airtight passage is formed between the heat generating head 140 and the heat absorbing head 141.
  • the heat generating head 140, the regenerator tube 148, and the heat absorbing head 141 are arranged coaxially.
  • the regenerator tube 148 is an example of a connection tube.
  • a cylindrical pressure vessel 150 wraps the linear motor 120, the cylinder 110, and the piston 112.
  • the inside of the pressure vessel 150 becomes a back pressure space 151.
  • a terminal portion 152 for supplying electric power to the linear motor 120 and a pipe 153 for enclosing a working gas inside are arranged.
  • a dynamic vibration absorber 160 is attached to the outer surface of the pressure vessel 150.
  • the dynamic vibration absorber 160 includes a shaft 161 protruding from the center of the end surface of the pressure vessel 150, a plate-like spring 162 fixed at the center of the shaft 161, and a mass (mass) 163 disposed on the periphery of the spring 162.
  • the spring 162 is a stack of a plurality of thin plate springs.
  • the Stirling engine 100 operates as follows. A magnetic field penetrating the magnet 124 is generated between the outer yoke 122 and the inner yoke 123 that supply an alternating current to the coil 121 of the linear motor 120, and the magnet 124 reciprocates in the axial direction. By supplying power at a frequency that matches the resonance frequency determined by the total mass of the piston system (piston 112, magnet holder 114, magnet 124, and spring 130) and the panel constant of the spring 130, the piston system is smooth. Start a sinusoidal reciprocating motion.
  • Displacer system (displacer 113, displacer rod 115, and spring 1 In 31), the resonance frequency determined by the total mass and the panel constant of the spring 131 matches the driving frequency of the piston 112.
  • the working gas that moves between the compression space 145 and the expansion space 146 during operation passes through the internal heat exchangers 142, 143, and transfers the heat it has to the heat generating head 140 and the heat absorbing head 141. Since the working gas flowing from the compression space 145 into the regenerator 147 is hot, the heat generating head 140 is heated by calorie. Since the working gas flowing from the expansion space 146 into the regenerator 147 has a low temperature, the heat absorbing head 141 is cooled.
  • the regenerator 147 functions to pass only the working gas without transferring the heat of the compression space 145 and the expansion space 146 to the counterpart space.
  • the hot working gas entering the regenerator 1 47 from the compression space 145 through the internal heat exchanger 142 gives the heat to the regenerator 147 when passing through the regenerator 147, and the expansion space 146 in a state where the temperature is lowered.
  • the low-temperature working gas that has entered the regenerator 147 from the expansion space 146 through the internal heat exchanger 143 recovers heat from the regenerator 147 when passing through the regenerator 147, and enters the compression space 145 in a state where the temperature has risen. Inflow. That is, the regenerator 147 serves as a heat storage means.
  • FIG. 4 is a perspective view showing the entire main body of the heating and dehumidifying device.
  • the main body of the heating and dehumidifying device 400 includes a Stirling engine 410, a high temperature side heat exchange unit 420 as a first heat exchange unit, and a low temperature side heat exchange unit as a second heat exchange unit.
  • the Stirling engine 410 has a heat generating head 411 and a heat absorbing head 412.
  • the configuration and operation of the Stirling engine 410 are the same as those of the Stirling engine 100 shown in FIG.
  • the high temperature side heat exchanging unit 420 has heating fins 421 connected to the heat generating head 411 as fins, and the low temperature side heat exchanging units 430 have cooling fins 431 connected to the heat absorbing head 412 as fins.
  • the calo heat fins 421 and the cooling fins 431 are disk-shaped, and the central portions are directly connected to the heat generating head 411 and the heat absorbing head 412 respectively.
  • the cooling fins 431, the calo heat fins 421, and the Stirling engine 410 are arranged so as to be aligned substantially in a straight line, and are integrated to constitute a heating and dehumidifying device 400.
  • the heating and dehumidifying device 400 is composed of this main body, a warm air side path portion and a humid air side path portion shown in FIG.
  • the high temperature side heat exchanging unit 420 includes the heating fins 421 arranged to be in contact with the heat generating head 411, and the low temperature side heat exchanging unit 430 is configured to absorb the heat. It includes cooling fins 431 arranged to contact the thermal head 412.
  • FIG. 5 is a cross-sectional view schematically showing the washing / drying machine as viewed from the direction of the V—V line in FIG.
  • a hot air path portion 241 and a humid air path portion 242 are arranged on the back side of the rotary drum 230 in the main body 210 of the washing and drying machine 200.
  • the hot air passage unit 241 and the wet air passage unit 242 communicate with the inside of the water tank 220 through an intake port 245 and an exhaust port 246, respectively.
  • the hot air path section 241 and the wet air path section 242 are connected via a circulation path section 243 extending almost linearly below the water tank 220.
  • the circulation path section 243 is provided with the main body of the heating and dehumidifying device 400 such that the cooling fin 431 is on the wet air path section 242 side and the heating fin 421 is on the hot air path section 241 side.
  • a blower mechanism 244 is disposed inside the wet air passage 242.
  • a hot water path portion 247 in the water tank is provided between the inner peripheral wall surface of the water tank 220 and the outer peripheral wall surface of the drum 232 of the rotary drum 230. Further, the inner peripheral wall surface of the water tank 220, the drum body 232 and the drum bottom 234 of the rotating drum 230 form a wet water path section 248 in the water tank.
  • An intake port and an exhaust port are provided at the bottom of the water tank 220.
  • the exhaust port The air inlet may be provided on the front surface, the side surface, or the upper portion. As shown in FIG. 5, the exhaust port is connected to the circulation path part 243 via a humid air path part 242 provided outside the back surface of the water tank 220.
  • a blower mechanism is disposed in the wet air passage 242.
  • the main body of the heating and dehumidifying device 400 including a Stirling engine is disposed in the circulation path portion 243 extending substantially linearly. More specifically, the heat generating head 411, the heat absorbing head 412, and the regenerator tube 148 of the main body of the heating and dehumidifying device 400 are arranged in a substantially linear circulation path portion 243.
  • the circulation path part 243 is connected to the intake port via a hot air path part 241 provided outside the back surface of the water tank 220.
  • the two-dot chain arrow in Fig. 2 indicates the direction of wind flow.
  • the hot water path section 247 in the water tank, the wet air path section 248, the wet air path section 242, the circulation path section 243, and the hot air path section 241 constitute a circulation path.
  • the hot water path section 247 in the water tank, the wet air path section 248 in the water tank, the wet air path section 242, the circulation path section 243, and the hot air path section 241 are examples of the circulation path.
  • the outer door 201 and the inner door 203 are opened, and after the laundry is loaded through the laundry loading port 202, the inner door 203 and the outer door 201 are closed. Put the detergent in the detergent case and operate the operation panel. As a result, the outer door 201 and the inner door 203 are locked, the water supply valve 208 is opened, and water is supplied to the water tank 220 through the water supply path 209 and the detergent case 207. When a water level sensor (not shown) detects that the water level in the water tank 220 has reached a predetermined value, the water supply valve 208 is closed, and the rotary drum 230 is rotated by the drum rotation drive motor 236. Rotated according to. In this way, the washing process is started.
  • the rotation speed, the rotation period, the inversion period are classified according to the washing process, the rinsing process, the dehydration process, the drying process, or according to the type and course of the laundry.
  • a plurality of rotation charts having different values are set in advance. The rotation chart is selected by the user or programmed to be selected automatically.
  • the drain valve 206 is opened and the washing liquid is discharged out of the main body.
  • the rotating drum 230 rotates at a high speed on the rotation chart for the intermediate dehydration process.
  • An intermediate dehydration step is performed.
  • the washing liquid contained in the laundry is discharged to the inner wall surface of the water tank 220 through the small holes 235 provided in the peripheral wall of the rotating drum 230 by the centrifugal force generated by the high-speed rotation of the rotating drum 230.
  • the washing liquid flows down along the inner wall surface of the water tank 220 and is discharged out of the main body through the drain valve 206.
  • the program proceeds to the rinsing step.
  • the water supply valve 208 is opened, and water is supplied to the water tank 220 through the detergent case.
  • a water level sensor (not shown) detects that the water level in the water tank 220 has reached a predetermined value
  • the water supply valve 208 is closed and the rotating drum 230 is rotated by the drum rotation drive motor 236 according to the rotation chart for the rinsing process. Is done.
  • the intermediate dehydration process and the rinsing process are repeated several times, and then the final rinsing process is performed.
  • the water supply valve 208 is opened and water containing a soft finish is supplied to the aquarium 220.
  • the drain valve 206 is opened and the rinsing liquid is discharged out of the main body 210.
  • a final dewatering process is performed in which the rotating drum 230 is rotated at high speed according to the rotary chart for the final dewatering process.
  • the rinsing liquid contained in the laundry by centrifugal force due to the high-speed rotation of the rotating drum 230 is applied to the inner wall surface of the water tank 220 through the small holes 235 provided in the peripheral wall of the rotating drum 230 in the same manner as the intermediate dewatering step. Discharged.
  • the process proceeds to the drying step.
  • the rotary drum 230 is rotated and the heating / dehumidifying device 400 and the air blowing mechanism unit 244 are driven.
  • the gas heated by the force P heat fin 421 causes the hot air path portion 241 to be indicated by an arrow of a two-dot chain line in FIG. Then, the air flows into the water tank 220 from the air inlet 245 through the hot air passage section 247 in the water tank, and blows into the rotating drum 230 (FIG. 2) disposed inside the water tank 220. After the gas contacts the laundry in the rotating drum 230 (Fig. 2), it passes through the small hole 235 and goes outside the rotating drum 230. It flows out and is exhausted to the wet air passage section 242 through the exhaust port 246 formed in the lower part of the water tank 220.
  • the gas exhausted to the wet air passage section 242 has a high humidity due to moisture contained in the laundry in the rotating drum 230.
  • the gas containing moisture flows as shown by a one-dot chain line arrow in FIG. 5, returns to the cooling fin 431, is cooled by the cooling fin 431, and is dehumidified.
  • Moisture removed from the gas is discharged from the main body 210 through the drain pipe (not shown) from below the cooling fin 431.
  • the dehumidified gas returns to the calo heat fin 421 through the circulation path 243.
  • the drying process is performed by repeating this cycle.
  • the washing / drying machine 200 includes the rotary drum 230 for storing the laundry, the hot air path portion 241 for allowing the gas to flow into the rotary drum 230, and the inside of the rotary drum 230.
  • the high-temperature side heat exchanging section 420 for heating the gas flowing through the hot air passage section 241, and the wet air passage section 242.
  • the low temperature side heat exchanging part 430 and the Stirling engine 410 including the heat generating head 411 and the heat absorbing head 412 are provided, and the high temperature side heat exchanging part 420 is configured to heat the gas with the heat generating head 411 of the Stirling engine 410.
  • the heat exchange is performed, and the low temperature side heat exchange unit 430 performs heat exchange so that the gas is cooled by the heat absorption head 412 of the Stirling engine 410.
  • the Stirling engine reciprocates the displacer in the cylinder, thereby compressing a working gas such as helium in the compression space to heat the heat generating head and expand the heat dissipating head in the expansion space. Cooling.
  • a working gas such as helium
  • the working gas remains in a gaseous state and moves only between the compression space and the expansion space.
  • the compression space and the expansion space are arranged at both ends of one cylinder. In this case, the working gas remains in a gaseous state and is between one end of the cylinder and the other end. Go back and forth.
  • the responsiveness of the Stirling engine is higher than that of the heat pump.
  • the time required from the start of driving the Stirling engine until the heat generating head and the heat absorbing head reach a predetermined temperature is the same as the time when the evaporation unit and the condensing unit are at a predetermined temperature after the heat pump is started. It is shorter than the time required to become.
  • the Stirling engine has a wider output control range than the heat pump.
  • Inverter compressors used in heat pumps can control output in the range of 30% to 100%, but in Stirling engines, theoretically, output can be controlled in the range of 0% to 100%. I can do it. For this reason, the excess heat of the circulating air is not increased excessively from the latter stage to the final stage of the drying process, so there is no need to exhaust the circulating air to the outside.
  • the vibration system of the heat pump used in the conventional dryer is a complicated vibration system including rotation vibration because the compressor is used for compression and expansion of the refrigerant.
  • a Stirling engine has a simple vibration system compared to a heat pump. That is, in a Stirling engine, only a linear motion of reciprocation of a piston and a displacer is performed.
  • the Stirling engine has a simple vibration system, and therefore can easily absorb vibration.
  • vibration can be easily suppressed by providing a vibration-absorbing member such as a panel having the co-frequency of the displacer vibration as the natural frequency.
  • vibration can be easily suppressed, so noise due to vibration is less likely to occur.
  • vibration and noise can be reduced, and usability, that is, use and immediate saving can be reduced without deteriorating the indoor environment in which the dryer is installed.
  • Energy-saving that is, energy consumption can be effectively reduced, and the washing / drying machine 200 that can easily save energy can be provided.
  • the washing / drying machine 200 includes a water tank 220 that is disposed so as to cover the rotary drum 230 and accommodates water, and the rotary drum 230 is rotatably supported in the water tank 220.
  • the laundry housed in the interior of the rotary drum 230 can be washed in the rotary drum 230! /.
  • the high-temperature part and the low-temperature part are not formed separately, for example, connected from the Stirling engine main body by piping, and the compressor, expansion valve, and high-temperature part (condensing part) required for the heat pump are not formed. ), And a simple structure that requires a pipe to circulate the refrigerant connecting the low temperature part (evaporation part). V is easy to generate complex vibration during washing, especially during dehydration. Even in this case, it is possible to provide a highly reliable washing / drying machine 200 that is less likely to break or break down the piping.
  • the washing / drying machine 200 is configured such that the heat generating head 411 and the heat absorbing head 412 are arranged in the circulation path. By doing so, the washing / drying machine 200 vibrates during washing without the need to provide a path for transferring the heat generated by the heat generating head 411 or the cold air generated by the heat absorbing head 412 to the circulation path, particularly during dehydration where the vibration is increased. Even so, it is possible to provide a highly reliable washing and drying machine 200 with few failures.
  • a regenerator tube 148 is provided between the heat generating head 411 and the heat absorbing head 412, and the heat generating head 411, the heat absorbing head 412 and the regenerator tube 148 are arranged coaxially.
  • the heat generating head 411, the heat absorbing head 412 and the regenerator tube 148 are arranged in the circulation path!
  • the circulation path can be shortened to suppress the pressure deficit, and the heat effect of the heat generating head 411 and the heat absorbing head 412 on the regenerator tube 148 can be reduced. It can be reduced by the surrounding air layer.
  • FIG. 6 is a side sectional view schematically showing a side section of a washing / drying machine as Embodiment 1-2 of the present invention
  • FIG. 7 is a section schematically showing a section of the washing / drying machine as viewed from the back.
  • FIG. 6 is a side sectional view schematically showing a side section of a washing / drying machine as Embodiment 1-2 of the present invention
  • FIG. 7 is a section schematically showing a section of the washing / drying machine as viewed from the back.
  • the washing and drying machine 300 includes a main body 310, a water tank 320 attached to the inside of the main body 310, and a container for storing laundry as an object to be dried.
  • the rotating drum 330 is rotatably supported inside the water tank 320.
  • An outer door 301 is attached to the upper surface of the main body 310.
  • the laundry is put into the rotary drum 330 from the laundry inlet 302 provided on the upper surface of the main body 310 through the water tank 320 and the inlet (not shown) provided in the rotary drum 330, or It can be taken out from the rotating drum 330, and the closing force 302 can be closed by closing the outer door 301.
  • the rotating drum 330 is supported inside the water tank 320 so as to rotate around a shaft portion 331 extending substantially horizontally.
  • the drum type washing and drying machine 300 has a double structure composed of the water tank 320 and the rotating drum 330.
  • the shaft portion 331 is disposed on each of the left and right sides of the rotating drum 330, and includes a shaft of a drum rotation driving motor 336 for rotating the rotating drum 330, respectively.
  • the drum rotation drive motor may be provided only on one side as long as a desired driving force can be obtained.
  • the inner peripheral wall surface of the water tank 320 and the outer peripheral wall surface of the rotating drum 330 form a hot air path part 341 and a humid air path part 342 as circulation paths.
  • An intake port 345 and an exhaust port 346 are provided at the bottom of the water tank 320. Note that the intake port 345 and the exhaust port 346 may be provided in the upper part or the side part.
  • the exhaust port 346 and the intake port 345 are connected to each other as a circulation path outside the water tank 320 via a circulation path part 343.
  • a heat dehumidifying device 400 including a blower mechanism section 344 and a stirling engine 410 is disposed.
  • a hot air path portion 341 and a wet air path portion 342 are arranged on the side surface side of the rotary drum 330.
  • the hot air passage portion 341 and the wet air passage portion 342 communicate with the inside of the water tank 320 through an intake port 345 and an exhaust port 346, respectively. Warm air
  • the passage portion 341 and the wet air passage portion 342 are connected via the circulation passage portion 343 below the water tank 320.
  • the main body of the heating and dehumidifying device 400 is arranged such that the cooling fin 431 is arranged on the wet air path part 342 side and the heating fin 421 is arranged on the hot air path part 341 side. Is provided. Below the water tank 320, a blower mechanism 344 is disposed inside the wet air passage section 342.
  • the gas heated by the force Q heat fin 421 flows through the hot air path portion 341 as indicated by the two-dot chain line arrow in the figure. Then, it flows into the water tank 320 from the air inlet 345 and blows into the rotating drum 330 disposed inside the water tank 320. The gas comes into contact with the laundry in the rotating drum 330, then flows out of the rotating drum 330 through a small hole, passes through the exhaust port 346 formed in the lower part of the water tank 320, and the wet air passage section 342. Exhausted. The gas exhausted to the wet air passage section 342 has a high humidity due to moisture contained in the laundry in the rotating drum 330.
  • the gas containing moisture flows as indicated by the one-dot chain line arrow in the figure, returns to the cooling fin 431, is cooled by the cooling fin 431, and is dehumidified.
  • the moisture removed from the gas is drained from the main body 310 through the drain pipe (not shown) of the downward force of the cooling fin 431.
  • the dehumidified gas returns to the calo heat fin 421 through the circulation path part 343.
  • the drying process is carried out by repeating this cycle.
  • the other configurations and effects of the washer / dryer 300 of the embodiment 12 are the same as those of the washer / dryer 200 of the embodiment 11.
  • FIG. 8 is a perspective view showing another embodiment of the main body of the heating and dehumidifying device provided in the washing and drying machine as Embodiment 13 of the present invention.
  • the main body of the heating and dehumidifying device 600 includes a Stirling engine 610, a high-temperature side heat exchange unit 620 as a first heat exchange unit, and a low-temperature side heat exchange unit as a second heat exchange unit. 6 and 30.
  • the Stirling engine 610 has a heat generating head 611 and a heat absorbing head 612. To do.
  • the configuration and operation of the Stirling engine 610 are the same as those of the Stirling engine 100 shown in FIG.
  • the high temperature side heat exchanging unit 620 includes a heating fin 621 connected to the heat generating head 611 as a fin.
  • the heating fin 621 has a disk shape, and the central portion is directly connected to the heating head 611.
  • the low temperature side heat exchanging unit 630 includes a cooling unit 632 for cooling the gas, and a heat conduction medium channel 6 for flowing a heat conduction medium for conducting the heat of the heat absorbing head 612 to the cooling unit 632. 33.
  • a heat conduction medium for conducting the heat of the heat absorbing head 612 to the cooling unit 632.
  • the cooling unit 632 may have a plate-like force S in this embodiment, or other forms.
  • the heat conduction medium flow path 633 may be in the form of a tubular force in this embodiment.
  • the heating and dehumidifying device 600 includes this main body, a warm air side path section and a humid air side path section shown in FIG.
  • the high temperature side heat exchanging unit 620 includes the heating head 61.
  • heating fins 621 arranged to be in contact with one.
  • the heat can be efficiently exchanged in the heating fin 621. Further, the heat dehumidifying apparatus 600 can be reduced in size.
  • the low temperature side heat exchanging unit 630 includes a cooling unit 632 for cooling the gas and a heat conduction medium for conducting the heat of the heat absorbing head 612 to the cooling unit 632. And a heat conduction medium channel 633 that circulates.
  • the heat generating head 611, the heating fin 621, and the cooling unit 63 are used.
  • the heat generating head 611 is disposed in the circulation path and constitutes the high temperature side heat exchanging unit 620.
  • a highly reliable V-type washing and drying machine 200 that can simplify the process and prevent damage to pipes due to vibration in the heat transfer path from the heating head 611 to the high-temperature side heat exchange section 620. Can be provided.
  • FIG. 9 is a perspective view showing another embodiment of the main body of the heating and dehumidifying device provided in the washing and drying machine as Embodiment 14 of the present invention.
  • the heating and dehumidifying device 700 includes a Stirling engine 710, a high-temperature side heat exchange unit 720 as a first heat exchange unit, and a low-temperature side heat exchange unit 730 as a second heat exchange unit. And.
  • the Stirling engine 710 has a heat generating head 711 and a heat absorbing head 712.
  • the configuration and operation of Stirling engine 710 are the same as Stirling engine 100 shown in FIG.
  • the high temperature side heat exchanging unit 720 includes a heating unit 722 for heating a gas, and a heat conduction medium channel 7 for circulating a heat conduction medium for conducting heat from the heating head 711 to the heating unit 722. And 23.
  • a heat conduction medium for example, water is used as the heat conduction medium.
  • the heating unit 722 has a plate shape in this embodiment, but may have other forms. Further, the heat transfer medium flow path 723 may have a force S that is tubular in this embodiment, or other forms.
  • the low temperature side heat exchanging section 730 includes cooling fins 731 connected to the heat absorbing head 712 as fins.
  • the cooling fin 731 has a disk shape, and the central portion is directly connected to the heat absorbing head 712.
  • the heating and dehumidifying device 700 includes this main body, and a warm air side path section and a humid air side path section shown in FIG.
  • the high temperature side heat exchanging unit 720 includes the heating unit 722 for heating the gas and the heat transfer for conducting the heat of the heating head 711 to the heating unit 722.
  • the heat absorbing head 712 is disposed in the circulation path and constitutes the low temperature side heat exchanging section 730.
  • the low temperature side heat exchanging unit 730 includes the cooling fins 731 arranged so as to be in contact with the heat absorbing head 712.
  • the heat can be efficiently exchanged in the cooling fins 731.
  • the heat dehumidifier 700 can be downsized.
  • FIG. 10 is a cross-sectional view showing the configuration of the water supply / drainage path of the drum type laundry dryer according to Embodiment 21 of the present invention
  • FIG. 11 shows the drying ventilation path of the drum type laundry dryer according to Embodiment 21 of the present invention. It is sectional drawing which shows the structure of this.
  • an entrance la for loading and unloading laundry is formed on the front surface of the substantially rectangular parallelepiped body 1, and a door 2 for opening and closing the entrance la is provided by a hinge mechanism. It is provided so that it can rotate.
  • a bottomed cylindrical water tank 3 having an opening 3 a facing the inlet la at one end is slanted so that the opening 3 a side is higher with respect to the rear surface.
  • the opening 3a of the water tank 3 and the inlet la of the main body 1 are watertightly connected by a packing 4.
  • the water tank 3 is supported by a support device such as a damper (not shown) so that it can be swung freely.
  • a rotary tank 5 for storing laundry is rotatably mounted.
  • the rotating tank 5 has a bottomed cylindrical shape having an opening 5a opposite to the opening 3a at one end in the rotation axis direction, and is inclined so that the opening 5a side is higher than the bottom surface (rear surface). is doing.
  • a fluid balancer 6 is provided on the periphery of the opening of the rotary tank 5, and a plurality of holes are provided in the peripheral wall of the rotary tank 5.
  • a rotating shaft 5b is fixed to the bottom surface (rear surface) of the rotating tub 5, and is rotatably supported by the water tub 3 via a bearing 5c so that the rotating shaft is inclined.
  • a drum pulley 5d is attached to the end of the rotating shaft 5b opposite to the side on which the rotating tub is attached.
  • a drain pipe 11 that constitutes a discharge path for the water supplied into the water tank 3 to the outside of the main body 1 is connected to the lower rear side of the water tank 3. Foreign matter such as lint is removed from the water discharged from the water tank 3 to the drain pipe 11 by the drain filter 12a disposed in the filter device 12.
  • the filter device 12 is provided with an air trap 12b, and one end of a pressure guiding tube 13 communicating with the inside of the air trap 12b is connected.
  • a water level sensor 14 is connected to the other end of the pressure guiding tube 13, and when it is easy to wash, the water level in the water tank 3 is detected by measuring the air pressure in the air trap 12b with the water level sensor 14.
  • a drain valve 16 is arranged on the downstream side of the drainage channel 15.
  • the drain valve 16 is opened and closed in accordance with instructions from a control device (not shown) that controls the operation of each part of the washing machine, and drainage from the inside of the main body 1 is performed. Be controlled.
  • the control unit controls the operation of each part of the washing machine, and drainage from the inside of the main body 1 is performed. Be controlled.
  • the drain valve 16 is further opened, the water in the drain channel 15 is drained out of the main body 1 through the drain hose 17.
  • the drainage channel 15 and the drainage hose 17 are part of the drainage channel.
  • an installation table 18 is provided at the lower part of the water tank, and a motor 19 capable of controlling the rotational speed for rotating the rotary tank 5 is arranged on the installation table 18. ing.
  • a motor shaft 19a is attached to the motor 19, and a motor pulley 20 is provided on the opposite side of the motor shaft 19a from which the motor 19 is attached.
  • the motor pulley 20 and the rotary tank pulley 5d are wound around the belt 21 so that the power of the motor pulley 20 can be transmitted to the rotary tank pulley 5d.
  • a clutch mechanism 22 is passed through the motor shaft 19a, and the motor shaft 19a can be switched between a state in which the rotational driving force of the motor shaft 19a is transmitted to a transmission mechanism portion 23 provided therebelow or a state in which it is not transmitted. It is configured.
  • the rotational driving force transmitted to the transmission mechanism unit 23 is supplied to the heat exchange unit 24 and used as power for the heat exchange unit 24. More detailed configurations and operations of the clutch mechanism 22, the transmission mechanism unit 23, and the heat exchange unit 24 will be described later.
  • a ventilation path (circulation duct) 25 which is an example of a circulation duct through which air for drying the washing material put in the rotary tank 5 circulates from the rear rear side to the lower part and the front front side of the water tank, is provided. Is provided.
  • a blower 26 and a heat exchange unit 24 that are air flow sources of the ventilation path 25 are arranged in the path. During the drying operation, the air in the water tank 3 is discharged to the ventilation path 25 through the exhaust port 25a.
  • the air flowing into the ventilation path 25 is sent to the heat exchanging unit 24 by a blower 26 which is an example of a fan, cooled and dehumidified by a heat absorbing head 38a, which will be described later, and then heated by a heat generating head 38b to be supplied to an air supply port. From 25b, it is sent to tank 3 again.
  • a part of the ventilation path 25 may be provided along the peripheral edge of the back surface of the water tank 3.
  • FIG. 12 is an enlarged view of the main part of FIG. 11,
  • FIG. 13 is an exploded perspective view of the clutch mechanism 22, and
  • FIG. 14 is a view of FIG.
  • the clutch mechanism 22 includes an interlocking shaft 27, a clutch piece 28, a coil spring 29, and a solenoid 30.
  • the interlocking shaft 27 is threaded so as to be rotatable with respect to the motor shaft 19a.
  • the interlocking shaft 27 is configured to have a smaller diameter closer to the motor 19 and a larger diameter farther away.
  • the small-diameter portion 27a which is the small-diameter portion of the interlocking shaft 27, is formed in a cross-shaped cross section so that a portion protrudes in the radial direction every 90 °.
  • the large-diameter portion 27b which is the large-diameter portion of the interlocking shaft 27, has a gear-like periphery, and is connected to a first transmission gear 31 described later so that power can be transmitted.
  • a connecting part 19b formed integrally with the motor shaft 19a is formed adjacent to the small diameter part 27a of the interlocking shaft 27 and closer to the motor 19 than the small diameter part 27a of the interlocking shaft 27.
  • the connecting portion 19b is formed in a cross-shaped cross section so that a portion protrudes in the radial direction every 90 °, and has the same shape as the small-diameter portion 27a of the interlocking shaft 27.
  • the clutch piece 28 is made of a magnetic material.
  • the outer peripheral side is formed in a circular shape, and the inner peripheral side is formed so that a part thereof is depressed in the radial direction every 90 °.
  • the outer periphery of the small-diameter portion 27a of the interlocking shaft 27 and the outer periphery of the connecting portion 19b are fitted to the inner peripheral side.
  • a coil panel 29 is compressed and disposed between the large-diameter portion 27b of the interlocking shaft 27 and the clutch piece 28, and urges the clutch piece 28 to be engaged only with the connecting portion 19b.
  • a solenoid 30 for generating a magnetic force and generating a repulsive force on the clutch piece 28 is disposed on the outer peripheral side of the clutch piece 28, as shown in FIG. 12, a solenoid 30 for generating a magnetic force and generating a repulsive force on the clutch piece 28 is disposed.
  • the solenoid 30 is driven to move the clutch piece 28 against the urging force of the coil panel 29, and as shown in FIG. 15 to be described later, the clutch piece 28 is fitted to the connecting portion 19b and the small diameter portion 27a.
  • the urging force is adjusted so that the rotational driving force of the motor 19 is transmitted to the transmission mechanism 23.
  • the transmission mechanism unit 23 includes a first transmission gear 31 and a second transmission gear 32.
  • the first transmission gear 31 is provided below the large-diameter portion 27b of the interlocking shaft 27, and the outer peripheral gear and the gear of the large-diameter portion 27b of the interlocking shaft 27 are fitted together. Therefore, the rotational driving force of the interlocking shaft 27 is transmitted to the second transmission gear 32 disposed below the interlocking shaft 27.
  • the second transmission gear 32 is formed so that one side in the rotation axis direction is a small diameter portion 32a that is a small diameter gear and the other side is a large diameter portion 32b that is a large diameter gear. Yes.
  • the small-diameter portion 32a is engaged with the first transmission gear 31 and the large-diameter portion 32b is engaged with a shaft gear 33 which will be described later, and the rotational driving force of the first transmission gear 31 is used as the shaft gear 33.
  • Communicate to The clutch mechanism 22 and the transmission mechanism unit 23 are examples of the transmission unit.
  • the heat exchanging unit 24 uses a parallel two-piston Stirling refrigerator. As shown in Fig.
  • shaft gear 33 crankshaft 34, heat absorption side crank 35a, heat generation side crank 35b, heat absorption side piston 36a, heat generation side piston 36b, low temperature chamber 37a, high temperature chamber 37b, heat absorption head 38a, heat generation It comprises a head 38b and a regenerator 39.
  • the shaft gear 33 is disposed below the large-diameter portion 32b of the second transmission gear 32, and is engaged with the gear of the large-diameter portion 32b of the second transmission gear 32.
  • the shaft gear 33 has a crankshaft 34 attached to the body extending toward the front side of the product.
  • the crankshaft 34 is rotatably supported at two places on the installation base 18, and a heat absorbing side crank connecting portion 34a and a heat generating side crank connecting portion 34b are provided between the portions that are supported by the shaft.
  • the heat absorption side crank connection portion 34a is bent so as to protrude upward
  • the heat generation side crank connection portion 34b is bent so as to protrude toward the front side, so that the shaft gear 33 is as shown in FIG.
  • the heat generating side crank connecting part 34b is rotated by 90 ° with respect to the heat absorbing side crank connecting part 34a.
  • the heat absorbing head 38a described later operates so as to cool the air in the ventilation path 25, and the heat generating head 38b operates to heat the air in the ventilation path 25.
  • the heat absorption side crank connection portion 34a and the heat generation side crank connection portion 34b are connected to one end of the heat absorption side crank 35a and the heat generation side crank 35b.
  • the heat absorption side crank 35a and the heat generation side crank 35b are connected to the other end of the heat absorption side piston 36a and the heat generation side piston 36b, respectively.
  • Below the heat absorption side piston 36a and the heat generation side piston 36b there are provided a low temperature chamber 37a and a high temperature chamber 37b in which gas such as hydrogen and helium is sealed with the installation base 18 as an outline, respectively.
  • the tip portions protruding into the ventilation path 25 below the low greenhouse 37a and the high temperature chamber 37b function as a heat absorption head 38a that cools the air in the ventilation path 25 and a heat generation head 38b that heats the air in the ventilation path 25.
  • the heat absorbing head 38a and the heat generating head 38b are not necessarily projected into the ventilation path 25, but are preferably projected into the ventilation path 25 in order to improve heat exchange efficiency. This cooling and heating function will be described later.
  • the low temperature room 37a and the high temperature room 37b have paths that allow the rooms to communicate with each other.
  • the regenerator 39 has an effect of storing heat from the high-temperature gas passing through the periphery or supplying the stored heat to the low-temperature gas.
  • the heat absorption head 38a and the heat generation head 38b are arranged so that their arrangement directions coincide with the projection axis of the rotation axis of the rotary tank 5 onto the horizontal plane, and vibration that vibrates integrally with the water tank 3 in the main body 1 during operation. By pushing down the body's center of gravity downward, it is easier to reduce vibration. As a result, even when the rotating tub 5 is arranged at a high position, the laundry can be easily taken out while contributing to noise reduction.
  • the mounting table 18 is an example of a housing.
  • the control unit supplies water to the water tank 3 through the water supply port 7, the water supply channel 8, the detergent case 9 and the water supply pipe 10.
  • the control unit stops water supply to the water tank 3 and drives the motor 19 to rotate the rotary tank 5 at a low speed. Washing process.
  • the washing process is completed, the water in the tank 3 is drained out of the machine through the drain pipe 11, filter device 12, drain channel 15, drain valve 16 and drain hose 17, and then the rotary tank 5 is put into high speed. Rotate to dehydrate laundry water contained in the laundry.
  • a rinsing process for rotating the rotating tank 5 at a low speed is started after water supply to the water tank 3 to a predetermined water level again.
  • the dewatering process is performed after the washing water in the water tank 3 is drained. After the rinsing process and the dehydrating process are repeated a plurality of times, the process proceeds to the drying process.
  • FIG. 15 is an enlarged view of the main part in a state where the clutch mechanism 22 is switched so as to transmit the rotational driving force to the heat exchanging unit 24, and
  • Fig. 16 is a state in which the crankshaft 34 is rotated 90 ° from the state of Fig. 15.
  • Fig. 17 is an enlarged view of the main part of the crankshaft 34 rotated 180 ° from the state of Fig. 15, and
  • Fig. 18 is a crankshaft 34 rotated 270 ° from the state of Fig. 15. It is a principal part enlarged view of a state.
  • the rotation driving force transmitted to the first transmission gear 31 is transmitted to the second rotation gear 32 fitted to the first transmission gear 31, and the second transmission gear 32 is rotated in the direction of the arrow c.
  • the second transmission gear 32 that rotates in the direction of the arrow c rotates the shaft gear 33 in the direction of the arrow d to drive the heat exchange unit 24.
  • the air discharged from the water tank 3 into the ventilation path 25 through the exhaust port 25a is sent to the heat absorbing head 38a through the blower 26.
  • the air sent to the heat absorbing head 38a is cooled and dehumidified by the heat absorbing head 38a, and then sent to the heat generating head 38b.
  • the air sent to the heat generating head 38b is heated by the heat generating head 38b and blown into the water tub 3 to evaporate the moisture in the laundry in the rotating tub and advance the drying. Thereafter, the end of drying is detected by detection of a humidity sensor or a temperature sensor (not shown) and the operation is terminated.
  • a drainage hole (not shown) is provided at the bottom of the ventilation path 25 below the heat absorption head 38a. When water (drain water) is condensed on the bottom heat absorption head 38a, the ventilation path 25 and the drainage hose 17 are discharged from the drainage hole. It is drained by a drain hose that connects the two.
  • Embodiment 2-1 of the present invention by providing the clutch mechanism 22 on the motor shaft 19a of the motor 19 that rotates the rotating tub 5, the rotational driving force of the motor 19 is exchanged with heat. Since the heat exchange unit 24 can be operated by transmitting it to the exchange unit 24, it is possible to provide a high energy-saving and / or washing machine that does not require a separate motor for operating the reverse Stirling cycle. In addition, since the ventilation path 25 is provided in the lower part of the main body 1, the arrangement height of the water tank 3 which does not require a large space on the main body 1 and the top of the water tank 3 can be increased. The washing machine can be easily taken out.
  • the center of gravity is arranged below the water tank 3 along its center line, it can also act as a weight for preventing vibrations, and can increase the noise.
  • a part of the ventilation path 25 is disposed below the heat exchange unit 24 and above the drainage channel 15 or the drainage hose 17, that is, between the two, drainage of drain water cooled and dehumidified by the heat exchange unit The route can be shortened and drained quickly.
  • FIG. 19 is a cross-sectional view of the drum type washing and drying machine according to Embodiment 2-2 of the present invention
  • FIG. 20 is an enlarged view of the main part of FIG. 19
  • FIG. 21 is a cross-sectional view of FIG.
  • FIG. 4 is an exploded perspective view of a configuration around a motor shaft 40b.
  • the same components as those in the embodiment 2-1 are denoted by the same reference numerals and description thereof is omitted.
  • a drive unit 40 and a ventilation path 41 which are examples of a motor, are provided on the back surface of the water tank 3.
  • the drive unit 40 is covered with a motor cover 40a, and a motor shaft 40b, one end of which is connected to the center of the back surface of the rotary tank 5, is freely rotatable by a bearing 40c. It is supported by.
  • a rotor 40d is attached to the other end of the motor shaft 40b, and has an inner rotor type direct drive system configuration in which a rotational driving force is applied by a stator 40e provided on the outer peripheral side thereof.
  • the motor shaft 40b is provided with a connecting portion 40f in which a part of the motor shaft 40b has a large diameter.
  • the connecting portion 40f is formed in a cross-shaped cross section so that a part protrudes in the radial direction every 90 °.
  • a ventilation path 41 is provided from the back surface to the peripheral surface of the water tank 3.
  • the ventilation path 41 provided on the rear side is arranged so as to surround the outer periphery of the drive unit 40 in the clockwise direction from above so as to substantially follow the peripheral edge of the rear surface of the aquarium 3. It is provided so that the three circumferential surfaces of the water tank extend forward.
  • the ventilation path 41 is formed between an exhaust port 41a that is a communication port with the inside of the water tank 3, a casing 4 lb that is an outline of the ventilation path 41, and a rear surface of the water tank 3 and the casing 41b.
  • the air supply port to the water tank 3 in the water tank peripheral surface path 41e is arranged so that the air that has passed through the ventilation path 41 is blown into the rotation tank 5 from the opening 5a of the rotation tank 5.
  • the blower 41d is an example of the fan
  • the water tank rear surface path 41c and the water tank peripheral surface path 41e are examples of the circulation duct.
  • an interlocking shaft 42 is rotatably disposed adjacent to the connecting portion 40f.
  • the interlocking shaft 42 is configured such that a portion adjacent to the connecting portion 40f has a small diameter and a portion apart from the connecting portion 40f has a large diameter.
  • the small-diameter portion 42a which is the small-diameter portion of the interlocking shaft 42, is formed in a cross-shaped cross section so that a portion protrudes in the radial direction every 90 °, and has the same shape as the connecting portion 40f. Is formed.
  • the large-diameter portion 42b which is the large-diameter portion of the interlocking shaft 42, is formed in a gear shape, and this gear is connected to a transmission gear 46, which will be described later, so as to transmit the rotational driving force. Yes.
  • a clutch piece 43 is provided on the outer periphery of the connecting portion 40f.
  • the clutch piece 43 is made of a magnetic material, and as shown in FIG. 22, the outer peripheral side is formed in a circular shape, and the inner peripheral side is partially recessed in the radial direction every 90 °.
  • the outer periphery of the small-diameter part 42a of the interlocking shaft 42 and the connecting part 40f is formed on the inner periphery.
  • a coil spring 44 is compressively disposed between the large-diameter portion 42b of the interlocking shaft 42 and the clutch piece 43, and urges the clutch piece 43 to be engaged only with the connecting portion 40f.
  • On the outer peripheral side of the clutch piece 43 as shown in FIG.
  • a solenoid 45 that generates a magnetic force to generate a repulsive force on the clutch piece 43 is disposed.
  • the solenoid 45 is driven to move the clutch piece 43 against the urging force of the coil spring 44, and the clutch piece 43 is engaged with both the connecting portion 40f and the interlocking shaft 42 to rotate the driving force of the motor shaft 40b.
  • the urging force is adjusted so as to be transmitted to a transmission gear 46 described later.
  • a transmission gear 46 is arranged below the large-diameter portion 42b of the interlocking shaft 42 as shown in FIG.
  • the transmission gear 46 is connected to the gear of the large-diameter portion 42b of the interlocking shaft 42 above the transmission gear 46, and is also connected to the gear portion of the crank gear 47 provided therebelow.
  • Crank gear 47 A small-diameter gear 47a (broken line in FIG. 22), a disk-shaped large-diameter 47b, and a cylindrical shape that protrudes vertically from the surface of the large-diameter 47b opposite to the surface on which the gear 47a is provided.
  • the crankpin is composed of 47c.
  • a heat exchanging section 48 is provided below the crank gear 47 as shown in FIG.
  • the interlocking shaft 42, the clutch piece 43, the coil spring 44, the solenoid 45, the transmission gear 46, and the crank gear 47 are examples of the transmission unit.
  • FIG. 23 is a CC cross-sectional view of FIG.
  • the heat exchanging section 48 uses a V-type two-piston Stirling refrigerator in the present embodiment.
  • the outer shell is configured integrally with the motor cover 40a, and the heat absorption side crank 49a, the heat generation side crank 49b, the heat absorption side cross head 50a, the heat generation side cross head 50b, the heat absorption side piston pin 51a, the heat generation side.
  • Side piston pin 51b, heat absorption side piston 52a, heat generation side piston 52b, low temperature chamber 53a, high temperature chamber 53b, heat absorption head 54a, heat generation head 54b, low temperature chamber air inlet / outlet 55a, high temperature chamber air inlet / outlet 55b, low temperature air passage 56a, A hot air passage 56b and a regenerator 57 are provided.
  • each of the heat absorption side crank 49a and the heat generation side crank 49b is rotatably connected to the crank pin 47c.
  • the other ends of the heat absorption side crank 49a and the heat generation side crank 49b are rotatably connected to the heat absorption side cross head 50a and the heat generation side cross head 50b, and the rotational driving force of the drive unit 40 transmitted from the crank pin 47c is generated. introduce.
  • the heat absorption side crosshead 50a and the heat generation side crosshead 50b are swingably fitted to the inner surface of the cylindrical motor cover 40a, and are transmitted from the heat absorption side crank 49a and the heat generation side crank 49b.
  • the generated driving force is transmitted in the axial direction of each piston pin to the heat absorption side piston pin 5 la and the heat generation side piston pin 5 lb connected to the heat absorption side cross head 50a and the heat generation side cross head 50b.
  • the heat absorption side piston pin 51a and the heat generation side piston pin 51b are arranged so that the axial directions thereof are substantially perpendicular when viewed from the back side of the water tank 3.
  • one end of the heat absorption side piston pin 51a and the heat generation side piston pin 51b is connected to the heat absorption side cross head 50a and the heat generation side cross head 50b, and the other end is connected to the heat absorption side piston 52a and the heat generation side piston 52b. It is connected.
  • the heat absorption side piston 52a and the heat generation side piston 52b are slidable on the inner peripheral surface of the motor cover 40a formed in a cylindrical shape, Each sliding surface between the heat side piston 52a and the heat generation side piston 52b and the inner peripheral surface of the motor cover 40a is fitted so as to be hermetically sealed.
  • the low greenhouse 53a and the high temperature chamber 53b have a low temperature room air inlet / outlet 55a and a high temperature room air inlet / outlet 55b that open toward the rear side of the main body, and the low temperature room air inlet / outlet 55a and the high temperature room air inlet / outlet respectively. It communicates with the low temperature air passage 56a and the high temperature air passage 56b through 55b.
  • a regenerator 57 is connected to the path between the low temperature air path 56a and the high temperature air path 56b.
  • Air in the low greenhouse 53a is sent to the high temperature chamber 53b through the low temperature chamber air inlet / outlet 55a, the low temperature air passage 56a, the regenerator 57, the high temperature air passage 56b, and the high greenhouse air inlet / outlet 55b by the operation of the heat absorption side piston 52a.
  • the air in the high temperature chamber 53b is moved into the low temperature chamber 53a through the operation of the heat generating piston 52b through the high temperature chamber air inlet / outlet 55b, the high temperature air passage 56b, the regenerator 57, the low temperature air passage 56a, and the low temperature chamber air inlet / outlet 55a. Sent to.
  • the regenerator 57 absorbs the heat of the air flowing from the high temperature air passage 56b and discharges the heat to the air flowing from the low temperature air passage 56a, so that the air in the low temperature chamber 53a is low temperature and the air in the high temperature chamber 53b. Acts to maintain a high temperature.
  • FIG. 23 to FIG. Fig. 24 is an enlarged view of the main part when the crank gear 47 is rotated 90 ° from the state of Fig. 23
  • Fig. 25 is an enlarged view of the main part when the crank gear 47 is rotated 180 ° from the state of Fig. 23.
  • FIG. 26 and FIG. 26 are enlarged views of essential parts in a state where the crank gear 47 is rotated 270 ° from the state of FIG.
  • the air discharged from the water tank 3 into the ventilation path 41 through the exhaust port 41a is sent to the heat absorbing head 54a through the blower 41d.
  • the air sent to the heat absorbing head 54a is cooled and dehumidified by the heat absorbing head 54a, and then sent to the heat generating head 54b.
  • the air sent to the heat generating head 54b is heated by the heat generating head 54b and blown into the water tank 3 through the air supply port described above to evaporate the moisture of the laundry in the rotating tank and proceed with drying. Let Thereafter, the end of drying is detected by detection of a humidity sensor or a temperature sensor (not shown), and the operation is terminated.
  • a drainage hole (not shown) is provided at the bottom of the water tank back path 41c below the endothermic head 54a.
  • water drain water
  • the water tank back path 41c and the drainage are drained from this drain hole. Drained by a drain hose connecting hose 17.
  • the direct drive type drive unit 40 provided on the back surface of the water tank 3 is provided.
  • the heat exchange section 48 can be arranged in the lower empty space via the clutch mechanism so that the reverse Stirling cycle is substantially reversed V-shaped or eight-shaped, so that it is possible to provide a space-saving washing machine Touch with S.
  • FIG. 27 is a cross-sectional view of the drum-type washer / dryer according to Embodiment 2-3 of the present invention
  • FIG. 28 is an enlarged view of the main part of FIG. 27
  • FIG. 29 is a cross-sectional view of FIG.
  • FIG. 5 is an exploded perspective view of a configuration around a motor shaft 58b.
  • the same components as those in Embodiment 2-2 are given the same reference numerals and description thereof is omitted.
  • a drive unit 58 which is an example of a motor, is provided on the back surface of the water tank 3. As shown in FIG. 28, the drive unit 58 is covered with a motor cover 58a, and a motor shaft 58b, one end of which is connected to the center of the back surface of the rotary tank 5, is rotated by the bearing 58c. It is supported freely.
  • a motor 58e is attached to the other end of the motor shaft 58b, and has an outer rotor type direct drive system configuration in which a rotational driving force is applied by a stator 58d provided on the outer peripheral side thereof.
  • the motor shaft 58b is provided with a connecting portion 58f in which a part of the motor shaft 58b has a large diameter.
  • the connecting portion 58f is formed in a cross-shaped cross section so that a part thereof protrudes in the radial direction every 90 °.
  • an interlocking shaft 59 is rotatably disposed adjacent to the connecting portion 58f.
  • the interlocking shaft 59 is configured such that a portion adjacent to the connecting portion 58f has a small diameter and a portion away from the connecting portion 58f has a large diameter.
  • the small-diameter portion 59a which is the small-diameter portion of the interlocking shaft 59, is formed in a cross-shaped cross section so that a portion protrudes in the radial direction every 90 ° as shown in FIG. 30, and is formed in the same shape as the connecting portion 58f. Has been.
  • the large-diameter portion 59b which is the large-diameter portion of the interlocking shaft 59, is formed in a gear shape, and this gear is connected to a connecting gear 63 described later to transmit the rotational driving force.
  • a clutch piece 60 is provided on the outer periphery of the connecting portion 58f.
  • the clutch piece 60 is made of a magnetic material, and as shown in FIG. 30, the outer peripheral side is formed in a circular shape, and the inner peripheral side is partially recessed in the radial direction every 90 °.
  • the outer periphery of the small-diameter portion 59a of the interlocking shaft 59 and the connecting portion 58f is configured to be formed on this inner peripheral side.
  • a coil spring 61 is compressed between the large diameter portion 59b of the interlocking shaft 59 and the clutch piece 60. The clutch piece 60 is urged so as to be engaged with only the connecting portion 58f.
  • a solenoid 62 for generating a magnetic force and generating a repulsive force on the clutch piece 60 is disposed on the outer peripheral side of the clutch piece 60.
  • the solenoid 62 moves the clutch piece 60 against the urging force of the coil spring 61 by the drive, and engages the clutch piece 60 with both the connecting portion 58f and the interlocking shaft 59, thereby rotating the driving force of the motor shaft 58b. Is transmitted to a connecting gear 63 described later.
  • a connecting gear 63 is arranged below the large-diameter portion 59b of the interlocking shaft 59, as shown in FIG.
  • the connecting gear 63 is connected to the gear of the large-diameter portion 59b of the interlocking shaft 59 above the connecting gear 63, and is also connected to the slide gear 64 arranged in the gear shaft direction.
  • the slide gear 64 is coupled to the first small transmission gear 65 or the transmission gear 67 below the slide gear 64, and the first small transmission gear 65 is coupled to the second small transmission gear 66 below the slide gear 64. Further, the second small transmission gear 66 and the transmission gear 67 are connected to the crank gear 68 below the second transmission gear 66 and the transmission gear 67.
  • the crank gear 68 is perpendicular to the surface opposite to the surface on which the small-diameter gear portion 68a (the broken line portion in FIG. 30), the disk-shaped large-diameter portion 68b, and the large-diameter gear portion are provided. It is composed of a cylindrical crankpin 68c that protrudes into the center.
  • a heat exchanging section 48 is provided below the crank gear 68 as shown in FIG. In the present embodiment, the heat exchanging section 48 uses a V-type 2-biston Stirling refrigerator as in the embodiment 2-2.
  • the interlocking shaft 59, clutch piece 60, coil spring 61, solenoid 62, coupling gear 63, slide gear 64, first small transmission gear 65, second small transmission gear 66, transmission gear 67, and crank gear 68 are described above. It is an example of a transmission part.
  • connection gear 63 and the slide gear 64 will be described with reference to FIG. 31
  • (a) is a top view of the slide gear 64
  • (b) is a view from the arrow F in (a)
  • (c) is a view from the arrow G in (a)
  • (d) is a top view of the connecting gear 63.
  • (E) is a view taken along the arrow H in (d)
  • (f) is a sectional view taken along the line I-I in (e)
  • (g) is a sectional view taken along the line JJ in (e)
  • (h) is a sectional view taken along the KK in (e).
  • Fig. (I) is an LL cross-sectional view of (e).
  • the slide gear 64 includes a gear portion 64b, a cylindrical portion 64a extending in the gear axis direction from one side surface of the gear portion 64b, and a cylindrical portion 64a. It consists of a cylindrical pin part 64c extending from the tip in a direction perpendicular to the cylindrical axis, and a cylindrical pin part 64d extending in the opposite direction to the pin part 64c.
  • the connecting gear 63 includes a gear portion 63b, a cylindrical portion 63a extending in the gear axis direction from one side surface of the gear portion 63b, and a cylindrical portion of the cylindrical portion 63a.
  • the cylindrical part 64a is provided in the axial direction A hole 63c to be inserted, and a pin portion 64d of the slide gear 64 which is formed in a spiral shape perpendicularly to the peripheral surface of the hole 63c, is inserted, and the pin portion 64d is substantially around the cylinder axis of the cylinder portion 64a.
  • a slide hole 63d formed so as to be slidable by 180 degrees, and a pin portion 64c of the slide gear 64 is inserted into a spiral shape perpendicularly to the peripheral surface of the hole portion 63c and the pin portion 64c is inserted into the cylindrical portion 64a. Consists of a slide hole 63e formed so that it can slide about 180 degrees around the cylinder axis
  • the connecting gear 63 receives a rotational driving force from the interlocking shaft 59, and rotates clockwise (clockwise) in FIG. 31 (e).
  • the pin part 64c slides the slide hole 63e
  • the pin part 64d slides the slide hole 63d about 180 degrees around the cylinder axis of the cylinder part 64a
  • the cylinder part 64a slides in the direction that comes out of the hole part 63c.
  • the gear portion 64b slides toward the front side in FIG.
  • FIG. Fig. 32 is a cross-sectional view taken along the line E-E in Fig. 28, Fig. 33 is an enlarged view of the main part when the crank gear 68 is rotated 90 ° from the state of Fig. 32, and Fig. 34 is a crank gear from the state of Fig. 32.
  • FIG. 35 is an enlarged view of the main part when the crank gear 68 is rotated by 270 ° from the state shown in FIG. 32.
  • the blower 41d is driven to blow air in the ventilation path 41.
  • the solenoid 62 is driven and the clutch piece 60 is engaged with the connecting portion 58f and the interlocking shaft 59, so that the rotational driving force of the driving portion 58 can be transmitted to the interlocking shaft 59.
  • the rotational drive force of the drive unit 58 is changed from the interlocking shaft 59 ⁇ the connecting gear 63 ⁇ the slide gear 64 ⁇ the transmission gear 67 (or the first small transmission gear 65 ⁇ the second small transmission gear 66) ⁇ the crank gear 68. Is communicated to.
  • the crank gear 68 rotates in the counterclockwise (counterclockwise) direction in FIG. 32 and the heat exchanging unit 48 is driven.
  • the gas whose temperature has increased is blown into the low temperature chamber 53a through the regenerator 57.
  • the heat quantity of this gas is stored in the regenerator 57, and the cooled gas is blown into the low temperature chamber 53a.
  • the heat absorbing head 54a cools and the heat generating head 54b generates heat, and the temperature decreases and rises according to the rotational speed of the crank gear 68, respectively.
  • the air discharged from the water tank 3 into the ventilation path 41 through the exhaust port 41a is sent to the heat absorbing head 54a through the blower 41d.
  • the air sent to the heat absorbing head 54a is cooled and dehumidified by the heat absorbing head 54a, and then sent to the heat generating head 54b.
  • the air sent to the heat generating head 54b is heated by the heat generating head 54b and blown into the water tub 3 to evaporate the moisture in the laundry in the rotating tub and to proceed with drying. Thereafter, the end of drying is detected by detection of a humidity sensor or a temperature sensor (not shown) and the operation is terminated.
  • a drain hole (not shown) is provided at the bottom of the water tank back path 41c below the heat absorbing head 54a.
  • water (drain water) condensed on the heat absorbing head 54a drops, the water tank back path 41c and the drain hose are drained from this drain hole. Drained by a drain hose connecting 17.
  • Embodiment 2-3 of the present invention in addition to the operational effects of Embodiments 2-1 and 2-2 described above, even if the drive unit 58 is rotated forward and backward, The direction of rotation of the crank gear 68 that drives the exchanging section 48 can be made constant. Thus, for example, in the drying process, even if the rotating tub 5 is rotated forward and backward in order to release the entanglement of clothing etc., the heat exchanging part 48 can continue the reverse Stirling cycle. Drying time can be shortened.
  • an electric heater is used for heating the circulating air to dry the laundry
  • tap water is used for cooling and dehumidifying the circulating air.
  • the power used is only the driving power of the motor, and the power consumption can be further reduced.
  • the amount of tap water used can be reduced.
  • the laundry can be dried or the laundry can be 'dehydrated' and dried with the driving power of the motor that rotates the rotating tub. Compared to other dryers or laundry dryers, it is possible to achieve further reductions in water consumption and power consumption.
  • a reverse Stirling cycle is performed by an interlocking means that transmits the rotational power of the motor to the Stirling refrigerator, and the low temperature chamber of the Stirling refrigerator is connected.
  • drying of the laundry can be realized by heating the circulating air to dry the laundry and cooling and dehumidifying the hot and humid circulating air containing moisture evaporated from the laundry.
  • a dryer according to the present invention includes a water tank, and a rotary tank rotatably provided in the water tank.
  • a motor that rotates the rotating tank, a circulation duct that communicates with the inside of the water tank, a fan that circulates the gas in the water tank through the circulation duct, and the air in the circulation duct is cooled by an endothermic head.
  • a heat exchanging unit that exchanges heat so as to heat; and a transmission unit that transmits the rotational force of the motor as power for operating the heat exchanging unit.
  • the dryer according to the present invention is characterized in that the heat exchange section is provided in a water tank.
  • the heat exchange section is provided below the water tank. It is characterized by being.
  • the dryer according to the present invention is characterized in that the heat exchange section is provided on the back surface of the water tank.
  • the heat exchanging section is provided below the motor.
  • the dryer according to the present invention is characterized in that at least a part of the circulation duct is disposed below the water tank.
  • At least a part of the circulation duct is arranged along the peripheral edge of the back surface of the water tank.
  • the dryer according to the present invention is characterized in that a part of the circulation duct is arranged between the heat exchange part and a part of the drainage path for draining the liquid in the water tank.
  • the dryer according to the present invention is characterized in that the heat absorbing head and the heat generating head protrude into the circulation duct.
  • the heat exchange section is a Stirling refrigerator.
  • the Stirling refrigerator includes a semi-hermetic housing, a crankshaft disposed in the housing, and a heat absorption side crank connected to the crankshaft.
  • a heat generating side crank, a heat absorbing side piston connected to each crank, a heat generating side piston, a working gas is sealed inside, and a low temperature chamber and a high temperature chamber in which each piston reciprocates in conjunction with rotation of the crankshaft, The crankshaft is rotated by the transmission unit.
  • the heat absorbing head and the heat generating head are a low temperature chamber and a part of the high temperature chamber which appear and disappear in the circulation dirt.
  • the transmission unit includes an interlocking shaft that engages with the rotation shaft of the motor via a clutch, and a gear that is connected to the interlocking shaft and rotates the crankshaft. It is characterized by having.
  • the transmission section is configured so that the rotation of the motor is normal or Is characterized by rotating the crankshaft in one direction even if it rotates in the reverse direction.
  • the transmission unit transmits the rotational force of the motor to the crankshaft, and operates the Stirling refrigerator in a reverse Stirling cycle.
  • the dryer according to the present invention is characterized in that each piston reciprocates with a phase difference of 90 degrees.
  • the clutch is arranged between the first fitting portion provided on the rotating shaft of the motor and the second fitting portion provided on the interlocking shaft.
  • the urging means for urging the clutch toward the first fitting portion side is arranged between the clutch and the interlocking shaft.
  • the dryer according to the present invention is provided with an electromagnetic coil that generates a magnetic field around the clutch, and energizes the electromagnetic coil so that the clutch is engaged with the first fitting portion and the second fitting portion. It is characterized in that it is moved to a position that fits both parts.
  • the gear meshes with the first transmission gear meshed with the interlocking shaft, the first transmission gear and the crank gear provided on the crankshaft, and the motor It is characterized by comprising a second transmission gear that rotates in the direction opposite to the rotation axis.
  • the crankshaft is provided on one of the crankshaft and the crankshaft in which the connecting portions to which the respective cranks are connected are provided with a phase difference of 90 degrees.
  • the second transmission gear is composed of a small-diameter gear and a large-diameter gear, the first transmission gear and the small-diameter gear are combined, and the crank gear and the large-diameter gear are combined. It is characterized by being arranged!
  • crankshaft is provided with a pin connected to each crank on one side and a crank gear meshed with the gear on the other! /.
  • the first transmission gear includes an interlocking gear that is always connected to the interlocking shaft, and a slide gear that is provided with the rotation center and position of the interlocking gear overlapped with each other.
  • the slide gear is configured to be variable in distance to the interlocking gear according to the rotation direction of the interlocking gear, and the second transmission gear is always meshed with the crank gear, and the rotational position is When the interlocking gear rotates in one direction, the slide gear is connected to the transmission gear and the interlocking gear rotates in the other direction. In some cases, the slide gear is connected to the small transmission gear.
  • the low-temperature chamber and the high-temperature chamber are arranged in an eight-letter shape or an inverted V-shape when viewed from the center of the rotation shaft of the motor.
  • a laundry dryer according to the present invention is any one of the above-described dryers, wherein the object to be cleaned is accommodated in a rotating tub, and any one of washing, dehydration, and drying is performed. It is characterized by.
  • the rotation axis of the rotating tub is substantially perpendicular to the installation surface.
  • the rotation axis of the rotating tub is substantially horizontal or oblique to the installation surface.
  • the characteristics of the Stirling engine and the heat pump were checked by driving the Stirling engine and the heat pump under atmospheric pressure and opening the high temperature side and the low temperature side to the atmosphere.
  • the temperature on the high temperature side of the Stirling engine was measured with a heating head and the temperature on the low temperature side was measured with a heat absorption head.
  • the temperature on the high temperature side of the heat pump was measured using a condenser, and the temperature on the low temperature side was measured using an evaporator. The measured temperature was recorded every 10 seconds.
  • the room temperature was about 27 ° C.
  • the Stirling engine used as an example has an output of about 250 W and the refrigerant is helium.
  • the specification of the heat pump used as an example is an output of about 370 W, and the refrigerant is HCF'R134a.
  • FIG. 36 is a diagram showing a temporal change in temperature on the high temperature side measured immediately after the start of driving of the Stirling engine and the heat pump.
  • FIG. 37 is a diagram showing a temporal change in temperature on the high temperature side from the start of driving of the Stirling engine and the heat pump until reaching a predetermined temperature.
  • the prescribed temperature was 60 ° C.
  • the high temperature side of the Stirling engine reached 60 ° C in 50 seconds from the start of driving.
  • the high temperature side of the heat pump reached 60 ° C in 230 seconds from the start of driving.
  • the high temperature side of the Stirling engine reaches a predetermined temperature faster than the high temperature side of the heat pump, so by using the Stirling engine in the dryer, the high temperature gas is washed in the initial stage of the drying process.
  • the force S can be used to reduce the drying time.
  • Fig. 38 is a diagram showing a temporal change in temperature that changes in 10 seconds with respect to the temperature on the high temperature side measured immediately after the start of driving of the Stirling engine and the heat pump.
  • Figure 39 shows the temperature of the high and low temperature sides of the Stirling engine and the high and low temperature sides of the heat pump measured at 10-second intervals immediately after the start of driving the Stirling engine and heat pump. It is a figure which shows a change.
  • the responsiveness of the Stirling engine is higher than that of the heat pump.
  • a Stirling engine has a wider controllable temperature range than a heat pump.
  • the time required for the high temperature side to reach 60 ° C after starting the steering engine is four times the time required for the high temperature side to reach 60 ° C after starting the heat pump. It was less than a fraction. Therefore, by using a Stirling engine, a dryer having higher controllability than a heat pump can be obtained. In this way, a dryer equipped with a Stirling engine can shorten the time required to start up the dryer, and the time required to start up again after interrupting the operation once during the operation of the dryer is also reduced. can do

Abstract

A dryer producing less noise and having high efficiency. A washing/drying machine (200) has a rotating drum (230) for receiving a wash, a warm air route section (241) for causing gas to flow into the inside of the rotating drum (230), a moist air route section (242) for causing the gas to flow out of the inside of the rotating drum (230), a high-temperature-side heat exchange section (420) for heating the gas flowing in the warm air route section (241), a low-temperature-side heat exchange section (430) for cooling the gas flowing in the moist air route section (242), and a Stirling engine (410) including a heat production head (411) and a heat absorption head (412). The high-temperature-side heat exchange section (420) exchanges heat so as to heat the gas by the heat production head (411) of the Stirling engine (410), and the low-temperature-side heat exchange section (430) exchanges heat so as to cool the gas by the heat absorption head (412) of the Stirling engine (410).

Description

明 細 書  Specification
乾燥機  Dryer
技術分野  Technical field
[0001] この発明は、乾燥機に関する。 [0001] The present invention relates to a dryer.
背景技術  Background art
[0002] 近年、衣類などを洗濯から乾燥まで行う洗濯乾燥機の需要が伸びて!/、る。特に、少 量の洗濯物をすぐ乾燥させたかったり、屋外や室内で干す時間を短縮したり、 日中 に洗濯ができない場合には、夜間、衣類を洗濯し、脱水後、そのまま乾燥ができたり するので、使用者の生活スタイルに合わせた利便性が評価されて!/、る。  [0002] In recent years, there has been an increasing demand for washing and drying machines for washing clothes and the like from washing to drying! In particular, if you want to dry a small amount of laundry immediately, reduce the time to dry outdoors or indoors, or if you cannot wash during the day, you can wash your clothes at night and dry it after dehydration. Therefore, the convenience that matches the user's lifestyle is appreciated!
[0003] このような洗濯乾燥機において、従来用いられている洗濯物の乾燥方式としては、 一般に水分を含んだ洗濯物を収容した回転槽を回転しながら、電気ヒータやガス等 の加熱手段で加熱された温風を供給して乾燥を行っている。例えば、特開昭 63— 1 22500号公報(特許文献 1)に記載されている水冷除湿式乾燥機においては、乾燥 中および/または乾燥後の高温多湿の空気は機外にそのまま排出される力、、あるい は、機外の空気や水道水などの冷却除湿手段で、空冷されるか、水冷されて熱交換 除湿された後に、再び加熱手段に戻されるといった還流循環が行われる。  [0003] In such a washing and drying machine, conventionally used laundry drying methods generally use a heating means such as an electric heater or gas while rotating a rotating tub containing a laundry containing moisture. Drying is performed by supplying heated warm air. For example, in a water-cooled dehumidifying drier described in Japanese Patent Application Laid-Open No. 63-122500 (Patent Document 1), high-humidity air during and / or after drying can be exhausted as it is. Or, it is cooled and dehumidified by air or tap water outside the machine, and it is recirculated by air cooling or water-cooled and heat exchange dehumidified and then returned to the heating means.
[0004] 一般に、洗濯物の乾燥時間を短縮するには、例えば、ヒータなどの加熱手段の熱 容量を大きくすることが考えられる力 比例して消費電力量も増大する。  [0004] Generally, in order to shorten the drying time of laundry, for example, the amount of power consumption increases in proportion to the power that can be considered to increase the heat capacity of a heating means such as a heater.
[0005] また、冷却水による熱交換除湿をすると水を多量に使うことになり乾燥時間に比例 して水の消費量も増大する。  [0005] In addition, if heat exchange dehumidification with cooling water is used, a large amount of water is used, and water consumption increases in proportion to the drying time.
[0006] そこで、例えば特開昭 60— 220097号公報(特許文献 2)には、消費電力と水の使 用量を軽減するために、洗濯物の乾燥に用いる空気の循環経路に、ヒートポンプ装 置の凝縮器 (上述した加熱手段に対応)と蒸発器 (上述した冷却除湿手段に対応)を 設け、熱および冷熱を有効活用する乾燥方式も提案されている。このヒートポンプを 用いた乾燥方式によれば、ヒータや水を使わずに空気の加熱および冷却除湿を行な えるため、消費電力量の削減と節水が可能となる。  [0006] In view of this, for example, in Japanese Patent Laid-Open No. 60-220097 (Patent Document 2), in order to reduce the power consumption and the amount of water used, a heat pump device is provided in the circulation path of air used for drying laundry. A drying method has also been proposed in which a condenser (corresponding to the heating means described above) and an evaporator (corresponding to the cooling and dehumidifying means described above) are provided and heat and cold are effectively used. According to this drying method using a heat pump, air can be heated and cooled and dehumidified without using a heater or water, so that power consumption can be reduced and water can be saved.
[0007] 特開 2004— 215943号公報(特許文献 3)と特開 2005— 40316号公報(特許文 献 4)には、衣類を乾燥させるために用いられる空気循環路内の循環空気を排気す ることによって、循環空気の熱量が高くなることを防いで安全な状態に安定させる、ヒ ートポンプを用いた衣類乾燥機及び洗濯機能付き乾燥機が記載されて!/、る。 [0007] JP 2004-215943 (Patent Document 3) and JP 2005-40316 (Patent text) For item 4), a heat pump is used that stabilizes a safe state by preventing the amount of heat of the circulating air from increasing by exhausting the circulating air in the air circulation path used to dry clothes. A clothes dryer and a dryer with a washing function are listed!
[0008] 特開 2006— 212117号公報(特許文献 5)には、ヒートポンプを用いた衣類乾燥機 において、乾燥運転を中断した場合に、圧縮機の動作を継続させる衣類乾燥装置が 記載されている。また、特開 2006— 61353号公報(特許文献 6)には、乾燥運転が 中断された場合には、その後、所定の時間は圧縮機の運転を停止する、ヒートポンプ を用いた衣類乾燥装置が記載されている。このようにすることにより、短時間に乾燥 運転と乾燥運転の中断が繰り返されるような場合に圧縮機に力、かる負担を軽減し、ヒ ートポンプ装置による温風温度の復帰を早くしている。  [0008] Japanese Unexamined Patent Publication No. 2006-212117 (Patent Document 5) describes a clothes drying apparatus that continues the operation of a compressor when a drying operation is interrupted in a clothes dryer using a heat pump. . Also, JP 2006-61353 A (Patent Document 6) describes a clothes drying apparatus using a heat pump that stops the operation of the compressor for a predetermined time after the drying operation is interrupted. Has been. By doing so, the load on the compressor is reduced when the drying operation and the interruption of the drying operation are repeated in a short time, and the return of the hot air temperature by the heat pump device is accelerated.
[0009] 特開 2006— 272024号公報(特許文献 7)と特開 2005— 261703号公報(特許文 献 8)には、乾燥工程に入る前に、圧縮機の運転を予め開始しておいて乾燥工程に 力、かる時間を短縮する、ヒートポンプを用いた洗濯乾燥機が記載されて!/、る。  [0009] Japanese Patent Application Laid-Open No. 2006-272024 (Patent Document 7) and Japanese Patent Application Laid-Open No. 2005-261703 (Patent Document 8) disclose that a compressor is started in advance before entering a drying process. A washing and drying machine using a heat pump is described which reduces the time required for the drying process.
特許文献 1:特開昭 63— 122500号公報  Patent Document 1: Japanese Patent Laid-Open No. 63-122500
特許文献 2:特開昭 60— 220097号公報  Patent Document 2: Japanese Patent Laid-Open No. 60-220097
特許文献 3 :特開 2004— 215943号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-215943
特許文献 4 :特開 2005— 40316号公報  Patent Document 4: Japanese Unexamined Patent Application Publication No. 2005-40316
特許文献 5 :特開 2006— 212117号公報  Patent Document 5: Japanese Unexamined Patent Publication No. 2006-212117
特許文献 6 :特開 2006— 61353号公報  Patent Document 6: Japanese Unexamined Patent Publication No. 2006-61353
特許文献 7:特開 2006— 272024号公報  Patent Document 7: Japanese Unexamined Patent Publication No. 2006-272024
特許文献 8 :特開 2005— 261703号公報  Patent Document 8: Japanese Unexamined Patent Application Publication No. 2005-261703
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] しかしながら、ヒートポンプを用いた乾燥方式でも、冷媒を圧縮するためにコンプレ ッサなどの圧縮手段を新たに用いるため、動作時には音や振動が発生し、乾燥時に おける騒音が増大するといつた問題が生じる。また、コンプレッサに用いる冷媒の種 類によっては、廃棄後の処理にコストがかかるといった問題が生じる。加えて、地球温 暖化防止の観点から電気製品の電力消費量の削減が今後益々必要となっており、 乾燥機や洗濯乾燥機におレ、ても、乾燥機能の向上と消費電力の低減がより一層求 められる。 [0010] However, even in a drying method using a heat pump, since a compression means such as a compressor is newly used to compress the refrigerant, noise and vibration are generated during operation, and noise during drying increases. Problems arise. In addition, depending on the type of refrigerant used in the compressor, there is a problem that the cost after disposal is high. In addition, from the perspective of preventing global warming, it will be necessary to reduce the power consumption of electrical products in the future. Even in the case of dryers and laundry dryers, improvements in drying functions and reductions in power consumption are required.
[0011] また、乾燥機にヒートポンプを用いると、ヒートポンプの駆動によって循環空気の熱 量が上昇し、ヒートポンプの冷媒自体の温度が上昇して冷媒が高温化、高圧化する。 インバータ制御等により、ヒートポンプの出力を制限することは可能である力 出力を 大幅に下げることは極めて困難であり、循環空気の熱量が過大である場合でも、加え る熱量を小さくすること力難しい。また、高温化、高圧化した冷媒を圧縮して液化する ためには、ヒートポンプに力、かる負担が大きくなる。そこで、特開 2004— 215943号 公報(特許文献 3)と特開 2005— 40316号公報(特許文献 4)に記載の乾燥機は、 熱量が高くなつた循環空気を外部に排気している力 ヒートポンプによって発生した 不要な熱量や循環空気に含まれる蒸気が乾燥機の設置されている室内に排出され て、室内全体の熱量が上昇したり、排出された蒸気による結露が発生してしまうおそ れがある。  [0011] When a heat pump is used in the dryer, the heat amount of the circulating air is increased by driving the heat pump, the temperature of the heat pump refrigerant itself is increased, and the temperature of the refrigerant is increased and the pressure is increased. It is extremely difficult to significantly reduce the power output that can limit the output of the heat pump by inverter control, etc. Even if the amount of heat of the circulating air is excessive, it is difficult to reduce the amount of heat applied. In addition, in order to compress and liquefy a high-temperature and high-pressure refrigerant, the load on the heat pump increases. Therefore, the dryers described in Japanese Patent Application Laid-Open No. 2004-215943 (Patent Document 3) and Japanese Patent Application Laid-Open No. 2005-40316 (Patent Document 4) are power pumps that exhaust the circulating air with a high amount of heat to the outside. Unnecessary amount of heat generated by the steam or steam contained in the circulating air is discharged into the room where the dryer is installed, which may increase the amount of heat in the entire room or cause condensation due to the discharged steam. is there.
[0012] ヒートポンプを用いる衣類乾燥機では、乾燥運転を中断したときに配管内の冷媒の 圧力状態が平衡状態に落ち着くまでと、乾燥運転を再開したときに冷媒が気化、液 化するまでにある程度の時間を要する。そのため、乾燥運転の中断後、短時間で乾 燥運転を再開させる場合には、特開 2006— 212117号公報(特許文献 5)に記載の 衣類乾燥機のように、乾燥運転を中断しているにもかかわらず、圧縮機の駆動を継 続する必要があり、無駄な電力を消費するうえ、圧縮機に力、かる負担が大きい。一方 、特開 2006— 61353号公報(特許文献 6)に記載の衣類乾燥機のように、乾燥運転 を中断した場合には、その後、圧縮機の運転を一定時間行なわないこととすると、乾 燥運転の中断後に短時間で乾燥運転の再開を行なうことができない。  [0012] In a clothes dryer using a heat pump, until the pressure state of the refrigerant in the pipe settles to an equilibrium state when the drying operation is interrupted, and until the refrigerant is vaporized and liquefied when the drying operation is resumed. Takes time. Therefore, when the drying operation is resumed in a short time after the interruption of the drying operation, the drying operation is interrupted as in the clothes dryer described in JP 2006-212117 A (Patent Document 5). Nevertheless, it is necessary to continue driving the compressor, which consumes wasted power and puts a heavy burden on the compressor. On the other hand, when the drying operation is interrupted as in the clothes dryer described in Japanese Patent Laid-Open No. 2006-61353 (Patent Document 6), if the compressor is not operated for a certain period of time, the drying operation is performed. The drying operation cannot be resumed in a short time after the operation is interrupted.
[0013] また、特開 2006— 272024号公報(特許文献 7)と特開 2005— 261703号公報( 特許文献 8)に記載の洗濯乾燥機のように、乾燥工程に入る前に予め圧縮機を運転 させておくことによって、不要な熱や騒音が発生し、電力の消費量も大きくなつてしま [0013] Further, like the washing and drying machine described in Japanese Patent Application Laid-Open No. 2006-272024 (Patent Document 7) and Japanese Patent Application Laid-Open No. 2005-261703 (Patent Document 8), a compressor is previously set before entering the drying process. Doing so will generate unnecessary heat and noise, and increase power consumption.
5。 Five.
[0014] そこで、この発明の目的は、騒音が少なぐ効率のよ!/、乾燥機を提供することである [0014] Therefore, an object of the present invention is to provide a dryer with low noise and high efficiency!
〇 課題を解決するための手段 Yes Means for solving the problem
[0015] この発明に従った乾燥機は、被乾燥対象物を収容するための容器と、容器の内部 に気体を流入させるための循環路と、容器の内部から流出させた気体を容器の内部 に流入させるための循環路と、循環路を流通する気体を加熱するための第一の熱交 換部と、循環路を流通する気体を冷却するための第二の熱交換部と、発熱ヘッドと吸 熱ヘッドとを含むスターリングエンジンとを備え、第一の熱交換部は、スターリングェ ンジンの発熱ヘッドで気体を加熱するように熱交換を行ない、第二の熱交換部は、ス ターリングエンジンの吸熱ヘッドで気体を冷却するように熱交換を行なう。 [0015] A dryer according to the present invention includes a container for storing an object to be dried, a circulation path for allowing a gas to flow into the container, and a gas discharged from the container inside the container. A circulation path for allowing the gas flowing in the circulation path, a first heat exchange section for heating the gas flowing through the circulation path, a second heat exchange section for cooling the gas flowing through the circulation path, and a heating head And a Stirling engine including a heat absorption head, the first heat exchange section performs heat exchange so as to heat the gas with the heat generation head of the Stirling engine, and the second heat exchange section includes the Stirling engine. Heat exchange is performed so that the gas is cooled by the endothermic head of the engine.
[0016] 従来、乾燥機に用いられているヒートポンプにおいては、コンプレッサで冷媒を圧縮 して気体から液体に変化させる凝縮部と、冷媒を膨張させて液体から気体に変化さ せる蒸発部とで熱交換を行なっている。すなわち、ヒートポンプにおいては、冷媒は、 凝縮部から管などを通って蒸発部へ移動して、液体から気体に変化し、蒸発部から 管などを通って凝縮部へ移動して、気体から液体へと変化することを繰り返す必要が ある。  Conventionally, in a heat pump used in a dryer, heat is generated by a condensing unit that compresses a refrigerant by a compressor to change from gas to liquid, and an evaporation unit that expands the refrigerant to change from liquid to gas. We are exchanging. That is, in the heat pump, the refrigerant moves from the condensing unit through the pipe or the like to the evaporation unit and changes from liquid to gas, and from the evaporation unit through the pipe or the like to the condensing unit, from gas to liquid. It is necessary to repeat changing.
[0017] 一方、スターリングエンジンは、シリンダ内でディスプレーサを往復運動させることに よって、ヘリウムなどの作動気体を圧縮空間内で圧縮して発熱ヘッドを加熱し、膨張 空間内で膨張させて吸熱ヘッドを冷却する。このように、スターリングエンジンにおい ては、作動気体は、気体状態のままで、圧縮空間と膨張空間の間のみを移動する。 圧縮空間と膨張空間は、例えば、一つのシリンダの両端に配置されるので、この場合 には、作動気体は気体状態のままでシリンダの一方の端部から他方の端部までの間 を往復する。  [0017] On the other hand, the Stirling engine compresses a working gas such as helium in the compression space by reciprocating the displacer in the cylinder to heat the heat generating head, and expands the heat generating head in the expansion space. Cooling. Thus, in the Stirling engine, the working gas remains in a gaseous state and moves only between the compression space and the expansion space. For example, the compression space and the expansion space are arranged at both ends of one cylinder. In this case, the working gas reciprocates from one end of the cylinder to the other end while maintaining the gaseous state. .
[0018] このように、スターリングエンジンにおいては、冷媒を気体と液体の間で状態変化さ せる必要がないために、スターリングエンジンの応答性はヒートポンプよりも高い。例 えば、スターリングエンジンの駆動を開始してから、発熱ヘッドと吸熱ヘッドとが所定 の温度になるまでに必要な時間は、ヒートポンプの駆動を開始してから蒸発部と凝縮 部とが所定の温度になるまでに必要な時間よりも短い。  [0018] Thus, in the Stirling engine, since it is not necessary to change the state of the refrigerant between the gas and the liquid, the responsiveness of the Stirling engine is higher than that of the heat pump. For example, the time required from the start of driving the Stirling engine until the heat generating head and the heat absorbing head reach a predetermined temperature is the same as the time when the evaporation unit and the condensing unit are at a predetermined temperature after the heat pump is started. It is shorter than the time required to become.
[0019] したがって、スターリングエンジンを用いることによって、乾燥運転開始前または乾 燥運転開始時に長時間の立ち上げ運転が不要であるので、ヒートポンプよりも制御 性が高ぐ省エネルギー性、すなわち、消費エネルギーを効果的に削減して省エネ ルギーを図りやすい乾燥機が得られる。このように、スターリングエンジンを備える乾 燥機は、乾燥機の起動に要する時間を短くすることができるとともに、乾燥機の運転 中に一旦、運転を中断した後、再び起動する場合に要する時間も短くすることができ [0019] Therefore, by using a Stirling engine, it is not necessary to start up for a long time before or at the start of the drying operation. Energy efficient, that is, a dryer that can effectively reduce energy consumption and save energy. In this way, a dryer equipped with a Stirling engine can shorten the time required to start the dryer, and the time required to start again after interrupting the operation once during the operation of the dryer. Can be shortened
[0020] また、スターリングエンジンは、ヒートポンプよりも出力の制御範囲が広い。ヒートポン プに用いるインバータコンプレッサでは、出力を 30%〜; 100%の範囲で制御すること が可能であるが、スターリングエンジンでは、理論的には、出力を 0%〜; 100%の範 囲で制御すること力できる。そのため、乾燥工程の後期から終期にかけて、循環空気 の余剰な熱量を過大に増やすことがないので、循環空気を外部に排気する必要がな い。 [0020] Further, the Stirling engine has a wider output control range than the heat pump. Inverter compressors used in heat pumps can control output in the range of 30% to 100%, but in Stirling engines, theoretically, output can be controlled in the range of 0% to 100%. I can do it. For this reason, the excess heat of the circulating air is not increased excessively from the latter stage to the final stage of the drying process, so there is no need to exhaust the circulating air to the outside.
[0021] また、従来の乾燥機に用いられているヒートポンプの振動系は、冷媒の圧縮と膨張 にコンプレッサを使用するため、回転の振動を含む複雑な振動系である。一方、スタ 一リングエンジンは、ヒートポンプに比べて振動系が単純である。すなわち、スターリ ングエンジンにおいては、ピストンとディスプレーサの往復という直線的な運動しか行 なわれない。  [0021] Further, the vibration system of the heat pump used in the conventional dryer is a complicated vibration system including rotation vibration because a compressor is used for compression and expansion of the refrigerant. On the other hand, a Stirling engine has a simple vibration system compared to a heat pump. That is, in a Stirling engine, only a linear motion of reciprocation of a piston and a displacer is performed.
[0022] このように、スターリングエンジンは、振動系が単純であるので、振動を吸収すること が容易である。例えば、ディスプレーサの振動の振動数の共振動数を固有振動数と して持つパネなどの吸振部材を備えることによって、簡単に振動を抑えることができる 。スターリングエンジンにおいては振動を簡単に抑えることができるので、振動による 騒音が発生しにくい。  [0022] As described above, the Stirling engine has a simple vibration system, and therefore can easily absorb vibration. For example, vibration can be easily suppressed by providing a vibration absorbing member such as a panel having the co-frequency of the displacer vibration as the natural frequency. In a Stirling engine, vibration can be easily suppressed, so noise due to vibration is less likely to occur.
[0023] このようにすることにより、振動、騒音を少なくすることができ、また、乾燥機が設置さ れている室内環境を悪化させることのない、使用性、すなわち、使用しやすぐ省ェ ネルギー性、すなわち、消費エネルギーを効果的に削減することができ、省エネルギ 一を図りやすい乾燥機を提供することができる。  [0023] By doing so, vibration and noise can be reduced, and usability that does not deteriorate the indoor environment in which the dryer is installed, that is, use and saving immediately. Energy, that is, energy consumption can be effectively reduced, and a dryer that can easily save energy can be provided.
[0024] この発明に従った乾燥機は、容器を覆うように配置されて、水を収容するための水 槽を備え、容器は、水槽内において回転可能に支持され、容器の内部に収容される 被乾燥対象物が容器内にお!/、て洗濯されることが可能であるように構成されてレ、るこ とが好ましい。 [0024] The dryer according to the present invention is provided so as to cover the container, and includes a water tank for containing water. The container is rotatably supported in the water tank and is accommodated inside the container. It is structured so that the object to be dried can be washed in the container! Are preferred.
[0025] このようにすることにより、洗濯終了後、速やかに乾燥を行なうことができる。また、ス ターリングエンジンは、ヒートポンプに用いるコンプレッサや冷媒を循環させる配管が 必要なぐスターリングエンジン単体で冷熱を発生させることが可能な単純な構造で あるので、洗濯中、特に振動が大きくなる脱水中に乾燥機が振動しても故障しにくい 、信頼性の高い乾燥機を提供することができる。  [0025] By doing in this way, it is possible to quickly dry after washing. In addition, the Stirling engine is a simple structure that can generate cold heat with a Stirling engine alone that requires a compressor and refrigerant piping used for heat pumps. In addition, it is possible to provide a highly reliable dryer that is unlikely to fail even when the dryer vibrates.
[0026] この発明に従った乾燥機においては、発熱ヘッドは、循環路内に配置されて、第一 の熱交換部を構成することが好ましい。また、吸熱ヘッドは、循環路内に配置されて、 第二の熱交換部を構成することが好ましレ、。  In the dryer according to the present invention, it is preferable that the heat generating head is arranged in the circulation path to constitute the first heat exchange unit. In addition, it is preferable that the endothermic head is disposed in the circulation path and constitutes a second heat exchange section.
[0027] このようにすることにより、発熱ヘッドから第一の熱交換部への熱伝達経路、または 、吸熱ヘッドから第二の熱交換部への冷気伝達経路が不要となって加熱除湿装置 の部品点数の削減、加熱除湿装置の作製の容易化を図ることができるとともに、発熱 ヘッドから第一の熱交換部への熱伝達経路、または、吸熱ヘッドから第二の熱交換 部への冷気伝達経路において、振動による配管の破損等を防止することができる、 信頼性の高い乾燥機を提供することができる。  [0027] By doing so, a heat transfer path from the heat generating head to the first heat exchanging part or a cold air transfer path from the heat absorbing head to the second heat exchanging part becomes unnecessary, and It is possible to reduce the number of parts and make it easy to manufacture a heating and dehumidifying device, as well as a heat transfer path from the heat generating head to the first heat exchanging part, or a cool air transfer from the heat absorbing head to the second heat exchanging part. It is possible to provide a highly reliable dryer that can prevent damage to piping due to vibration in the route.
[0028] この発明に従った乾燥機においては、発熱ヘッドは、循環路内に配置されて、第一 の熱交換部を構成し、吸熱ヘッドは、循環路内に配置されて、第二の熱交換部を構 成することが好ましい。  [0028] In the dryer according to the present invention, the heat generating head is disposed in the circulation path to constitute the first heat exchanging portion, and the heat absorption head is disposed in the circulation path, It is preferable to configure the heat exchange section.
[0029] このようにすることにより、発熱ヘッドで発生した熱を第一の熱交換部へ伝達する経 路ゃ吸熱ヘッドで発生した冷気を第二の熱交換部へ伝達する経路を設ける必要が なぐ洗濯、特に振動が大きくなる脱水中に乾燥機が振動しても、発熱ヘッドで発生 した熱を第一の熱交換部へ伝達する経路および吸熱ヘッドで発生した冷気を第二の 熱交換部へ伝達する経路が破損することのない、信頼性の高レ、乾燥機を提供するこ と力 Sできる。  [0029] By doing so, it is necessary to provide a path for transmitting the heat generated by the heat generating head to the first heat exchanging section and a path for transmitting the cold air generated by the heat absorbing head to the second heat exchanging section. Even when the dryer vibrates during washing, especially when dehydration increases in vibration, a path for transferring the heat generated by the heat generating head to the first heat exchanging section and the cold air generated by the heat absorbing head are transferred to the second heat exchanging section. The ability to provide a highly reliable dryer with no damage to the transmission path.
[0030] この発明に従った乾燥機は、発熱ヘッドと吸熱ヘッドとの間に配置される接続管を 備え、接続管は、発熱ヘッドと吸熱ヘッドと同軸状に配置され、発熱ヘッドと吸熱へッ ドと接続管は、循環路内に配置されてレ、ることが好ましレ、。  [0030] The dryer according to the present invention includes a connecting pipe disposed between the heat generating head and the heat absorbing head, and the connecting pipe is disposed coaxially with the heat generating head and the heat absorbing head, and is connected to the heat generating head and the heat absorbing head. It is preferable that the head and connecting pipe are placed in the circulation path.
[0031] このようにすることにより、循環路を短くして圧力欠損を抑えることができるとともに、 発熱ヘッドと吸熱ヘッドとが相互に与える熱影響を、接続管の周囲の空気層によって 低減させること力 Sでさる。 [0031] By doing this, the circulation path can be shortened to suppress pressure deficits, The force S reduces the heat effect between the heat generating head and the heat absorbing head by the air layer around the connecting pipe.
発明の効果  The invention's effect
[0032] 以上のように、この発明によれば、振動、騒音が少なぐまた、乾燥機が設置されて いる室内環境を悪化させることのない、使用性が高い、すなわち、使用しやすぐ信 頼性が高い乾燥機を提供することができる。  [0032] As described above, according to the present invention, vibration and noise are small, and the indoor environment in which the dryer is installed does not deteriorate, and the usability is high. A highly reliable dryer can be provided.
図面の簡単な説明  Brief Description of Drawings
[0033] [図 1]この発明の実施形態 1—1として、洗濯乾燥機の全体の外観を概略的に示す斜 視図である。  FIG. 1 is a perspective view schematically showing an overall appearance of a washing / drying machine as Embodiment 1-1 of the present invention.
[図 2]図 1の洗濯乾燥機を II II線の方向から見た断面を概略的に示す側断面図で ある。  FIG. 2 is a side sectional view schematically showing a cross section of the washing / drying machine of FIG. 1 as viewed from the direction of line II-II.
[図 3]スターリングエンジンの全体の断面を示す断面図である。  FIG. 3 is a cross-sectional view showing an overall cross section of a Stirling engine.
[図 4]加熱除湿装置の本体の全体を示す斜視図である。  FIG. 4 is a perspective view showing the entire body of the heating and dehumidifying device.
[図 5]洗濯乾燥機を図 2の V— V線の方向から見たときの概略を示す断面図である。  FIG. 5 is a cross-sectional view showing an outline when the washing / drying machine is viewed from the direction of the line VV in FIG.
[図 6]この発明の実施形態 1—2として、洗濯乾燥機の側断面を概略的に示す側断面 図である。  FIG. 6 is a side sectional view schematically showing a side section of a washing / drying machine as Embodiment 1-2 of the present invention.
[図 7]洗濯乾燥機を背面から見た断面を概略的に示す断面図である。  FIG. 7 is a cross-sectional view schematically showing a cross section of the washing / drying machine as viewed from the back.
[図 8]この発明の実施形態 1—3として、洗濯乾燥機が備える加熱除湿装置の本体の 別の形態を示す斜視図である。  FIG. 8 is a perspective view showing another embodiment of the main body of the heating and dehumidifying device provided in the washing and drying machine as Embodiment 1-3 of the present invention.
[図 9]この発明の実施形態 1 4として、洗濯乾燥機が備える加熱除湿装置の本体の 別の形態を示す斜視図である。  FIG. 9 is a perspective view showing another embodiment of the main body of the heating and dehumidifying device provided in the washing and drying machine as Embodiment 14 of the present invention.
[図 10]本発明の実施形態 2 1に係るドラム式洗濯乾燥機の給排水系の構成を示す 断面図である。  FIG. 10 is a cross-sectional view showing the configuration of the water supply / drainage system of the drum type washer / dryer according to Embodiment 21 of the present invention.
[図 11]本発明の実施形態 2 1に係るドラム式洗濯乾燥機の乾燥処理系の構成を示 す断面図である。  FIG. 11 is a cross-sectional view showing a configuration of a drying processing system of a drum-type washing / drying machine according to Embodiment 21 of the present invention.
[図 12]図 11の要部拡大図である。  FIG. 12 is an enlarged view of the main part of FIG.
[図 13]クラッチ機構の連結解除状態の概要図である。  FIG. 13 is a schematic view of a clutch mechanism in a disengaged state.
[図 14]図 12の Aより見たクラッチ機構および動力伝達機構の連結状態の概要図であ [図 15]クランクシャフトの 0° 回転状態を示す要部拡大図である。 FIG. 14 is a schematic diagram of the coupling state of the clutch mechanism and the power transmission mechanism as seen from A in FIG. FIG. 15 is an enlarged view of a main part showing a 0 ° rotation state of the crankshaft.
[図 16]クランクシャフトの 90° 回転状態を示す要部拡大図である。 FIG. 16 is an enlarged view of a main part showing a 90 ° rotation state of the crankshaft.
園 17]クランクシャフトの 180° 回転状態を示す要部拡大図である。 17] This is an enlarged view of the main part showing a 180 ° rotation state of the crankshaft.
園 18]クランクシャフトの 270° 回転状態を示す要部拡大図である。 18] This is an enlarged view of the main part showing the 270 ° rotation state of the crankshaft.
園 19]本発明の実施形態 2— 2に係る洗濯乾燥機の縦断面図である。 19] A longitudinal sectional view of a washing and drying machine according to Embodiment 2-2 of the present invention.
園 20]図 19の要部拡大図である。 20] It is an enlarged view of the main part of FIG.
[図 21]図 20の B— B断面図である。 FIG. 21 is a sectional view taken along line BB in FIG.
園 22]クラッチ機構の連結解除状態の概要図である。 22] It is a schematic diagram of the clutch mechanism in a disengaged state.
[図 23]図 20の C C断面図である。 FIG. 23 is a CC cross-sectional view of FIG.
園 24]図 23の状態からクランクシャフトが 90° 回転した状態を示す要部拡大図であ 園 25]図 23の状態からクランクシャフトが 180° 回転した状態を示す要部拡大図で ある。 Fig. 24] is an enlarged view of the main part showing a state in which the crankshaft has rotated 90 ° from the state of Fig. 23. Fig. 25] is an enlarged view of the main part showing a state in which the crankshaft has been rotated 180 ° from the state of Fig. 23.
園 26]図 23の状態からクランクシャフトが 270° 回転した状態を示す要部拡大図で ある。 Fig. 26] is an enlarged view of the main part showing a state in which the crankshaft has been rotated 270 ° from the state of FIG.
園 27]本発明の実施形態 2— 3に係る洗濯乾燥機の縦断面図である。 27] It is a longitudinal sectional view of a washing and drying machine according to Embodiment 2-3 of the present invention.
園 28]図 27の要部拡大図である。 28] It is an enlarged view of the main part of FIG.
[図 29]図 28の D— D断面図である。  FIG. 29 is a sectional view taken along the line DD of FIG. 28.
園 30]クラッチ機構の連結解除状態の概要図である。 FIG. 30 is a schematic diagram of the clutch mechanism in a disengaged state.
園 31]連結歯車とスライド歯車の要部断面図であり、(a)はスライド歯車の上面図、(b )は(a)の F矢視図、(c)は(a)の G矢視図、(d)は伝達歯車の上面図、(e)は(d)の H 矢視図、(f)は(e)の I I断面図、(g)は(e)の J J断面図、 (h)は(e)の K K断面 図、(i)は(e)の L— L断面図である。 31] It is a cross-sectional view of the main parts of the connecting gear and slide gear, (a) is a top view of the slide gear, (b) is a view from arrow F in (a), (c) is a view from arrow G in (a) (D) is a top view of the transmission gear, (e) is a view taken in the direction of arrow H in (d), (f) is a sectional view taken along line II in (e), (g) is a sectional view taken along line JJ in (e), h) is a KK cross-sectional view of (e), and (i) is a LL cross-sectional view of (e).
[図 32]図 28の E— E断面図である。 FIG. 32 is a cross-sectional view taken along the line EE in FIG.
園 33]図 32の状態からクランクシャフトが 90° 回転した状態を示す要部拡大図であ 園 34]図 32の状態からクランクシャフトが 180° 回転した状態を示す要部拡大図で ある。 Fig. 33] Enlarged view of the main part showing the crankshaft rotated 90 ° from the state of Fig. 32. Ord 34] Enlarged view of the main portion showing the crankshaft rotated 180 ° from the state of Fig. 32. is there.
[図 35]図 32の状態からクランクシャフトが 270° 回転した状態を示す要部拡大図で ある。  FIG. 35 is an enlarged view of essential parts showing a state where the crankshaft has been rotated 270 ° from the state of FIG. 32.
[図 36]スターリングエンジンとヒートポンプの駆動開始直後から測定した、高温側の温 度の時間変化を示す図である。  FIG. 36 is a diagram showing a temporal change in temperature on the high temperature side measured immediately after the start of driving of the Stirling engine and the heat pump.
[図 37]スターリングエンジンとヒートポンプの駆動開始から所定の温度に到達するま での、高温側の温度の時間変化を示す図である。  FIG. 37 is a diagram showing a temporal change in temperature on the high temperature side from the start of driving of the Stirling engine and the heat pump until reaching a predetermined temperature.
[図 38]スターリングエンジンとヒートポンプの駆動開始直後から測定した高温側の温 度について、 10秒間に変化する温度の時間変化を示す図である。  FIG. 38 is a diagram showing the time change of the temperature that changes in 10 seconds with respect to the temperature on the high temperature side measured immediately after the start of driving of the Stirling engine and the heat pump.
[図 39]スターリングエンジンとヒートポンプの駆動開始直後から 2分経過するまでに 10 秒間隔で測定した、スターリングエンジンの高温側と低温側、ヒ一トポンプの高温側と 低温側の温度の時間変化を示す図である。  [Fig.39] Changes in the temperature of the high and low temperatures of the Stirling engine and the high and low temperatures of the heat pump measured at 10-second intervals immediately after the start of driving the Stirling engine and heat pump. FIG.
符号の説明  Explanation of symbols
[0034] 3 :水槽、 5 :ドラム、 24, 48 :熱交換部、 25, 41 :通風経路、 38a, 54a :吸熱ヘッド 、 38b, 54b :発熱ヘッド、 100 :スターリングエンジン、 148 :再生器チューブ、 200, 300 :洗濯乾燥機、 220 :水槽、 230 :回転ドラム、 241 :温風経路部、 242 :湿風経路 部、 243 :循環経路部、 247 :水槽内温風経路部、 248 :水槽内湿風経路部、 410, 6 10, 710 :スターリングエンジン、 411 , 611 , 711:発熱ヘッド、 412, 612, 712 :吸 熱ヘッド、 420, 620, 720 :高温側熱交換部、 430, 630, 730 :低温側熱交換部。 発明を実施するための最良の形態  [0034] 3: Water tank, 5: Drum, 24, 48: Heat exchange section, 25, 41: Ventilation path, 38a, 54a: Heat absorption head, 38b, 54b: Heat generation head, 100: Stirling engine, 148: Regenerator tube 200, 300: Washing and drying machine, 220: Water tank, 230: Rotating drum, 241: Hot air path section, 242: Wet air path section, 243: Circulation path section, 247: Hot air path section in the tank, 248: Water tank Internal wet air passage section, 410, 6 10, 710: Stirling engine, 411, 611, 711: Heat generation head, 412, 612, 712: Heat absorption head, 420, 620, 720: High temperature side heat exchange section, 430, 630 , 730: Low temperature side heat exchanger. BEST MODE FOR CARRYING OUT THE INVENTION
[0035] 以下、この発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0036] (実施形態 1 1) [0036] (Embodiment 1 1)
図 1は、この発明の実施形態 1—1として、洗濯乾燥機の全体の外観を概略的に示 す斜視図であり、図 2は、図 1の洗濯乾燥機を II II線の方向から見た断面を概略的 に示す側断面図である。  FIG. 1 is a perspective view schematically showing the overall appearance of a washing / drying machine as Embodiment 1-1 of the present invention, and FIG. 2 shows the washing / drying machine of FIG. 1 as viewed from the direction of line II-II. FIG. 6 is a side sectional view schematically showing a cross section.
[0037] 図 1と図 2に示すように、洗濯乾燥機 200は、本体 210と、本体 210の内部に取り付 けられた水槽 220と、被乾燥対象物として洗濯物を収容するための容器として、水槽[0037] As shown in FIGS. 1 and 2, the washing and drying machine 200 includes a main body 210, a water tank 220 attached to the inside of the main body 210, and a container for storing laundry as an object to be dried. As an aquarium
220の内部で回転可能に支持された回転ドラム 230とを備える。 [0038] 本体 210の前面には外扉 201が取り付けられている。外扉 201の内側には、内扉 2 03が取り付けられている。外扉 201を開き、内扉 203を開くことによって本体 210の 前面に設けられた洗濯物投入口 202を通じて洗濯物を回転ドラム 230に投入、また は回転ドラム 230から取り出すことができ、内扉 203を閉じ、外扉 201を閉じることによ つて洗濯物投入口 202を塞ぐことができる。なお、内扉 203は回転ドラム 230内が視 認可能なように中央部が透明ガラスで作られているとともに、凹んだ器形状、いわゆ る洗面器形状を有して!/、る。洗濯物投入口 202側の水槽 220の周壁にはゴム等の弹 性体からなるドアパッキン 204が嵌め込まれて固着されている。内扉 203を閉じたとき にドアパッキン 204が内扉 203の周縁に密着して水槽 220が密閉されるようになって いる。 220, and a rotating drum 230 rotatably supported within 220. An outer door 201 is attached to the front surface of the main body 210. An inner door 203 is attached inside the outer door 201. By opening the outer door 201 and opening the inner door 203, the laundry can be put into or taken out of the rotary drum 230 through the laundry inlet 202 provided on the front surface of the main body 210. By closing the outer door 201 and closing the outer door 201, the laundry input port 202 can be closed. The inner door 203 has a central portion made of transparent glass so that the inside of the rotary drum 230 can be seen, and has a recessed bowl shape or a so-called basin shape. A door packing 204 made of an elastic material such as rubber is fitted and fixed to the peripheral wall of the water tank 220 on the laundry input port 202 side. When the inner door 203 is closed, the door packing 204 is brought into close contact with the peripheral edge of the inner door 203 so that the water tank 220 is sealed.
[0039] 回転ドラム 230は、水槽 220の内部で軸部 231を中心に回転するように支持されて いる。このようにしてドラム式洗濯乾燥機 200は、水槽 220と回転ドラム 230とから構 成された二重構造を有する。回転ドラム 230は、回転軸線方向の中央に内周壁面を 形成するドラム胴 232と、一方端に開口部を形成するドラム蓋 233と、他方端に内底 壁面を形成するドラム底 234とから構成され、一般的にステンレス鋼板から作られて いる。ドラム底 234には、軸部 231等の構造部品を取り付けかつ所望の荷重を支持 するためにリブ等の凹凸面がプレス加工によって形成され、底壁面の強度の向上が 図られている。回転ドラム 230の周壁と底部には給水、排水および通気のための多 数の小孔 235が設けられている。ドラム蓋 233の外周縁部には回転時の振動防止の ために流体バランサ 205が固着されている。軸部 231は、回転ドラム 230を回転させ るためのドラム回転駆動モータ 236のシャフトを備えている。ドラム回転駆動モータ 2 36は、インバータ回路により回転が制御される。水槽 220は上部からコイルばね(図 示せず)で、下部から防振ダンパー(図示せず)で弾性的に支持されている。水槽 22 0の上方には水道水に接続される給水経路 209が配されており、洗剤ケース 207を 介して水槽 220に接続されている。給水経路 209の経路途中には給水弁 208が設 けられており、水道水から水槽 220への供給が給水弁 208の開閉によって制御され る。水槽 220の底部には排水弁 206が設けられ、排水弁 206の開閉によって洗濯液 等が水槽 220から本体 210の外に排水できるようになつている。 [0040] 図 3は、スターリングエンジンの全体の断面を示す断面図である。 The rotating drum 230 is supported so as to rotate around the shaft portion 231 inside the water tank 220. In this way, the drum type washing and drying machine 200 has a double structure composed of the water tank 220 and the rotating drum 230. The rotary drum 230 includes a drum body 232 that forms an inner peripheral wall surface at the center in the rotation axis direction, a drum lid 233 that forms an opening at one end, and a drum bottom 234 that forms an inner bottom wall surface at the other end. Generally, it is made from stainless steel plate. An uneven surface such as a rib is formed on the drum bottom 234 by pressing to attach a structural component such as the shaft 231 and support a desired load, thereby improving the strength of the bottom wall surface. A number of small holes 235 for water supply, drainage, and ventilation are provided in the peripheral wall and bottom of the rotary drum 230. A fluid balancer 205 is fixed to the outer peripheral edge of the drum lid 233 to prevent vibration during rotation. The shaft portion 231 includes a shaft of a drum rotation drive motor 236 for rotating the rotary drum 230. The rotation of the drum rotation drive motor 236 is controlled by an inverter circuit. The water tank 220 is elastically supported by a coil spring (not shown) from the upper part and by an anti-vibration damper (not shown) from the lower part. A water supply path 209 connected to tap water is disposed above the water tank 220, and is connected to the water tank 220 via the detergent case 207. A water supply valve 208 is provided in the middle of the water supply route 209, and the supply of tap water to the water tank 220 is controlled by opening and closing the water supply valve 208. A drain valve 206 is provided at the bottom of the water tank 220, and washing liquid and the like can be drained from the water tank 220 to the outside of the main body 210 by opening and closing the drain valve 206. FIG. 3 is a cross-sectional view showing an entire cross section of the Stirling engine.
[0041] 図 3に示すように、スターリングエンジン 100の組立の中心となるのはシリンダ 110、 111である。シリンダ 110、 111の軸線は同一線上に並ぶ。シリンダ 110にはピストン 112が揷入され、シリンダ 111にはディスプレーサ 113が揷入される。ピストン 112及 びディスプレーサ 113は、スターリングエンジン 100の運転中、ガスベアリング機構に よりシリンダ 110、 111の内面に接触することなく往復運動する。ピストン 112とデイス プレーサ 113は所定の位相差を備えて動く。 As shown in FIG. 3, the cylinders 110 and 111 are central to the assembly of the Stirling engine 100. The axes of the cylinders 110 and 111 are aligned on the same line. A piston 112 is inserted into the cylinder 110 and a displacer 113 is inserted into the cylinder 111. During operation of the Stirling engine 100, the piston 112 and the displacer 113 reciprocate without contacting the inner surfaces of the cylinders 110 and 111 by the gas bearing mechanism. The piston 112 and the displacer 113 move with a predetermined phase difference.
[0042] ピストン 112の一方の端にはカップ状のマグネットホルダ 114が設けられる。デイス プレーサ 113の一方の端からはディスプレーサロッド 115が突出する。ディスプレー サロッド 115はピストン 112及びマグネットホルダ 114を軸線方向に自由にスライドで さるように貫通する。 A cup-shaped magnet holder 114 is provided at one end of the piston 112. A displacer rod 115 projects from one end of the displacer 113. The displacer rod 115 passes through the piston 112 and the magnet holder 114 so as to slide freely in the axial direction.
[0043] シリンダ 110はピストン 112の動作領域にあたる部分の外側にリニアモータ 120を 保持する。リユアモータ 120は、 ィノレ 121を備えた外彻 Jヨーク 122と、シリンダ 110の 外周面に接するように設けられた内側ヨーク 123と、外側ヨーク 122と内側ヨーク 123 の間の環状空間に揷入されたリング状のマグネット 124と、外側ヨーク 122及び内側 ヨーク 123を所定の位置関係に保持する合成樹脂製エンドブラケット 125、 126を備  The cylinder 110 holds the linear motor 120 outside the portion corresponding to the operation region of the piston 112. The linear motor 120 is inserted into an outer space J yoke 122 having an inner 121, an inner yoke 123 provided in contact with the outer peripheral surface of the cylinder 110, and an annular space between the outer yoke 122 and the inner yoke 123. It has a ring-shaped magnet 124 and synthetic resin end brackets 125 and 126 that hold the outer yoke 122 and the inner yoke 123 in a predetermined positional relationship.
[0044] マグネットホルダ 114のハブの部分にはスプリング 130の中心部が固定される。ディ スプレーサロッド 115にはスプリング 131の中心部が固定される。スプリング 130、 13 1の外周部はエンドブラケット 126に固定される。スプリング 130、 131の外周部同士 の間にはスぺーサ 132が配置されており、これによりスプリング 130、 131は一定の距 離を保つ。スプリング 130、 131は円板形の素材にスパイラル状の切り込みを入れた ものであり、ディスプレーサ 113をピストン 112に対し所定の位相差(理想的には約 9 0° の位相差)をもたせて共振させる役割を果たす。 The central portion of the spring 130 is fixed to the hub portion of the magnet holder 114. The center portion of the spring 131 is fixed to the displacer rod 115. The outer periphery of the springs 130 and 131 is fixed to the end bracket 126. A spacer 132 is disposed between the outer peripheries of the springs 130 and 131, so that the springs 130 and 131 maintain a certain distance. The springs 130 and 131 are disc-shaped materials with spiral cuts, and the displacer 113 is resonated with a predetermined phase difference (ideally about 90 ° phase difference) with respect to the piston 112. To play a role.
[0045] シリンダ 111のうち、ディスプレーサ 113の動作領域にあたる部分の外側には発熱 ヘッド 140と吸熱ヘッド 141が配置される。発熱ヘッド 140はリング状、吸熱ヘッド 14 1はキャップ状であって、いずれも銅や銅合金など熱伝導のよい金属からなる。発熱 ヘッド 140と吸熱ヘッド 141は、各々リング状の内部熱交換器 142、 143を介在させ た形でシリンダ 111の外側に支持される。内部熱交換器 142、 143はそれぞれ通気 性を有し、内部を通り抜ける作動ガスの熱を発熱ヘッド 140と吸熱ヘッド 141に伝え [0045] A heat generating head 140 and a heat absorbing head 141 are arranged outside the portion of the cylinder 111 corresponding to the operating region of the displacer 113. The heat generating head 140 has a ring shape and the heat absorbing head 141 has a cap shape, both of which are made of a metal having good heat conductivity such as copper or a copper alloy. The exothermic head 140 and the endothermic head 141 have ring-shaped internal heat exchangers 142 and 143 interposed, respectively. It is supported on the outside of the cylinder 111 in a round shape. Each of the internal heat exchangers 142 and 143 has air permeability, and transfers the heat of the working gas passing through the interior to the heat generating head 140 and the heat absorbing head 141.
[0046] 発熱ヘッド 140、シリンダ 110、 111、ピストン 112、ディスプレーサ 113、及び内部 熱交換器 142で囲まれる空間は圧縮空間 145となる。吸熱ヘッド 141、シリンダ 111 、ディスプレーサ 113、及び内部熱交換器 143で囲まれる空間は膨張空間 146とな A space surrounded by the heat generating head 140, the cylinders 110 and 111, the piston 112, the displacer 113, and the internal heat exchanger 142 becomes a compression space 145. The space surrounded by the heat absorbing head 141, the cylinder 111, the displacer 113, and the internal heat exchanger 143 becomes an expansion space 146.
[0047] 内部熱交換器 142、 143の間には再生器 147が配置される。再生器 147は樹脂フ イルムを円筒形に巻回したものであり、フィルムの片面に微少な突起を多数点在させ てフィルム間に突起の高さ分の間隙を形成し、これを作動ガスの通り道としている。再 生器 147の外側を再生器チューブ 148力 S包み、発熱ヘッド 140と吸熱へッド 141の 間に気密通路を構成する。発熱ヘッド 140と再生器チューブ 148と吸熱ヘッド 141は 同軸状に配置される。なお、再生器チューブ 148は接続管の一例である。 A regenerator 147 is disposed between the internal heat exchangers 142 and 143. The regenerator 147 is a resin film wound in a cylindrical shape, and a number of minute protrusions are scattered on one side of the film to form a gap corresponding to the height of the protrusion between the films. It is supposed to be a path. The outside of the regenerator 147 is wrapped around the regenerator tube 148 force S, and an airtight passage is formed between the heat generating head 140 and the heat absorbing head 141. The heat generating head 140, the regenerator tube 148, and the heat absorbing head 141 are arranged coaxially. The regenerator tube 148 is an example of a connection tube.
[0048] リニアモータ 120、シリンダ 110、及びピストン 112を筒状の圧力容器 150が包む。  [0048] A cylindrical pressure vessel 150 wraps the linear motor 120, the cylinder 110, and the piston 112.
圧力容器 150の内部は背圧空間 151となる。圧力容器 150の周面には、リニアモー タ 120に電力を供給するための端子部 152と、内部に作動ガスを封入するためのパ イブ 153が配置される。  The inside of the pressure vessel 150 becomes a back pressure space 151. On the peripheral surface of the pressure vessel 150, a terminal portion 152 for supplying electric power to the linear motor 120 and a pipe 153 for enclosing a working gas inside are arranged.
[0049] 圧力容器 150の外面には動吸振器 160が取り付けられる。動吸振器 160は、圧力 容器 150の端面中央から突き出す軸 161と、軸 161に中心を固定された板状のスプ リング 162と、スプリング 162の周縁に配置されたマス(質量) 163とからなる。スプリン グ 162は薄板状のスプリングを複数枚重ねたものである。  A dynamic vibration absorber 160 is attached to the outer surface of the pressure vessel 150. The dynamic vibration absorber 160 includes a shaft 161 protruding from the center of the end surface of the pressure vessel 150, a plate-like spring 162 fixed at the center of the shaft 161, and a mass (mass) 163 disposed on the periphery of the spring 162. . The spring 162 is a stack of a plurality of thin plate springs.
[0050] スターリングエンジン 100は次のように動作する。リニアモータ 120のコイル 121に 交流電流を供給する外側ヨーク 122と内側ヨーク 123の間にマグネット 124を貫通す る磁界が発生し、マグネット 124は軸方向に往復運動する。ピストン系(ピストン 112、 マグネットホルダ 114、マグネット 124、及びスプリング 130)の総質量と、スプリング 1 30のパネ定数とにより定まる共振周波数に一致する周波数の電力を供給することに より、ピストン系は滑らかな正弦波状の往復運動を開始する。  [0050] The Stirling engine 100 operates as follows. A magnetic field penetrating the magnet 124 is generated between the outer yoke 122 and the inner yoke 123 that supply an alternating current to the coil 121 of the linear motor 120, and the magnet 124 reciprocates in the axial direction. By supplying power at a frequency that matches the resonance frequency determined by the total mass of the piston system (piston 112, magnet holder 114, magnet 124, and spring 130) and the panel constant of the spring 130, the piston system is smooth. Start a sinusoidal reciprocating motion.
[0051] ディスプレーサ系(ディスプレーサ 113、ディスプレーサロッド 115、及びスプリング 1 31)にあっては、その総質量と、スプリング 131のパネ定数とにより定まる共振周波数 とピストン 112の駆動周波数とがー致するように設定する。 [0051] Displacer system (displacer 113, displacer rod 115, and spring 1 In 31), the resonance frequency determined by the total mass and the panel constant of the spring 131 matches the driving frequency of the piston 112.
[0052] ピストン 112の往復運動により、圧縮空間 145では圧縮、膨張が繰り返される。この 圧力の変化に伴って、ディスプレーサ 113も往復運動を行なう。このとき、圧縮空間 1 45と膨張空間 146との間の流動抵抗等により、ディスプレーサ 113とピストン 112との 間には位相差が生じる。このようにしてフリーピストン構造のディスプレーサ 113はピ ストン 112と所定の位相差で同期して往復運動する。  [0052] By the reciprocating motion of the piston 112, compression and expansion are repeated in the compression space 145. As the pressure changes, the displacer 113 also reciprocates. At this time, a phase difference is generated between the displacer 113 and the piston 112 due to flow resistance between the compression space 145 and the expansion space 146. In this way, the displacer 113 having a free piston structure reciprocates in synchronization with the piston 112 with a predetermined phase difference.
[0053] 上記の動作により、圧縮空間 145と膨張空間 146との間にスターリングサイクルが 形成される。圧縮空間 145では等温圧縮変化に基づいて作動ガスの温度が上昇し、 膨張空間 146では等温膨張変化に基づいて作動ガスの温度が低下する。このため、 圧縮空間 145の温度は上昇し、膨張空間 146の温度は下降する。  [0053] By the above operation, a Stirling cycle is formed between the compression space 145 and the expansion space 146. In the compression space 145, the temperature of the working gas increases based on the isothermal compression change, and in the expansion space 146, the temperature of the working gas decreases based on the isothermal expansion change. For this reason, the temperature of the compression space 145 rises and the temperature of the expansion space 146 falls.
[0054] 運転中に圧縮空間 145と膨張空間 146の間を行き来する作動ガスは、内部熱交換 器 142、 143を通過する際に、その有する熱を発熱ヘッド 140と吸熱ヘッド 141に伝 える。圧縮空間 145から再生器 147へ流れ込む作動ガスは高温であるため発熱へッ ド 140はカロ熱される。膨張空間 146から再生器 147へ流れ込む作動ガスは低温であ るため吸熱ヘッド 141は冷却される。  [0054] The working gas that moves between the compression space 145 and the expansion space 146 during operation passes through the internal heat exchangers 142, 143, and transfers the heat it has to the heat generating head 140 and the heat absorbing head 141. Since the working gas flowing from the compression space 145 into the regenerator 147 is hot, the heat generating head 140 is heated by calorie. Since the working gas flowing from the expansion space 146 into the regenerator 147 has a low temperature, the heat absorbing head 141 is cooled.
[0055] 再生器 147は、圧縮空間 145と膨張空間 146の熱を相手側の空間には伝えず、作 動ガスだけを通す働きをする。圧縮空間 145から内部熱交換器 142を経て再生器 1 47に入った高温の作動ガスは、再生器 147を通過するときにその熱を再生器 147に 与え、温度が下がった状態で膨張空間 146に流入する。膨張空間 146から内部熱 交換器 143を経て再生器 147に入った低温の作動ガスは、再生器 147を通過すると きに再生器 147から熱を回収し、温度が上がった状態で圧縮空間 145に流入する。 すなわち再生器 147は蓄熱手段としての役割を果たす。  [0055] The regenerator 147 functions to pass only the working gas without transferring the heat of the compression space 145 and the expansion space 146 to the counterpart space. The hot working gas entering the regenerator 1 47 from the compression space 145 through the internal heat exchanger 142 gives the heat to the regenerator 147 when passing through the regenerator 147, and the expansion space 146 in a state where the temperature is lowered. Flow into. The low-temperature working gas that has entered the regenerator 147 from the expansion space 146 through the internal heat exchanger 143 recovers heat from the regenerator 147 when passing through the regenerator 147, and enters the compression space 145 in a state where the temperature has risen. Inflow. That is, the regenerator 147 serves as a heat storage means.
[0056] ピストン 112とディスプレーサ 113が往復運動すると、スターリングエンジン 100に振 動が生じ、動吸振器 160がこの振動を抑える。  [0056] When the piston 112 and the displacer 113 reciprocate, vibration is generated in the Stirling engine 100, and the dynamic vibration absorber 160 suppresses this vibration.
[0057] 図 4は、加熱除湿装置の本体の全体を示す斜視図である。  FIG. 4 is a perspective view showing the entire main body of the heating and dehumidifying device.
[0058] 図 4に示すように、加熱除湿装置 400の本体は、スターリングエンジン 410と、第一 の熱交換部として高温側熱交換部 420と、第二の熱交換部として低温側熱交換部 4 30とを備える。スターリングエンジン 410は、発熱ヘッド 411と吸熱ヘッド 412とを有 する。スターリングエンジン 410の構成と作用は、図 3に示すスターリングエンジン 10 0と同様である。高温側熱交換部 420は、フィンとして発熱ヘッド 411に接続された加 熱フィン 421を有し、低温側熱交換部 430は、フィンとして吸熱ヘッド 412に接続され た冷却フィン 431を有する。カロ熱フィン 421と冷却フィン 431は円盤状であり、中心部 分がそれぞれ発熱ヘッド 411と吸熱ヘッド 412に直接接続されている。冷却フィン 43 1と、カロ熱フィン 421と、スターリングエンジン 410は、ほぼ一直線上に並ぶように配置 され、一体化されて加熱除湿装置 400を構成している。加熱除湿装置 400は、この 本体と、図 5に示す温風側経路部と湿風側経路部とから構成されて!/、る。 [0058] As shown in FIG. 4, the main body of the heating and dehumidifying device 400 includes a Stirling engine 410, a high temperature side heat exchange unit 420 as a first heat exchange unit, and a low temperature side heat exchange unit as a second heat exchange unit. Four 30. The Stirling engine 410 has a heat generating head 411 and a heat absorbing head 412. The configuration and operation of the Stirling engine 410 are the same as those of the Stirling engine 100 shown in FIG. The high temperature side heat exchanging unit 420 has heating fins 421 connected to the heat generating head 411 as fins, and the low temperature side heat exchanging units 430 have cooling fins 431 connected to the heat absorbing head 412 as fins. The calo heat fins 421 and the cooling fins 431 are disk-shaped, and the central portions are directly connected to the heat generating head 411 and the heat absorbing head 412 respectively. The cooling fins 431, the calo heat fins 421, and the Stirling engine 410 are arranged so as to be aligned substantially in a straight line, and are integrated to constitute a heating and dehumidifying device 400. The heating and dehumidifying device 400 is composed of this main body, a warm air side path portion and a humid air side path portion shown in FIG.
[0059] このように、加熱除湿装置 400においては、高温側熱交換部 420は、発熱ヘッド 41 1に接触されるように配置される加熱フィン 421を含み、低温側熱交換部 430は、吸 熱ヘッド 412に接触されるように配置される冷却フィン 431を含む。  As described above, in the heating and dehumidifying apparatus 400, the high temperature side heat exchanging unit 420 includes the heating fins 421 arranged to be in contact with the heat generating head 411, and the low temperature side heat exchanging unit 430 is configured to absorb the heat. It includes cooling fins 431 arranged to contact the thermal head 412.
[0060] このようにすることにより、加熱フィン 421と冷却フィン 431において気体を効率よく 熱交換すること力 Sできる。また、加熱除湿装置 400を小型化することができる。  [0060] By doing so, it is possible to efficiently exchange heat between the gas in the heating fin 421 and the cooling fin 431. Further, the heat dehumidifying device 400 can be reduced in size.
[0061] 図 5は、洗濯乾燥機を図 2の V— V線の方向から見たときの概略を示す断面図であ  FIG. 5 is a cross-sectional view schematically showing the washing / drying machine as viewed from the direction of the V—V line in FIG.
[0062] 図 2と図 5に示すように、洗濯乾燥機 200の本体 210の内部においては、回転ドラ ム 230の背面側に、温風経路部 241と湿風経路部 242が配置されている。温風経路 部 241と湿風経路部 242は、それぞれ、吸気口 245と排気口 246で水槽 220の内部 と連通している。温風経路部 241と湿風経路部 242は、水槽 220の下方においてほ ぼ直線状に延びている循環経路部 243を介して接続されている。循環経路部 243に は、加熱除湿装置 400の本体が、冷却フィン 431が湿風経路部 242側に、加熱フィ ン 421が温風経路部 241側となるように、設けられている。水槽 220の下方において 、湿風経路部 242の内部には、送風機構部 244が配置されている。 As shown in FIGS. 2 and 5, a hot air path portion 241 and a humid air path portion 242 are arranged on the back side of the rotary drum 230 in the main body 210 of the washing and drying machine 200. . The hot air passage unit 241 and the wet air passage unit 242 communicate with the inside of the water tank 220 through an intake port 245 and an exhaust port 246, respectively. The hot air path section 241 and the wet air path section 242 are connected via a circulation path section 243 extending almost linearly below the water tank 220. The circulation path section 243 is provided with the main body of the heating and dehumidifying device 400 such that the cooling fin 431 is on the wet air path section 242 side and the heating fin 421 is on the hot air path section 241 side. Below the water tank 220, a blower mechanism 244 is disposed inside the wet air passage 242.
[0063] 図 2に示すように、水槽 220の内周壁面と回転ドラム 230のドラム月同 232の外周壁 面との間には、水槽内温風経路部 247が設けられている。また、水槽 220の内周壁 面と回転ドラム 230のドラム胴 232及びドラム底 234は、水槽内湿風経路部 248を形 成している。水槽 220の下部には吸気口と排気口が設けられている。なお、排気口と 吸気口は、前面部や側面、または上部に設けられてもよい。図 5に示すように、排気 口は水槽 220の背面外部に設けられる湿風経路部 242を介して循環経路部 243に 接続されている。湿風経路部 242内には、送風機構部が配置されている。ほぼ直線 状に延びている循環経路部 243内には、スターリングエンジンを備える加熱除湿装 置 400の本体が配置されている。より特定的には、加熱除湿装置 400の本体の、発 熱ヘッド 411と吸熱ヘッド 412と再生器チューブ 148がほぼ直線状の循環経路部 24 3内に配置されている。循環経路部 243は水槽 220の背面外部に設けられる温風経 路部 241を介して吸気口に接続されている。図 2中の二点鎖線の矢印は、風の流れ る方向を示す。なお、水槽内温風経路部 247、水槽内湿風経路部 248、湿風経路部 242、循環経路部 243、温風経路部 241は、循環路を構成する。水槽内温風経路部 247、水槽内湿風経路部 248、湿風経路部 242、循環経路部 243、温風経路部 24 1は、循環路の一例である。 As shown in FIG. 2, a hot water path portion 247 in the water tank is provided between the inner peripheral wall surface of the water tank 220 and the outer peripheral wall surface of the drum 232 of the rotary drum 230. Further, the inner peripheral wall surface of the water tank 220, the drum body 232 and the drum bottom 234 of the rotating drum 230 form a wet water path section 248 in the water tank. An intake port and an exhaust port are provided at the bottom of the water tank 220. In addition, the exhaust port The air inlet may be provided on the front surface, the side surface, or the upper portion. As shown in FIG. 5, the exhaust port is connected to the circulation path part 243 via a humid air path part 242 provided outside the back surface of the water tank 220. A blower mechanism is disposed in the wet air passage 242. The main body of the heating and dehumidifying device 400 including a Stirling engine is disposed in the circulation path portion 243 extending substantially linearly. More specifically, the heat generating head 411, the heat absorbing head 412, and the regenerator tube 148 of the main body of the heating and dehumidifying device 400 are arranged in a substantially linear circulation path portion 243. The circulation path part 243 is connected to the intake port via a hot air path part 241 provided outside the back surface of the water tank 220. The two-dot chain arrow in Fig. 2 indicates the direction of wind flow. The hot water path section 247 in the water tank, the wet air path section 248, the wet air path section 242, the circulation path section 243, and the hot air path section 241 constitute a circulation path. The hot water path section 247 in the water tank, the wet air path section 248 in the water tank, the wet air path section 242, the circulation path section 243, and the hot air path section 241 are examples of the circulation path.
[0064] 以上のように構成された洗濯乾燥機 200を用いて行なわれる洗い工程、すすぎェ 程、脱水工程および乾燥工程について、以下、工程順に説明する。  [0064] The washing step, the rinsing step, the dehydrating step and the drying step performed using the washing / drying machine 200 configured as described above will be described below in the order of steps.
[0065] まず、外扉 201および内扉 203を開き、洗濯物投入口 202から洗濯物を投入した 後、内扉 203および外扉 201を閉じる。洗剤ケースに洗剤を入れて操作パネルを操 作する。これにより、外扉 201および内扉 203がロックされるとともに、給水弁 208が 開かれ、水が給水経路 209および洗剤ケース 207を経て水槽 220に供給される。図 示しない水位センサによって水槽 220内の水位が所定値になったことが検知されると 、給水弁 208が閉じられて、回転ドラム 230がドラム回転駆動モータ 236にて洗いェ 程用の回転チャートに従って回転される。このようにして洗い工程が開始される。  [0065] First, the outer door 201 and the inner door 203 are opened, and after the laundry is loaded through the laundry loading port 202, the inner door 203 and the outer door 201 are closed. Put the detergent in the detergent case and operate the operation panel. As a result, the outer door 201 and the inner door 203 are locked, the water supply valve 208 is opened, and water is supplied to the water tank 220 through the water supply path 209 and the detergent case 207. When a water level sensor (not shown) detects that the water level in the water tank 220 has reached a predetermined value, the water supply valve 208 is closed, and the rotary drum 230 is rotated by the drum rotation drive motor 236. Rotated according to. In this way, the washing process is started.
[0066] なお、回転ドラム 230の回転チャートに関しては、洗い工程、すすぎ工程、脱水ェ 程、乾燥工程の工程別に、あるいは、洗濯物の種類やコースに応じて、回転速度、 回転周期、反転周期等が異なる複数の回転チャートが予め設定されている。回転チ ヤートは、使用者によって選択され、または自動的に選択されるようにプログラムされ ている。  [0066] Regarding the rotation chart of the rotating drum 230, the rotation speed, the rotation period, the inversion period are classified according to the washing process, the rinsing process, the dehydration process, the drying process, or according to the type and course of the laundry. A plurality of rotation charts having different values are set in advance. The rotation chart is selected by the user or programmed to be selected automatically.
[0067] 洗!/、工程が終了すると、排水弁 206が開放されて洗濯液が本体の外に排出される 。排水が終了すると、回転ドラム 230は中間脱水工程用の回転チャートで高速回転さ れる中間脱水工程が行なわれる。中間脱水工程では回転ドラム 230の高速回転によ る遠心力によって洗濯物に含まれた洗濯液は回転ドラム 230の周壁に設けられた小 孔 235を通じて水槽 220の内壁面へ吐出される。洗濯液は水槽 220の内壁面を伝つ て下方に流下し、排水弁 206を介して本体の外に排出される。 [0067] When the process is completed, the drain valve 206 is opened and the washing liquid is discharged out of the main body. When draining is completed, the rotating drum 230 rotates at a high speed on the rotation chart for the intermediate dehydration process. An intermediate dehydration step is performed. In the intermediate dehydration process, the washing liquid contained in the laundry is discharged to the inner wall surface of the water tank 220 through the small holes 235 provided in the peripheral wall of the rotating drum 230 by the centrifugal force generated by the high-speed rotation of the rotating drum 230. The washing liquid flows down along the inner wall surface of the water tank 220 and is discharged out of the main body through the drain valve 206.
[0068] 中間脱水工程が終了すると、プログラムはすすぎ工程に移行する。排水弁 206が 閉じられた後、給水弁 208が開放されて、水が洗剤ケースを経て水槽 220に供給さ れる。図示しない水位センサによって水槽 220内の水位が所定の値になったことが 検知されると、給水弁 208が閉じられて、回転ドラム 230がドラム回転駆動モータ 236 によってすすぎ工程用の回転チャートに従って回転される。中間脱水工程およびす すぎ工程は複数回繰り返された後、最終のすすぎ工程へと移行する。最終のすすぎ 工程では給水弁 208が開放されて、柔軟仕上剤を含んだ水が水槽 220に供給され [0068] When the intermediate dehydration step is completed, the program proceeds to the rinsing step. After the drain valve 206 is closed, the water supply valve 208 is opened, and water is supplied to the water tank 220 through the detergent case. When a water level sensor (not shown) detects that the water level in the water tank 220 has reached a predetermined value, the water supply valve 208 is closed and the rotating drum 230 is rotated by the drum rotation drive motor 236 according to the rotation chart for the rinsing process. Is done. The intermediate dehydration process and the rinsing process are repeated several times, and then the final rinsing process is performed. In the final rinsing process, the water supply valve 208 is opened and water containing a soft finish is supplied to the aquarium 220.
[0069] 最終のすすぎ工程が終了すると、排水弁 206が開放されてすすぎ液が本体 210の 外に排出される。排水が終了すると、回転ドラム 230が最終脱水工程用の回転チヤ ートに従って高速回転される、最終脱水工程が行なわれる。最終脱水工程では、中 間脱水工程と同様に回転ドラム 230の高速回転による遠心力によって洗濯物に含ま れたすすぎ液が回転ドラム 230の周壁に設けられた小孔 235を通じて水槽 220の内 壁面に吐出される。 [0069] When the final rinsing step is completed, the drain valve 206 is opened and the rinsing liquid is discharged out of the main body 210. When the drainage is completed, a final dewatering process is performed in which the rotating drum 230 is rotated at high speed according to the rotary chart for the final dewatering process. In the final dewatering step, the rinsing liquid contained in the laundry by centrifugal force due to the high-speed rotation of the rotating drum 230 is applied to the inner wall surface of the water tank 220 through the small holes 235 provided in the peripheral wall of the rotating drum 230 in the same manner as the intermediate dewatering step. Discharged.
[0070] 最終脱水工程が終了すると、乾燥工程に移行する。乾燥工程においては、回転ド ラム 230を回転させるとともに、加熱除湿装置 400と送風機構部 244とを駆動させる。  [0070] When the final dehydration step is completed, the process proceeds to the drying step. In the drying process, the rotary drum 230 is rotated and the heating / dehumidifying device 400 and the air blowing mechanism unit 244 are driven.
[0071] 加熱除湿装置 400のスターリングエンジン 410を駆動させると、カロ熱フィン 421にお V、て気体が加熱されるように熱交換され、冷却フィン 431にお!/、て気体が冷却される ように熱交換される。  [0071] When the Stirling engine 410 of the heating and dehumidifying device 400 is driven, heat is exchanged so that the gas is heated by the calorie heat fin 421 and the gas is cooled by the cooling fin 431! Heat exchange.
[0072] 加熱除湿装置 400と送風機構部 244とを駆動させることによって、力 P熱フィン 421 で加熱された気体は、温風経路部 241を図 5中の二点鎖線の矢印で示すように流れ て、吸気口 245から水槽内温風経路部 247を通じて水槽 220の内部に流入し、水槽 220の内部に配置されている回転ドラム 230 (図 2)内に吹き込む。気体は、回転ドラ ム 230 (図 2)内の洗濯物に接触した後、小孔 235を通って、回転ドラム 230の外部に 流出し、水槽 220の下部に形成されている排気口 246を通って湿風経路部 242に排 気される。湿風経路部 242に排気された気体は、回転ドラム 230内の洗濯物に含ま れていた水分によって、湿度が高くなつている。湿気を含んだ気体は、図 5中の一点 鎖線の矢印で示すように流れて、冷却フィン 431に戻り、冷却フィン 431で冷却され て、除湿される。気体から取り除かれた水分は、冷却フィン 431の下方から排水管( 図示しない)を通って本体 210から排出される。除湿された気体は、循環経路部 243 を通って、カロ熱フィン 421に戻る。このサイクルを繰り返すことによって乾燥工程が行 なわれる。 [0072] By driving the heating and dehumidifying device 400 and the air blowing mechanism 244, the gas heated by the force P heat fin 421 causes the hot air path portion 241 to be indicated by an arrow of a two-dot chain line in FIG. Then, the air flows into the water tank 220 from the air inlet 245 through the hot air passage section 247 in the water tank, and blows into the rotating drum 230 (FIG. 2) disposed inside the water tank 220. After the gas contacts the laundry in the rotating drum 230 (Fig. 2), it passes through the small hole 235 and goes outside the rotating drum 230. It flows out and is exhausted to the wet air passage section 242 through the exhaust port 246 formed in the lower part of the water tank 220. The gas exhausted to the wet air passage section 242 has a high humidity due to moisture contained in the laundry in the rotating drum 230. The gas containing moisture flows as shown by a one-dot chain line arrow in FIG. 5, returns to the cooling fin 431, is cooled by the cooling fin 431, and is dehumidified. Moisture removed from the gas is discharged from the main body 210 through the drain pipe (not shown) from below the cooling fin 431. The dehumidified gas returns to the calo heat fin 421 through the circulation path 243. The drying process is performed by repeating this cycle.
[0073] このように、洗濯乾燥機 200は、洗濯物を収容するための回転ドラム 230と、回転ド ラム 230の内部に気体を流入させるための温風経路部 241と、回転ドラム 230の内 部から気体を流出させるための湿風経路部 242と、温風経路部 241を流通する気体 を加熱するための高温側熱交換部 420と、湿風経路部 242を流通する気体を冷却 するための低温側熱交換部 430と、発熱ヘッド 411と吸熱ヘッド 412とを含むスターリ ングエンジン 410とを備え、高温側熱交換部 420は、スターリングエンジン 410の発 熱ヘッド 411で気体を加熱するように熱交換を行ない、低温側熱交換部 430は、スタ 一リングエンジン 410の吸熱ヘッド 412で気体を冷却するように熱交換を行なう。  As described above, the washing / drying machine 200 includes the rotary drum 230 for storing the laundry, the hot air path portion 241 for allowing the gas to flow into the rotary drum 230, and the inside of the rotary drum 230. In order to cool the gas flowing through the wet air passage section 242, the high-temperature side heat exchanging section 420 for heating the gas flowing through the hot air passage section 241, and the wet air passage section 242. The low temperature side heat exchanging part 430 and the Stirling engine 410 including the heat generating head 411 and the heat absorbing head 412 are provided, and the high temperature side heat exchanging part 420 is configured to heat the gas with the heat generating head 411 of the Stirling engine 410. The heat exchange is performed, and the low temperature side heat exchange unit 430 performs heat exchange so that the gas is cooled by the heat absorption head 412 of the Stirling engine 410.
[0074] 従来、乾燥機に用いられているヒートポンプにおいては、コンプレッサで冷媒を圧縮 して気体から液体に変化させる凝縮部と、冷媒を膨張させて液体から気体に変化さ せる蒸発部とで熱交換を行なっている。すなわち、ヒートポンプにおいては、冷媒は、 凝縮部から管などを通って蒸発部へ移動して、液体から気体に変化し、蒸発部から 管などを通って凝縮部へ移動して、気体から液体へと変化することを繰り返す必要が ある。  [0074] Conventionally, in a heat pump used in a dryer, heat is generated by a condensing unit that compresses a refrigerant by a compressor to change from gas to liquid, and an evaporation unit that expands the refrigerant to change from liquid to gas. We are exchanging. That is, in the heat pump, the refrigerant moves from the condensing unit through the pipe or the like to the evaporation unit and changes from liquid to gas, and from the evaporation unit through the pipe or the like to the condensing unit, from gas to liquid. It is necessary to repeat changing.
[0075] 一方、スターリングエンジンは、シリンダ内でディスプレーサを往復運動させることに よって、ヘリウムなどの作動気体を圧縮空間内で圧縮して発熱ヘッドを加熱し、膨張 空間内で膨張させて吸熱ヘッドを冷却する。このように、スターリングエンジンにおい ては、作動気体は、気体状態のままで、圧縮空間と膨張空間の間のみを移動する。 圧縮空間と膨張空間は、例えば、一つのシリンダの両端に配置されるので、この場合 には、作動気体は気体状態のままでシリンダの一方の端部から他方の端部までの間 を往復する。 [0075] On the other hand, the Stirling engine reciprocates the displacer in the cylinder, thereby compressing a working gas such as helium in the compression space to heat the heat generating head and expand the heat dissipating head in the expansion space. Cooling. Thus, in the Stirling engine, the working gas remains in a gaseous state and moves only between the compression space and the expansion space. For example, the compression space and the expansion space are arranged at both ends of one cylinder. In this case, the working gas remains in a gaseous state and is between one end of the cylinder and the other end. Go back and forth.
[0076] このように、スターリングエンジンにおいては、冷媒を気体と液体の間で状態変化さ せる必要がないために、スターリングエンジンの応答性はヒートポンプよりも高い。例 えば、スターリングエンジンの駆動を開始してから、発熱ヘッドと吸熱ヘッドとが所定 の温度になるまでに必要な時間は、ヒートポンプの駆動を開始してから蒸発部と凝縮 部とが所定の温度になるまでに必要な時間よりも短い。  Thus, in the Stirling engine, since it is not necessary to change the state of the refrigerant between the gas and the liquid, the responsiveness of the Stirling engine is higher than that of the heat pump. For example, the time required from the start of driving the Stirling engine until the heat generating head and the heat absorbing head reach a predetermined temperature is the same as the time when the evaporation unit and the condensing unit are at a predetermined temperature after the heat pump is started. It is shorter than the time required to become.
[0077] したがって、スターリングエンジンを用いることによって、乾燥運転開始前または乾 燥運転開始時に長時間の立ち上げ運転が不要であるので、ヒートポンプよりも制御 性が高ぐ省エネルギー性、すなわち、消費エネルギーを削減しやすぐ省エネルギ 一を図りやすい乾燥機が得られる。このように、スターリングエンジンを備える乾燥機 は、乾燥機の起動に要する時間を短くすることができるとともに、ヒートポンプのように 冷媒が気体と液体の混合から均一な気体となるまでの時間を待つ必要がないため、 乾燥機の運転中に一旦、運転を中断した後、再び起動する場合に要する時間も短く すること力 Sでさる。  [0077] Therefore, by using the Stirling engine, a start-up operation for a long time is unnecessary before starting the drying operation or at the time of starting the drying operation, so that energy saving that is higher controllability than the heat pump, that is, energy consumption is reduced. This makes it possible to obtain a dryer that can easily reduce energy consumption. In this way, a dryer equipped with a Stirling engine can shorten the time required to start up the dryer, and like a heat pump, it is necessary to wait for the refrigerant to become a uniform gas from the mixture of gas and liquid. Therefore, it is necessary to reduce the time required for starting up again after interrupting the operation once the dryer is running.
[0078] また、スターリングエンジンは、ヒートポンプよりも出力の制御範囲が広い。ヒートポン プに用いるインバータコンプレッサでは、出力を 30%〜; 100%の範囲で制御すること が可能であるが、スターリングエンジンでは、理論的には、出力を 0%〜; 100%の範 囲で制御すること力できる。そのため、乾燥工程の後期から終期にかけて、循環空気 の余剰な熱量を過大に増やすことがないので、循環空気を外部に排気する必要がな い。  Further, the Stirling engine has a wider output control range than the heat pump. Inverter compressors used in heat pumps can control output in the range of 30% to 100%, but in Stirling engines, theoretically, output can be controlled in the range of 0% to 100%. I can do it. For this reason, the excess heat of the circulating air is not increased excessively from the latter stage to the final stage of the drying process, so there is no need to exhaust the circulating air to the outside.
[0079] また、従来の乾燥機に用いられているヒートポンプの振動系は、冷媒の圧縮と膨張 にコンプレッサを使用するため、回転の振動を含む複雑な振動系である。一方、スタ 一リングエンジンは、ヒートポンプに比べて振動系が単純である。すなわち、スターリ ングエンジンにおいては、ピストンとディスプレーサの往復という直線的な運動しか行 なわれない。  [0079] Further, the vibration system of the heat pump used in the conventional dryer is a complicated vibration system including rotation vibration because the compressor is used for compression and expansion of the refrigerant. On the other hand, a Stirling engine has a simple vibration system compared to a heat pump. That is, in a Stirling engine, only a linear motion of reciprocation of a piston and a displacer is performed.
[0080] このように、スターリングエンジンは、振動系が単純であるので、振動を吸収すること が容易である。例えば、ディスプレーサの振動の振動数の共振動数を固有振動数と して持つパネなどの吸振部材を備えることによって、簡単に振動を抑えることができる 。スターリングエンジンにおいては振動を簡単に抑えることができるので、振動による 騒音が発生しにくい。 [0080] Thus, the Stirling engine has a simple vibration system, and therefore can easily absorb vibration. For example, vibration can be easily suppressed by providing a vibration-absorbing member such as a panel having the co-frequency of the displacer vibration as the natural frequency. . In a Stirling engine, vibration can be easily suppressed, so noise due to vibration is less likely to occur.
[0081] このようにすることにより、振動、騒音を少なくすることができ、また、乾燥機が設置さ れている室内環境を悪化させることのない、使用性、すなわち、使用しやすぐ省ェ ネルギー性、すなわち、消費エネルギーを効果的に削減することができ、省エネルギ 一を図りやすい洗濯乾燥機 200を提供することができる。  [0081] By doing so, vibration and noise can be reduced, and usability, that is, use and immediate saving can be reduced without deteriorating the indoor environment in which the dryer is installed. Energy-saving, that is, energy consumption can be effectively reduced, and the washing / drying machine 200 that can easily save energy can be provided.
[0082] 洗濯乾燥機 200は、回転ドラム 230を覆うように配置されて、水を収容するための水 槽 220を備え、回転ドラム 230は、水槽 220内において回転可能に支持され、回転ド ラム 230の内部に収容される洗濯物が回転ドラム 230内において洗濯されることが可 能であるように構成されて!/、る。  The washing / drying machine 200 includes a water tank 220 that is disposed so as to cover the rotary drum 230 and accommodates water, and the rotary drum 230 is rotatably supported in the water tank 220. The laundry housed in the interior of the rotary drum 230 can be washed in the rotary drum 230! /.
[0083] このようにすることにより、洗濯終了後、速やかに乾燥を行なうことができる。また、ス ターリングエンジン 410においては、高温部と低温部は、スターリングエンジン本体か ら配管で接続されるなどして別に形成されず、ヒートポンプに必要なコンプレッサと膨 張弁や高温部 (凝縮部)、低温部 (蒸発部)とを結ぶ冷媒を循環させる配管が必要な ぐ単純な構造であるので、洗濯中、特に脱水中に複雑で大きな振動の発生しやす V、洗濯乾燥機 200が振動しても配管の破断や故障をしにくい、信頼性の高!/、洗濯乾 燥機 200を提供することができる。  [0083] By doing in this way, it is possible to dry quickly after washing. In the Stirling engine 410, the high-temperature part and the low-temperature part are not formed separately, for example, connected from the Stirling engine main body by piping, and the compressor, expansion valve, and high-temperature part (condensing part) required for the heat pump are not formed. ), And a simple structure that requires a pipe to circulate the refrigerant connecting the low temperature part (evaporation part). V is easy to generate complex vibration during washing, especially during dehydration. Even in this case, it is possible to provide a highly reliable washing / drying machine 200 that is less likely to break or break down the piping.
[0084] 洗濯乾燥機 200は、発熱ヘッド 411と吸熱ヘッド 412とが循環路内に配されるように 構成されている。このようにすることにより、発熱ヘッド 411で発生した熱や吸熱ヘッド 412で発生した冷気を循環路へ伝達する経路を設ける必要がなぐ洗濯、特に振動 が大きくなる脱水中に洗濯乾燥機 200が振動しても、故障の少ない信頼性の高い洗 濯乾燥機 200を提供することができる。  The washing / drying machine 200 is configured such that the heat generating head 411 and the heat absorbing head 412 are arranged in the circulation path. By doing so, the washing / drying machine 200 vibrates during washing without the need to provide a path for transferring the heat generated by the heat generating head 411 or the cold air generated by the heat absorbing head 412 to the circulation path, particularly during dehydration where the vibration is increased. Even so, it is possible to provide a highly reliable washing and drying machine 200 with few failures.
[0085] 洗濯乾燥機 200においては、発熱ヘッド 411と吸熱ヘッド 412との間に再生器チュ ーブ 148が設けられ、発熱ヘッド 411と吸熱ヘッド 412と再生器チューブ 148は同軸 状に配されており、発熱ヘッド 411と吸熱ヘッド 412と再生器チューブ 148が循環路 内に配されるように構成されて!/、る。  [0085] In the washer / dryer 200, a regenerator tube 148 is provided between the heat generating head 411 and the heat absorbing head 412, and the heat generating head 411, the heat absorbing head 412 and the regenerator tube 148 are arranged coaxially. The heat generating head 411, the heat absorbing head 412 and the regenerator tube 148 are arranged in the circulation path!
[0086] このようにすることにより、循環路を短くして圧力欠損を抑えることができるとともに、 発熱ヘッド 411と吸熱ヘッド 412とが相互に与える熱影響を、再生器チューブ 148の 周囲の空気層によって低減させることができる。 [0086] By doing so, the circulation path can be shortened to suppress the pressure deficit, and the heat effect of the heat generating head 411 and the heat absorbing head 412 on the regenerator tube 148 can be reduced. It can be reduced by the surrounding air layer.
[0087] (実施形態 1 2) (Embodiment 1 2)
図 6は、この発明の実施形態 1—2として、洗濯乾燥機の側断面を概略的に示す側 断面図であり、図 7は、洗濯乾燥機を背面から見た断面を概略的に示す断面図であ  FIG. 6 is a side sectional view schematically showing a side section of a washing / drying machine as Embodiment 1-2 of the present invention, and FIG. 7 is a section schematically showing a section of the washing / drying machine as viewed from the back. In the figure
[0088] 図 6と図 7に示すように、洗濯乾燥機 300は、本体 310と、本体 310の内部に取り付 けられた水槽 320と、被乾燥対象物として洗濯物を収容するための容器として、水槽 320の内部で回転可能に支持された回転ドラム 330とを備える。 [0088] As shown in FIGS. 6 and 7, the washing and drying machine 300 includes a main body 310, a water tank 320 attached to the inside of the main body 310, and a container for storing laundry as an object to be dried. The rotating drum 330 is rotatably supported inside the water tank 320.
[0089] 本体 310の上面には外扉 301が取り付けられている。外扉 301を開くことによって 本体 310の上面に設けられた洗濯物投入口 302から水槽 320、回転ドラム 330に設 けられた投入口(図示せず)を通じて洗濯物を回転ドラム 330に投入、または回転ドラ ム 330から取り出すことができ、外扉 301を閉じることによって洗濯物投入口 302を塞 ぐこと力 Sできる。  An outer door 301 is attached to the upper surface of the main body 310. By opening the outer door 301, the laundry is put into the rotary drum 330 from the laundry inlet 302 provided on the upper surface of the main body 310 through the water tank 320 and the inlet (not shown) provided in the rotary drum 330, or It can be taken out from the rotating drum 330, and the closing force 302 can be closed by closing the outer door 301.
[0090] 回転ドラム 330は、水槽 320の内部で、ほぼ水平に伸びる軸部 331を中心に回転 するように支持されている。このようにしてドラム式洗濯乾燥機 300は、水槽 320と回 転ドラム 330とから構成された二重構造を有する。軸部 331は、回転ドラム 330の左 右両側に一つずつ配置され、回転ドラム 330を回転させるためのドラム回転駆動モ ータ 336のシャフトをそれぞれ備えている。なお、ドラム回転駆動モータは所望の駆 動力が得られれば、片側のみでもよい。  The rotating drum 330 is supported inside the water tank 320 so as to rotate around a shaft portion 331 extending substantially horizontally. In this way, the drum type washing and drying machine 300 has a double structure composed of the water tank 320 and the rotating drum 330. The shaft portion 331 is disposed on each of the left and right sides of the rotating drum 330, and includes a shaft of a drum rotation driving motor 336 for rotating the rotating drum 330, respectively. Note that the drum rotation drive motor may be provided only on one side as long as a desired driving force can be obtained.
[0091] 水槽 320の内周壁面と回転ドラム 330の外周壁面とは、循環路として温風経路部 3 41と湿風経路部 342とを形成して!/、る。水槽 320の下部には吸気口 345と排気口 3 46が設けられている。なお、吸気口 345、排気口 346は上部や側面部に設けられて もよい。排気口 346と吸気口 345は、水槽 320の外部において循環路として循環経 路部 343を介して接続されている。循環経路部 343内には、送風機構部 344と、スタ 一リングエンジン 410を備える加熱除湿装置 400が配置されている。  [0091] The inner peripheral wall surface of the water tank 320 and the outer peripheral wall surface of the rotating drum 330 form a hot air path part 341 and a humid air path part 342 as circulation paths. An intake port 345 and an exhaust port 346 are provided at the bottom of the water tank 320. Note that the intake port 345 and the exhaust port 346 may be provided in the upper part or the side part. The exhaust port 346 and the intake port 345 are connected to each other as a circulation path outside the water tank 320 via a circulation path part 343. In the circulation path section 343, a heat dehumidifying device 400 including a blower mechanism section 344 and a stirling engine 410 is disposed.
[0092] 洗濯乾燥機 300の本体 310の内部においては、回転ドラム 330の側面側に、温風 経路部 341と湿風経路部 342が配置されている。温風経路部 341と湿風経路部 342 は、それぞれ、吸気口 345と排気口 346で水槽 320の内部と連通している。温風経 路部 341と湿風経路部 342は、水槽 320の下方において循環経路部 343を介して 接続されている。ほぼ直線状に延びている循環経路部 343には、加熱除湿装置 400 の本体が、冷却フィン 431が湿風経路部 342側に、加熱フィン 421が温風経路部 34 1側に配置されるように、設けられている。水槽 320の下方において、湿風経路部 34 2の内部には、送風機構部 344が配置されている。 [0092] Inside the main body 310 of the washing and drying machine 300, a hot air path portion 341 and a wet air path portion 342 are arranged on the side surface side of the rotary drum 330. The hot air passage portion 341 and the wet air passage portion 342 communicate with the inside of the water tank 320 through an intake port 345 and an exhaust port 346, respectively. Warm air The passage portion 341 and the wet air passage portion 342 are connected via the circulation passage portion 343 below the water tank 320. In the circulation path part 343 extending substantially linearly, the main body of the heating and dehumidifying device 400 is arranged such that the cooling fin 431 is arranged on the wet air path part 342 side and the heating fin 421 is arranged on the hot air path part 341 side. Is provided. Below the water tank 320, a blower mechanism 344 is disposed inside the wet air passage section 342.
[0093] 加熱除湿装置 400のスターリングエンジン 410を駆動させると、カロ熱フィン 421にお V、て気体が加熱されるように熱交換され、冷却フィン 431にお!/、て気体が冷却される ように熱交換される。 [0093] When the Stirling engine 410 of the heating and dehumidifying device 400 is driven, heat is exchanged so that the gas is heated by the calorie heat fin 421 and the gas is cooled by the cooling fin 431! / Heat exchange.
[0094] 加熱除湿装置 400と送風機構部 344とを駆動させることによって、力 Q熱フィン 421 で加熱された気体は、温風経路部 341を図中の二点鎖線の矢印で示すように流れ て、吸気口 345から水槽 320の内部に流入し、水槽 320の内部に配置されている回 転ドラム 330内に吹き込む。気体は、回転ドラム 330内の洗濯物に接触した後、小孔 を通って、回転ドラム 330の外部に流出し、水槽 320の下部に形成されている排気口 346を通って湿風経路部 342に排気される。湿風経路部 342に排気された気体は、 回転ドラム 330内の洗濯物に含まれていた水分によって、湿度が高くなつている。湿 気を含む気体は、図中の一点鎖線の矢印で示すように流れて、冷却フィン 431に戻 り、冷却フィン 431で冷却されて、除湿される。気体から取り除かれた水分は、冷却フ イン 431の下方力も排水管(図示しない)を通って本体 310から排水される。除湿され た気体は、循環経路部 343を通って、カロ熱フィン 421に戻る。このサイクルを繰り返 すことによって乾燥工程が行なわれる。  [0094] By driving the heating and dehumidifying device 400 and the air blowing mechanism 344, the gas heated by the force Q heat fin 421 flows through the hot air path portion 341 as indicated by the two-dot chain line arrow in the figure. Then, it flows into the water tank 320 from the air inlet 345 and blows into the rotating drum 330 disposed inside the water tank 320. The gas comes into contact with the laundry in the rotating drum 330, then flows out of the rotating drum 330 through a small hole, passes through the exhaust port 346 formed in the lower part of the water tank 320, and the wet air passage section 342. Exhausted. The gas exhausted to the wet air passage section 342 has a high humidity due to moisture contained in the laundry in the rotating drum 330. The gas containing moisture flows as indicated by the one-dot chain line arrow in the figure, returns to the cooling fin 431, is cooled by the cooling fin 431, and is dehumidified. The moisture removed from the gas is drained from the main body 310 through the drain pipe (not shown) of the downward force of the cooling fin 431. The dehumidified gas returns to the calo heat fin 421 through the circulation path part 343. The drying process is carried out by repeating this cycle.
[0095] 実施形態 1 2の洗濯乾燥機 300のその他の構成と効果は、実施形態 1 1の洗 濯乾燥機 200と同様である。  The other configurations and effects of the washer / dryer 300 of the embodiment 12 are the same as those of the washer / dryer 200 of the embodiment 11.
[0096] (実施形態 1 3)  [Embodiment 1 3]
図 8は、この発明の実施形態 1 3として、洗濯乾燥機が備える加熱除湿装置の本 体の別の形態を示す斜視図である。  FIG. 8 is a perspective view showing another embodiment of the main body of the heating and dehumidifying device provided in the washing and drying machine as Embodiment 13 of the present invention.
[0097] 図 8に示すように、加熱除湿装置 600の本体は、スターリングエンジン 610と、第一 の熱交換部として高温側熱交換部 620と、第二の熱交換部として低温側熱交換部 6 30とを備える。スターリングエンジン 610は、発熱ヘッド 611と吸熱ヘッド 612とを有 する。スターリングエンジン 610の構成と作用は、図 3に示すスターリングエンジン 10 0と同様である。 [0097] As shown in FIG. 8, the main body of the heating and dehumidifying device 600 includes a Stirling engine 610, a high-temperature side heat exchange unit 620 as a first heat exchange unit, and a low-temperature side heat exchange unit as a second heat exchange unit. 6 and 30. The Stirling engine 610 has a heat generating head 611 and a heat absorbing head 612. To do. The configuration and operation of the Stirling engine 610 are the same as those of the Stirling engine 100 shown in FIG.
[0098] 高温側熱交換部 620は、フィンとして発熱ヘッド 611に接続された加熱フィン 621を 有する。加熱フィン 621は円盤状であり、中心部分が発熱ヘッド 611に、直接、接続 されている。  The high temperature side heat exchanging unit 620 includes a heating fin 621 connected to the heat generating head 611 as a fin. The heating fin 621 has a disk shape, and the central portion is directly connected to the heating head 611.
[0099] 低温側熱交換部 630は、気体を冷却するための冷却部 632と、吸熱ヘッド 612の 熱を冷却部 632に伝導するための熱伝導媒体が流通するための熱伝導媒体流路 6 33を有する。熱伝導媒体としては、例えば、水が用いられる。冷却部 632は、この実 施形態においては板状としている力 S、他の形態であってもよい。また、熱伝導媒体流 路 633は、この実施形態においては管状としている力 他の形態であってもよい。  [0099] The low temperature side heat exchanging unit 630 includes a cooling unit 632 for cooling the gas, and a heat conduction medium channel 6 for flowing a heat conduction medium for conducting the heat of the heat absorbing head 612 to the cooling unit 632. 33. For example, water is used as the heat conduction medium. The cooling unit 632 may have a plate-like force S in this embodiment, or other forms. In addition, the heat conduction medium flow path 633 may be in the form of a tubular force in this embodiment.
[0100] 加熱除湿装置 600は、この本体と、図 5に示す温風側経路部と湿風側経路部とから 構成されている。  [0100] The heating and dehumidifying device 600 includes this main body, a warm air side path section and a humid air side path section shown in FIG.
[0101] このように、加熱除湿装置 600においては、高温側熱交換部 620は、発熱ヘッド 61 [0101] Thus, in the heating and dehumidifying device 600, the high temperature side heat exchanging unit 620 includes the heating head 61.
1に接触されるように配置される加熱フィン 621を含む。 1 includes heating fins 621 arranged to be in contact with one.
[0102] このようにすることにより、加熱フィン 621において気体を効率よく熱交換することが できる。また、加熱除湿装置 600を小型化することができる。 [0102] By doing so, the heat can be efficiently exchanged in the heating fin 621. Further, the heat dehumidifying apparatus 600 can be reduced in size.
[0103] また、加熱除湿装置 600においては、低温側熱交換部 630は、気体を冷却するた めの冷却部 632と、吸熱ヘッド 612の熱を冷却部 632に伝導するための熱伝導媒体 が流通する熱伝導媒体流路 633とを有する。 [0103] Further, in the heating and dehumidifying device 600, the low temperature side heat exchanging unit 630 includes a cooling unit 632 for cooling the gas and a heat conduction medium for conducting the heat of the heat absorbing head 612 to the cooling unit 632. And a heat conduction medium channel 633 that circulates.
[0104] このようにすることにより、例えば、発熱ヘッド 611および加熱フィン 621と冷却部 63In this manner, for example, the heat generating head 611, the heating fin 621, and the cooling unit 63 are used.
2との風路上の距離を離して相互に与える熱影響を小さくすることが容易になる。またIt is easy to reduce the thermal effect exerted on each other by separating the distance on the air path with 2. Also
、冷却部 632の余剰スペースへの配置等、冷却部 632の位置や形状を、湿風経路 部 242 (図 5)の形状や洗濯乾燥機 200の全体の部品配置などに合わせて最適化す ることが容易になる。 Optimize the position and shape of the cooling part 632, such as the arrangement of the cooling part 632 in the surplus space, according to the shape of the wet air passage part 242 (Fig. 5) and the overall part arrangement of the washer / dryer 200. Becomes easier.
[0105] また、洗濯乾燥機 200においては、発熱ヘッド 611は、循環路内に配置されて、高 温側熱交換部 620を構成する。  In addition, in the washer / dryer 200, the heat generating head 611 is disposed in the circulation path and constitutes the high temperature side heat exchanging unit 620.
[0106] このようにすることにより、発熱ヘッド 611から高温側熱交換部 620への熱伝達経路 が不要となって加熱除湿装置 600の部品点数の削減、加熱除湿装置 600の作製の 容易化を図ることができるとともに、発熱ヘッド 611から高温側熱交換部 620への熱 伝達経路において、振動による配管の破損等を防止することができる、信頼性の高 V、洗濯乾燥機 200を提供することができる。 In this way, the heat transfer path from the heat generating head 611 to the high temperature side heat exchanging unit 620 becomes unnecessary, the number of parts of the heating dehumidifying device 600 is reduced, and the manufacturing of the heating dehumidifying device 600 is reduced. A highly reliable V-type washing and drying machine 200 that can simplify the process and prevent damage to pipes due to vibration in the heat transfer path from the heating head 611 to the high-temperature side heat exchange section 620. Can be provided.
[0107] 実施形態 1 3の洗濯乾燥機 200のその他の構成と効果は、実施形態 1 1と同様 である。  [0107] Other configurations and effects of the washer-dryer 200 of Embodiment 13 are the same as those of Embodiment 11.
[0108] (実施形態 1 4)  [Embodiment 1 4]
図 9は、この発明の実施形態 1 4として、洗濯乾燥機が備える加熱除湿装置の本 体の別の形態を示す斜視図である。  FIG. 9 is a perspective view showing another embodiment of the main body of the heating and dehumidifying device provided in the washing and drying machine as Embodiment 14 of the present invention.
[0109] 図 9に示すように、加熱除湿装置 700は、スターリングエンジン 710と、第一の熱交 換部として高温側熱交換部 720と、第二の熱交換部として低温側熱交換部 730とを 備える。スターリングエンジン 710は、発熱ヘッド 711と吸熱ヘッド 712とを有する。ス ターリングエンジン 710の構成と作用は、図 3に示すスターリングエンジン 100と同様 である。  [0109] As shown in Fig. 9, the heating and dehumidifying device 700 includes a Stirling engine 710, a high-temperature side heat exchange unit 720 as a first heat exchange unit, and a low-temperature side heat exchange unit 730 as a second heat exchange unit. And. The Stirling engine 710 has a heat generating head 711 and a heat absorbing head 712. The configuration and operation of Stirling engine 710 are the same as Stirling engine 100 shown in FIG.
[0110] 高温側熱交換部 720は、気体を加熱するための加熱部 722と、発熱ヘッド 711の 熱を加熱部 722に伝導するための熱伝導媒体が流通するための熱伝導媒体流路 7 23とを有する。熱伝導媒体としては、例えば、水が用いられる。加熱部 722は、この 実施形態においては板状としているが、他の形態であってもよい。また、熱伝導媒体 流路 723は、この実施形態においては管状としている力 S、他の形態であってもよい。  [0110] The high temperature side heat exchanging unit 720 includes a heating unit 722 for heating a gas, and a heat conduction medium channel 7 for circulating a heat conduction medium for conducting heat from the heating head 711 to the heating unit 722. And 23. For example, water is used as the heat conduction medium. The heating unit 722 has a plate shape in this embodiment, but may have other forms. Further, the heat transfer medium flow path 723 may have a force S that is tubular in this embodiment, or other forms.
[0111] 低温側熱交換部 730は、フィンとして吸熱ヘッド 712に接続された冷却フィン 731を 有する。冷却フィン 731は円盤状であり、中心部分が吸熱ヘッド 712に、直接、接続 されている。  [0111] The low temperature side heat exchanging section 730 includes cooling fins 731 connected to the heat absorbing head 712 as fins. The cooling fin 731 has a disk shape, and the central portion is directly connected to the heat absorbing head 712.
[0112] 加熱除湿装置 700は、この本体と、図 5に示す温風側経路部と湿風側経路部とから 構成されている。  [0112] The heating and dehumidifying device 700 includes this main body, and a warm air side path section and a humid air side path section shown in FIG.
[0113] このように、加熱除湿装置 700においては、高温側熱交換部 720は、気体を加熱 するための加熱部 722と、発熱ヘッド 711の熱を加熱部 722に伝導するための熱伝 導媒体が流通する熱伝導媒体流路 723とを有する。  As described above, in the heating and dehumidifying device 700, the high temperature side heat exchanging unit 720 includes the heating unit 722 for heating the gas and the heat transfer for conducting the heat of the heating head 711 to the heating unit 722. A heat transfer medium flow path 723 through which the medium flows.
[0114] このようにすることにより、例えば、加熱部 722と吸熱ヘッド 712および冷却フィン 73 1との風路上の距離を離して相互に与える熱影響を小さくすることが容易になる。また 、加熱部 722の余剰スペースへの配置等といった、加熱部 722の位置や形状を、温 風経路部 241 (図 5)の形状や、洗濯乾燥機 200の全体の部品配置などに合わせて 最適化することが容易になる。 [0114] By doing so, for example, it becomes easy to reduce the influence of heat on the air path between the heating unit 722, the heat absorbing head 712, and the cooling fin 731, by separating the distance on the air path. Also Optimize the position and shape of the heating part 722, such as the arrangement of the heating part 722 in the surplus space, according to the shape of the hot air path part 241 (Fig. 5) and the overall parts arrangement of the washer / dryer 200, etc. Easy to do.
[0115] 洗濯乾燥機 200においては、吸熱ヘッド 712は、循環路内に配置されて、低温側 熱交換部 730を構成する。  [0115] In the washer / dryer 200, the heat absorbing head 712 is disposed in the circulation path and constitutes the low temperature side heat exchanging section 730.
[0116] このようにすることにより、吸熱ヘッド 712から低温側熱交換部 730への冷気伝達経 路が不要となって加熱除湿装置 700の部品点数の削減、加熱除湿装置 700の作製 の容易化を図ることができるとともに、吸熱ヘッド 712から低温側熱交換部 730への 冷気伝達経路において、振動による配管の破損等を防止することができる、信頼性 の高い洗濯乾燥機 200を提供することができる。  [0116] This eliminates the need for a cold air transmission path from the heat absorbing head 712 to the low temperature side heat exchanging section 730, reduces the number of parts of the heating dehumidifier 700, and facilitates the production of the heating dehumidifier 700. It is possible to provide a highly reliable washing and drying machine 200 that can prevent damage to pipes due to vibration in the cold air transmission path from the heat absorbing head 712 to the low temperature side heat exchanging unit 730. it can.
[0117] また、このように、加熱除湿装置 700においては、低温側熱交換部 730は、吸熱へ ッド 712に接触されるように配置される冷却フィン 731を含む。  [0117] Further, in this way, in the heat dehumidifying apparatus 700, the low temperature side heat exchanging unit 730 includes the cooling fins 731 arranged so as to be in contact with the heat absorbing head 712.
[0118] このようにすることにより、冷却フィン 731において気体を効率よく熱交換することが できる。また、加熱除湿装置 700を小型化することができる。  [0118] By doing so, the heat can be efficiently exchanged in the cooling fins 731. In addition, the heat dehumidifier 700 can be downsized.
[0119] 実施形態 1 4の洗濯乾燥機 200のその他の構成と効果は、実施形態 1 1と同様 である。  [0119] Other configurations and effects of the washer / dryer 200 of the embodiment 14 are the same as those of the embodiment 11 of the present invention.
[0120] (実施形態 2— 1)  [0120] (Embodiment 2-1)
以下、本発明の実施形態 2—1を図 10および図 1 1を用いて説明する。図 10は、本 発明の実施形態 2 1に係るドラム式洗濯乾燥機の給排水経路の構成を示す断面 図、図 11は、本発明の実施形態 2 1に係るドラム式洗濯乾燥機の乾燥通風経路の 構成を示す断面図である。  Hereinafter, Embodiment 2-1 of the present invention will be described with reference to FIG. 10 and FIG. FIG. 10 is a cross-sectional view showing the configuration of the water supply / drainage path of the drum type laundry dryer according to Embodiment 21 of the present invention, and FIG. 11 shows the drying ventilation path of the drum type laundry dryer according to Embodiment 21 of the present invention. It is sectional drawing which shows the structure of this.
[0121] 図 10に示すように、略直方体の本体 1の前面には洗濯物を出し入れするための投 入口 laが形成されるとともに、投入口 laを開閉するためのドア 2がヒンジ機構にて回 動可能に設けられている。本体 1内には、一端に投入口 laと対向する開口 3aを有す る有底筒形状の水槽 3が、その背面に対して開口 3a側の方が高くなるように傾斜して 内装されており、この水槽 3の開口 3aと本体 1の投入口 laとはパッキン 4で水密に接 続されている。なお、水槽 3は、図示しないダンパーなどの支持装置により支持される ことで、揺動自在に配置されてレ、る。 [0122] 水槽 3内には、洗濯物を収容する回転槽 5が回転自在に内装されている。回転槽 5 はその回転軸方向の一端に開口 3aに対向する開口 5aを有した有底筒形状をなし、 その底面(背面)に対して開口 5a側の方が高くなるように傾斜させて配置している。 回転槽 5の開口周縁には流体バランサー 6が設けられ、回転槽 5の周壁には複数の 孔が設けられている。ドア 2を回動させて投入口 laを開放した状態において、回転槽 5内への洗濯物の投入および回転槽 5内からの洗濯物の取出は投入口 l a、開口 3a 、開口 5aを介して行なわれる。 [0121] As shown in Fig. 10, an entrance la for loading and unloading laundry is formed on the front surface of the substantially rectangular parallelepiped body 1, and a door 2 for opening and closing the entrance la is provided by a hinge mechanism. It is provided so that it can rotate. Inside the main body 1, a bottomed cylindrical water tank 3 having an opening 3 a facing the inlet la at one end is slanted so that the opening 3 a side is higher with respect to the rear surface. The opening 3a of the water tank 3 and the inlet la of the main body 1 are watertightly connected by a packing 4. The water tank 3 is supported by a support device such as a damper (not shown) so that it can be swung freely. [0122] In the water tank 3, a rotary tank 5 for storing laundry is rotatably mounted. The rotating tank 5 has a bottomed cylindrical shape having an opening 5a opposite to the opening 3a at one end in the rotation axis direction, and is inclined so that the opening 5a side is higher than the bottom surface (rear surface). is doing. A fluid balancer 6 is provided on the periphery of the opening of the rotary tank 5, and a plurality of holes are provided in the peripheral wall of the rotary tank 5. In the state where the door 2 is rotated to open the input port la, the laundry is put into the rotary tub 5 and the laundry is taken out from the rotary tub 5 through the input port la, the opening 3a, and the opening 5a. Done.
[0123] 回転槽 5の底面(背面)には、回転軸 5bが固定されており、水槽 3に軸受 5cを介し てその回転軸が斜めとなるように回転自在に支持されている。また、回転軸 5bの回転 槽が取り付けられている側とは反対側の端部には、ドラムプーリ 5dが取り付けられて いる。  [0123] A rotating shaft 5b is fixed to the bottom surface (rear surface) of the rotating tub 5, and is rotatably supported by the water tub 3 via a bearing 5c so that the rotating shaft is inclined. A drum pulley 5d is attached to the end of the rotating shaft 5b opposite to the side on which the rotating tub is attached.
[0124] 本体 1の背面上部には、本体 1の天面を一部低くした段部が設けられ、その段部に は水道からの水を本体 1内に導入する給水口 7が配されている。給水口 7の下流側 には図示しない給水弁が配されており、洗濯機の各部の動作を制御する図示しない 制御装置からの指示にしたがって給水弁が開閉されて、本体 1内への給水が制御さ れる。制御装置からの指示により給水弁が開放されると、給水口 7から本体 1内に水 道からの水が導入される。給水口 7を通過した水は、給水路 8を介して洗剤ケース 9 内に供給されて洗剤と混合された後、給水管 10を通って水槽 3内に供給される。  [0124] In the upper part of the back of the main unit 1, there is a stepped portion with the top surface of the main unit 1 partially lowered, and the water supply port 7 for introducing water from the water supply into the main unit 1 is arranged on the stepped portion. Yes. A water supply valve (not shown) is arranged on the downstream side of the water supply port 7, and the water supply valve is opened and closed in accordance with instructions from a control device (not shown) that controls the operation of each part of the washing machine. Be controlled. When the water supply valve is opened by an instruction from the control device, water from the water channel is introduced into the main body 1 through the water supply port 7. The water that has passed through the water supply port 7 is supplied into the detergent case 9 through the water supply channel 8 and mixed with the detergent, and then supplied into the water tank 3 through the water supply pipe 10.
[0125] また、水槽 3の背面側下方には、水槽 3内に供給された水を本体 1外への排出経路 を構成する排水管 11が接続されている。水槽 3より排水管 11へと排出された水は、 フィルタ装置 12に配される排水フィルタ 12aよって糸屑等の異物が除去される。フィ ルタ装置 12には、エアトラップ 12bが設けられており、エアトラップ 12b内と連通する 導圧管 13の一端が接続されている。導圧管 13の他端には、水位センサ 14が接続さ れており、洗いやすすぎ時には、エアトラップ 12b内の空気の圧力を水位センサ 14 にて計測することにより水槽 3内の水位が検出される。フィルタ装置 12で異物が除去 された水は排水路 15へと流れ込む。排水路 15の下流側には排水弁 16が配されて おり、洗濯機の各部の動作を制御する図示しない制御装置からの指示にしたがって 排水弁 16が開閉されて、本体 1内からの排水が制御される。制御装置からの指示に より排水弁 16が開放されると、排水路 15の水が排水ホース 17を介して本体 1外へ排 出される。なお、排水路 15と排水ホース 17とが、排水経路の一部である。 [0125] Further, a drain pipe 11 that constitutes a discharge path for the water supplied into the water tank 3 to the outside of the main body 1 is connected to the lower rear side of the water tank 3. Foreign matter such as lint is removed from the water discharged from the water tank 3 to the drain pipe 11 by the drain filter 12a disposed in the filter device 12. The filter device 12 is provided with an air trap 12b, and one end of a pressure guiding tube 13 communicating with the inside of the air trap 12b is connected. A water level sensor 14 is connected to the other end of the pressure guiding tube 13, and when it is easy to wash, the water level in the water tank 3 is detected by measuring the air pressure in the air trap 12b with the water level sensor 14. The The water from which foreign matter has been removed by the filter device 12 flows into the drainage channel 15. A drain valve 16 is arranged on the downstream side of the drainage channel 15. The drain valve 16 is opened and closed in accordance with instructions from a control device (not shown) that controls the operation of each part of the washing machine, and drainage from the inside of the main body 1 is performed. Be controlled. In response to instructions from the control unit When the drain valve 16 is further opened, the water in the drain channel 15 is drained out of the main body 1 through the drain hose 17. The drainage channel 15 and the drainage hose 17 are part of the drainage channel.
[0126] 水槽の下部には、図 11に示すように、設置台 18が設けられており、その設置台 18 には、回転槽 5を回転駆動させる回転速度を制御可能なモータ 19が配されている。 モータ 19には、モータ軸 19aが取り付けられており、モータ軸 19aのモータ 19が取り 付けられている方とは反対側にモータプーリ 20が設けられている。このモータプーリ 20と回転槽プーリ 5dはベルト 21を介してモータプーリ 20の動力を回転槽プーリ 5d へと伝達可能なように掛け巻きされて!/、る。  As shown in FIG. 11, an installation table 18 is provided at the lower part of the water tank, and a motor 19 capable of controlling the rotational speed for rotating the rotary tank 5 is arranged on the installation table 18. ing. A motor shaft 19a is attached to the motor 19, and a motor pulley 20 is provided on the opposite side of the motor shaft 19a from which the motor 19 is attached. The motor pulley 20 and the rotary tank pulley 5d are wound around the belt 21 so that the power of the motor pulley 20 can be transmitted to the rotary tank pulley 5d.
[0127] モータ軸 19aには、クラッチ機構 22が揷通されており、モータ軸 19aの回転駆動力 をその下方に設けられた伝達機構部 23へと伝達する状態または伝達しない状態へ と切換可能に構成されている。この伝達機構部 23へと伝達された回転駆動力は、熱 交換部 24へと供給されて熱交換部 24の動力として使用される。クラッチ機構 22、伝 達機構部 23、熱交換部 24についてのより詳細な構成や動作については後述する。  [0127] A clutch mechanism 22 is passed through the motor shaft 19a, and the motor shaft 19a can be switched between a state in which the rotational driving force of the motor shaft 19a is transmitted to a transmission mechanism portion 23 provided therebelow or a state in which it is not transmitted. It is configured. The rotational driving force transmitted to the transmission mechanism unit 23 is supplied to the heat exchange unit 24 and used as power for the heat exchange unit 24. More detailed configurations and operations of the clutch mechanism 22, the transmission mechanism unit 23, and the heat exchange unit 24 will be described later.
[0128] 水槽の背面後方から下部、および前面前方にかけては回転槽 5内に投入された洗 濯物を乾燥させるための空気が循環する循環ダクトの一例である通風経路 (循環ダク ト) 25が設けられている。通風経路 25には、その経路中に通風経路 25の気流源であ る送風機 26および熱交換部 24が配されている。乾燥運転中において、水槽 3内の 空気は、排気口 25aを介して通風経路 25へと排出される。通風経路 25へと流れ込ん だ空気は、ファンの一例である送風機 26によって熱交換部 24へと送られ、後述する 吸熱ヘッド 38aで冷却除湿された後、発熱ヘッド 38bで加熱されて、給気口 25bから 再び水槽 3へと送られる。なお、通風経路 25の一部を水槽 3の背面の周縁部に沿つ て設けても良い。  [0128] A ventilation path (circulation duct) 25, which is an example of a circulation duct through which air for drying the washing material put in the rotary tank 5 circulates from the rear rear side to the lower part and the front front side of the water tank, is provided. Is provided. In the ventilation path 25, a blower 26 and a heat exchange unit 24 that are air flow sources of the ventilation path 25 are arranged in the path. During the drying operation, the air in the water tank 3 is discharged to the ventilation path 25 through the exhaust port 25a. The air flowing into the ventilation path 25 is sent to the heat exchanging unit 24 by a blower 26 which is an example of a fan, cooled and dehumidified by a heat absorbing head 38a, which will be described later, and then heated by a heat generating head 38b to be supplied to an air supply port. From 25b, it is sent to tank 3 again. A part of the ventilation path 25 may be provided along the peripheral edge of the back surface of the water tank 3.
[0129] 次に、クラッチ機構 22、伝達機構部 23および熱交換部 24の構成について図 12か ら図 14を用いて説明する。図 12は、図 11の要部を拡大した図、図 13は、クラッチ機 構 22の分解斜視図、図 14は、図 12を Aより見た図である。  Next, the configuration of the clutch mechanism 22, the transmission mechanism unit 23, and the heat exchange unit 24 will be described with reference to FIGS. FIG. 12 is an enlarged view of the main part of FIG. 11, FIG. 13 is an exploded perspective view of the clutch mechanism 22, and FIG. 14 is a view of FIG.
[0130] クラッチ機構 22は、図 12に示すように、連動軸 27、クラッチ片 28、コイルバネ 29お よびソレノイド 30により構成される。連動軸 27は、モータ軸 19aに対して回転可能に 揷通されており、モータ 19に近い方が小径、遠い方が大径となるように構成されてい る。連動軸 27の小径な部分である小径部 27aは、図 13に示すように、 90° 毎に一 部が径方向に突出するように断面十字形状に形成されている。連動軸 27の大径な 部分である大径部 27bは、周囲が歯車状に形成されており、後述する第一の伝達歯 車 31へと動力伝達可能に連結している。連動軸 27の小径部 27aに隣接するとともに 連動軸 27の小径部 27aよりもモータ 19に近いところには、モータ軸 19aに一体に形 成される連結部 19bが形成されている。連結部 19bは、図 13に示すように、 90° 毎 に一部が径方向に突出するように断面十字形状に形成されており、連動軸 27の小 径部 27aと同じ形状を有している。クラッチ片 28は磁性体で構成されており、図 13に 示すように、その外周側は円周状に形成されるとともに、内周側は 90° 毎に一部が 径方向に窪むように形成され、この内周側に連動軸 27の小径部 27aおよび連結部 1 9bの外周が嵌合するように構成されている。連動軸 27の大径部 27bとクラッチ片 28 との間にはコイルパネ 29が圧縮配置されており、クラッチ片 28を連結部 19bのみと嵌 合させるように付勢している。クラッチ片 28の外周側には、図 12に示すように、磁力 を発生してクラッチ片 28に斥力を発生させるソレノイド 30が配されている。ソレノイド 3 0は、その駆動によりクラッチ片 28をコイルパネ 29の付勢力に抗して移動させ、後述 する図 15に示すように、クラッチ片 28を連結部 19bおよび小径部 27aと嵌合させて、 モータ 19の回転駆動力を伝達機構部 23へと伝達するようにその付勢力が調整され ている。 As shown in FIG. 12, the clutch mechanism 22 includes an interlocking shaft 27, a clutch piece 28, a coil spring 29, and a solenoid 30. The interlocking shaft 27 is threaded so as to be rotatable with respect to the motor shaft 19a. The interlocking shaft 27 is configured to have a smaller diameter closer to the motor 19 and a larger diameter farther away. The As shown in FIG. 13, the small-diameter portion 27a, which is the small-diameter portion of the interlocking shaft 27, is formed in a cross-shaped cross section so that a portion protrudes in the radial direction every 90 °. The large-diameter portion 27b, which is the large-diameter portion of the interlocking shaft 27, has a gear-like periphery, and is connected to a first transmission gear 31 described later so that power can be transmitted. A connecting part 19b formed integrally with the motor shaft 19a is formed adjacent to the small diameter part 27a of the interlocking shaft 27 and closer to the motor 19 than the small diameter part 27a of the interlocking shaft 27. As shown in FIG. 13, the connecting portion 19b is formed in a cross-shaped cross section so that a portion protrudes in the radial direction every 90 °, and has the same shape as the small-diameter portion 27a of the interlocking shaft 27. Yes. The clutch piece 28 is made of a magnetic material. As shown in FIG. 13, the outer peripheral side is formed in a circular shape, and the inner peripheral side is formed so that a part thereof is depressed in the radial direction every 90 °. The outer periphery of the small-diameter portion 27a of the interlocking shaft 27 and the outer periphery of the connecting portion 19b are fitted to the inner peripheral side. A coil panel 29 is compressed and disposed between the large-diameter portion 27b of the interlocking shaft 27 and the clutch piece 28, and urges the clutch piece 28 to be engaged only with the connecting portion 19b. On the outer peripheral side of the clutch piece 28, as shown in FIG. 12, a solenoid 30 for generating a magnetic force and generating a repulsive force on the clutch piece 28 is disposed. The solenoid 30 is driven to move the clutch piece 28 against the urging force of the coil panel 29, and as shown in FIG. 15 to be described later, the clutch piece 28 is fitted to the connecting portion 19b and the small diameter portion 27a. The urging force is adjusted so that the rotational driving force of the motor 19 is transmitted to the transmission mechanism 23.
伝達機構部 23は、図 12に示すように、第一の伝達歯車 31および第二の伝達歯車 32により構成される。第一の伝達歯車 31は、図 14に示すように、連動軸 27の大径 部 27bの下方に設けられるとともに、その外周の歯車と連動軸 27の大径部 27bの歯 車とが嵌合しており、連動軸 27の回転駆動力をその下方に配された第二の伝達歯 車 32へと伝達させる。第二の伝達歯車 32は、図 13に示すように、その回転軸方向 の一方側が小径の歯車である小径部 32a、他方側が大径の歯車である大径部 32bと なるように形成されている。第二の伝達歯車 32は、小径部 32aは第一の伝達歯車 31 、大径部 32bは後述するシャフト歯車 33と嵌合しており、第一の伝達歯車 31の回転 駆動力をシャフト歯車 33へと伝達させる。なお、クラッチ機構 22と伝達機構部 23とが 、伝達部の一例である。 [0132] 熱交換部 24は、本実施の形態では、並列型 2ピストンのスターリング冷凍機を用い る。図 12に示すように、シャフト歯車 33、クランクシャフト 34、吸熱側クランク 35a、発 熱側クランク 35b、吸熱側ピストン 36a、発熱側ピストン 36b、低温室 37a、高温室 37 b、吸熱ヘッド 38a、発熱ヘッド 38bおよび再生器 39より構成される。シャフト歯車 33 は、第二の伝達歯車 32の大径部 32bの下方に配され、第二の伝達歯車 32の大径 部 32bの歯車と嵌合している。また、シャフト歯車 33は、製品の前方側に向かって伸 長するクランクシャフト 34がー体に取付られている。クランクシャフト 34は、その 2箇所 を設置台 18に回転可能に軸支され、この軸支された部分の間には吸熱側クランク接 続部 34aおよび発熱側クランク接続部 34bが設けられる。図 12において、吸熱側クラ ンク接続部 34aは上方に向けて凸、発熱側クランク接続部 34bは手前側に向けて凸 となるように折り曲げられており、シャフト歯車 33が図 14に示すように本体 1の後方よ り見て左回り(反時計回り)方向に回動することにより、吸熱側クランク接続部 34aに対 して発熱側クランク接続部 34bが 90° 進んだ位相で回動し、後述する吸熱ヘッド 38 aが通風経路 25の空気の冷却、発熱ヘッド 38bが通風経路 25の空気の加熱を行な うように作動する。 As shown in FIG. 12, the transmission mechanism unit 23 includes a first transmission gear 31 and a second transmission gear 32. As shown in FIG. 14, the first transmission gear 31 is provided below the large-diameter portion 27b of the interlocking shaft 27, and the outer peripheral gear and the gear of the large-diameter portion 27b of the interlocking shaft 27 are fitted together. Therefore, the rotational driving force of the interlocking shaft 27 is transmitted to the second transmission gear 32 disposed below the interlocking shaft 27. As shown in FIG. 13, the second transmission gear 32 is formed so that one side in the rotation axis direction is a small diameter portion 32a that is a small diameter gear and the other side is a large diameter portion 32b that is a large diameter gear. Yes. In the second transmission gear 32, the small-diameter portion 32a is engaged with the first transmission gear 31 and the large-diameter portion 32b is engaged with a shaft gear 33 which will be described later, and the rotational driving force of the first transmission gear 31 is used as the shaft gear 33. Communicate to The clutch mechanism 22 and the transmission mechanism unit 23 are examples of the transmission unit. [0132] In the present embodiment, the heat exchanging unit 24 uses a parallel two-piston Stirling refrigerator. As shown in Fig. 12, shaft gear 33, crankshaft 34, heat absorption side crank 35a, heat generation side crank 35b, heat absorption side piston 36a, heat generation side piston 36b, low temperature chamber 37a, high temperature chamber 37b, heat absorption head 38a, heat generation It comprises a head 38b and a regenerator 39. The shaft gear 33 is disposed below the large-diameter portion 32b of the second transmission gear 32, and is engaged with the gear of the large-diameter portion 32b of the second transmission gear 32. The shaft gear 33 has a crankshaft 34 attached to the body extending toward the front side of the product. The crankshaft 34 is rotatably supported at two places on the installation base 18, and a heat absorbing side crank connecting portion 34a and a heat generating side crank connecting portion 34b are provided between the portions that are supported by the shaft. In FIG. 12, the heat absorption side crank connection portion 34a is bent so as to protrude upward, and the heat generation side crank connection portion 34b is bent so as to protrude toward the front side, so that the shaft gear 33 is as shown in FIG. By turning counterclockwise (counterclockwise) as viewed from the rear of the main unit 1, the heat generating side crank connecting part 34b is rotated by 90 ° with respect to the heat absorbing side crank connecting part 34a. The heat absorbing head 38a described later operates so as to cool the air in the ventilation path 25, and the heat generating head 38b operates to heat the air in the ventilation path 25.
[0133] 吸熱側クランク接続部 34aおよび発熱側クランク接続部 34bは、吸熱側クランク 35a および発熱側クランク 35bの一端と接続されて!/、る。吸熱側クランク 35aおよび発熱 側クランク 35bは、それぞれの他端に吸熱側ピストン 36aおよび発熱側ピストン 36bが 接続されている。吸熱側ピストン 36aおよび発熱側ピストン 36bの下方には、それぞ れ設置台 18を外郭とする水素やヘリウム等の気体が密封された低温室 37aおよび高 温室 37bが設けられており、吸熱側ピストン 36aと低温室 37a内面および発熱側ビス トン 36bと高温室 37b内面とは気密かつスライド可能に構成されている。低温室 37a および高温室 37bの下方の通風経路 25に突出した先端部は、通風経路 25の空気 を冷却する吸熱ヘッド 38aおよび通風経路 25の空気を加熱する発熱ヘッド 38bとし て機能する。吸熱ヘッド 38aおよび発熱ヘッド 38bは必ずしも通風経路 25内に突出 させる必要はないが、熱交換効率を向上させるために通風経路 25内に突出させるほ うが好ましい。この冷却および加熱機能については後述する。また、低温室 37aと高 温室 37bとはそれぞれの部屋を連通させる経路を有し、その経路には再生器 39が配 されている。再生器 39は、この周辺を通過する高温気体からの熱を蓄熱し、または蓄 熱した熱を低温気体に供給する作用を奏する。吸熱ヘッド 38aおよび発熱ヘッド 38b は、その配置方向が回転槽 5の回動軸の水平面への投影軸と一致するように配され ており、運転時に本体 1内で水槽 3と一体に振動する振動体の重心を下方に押し下 げて、より振動を低減させやすい構成としている。これにより、回転槽 5を高い位置に 配した場合でも静音化に貢献しつつ、洗濯物の取り出しをも容易に出来る。なお、設 置台 18がハウジングの一例である。 [0133] The heat absorption side crank connection portion 34a and the heat generation side crank connection portion 34b are connected to one end of the heat absorption side crank 35a and the heat generation side crank 35b. The heat absorption side crank 35a and the heat generation side crank 35b are connected to the other end of the heat absorption side piston 36a and the heat generation side piston 36b, respectively. Below the heat absorption side piston 36a and the heat generation side piston 36b, there are provided a low temperature chamber 37a and a high temperature chamber 37b in which gas such as hydrogen and helium is sealed with the installation base 18 as an outline, respectively. 36a and the inner surface of the low temperature chamber 37a and the heat generating side piston 36b and the inner surface of the high temperature chamber 37b are configured to be airtight and slidable. The tip portions protruding into the ventilation path 25 below the low greenhouse 37a and the high temperature chamber 37b function as a heat absorption head 38a that cools the air in the ventilation path 25 and a heat generation head 38b that heats the air in the ventilation path 25. The heat absorbing head 38a and the heat generating head 38b are not necessarily projected into the ventilation path 25, but are preferably projected into the ventilation path 25 in order to improve heat exchange efficiency. This cooling and heating function will be described later. In addition, the low temperature room 37a and the high temperature room 37b have paths that allow the rooms to communicate with each other. Has been. The regenerator 39 has an effect of storing heat from the high-temperature gas passing through the periphery or supplying the stored heat to the low-temperature gas. The heat absorption head 38a and the heat generation head 38b are arranged so that their arrangement directions coincide with the projection axis of the rotation axis of the rotary tank 5 onto the horizontal plane, and vibration that vibrates integrally with the water tank 3 in the main body 1 during operation. By pushing down the body's center of gravity downward, it is easier to reduce vibration. As a result, even when the rotating tub 5 is arranged at a high position, the laundry can be easily taken out while contributing to noise reduction. The mounting table 18 is an example of a housing.
[0134] 次に、この洗濯乾燥機における動作につ!/、て説明する。構成を備えた洗濯乾燥機 において、使用者が電源を入れ、投入口から回転槽 5内へ洗濯物を投入し、洗剤ケ ース 9に洗剤を投入した後、図示しない操作パネルのスタートスィッチの押圧により運 転をスタートすると、制御部は、給水口 7、給水路 8、洗剤ケース 9および給水管 10を 介して水槽 3へと給水を行なう。水槽 3内の水位が所定の水位まで達したことを水位 センサ 14が検知すると、制御部は、水槽 3内への給水を停止させて、モータ 19を駆 動させて回転槽 5を低速回転させて洗い工程を行う。  [0134] Next, the operation of the washing / drying machine will be described. In the washing / drying machine with the configuration, the user turns on the power, puts the laundry into the rotary tub 5 from the insertion port, and puts the detergent into the detergent case 9, and then the start switch of the operation panel (not shown) When the operation is started by pressing, the control unit supplies water to the water tank 3 through the water supply port 7, the water supply channel 8, the detergent case 9 and the water supply pipe 10. When the water level sensor 14 detects that the water level in the water tank 3 has reached a predetermined water level, the control unit stops water supply to the water tank 3 and drives the motor 19 to rotate the rotary tank 5 at a low speed. Washing process.
[0135] 洗い工程が終了すると、水槽 3内の水を排水管 11、フィルタ装置 12、排水路 15、 排水弁 16および排水ホース 17を介して機外へ排出させた後、回転槽 5を高速で回 転させて洗濯物に含まれる洗濯水の脱水を行なう。脱水工程が終了すると、再度、 水槽 3内への所定水位までの給水の後、回転槽 5を低速回転させる濯ぎ工程が開始 される。濯ぎ工程が完了すると、水槽 3内の洗濯水の排水後、脱水工程が行なわれる 。この濯ぎ工程と脱水工程が複数回繰り返された後、乾燥工程へと移行する。  [0135] When the washing process is completed, the water in the tank 3 is drained out of the machine through the drain pipe 11, filter device 12, drain channel 15, drain valve 16 and drain hose 17, and then the rotary tank 5 is put into high speed. Rotate to dehydrate laundry water contained in the laundry. When the dehydration process is completed, a rinsing process for rotating the rotating tank 5 at a low speed is started after water supply to the water tank 3 to a predetermined water level again. When the rinsing process is completed, the dewatering process is performed after the washing water in the water tank 3 is drained. After the rinsing process and the dehydrating process are repeated a plurality of times, the process proceeds to the drying process.
[0136] 次に、本発明の実施形態 2— 1の乾燥工程の要部の動作について図 15から図 18 を用いて説明する。図 15は、熱交換部 24へ回転駆動力を伝達するようにクラッチ機 構 22を切り換えた状態の要部拡大図、図 16は、図 15の状態からクランクシャフト 34 を 90° 回転させた状態の要部拡大図、図 17は、図 15の状態からクランクシャフト 34 を 180° 回転させた状態の要部拡大図、図 18は、図 15の状態からクランクシャフト 3 4を 270° 回転させた状態の要部拡大図である。  Next, the operation of the main part of the drying process of Embodiment 2-1 of the present invention will be described using FIG. 15 to FIG. Fig. 15 is an enlarged view of the main part in a state where the clutch mechanism 22 is switched so as to transmit the rotational driving force to the heat exchanging unit 24, and Fig. 16 is a state in which the crankshaft 34 is rotated 90 ° from the state of Fig. 15. Fig. 17 is an enlarged view of the main part of the crankshaft 34 rotated 180 ° from the state of Fig. 15, and Fig. 18 is a crankshaft 34 rotated 270 ° from the state of Fig. 15. It is a principal part enlarged view of a state.
[0137] 乾燥工程が開始されると、送風機 26が駆動して通風経路 25内の送風が行なわれ るとともに、ソレノイド 30が駆動されてクラッチ片 28が連結部 19bおよび連動軸 27に 嵌合して、モータ 19の回転駆動力が連動軸 27に伝達可能となる。この状態でモータ 19を図 14に示すように右回りである矢印 a方向に回動させると、回転槽 5が後方から 見て右回りに回動し、また、連動軸 27も同じ矢印 a方向に回動して、第一の伝達歯車 31を左回りである矢印 b方向に回動させる。第一の伝達歯車 31に伝達された回転駆 動力は、これに嵌合する第二の回転歯車 32へと伝達されて、第二の伝達歯車 32を 矢印 c方向に回動させる。矢印 c方向に回動する第二の伝達歯車 32は、シャフト歯車 33を矢印 d方向に回動させて熱交換部 24が駆動される。 [0137] When the drying process is started, the blower 26 is driven to blow air in the ventilation path 25, and the solenoid 30 is driven to move the clutch piece 28 to the connecting portion 19b and the interlocking shaft 27. As a result, the rotational driving force of the motor 19 can be transmitted to the interlocking shaft 27. In this state, when the motor 19 is rotated clockwise as shown in FIG. 14, the rotating tub 5 is rotated clockwise as viewed from the rear, and the interlocking shaft 27 is also rotated in the same arrow a direction. The first transmission gear 31 is rotated counterclockwise in the direction of arrow b. The rotation driving force transmitted to the first transmission gear 31 is transmitted to the second rotation gear 32 fitted to the first transmission gear 31, and the second transmission gear 32 is rotated in the direction of the arrow c. The second transmission gear 32 that rotates in the direction of the arrow c rotates the shaft gear 33 in the direction of the arrow d to drive the heat exchange unit 24.
[0138] 図 15の状態において、シャフト歯車 33が矢印 d方向に駆動されて図 16の状態にな る間に、吸熱側クランク接続部 34aおよび発熱側クランク接続部 34bは、吸熱側クラ ンク 35aおよび発熱側クランク 35bを下方へと押し込む方向へ駆動させ、 90度の位 相差がつけられた吸熱側ピストン 36aおよび発熱側ピストン 36bにより低温室 37a内 および高温室 37b内の気体を圧縮させる。このとき高温室 37bの気体の圧縮率は低 温室 37aに比べ非常に大きぐ高温室 37bの気体の圧力および温度は上昇するため 、発熱ヘッド 38bの温度は上昇するとともに、この高温室 37bの高圧で温度の上昇し た気体が再生器 39を介して低温室 37aに吹き込まれる。この高温室 37bの高圧で温 度が上昇した気体が再生器 39を通過するに際して、この気体の熱量は再生器 39に 蓄熱され、熱量が奪われて冷却した気体が低温室 37aへと吹き込まれて、低温室 37 aの温度を下降させる。 In the state shown in FIG. 15, while the shaft gear 33 is driven in the direction of the arrow d to reach the state shown in FIG. 16, the heat absorption side crank connection portion 34a and the heat generation side crank connection portion 34b are connected to the heat absorption side crank 35a. Then, the heat generating side crank 35b is driven downward and the gas in the low temperature chamber 37a and the high temperature chamber 37b is compressed by the heat absorbing side piston 36a and the heat generating side piston 36b having a phase difference of 90 degrees. At this time, the compressibility of the gas in the high temperature chamber 37b is much larger than that in the low temperature chamber 37a. Since the pressure and temperature of the gas in the high temperature chamber 37b increase, the temperature of the heating head 38b increases and the high pressure in the high temperature chamber 37b increases. Then, the gas whose temperature has increased is blown into the low temperature chamber 37a through the regenerator 39. When the gas whose temperature has been increased due to the high pressure in the high temperature chamber 37b passes through the regenerator 39, the heat quantity of this gas is stored in the regenerator 39, and the cooled gas is blown into the low temperature chamber 37a after the heat quantity is removed. To lower the temperature of the low temperature chamber 37a.
[0139] シャフト歯車 33の回動が進んで、図 16の状態から図 17の状態へと移行する間に は、吸熱側クランク接続部 34aは吸熱側クランク 35aを下方へ押し込む方向へ、発熱 側クランク接続部 34bは発熱側クランク 35bを上方へ持ち上げる方向へ駆動させ、吸 熱側ピストン 36aにより低温室 37a内の気体を圧縮、発熱側ピストン 36bにより高温室 37b内の気体を膨張させるため、低温室 37aの気体は再生器 39を通って急速に高 温室 37bへと移動する。このとき、高温室 37bへと移動する気体は再生器 39に蓄熱 された熱量によって加熱されて温度が上昇し、高温室 37b内の温度を上昇させる。  [0139] While the rotation of the shaft gear 33 advances and the state of FIG. 16 shifts to the state of FIG. 17, the endothermic crank connecting portion 34a pushes the endothermic crank 35a downward, and the heat generating side The crank connecting part 34b drives the heat generating side crank 35b to lift upward, compresses the gas in the low temperature chamber 37a by the heat absorbing side piston 36a, and expands the gas in the high temperature chamber 37b by the heat generating side piston 36b. The gas in chamber 37a moves rapidly through regenerator 39 to high greenhouse 37b. At this time, the gas moving to the high temperature chamber 37b is heated by the amount of heat stored in the regenerator 39, the temperature rises, and the temperature in the high temperature chamber 37b rises.
[0140] さらにシャフト歯車 33が回動して、図 17の状態から図 18の状態へと移行する間に は、吸熱側クランク接続部 34aおよび発熱側クランク接続部 34bは、吸熱側クランク 3 5aおよび発熱側クランク 35bを上方へと持ち上げる方向へ駆動させ、吸熱側ピストン 36aおよび発熱側ピストン 36bにより低温室 37a内および高温室 37b内の気体を膨 張させる。このとき低温室 37aの気体の膨張率は高温室 37bに比べ非常に大きぐ低 温室 37aの気体の圧力および温度は下降するため、吸熱ヘッド 38aの温度は下降す [0140] While the shaft gear 33 is further rotated to shift from the state shown in Fig. 17 to the state shown in Fig. 18, the heat absorption side crank connection portion 34a and the heat generation side crank connection portion 34b are connected to the heat absorption side crank 35a. And the heat generating side crank 35b is driven upward to lift the heat absorbing side piston. The gas in the low temperature chamber 37a and the high temperature chamber 37b is expanded by 36a and the heat generating side piston 36b. At this time, the expansion rate of the gas in the low temperature chamber 37a is much larger than that in the high temperature chamber 37b, and the pressure and temperature of the gas in the low temperature chamber 37a decrease, so the temperature of the endothermic head 38a decreases.
[0141] さらにシャフト歯車 33が回動して、図 18の状態から図 15の状態へと移行する間に は、吸熱側クランク接続部 34aは吸熱側クランク 35aを上方へ持ち上げる方向へ、発 熱側クランク接続部 34bは発熱側クランク 35bを下方へ押し込む方向へ駆動させ、吸 熱側ピストン 36aにより低温室 37a内の気体を膨張、発熱側ピストン 36bにより高温室 37b内の気体を圧縮させるため、高温室 37bの気体は再生器 39を通って急速に低 温室 37aへと移動する。このとき、低温室 37aへと移動する気体の熱量は再生器 39 に蓄熱され、温度が低下した気体が低温室 37aへと吹き込まれる。このようにシャフト 歯車 33が回動することにより吸熱ヘッド 38aは冷却、発熱ヘッド 38bは発熱し、それ ぞれシャフト歯車 33の回転数に応じて温度が低下、上昇する。 [0141] While the shaft gear 33 is further rotated to shift from the state shown in Fig. 18 to the state shown in Fig. 15, the endothermic crank connecting portion 34a generates heat in the direction of lifting the endothermic crank 35a upward. The side crank connecting portion 34b drives the heat generating side crank 35b to push downward, expands the gas in the low temperature chamber 37a by the heat absorption side piston 36a, and compresses the gas in the high temperature chamber 37b by the heat generation side piston 36b. The gas in the high greenhouse 37b moves rapidly through the regenerator 39 to the low greenhouse 37a. At this time, the amount of heat of the gas moving to the low temperature chamber 37a is stored in the regenerator 39, and the gas whose temperature has decreased is blown into the low temperature chamber 37a. As the shaft gear 33 rotates in this manner, the heat absorbing head 38a cools and the heat generating head 38b generates heat, and the temperature decreases and rises according to the rotational speed of the shaft gear 33, respectively.
[0142] 乾燥工程において、水槽 3内から排気口 25aを介して通風経路 25内に排出された 空気は、送風機 26を経て、吸熱ヘッド 38aへと送られる。吸熱ヘッド 38aへ送られた 空気は、吸熱ヘッド 38aにて冷却除湿された後、発熱ヘッド 38bへと送られる。発熱 ヘッド 38bへ送られた空気は、発熱ヘッド 38bにて加熱され、水槽 3内へと吹き込ま れて、回転槽内の洗濯物の水分を蒸発させて乾燥を進行させる。この後、図示しな い湿度センサや温度センサ等の検知により乾燥終了を検知して運転を終了させる。 吸熱ヘッド 38a下方の通風経路 25底部には、図示しない排水孔が設けられており、 底部吸熱ヘッド 38aに結露した水(ドレイン水)が滴下すると、この排水孔から通風経 路 25と排水ホース 17を結ぶドレイン用ホースにより排水される。  [0142] In the drying process, the air discharged from the water tank 3 into the ventilation path 25 through the exhaust port 25a is sent to the heat absorbing head 38a through the blower 26. The air sent to the heat absorbing head 38a is cooled and dehumidified by the heat absorbing head 38a, and then sent to the heat generating head 38b. The air sent to the heat generating head 38b is heated by the heat generating head 38b and blown into the water tub 3 to evaporate the moisture in the laundry in the rotating tub and advance the drying. Thereafter, the end of drying is detected by detection of a humidity sensor or a temperature sensor (not shown) and the operation is terminated. A drainage hole (not shown) is provided at the bottom of the ventilation path 25 below the heat absorption head 38a. When water (drain water) is condensed on the bottom heat absorption head 38a, the ventilation path 25 and the drainage hose 17 are discharged from the drainage hole. It is drained by a drain hose that connects the two.
[0143] 以上のように、本発明の実施形態 2— 1によれば、回転槽 5を回転させるモータ 19 のモータ軸 19aにクラッチ機構 22を設けることにより、モータ 19の回転駆動力を熱交 換部 24に伝達して熱交換部 24を作動させることができるので、逆スターリングサイク ルを作動させる電動機を別途設ける必要がなぐ省エネ性の高!/、洗濯機を提供する こと力 Sできる。また、通風経路 25を本体 1内下方に設けているので、本体 1天面と水 槽 3上端に大きな空間を設ける必要がなぐ水槽 3の配置高さを高くでき、洗濯物の 取り出しやすい洗濯機とすることができる。さらに、水槽 3の下方にその中心線に沿つ て重心が配置されているので、振動防止の錘としても作用させることができ、静音性 を高めること力 Sできる。また、通風経路 25の一部を熱交換部 24の下方、かつ排水路 15または排水ホース 17の上方、すなわち両者の間に配置しているので、熱交換部 により冷却除湿されたドレイン水の排水経路を短くでき、速やかに排水することができ [0143] As described above, according to Embodiment 2-1 of the present invention, by providing the clutch mechanism 22 on the motor shaft 19a of the motor 19 that rotates the rotating tub 5, the rotational driving force of the motor 19 is exchanged with heat. Since the heat exchange unit 24 can be operated by transmitting it to the exchange unit 24, it is possible to provide a high energy-saving and / or washing machine that does not require a separate motor for operating the reverse Stirling cycle. In addition, since the ventilation path 25 is provided in the lower part of the main body 1, the arrangement height of the water tank 3 which does not require a large space on the main body 1 and the top of the water tank 3 can be increased. The washing machine can be easily taken out. Further, since the center of gravity is arranged below the water tank 3 along its center line, it can also act as a weight for preventing vibrations, and can increase the noise. In addition, since a part of the ventilation path 25 is disposed below the heat exchange unit 24 and above the drainage channel 15 or the drainage hose 17, that is, between the two, drainage of drain water cooled and dehumidified by the heat exchange unit The route can be shortened and drained quickly.
[0144] (実施形態 2— 2) [Embodiment 2—2]
以下、本発明の実施形態 2— 2を図 19から図 22を用いて説明する。図 19は、本発 明の実施形態 2— 2に係るドラム式洗濯乾燥機の断面図、図 20は図 19の要部拡大 図、図 21は図 20における B— B断面図、図 22はモータ軸 40b周りの構成の分解斜 視図である。なお、この実施形態 2— 2では、実施形態 2— 1と同じ構成については同 じ符号を付すとともに説明を省略する。  Hereinafter, Embodiment 2-2 of the present invention will be described with reference to FIGS. FIG. 19 is a cross-sectional view of the drum type washing and drying machine according to Embodiment 2-2 of the present invention, FIG. 20 is an enlarged view of the main part of FIG. 19, FIG. 21 is a cross-sectional view of FIG. FIG. 4 is an exploded perspective view of a configuration around a motor shaft 40b. In the embodiment 2-2, the same components as those in the embodiment 2-1 are denoted by the same reference numerals and description thereof is omitted.
[0145] 実施形態 2— 2において、水槽 3の背面には、モータの一例である駆動部 40および 通風経路 41が設けられている。駆動部 40は、図 20に示すように、外郭をモータカバ 一 40aにて覆われており、その内部に、一端が回転槽 5の背面中央部に連結された モータ軸 40bがベアリング 40cによって回転自在に支持されている。このモータ軸 40 bの他端には、ロータ 40dが取り付けられており、その外周側に設けられたステータ 4 0eによって回転駆動力を与えるインナーロータタイプのダイレクトドライブ方式の構成 を有している。また、モータ軸 40bには、そのモータ軸 40bの一部が大径となる連結 部 40fが設けられている。連結部 40fは、図 22に示すように、 90° 毎に一部が径方 向に突出するように断面十字形状に形成されて!/、る。  In Embodiment 2-2, a drive unit 40 and a ventilation path 41, which are examples of a motor, are provided on the back surface of the water tank 3. As shown in FIG. 20, the drive unit 40 is covered with a motor cover 40a, and a motor shaft 40b, one end of which is connected to the center of the back surface of the rotary tank 5, is freely rotatable by a bearing 40c. It is supported by. A rotor 40d is attached to the other end of the motor shaft 40b, and has an inner rotor type direct drive system configuration in which a rotational driving force is applied by a stator 40e provided on the outer peripheral side thereof. Further, the motor shaft 40b is provided with a connecting portion 40f in which a part of the motor shaft 40b has a large diameter. As shown in FIG. 22, the connecting portion 40f is formed in a cross-shaped cross section so that a part protrudes in the radial direction every 90 °.
[0146] また、水槽 3の背面から周面にかけて、通風経路 41が設けられている。背面側に設 けられた通風経路 41は、水槽 3の背面の周縁部に略沿うように、駆動部 40を上方か ら右回り方向にその外周を取り囲むように配されており、背面上端から水槽 3周面を 前方に向かって伸長するように設けられている。通風経路 41は、図 21に示すように、 水槽 3内との連通口である排気口 41 aと、通風経路 41の外郭であるケーシング 4 lbと 、水槽 3背面とケーシング 41bとの間で形成される水槽背面経路 41cと、通風経路 41 の気流源である送風機 41 dと、水槽 3周面とケーシング 4 lbとの間で形成される水槽 周面経路 41 eとで構成されている。水槽背面経路 41cには後述する熱交換部 48の 吸熱ヘッド 54aおよび発熱ヘッド 54bが突出して設けられており、吸熱ヘッド 54aおよ び発熱ヘッド 54bにより水槽背面経路 41cの空気が冷却除湿および加熱されて乾燥 に供される。また、図示しないが水槽周面経路 41eの水槽 3内への給気口は、通風 経路 41を通過した空気が回転槽 5の開口部 5aから回転槽 5内へと吹き込まれるよう に配されている。なお、送風機 41dが上記ファンの一例、水槽背面経路 41cと水槽周 面経路 41 eとが上記循環ダクトの一例である。 [0146] Further, a ventilation path 41 is provided from the back surface to the peripheral surface of the water tank 3. The ventilation path 41 provided on the rear side is arranged so as to surround the outer periphery of the drive unit 40 in the clockwise direction from above so as to substantially follow the peripheral edge of the rear surface of the aquarium 3. It is provided so that the three circumferential surfaces of the water tank extend forward. As shown in FIG. 21, the ventilation path 41 is formed between an exhaust port 41a that is a communication port with the inside of the water tank 3, a casing 4 lb that is an outline of the ventilation path 41, and a rear surface of the water tank 3 and the casing 41b. Water tank rear surface path 41c, air blower 41d which is the air flow source of the air flow path 41, and water tank formed between the water tank 3 circumferential surface and the casing 4 lb And a circumferential path 41 e. A heat absorbing head 54a and a heat generating head 54b of a heat exchanging section 48, which will be described later, protrude from the water tank rear path 41c, and the air in the water tank rear path 41c is cooled and dehumidified and heated by the heat absorbing head 54a and the heat generating head 54b. To be dried. Although not shown, the air supply port to the water tank 3 in the water tank peripheral surface path 41e is arranged so that the air that has passed through the ventilation path 41 is blown into the rotation tank 5 from the opening 5a of the rotation tank 5. Yes. The blower 41d is an example of the fan, and the water tank rear surface path 41c and the water tank peripheral surface path 41e are examples of the circulation duct.
[0147] モータ軸 40bの外周には、図 20に示すように、連結部 40fに隣接して連動軸 42が 回動可能に配されている。連動軸 42は、図 22に示すように、連結部 40fに隣接する 部分が小径、離れた部分が大径となるように構成されている。連動軸 42の小径な部 分である小径部 42aは、図 22に示すように、 90° 毎に一部が径方向に突出するよう に断面十字形状に形成され、連結部 40fと同形状に形成されている。対して、連動 軸 42の大径な部分である大径部 42bは、歯車状に形成されており、この歯車が後述 する伝達歯車 46と連結して、回転駆動力を伝達するようになっている。  [0147] On the outer periphery of the motor shaft 40b, as shown in Fig. 20, an interlocking shaft 42 is rotatably disposed adjacent to the connecting portion 40f. As shown in FIG. 22, the interlocking shaft 42 is configured such that a portion adjacent to the connecting portion 40f has a small diameter and a portion apart from the connecting portion 40f has a large diameter. As shown in FIG. 22, the small-diameter portion 42a, which is the small-diameter portion of the interlocking shaft 42, is formed in a cross-shaped cross section so that a portion protrudes in the radial direction every 90 °, and has the same shape as the connecting portion 40f. Is formed. On the other hand, the large-diameter portion 42b, which is the large-diameter portion of the interlocking shaft 42, is formed in a gear shape, and this gear is connected to a transmission gear 46, which will be described later, so as to transmit the rotational driving force. Yes.
[0148] 連結部 40fの外周には、図 20に示すように、クラッチ片 43が設けられている。クラッ チ片 43は磁性体で構成されており、図 22に示すように、その外周側は円周状に形 成されるとともに、内周側は 90° 毎に一部が径方向に窪むように形成され、この内周 側に連動軸 42の小径部 42aおよび連結部 40fの外周が嵌合するように構成されてい る。連動軸 42の大径部 42bとクラッチ片 43との間にはコイルバネ 44が圧縮配置され ており、クラッチ片 43を連結部 40fのみと嵌合させるように付勢している。クラッチ片 4 3の外周側には、図 20に示すように、磁力を発生してクラッチ片 43に斥力を発生させ るソレノイド 45が配されている。ソレノイド 45は、その駆動によりクラッチ片 43をコイル バネ 44の付勢力に抗して移動させ、クラッチ片 43を連結部 40fおよび連動軸 42双 方と嵌合させて、モータ軸 40bの回転駆動力を後述する伝達歯車 46へと伝達するよ うにその付勢力が調整されている。  [0148] As shown in FIG. 20, a clutch piece 43 is provided on the outer periphery of the connecting portion 40f. The clutch piece 43 is made of a magnetic material, and as shown in FIG. 22, the outer peripheral side is formed in a circular shape, and the inner peripheral side is partially recessed in the radial direction every 90 °. The outer periphery of the small-diameter part 42a of the interlocking shaft 42 and the connecting part 40f is formed on the inner periphery. A coil spring 44 is compressively disposed between the large-diameter portion 42b of the interlocking shaft 42 and the clutch piece 43, and urges the clutch piece 43 to be engaged only with the connecting portion 40f. On the outer peripheral side of the clutch piece 43, as shown in FIG. 20, a solenoid 45 that generates a magnetic force to generate a repulsive force on the clutch piece 43 is disposed. The solenoid 45 is driven to move the clutch piece 43 against the urging force of the coil spring 44, and the clutch piece 43 is engaged with both the connecting portion 40f and the interlocking shaft 42 to rotate the driving force of the motor shaft 40b. The urging force is adjusted so as to be transmitted to a transmission gear 46 described later.
[0149] 連動軸 42の大径部 42bの下方には、図 20に示すように、伝達歯車 46が配されて いる。伝達歯車 46は、その上方で連動軸 42の大径部 42bの歯車と連結し、また、そ の下方に設けられたクランク歯車 47の歯車部とも連結して!/、る。クランク歯車 47は、 小径の歯車部 47a (図 22の破線部)と、円盤状の大径部 47bと、大径部 47bの歯車 部 47aが設けられた面とは反対側の面から垂直方向に突出する円柱状のクランクピ ン 47cより構成されている。クランク歯車 47の下方には、図 20に示すように、熱交換 部 48が設けられている。なお、連動軸 42、クラッチ片 43、コイルバネ 44、ソレノイド 4 5、伝達歯車 46およびクランク歯車 47が上記伝達部の一例である。 [0149] A transmission gear 46 is arranged below the large-diameter portion 42b of the interlocking shaft 42 as shown in FIG. The transmission gear 46 is connected to the gear of the large-diameter portion 42b of the interlocking shaft 42 above the transmission gear 46, and is also connected to the gear portion of the crank gear 47 provided therebelow. Crank gear 47 A small-diameter gear 47a (broken line in FIG. 22), a disk-shaped large-diameter 47b, and a cylindrical shape that protrudes vertically from the surface of the large-diameter 47b opposite to the surface on which the gear 47a is provided. The crankpin is composed of 47c. A heat exchanging section 48 is provided below the crank gear 47 as shown in FIG. The interlocking shaft 42, the clutch piece 43, the coil spring 44, the solenoid 45, the transmission gear 46, and the crank gear 47 are examples of the transmission unit.
[0150] ここで、熱交換部 48について、図 23を用いて説明を行なう。図 23は、図 20の C C断面図である。 Here, the heat exchanging unit 48 will be described with reference to FIG. FIG. 23 is a CC cross-sectional view of FIG.
[0151] 熱交換部 48は、本実施の形態では、 V型 2ピストンのスターリング冷凍機を用いる。  [0151] The heat exchanging section 48 uses a V-type two-piston Stirling refrigerator in the present embodiment.
図 23に示すように、その外郭をモータカバー 40aと一体に構成されるともに、吸熱側 クランク 49a、発熱側クランク 49b、吸熱側クロスヘッド 50a、発熱側クロスヘッド 50b、 吸熱側ピストンピン 51a、発熱側ピストンピン 51b、吸熱側ピストン 52a、発熱側ピスト ン 52b、低温室 53a、高温室 53b、吸熱ヘッド 54a、発熱ヘッド 54b、低温室空気出 入口 55a、高温室空気出入口 55b、低温空気通路 56a、高温空気通路 56b、再生器 57を備えている。  As shown in FIG. 23, the outer shell is configured integrally with the motor cover 40a, and the heat absorption side crank 49a, the heat generation side crank 49b, the heat absorption side cross head 50a, the heat generation side cross head 50b, the heat absorption side piston pin 51a, the heat generation side. Side piston pin 51b, heat absorption side piston 52a, heat generation side piston 52b, low temperature chamber 53a, high temperature chamber 53b, heat absorption head 54a, heat generation head 54b, low temperature chamber air inlet / outlet 55a, high temperature chamber air inlet / outlet 55b, low temperature air passage 56a, A hot air passage 56b and a regenerator 57 are provided.
[0152] 吸熱側クランク 49aおよび発熱側クランク 49bは、その一端がクランクピン 47cに回 動可能に連結している。一方、吸熱側クランク 49aおよび発熱側クランク 49bの他端 は、吸熱側クロスヘッド 50aおよび発熱側クロスヘッド 50bに回動可能に連結し、クラ ンクピン 47cより伝達される駆動部 40の回転駆動力を伝達する。吸熱側クロスヘッド 5 0aおよび発熱側クロスヘッド 50bは、円筒状に形成されたモータカバー 40aの内周 面と揺動可能に内嵌されており、吸熱側クランク 49aおよび発熱側クランク 49bより伝 達される駆動力を、吸熱側クロスヘッド 50aおよび発熱側クロスヘッド 50bに接続され た吸熱側ピストンピン 5 laおよび発熱側ピストンピン 5 lbへと、それぞれのピストンピン の軸方向に伝達する。吸熱側ピストンピン 51aおよび発熱側ピストンピン 51bは、その 軸方向が水槽 3背面方向より見て略直角となるように配されている。  [0152] One end of each of the heat absorption side crank 49a and the heat generation side crank 49b is rotatably connected to the crank pin 47c. On the other hand, the other ends of the heat absorption side crank 49a and the heat generation side crank 49b are rotatably connected to the heat absorption side cross head 50a and the heat generation side cross head 50b, and the rotational driving force of the drive unit 40 transmitted from the crank pin 47c is generated. introduce. The heat absorption side crosshead 50a and the heat generation side crosshead 50b are swingably fitted to the inner surface of the cylindrical motor cover 40a, and are transmitted from the heat absorption side crank 49a and the heat generation side crank 49b. The generated driving force is transmitted in the axial direction of each piston pin to the heat absorption side piston pin 5 la and the heat generation side piston pin 5 lb connected to the heat absorption side cross head 50a and the heat generation side cross head 50b. The heat absorption side piston pin 51a and the heat generation side piston pin 51b are arranged so that the axial directions thereof are substantially perpendicular when viewed from the back side of the water tank 3.
[0153] また、吸熱側ピストンピン 51aおよび発熱側ピストンピン 51bは、その一端が吸熱側 クロスヘッド 50aおよび発熱側クロスヘッド 50bに接続され、他端が吸熱側ピストン 52 aおよび発熱側ピストン 52bに接続されている。吸熱側ピストン 52aおよび発熱側ビス トン 52bは、円筒状に形成されたモータカバー 40aの内周面と摺動可能に、かつ吸 熱側ピストン 52aおよび発熱側ピストン 52bとモータカバー 40aの内周面の間のそれ ぞれの摺動面が気密に封止されるように内嵌している。吸熱側ピストン 52aおよび発 熱側ピストン 52bの、吸熱側ピストンピン 51aおよび発熱側ピストンピン 51bとが取り付 けられた面とは反対側の面の側には、低温室 53aおよび高温室 53bが設けられてお り、その先端側が吸熱ヘッド 54aおよび発熱ヘッド 54bにより閉塞されている。 [0153] Further, one end of the heat absorption side piston pin 51a and the heat generation side piston pin 51b is connected to the heat absorption side cross head 50a and the heat generation side cross head 50b, and the other end is connected to the heat absorption side piston 52a and the heat generation side piston 52b. It is connected. The heat absorption side piston 52a and the heat generation side piston 52b are slidable on the inner peripheral surface of the motor cover 40a formed in a cylindrical shape, Each sliding surface between the heat side piston 52a and the heat generation side piston 52b and the inner peripheral surface of the motor cover 40a is fitted so as to be hermetically sealed. On the side of the heat absorption side piston 52a and the heat generation side piston 52b opposite to the surface where the heat absorption side piston pin 51a and the heat generation side piston pin 51b are attached, there are a low temperature chamber 53a and a high temperature chamber 53b. The tip end side is closed by the heat absorbing head 54a and the heat generating head 54b.
[0154] 低温室 53aおよび高温室 53bは、本体後方側に向かって開口する低温室空気出 入口 55aおよび高温室空気出入口 55bを有しており、それぞれ低温室空気出入口 5 5aおよび高温室空気出入口 55bを介して低温空気通路 56aおよび高温空気通路 5 6bに連通している。低温空気通路 56aおよび高温空気通路 56bの間の経路には、 再生器 57が接続されている。低温室 53a内の空気は、吸熱側ピストン 52aの動作に より低温室空気出入口 55a、低温空気通路 56a、再生器 57、高温空気通路 56b、高 温室空気出入口 55bを介して高温室 53bへ送られ、逆に、高温室 53b内の空気は、 発熱側ピストン 52bの動作により高温室空気出入口 55b、高温空気通路 56b、再生 器 57、低温空気通路 56a、低温室空気出入口 55aを介して低温室 53aへ送られる。 この際、再生器 57は、高温空気通路 56bから流れ込む空気の熱を吸収し、低温空 気通路 56aから流れ込む空気に熱を排出して、低温室 53a内の空気が低温、高温室 53bの空気が高温を維持するように作用する。  [0154] The low greenhouse 53a and the high temperature chamber 53b have a low temperature room air inlet / outlet 55a and a high temperature room air inlet / outlet 55b that open toward the rear side of the main body, and the low temperature room air inlet / outlet 55a and the high temperature room air inlet / outlet respectively. It communicates with the low temperature air passage 56a and the high temperature air passage 56b through 55b. A regenerator 57 is connected to the path between the low temperature air path 56a and the high temperature air path 56b. Air in the low greenhouse 53a is sent to the high temperature chamber 53b through the low temperature chamber air inlet / outlet 55a, the low temperature air passage 56a, the regenerator 57, the high temperature air passage 56b, and the high greenhouse air inlet / outlet 55b by the operation of the heat absorption side piston 52a. On the contrary, the air in the high temperature chamber 53b is moved into the low temperature chamber 53a through the operation of the heat generating piston 52b through the high temperature chamber air inlet / outlet 55b, the high temperature air passage 56b, the regenerator 57, the low temperature air passage 56a, and the low temperature chamber air inlet / outlet 55a. Sent to. At this time, the regenerator 57 absorbs the heat of the air flowing from the high temperature air passage 56b and discharges the heat to the air flowing from the low temperature air passage 56a, so that the air in the low temperature chamber 53a is low temperature and the air in the high temperature chamber 53b. Acts to maintain a high temperature.
[0155] 次に、本発明の実施形態 2— 2の乾燥工程の要部の動作について図 21、図 23か ら図 26を用いて説明する。図 24は、図 23の状態からクランク歯車 47を 90° 回転さ せた状態の要部拡大図、図 25は、図 23の状態からクランク歯車 47を 180° 回転さ せた状態の要部拡大図、図 26は、図 23の状態からクランク歯車 47を 270° 回転さ せた状態の要部拡大図である。  Next, the operation of the main part of the drying process of Embodiment 2-2 of the present invention will be described with reference to FIG. 21, FIG. 23 to FIG. Fig. 24 is an enlarged view of the main part when the crank gear 47 is rotated 90 ° from the state of Fig. 23, and Fig. 25 is an enlarged view of the main part when the crank gear 47 is rotated 180 ° from the state of Fig. 23. FIG. 26 and FIG. 26 are enlarged views of essential parts in a state where the crank gear 47 is rotated 270 ° from the state of FIG.
[0156] 乾燥工程が開始されると、送風機 41dが駆動して通風経路 41内の送風が行なわれ るとともに、ソレノイド 45が駆動されてクラッチ片 43が連結部 40fおよび連動軸 42に 嵌合して、駆動部 40の回転駆動力が連動軸 42に伝達可能となる。この状態で駆動 部 40を図 21に示すように右回りである矢印 e方向に回動させると、回転槽 5が後方か ら見てモータ軸 40bを中心に右回りに回動し、また、連動軸 42も同じ矢印 e方向に回 動して、伝達歯車 46を左回りである矢印 f方向に回動させる。伝達歯車 46に伝達さ れた回転駆動力は、これに嵌合するクランク歯車 47を矢印 g方向に回動させて熱交 換部 48が駆動される。 [0156] When the drying process is started, the blower 41d is driven to blow air in the ventilation path 41, and the solenoid 45 is driven to engage the clutch piece 43 with the connecting portion 40f and the interlocking shaft 42. Thus, the rotational driving force of the drive unit 40 can be transmitted to the interlocking shaft 42. In this state, when the drive unit 40 is rotated in the clockwise direction e as shown in FIG. 21, the rotating tub 5 is rotated clockwise around the motor shaft 40b when viewed from the rear, and The interlocking shaft 42 also rotates in the same arrow e direction to rotate the transmission gear 46 in the counterclockwise arrow f direction. Transmitted to transmission gear 46 The rotation driving force rotates the crank gear 47 fitted thereto in the direction of the arrow g to drive the heat exchanging portion 48.
[0157] 図 23の状態において、クランク歯車 47が図 21における矢印 g方向に駆動されて図 24の状態になる間に、吸熱側クランク 49aは、吸熱側クロスヘッド 50aを上方へ持ち 上げる方向へ、発熱側クランク 49bは、発熱側クロスヘッド 50bを下方へと押し込む方 向へ駆動させ、吸熱側ピストン 52aにより低温室 53a内の気体を膨張、発熱側ピスト ン 52bにより高温室 53b内の気体を圧縮させるため、高温室 53bの気体は再生器 57 を通って急速に低温室 53aへと移動する。このとき、低温室 53aへと移動する気体の 熱量は再生器 57に蓄熱され、温度が低下した気体が低温室 53aへと吹き込まれる。  In the state of FIG. 23, while the crank gear 47 is driven in the direction of the arrow g in FIG. 21 and enters the state of FIG. 24, the heat absorption side crank 49a moves the heat absorption side crosshead 50a upward. The heat generation side crank 49b drives the heat generation side crosshead 50b to push downward, expands the gas in the low temperature chamber 53a by the heat absorption side piston 52a, and expands the gas in the high temperature chamber 53b by the heat generation side piston 52b. In order to compress, the gas in the high temperature chamber 53b rapidly moves to the low temperature chamber 53a through the regenerator 57. At this time, the amount of heat of the gas moving to the low temperature chamber 53a is stored in the regenerator 57, and the gas whose temperature has decreased is blown into the low temperature chamber 53a.
[0158] クランク歯車 47の回動が進んで、図 24の状態から図 25の状態へと移行する間に は、吸熱側クランク 49aおよび発熱側クランク 49bは、吸熱側クロスヘッド 50aおよび 発熱側クロスヘッド 50bを上方へと持ち上げる方向へ駆動させ、吸熱側ピストン 52a および発熱側ピストン 52bにより低温室 53a内および高温室 53b内の気体を膨張さ せる。このとき低温室 53aの気体の膨張率は高温室 53bに比べ非常に大きぐ低温 室 53aの気体の圧力および温度は下降するため、吸熱ヘッド 54aの温度は下降する  [0158] While the rotation of the crank gear 47 advances and the transition from the state of Fig. 24 to the state of Fig. 25 is made, the heat absorption side crank 49a and the heat generation side crank 49b are connected to the heat absorption side cross head 50a and the heat generation side cross. The head 50b is driven upward and the gas in the low temperature chamber 53a and the high temperature chamber 53b is expanded by the heat absorption side piston 52a and the heat generation side piston 52b. At this time, the expansion rate of the gas in the low temperature chamber 53a is much larger than that in the high temperature chamber 53b, and the pressure and temperature of the gas in the low temperature chamber 53a decrease, so the temperature of the endothermic head 54a decreases.
[0159] クランク歯車 47の回動が進んで、図 25の状態から図 26の状態へと移行する間に は、吸熱側クランク 49aは吸熱側クロスヘッド 50aを下方へ押し込む方向へ、発熱側 クランク 49bは発熱側クロスヘッド 50bを上方へ持ち上げる方向へ駆動させ、吸熱側 ピストン 52aにより低温室 53a内の気体を圧縮、発熱側ピストン 52bにより高温室 53b 内の気体を膨張させるため、低温室 53aの気体は再生器 57を通って急速に高温室 53bへと移動する。このとき、高温室 53bへと移動する気体は再生器 57に蓄熱された 熱量によって加熱されて温度が上昇し、高温室 53b内の温度を上昇させる。 [0159] While the rotation of the crank gear 47 advances and the state of FIG. 25 shifts to the state of FIG. 26, the heat absorption side crank 49a pushes the heat absorption side crosshead 50a downward, and the heat generation side crank 49b drives the heat generating side cross head 50b to lift upward, compresses the gas in the low temperature chamber 53a by the heat absorption side piston 52a, and expands the gas in the high temperature chamber 53b by the heat generation side piston 52b. The gas rapidly moves through the regenerator 57 to the high temperature chamber 53b. At this time, the gas moving to the high temperature chamber 53b is heated by the amount of heat stored in the regenerator 57, the temperature rises, and the temperature in the high temperature chamber 53b rises.
[0160] クランク歯車 47の回動が進んで、図 26の状態から図 23の状態へと移行する間に は、吸熱側クランク 49aおよび発熱側クランク 49bは、吸熱側クロスヘッド 50aおよび 発熱側クロスヘッド 50bを下方へと押し下げる方向へ駆動させ、吸熱側ピストン 52a および発熱側ピストン 52bにより低温室 53a内および高温室 53b内の気体を圧縮さ せる。このとき高温室 53bの気体の圧縮率は低温室 53aに比べ非常に大きぐ高温 室 53bの気体の圧力および温度は上昇するため、発熱ヘッド 54bの温度は上昇する とともに、この高温室 53bの高圧で温度の上昇した気体が再生器 57を介して低温室 53aに吹き込まれる。この高温室 53bの高圧で温度が上昇した気体が再生器 57を通 過するに際して、この気体の熱量は再生器 57に蓄熱され、熱量が奪われて冷却した 気体が低温室 53aへと吹き込まれて、低温室 53aの温度を下降させる。このようにクラ ンク歯車 47が回動することにより吸熱ヘッド 54aは冷却、発熱ヘッド 54bは発熱し、そ れぞれクランク歯車 47の回転数に応じて温度が低下、上昇する。 [0160] While the rotation of the crank gear 47 advances and the state of FIG. 26 shifts to the state of FIG. 23, the heat absorption side crank 49a and the heat generation side crank 49b are connected to the heat absorption side cross head 50a and the heat generation side cross. The head 50b is driven downward and the gas in the low temperature chamber 53a and the high temperature chamber 53b is compressed by the heat absorption side piston 52a and the heat generation side piston 52b. At this time, the compressibility of the gas in the high temperature chamber 53b is much higher than that in the low temperature chamber 53a. Since the pressure and temperature of the gas in the chamber 53b rise, the temperature of the heat generating head 54b rises, and the gas whose temperature has increased at a high pressure in the high temperature chamber 53b is blown into the low temperature chamber 53a through the regenerator 57. When the gas whose temperature has been increased due to the high pressure in the high temperature chamber 53b passes through the regenerator 57, the heat quantity of this gas is stored in the regenerator 57, and the cooled gas is blown into the low temperature chamber 53a. To lower the temperature of the cold chamber 53a. As the crank gear 47 rotates in this manner, the heat absorbing head 54a cools and the heat generating head 54b generates heat, and the temperature decreases and increases according to the rotational speed of the crank gear 47, respectively.
[0161] 乾燥工程において、水槽 3内から排気口 41aを介して通風経路 41内に排出された 空気は、送風機 41dを経て、吸熱ヘッド 54aへと送られる。吸熱ヘッド 54aへ送られた 空気は、吸熱ヘッド 54aにて冷却除湿された後、発熱ヘッド 54bへと送られる。発熱 ヘッド 54bへ送られた空気は、発熱ヘッド 54bにて加熱され、上述した給気口を介し て水槽 3内へと吹き込まれて、回転槽内の洗濯物の水分を蒸発させて乾燥を進行さ せる。この後、図示しない湿度センサや温度センサ等の検知により乾燥終了を検知し て運転を終了させる。吸熱ヘッド 54a下方の水槽背面経路 41c底部には、図示しな い排水孔が設けられており、吸熱ヘッド 54aに結露した水(ドレイン水)が滴下すると、 この排水孔から水槽背面経路 41cと排水ホース 17を結ぶドレイン用ホースにより排水 される。 [0161] In the drying step, the air discharged from the water tank 3 into the ventilation path 41 through the exhaust port 41a is sent to the heat absorbing head 54a through the blower 41d. The air sent to the heat absorbing head 54a is cooled and dehumidified by the heat absorbing head 54a, and then sent to the heat generating head 54b. The air sent to the heat generating head 54b is heated by the heat generating head 54b and blown into the water tank 3 through the air supply port described above to evaporate the moisture of the laundry in the rotating tank and proceed with drying. Let Thereafter, the end of drying is detected by detection of a humidity sensor or a temperature sensor (not shown), and the operation is terminated. A drainage hole (not shown) is provided at the bottom of the water tank back path 41c below the endothermic head 54a. When water (drain water) is condensed on the endothermic head 54a, the water tank back path 41c and the drainage are drained from this drain hole. Drained by a drain hose connecting hose 17.
[0162] 以上のように、本発明の実施形態 2— 2によれば、上述した実施形態 2— 2による作 用効果に加えて、水槽 3背面に設けられたダイレクトドライブ型の駆動部 40の下方の 空きスペースにクラッチ機構を介して熱交換部 48を、逆スターリングサイクルが略逆 V字状または八の字となるように配することができるので、省スペースの洗濯機を提供 すること力 Sでさる。  [0162] As described above, according to the embodiment 2-2 of the present invention, in addition to the operation effect of the embodiment 2-2 described above, the direct drive type drive unit 40 provided on the back surface of the water tank 3 is provided. The heat exchange section 48 can be arranged in the lower empty space via the clutch mechanism so that the reverse Stirling cycle is substantially reversed V-shaped or eight-shaped, so that it is possible to provide a space-saving washing machine Touch with S.
[0163] また、洗濯物の取り出しを容易にするために、水槽 3と回転槽 5の開口部が斜め上 方に向けて配置したドラム式洗濯機の構成に適用した場合には、水槽 3と本体 1の下 方スペースを有効利用できるとともに、駆動部 40の下方に熱交換部 48が配置される ので重心位置が低くなる。加えて、重量物となる駆動部 40のモータ軸 58bを通る垂 直な中心線を挟んで、熱交換部 48の吸熱へッド 54a側と発熱へッド 54b側が略逆 V 次状に配置されるので、振動防止の錘としても作用させることができ、静音性を高め ること力 Sでさる。 [0163] In addition, in order to facilitate the removal of the laundry, when applied to the configuration of a drum-type washing machine in which the openings of the water tub 3 and the rotating tub 5 are disposed obliquely upward, The lower space of the main body 1 can be used effectively, and the center of gravity is lowered because the heat exchanging section 48 is disposed below the driving section 40. In addition, the heat absorption head 54a side and the heat generation head 54b side of the heat exchanging part 48 are arranged in a substantially reverse V order across the vertical center line passing through the motor shaft 58b of the heavy drive part 40. Therefore, it can also act as a vibration-proof weight, improving silence The power S
[0164] (実施形態 2— 3)  [0164] (Embodiment 2-3)
以下、本発明の実施形態 2— 3を図 27から図 30を用いて説明する。図 27は、本発 明の実施形態 2— 3に係るドラム式洗濯乾燥機の断面図、図 28は図 27の要部拡大 図、図 29は図 28における D— D断面図、図 30はモータ軸 58b周りの構成の分解斜 視図である。なお、この実施形態 2— 3では、実施形態 2— 2と同じ構成については同 じ符号を付すとともに説明を省略する。  Hereinafter, Embodiment 2-3 of the present invention will be described with reference to FIGS. FIG. 27 is a cross-sectional view of the drum-type washer / dryer according to Embodiment 2-3 of the present invention, FIG. 28 is an enlarged view of the main part of FIG. 27, FIG. 29 is a cross-sectional view of FIG. FIG. 5 is an exploded perspective view of a configuration around a motor shaft 58b. In Embodiment 2-3, the same components as those in Embodiment 2-2 are given the same reference numerals and description thereof is omitted.
[0165] 実施形態 2— 3において、水槽 3の背面には、モータの一例である駆動部 58が設け られている。駆動部 58は、図 28に示すように、外郭をモータカバー 58aにて覆われ ており、その内部に、一端が回転槽 5の背面中央部に連結されたモータ軸 58bがべ ァリング 58cによって回転自在に支持されている。このモータ軸 58bの他端には、口 ータ 58eが取り付けられており、その外周側に設けられたステータ 58dによって回転 駆動力を与えるアウターロータタイプのダイレクトドライブ方式の構成を有している。ま た、モータ軸 58bには、そのモータ軸 58bの一部が大径となる連結部 58fが設けられ ている。連結部 58fは、図 30に示すように、 90° 毎に一部が径方向に突出するよう に断面十字形状に形成されてレ、る。  [0165] In Embodiments 2-3, a drive unit 58, which is an example of a motor, is provided on the back surface of the water tank 3. As shown in FIG. 28, the drive unit 58 is covered with a motor cover 58a, and a motor shaft 58b, one end of which is connected to the center of the back surface of the rotary tank 5, is rotated by the bearing 58c. It is supported freely. A motor 58e is attached to the other end of the motor shaft 58b, and has an outer rotor type direct drive system configuration in which a rotational driving force is applied by a stator 58d provided on the outer peripheral side thereof. Further, the motor shaft 58b is provided with a connecting portion 58f in which a part of the motor shaft 58b has a large diameter. As shown in FIG. 30, the connecting portion 58f is formed in a cross-shaped cross section so that a part thereof protrudes in the radial direction every 90 °.
[0166] モータ軸 58bの外周には、図 28に示すように、連結部 58fに隣接して連動軸 59が 回動可能に配されている。連動軸 59は、連結部 58fに隣接する部分が小径、離れた 部分が大径となるように構成されている。連動軸 59の小径な部分である小径部 59a は、図 30に示すように、 90° 毎に一部が径方向に突出するように断面十字形状に 形成され、連結部 58fと同形状に形成されている。対して、連動軸 59の大径な部分 である大径部 59bは、歯車状に形成されており、この歯車が後述する連結歯車 63と 連結して、回転駆動力を伝達するようになっている。  [0166] On the outer periphery of the motor shaft 58b, as shown in FIG. 28, an interlocking shaft 59 is rotatably disposed adjacent to the connecting portion 58f. The interlocking shaft 59 is configured such that a portion adjacent to the connecting portion 58f has a small diameter and a portion away from the connecting portion 58f has a large diameter. The small-diameter portion 59a, which is the small-diameter portion of the interlocking shaft 59, is formed in a cross-shaped cross section so that a portion protrudes in the radial direction every 90 ° as shown in FIG. 30, and is formed in the same shape as the connecting portion 58f. Has been. On the other hand, the large-diameter portion 59b, which is the large-diameter portion of the interlocking shaft 59, is formed in a gear shape, and this gear is connected to a connecting gear 63 described later to transmit the rotational driving force. Yes.
[0167] 連結部 58fの外周には、図 28に示すように、クラッチ片 60が設けられている。クラッ チ片 60は磁性体で構成されており、図 30に示すように、その外周側は円周状に形 成されるとともに、内周側は 90° 毎に一部が径方向に窪むように形成され、この内周 側に連動軸 59の小径部 59aおよび連結部 58fの外周が嵌合するように構成されてい る。連動軸 59の大径部 59bとクラッチ片 60との間にはコイルバネ 61が圧縮配置され ており、クラッチ片 60を連結部 58fのみと嵌合させるように付勢している。クラッチ片 6 0の外周側には、図 28に示すように、磁力を発生してクラッチ片 60に斥力を発生させ るソレノイド 62が配されている。ソレノイド 62は、その駆動によりクラッチ片 60をコイル バネ 61の付勢力に抗して移動させ、クラッチ片 60を連結部 58fおよび連動軸 59双 方と嵌合させて、モータ軸 58bの回転駆動力を後述する連結歯車 63へと伝達する。 [0167] As shown in FIG. 28, a clutch piece 60 is provided on the outer periphery of the connecting portion 58f. The clutch piece 60 is made of a magnetic material, and as shown in FIG. 30, the outer peripheral side is formed in a circular shape, and the inner peripheral side is partially recessed in the radial direction every 90 °. The outer periphery of the small-diameter portion 59a of the interlocking shaft 59 and the connecting portion 58f is configured to be formed on this inner peripheral side. A coil spring 61 is compressed between the large diameter portion 59b of the interlocking shaft 59 and the clutch piece 60. The clutch piece 60 is urged so as to be engaged with only the connecting portion 58f. On the outer peripheral side of the clutch piece 60, as shown in FIG. 28, a solenoid 62 for generating a magnetic force and generating a repulsive force on the clutch piece 60 is disposed. The solenoid 62 moves the clutch piece 60 against the urging force of the coil spring 61 by the drive, and engages the clutch piece 60 with both the connecting portion 58f and the interlocking shaft 59, thereby rotating the driving force of the motor shaft 58b. Is transmitted to a connecting gear 63 described later.
[0168] 連動軸 59の大径部 59bの下方には、図 28に示すように、連結歯車 63が配されて いる。連結歯車 63は、その上方で連動軸 59の大径部 59bの歯車と連結し、また、そ の歯車軸方向に配されたスライド歯車 64とも連結している。スライド歯車 64は、その 下方で第 1の小伝達歯車 65または伝達歯車 67と連結し、この第 1の小伝達歯車 65 はその下方で第 2の小伝達歯車 66と連結している。また、第 2の小伝達歯車 66およ び伝達歯車 67はその下方でクランク歯車 68と連結している。クランク歯車 68は、小 径の歯車部 68a (図 30の破線部)と、円盤状の大径部 68bと、大径部の歯車部が設 けられた面とは反対側の面から垂直方向に突出する円柱状のクランクピン 68cより構 成されている。クランク歯車 68の下方には、図 28に示すように、熱交換部 48が設け られている。本実施の形態では、熱交換部 48は、実施形態 2— 2と同様に V型 2ビス トンのスターリング冷凍機を用いる。なお、連動軸 59、クラッチ片 60、コイルバネ 61、 ソレノイド 62、連結歯車 63、スライド歯車 64、第 1の小伝達歯車 65、第 2の小伝達歯 車 66、伝達歯車 67およびクランク歯車 68が上記伝達部の一例である。  [0168] A connecting gear 63 is arranged below the large-diameter portion 59b of the interlocking shaft 59, as shown in FIG. The connecting gear 63 is connected to the gear of the large-diameter portion 59b of the interlocking shaft 59 above the connecting gear 63, and is also connected to the slide gear 64 arranged in the gear shaft direction. The slide gear 64 is coupled to the first small transmission gear 65 or the transmission gear 67 below the slide gear 64, and the first small transmission gear 65 is coupled to the second small transmission gear 66 below the slide gear 64. Further, the second small transmission gear 66 and the transmission gear 67 are connected to the crank gear 68 below the second transmission gear 66 and the transmission gear 67. The crank gear 68 is perpendicular to the surface opposite to the surface on which the small-diameter gear portion 68a (the broken line portion in FIG. 30), the disk-shaped large-diameter portion 68b, and the large-diameter gear portion are provided. It is composed of a cylindrical crankpin 68c that protrudes into the center. A heat exchanging section 48 is provided below the crank gear 68 as shown in FIG. In the present embodiment, the heat exchanging section 48 uses a V-type 2-biston Stirling refrigerator as in the embodiment 2-2. The interlocking shaft 59, clutch piece 60, coil spring 61, solenoid 62, coupling gear 63, slide gear 64, first small transmission gear 65, second small transmission gear 66, transmission gear 67, and crank gear 68 are described above. It is an example of a transmission part.
[0169] ここで、連結歯車 63とスライド歯車 64について、図 31を用いて説明を行なう。図 31 の(a)はスライド歯車 64の上面図、(b)は(a)の F矢視図、(c)は(a)の G矢視図、(d) は連結歯車 63の上面図、(e)は(d)の H矢視図、 (f)は(e)の I— I断面図、 (g)は(e) の J J断面図、(h)は(e)の K K断面図、(i)は(e)の L L断面図である。  Here, the connection gear 63 and the slide gear 64 will be described with reference to FIG. 31 (a) is a top view of the slide gear 64, (b) is a view from the arrow F in (a), (c) is a view from the arrow G in (a), and (d) is a top view of the connecting gear 63. , (E) is a view taken along the arrow H in (d), (f) is a sectional view taken along the line I-I in (e), (g) is a sectional view taken along the line JJ in (e), and (h) is a sectional view taken along the KK in (e). Fig. (I) is an LL cross-sectional view of (e).
[0170] スライド歯車 64は、図 31 (a)〜(c)に示すように、歯車部 64bとその歯車部 64bの 一方の側面より歯車軸方向に伸長する円柱部 64aと、円柱部 64aの先端からその円 柱軸と垂直をなす方向に伸長する円柱状のピン部 64cとピン部 64cと反対方向に向 力、つて伸長する円柱状のピン部 64dより構成される。連結歯車 63は、図 31 (c!)〜(i) に示すように、歯車部 63bとその歯車部 63bの一方の側面より歯車軸方向に伸長す る円柱部 63aと、円柱部 63aの円柱軸方向に向けて設けられるとともに円柱部 64aが 揷入される穴部 63cと、穴部 63cの周面に垂直に螺旋状に穿たれてスライド歯車 64 のピン部 64dが揷入されるとともにピン部 64dが円柱部 64aの円柱軸周りに略 180度 スライド移動可能に形成されるスライド穴 63dと、穴部 63cの周面に垂直に螺旋状に 穿たれてスライド歯車 64のピン部 64cが揷入されるとともにピン部 64cが円柱部 64a の円柱軸周りに略 180度スライド移動可能に形成されるスライド穴 63eより構成される [0170] As shown in FIGS. 31 (a) to (c), the slide gear 64 includes a gear portion 64b, a cylindrical portion 64a extending in the gear axis direction from one side surface of the gear portion 64b, and a cylindrical portion 64a. It consists of a cylindrical pin part 64c extending from the tip in a direction perpendicular to the cylindrical axis, and a cylindrical pin part 64d extending in the opposite direction to the pin part 64c. As shown in FIGS. 31 (c!) To (i), the connecting gear 63 includes a gear portion 63b, a cylindrical portion 63a extending in the gear axis direction from one side surface of the gear portion 63b, and a cylindrical portion of the cylindrical portion 63a. The cylindrical part 64a is provided in the axial direction A hole 63c to be inserted, and a pin portion 64d of the slide gear 64 which is formed in a spiral shape perpendicularly to the peripheral surface of the hole 63c, is inserted, and the pin portion 64d is substantially around the cylinder axis of the cylinder portion 64a. A slide hole 63d formed so as to be slidable by 180 degrees, and a pin portion 64c of the slide gear 64 is inserted into a spiral shape perpendicularly to the peripheral surface of the hole portion 63c and the pin portion 64c is inserted into the cylindrical portion 64a. Consists of a slide hole 63e formed so that it can slide about 180 degrees around the cylinder axis
[0171] 次に、連結歯車 63が連動軸 59より回転駆動力を与えられた場合の動作について 説明する。まず、連結歯車 63が第 1の小伝達歯車 65と連結している場合において、 連結歯車 63が連動軸 59より回転駆動力を与えられて、図 31 (e)における右周り(時 計回り)方向に回動すると、ピン部 64cはスライド穴 63e、ピン部 64dはスライド穴 63d を円柱部 64aの円柱軸周りに略 180度スライドして、円柱部 64aは穴部 63cより抜け る方向にスライド移動する。すなわち、歯車部 64bは、図 30における手前側へとスラ イド移動して第 1の小伝達歯車 65との連結が解除されるとともに伝達歯車 67と連結 するようになる。逆に、連結歯車 63が伝達歯車 67と連結している場合において、連 結歯車 63が連動軸 59より回転駆動力を与えられて、図 31 (e)における左周り(反時 計回り)方向に回動すると、ピン部 64cはスライド穴 63e、ピン部 64dはスライド穴 63d を円柱部 64aの円柱軸周りに略 180度スライドして、円柱部 64aは穴部 63cへと入る 方向にスライド移動する。すなわち、歯車部 64bは、図 30における奥側へとスライド 移動して伝達歯車 67との連結が解除されるとともに第 1の小伝達歯車 65と連結する ようになる。このようにして、駆動部 58の回動方向が正逆回転いずれの方向であって も、スライド歯車 64との連結を第 1の小伝達歯車 65または伝達歯車 67に切り換える ことによりクランク歯車 68の回転方向を一定方向とすることができる。 Next, the operation when the connecting gear 63 is given a rotational driving force from the interlocking shaft 59 will be described. First, when the connecting gear 63 is connected to the first small transmission gear 65, the connecting gear 63 receives a rotational driving force from the interlocking shaft 59, and rotates clockwise (clockwise) in FIG. 31 (e). When rotating in the direction, the pin part 64c slides the slide hole 63e, the pin part 64d slides the slide hole 63d about 180 degrees around the cylinder axis of the cylinder part 64a, and the cylinder part 64a slides in the direction that comes out of the hole part 63c. Moving. That is, the gear portion 64b slides toward the front side in FIG. 30 so that the connection with the first small transmission gear 65 is released and the transmission gear 67 is connected. Conversely, when the connecting gear 63 is connected to the transmission gear 67, the connecting gear 63 receives a rotational driving force from the interlocking shaft 59, and the counterclockwise direction in FIG. 31 (e) is counterclockwise. , The pin 64c slides the slide hole 63e, the pin 64d slides the slide hole 63d approximately 180 degrees around the cylinder axis of the cylinder 64a, and the cylinder 64a slides in the direction to enter the hole 63c. To do. That is, the gear portion 64b slides to the back side in FIG. 30 to release the connection with the transmission gear 67 and to connect with the first small transmission gear 65. In this way, regardless of whether the drive unit 58 rotates in the forward or reverse direction, the connection with the slide gear 64 is switched to the first small transmission gear 65 or the transmission gear 67 to thereby change the crank gear 68. The rotation direction can be a constant direction.
[0172] 次に、本発明の実施形態 2— 3の乾燥工程の要部の動作について図 32から図 35 を用いて説明する。図 32は、図 28における E— E断面図、図 33は、図 32の状態から クランク歯車 68を 90° 回転させた状態の要部拡大図、図 34は、図 32の状態からク ランク歯車 68を 180° 回転させた状態の要部拡大図、図 35は、図 32の状態からクラ ンク歯車 68を 270° 回転させた状態の要部拡大図である。  Next, the operation of the main part of the drying process of Embodiment 2-3 of the present invention will be described with reference to FIGS. 32 to 35. FIG. Fig. 32 is a cross-sectional view taken along the line E-E in Fig. 28, Fig. 33 is an enlarged view of the main part when the crank gear 68 is rotated 90 ° from the state of Fig. 32, and Fig. 34 is a crank gear from the state of Fig. 32. FIG. 35 is an enlarged view of the main part when the crank gear 68 is rotated by 270 ° from the state shown in FIG. 32. FIG.
[0173] 乾燥工程が開始されると、送風機 41dが駆動して通風経路 41内の送風が行なわれ るとともに、ソレノイド 62が駆動されてクラッチ片 60が連結部 58fおよび連動軸 59に 嵌合して、駆動部 58の回転駆動力が連動軸 59に伝達可能となる。この状態で駆動 部58の回転駆動カが連動軸59→連結歯車63→スラィド歯車64→伝達歯車67 (ま たは第 1の小伝達歯車 65→第 2の小伝達歯車 66)→クランク歯車 68へと伝達される 。これにより、クランク歯車 68は、図 32における左回り(反時計回り)方向へと回動し て熱交換部 48が駆動される。 [0173] When the drying process is started, the blower 41d is driven to blow air in the ventilation path 41. At the same time, the solenoid 62 is driven and the clutch piece 60 is engaged with the connecting portion 58f and the interlocking shaft 59, so that the rotational driving force of the driving portion 58 can be transmitted to the interlocking shaft 59. In this state, the rotational drive force of the drive unit 58 is changed from the interlocking shaft 59 → the connecting gear 63 → the slide gear 64 → the transmission gear 67 (or the first small transmission gear 65 → the second small transmission gear 66) → the crank gear 68. Is communicated to. As a result, the crank gear 68 rotates in the counterclockwise (counterclockwise) direction in FIG. 32 and the heat exchanging unit 48 is driven.
[0174] 図 32の状態において、クランク歯車 68が左回り(反時計回り)方向に駆動されて図 33の状態になる間に、吸熱側クランク 49aは、吸熱側クロスヘッド 50aを上方へ持ち 上げる方向へ、発熱側クランク 49bは、発熱側クロスヘッド 50bを下方へと押し込む方 向へ駆動させ、吸熱側ピストン 52aにより低温室 53a内の気体を膨張、発熱側ピスト ン 52bにより高温室 53b内の気体を圧縮させるため、高温室 53bの気体は再生器 57 を通って急速に低温室 53aへと移動する。このとき、低温室 53aへと移動する気体の 熱量は再生器 57に蓄熱され、温度が低下した気体が低温室 53aへと吹き込まれる。  In the state of FIG. 32, while the crank gear 68 is driven counterclockwise (counterclockwise) and enters the state of FIG. 33, the endothermic crank 49a lifts the endothermic crosshead 50a upward. The heat generation side crank 49b is driven in a direction to push the heat generation side crosshead 50b downward, the heat absorption side piston 52a expands the gas in the low temperature chamber 53a, and the heat generation side piston 52b expands the gas in the high temperature chamber 53b. In order to compress the gas, the gas in the high temperature chamber 53b moves rapidly through the regenerator 57 to the low temperature chamber 53a. At this time, the amount of heat of the gas moving to the low temperature chamber 53a is stored in the regenerator 57, and the gas whose temperature has decreased is blown into the low temperature chamber 53a.
[0175] クランク歯車 68の回動が進んで、図 33の状態から図 34の状態へと移行する間に は、吸熱側クランク 49aおよび発熱側クランク 49bは、吸熱側クロスヘッド 50aおよび 発熱側クロスヘッド 50bを上方へと持ち上げる方向へ駆動させ、吸熱側ピストン 52a および発熱側ピストン 52bにより低温室 53a内および高温室 53b内の気体を膨張さ せる。このとき低温室 53aの気体の膨張率は高温室 53bに比べ非常に大きぐ低温 室 53aの気体の圧力および温度は下降するため、吸熱ヘッド 54aの温度は下降する  [0175] While the rotation of the crank gear 68 advances and the state of FIG. 33 shifts to the state of FIG. 34, the heat absorption side crank 49a and the heat generation side crank 49b are connected to the heat absorption side cross head 50a and the heat generation side cross. The head 50b is driven upward and the gas in the low temperature chamber 53a and the high temperature chamber 53b is expanded by the heat absorption side piston 52a and the heat generation side piston 52b. At this time, the expansion rate of the gas in the low temperature chamber 53a is much larger than that in the high temperature chamber 53b, and the pressure and temperature of the gas in the low temperature chamber 53a decrease, so the temperature of the endothermic head 54a decreases.
[0176] クランク歯車 68の回動が進んで、図 34の状態から図 35の状態へと移行する間に は、吸熱側クランク 49aは吸熱側クロスヘッド 50aを下方へ押し込む方向へ、発熱側 クランク 49bは発熱側クロスヘッド 50bを上方へ持ち上げる方向へ駆動させ、吸熱側 ピストン 52aにより低温室 53a内の気体を圧縮、発熱側ピストン 52bにより高温室 53b 内の気体を膨張させるため、低温室 53aの気体は再生器 57を通って急速に高温室 53bへと移動する。このとき、高温室 53bへと移動する気体は再生器 57に蓄熱された 熱量によって加熱されて温度が上昇し、高温室 53b内の温度を上昇させる。 [0176] While the rotation of the crank gear 68 advances and the state of FIG. 34 shifts to the state of FIG. 35, the heat absorption side crank 49a pushes the heat absorption side crosshead 50a downward, and the heat generation side crank 49b drives the heat generating side cross head 50b to lift upward, compresses the gas in the low temperature chamber 53a by the heat absorption side piston 52a, and expands the gas in the high temperature chamber 53b by the heat generation side piston 52b. The gas rapidly moves through the regenerator 57 to the high temperature chamber 53b. At this time, the gas moving to the high temperature chamber 53b is heated by the amount of heat stored in the regenerator 57, the temperature rises, and the temperature in the high temperature chamber 53b rises.
[0177] クランク歯車 68の回動が進んで、図 35の状態から図 32の状態へと移行する間に は、吸熱側クランク 49aおよび発熱側クランク 49bは、吸熱側クロスヘッド 50aおよび 発熱側クロスヘッド 50bを下方へと押し下げる方向へ駆動させ、吸熱側ピストン 52a および発熱側ピストン 52bにより低温室 53a内および高温室 53b内の気体を圧縮さ せる。このとき高温室 53bの気体の圧縮率は低温室 53aに比べ非常に大きぐ高温 室 53bの気体の圧力および温度は上昇するため、発熱ヘッド 54bの温度は上昇する とともに、この高温室 53bの高圧で温度の上昇した気体が再生器 57を介して低温室 53aに吹き込まれる。この高温室 53bの高圧で温度が上昇した気体が再生器 57を通 過するに際して、この気体の熱量は再生器 57に蓄熱され、熱量が奪われて冷却した 気体が低温室 53aへと吹き込まれて、低温室 53aの温度を下降させる。このようにクラ ンク歯車 68が回動することにより吸熱ヘッド 54aは冷却、発熱ヘッド 54bは発熱し、そ れぞれクランク歯車 68の回転数に応じて温度が低下、上昇する。 [0177] While the rotation of the crank gear 68 proceeds, the state shown in FIG. 35 changes to the state shown in FIG. The endothermic side crank 49a and the exothermic side crank 49b drive the endothermic side crosshead 50a and the exothermic side crosshead 50b in a downward direction so that the endothermic side piston 52a and the exothermic side piston 52b drive the inside of the low temperature chamber 53a and the high temperature. Compress the gas in chamber 53b. At this time, the compressibility of the gas in the high temperature chamber 53b is much larger than that in the low temperature chamber 53a, and the pressure and temperature of the gas in the high temperature chamber 53b rise, so the temperature of the heating head 54b rises and the high pressure in the high temperature chamber 53b increases. Then, the gas whose temperature has increased is blown into the low temperature chamber 53a through the regenerator 57. When the gas whose temperature has been increased due to the high pressure in the high temperature chamber 53b passes through the regenerator 57, the heat quantity of this gas is stored in the regenerator 57, and the cooled gas is blown into the low temperature chamber 53a. To lower the temperature of the cold chamber 53a. As the crank gear 68 rotates in this manner, the heat absorbing head 54a cools and the heat generating head 54b generates heat, and the temperature decreases and rises according to the rotational speed of the crank gear 68, respectively.
[0178] 乾燥工程において、水槽 3内から排気口 41aを介して通風経路 41内に排出された 空気は、送風機 41dを経て、吸熱ヘッド 54aへと送られる。吸熱ヘッド 54aへ送られた 空気は、吸熱ヘッド 54aにて冷却除湿された後、発熱ヘッド 54bへと送られる。発熱 ヘッド 54bへ送られた空気は、発熱ヘッド 54bにて加熱され、水槽 3内へと吹き込ま れて、回転槽内の洗濯物の水分を蒸発させて乾燥を進行させる。この後、図示しな い湿度センサや温度センサ等の検知により乾燥終了を検知して運転を終了させる。 吸熱ヘッド 54a下方の水槽背面経路 41c底部には、図示しない排水孔が設けられて おり、吸熱ヘッド 54aに結露した水(ドレイン水)が滴下すると、この排水孔から水槽背 面経路 41cと排水ホース 17を結ぶドレイン用ホースにより排水される。  [0178] In the drying process, the air discharged from the water tank 3 into the ventilation path 41 through the exhaust port 41a is sent to the heat absorbing head 54a through the blower 41d. The air sent to the heat absorbing head 54a is cooled and dehumidified by the heat absorbing head 54a, and then sent to the heat generating head 54b. The air sent to the heat generating head 54b is heated by the heat generating head 54b and blown into the water tub 3 to evaporate the moisture in the laundry in the rotating tub and to proceed with drying. Thereafter, the end of drying is detected by detection of a humidity sensor or a temperature sensor (not shown) and the operation is terminated. A drain hole (not shown) is provided at the bottom of the water tank back path 41c below the heat absorbing head 54a. When water (drain water) condensed on the heat absorbing head 54a drops, the water tank back path 41c and the drain hose are drained from this drain hole. Drained by a drain hose connecting 17.
[0179] 以上のように、本発明の実施形態 2— 3によれば、上述した実施形態 2— 1と 2— 2 による作用効果に加えて、駆動部 58を正逆回転させても、熱交換部 48を駆動させる クランク歯車 68の回転方向を一定方向とすることができる。これにより、例えば、乾燥 工程において、衣類などの絡まりを解くために回転槽 5を正逆回転させても、熱交換 部 48は逆スターリングサイクルを継続できるので、衣類などの乾燥むらを少なくし、乾 燥時間を短縮することができる。  As described above, according to Embodiment 2-3 of the present invention, in addition to the operational effects of Embodiments 2-1 and 2-2 described above, even if the drive unit 58 is rotated forward and backward, The direction of rotation of the crank gear 68 that drives the exchanging section 48 can be made constant. Thus, for example, in the drying process, even if the rotating tub 5 is rotated forward and backward in order to release the entanglement of clothing etc., the heat exchanging part 48 can continue the reverse Stirling cycle. Drying time can be shortened.
[0180] また、本発明の実施形態 2— ;!〜 2— 3によれば、例えば、洗濯物を乾燥させるため の循環風の加熱に電気ヒータを用い、循環風の冷却除湿に水道水を用いる従来技 術に比較して、使用する電力は、モータの駆動電力のみとなり消費電力のより一層の 低減を実現することができる。また、水道水の使用量を削減することができる。 [0180] Further, according to Embodiments 2— ;! to 2-3 of the present invention, for example, an electric heater is used for heating the circulating air to dry the laundry, and tap water is used for cooling and dehumidifying the circulating air. Conventional technique used Compared with the technology, the power used is only the driving power of the motor, and the power consumption can be further reduced. In addition, the amount of tap water used can be reduced.
[0181] また、本発明の実施形態 2— ;!〜 2— 3によれば、例えば、洗濯物を乾燥させるため の循環風の加熱と、循環風の冷却除湿にヒートポンプを用いる従来技術に比較して 、使用する電力は、モータの駆動電力のみとなり、消費電力のより一層の低減を実現 すること力 Sでさる。 [0181] In addition, according to Embodiments 2—;! To 2-3 of the present invention, for example, compared to the conventional technology using a heat pump for heating the circulating air for drying laundry and cooling and dehumidifying the circulating air Thus, the power used is only the driving power of the motor, and power S can be used to achieve a further reduction in power consumption.
[0182] 本発明の実施形態 2— ;!〜 2— 3によれば、回転槽を回転させるモータの駆動電力 で、洗濯物の乾燥または、洗濯物の洗濯 '脱水'乾燥が行えるので、従来の乾燥機ま たは洗濯乾燥機に比べて節水と消費電力のさらなる低減を実現することができる。  [0182] According to Embodiments 2—;! To 2-3 of the present invention, the laundry can be dried or the laundry can be 'dehydrated' and dried with the driving power of the motor that rotates the rotating tub. Compared to other dryers or laundry dryers, it is possible to achieve further reductions in water consumption and power consumption.
[0183] 特に、熱交換部として、スターリング冷凍機を用いた場合には、モータの回転カをス ターリング冷凍機に伝達する連動手段により逆スターリングサイクルを行い、スターリ ング冷凍機の低温室と高温室を用いて、洗濯物を乾燥させるための循環風の加熱と 、洗濯物から蒸発した水分を含んだ高温多湿の循環風を冷却除湿し、洗濯物の乾 燥を実現できる。  [0183] In particular, when a Stirling refrigerator is used as the heat exchange unit, a reverse Stirling cycle is performed by an interlocking means that transmits the rotational power of the motor to the Stirling refrigerator, and the low temperature chamber of the Stirling refrigerator is connected. Using a high greenhouse, drying of the laundry can be realized by heating the circulating air to dry the laundry and cooling and dehumidifying the hot and humid circulating air containing moisture evaporated from the laundry.
[0184] よって、水を使わず、消費電力をさらに低減することができる乾燥機または洗濯乾 燥機を提供することができる。  [0184] Therefore, it is possible to provide a dryer or a washing dryer that can further reduce power consumption without using water.
[0185] なお、上述した構成と制御は、洗濯乾燥機に限らず、乾燥機に適用してもよぐ回 転槽は横置き式に限らず、縦置き式であってもよぐさらにドラム式に限らない。 [0185] The above-described configuration and control are not limited to the washing and drying machine, and the rotation tank that can be applied to the drying machine is not limited to the horizontal type, and may be a vertical type. Not limited to formulas.
[0186] なお、この発明の実施形態 2— ;!〜 2— 3に基づいた乾燥機の技術的思想を要約 すると、以下のとおりである。 [0186] The technical idea of the dryer based on Embodiment 2— ;! to 2-3 of the present invention is summarized as follows.
[0187] (1)この発明に従った乾燥機は、水槽と、水槽内に回転可能に設けられた回転槽と[0187] (1) A dryer according to the present invention includes a water tank, and a rotary tank rotatably provided in the water tank.
、回転槽を回転させるモータと、水槽内を連通する循環ダクトと、水槽内の気体を循 環ダクトを介して循環させるファンと、循環ダクト内の空気を吸熱ヘッドで冷却し、発 熱ヘッドで加熱するように熱交換を行う熱交換部と、モータの回転力を、熱交換部を 動作させるための動力として伝達する伝達部とを備える。 A motor that rotates the rotating tank, a circulation duct that communicates with the inside of the water tank, a fan that circulates the gas in the water tank through the circulation duct, and the air in the circulation duct is cooled by an endothermic head. A heat exchanging unit that exchanges heat so as to heat; and a transmission unit that transmits the rotational force of the motor as power for operating the heat exchanging unit.
[0188] (2)この発明に従った乾燥機にお!/、ては、熱交換部は、水槽に設けられてレ、ること を特徴とする。 [0188] (2) The dryer according to the present invention is characterized in that the heat exchange section is provided in a water tank.
[0189] (3)この発明に従った乾燥機にお!/、ては、熱交換部は、水槽の下方に設けられて いることを特徴とする。 [0189] (3) In the dryer according to the present invention, the heat exchange section is provided below the water tank. It is characterized by being.
[0190] (4)この発明に従った乾燥機においては、熱交換部は、水槽の背面に設けられて いることを特徴とする。  (4) The dryer according to the present invention is characterized in that the heat exchange section is provided on the back surface of the water tank.
[0191] (5)この発明に従った乾燥機においては、熱交換部は、モータの下方に設けられて いることを特徴とする。  [0191] (5) In the dryer according to the present invention, the heat exchanging section is provided below the motor.
[0192] (6)この発明に従った乾燥機においては、循環ダクトの少なくとも一部は、水槽の下 方に配置されてレ、ることを特徴とする。  [0192] (6) The dryer according to the present invention is characterized in that at least a part of the circulation duct is disposed below the water tank.
[0193] (7)この発明に従った乾燥機においては、循環ダクトの少なくとも一部は、水槽の背 面に配置されていることを特徴とする。 [0193] (7) In the dryer according to the present invention, at least a part of the circulation duct is disposed on the back surface of the water tank.
[0194] (8)この発明に従った乾燥機においては、循環ダクトの少なくとも一部は、水槽の背 面の周縁部に沿って配置されていることを特徴とする。 (8) In the dryer according to the present invention, at least a part of the circulation duct is arranged along the peripheral edge of the back surface of the water tank.
[0195] (9)この発明に従った乾燥機は、循環ダクトの一部を、熱交換部と水槽内の液体を 排水する排水経路の一部との間に配したことを特徴とする。 (9) The dryer according to the present invention is characterized in that a part of the circulation duct is arranged between the heat exchange part and a part of the drainage path for draining the liquid in the water tank.
[0196] (10)この発明に従った乾燥機においては、吸熱ヘッドおよび発熱ヘッドは、循環 ダクト内に突出していることを特徴とする。 (10) The dryer according to the present invention is characterized in that the heat absorbing head and the heat generating head protrude into the circulation duct.
[0197] (11)この発明に従った乾燥機においては、熱交換部は、スターリング冷凍機である ことを特徴とする。 (11) In the dryer according to the present invention, the heat exchange section is a Stirling refrigerator.
[0198] (12)この発明に従った乾燥機においては、スターリング冷凍機は、半密閉型のハ ウジングと、ハウジング内に配設されたクランク軸と、クランク軸に連結する吸熱側クラ ンクと発熱側クランクと、各クランクに連結する吸熱側ピストンと発熱側ピストンと、内部 に作動ガスを密封し、クランク軸の回転に連動して各ピストンが往復運動する低温室 と高温室とを備え、クランク軸は、伝達部により回転することを特徴とする。  [0198] (12) In the dryer according to the present invention, the Stirling refrigerator includes a semi-hermetic housing, a crankshaft disposed in the housing, and a heat absorption side crank connected to the crankshaft. A heat generating side crank, a heat absorbing side piston connected to each crank, a heat generating side piston, a working gas is sealed inside, and a low temperature chamber and a high temperature chamber in which each piston reciprocates in conjunction with rotation of the crankshaft, The crankshaft is rotated by the transmission unit.
[0199] (13)この発明に従った乾燥機においては、吸熱ヘッドと発熱ヘッドは、前記循環ダ タトに出没した低温室と高温室の一部であることを特徴とする。  [0199] (13) In the dryer according to the present invention, the heat absorbing head and the heat generating head are a low temperature chamber and a part of the high temperature chamber which appear and disappear in the circulation dirt.
[0200] (14)この発明に従った乾燥機においては、伝達部は、モータの回転軸にクラッチ を介して係合する連動軸と、連動軸に連結し、クランク軸を回転させる歯車とを有する ことを特徴とする。  (14) In the dryer according to the present invention, the transmission unit includes an interlocking shaft that engages with the rotation shaft of the motor via a clutch, and a gear that is connected to the interlocking shaft and rotates the crankshaft. It is characterized by having.
[0201] (15)この発明に従った乾燥機においては、伝達部は、モータの回転が正回転また は逆回転しても、クランク軸を一方向に回転させることを特徴とする。 [0201] (15) In the dryer according to the present invention, the transmission section is configured so that the rotation of the motor is normal or Is characterized by rotating the crankshaft in one direction even if it rotates in the reverse direction.
[0202] (16)この発明に従った乾燥機においては、伝達部は、モータの回転力を、クランク 軸に伝達し、スターリング冷凍機を逆スターリングサイクルで動作させることを特徴と する。 [0202] (16) In the dryer according to the present invention, the transmission unit transmits the rotational force of the motor to the crankshaft, and operates the Stirling refrigerator in a reverse Stirling cycle.
[0203] (17)この発明に従った乾燥機においては、各ピストンは、 90度の位相差がつけら れて往復運動することを特徴とする。  [0203] (17) The dryer according to the present invention is characterized in that each piston reciprocates with a phase difference of 90 degrees.
[0204] (18)この発明に従った乾燥機においては、クラッチは、モータの回転軸に設けた 第 1の嵌合部と、連動軸に設けた第 2の嵌合部との間に配されており、クラッチを、第 1の嵌合部側に付勢する付勢手段を、クラッチと連動軸の間に配したことを特徴とす  [0204] (18) In the dryer according to the present invention, the clutch is arranged between the first fitting portion provided on the rotating shaft of the motor and the second fitting portion provided on the interlocking shaft. The urging means for urging the clutch toward the first fitting portion side is arranged between the clutch and the interlocking shaft.
[0205] (19)この発明に従った乾燥機は、クラッチの周囲に磁界を発生する電磁コイルを 設け、電磁コイルに通電することで、クラッチを第 1の嵌合部と第 2の嵌合部の両方に 嵌合する位置へ移動させることを特徴とする。 (19) The dryer according to the present invention is provided with an electromagnetic coil that generates a magnetic field around the clutch, and energizes the electromagnetic coil so that the clutch is engaged with the first fitting portion and the second fitting portion. It is characterized in that it is moved to a position that fits both parts.
[0206] (20)この発明に従った乾燥機においては、歯車は、連動軸に嚙合する第 1の伝達 歯車と、第 1の伝達歯車とクランク軸に設けたクランク歯車とに嚙合し、モータの回転 軸と反対方向に回転する第 2の伝達歯車で構成されることを特徴とする。  (20) In the dryer according to the present invention, the gear meshes with the first transmission gear meshed with the interlocking shaft, the first transmission gear and the crank gear provided on the crankshaft, and the motor It is characterized by comprising a second transmission gear that rotates in the direction opposite to the rotation axis.
[0207] (21)この発明に従った乾燥機においては、クランク軸は、各クランクが接続する接 続部が 90度の位相差をつけて設けられたクランクシャフトと、クランクシャフトの一方 に設けられたクランク歯車から構成され、第 2の伝達歯車は、小径歯車と大径歯車が 重ねて構成されており、第 1の伝達歯車と小径歯車が嚙合し、クランク歯車と大径歯 車が嚙合するように配されて!、ることを特徴とする。  [0207] (21) In the dryer according to the present invention, the crankshaft is provided on one of the crankshaft and the crankshaft in which the connecting portions to which the respective cranks are connected are provided with a phase difference of 90 degrees. The second transmission gear is composed of a small-diameter gear and a large-diameter gear, the first transmission gear and the small-diameter gear are combined, and the crank gear and the large-diameter gear are combined. It is characterized by being arranged!
[0208] (22)この発明に従った乾燥機にお!/、ては、クランク軸は、各クランクが接続するピ ンがその一方に、歯車に嚙合するクランク歯車が他方に設けられて!/、ることを特徴と する。  [0208] (22) In the dryer according to the present invention, the crankshaft is provided with a pin connected to each crank on one side and a crank gear meshed with the gear on the other! /.
[0209] (23)この発明に従った乾燥機においては、第 1の伝達歯車は、連動軸に常に連結 する連動歯車と、連動歯車の回転中心と位置を同じく重ねて設けられたスライド歯車 から構成され、スライド歯車は、連動歯車の回転方向に応じて、連動歯車との距離を 可変可能に設けられ、第 2の伝達歯車は、クランク歯車に常に嚙合し、回転位置が各 々異なる奇数の伝達歯車と、偶数の小伝達歯車との 2列から構成され、連動歯車が 一方向に回転する場合には、スライド歯車は伝達歯車と連結し、連動歯車が他方向 に回転する場合には、スライド歯車は小伝達歯車と連結することを特徴とする。 [0209] (23) In the dryer according to the present invention, the first transmission gear includes an interlocking gear that is always connected to the interlocking shaft, and a slide gear that is provided with the rotation center and position of the interlocking gear overlapped with each other. The slide gear is configured to be variable in distance to the interlocking gear according to the rotation direction of the interlocking gear, and the second transmission gear is always meshed with the crank gear, and the rotational position is When the interlocking gear rotates in one direction, the slide gear is connected to the transmission gear and the interlocking gear rotates in the other direction. In some cases, the slide gear is connected to the small transmission gear.
[0210] (24)この発明に従った乾燥機においては、低温室と高温室は、モータの回転軸中 心からみて、八の字状または逆 V字状に配置されて!/、ることを特徴とする。 [0210] (24) In the dryer according to the present invention, the low-temperature chamber and the high-temperature chamber are arranged in an eight-letter shape or an inverted V-shape when viewed from the center of the rotation shaft of the motor. Features.
[0211] (25)この発明に従った洗濯乾燥機は、上記のいずれかの乾燥機であって、被洗 濯物を回転槽に収容し、洗濯、脱水、乾燥のいずれかを実行することを特徴とする。 [0211] (25) A laundry dryer according to the present invention is any one of the above-described dryers, wherein the object to be cleaned is accommodated in a rotating tub, and any one of washing, dehydration, and drying is performed. It is characterized by.
[0212] (26)この発明に従った洗濯乾燥機においては、回転槽の回転軸は、設置面に対 して略垂直であることを特徴とする。 [0212] (26) In the washing and drying machine according to the present invention, the rotation axis of the rotating tub is substantially perpendicular to the installation surface.
[0213] (27)この発明に従った洗濯乾燥機においては、回転槽の回転軸は、設置面に対 して略水平または斜めであることを特徴とする。 [0213] (27) In the washing and drying machine according to the present invention, the rotation axis of the rotating tub is substantially horizontal or oblique to the installation surface.
実施例  Example
[0214] 本発明の一つの実施の形態としての乾燥機で用いられるスターリングエンジンの一 例を用いて得られた制御性の高さにつ!/、て説明する。  [0214] The high controllability obtained by using an example of the Stirling engine used in the dryer according to one embodiment of the present invention will be described.
[0215] スターリングエンジンとヒートポンプを大気圧下で駆動させて、高温側、低温側を大 気中に開放状態にして、スターリングエンジンとヒートポンプの特性確認を行なった。 スターリングエンジンの高温側の温度を発熱ヘッドにぉレ、て測定し、低温側の温度を 吸熱ヘッドにぉレ、て測定した。ヒートポンプの高温側の温度を凝縮器にお!/、て測定し 、低温側の温度を蒸発器にぉレ、て測定した。測定された温度を 10秒毎に記録した。 室温は、約 27°Cであった。なお、一例として用いたスターリングエンジンの仕様は、 出力約 250W、冷媒はヘリウムである。また、一例として用いたヒートポンプの仕様は 、出力約 370W、冷媒は HCF 'R134aである。  [0215] The characteristics of the Stirling engine and the heat pump were checked by driving the Stirling engine and the heat pump under atmospheric pressure and opening the high temperature side and the low temperature side to the atmosphere. The temperature on the high temperature side of the Stirling engine was measured with a heating head and the temperature on the low temperature side was measured with a heat absorption head. The temperature on the high temperature side of the heat pump was measured using a condenser, and the temperature on the low temperature side was measured using an evaporator. The measured temperature was recorded every 10 seconds. The room temperature was about 27 ° C. The Stirling engine used as an example has an output of about 250 W and the refrigerant is helium. The specification of the heat pump used as an example is an output of about 370 W, and the refrigerant is HCF'R134a.
[0216] 図 36は、スターリングエンジンとヒートポンプの駆動開始直後から測定した、高温側 の温度の時間変化を示す図である。  [0216] FIG. 36 is a diagram showing a temporal change in temperature on the high temperature side measured immediately after the start of driving of the Stirling engine and the heat pump.
[0217] 図 36に示すように、スターリングエンジンの高温部においては、スターリングェンジ ンの駆動開始直後から温度が上昇している。一方、ヒートポンプの高温部の温度は、 ヒートポンプの駆動開始直後にはほとんど変化せず、約 10秒経過後にゆるやかに上 昇し始める。 [0218] 図 37は、スターリングエンジンとヒートポンプの駆動開始から所定の温度に到達す るまでの、高温側の温度の時間変化を示す図である。所定の温度は 60°Cとした。 [0217] As shown in Fig. 36, in the high temperature part of the Stirling engine, the temperature has risen immediately after the start of the Stirling engine drive. On the other hand, the temperature of the high-temperature part of the heat pump hardly changes immediately after the start of driving the heat pump and starts to rise slowly after about 10 seconds. [0218] FIG. 37 is a diagram showing a temporal change in temperature on the high temperature side from the start of driving of the Stirling engine and the heat pump until reaching a predetermined temperature. The prescribed temperature was 60 ° C.
[0219] 図 37に示すように、スターリングエンジンの高温側は、駆動開始から 50秒で 60°C に達した。一方、ヒートポンプの高温側は、駆動開始から 230秒で 60°Cに達した。こ のように、スターリングエンジンの高温側は、ヒートポンプの高温側よりも速く所定の温 度に到達するため、スターリングエンジンを乾燥機に用いることによって、乾燥工程の 初期段階において高温の気体を洗濯物に接触させることができ、乾燥時間を短縮す ること力 Sでさる。  [0219] As shown in Fig. 37, the high temperature side of the Stirling engine reached 60 ° C in 50 seconds from the start of driving. On the other hand, the high temperature side of the heat pump reached 60 ° C in 230 seconds from the start of driving. In this way, the high temperature side of the Stirling engine reaches a predetermined temperature faster than the high temperature side of the heat pump, so by using the Stirling engine in the dryer, the high temperature gas is washed in the initial stage of the drying process. The force S can be used to reduce the drying time.
[0220] 図 38は、スターリングエンジンとヒートポンプの駆動開始直後から測定した高温側 の温度について、 10秒間に変化する温度の時間変化を示す図である。  [0220] Fig. 38 is a diagram showing a temporal change in temperature that changes in 10 seconds with respect to the temperature on the high temperature side measured immediately after the start of driving of the Stirling engine and the heat pump.
[0221] 図 38に示すように、スターリングエンジンは、駆動開始直後から温度変化量が大き ぐ応答性がよいことが分かった。一方、ヒートポンプは、駆動開始直後には温度変化 がほとんど測定されなかった。これは、ヒートポンプの冷媒が気液相間で状態変化を するためにある程度の時間を要する一方、スターリングエンジンは、作動気体が状態 変化する必要がなレ、ので、このような高!/、応答性が得られたと考えられる。  [0221] As shown in FIG. 38, it was found that the Stirling engine has a large responsiveness with a large temperature change immediately after the start of driving. On the other hand, the temperature change of the heat pump was hardly measured immediately after the start of driving. This is because a certain amount of time is required for the heat pump refrigerant to change state between the gas and liquid phases, while the Stirling engine does not require the operating gas to change state. It is thought that sex was obtained.
[0222] 図 39は、スターリングエンジンとヒートポンプの駆動開始直後から 2分経過するまで に 10秒間隔で測定した、スターリングエンジンの高温側と低温側、ヒートポンプの高 温側と低温側の温度の時間変化を示す図である。  [0222] Figure 39 shows the temperature of the high and low temperature sides of the Stirling engine and the high and low temperature sides of the heat pump measured at 10-second intervals immediately after the start of driving the Stirling engine and heat pump. It is a figure which shows a change.
[0223] 図 39に示すように、スターリングエンジンの駆動開始直後から、スターリングェンジ ンの高温側の温度は速やかに上昇し、スターリングエンジンの低温側の温度は速や かに下降して、駆動開始から 50秒後には、高温側が 60°C、低温側が 20°Cに達し た。その後も温度変化の速度がほとんど低下することなぐ駆動開始から 2分後には、 高温側が 80°C、低温側が 60°Cに達した。一方、ヒートポンプは、駆動開始直後に は高温側も低温側もほとんど温度変化がなぐ駆動開始から約 10秒後から 30秒後ま での間に高温側が約 35°C、低温側が約 10°Cに達したが、その後は温度変化量が減 少し、ゆるやかな温度変化を示した。駆動開始から 2分経過まで、高温側の温度はゆ るやかに上昇を続けて約 48°Cに達した力 低温側は約 8°Cからほとんど下がらなか つた。 [0224] このように、スターリングエンジンの応答性はヒートポンプよりも高い。また、スターリ ングエンジンは、ヒートポンプと比較して、制御可能な温度範囲が広い。例えば、スタ 一リングエンジンの駆動を開始してから高温側が 60°Cになるまでに必要な時間は、ヒ ートポンプの駆動を開始してから高温側が 60°Cになるまでに必要な時間の四分の一 以下であった。したがって、スターリングエンジンを用いることによって、ヒートポンプよ りも制御性が高い乾燥機が得られる。このように、スターリングエンジンを備える乾燥 機は、乾燥機の起動に要する時間を短くすることができるとともに、乾燥機の運転中 に一旦、運転を中断した後、再び起動する場合に要する時間も短くすることができる[0223] As shown in Fig. 39, immediately after the start of the Stirling engine drive, the temperature on the high temperature side of the Stirling engine rises quickly, and the temperature on the low temperature side of the Stirling engine falls quickly, and the drive starts. 50 seconds later, the high temperature reached 60 ° C and the low temperature reached 20 ° C. After that, 2 minutes after the start of driving, the speed of temperature change hardly decreased, and the high temperature side reached 80 ° C and the low temperature side reached 60 ° C. On the other hand, the heat pump is about 35 ° C on the high temperature side and about 10 ° C on the low temperature side from about 10 seconds to 30 seconds after the start of driving, where there is almost no temperature change on the high temperature side and low temperature side immediately after the start of driving. After that, the temperature change decreased and showed a gradual temperature change. The temperature on the high temperature side gradually increased and reached about 48 ° C from the start of driving for 2 minutes, and the temperature on the low temperature side hardly decreased from about 8 ° C. [0224] Thus, the responsiveness of the Stirling engine is higher than that of the heat pump. A Stirling engine has a wider controllable temperature range than a heat pump. For example, the time required for the high temperature side to reach 60 ° C after starting the steering engine is four times the time required for the high temperature side to reach 60 ° C after starting the heat pump. It was less than a fraction. Therefore, by using a Stirling engine, a dryer having higher controllability than a heat pump can be obtained. In this way, a dryer equipped with a Stirling engine can shorten the time required to start up the dryer, and the time required to start up again after interrupting the operation once during the operation of the dryer is also reduced. can do
Yes
[0225] 以上に開示された実施の形態と実施例はすべての点で例示であって制限的なもの ではないと考慮されるべきである。本発明の範囲は、以上の実施の形態と実施例で はなぐ請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのす ベての修正と変形を含むものである。  [0225] The embodiments and examples disclosed above are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is shown by the claims which are not described in the above embodiments and examples, and includes all modifications and variations within the meaning and scope equivalent to the claims.
産業上の利用可能性  Industrial applicability
[0226] この発明の乾燥機は、衣類などを乾燥させるための洗濯乾燥機などに適用すること によって、騒音を抑えて効率よぐ衣類などの被乾燥対象物の乾燥を行なうことがで きる。 [0226] By applying the dryer of the present invention to a washing dryer for drying clothes and the like, it is possible to dry an object to be dried such as clothes while suppressing noise.

Claims

請求の範囲 The scope of the claims
被乾燥対象物を収容するための容器(230)と、  A container (230) for containing an object to be dried;
前記容器(230)の内部から流出させた気体を前記容器(230)の内部に流入させ るための循環路(241、 242、 243)と、  A circulation path (241, 242, 243) for allowing the gas flowing out from the inside of the container (230) to flow into the container (230);
前記循環路(241、 242、 243)を流通する気体を加熱するための第一の熱交換部 (420)と、  A first heat exchange section (420) for heating the gas flowing through the circulation path (241, 242, 243);
前記循環路(241、 242、 243)を流通する気体を冷却するための第二の熱交換部 (243)と、  A second heat exchange section (243) for cooling the gas flowing through the circulation path (241, 242, 243);
発熱ヘッド(411)と吸熱ヘッド(412)とを含むスターリングエンジン(410)とを備え 前記第一の熱交換部(420)は、前記スターリングエンジン(410)の発熱ヘッド(41 A Stirling engine (410) including a heat generating head (411) and a heat absorbing head (412) is provided. The first heat exchanging part (420) includes a heat generating head (41) of the Stirling engine (410).
1)で気体を加熱するように熱交換を行ない、 Perform heat exchange to heat the gas in 1),
前記第二の熱交換部(430)は、前記スターリングエンジン(410)の吸熱ヘッド(41 The second heat exchanging unit (430) includes a heat absorbing head (41) of the Stirling engine (410).
2)で気体を冷却するように熱交換を行なう、乾燥機 (200)。 A dryer (200) that exchanges heat to cool the gas in 2).
前記容器(230)を覆うように配置されて、水を収容するための水槽(220)を備え、 前記容器(230)は、前記水槽(220)内にお!/、て回転可能に支持され、 前記容器(230)の内部に収容される被乾燥対象物が前記容器(230)内において 洗濯されることが可能であるように構成されてレ、る、請求項 1に記載の乾燥機 (200) The container (230) is disposed so as to cover the water tank (220) for containing water, and the container (230) is rotatably supported in the water tank (220). The dryer according to claim 1, wherein the object to be dried contained in the container (230) is configured to be washable in the container (230). 200)
Yes
前記発熱ヘッド(411)は、前記循環路(241、 242、 243)内に配置されて、前記第 一の熱交換部(420)を構成する、請求項 1に記載の乾燥機 (200)。  The dryer (200) according to claim 1, wherein the heat generating head (411) is disposed in the circulation path (241, 242, 243) and constitutes the first heat exchange section (420).
前記吸熱ヘッド(412)は、前記循環路(241、 242、 243)内に配置されて、前記第 二の熱交換部(430)を構成する、請求項 1に記載の乾燥機 (200)。  The dryer (200) according to claim 1, wherein the endothermic head (412) is disposed in the circulation path (241, 242, 243) and constitutes the second heat exchange section (430).
前記発熱ヘッド(411)は、前記循環路(241、 242、 243)内に配置されて、前記第 一の熱交換部(420)を構成し、  The heat generating head (411) is disposed in the circulation path (241, 242, 243) to constitute the first heat exchanging part (420),
前記吸熱ヘッド(412)は、前記循環路(241、 242、 243)内に配置されて、前記第 二の熱交換部(430)を構成する、請求項 1に記載の乾燥機 (200)。  The dryer (200) according to claim 1, wherein the endothermic head (412) is disposed in the circulation path (241, 242, 243) and constitutes the second heat exchange section (430).
前記発熱ヘッド(411)と前記吸熱ヘッド (412)との間に配置される接続管( 148)を 備え、 A connecting pipe (148) disposed between the heat generating head (411) and the heat absorbing head (412) is provided. Prepared,
前記接続管(148)は、前記発熱ヘッド (411)と前記吸熱ヘッド(412)と同軸状に 配置され、  The connecting pipe (148) is disposed coaxially with the heat generating head (411) and the heat absorbing head (412),
前記発熱ヘッド(411)と前記吸熱ヘッド (412)と前記接続管(148)は、前記循環 路(241、 242、 243)内に配置されている、請求項 5に記載の乾燥機(200)。  The dryer (200) according to claim 5, wherein the heat generating head (411), the heat absorbing head (412), and the connecting pipe (148) are disposed in the circulation path (241, 242, 243). .
PCT/JP2007/065265 2006-08-10 2007-08-03 Dryer WO2008018384A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-217759 2006-08-10
JP2006217759 2006-08-10
JP2007-098188 2007-04-04
JP2007098188A JP2008062025A (en) 2006-08-10 2007-04-04 Dryer

Publications (1)

Publication Number Publication Date
WO2008018384A1 true WO2008018384A1 (en) 2008-02-14

Family

ID=39032915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065265 WO2008018384A1 (en) 2006-08-10 2007-08-03 Dryer

Country Status (2)

Country Link
JP (1) JP2008062025A (en)
WO (1) WO2008018384A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103677A1 (en) * 2008-02-19 2009-08-27 BSH Bosch und Siemens Hausgeräte GmbH Domestic appliance for drying a humid product, comprising a cooling assembly and a heating assembly
WO2009103643A1 (en) * 2008-02-19 2009-08-27 BSH Bosch und Siemens Hausgeräte GmbH Domestic appliance for drying a humid product, comprising a cooling assembly and a heating assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101174656B1 (en) 2005-11-16 2012-08-21 엘지전자 주식회사 Clothes dryer with vapor compression cycle system
JP5115385B2 (en) * 2008-07-31 2013-01-09 パナソニック株式会社 Clothes dryer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283307A (en) * 1989-01-05 1990-11-20 Toshiba Corp Warm air generating apparatus
JP2005261703A (en) * 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd Laundry washer/dryer
JP2005337079A (en) * 2004-05-26 2005-12-08 Sharp Corp Sterling engine and its mounting structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283307A (en) * 1989-01-05 1990-11-20 Toshiba Corp Warm air generating apparatus
JP2005261703A (en) * 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd Laundry washer/dryer
JP2005337079A (en) * 2004-05-26 2005-12-08 Sharp Corp Sterling engine and its mounting structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103677A1 (en) * 2008-02-19 2009-08-27 BSH Bosch und Siemens Hausgeräte GmbH Domestic appliance for drying a humid product, comprising a cooling assembly and a heating assembly
WO2009103643A1 (en) * 2008-02-19 2009-08-27 BSH Bosch und Siemens Hausgeräte GmbH Domestic appliance for drying a humid product, comprising a cooling assembly and a heating assembly
CN101952501B (en) * 2008-02-19 2012-04-25 Bsh博世和西门子家用器具有限公司 Domestic appliance for drying a humid product, comprising a cooling assembly and a heating assembly
CN101952502B (en) * 2008-02-19 2012-06-27 Bsh博世和西门子家用器具有限公司 Domestic appliance for drying a humid product, comprising a cooling assembly and a heating assembly

Also Published As

Publication number Publication date
JP2008062025A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
CN102105631B (en) Clothes dryer
US20050120577A1 (en) Clothes drier
JP3920299B2 (en) Clothes dryer
JP5251173B2 (en) Dehumidifying and heating device and drying device using the same
CN102239290A (en) Condensation dryer with a housing
JP2006116004A (en) Drying machine, washing and drying machine and operation method therefor
RU2467110C2 (en) Household dryer for clothes
JP2007289558A (en) Washing and drying machine
JP6486197B2 (en) Clothes dryer
JP4841377B2 (en) Dryer
WO2008018384A1 (en) Dryer
WO2008018245A1 (en) Heating dehumidifier
JP4984924B2 (en) Clothes drying apparatus and washing dryer equipped with the apparatus
JP4026451B2 (en) Clothes dryer
JP4026469B2 (en) Clothes dryer
JP2004089415A (en) Clothes dryer
WO2014196158A1 (en) Drying machine
JP2005304988A (en) Washing and drying machine
JP2012161355A (en) Clothes dryer
JP2008307481A (en) Heating dehumidifier
JP3956825B2 (en) Washing and drying machine
JP2016123770A (en) Washing and drying machine
JP2005027734A (en) Clothes dryer
JP2009022347A (en) Washing machine with heat pump as drying mechanism for drying clothes
KR20020092712A (en) Clothing dryer and drying method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791938

Country of ref document: EP

Kind code of ref document: A1