WO2008018304A1 - Method for forming insulating film, apparatus for forming insulating film, method for manufacturing semiconductor device, semiconductor device and surface treatment method for silicon carbide substrate - Google Patents

Method for forming insulating film, apparatus for forming insulating film, method for manufacturing semiconductor device, semiconductor device and surface treatment method for silicon carbide substrate Download PDF

Info

Publication number
WO2008018304A1
WO2008018304A1 PCT/JP2007/064759 JP2007064759W WO2008018304A1 WO 2008018304 A1 WO2008018304 A1 WO 2008018304A1 JP 2007064759 W JP2007064759 W JP 2007064759W WO 2008018304 A1 WO2008018304 A1 WO 2008018304A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
solution
substrate
substrate surface
forming
Prior art date
Application number
PCT/JP2007/064759
Other languages
French (fr)
Japanese (ja)
Inventor
Hikaru Kobayashi
Original Assignee
Hikaru Kobayashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hikaru Kobayashi filed Critical Hikaru Kobayashi
Publication of WO2008018304A1 publication Critical patent/WO2008018304A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts

Definitions

  • the present invention relates to a method for forming an insulating film on a surface of a base material, specifically, selected from the group of silicon carbide, silicon, and polysilicon, a method for forming the insulating film on the surface of the base material, a semiconductor including the insulating film
  • the present invention relates to a method of manufacturing a device, a semiconductor device thereof, and a surface treatment method of a substrate of silicon carbide.
  • a so-called high temperature thermal oxidation method is used to form an insulating film such as a gate insulating film or a capacitive insulating film. It is done.
  • a silicon substrate is heated in an oxidizing gas such as dry oxygen (dry) or water vapor (wet) at a high temperature of 800 ° C. or higher, so that a silicon dioxide (SiO 2) film is formed on the surface of the silicon substrate.
  • the substrate is silicon carbide (SiC)
  • SiC silicon carbide
  • a high temperature thermal oxidation method in wet or dry oxidizing gas at 1100 ° C to 1200 ° C is adopted when forming the gate insulating film of the MOS transistor
  • a silicon dioxide film having a thickness of several tens of nanometers (nm) is formed.
  • the film quality itself of the silicon dioxide film which takes a long time to form, is also more efficient than the SiO film formed by high-temperature thermal oxidation of silicon (Si). Bad
  • the substrate is silicon carbide
  • the level density is high. Therefore, technical barriers for industrial use of a film formed by high-temperature thermal oxidation as a gate insulating film for a semiconductor device having a MOS structure on silicon carbide are very high. Realization of is strongly demanded.
  • PVD physical vapor deposition
  • the present inventor has already contacted an oxidizing solution or a gas thereof with a semiconductor substrate containing silicon to form a SiO film on the surface of the semiconductor substrate.
  • Patent Document 1 Has developed a practical oxidation technology (see, for example, Patent Document 1).
  • a silicon dioxide film formed on a silicon substrate by a high temperature thermal oxidation method is stable in performance, which is desirable in terms of the characteristics of the semiconductor device.
  • the industry expectation for the formation of an insulating film under low temperature conditions such as the above-mentioned chemical oxidation technology Is very big.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-311302 (Publication date: November 4, 2005)
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-311303 (Publication date: November 4, 2005)
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-311352 (Publication date: November 4, 2005)
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-289612 (Opened: October 4, 2002)
  • Non-Patent Document 1 Nagayama, 2 others, "Chemical method of Si02 / S purchase at low temperature and spectroscopy Observations ”, Abstracts of the Physical Society of Japan, The Physical Society of Japan, 15 August 2003, Vol. 58, No. 2, p. 771
  • one object is a cubic silicon carbide (3C-SiC, hereinafter simply referred to as SiC or silicon carbide).
  • SiC or silicon carbide a cubic silicon carbide
  • a high-performance oxide film is formed at low temperature using a chemical method on a substrate with large surface irregularities or a high interface state density such as is there.
  • an insulating film forming method for chemically forming an insulating film on the surface of a substrate using an oxidizing solution, a mist solution, or a gas thereof, an apparatus for forming the insulating film, or an insulating film for the insulating film.
  • a semiconductor device including a film and a method for manufacturing the semiconductor device are provided.
  • Another object of the present invention is to form a silicon dioxide film as a chemical oxide film developed as an oxidation method at a low temperature even on a substrate selected from silicon carbide, silicon, and polysilicon.
  • An object of the present invention is to provide a method for forming an insulating film on a substrate surface that can be stably and reliably performed, a device for forming the insulating film, a semiconductor device including the insulating film, and a method for manufacturing the semiconductor device. .
  • another object of the present invention is to oxidize a substrate such as a silicon carbide substrate, which has poor substrate surface flatness and high interface state density, by the above-described chemical method.
  • a surface treatment method as a pretreatment for effective film formation.
  • the present invention does not impose any strict limitation on the target substrate, but is particularly applicable to MOS transistors using silicon carbide or the like that are strongly demanded by the industry. If the formation of a thin insulating film is realized by a low-temperature process, the semiconductor industry will It can be said that it greatly contributes to the exhibition.
  • the inventor has conducted earnest research to further improve the performance of an insulating film obtained by a method of forming an insulating film using a chemical method and a semiconductor device using the insulating film. As a result of the research, the inventor has found that an unprecedented high-performance insulating film can be formed on the surface of a substrate by adopting a new processing method and manufacturing method that change the conventional idea. The inventor has also found that a semiconductor device having excellent electrical characteristics can be obtained by the insulating film.
  • the substrate surface is heated in an atmosphere containing hydrogen, and then the substrate surface is immersed in an oxidizing solution. Or spraying the solution onto the substrate surface, or exposing the substrate surface to the vapor of the solution.
  • a high-performance insulating film that can also be applied to a semiconductor device can be obtained by improving the flatness of the substrate surface or reducing the interface state density as described above.
  • a method of manufacturing a semiconductor device according to the present invention includes a step of forming an insulating film by any one of the methods described above.
  • a semiconductor device having excellent electrical characteristics can be manufactured even if the surface of the base material is physically rough or a base material (for example, a semiconductor substrate) having a high interface state density. I can do it.
  • one semiconductor device includes an insulating film formed by any one of the methods described above.
  • this insulating film is formed, the flatness of the substrate surface is improved or the interface state density is reduced, so even if the initial flatness of the substrate surface is poor or A semiconductor device with excellent electrical characteristics can be obtained even with a high interface state density! / And a base material (for example, a semiconductor substrate).
  • one insulating film forming apparatus of the present invention includes a means for heating at least the surface of the base material in an atmosphere containing hydrogen, and then immersing the base material surface in an oxidizing solution, or Means are provided for spraying the solution onto the substrate surface or exposing the substrate surface to the vapor of the solution.
  • the flatness of the substrate surface is improved, or the reduction of the interface state density is achieved. Therefore, for example, when a semiconductor device having a MOS structure is subsequently manufactured, the semiconductor device has excellent electrical characteristics.
  • the surface treatment method for a silicon carbide substrate of the present invention includes a step of heating at 200 ° C. to 500 ° C. in an atmosphere containing hydrogen.
  • the flatness of the substrate surface at the atomic layer level after the formation of the insulating film is improved, or the interface state density of the substrate surface layer is reduced, and a high-performance insulating film is achieved.
  • a semiconductor device having excellent electrical characteristics can be obtained.
  • an insulating film is subsequently formed by a chemical oxidation method, so that the speed of forming an insulating film on the surface of silicon carbide is about 1.6 compared with the conventional case. Will be doubled.
  • the leakage current is sufficiently reduced to such an extent that it can be practically used as a MOS transistor, so that a high-performance semiconductor device can be obtained.
  • FIG. 1A shows a heat treatment apparatus in a hydrogen-containing atmosphere among the insulating film forming apparatuses according to one embodiment of the present invention.
  • FIG. 1B is an immersion treatment apparatus using an oxidizing solution among the insulating film forming apparatuses according to one embodiment of the present invention.
  • FIG. 1C Among the insulating film forming apparatuses according to another embodiment of the present invention, an exposure apparatus using vapor of an oxidizing solution.
  • FIG. 1D shows an oxidizing solution vapor in an insulating film forming apparatus according to another embodiment of the present invention. Or a fog exposure device.
  • FIG. 2A is a cross-sectional view illustrating the structure of a structure manufactured according to one embodiment of the present invention.
  • FIG. 2B is a cross-sectional view illustrating a configuration of a semiconductor device (MOS capacitor) manufactured in another embodiment of the present invention.
  • FIG. 3 is a TEM analysis cross-sectional view of an insulating film formed in one embodiment of the present invention.
  • FIG. 4A X-ray photoelectron spectrum of insulating film formed in one embodiment of the present invention
  • FIG. 4B is a characteristic diagram of the insulating film formed in one embodiment of the present invention and a comparative insulating film by X-ray photoelectron spectrum (XPS) measurement with respect to Si2p.
  • XPS X-ray photoelectron spectrum
  • FIG. 5 is a CV characteristic 1 drawing of a semiconductor device (MOS capacitor) manufactured in another embodiment of the present invention.
  • FIG. 6 is an IV characteristic diagram of a semiconductor device (MOS capacitor) manufactured in another embodiment of the present invention.
  • FIG. 7 is an IV characteristic diagram relating to voltage dependency of a leakage current value of a semiconductor device (MOS capacitor) manufactured in another embodiment of the present invention.
  • 3C—SiC cubic silicon carbide
  • this silicon carbide substrate is an n-type with a surface orientation of (100) and a surface resistivity of 0.02-0.03 ⁇ 'cm, with an epitaxially grown layer of 6 m thickness formed on the substrate. It was a substrate.
  • the substrate 10 is processed for 20 minutes in a processing chamber in a hydrogen atmosphere heated to 400 ° C.
  • the hydrogen bombing force also causes hydrogen to flow into the processing chamber 1.
  • the substrate 10 supported by the support 12 in the processing chamber 14 is heated.
  • the treatment condition in the chamber at this time was 100% hydrogen at normal pressure.
  • the hydrogen concentration is preferably 75 vol% or more, and more preferably 80 vol% or more.
  • the operation based on the present invention can be achieved in a processing time of about 10 to 60 minutes by appropriately selecting a processing temperature in a gas atmosphere having a hydrogen concentration of 80 vol% or more at normal pressure in the processing chamber 14. Is done.
  • an inert gas such as nitrogen shown in FIG. 1A can be included as a gas other than hydrogen.
  • the effect of the present invention will not be completely lost.
  • the higher the hydrogen concentration the better.
  • the concentration used may be limited to avoid such dangers.
  • the heating temperature is preferably 200 ° C or higher and 500 ° C or lower! /. Even if the temperature is outside the above temperature range, if the force is less than 200 ° C where the effect of the present invention is not expected to be completely lost, hydrogen may not be sufficiently supplied to the substrate surface layer. This is because if the temperature exceeds 600 ° C., the hydrogen once taken into the substrate surface layer is likely to be released due to the high temperature. From these viewpoints, a more preferable heating temperature range is 250 ° C. or higher and 550 ° C. or lower, and most preferable is 250 ° C. or higher and 500 ° C. or lower.
  • Table 1 shows the result of comparing the surface roughness of the substrate with and without the heat treatment in the hydrogen atmosphere described above. This surface roughness was measured using an AFM (Atomic Force Microscope).
  • the mean square roughness (Root In Mean Square, about 60% of the substrate surface roughness before processing was reduced.
  • a silicon carbide substrate having an extremely smooth surface at the atomic layer level with a root mean square roughness of 0.5 nm or less on the substrate surface could be obtained.
  • the substrate subjected to the above-described processing is immersed in an oxidizable solution.
  • the substrate 10 held by a known substrate holder (not shown) for convenience is concentrated nitric acid (aqueous solution) having a concentration of 4 Owt% at room temperature (about 25 ° C) filled in the treatment tank 24. Soaked in.
  • the substrate 10 is heated to a state where the concentrated nitric acid (aqueous solution) 22 is in a boiling state by a heater 26 (for example, an acid-resistant quartz heater for liquid heating).
  • azeotropic nitric acid azeotropic nitric acid
  • azeotropic nitric acid with a boiling point of 120.7 ° C and a nitric acid concentration of 68 wt%.
  • the nitric acid concentration and boiling point are maintained even if heating continues.
  • a structure 500 including a film 51 having a uniform thickness was formed on the substrate 10.
  • the initial concentration of concentrated nitric acid is not particularly limited, and even if the concentration is other than 40 wt% (for example, 20 wt%, 60 wt%, or 70 wt%), The effect is played. Further, the temperature of the solution in the immersion treatment in the oxidizing solution (here, concentrated nitric acid) may not reach the boiling state completely. That is, since the nitric acid concentration gradually approaches the azeotropic concentration by heating the oxidizing solution, it is not always necessary to heat to the boiling point. The effect of the present invention is also substantially achieved by the vicinity of the boiling point (for example, a temperature about 1 to 5 ° C. lower than the boiling point).
  • At least one predetermined concentration (for example, 40 wt%) heated near or at the boiling point is used as a solution for substrate immersion.
  • 60 wt% concentrated nitric acid (aqueous solution) and approximately azeotropic or azeotropic nitric acid solution may be prepared in advance, in which case the same effect as in this embodiment
  • near the boiling point is a temperature about 1 to 5 ° C lower than the boiling point
  • the substantially azeotropic state is about a temperature lower than the azeotropic state; Temperature.
  • the initial stage In the treatment of the floor (if it is a two-stage treatment, the treatment in the first stage), it is not always necessary to heat the oxidizing solution from the beginning to near the boiling point or to the boiling point! /.
  • the substrate 10 after the heat treatment in the atmosphere containing hydrogen described above is heated in the state of being immersed in concentrated nitric acid (aqueous solution) having a concentration of 40 wt% at room temperature to be close to the boiling point. Increases the boiling point to form a very thin film having a thickness of 0.1 nm to 1 nm.
  • a method of continuously forming a film to a desired thickness by immersing the substrate 10 in nitric acid or azeotropic nitric acid in a higher concentration and substantially azeotropic state may be used. Even in such a case, an effect similar to the effect of the present invention is exhibited.
  • the concentration of concentrated nitric acid (aqueous solution) used for the first stage treatment may be 70 wt%.
  • the temperature of the concentrated nitric acid (aqueous solution) having a concentration of 70 wt% in which the substrate 10 is immersed is heated to near or to the boiling point, and then in the second stage, the substrate 10 is substantially reduced. Even when immersed in azeotropic nitric acid or azeotropic nitric acid, the same effects as described above can be obtained.
  • a natural oxide film is formed on the surface of the substrate 10 before the heat treatment in the hydrogen atmosphere described above, for example, in a dilute hydrofluoric acid solution having a concentration of 0.8 vol% for about 5 minutes.
  • the natural oxide film is completely removed by immersing and rinsing (cleaning) with ultrapure water for 5 minutes.
  • FIG. 3 is a cross-sectional view (photograph) obtained by TEM analysis. It can be seen that the interface between the surface of the substrate 10 and the film 51 formed by the above-described treatment is extremely smooth. From this sectional view, it can be seen that the thickness t of the film in this embodiment is about 21 nm.
  • the film formed on the above-mentioned silicon carbide substrate was measured with an X-ray photoelectron spectrum (XPS) measuring device, and the characteristic diagram of Fig. 4A was obtained. From this result, it was found that the composition of this film was a film mainly composed of silicon dioxide (SiO 2).
  • FIG. 4B is an enlarged view of the coupled energy region in the vicinity of the 2p orbit of Si in the same XPS measurement apparatus.
  • the film formed on the surface of the base material when the heat treatment in the hydrogen atmosphere is not performed and the other treatment conditions are the same is also shown.
  • (a) is a measurement result of a film (comparative example) that was not subjected to the heat treatment in the hydrogen atmosphere described above
  • (b) is a film formed in the present embodiment.
  • a peak in the vicinity of lOleV indicating Si—C bonds was not observed in the film (b) formed according to this embodiment, but was observed only in the film ⁇ of the comparative example.
  • the film (b) is thicker than the film ⁇ .
  • the film thickness of the film (a) was about 13 nm from the area intensity ratio between the Si—c bond peak and the peak near 104 eV indicating the Si—O bond. Therefore, compared with the result of FIG. 3, the film formation rate of the film formed by this embodiment is 1.6 times or more compared with the case where the heat treatment is not performed in the hydrogen atmosphere. This is because hydrogen penetrates into the inside of the substrate and weakens the bond, and also promotes the oxidizing power of nitric acid to act strongly on Si on the surface of the substrate, or Si on the surface of the substrate in contact with the nitric acid solution.
  • Electrode metal films (metal-containing films) 62 and 63 were formed on both surfaces of the structure 500 formed by the method according to the first embodiment. Thereafter, the metal film 62 on the side on which the insulating film 51 is formed is patterned into a desired electrode shape (circular with a diameter of 3 mm) by a known photolithography process, as shown in FIG. 2B. A new MOS capacitor 600 was manufactured.
  • This metal film is formed by depositing an A1 alloy for electrodes (aluminum (A1) alloy containing about 1% by weight of silicon (Si)) to a film thickness of about 200 nm by a well-known resistance heat treatment vapor deposition method. (Hereinafter, this type of metal film electrode is simply referred to as A1 electrode).
  • the metal film for the electrode is not limited to the A1 electrode, but may be another metal. Further, a polysilicon electrode can be used instead of the electrode made of the metal film.
  • FIG. 5 is a C V characteristic diagram showing the relationship between the capacitance (C) of the MOS capacitor of this embodiment and the applied voltage (V). As can be seen from this characteristic diagram, a sufficient capacitance (capacitance) was obtained. In addition, from this characteristic diagram, it can be seen that no good properties due to the presence of interface states were observed, and that good CV characteristics were achieved.
  • the thickness of the film calculated from the CV characteristics was found to be 21.3 nm when the film composition was typical silicon dioxide (Si 2 O 3). This is the TEM analysis of Figure 3. It is in good agreement with the measurement results based on the cross-sectional view (photo).
  • FIG. 6 is a relationship between the current (I) and the applied voltage (V), that is, an IV characteristic diagram of the MOS capacitor manufactured in this embodiment.
  • the dielectric breakdown voltage is about 25V as shown by this characteristic power and power, and from this point of view as well, the high insulation property of the film (film mainly composed of silicon dioxide) formed by this embodiment was confirmed.
  • FIG. 7 shows an IV characteristic diagram regarding the voltage dependence of the leakage current value.
  • a characteristic diagram of the MOS capacitor (comparative example) manufactured without performing the heat treatment in the atmosphere containing hydrogen shown in the previous embodiment is shown in (a)
  • the MOS capacitor manufactured in this embodiment is shown in FIG.
  • the characteristic diagram of is shown in (b).
  • the leakage current value was significantly reduced by performing the heat treatment in an atmosphere containing hydrogen.
  • This significant reduction in leakage current proves that even a substrate with a high interface state density, such as silicon carbide, or a substrate with poor flatness can function satisfactorily as a semiconductor device with an ultrathin film. It was.
  • the present invention when the present invention is applied to a MOS type transistor using silicon carbide, it can also be used as an insulating film used for a high frequency transistor.
  • an oxidizing solution mist 42 may be sprayed to the substrate 10 contained in a predetermined container 44 by the sprayer 46.
  • the mist 42 may be a vapor of an oxidizing solution.
  • the mist 42 may be sprayed in the form of a mist even if it is at room temperature and does not reach the boiling point of the oxidizing solution. It is effective for.
  • high-concentration nitric acid having a concentration of 40 wt% is used.
  • boiling nitric acid having a nitric acid concentration of 68 wt% is used.
  • a solution of azeotropic perchloric acid, or its Solution mist (mist) or its vapor can also be used. If an azeotropic mixture of water and strong acid is used as the high-concentration oxidizing solution and the azeotropic state is maintained, the concentration of each of the solution and the vapor becomes constant. Therefore, the use of an azeotrope is preferable in that the thickness of the film formed on the substrate depends on the processing time, and the film thickness can be controlled by time management.
  • 3C—SiC cubic silicon carbide
  • the present invention uses hexagonal silicon carbide (4H—SiC or 6H SiC) as the base material.
  • the same effect as the effect of the present invention can be obtained when using.
  • a silicon carbide other than the above-mentioned 3C-SiC (cubic silicon carbide) and hexagonal silicon carbide (4H-SiC or 6H-SiC), silicon and polysilicon are selected.
  • An insulating film having the same effect as at least a part of the effect of the present invention is also formed on the base material.
  • a semiconductor film formed on the surface of a resin substrate is also used as a base material on which the insulating film is to be formed. included.
  • the present invention can be applied to a so-called flexible substrate. Accordingly, all modifications that come within the spirit and scope of the present invention are intended to be included within the scope of the following claims.

Abstract

An insulating film applicable to a semiconductor device using silicon carbide (SiC) or the like is formed by a chemical oxidation method at a low temperature. After heating at least the surface of a base (10) in a hydrogen-containing atmosphere, the surface is immersed into an oxidizing solution (22), or the solution (22) is sprayed over the surface, or the surface is exposed to a vapor of the solution (22). Consequently, reactivity of the surface of the substrate (10), which is in contact with the oxidizing solution (22), is improved, and an insulating film which exhibits high performance even when formed thin is formed on the surface of the substrate (10).

Description

明 細 書  Specification
絶縁膜形成方法、絶縁膜形成装置、半導体装置の製造方法、および半 導体装置並びにシリコンカーバイドの基板の表面処理方法  Insulating film forming method, insulating film forming apparatus, semiconductor device manufacturing method, semiconductor device and silicon carbide substrate surface treatment method
技術分野  Technical field
[0001] 本発明は、基材表面、詳しくは、シリコンカーバイド、シリコン、ポリシリコンの群から 選ばれる、その基材表面への絶縁膜形成方法、その絶縁膜形成装置、その絶縁膜 を備える半導体装置の製造方法、およびその半導体装置、並びにシリコンカーバイド の基板の表面処理方法に関する。  The present invention relates to a method for forming an insulating film on a surface of a base material, specifically, selected from the group of silicon carbide, silicon, and polysilicon, a method for forming the insulating film on the surface of the base material, a semiconductor including the insulating film The present invention relates to a method of manufacturing a device, a semiconductor device thereof, and a surface treatment method of a substrate of silicon carbide.
背景技術  Background art
[0002] 半導体装置、とりわけ MOS構造の半導体装置 (ダイオードやトランジスタ)では、高 集積化、高密度化に伴う回路要素の微細化で、それに用いられる絶縁膜の性能向 上が重要である。例えば、シリコン基板を用いて構成される半導体装置、とりわけ MO Sトランジスタや MOSキャパシタの場合は、そのゲート絶縁膜や容量絶縁膜などの絶 縁膜を形成するために、いわゆる高温熱酸化法が用いられる。この方法では、シリコ ン基板が、乾燥酸素(ドライ)や水蒸気(ウエット)などの酸化性気体中、 800°C以上の 高温で加熱処理されることにより、二酸化シリコン(SiO )膜がシリコン基板表面に形  In semiconductor devices, particularly MOS-structured semiconductor devices (diodes and transistors), it is important to improve the performance of insulating films used for miniaturization of circuit elements due to higher integration and higher density. For example, in the case of a semiconductor device configured using a silicon substrate, particularly a MOS transistor or a MOS capacitor, a so-called high temperature thermal oxidation method is used to form an insulating film such as a gate insulating film or a capacitive insulating film. It is done. In this method, a silicon substrate is heated in an oxidizing gas such as dry oxygen (dry) or water vapor (wet) at a high temperature of 800 ° C. or higher, so that a silicon dioxide (SiO 2) film is formed on the surface of the silicon substrate. Shape
2  2
成される。しかし、この場合、初期の二酸化シリコン膜の成長速度が速ぐこの間の膜 厚制御が極めて難しいため、例えば膜厚数ナノメートル (nm)以下の高性能な極薄 S ΪΟ膜を制御良く形成することには相当の困難がある。また、高温熱酸化法ではシリ Made. However, in this case, since the initial growth rate of the silicon dioxide film is fast, it is extremely difficult to control the film thickness during this period.For example, a high-performance ultrathin S film with a thickness of several nanometers (nm) or less is formed with good control. There are considerable difficulties. In addition, the high temperature thermal oxidation method uses
2 2
コン基板中のドーパントの拡散が起こり、長時間の熱処理で厚い被膜を形成するとき には、浅レ、接合の変動や破壊にも配慮も必要となる。  When dopants diffuse in the con substrate and a thick film is formed by long-time heat treatment, consideration must be given to shallow changes and fluctuations and destruction of the junction.
[0003] 他方、基板がシリコンカーバイド(SiC)の場合は、 MOSトランジスタのゲート絶縁膜 の形成に際して、 1100°C〜1200°Cでのウエットあるいはドライの酸化性気体中の高 温熱酸化法を採用して、厚さ数十ナノメートル (nm)の二酸化シリコン膜を形成する。 し力、しながら、この成膜には長時間を要するだけでなぐ二酸化シリコン膜の膜質自 体も、シリコン(Si)の高温熱酸化法で形成した SiO膜の場合に比較して性能的に不 [0003] On the other hand, when the substrate is silicon carbide (SiC), a high temperature thermal oxidation method in wet or dry oxidizing gas at 1100 ° C to 1200 ° C is adopted when forming the gate insulating film of the MOS transistor Then, a silicon dioxide film having a thickness of several tens of nanometers (nm) is formed. However, the film quality itself of the silicon dioxide film, which takes a long time to form, is also more efficient than the SiO film formed by high-temperature thermal oxidation of silicon (Si). Bad
2  2
十分である。また、高温処理を要することは、必要とする設備コストの増大や、他のプ ロセスまたは使用材料に対する設計自由度の制限等により、工業化への大きな妨げ となる。そのため、特に基板がシリコンカーバイドの場合、いわゆる MOSデバイスの 高性能化および工業化には依然として多くの課題が残されている。 It is enough. In addition, high-temperature processing requires increased equipment costs and other processes. Limitation of design freedom on process or materials used will greatly hinder industrialization. As a result, many challenges remain in improving the performance and industrialization of so-called MOS devices, particularly when the substrate is silicon carbide.
[0004] さらに、基板がシリコンカーバイドの場合は、前述の課題に加え、基板表面に深い 凹凸が存在するという問題と、形成された絶縁膜中に炭素が残存するために固定電 荷密度および界面準位密度が高いという問題がある。従って、高温熱酸化法で形成 した膜をシリコンカーバイド上に MOS構造を持つ半導体装置用のゲート絶縁膜とし て工業的に利用するための技術的障壁は非常に高い一方、産業界においては、そ の実現が強く要望されている。  [0004] Further, when the substrate is silicon carbide, in addition to the above-mentioned problems, there is a problem that deep irregularities exist on the surface of the substrate, and because the carbon remains in the formed insulating film, the fixed charge density and the interface There is a problem that the level density is high. Therefore, technical barriers for industrial use of a film formed by high-temperature thermal oxidation as a gate insulating film for a semiconductor device having a MOS structure on silicon carbide are very high. Realization of is strongly demanded.
[0005] 高温熱酸化法以外の絶縁膜形成方法としては、例えば、数百。 Cの条件下でモノシ ランなどを熱分解することによってシリコン基板表面に SiO膜を堆積させる化学的気  As an insulating film forming method other than the high temperature thermal oxidation method, for example, several hundreds. Chemical vapor deposition of SiO film on the silicon substrate surface by thermally decomposing monosilane etc. under C condition
2  2
相成長法(CVD)や、プラズマ中で SiO膜を堆積させる方法(PCVD)、あるいはス  Phase growth (CVD), deposition of SiO film in plasma (PCVD), or sputtering
2  2
ノ クタや蒸着法などの種々の物理的気相堆積法 (PVD)などがある。しかし、これら の気相堆積法も、 MOSトランジスタのゲート絶縁膜としての要求を十分に満たすもの とは言えない。  There are various physical vapor deposition (PVD) methods, such as knockers and vapor deposition. However, these vapor deposition methods also do not sufficiently satisfy the requirements for MOS transistor gate insulating films.
[0006] 一方、本発明者は、既に、シリコンを含む半導体基板に対して酸化性溶液あるいは その気体を接触させて、その半導体基板の表面で SiO膜を形成する、いわば化学  On the other hand, the present inventor has already contacted an oxidizing solution or a gas thereof with a semiconductor substrate containing silicon to form a SiO film on the surface of the semiconductor substrate.
2  2
的な酸化技術を開発している (例えば、特許文献 1参照)。  Has developed a practical oxidation technology (see, for example, Patent Document 1).
[0007] 一般的に、半導体装置に適用される絶縁膜としては、シリコン基板上に高温熱酸化 法により形成した二酸化シリコン膜が性能で安定しており、半導体装置の特性上は 望ましい。し力、しながら、半導体表面の諸形状の安定性ならびに工程の維持管理の 観点からは、上記の化学的な酸化技術のように、低温条件下での絶縁膜形成に対 する産業界の期待が非常に大きい。 [0007] In general, as an insulating film applied to a semiconductor device, a silicon dioxide film formed on a silicon substrate by a high temperature thermal oxidation method is stable in performance, which is desirable in terms of the characteristics of the semiconductor device. However, from the viewpoint of the stability of various shapes on the semiconductor surface and the maintenance of the process, the industry expectation for the formation of an insulating film under low temperature conditions, such as the above-mentioned chemical oxidation technology Is very big.
特許文献 1 :特開 2005— 311302号公報 (公開日: 2005年 11月 4日)  Patent Document 1: Japanese Patent Application Laid-Open No. 2005-311302 (Publication date: November 4, 2005)
特許文献 2 :特開 2005— 311303号公報 (公開日: 2005年 11月 4日)  Patent Document 2: Japanese Patent Laid-Open No. 2005-311303 (Publication date: November 4, 2005)
特許文献 3 :特開 2005— 311352号公報 (公開日: 2005年 11月 4日)  Patent Document 3: Japanese Patent Laid-Open No. 2005-311352 (Publication date: November 4, 2005)
特許文献 4 :特開 2002— 289612号公報 (公開曰: 2002年 10月 4曰)  Patent Document 4: Japanese Patent Laid-Open No. 2002-289612 (Opened: October 4, 2002)
非特許文献 1 :長山、外 2名、「化学的手法による Si〇2/S購造の低温形成と分光 学的観測」、 日本物理学会講演概要集、社団法人日本物理学会、 2003年 8月 15日 、第 58巻、第 2号、 p. 771 Non-Patent Document 1: Nagayama, 2 others, "Chemical method of Si02 / S purchase at low temperature and spectroscopy Observations ”, Abstracts of the Physical Society of Japan, The Physical Society of Japan, 15 August 2003, Vol. 58, No. 2, p. 771
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明の目的は特に以下に記載の点に限定されるものではないが、例えば、一つ の目的は、立方晶のシリコンカーバイド(3C— SiC、以下、単に SiCあるいはシリコン カーバイドと総称する)のような表面の凹凸が大きぐあるいは界面準位密度の高い 基板に対しても、化学的手法を用いて低温で高性能の酸化膜を形成し、それを工業 的に利用することにある。具体的には、酸化性溶液、霧状溶液、あるいはその気体を 用いて、基材表面に絶縁膜を化学的に形成する絶縁膜形成方法と、その絶縁膜を 形成する装置、あるいは、その絶縁膜を備える半導体装置やその半導体装置の製造 方法を提供することにある。  [0008] Although the object of the present invention is not particularly limited to the following points, for example, one object is a cubic silicon carbide (3C-SiC, hereinafter simply referred to as SiC or silicon carbide). For example, a high-performance oxide film is formed at low temperature using a chemical method on a substrate with large surface irregularities or a high interface state density such as is there. Specifically, an insulating film forming method for chemically forming an insulating film on the surface of a substrate using an oxidizing solution, a mist solution, or a gas thereof, an apparatus for forming the insulating film, or an insulating film for the insulating film. A semiconductor device including a film and a method for manufacturing the semiconductor device are provided.
[0009] また、本発明の他の目的は、低温での酸化法として開発された化学酸化膜としての 二酸化シリコン膜形成を、シリコンカーバイド、シリコン、ポリシリコンから選ばれる基板 に対しても、一層安定、確実に行うことのできる基材表面への絶縁膜形成方法と、そ の絶縁膜を形成する装置、あるいは、その絶縁膜を備える半導体装置やその半導体 装置の製造方法を提供することにある。  [0009] Another object of the present invention is to form a silicon dioxide film as a chemical oxide film developed as an oxidation method at a low temperature even on a substrate selected from silicon carbide, silicon, and polysilicon. An object of the present invention is to provide a method for forming an insulating film on a substrate surface that can be stably and reliably performed, a device for forming the insulating film, a semiconductor device including the insulating film, and a method for manufacturing the semiconductor device. .
[0010] また、本発明の他の目的は、例えば、シリコンカーバイド基板のような基板表面の平 坦性が乏しぐかつ界面準位密度が高い基板に対しても、上述の化学的手法による 酸化膜形成を効果的に行なうための、前処理としての表面処理方法を提供すること にめ ·ο。  [0010] Further, another object of the present invention is to oxidize a substrate such as a silicon carbide substrate, which has poor substrate surface flatness and high interface state density, by the above-described chemical method. To provide a surface treatment method as a pretreatment for effective film formation.
課題を解決するための手段  Means for solving the problem
[0011] 本発明を実施すれば、これまでは難しいとされていた、絶縁膜形成後の原子層レ ベルでの基材表面の平坦性向上、あるいは固定電荷や界面準位密度の低減が達 成されることにより、極薄膜の高性能絶縁膜を形成することができる。  [0011] If the present invention is carried out, it has been considered difficult until now to improve the flatness of the substrate surface at the atomic layer level after the formation of the insulating film, or to reduce the fixed charge and interface state density. As a result, an ultrathin high-performance insulating film can be formed.
[0012] 本発明は、対象とする基材に対して特に厳格な限定を加えるものではないが、特に 産業界からの要望も強い、シリコンカーバイド等を用いた MOSトランジスタ等に対し て利用できる極薄絶縁膜の形成が低温プロセスで実現すれば、半導体産業等の発 展に大きく寄与するものといえる。発明者は、化学的手法を用いた絶縁膜形成方法 で得られた絶縁膜およびそれを用いた半導体装置等の性能の更なる向上を図るべく 鋭意研究を進めた。その研究の結果、発明者は、これまでの発想を転換する新たな 処理方法および製造方法を採用することにより、これまでに無い高性能の絶縁膜が 基材表面に形成できることを知見した。発明者は、さらに、その絶縁膜により電気特 性の優れた半導体装置が得られることも知見した。 [0012] The present invention does not impose any strict limitation on the target substrate, but is particularly applicable to MOS transistors using silicon carbide or the like that are strongly demanded by the industry. If the formation of a thin insulating film is realized by a low-temperature process, the semiconductor industry will It can be said that it greatly contributes to the exhibition. The inventor has conducted earnest research to further improve the performance of an insulating film obtained by a method of forming an insulating film using a chemical method and a semiconductor device using the insulating film. As a result of the research, the inventor has found that an unprecedented high-performance insulating film can be formed on the surface of a substrate by adopting a new processing method and manufacturing method that change the conventional idea. The inventor has also found that a semiconductor device having excellent electrical characteristics can be obtained by the insulating film.
[0013] すなわち、本発明の一つの基材表面への絶縁膜形成方法は、水素を含む雰囲気 中で少なくとも基材表面を加熱した後、その基材表面を酸化性溶液中に浸漬し、ま たはその基材表面に対してその溶液を噴霧し、あるいはその基材表面をその溶液の 蒸気に曝す工程を有して!/、る。  That is, in the method for forming an insulating film on one substrate surface of the present invention, at least the substrate surface is heated in an atmosphere containing hydrogen, and then the substrate surface is immersed in an oxidizing solution. Or spraying the solution onto the substrate surface, or exposing the substrate surface to the vapor of the solution.
[0014] これにより、上述のごとぐ基材表面の平坦性向上、あるいは界面準位密度の低減 を達成することで、半導体装置にも適用できる高性能な絶縁膜が得られる。  [0014] With this, a high-performance insulating film that can also be applied to a semiconductor device can be obtained by improving the flatness of the substrate surface or reducing the interface state density as described above.
[0015] また、本発明における一つの半導体装置の製造方法は、上述のいずれか 1つの方 法によって絶縁膜を形成する工程を有して!/、る。  [0015] In addition, a method of manufacturing a semiconductor device according to the present invention includes a step of forming an insulating film by any one of the methods described above.
[0016] この製造方法を用いることにより、たとえ基材表面が物理的に粗い、あるいは界面 準位密度の高い基材 (例えば半導体基板)であっても、電気特性の優れた半導体装 置を製造すること力できる。  [0016] By using this manufacturing method, a semiconductor device having excellent electrical characteristics can be manufactured even if the surface of the base material is physically rough or a base material (for example, a semiconductor substrate) having a high interface state density. I can do it.
[0017] また、本発明における一つの半導体装置は、上述のいずれか 1つの方法によって 形成された絶縁膜を備えて!/、る。  [0017] Further, one semiconductor device according to the present invention includes an insulating film formed by any one of the methods described above.
[0018] この絶縁膜が形成されていれば、基材表面の平坦性が向上され、あるいは界面準 位密度の低減が達成されるため、たとえ、当初の基材表面の平坦性が悪ぐあるいは 界面準位密度の高!/、基材 (例えば半導体基板)であっても、電気特性の優れた半導 体装置が得られる。  [0018] If this insulating film is formed, the flatness of the substrate surface is improved or the interface state density is reduced, so even if the initial flatness of the substrate surface is poor or A semiconductor device with excellent electrical characteristics can be obtained even with a high interface state density! / And a base material (for example, a semiconductor substrate).
[0019] また、本発明の一つの絶縁膜形成装置は、水素を含む雰囲気中で少なくとも基材 表面を加熱する手段と、その後、その基材表面を酸化性溶液中に浸漬し、またはそ の基材表面に対してその溶液を噴霧し、あるいはその基材表面をその溶液の蒸気に 曝す手段を有している。  [0019] Also, one insulating film forming apparatus of the present invention includes a means for heating at least the surface of the base material in an atmosphere containing hydrogen, and then immersing the base material surface in an oxidizing solution, or Means are provided for spraying the solution onto the substrate surface or exposing the substrate surface to the vapor of the solution.
[0020] これにより、基材表面の平坦性が向上され、あるいは界面準位密度の低減が達成 されるため、例えば、その後に MOS構造の半導体装置を製造すると、その半導体装 置に優れた電気特性が備わる。 [0020] Thereby, the flatness of the substrate surface is improved, or the reduction of the interface state density is achieved. Therefore, for example, when a semiconductor device having a MOS structure is subsequently manufactured, the semiconductor device has excellent electrical characteristics.
[0021] 加えて、本発明のシリコンカーバイド基板の表面処理方法は、水素を含む雰囲気 中において 200°C以上 500°C以下で加熱する工程を有している。  In addition, the surface treatment method for a silicon carbide substrate of the present invention includes a step of heating at 200 ° C. to 500 ° C. in an atmosphere containing hydrogen.
[0022] これにより、シリコンカーバイド表面層への水素の導入が促される。また、一旦シリコ ンカーバイド表面層に取り込まれた水素は、加熱処理によっても、本発明の効果を損 なわない程度しか放出されない。その結果、その後に化学的酸化方法によって絶縁 膜を形成すると、シリコンカーバイド表面への絶縁膜形成速度が向上する。さらに、そ の後に例えば MOS構造を製造すると、リーク電流の非常に少ない半導体装置が得 られる。  [0022] Thereby, introduction of hydrogen into the silicon carbide surface layer is promoted. Further, the hydrogen once taken into the silicon carbide surface layer is released only to the extent that the effects of the present invention are not impaired by the heat treatment. As a result, when an insulating film is subsequently formed by a chemical oxidation method, the speed of forming the insulating film on the silicon carbide surface is improved. Further, if a MOS structure is manufactured thereafter, for example, a semiconductor device with very little leakage current can be obtained.
発明の効果  The invention's effect
[0023] 本発明によれば、絶縁膜形成後の原子層レベルでの基材表面の平坦性向上、あ るいは基材表面層の界面準位密度の低減を実現し、高性能な絶縁膜を形成すること 力 Sできる。また、本発明によって得られた絶縁膜を用いて半導体装置を製造すること により、電気的特性に優れた半導体装置が得られる。また、本発明をシリコンカーバ イド基板に適用すれば、その後に化学的な酸化方法によって絶縁膜を形成すること により、シリコンカーバイド表面への絶縁膜形成速度が、従来と比較して約 1. 6倍に 増加される。さらに、その後に MOS構造を製造すると、実用的に MOSトランジスタと して利用できる程度にまで十分にリーク電流が低減するため、高性能な半導体装置 が得られる。  [0023] According to the present invention, the flatness of the substrate surface at the atomic layer level after the formation of the insulating film is improved, or the interface state density of the substrate surface layer is reduced, and a high-performance insulating film is achieved. Can form force S. Further, by manufacturing a semiconductor device using the insulating film obtained by the present invention, a semiconductor device having excellent electrical characteristics can be obtained. In addition, when the present invention is applied to a silicon carbide substrate, an insulating film is subsequently formed by a chemical oxidation method, so that the speed of forming an insulating film on the surface of silicon carbide is about 1.6 compared with the conventional case. Will be doubled. Furthermore, if a MOS structure is subsequently manufactured, the leakage current is sufficiently reduced to such an extent that it can be practically used as a MOS transistor, so that a high-performance semiconductor device can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1A]本発明の 1つの実施形態における絶縁膜形成装置のうち、水素含有雰囲気 中の加熱処理装置である。  FIG. 1A shows a heat treatment apparatus in a hydrogen-containing atmosphere among the insulating film forming apparatuses according to one embodiment of the present invention.
[図 1B]本発明の 1つの実施形態における絶縁膜形成装置のうち、酸化性溶液による 浸漬処理装置である。  FIG. 1B is an immersion treatment apparatus using an oxidizing solution among the insulating film forming apparatuses according to one embodiment of the present invention.
[図 1C]本発明の他の実施形態における絶縁膜形成装置のうち、酸化性溶液の蒸気 による曝露装置である。  [FIG. 1C] Among the insulating film forming apparatuses according to another embodiment of the present invention, an exposure apparatus using vapor of an oxidizing solution.
[図 1D]本発明の他の実施形態における絶縁膜形成装置のうち、酸化性溶液の蒸気 または霧による曝露装置である。 FIG. 1D shows an oxidizing solution vapor in an insulating film forming apparatus according to another embodiment of the present invention. Or a fog exposure device.
[図 2A]本発明の 1つの実施形態で製造された構造物の構成を説明する断面図であ  FIG. 2A is a cross-sectional view illustrating the structure of a structure manufactured according to one embodiment of the present invention.
[図 2B]本発明の他の実施形態で製造された半導体装置 (MOSキャパシタ)の構成を 説明する断面図である。 FIG. 2B is a cross-sectional view illustrating a configuration of a semiconductor device (MOS capacitor) manufactured in another embodiment of the present invention.
[図 3]本発明の 1つの実施形態で形成された絶縁膜の TEM解析断面図である。  FIG. 3 is a TEM analysis cross-sectional view of an insulating film formed in one embodiment of the present invention.
[図 4A]本発明の 1つの実施形態で形成された絶縁膜のエックス線光電子スペクトル( [FIG. 4A] X-ray photoelectron spectrum of insulating film formed in one embodiment of the present invention (
XPS)測定による特性図である。 It is a characteristic view by XPS) measurement.
[図 4B]本発明の 1つの実施形態で形成された絶縁膜および比較用の絶縁膜の Si2p に関するエックス線光電子スペクトル (XPS)測定による特性図である。  FIG. 4B is a characteristic diagram of the insulating film formed in one embodiment of the present invention and a comparative insulating film by X-ray photoelectron spectrum (XPS) measurement with respect to Si2p.
[図 5]本発明の他の実施形態で製造された半導体装置 (MOSキャパシタ)の C V 特 1·生図である。  FIG. 5 is a CV characteristic 1 drawing of a semiconductor device (MOS capacitor) manufactured in another embodiment of the present invention.
[図 6]本発明の他の実施形態で製造された半導体装置 (MOSキャパシタ)の I V特 性図である。  FIG. 6 is an IV characteristic diagram of a semiconductor device (MOS capacitor) manufactured in another embodiment of the present invention.
[図 7]本発明の他の実施形態で製造された半導体装置 (MOSキャパシタ)のリーク電 流値の電圧依存性に関する I V特性図である。  FIG. 7 is an IV characteristic diagram relating to voltage dependency of a leakage current value of a semiconductor device (MOS capacitor) manufactured in another embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] つぎに、本発明の実施形態を、添付する図面に基づいて詳細に述べる。尚、この 説明に際し、全図にわたり、共通する部分には共通する参照符号を付す。 Next, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In this description, common parts are denoted by common reference symbols throughout the drawings.
<第 1の実施形態〉  <First embodiment>
図 1Aおよび図 1Bは、本実施形態の絶縁膜形成装置の説明図である。尚、本実施 形態では、基材として、 3C— SiC (立方晶のシリコンカーバイド)を用いた(以下、便 宜上、基板またはシリコンカーバイド基板とする)。また、このシリコンカーバイド基板 は、基板上に厚さ 6 mのェピタキシャル成長層を形成した、面方位(100)であって 、表面抵抗率が 0. 02—0. 03 Ω 'cmの n型基板であった。  1A and 1B are explanatory views of the insulating film forming apparatus of the present embodiment. In this embodiment, 3C—SiC (cubic silicon carbide) is used as the base material (hereinafter referred to as a substrate or a silicon carbide substrate for convenience). In addition, this silicon carbide substrate is an n-type with a surface orientation of (100) and a surface resistivity of 0.02-0.03 Ω'cm, with an epitaxially grown layer of 6 m thickness formed on the substrate. It was a substrate.
[0026] まず、図 1Aに示すような処理装置 100を用いて、 400°Cに加熱された水素雰囲気 中の処理チャンバ一内で、 20分間、この基板 10が処理される。具体的には、ヒータ 一 16により処理チャンバ一 14を加熱しつつ、水素ボンべ力も水素を処理チャンバ一 14内に導入することにより、処理チャンバ一 14の中で支持台 12により支持された基 板 10が加熱処理される。このときのチャンバ一内の処理条件は、常圧で水素 100% であった。 First, using the processing apparatus 100 as shown in FIG. 1A, the substrate 10 is processed for 20 minutes in a processing chamber in a hydrogen atmosphere heated to 400 ° C. Specifically, while the processing chamber 14 is heated by the heater 16, the hydrogen bombing force also causes hydrogen to flow into the processing chamber 1. By introducing into the substrate 14, the substrate 10 supported by the support 12 in the processing chamber 14 is heated. The treatment condition in the chamber at this time was 100% hydrogen at normal pressure.
[0027] ここで、水素の濃度は 75vol%以上であることが好ましぐ 80vol%以上であることが さらに好ましい。例えば、処理チャンバ一内 14に、常圧で水素濃度が 80vol%以上 の気体雰囲気中で、適宜処理温度を選択することにより、 10〜60分程度の処理時 間で本発明に基づく作用が奏される。このときは、水素以外の気体として、例えば図 1 Aに示す窒素のような不活性ガスを含めることができる。尚、 50vol%未満でも本発 明の効果が完全に失われることはなレ、と考えられる力 水素濃度は高レ、ほど好ましレ、 。但し、水素はある範囲の濃度で使用すると爆発の危険性があり、その取り扱いは非 常に難しい。したがって、そのような危険性を回避するという理由で使用濃度が制限 される場合がある。  [0027] Here, the hydrogen concentration is preferably 75 vol% or more, and more preferably 80 vol% or more. For example, the operation based on the present invention can be achieved in a processing time of about 10 to 60 minutes by appropriately selecting a processing temperature in a gas atmosphere having a hydrogen concentration of 80 vol% or more at normal pressure in the processing chamber 14. Is done. In this case, an inert gas such as nitrogen shown in FIG. 1A can be included as a gas other than hydrogen. In addition, even if it is less than 50 vol%, the effect of the present invention will not be completely lost. The higher the hydrogen concentration, the better. However, if hydrogen is used in a certain range of concentrations, there is a danger of explosion and its handling is very difficult. Therefore, the concentration used may be limited to avoid such dangers.
[0028] また、加熱温度は、 200°C以上 500°C以下が好まし!/、。前記温度範囲以外であつ ても、本発明の効果が完全に失われることはないと考えられる力 200°C未満では、 基板表面層に対して十分に水素が供給されない可能性があり、また、 600°Cを超え ると、一度基板表面層に取り込まれた水素が、高温のために放出されてしまう可能性 が高まるからである。これらの観点から、さらに好ましい加熱温度範囲は、 250°C以上 550°C以下であり、最も好ましいのは 250°C以上 500°C以下となる。  [0028] The heating temperature is preferably 200 ° C or higher and 500 ° C or lower! /. Even if the temperature is outside the above temperature range, if the force is less than 200 ° C where the effect of the present invention is not expected to be completely lost, hydrogen may not be sufficiently supplied to the substrate surface layer. This is because if the temperature exceeds 600 ° C., the hydrogen once taken into the substrate surface layer is likely to be released due to the high temperature. From these viewpoints, a more preferable heating temperature range is 250 ° C. or higher and 550 ° C. or lower, and most preferable is 250 ° C. or higher and 500 ° C. or lower.
[0029] 表 1に、前述の水素雰囲気中での加熱処理の有無による基板の表面の粗さを比較 した結果を示す。この表面粗さの測定は AFM (原子間力顕微鏡)を用いて行なった [0029] Table 1 shows the result of comparing the surface roughness of the substrate with and without the heat treatment in the hydrogen atmosphere described above. This surface roughness was measured using an AFM (Atomic Force Microscope).
Yes
[0030] [表 1]  [0030] [Table 1]
Figure imgf000009_0001
Figure imgf000009_0001
[0031] 表 1に示すとおり、本実施形態の処理を実施することにより、平均二乗粗さ(Root Mean Square)において、処理前の基板表面粗さの約 60%が低減された。本実施 形態のような低温処理方法にもかかわらず、基板表面の二乗平均粗さが 0. 5nm以 下という原子層レベルの極めて平滑な表面を有するシリコンカーバイド基板を得るこ とが出来た。 [0031] As shown in Table 1, by performing the processing of the present embodiment, the mean square roughness (Root In Mean Square, about 60% of the substrate surface roughness before processing was reduced. In spite of the low temperature treatment method as in this embodiment, a silicon carbide substrate having an extremely smooth surface at the atomic layer level with a root mean square roughness of 0.5 nm or less on the substrate surface could be obtained.
[0032] 次に、図 1Bに示すような処理装置 200を用いて、前述の処理がなされた基板が酸 化性の溶液に浸漬される。具体的には、便宜上図示しない公知の基板保持器具に よって保持されている基板 10は、処理槽 24内に満たされた室温 (約 25°C)で濃度 4 Owt%の濃硝酸 (水溶液) 22に浸漬される。この状態で、基板 10は、ヒーター 26 (例 えば、液体加熱用の耐酸性石英ヒーター)によりこの濃硝酸 (水溶液) 22が沸騰状態 に近い状態まで加熱される。この状態が継続されると、最終的に沸点 120. 7°C、硝 酸濃度 68wt%の共沸状態の硝酸 (共沸硝酸)に至る。その結果、そのまま加熱され 続けても硝酸濃度および沸点は維持される。この状態を約 7時間持続させた結果、 図 2Aに示すように、基板 10上に均一な厚さの膜 51を備える構造物 500が形成され た。  Next, using the processing apparatus 200 as shown in FIG. 1B, the substrate subjected to the above-described processing is immersed in an oxidizable solution. Specifically, the substrate 10 held by a known substrate holder (not shown) for convenience is concentrated nitric acid (aqueous solution) having a concentration of 4 Owt% at room temperature (about 25 ° C) filled in the treatment tank 24. Soaked in. In this state, the substrate 10 is heated to a state where the concentrated nitric acid (aqueous solution) 22 is in a boiling state by a heater 26 (for example, an acid-resistant quartz heater for liquid heating). If this state continues, it will eventually lead to azeotropic nitric acid (azeotropic nitric acid) with a boiling point of 120.7 ° C and a nitric acid concentration of 68 wt%. As a result, the nitric acid concentration and boiling point are maintained even if heating continues. As a result of maintaining this state for about 7 hours, as shown in FIG. 2A, a structure 500 including a film 51 having a uniform thickness was formed on the substrate 10.
[0033] ここで、当初の濃硝酸 (水溶液)の濃度は特に限定されるものではなぐ 40wt%以 外の濃度(例えば、 20wt%、 60wt%、又は 70wt%)であっても、本発明の効果は 奏される。また、酸化性溶液 (ここでは濃硝酸)への浸漬処理における溶液の温度は 、完全に沸騰状態に到達しなくてもよい。すなわち、酸化性溶液の加熱により硝酸濃 度は順次共沸状態の濃度に近づくことから、常に沸点まで加熱される必要はない。 沸点近傍 (例えば、沸点よりも 1〜5°C程度低い温度)によっても本発明の効果は実 質的に奏される。  [0033] Here, the initial concentration of concentrated nitric acid (aqueous solution) is not particularly limited, and even if the concentration is other than 40 wt% (for example, 20 wt%, 60 wt%, or 70 wt%), The effect is played. Further, the temperature of the solution in the immersion treatment in the oxidizing solution (here, concentrated nitric acid) may not reach the boiling state completely. That is, since the nitric acid concentration gradually approaches the azeotropic concentration by heating the oxidizing solution, it is not always necessary to heat to the boiling point. The effect of the present invention is also substantially achieved by the vicinity of the boiling point (for example, a temperature about 1 to 5 ° C. lower than the boiling point).
[0034] さらに、本実施形態ように連続的な濃度の上昇を伴う溶液の代わりに、基板浸漬用 の溶液として、沸点近傍または沸点に加熱された少なくとも 1種類の所定濃度(例え ば、 40wt%、 60wt%の濃硝酸 (水溶液)と、略共沸状態または共沸状態の硝酸との 、少なくとも 2種類の溶液を予め用意してもよい。この場合も本実施形態の効果と同じ ような効果が奏される。ここで、沸点近傍であるとは、沸点よりも約 1〜5°C低い温度で あり、略共沸状態とは共沸状態の温度よりも約;!〜 5°C低い温度である。  [0034] Further, instead of a solution with a continuous increase in concentration as in this embodiment, at least one predetermined concentration (for example, 40 wt%) heated near or at the boiling point is used as a solution for substrate immersion. , 60 wt% concentrated nitric acid (aqueous solution) and approximately azeotropic or azeotropic nitric acid solution may be prepared in advance, in which case the same effect as in this embodiment Here, near the boiling point is a temperature about 1 to 5 ° C lower than the boiling point, and the substantially azeotropic state is about a temperature lower than the azeotropic state; Temperature.
[0035] また、前述の 2種類以上の溶液を用意して多段階に膜を形成する場合、初期の段 階の処理 (もし、二段階処理であれば、第 1段階における処理)においては、必ずしも 、酸化性溶液を当初から沸点近傍または沸点にまで加熱しておく必要はな!/、。例え ば、第 1段階として、上述の水素を含む雰囲気中で加熱処理を行った後の基板 10を 室温で濃度 40wt%の濃硝酸 (水溶液)に浸漬した状態で逐次加熱して沸点近傍ま たは沸点にまで昇温させることにより、 0. lnm〜lnm厚の極めて薄い膜を形成させ る。その後、第 2段階として、より高濃度の略共沸状態の硝酸または共沸硝酸に基板 10を浸漬させることによって、所望の厚みまで継続的に膜を形成させるという方法で あってもよい。このような場合でも、本発明の効果と同じような効果が奏される。他方、 第 1段階の処理に用いる濃硝酸 (水溶液)の濃度が 70wt%であってもよい。すなわ ち、第 1段階では、前述の基板 10が浸漬された濃度 70wt%の濃硝酸 (水溶液)の温 度が沸点近傍または沸点にまで加熱され、その後、第 2段階で、基板 10が略共沸状 態の硝酸または共沸硝酸中に浸漬されても上述と同様の効果が奏される。 [0035] In the case where a film is formed in multiple stages by preparing two or more kinds of the aforementioned solutions, the initial stage In the treatment of the floor (if it is a two-stage treatment, the treatment in the first stage), it is not always necessary to heat the oxidizing solution from the beginning to near the boiling point or to the boiling point! /. For example, as a first step, the substrate 10 after the heat treatment in the atmosphere containing hydrogen described above is heated in the state of being immersed in concentrated nitric acid (aqueous solution) having a concentration of 40 wt% at room temperature to be close to the boiling point. Increases the boiling point to form a very thin film having a thickness of 0.1 nm to 1 nm. Thereafter, as a second step, a method of continuously forming a film to a desired thickness by immersing the substrate 10 in nitric acid or azeotropic nitric acid in a higher concentration and substantially azeotropic state may be used. Even in such a case, an effect similar to the effect of the present invention is exhibited. On the other hand, the concentration of concentrated nitric acid (aqueous solution) used for the first stage treatment may be 70 wt%. In other words, in the first stage, the temperature of the concentrated nitric acid (aqueous solution) having a concentration of 70 wt% in which the substrate 10 is immersed is heated to near or to the boiling point, and then in the second stage, the substrate 10 is substantially reduced. Even when immersed in azeotropic nitric acid or azeotropic nitric acid, the same effects as described above can be obtained.
[0036] また、前述の水素雰囲気中での加熱処理を行なう前に基板 10の表面に自然酸化 膜が形成されているときは、例えば、濃度 0. 8vol%の希フッ酸溶液に約 5分間浸漬 し、さらに超純水で 5分間リンス処理 (洗浄)することにより、自然酸化膜は完全に除 去される。 [0036] Further, when a natural oxide film is formed on the surface of the substrate 10 before the heat treatment in the hydrogen atmosphere described above, for example, in a dilute hydrofluoric acid solution having a concentration of 0.8 vol% for about 5 minutes. The natural oxide film is completely removed by immersing and rinsing (cleaning) with ultrapure water for 5 minutes.
[0037] 図 3は、 TEM解析での断面図(写真)であり、基板 10の表面と上述の処理により形 成された膜 51との界面は極めて平滑であることがわかる。本実施形態における膜の 厚さ tは、この断面図より約 21nmであることが分かる。  FIG. 3 is a cross-sectional view (photograph) obtained by TEM analysis. It can be seen that the interface between the surface of the substrate 10 and the film 51 formed by the above-described treatment is extremely smooth. From this sectional view, it can be seen that the thickness t of the film in this embodiment is about 21 nm.
[0038] 次に、上述のシリコンカーバイド基板上に形成された膜をエックス線光電子スぺタト ル (XPS)測定装置で測定したところ、図 4Aの特性図が得られた。この結果から、こ の膜の組成は二酸化シリコン(SiO )を主とする膜であることが分かった。  [0038] Next, the film formed on the above-mentioned silicon carbide substrate was measured with an X-ray photoelectron spectrum (XPS) measuring device, and the characteristic diagram of Fig. 4A was obtained. From this result, it was found that the composition of this film was a film mainly composed of silicon dioxide (SiO 2).
2  2
[0039] また、図 4Bは、同じく XPS測定装置において、特に Siの 2p軌道付近の結合エネル ギー領域を拡大したものである。ここでは、比較のために、前述の水素雰囲気中での 加熱処理を行なわず、その他の処理条件は同じにした場合の基材の表面上に形成 された膜についても示している。具体的には、(a)は前述の水素雰囲気中での加熱 処理を行なわなかった膜 (比較例)の測定結果であり、 (b)は本実施形態で形成され た膜のものである。 [0040] この図に示すとおり、 Si— C結合を示す lOleV付近のピークが本実施形態により形 成された膜 (b)では観察されず、比較例の膜 ωでのみ観察された。これは、膜 ω の膜厚よりも、膜 (b)の膜厚の方が厚いことを示している。ここで、前述の Si— c結合 のピークと Si— O結合を示す 104eV付近のピークとの間の面積強度比から、膜 (a) の膜厚は約 13nmであることが分かった。従って、図 3の結果と比較すると、本実施形 態により形成された膜の成膜速度は、水素雰囲気中で加熱処理を行わない場合と比 較して 1. 6倍以上となった。これは、水素が基板の内部まで浸透してその結合を弱 めると共に、硝酸の酸化力を助長して基板表面部の Siに強く作用する、あるいは硝 酸溶液と接触する基板表面部の Siの活性度を向上させて、酸化反応が促進されるこ とによるものと考えられる。詳細なメカニズムについては未だ解明されていないが、本 実施形態で開示した成膜速度の著しい向上という技術的効果は、上述の処理のェ 業化を図る意味で大きな進歩となることは言うまでもない。 [0039] FIG. 4B is an enlarged view of the coupled energy region in the vicinity of the 2p orbit of Si in the same XPS measurement apparatus. Here, for comparison, the film formed on the surface of the base material when the heat treatment in the hydrogen atmosphere is not performed and the other treatment conditions are the same is also shown. Specifically, (a) is a measurement result of a film (comparative example) that was not subjected to the heat treatment in the hydrogen atmosphere described above, and (b) is a film formed in the present embodiment. [0040] As shown in this figure, a peak in the vicinity of lOleV indicating Si—C bonds was not observed in the film (b) formed according to this embodiment, but was observed only in the film ω of the comparative example. This indicates that the film (b) is thicker than the film ω. Here, the film thickness of the film (a) was about 13 nm from the area intensity ratio between the Si—c bond peak and the peak near 104 eV indicating the Si—O bond. Therefore, compared with the result of FIG. 3, the film formation rate of the film formed by this embodiment is 1.6 times or more compared with the case where the heat treatment is not performed in the hydrogen atmosphere. This is because hydrogen penetrates into the inside of the substrate and weakens the bond, and also promotes the oxidizing power of nitric acid to act strongly on Si on the surface of the substrate, or Si on the surface of the substrate in contact with the nitric acid solution. This is thought to be due to the fact that the oxidation reaction is promoted by improving the activity of the catalyst. Although the detailed mechanism has not yet been elucidated, it goes without saying that the technical effect of significantly increasing the deposition rate disclosed in this embodiment is a significant advance in the sense of commercializing the above-described processing.
[0041] <第 2の実施形態〉  [0041] <Second Embodiment>
第 1の実施形態による方法により形成された構造体 500の両面に、電極用の金属 膜 (金属を含む膜) 62, 63を形成した。その後、絶縁膜 51が形成されている側の金 属膜 62について、公知のフォトリソグラフイエ程によりこの金属膜を所望の電極形状( 直径 3mmの円形)にパターユングして、図 2Bに示すような MOSキャパシタ 600を製 造した。尚、この金属膜は、電極用 A1合金(約 1重量%のシリコン(Si)を含むアルミ二 ゥム (A1)合金)を、周知の抵抗加熱処理蒸着法により膜厚約 200nmに堆積すること により形成されている(以下、この種の金属膜電極を単に A1電極と称する)。ここで、 電極用の金属膜はこの A1電極に限るものではなぐ他の金属であっても良い。また、 この金属膜による電極に代えて、ポリシリコン電極を用いることもできる。  Electrode metal films (metal-containing films) 62 and 63 were formed on both surfaces of the structure 500 formed by the method according to the first embodiment. Thereafter, the metal film 62 on the side on which the insulating film 51 is formed is patterned into a desired electrode shape (circular with a diameter of 3 mm) by a known photolithography process, as shown in FIG. 2B. A new MOS capacitor 600 was manufactured. This metal film is formed by depositing an A1 alloy for electrodes (aluminum (A1) alloy containing about 1% by weight of silicon (Si)) to a film thickness of about 200 nm by a well-known resistance heat treatment vapor deposition method. (Hereinafter, this type of metal film electrode is simply referred to as A1 electrode). Here, the metal film for the electrode is not limited to the A1 electrode, but may be another metal. Further, a polysilicon electrode can be used instead of the electrode made of the metal film.
[0042] 図 5はこの実施形態の MOSキャパシタの静電容量 (C)と印加電圧 (V)との関係を 示す C V特性図である。この特性図で見られるように、十分なキャパシタ容量 (静電 容量)が得られた。また、この特性図からは界面準位の存在に起因するような性状も 認められず、良好な C V特性が達成されていることが分かる。  FIG. 5 is a C V characteristic diagram showing the relationship between the capacitance (C) of the MOS capacitor of this embodiment and the applied voltage (V). As can be seen from this characteristic diagram, a sufficient capacitance (capacitance) was obtained. In addition, from this characteristic diagram, it can be seen that no good properties due to the presence of interface states were observed, and that good CV characteristics were achieved.
[0043] この C V特性から算定される膜の厚さは、膜の組成が典型的な二酸化シリコン(Si O )であるとした場合に、 21. 3nmであることがわかった。これは、図 3の TEM解析 での断面図(写真)に基づく測定結果とよく一致している。 [0043] The thickness of the film calculated from the CV characteristics was found to be 21.3 nm when the film composition was typical silicon dioxide (Si 2 O 3). This is the TEM analysis of Figure 3. It is in good agreement with the measurement results based on the cross-sectional view (photo).
[0044] また、図 6はこの実施形態で製造した MOSキャパシタの、電流(I)と印加電圧 (V) との関係、すなわち I—V特性図である。この特性図力、らもわ力、るように、絶縁破壊電 圧が約 25Vであり、この観点からも、本実施形態により形成された膜 (二酸化シリコン を主とする膜)の高絶縁性が確認された。  FIG. 6 is a relationship between the current (I) and the applied voltage (V), that is, an IV characteristic diagram of the MOS capacitor manufactured in this embodiment. The dielectric breakdown voltage is about 25V as shown by this characteristic power and power, and from this point of view as well, the high insulation property of the film (film mainly composed of silicon dioxide) formed by this embodiment Was confirmed.
[0045] さらに、図 7においてリーク電流値の電圧依存性に関する I V特性図を示す。ここ で、先の実施形態で示した水素を含む雰囲気中での加熱処理を行なわずに製造し た MOSキャパシタ(比較例)の特性図を(a)に示し、この実施形態で製造した MOS キャパシタの特性図を (b)に示す。この図力、らも明らかなように、水素を含む雰囲気 中での加熱処理を行なうことによって、リーク電流値が大幅に低減されたことが分かる 。このリーク電流の大幅な低減により、シリコンカーバイドのような界面準位密度の高 い、あるいは平坦性の乏しい基板であっても、極薄膜を備えた半導体装置として十分 に機能しうることが証明された。特に、シリコンカーバイドを用いた MOS型トランジスタ に本発明を適用した場合、高周波トランジスタに用いる絶縁膜としても利用できる。  Further, FIG. 7 shows an IV characteristic diagram regarding the voltage dependence of the leakage current value. Here, a characteristic diagram of the MOS capacitor (comparative example) manufactured without performing the heat treatment in the atmosphere containing hydrogen shown in the previous embodiment is shown in (a), and the MOS capacitor manufactured in this embodiment is shown in FIG. The characteristic diagram of is shown in (b). As is apparent from this graphic power, the leakage current value was significantly reduced by performing the heat treatment in an atmosphere containing hydrogen. This significant reduction in leakage current proves that even a substrate with a high interface state density, such as silicon carbide, or a substrate with poor flatness can function satisfactorily as a semiconductor device with an ultrathin film. It was. In particular, when the present invention is applied to a MOS type transistor using silicon carbide, it can also be used as an insulating film used for a high frequency transistor.
[0046] これまで、本発明の実施形態について具体的に説明した力 上述した実施形態は 本発明を実施するための例示に過ぎない。例えば、本発明の効果を奏するには、必 ずしも対象とする基材表面を酸化性溶液に浸漬させることを要しない。具体的には、 図 1Cに示すような処理装置 300を用い、基板 10と酸化性溶液 22を所定の容器 34 に収め、その容器 34をヒーター 36により加熱することにより酸化性溶液 22を蒸発さ せてもよい。これにより、基板 10はその蒸気 32に曝されるため、先の実施形態と同じ ような効果が奏される。このとき、排気ポンプより適宜排気することにより、新鮮な蒸気 32を常に基板 10に曝すことができる。また、図 1Dに示すような処理装置 400を用い 、所定の容器 44に収めた基板 10に対して、噴霧器 46により、酸化性溶液のミスト 42 を噴射してもよい。この場合、ミスト 42は酸化性溶液の蒸気であってもよいが、例えば 、室温程度であって、その酸化性溶液の沸点まで達していないものであっても霧状 に噴射できるという点で非常に有効である。  [0046] Forces that have specifically described the embodiments of the present invention so far. The above-described embodiments are merely examples for carrying out the present invention. For example, in order to achieve the effects of the present invention, it is not always necessary to immerse the target substrate surface in an oxidizing solution. Specifically, using a processing apparatus 300 as shown in FIG. 1C, the substrate 10 and the oxidizing solution 22 are placed in a predetermined container 34, and the container 34 is heated by the heater 36 to evaporate the oxidizing solution 22. It may be allowed. Thus, since the substrate 10 is exposed to the vapor 32, the same effect as in the previous embodiment is achieved. At this time, fresh steam 32 can always be exposed to the substrate 10 by appropriately evacuating from the exhaust pump. In addition, using a processing apparatus 400 as shown in FIG. 1D, an oxidizing solution mist 42 may be sprayed to the substrate 10 contained in a predetermined container 44 by the sprayer 46. In this case, the mist 42 may be a vapor of an oxidizing solution. For example, the mist 42 may be sprayed in the form of a mist even if it is at room temperature and does not reach the boiling point of the oxidizing solution. It is effective for.
[0047] また、上述の実施形態では、濃度 40wt%の高濃度硝酸を用いたが、これに代えて 、過塩素酸、硫酸、オゾン溶解水、過酸化水素水、塩酸と過酸化水素水との混合溶 液、硫酸と過酸化水素水との混合溶液、アンモニア水と過酸化水素水との混合溶液 、硫酸と硝酸との混合溶液および王水の群から選ばれた少なくとも 1つの酸化性を有 する溶液、またはその溶液のミスト (霧)、あるいはその蒸気を用いてもよい。これらの 溶液であっても、本発明の効果と同じような効果が奏される。 [0047] In the above-described embodiment, high-concentration nitric acid having a concentration of 40 wt% is used. Instead, perchloric acid, sulfuric acid, ozone-dissolved water, hydrogen peroxide solution, hydrochloric acid and hydrogen peroxide solution, and Mixed solution Liquid, mixed solution of sulfuric acid and hydrogen peroxide solution, mixed solution of ammonia water and hydrogen peroxide solution, mixed solution of sulfuric acid and nitric acid, and solution having at least one oxidizing property selected from the group of aqua regia Or a mist of the solution, or vapor thereof. Even with these solutions, the same effects as those of the present invention are exhibited.
[0048] また、上述の本実施形態では、硝酸濃度が 68wt%の沸騰状態の熱硝酸(いわゆ る共沸硝酸)を用いたが、これに代えて共沸過塩素酸の溶液、またはその溶液のミス ト (霧)、あるいはその蒸気を用いることもできる。尚、高濃度の酸化性溶液として水と 強酸との共沸混合物を用いて、その共沸状態を維持すると、溶液および蒸気のそれ ぞれの濃度が一定になる。したがって、共沸混合物を用いれば、基板上に形成され る膜の厚さが処理時間に依存するため、時間管理により膜厚制御が可能となる点で 好ましい。  [0048] In the above-described embodiment, boiling nitric acid having a nitric acid concentration of 68 wt% (so-called azeotropic nitric acid) is used. Instead, a solution of azeotropic perchloric acid, or its Solution mist (mist) or its vapor can also be used. If an azeotropic mixture of water and strong acid is used as the high-concentration oxidizing solution and the azeotropic state is maintained, the concentration of each of the solution and the vapor becomes constant. Therefore, the use of an azeotrope is preferable in that the thickness of the film formed on the substrate depends on the processing time, and the film thickness can be controlled by time management.
[0049] また、上述の実施形態では、基材として 3C— SiC (立方晶のシリコンカーバイド)を 用いたが、本発明は、基材として、六方晶のシリコンカーバイド(4H— SiCまたは 6H SiC)を用いた場合も本発明の効果と同じような効果が得られる。さらに、本発明に よれば、上述の 3C— SiC (立方晶のシリコンカーバイド)、六方晶のシリコンカーバイ ド(4H— SiCあるいは 6H— SiC)以外のシリコンカーバイド、シリコンおよびポリシリコ ンの群から選ばれる基材に対しても、本発明の少なくとも一部の効果と同じような効 果を有する絶縁膜が形成される。  In the above-described embodiment, 3C—SiC (cubic silicon carbide) is used as the base material. However, the present invention uses hexagonal silicon carbide (4H—SiC or 6H SiC) as the base material. The same effect as the effect of the present invention can be obtained when using. Furthermore, according to the present invention, a silicon carbide other than the above-mentioned 3C-SiC (cubic silicon carbide) and hexagonal silicon carbide (4H-SiC or 6H-SiC), silicon and polysilicon are selected. An insulating film having the same effect as at least a part of the effect of the present invention is also formed on the base material.
[0050] また、本発明は低温処理により高性能の絶縁膜形成を可能にするものであるから、 絶縁膜を形成する対象となる基材には、樹脂基板の表面に形成された半導体膜も含 まれる。例えば、いわゆるフレキシブル基板に対しても本発明を適用することができる 。従って、本発明の精神および範囲内に存在する変形例は、すべて特許請求の範 囲に含まれるものである。  [0050] Further, since the present invention enables the formation of a high-performance insulating film by low-temperature treatment, a semiconductor film formed on the surface of a resin substrate is also used as a base material on which the insulating film is to be formed. included. For example, the present invention can be applied to a so-called flexible substrate. Accordingly, all modifications that come within the spirit and scope of the present invention are intended to be included within the scope of the following claims.

Claims

請求の範囲  The scope of the claims
[I] 水素を含む雰囲気中で少なくとも基材表面を加熱した後、前記基材表面を酸化性 溶液中に浸漬し、または前記基材表面に対して前記溶液を噴霧し、あるいは前記基 材表面を前記溶液の蒸気に曝す工程を有する基材表面への絶縁膜形成方法。  [I] After heating at least the substrate surface in an atmosphere containing hydrogen, the substrate surface is immersed in an oxidizing solution, or the solution is sprayed on the substrate surface, or the substrate surface A method for forming an insulating film on the surface of a substrate, which comprises a step of exposing the substrate to vapor of the solution.
[2] 前記酸化性溶液は、硝酸、過塩素酸、硫酸、オゾン溶解水、過酸化水素水、塩酸 と過酸化水素水との混合溶液、硫酸と過酸化水素水との混合溶液、アンモニア水と 過酸化水素水との混合溶液、硫酸と硝酸との混合溶液および王水の群から選ばれ た少なくとも 1つの溶液である請求項 1に記載の基材表面への絶縁膜形成方法。  [2] The oxidizing solution is nitric acid, perchloric acid, sulfuric acid, ozone-dissolved water, hydrogen peroxide solution, a mixed solution of hydrochloric acid and hydrogen peroxide solution, a mixed solution of sulfuric acid and hydrogen peroxide solution, ammonia water. 2. The method for forming an insulating film on the substrate surface according to claim 1, wherein the insulating film is at least one solution selected from the group consisting of a mixed solution of hydrogen peroxide and a mixture of sulfuric acid and nitric acid, and aqua regia.
[3] 前記雰囲気中における加熱温度は 200°C以上 600°C以下であり、前記酸化性溶 液は濃度 20%以上の硝酸溶液である請求項 1に記載の基材表面への絶縁膜形成 方法。  [3] The heating temperature in the atmosphere is 200 ° C or higher and 600 ° C or lower, and the oxidizing solution is a nitric acid solution having a concentration of 20% or higher. Method.
[4] 前記水素の濃度が 75vol%以上である請求項 1に記載の基材表面への絶縁膜形 成方法。  [4] The method for forming an insulating film on the substrate surface according to [1], wherein the hydrogen concentration is 75 vol% or more.
[5] 前記基材が、シリコンカーバイド、シリコン、ポリシリコンの群から選ばれる請求項 1 に記載の基材表面への絶縁膜形成方法。  5. The method for forming an insulating film on the surface of the base material according to claim 1, wherein the base material is selected from the group consisting of silicon carbide, silicon, and polysilicon.
[6] 前記絶縁膜が主として二酸化シリコン(SiO )である請求項 1に記載の基材表面へ 6. The substrate surface according to claim 1, wherein the insulating film is mainly silicon dioxide (SiO 2).
2  2
の絶縁膜形成方法。  Insulating film forming method.
[7] 前記酸化性溶液は、沸点近傍または沸点に加熱された熱硝酸である請求項 1に記 載の基材表面への絶縁膜形成方法。  7. The method for forming an insulating film on a substrate surface according to claim 1, wherein the oxidizing solution is hot nitric acid heated near or at the boiling point.
[8] 前記酸化性溶液は、室温から沸点近傍または沸点にまで加熱される熱硝酸である 請求項 1に記載の基材表面への絶縁膜形成方法。 8. The method for forming an insulating film on a substrate surface according to claim 1, wherein the oxidizing solution is hot nitric acid heated from room temperature to near or to the boiling point.
[9] 前記酸化性溶液は、沸点近傍または沸点に加熱された所定濃度の硝酸と、略共沸 状態または共沸状態の硝酸との、少なくとも 2種類である請求項 1に記載の基材表面 への絶縁膜形成方法。 [9] The substrate surface according to claim 1, wherein the oxidizing solution is at least two kinds of nitric acid having a predetermined concentration near or at a boiling point and nitric acid in a substantially azeotropic state or azeotropic state. Insulating film forming method.
[10] 前記酸化性溶液は、任意濃度の硝酸が室温から略共沸状態または共沸状態の硝 酸になるまで加熱された溶液である請求項 1に記載の基材表面への絶縁膜形成方 法。  [10] The insulating film formation on the substrate surface according to [1], wherein the oxidizing solution is a solution heated from an arbitrary concentration of nitric acid to room temperature or substantially azeotropic nitric acid. Method.
[I I] 請求項 1に記載の方法によって絶縁膜を形成する工程を有する半導体装置の製造 方法。 [II] Manufacture of a semiconductor device having a step of forming an insulating film by the method according to claim 1 Method.
[12] 請求項 1に記載の方法によって形成された絶縁膜を備える半導体装置。  12. A semiconductor device comprising an insulating film formed by the method according to claim 1.
[13] 水素を含む雰囲気中で少なくとも基材表面を加熱する手段と、その後、前記基材表 面を酸化性溶液中に浸漬し、または前記基材表面に対して前記溶液を噴霧し、ある いは前記基材表面を前記溶液の蒸気に曝す工程を有する基材表面への絶縁膜形 成装置。 [13] A means for heating at least the substrate surface in an atmosphere containing hydrogen, and then immersing the substrate surface in an oxidizing solution or spraying the solution on the substrate surface, An apparatus for forming an insulating film on a surface of a base material, comprising a step of exposing the surface of the base material to vapor of the solution.
[14] シリコンカーバイド基板の少なくとも表面を、水素を含む雰囲気中において 200°C 以上 600°C以下で加熱する工程を有するシリコンカーバイド基板の表面処理方法。  [14] A method for treating a surface of a silicon carbide substrate, comprising a step of heating at least the surface of the silicon carbide substrate at 200 ° C. to 600 ° C. in an atmosphere containing hydrogen.
[15] 前記水素の濃度が 75vol%以上である請求項 14に記載のシリコンカーバイド基板 の表面処理方法。 15. The surface treatment method for a silicon carbide substrate according to claim 14, wherein the hydrogen concentration is 75 vol% or more.
[16] 請求項 14に記載の方法によって形成される基板表面の二乗平均粗さ(Rq)が 0. 5 nm以下のシリコンカーバイド基板。  [16] A silicon carbide substrate having a root mean square roughness (Rq) of 0.5 nm or less formed by the method according to claim 14.
PCT/JP2007/064759 2006-08-08 2007-07-27 Method for forming insulating film, apparatus for forming insulating film, method for manufacturing semiconductor device, semiconductor device and surface treatment method for silicon carbide substrate WO2008018304A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006215822 2006-08-08
JP2006-215822 2006-08-08
JP2006218012A JP5224570B2 (en) 2006-08-08 2006-08-10 Insulating film forming method and semiconductor device manufacturing method
JP2006-218012 2006-08-10

Publications (1)

Publication Number Publication Date
WO2008018304A1 true WO2008018304A1 (en) 2008-02-14

Family

ID=39032838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064759 WO2008018304A1 (en) 2006-08-08 2007-07-27 Method for forming insulating film, apparatus for forming insulating film, method for manufacturing semiconductor device, semiconductor device and surface treatment method for silicon carbide substrate

Country Status (2)

Country Link
JP (1) JP5224570B2 (en)
WO (1) WO2008018304A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102009A1 (en) * 2010-02-16 2011-08-25 株式会社Kit Solar cell, method for producing same, and apparatus for producing solar cell
WO2012014668A1 (en) * 2010-07-29 2012-02-02 株式会社Kit Solar cell and process for production thereof, and solar cell production device
JPWO2012014668A1 (en) * 2010-07-29 2013-09-12 小林 光 SOLAR CELL, ITS MANUFACTURING METHOD, AND SOLAR CELL MANUFACTURING DEVICE
JP2016028429A (en) * 2010-07-29 2016-02-25 小林 光 Device for manufacturing solar battery
CN113764121A (en) * 2021-09-18 2021-12-07 西安电子科技大学 Antimony-doped tin dioxide conductive film and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019534553A (en) * 2016-09-26 2019-11-28 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag Method for manufacturing insulating layer on silicon carbide and semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186256A (en) * 1997-12-19 1999-07-09 Fuji Electric Co Ltd Method of forming thermal oxide film of silicon carbide semiconductor device
JP2004047935A (en) * 2002-05-24 2004-02-12 Japan Science & Technology Corp Method for forming silicon dioxide film on surface of silicon base material, method for forming oxide film on surface of semiconductor base material and method for manufacturing semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684887A (en) * 1992-09-07 1994-03-25 Toshiba Corp Method and device for formation of protection film of semiconductor wafer
JPH06140615A (en) * 1992-10-27 1994-05-20 Olympus Optical Co Ltd Manufacture of solid-state image pick-up device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186256A (en) * 1997-12-19 1999-07-09 Fuji Electric Co Ltd Method of forming thermal oxide film of silicon carbide semiconductor device
JP2004047935A (en) * 2002-05-24 2004-02-12 Japan Science & Technology Corp Method for forming silicon dioxide film on surface of silicon base material, method for forming oxide film on surface of semiconductor base material and method for manufacturing semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102009A1 (en) * 2010-02-16 2011-08-25 株式会社Kit Solar cell, method for producing same, and apparatus for producing solar cell
JP5666552B2 (en) * 2010-02-16 2015-02-12 小林 光 SOLAR CELL, ITS MANUFACTURING METHOD, AND SOLAR CELL PRODUCTION DEVICE
WO2012014668A1 (en) * 2010-07-29 2012-02-02 株式会社Kit Solar cell and process for production thereof, and solar cell production device
JPWO2012014668A1 (en) * 2010-07-29 2013-09-12 小林 光 SOLAR CELL, ITS MANUFACTURING METHOD, AND SOLAR CELL MANUFACTURING DEVICE
JP5806667B2 (en) * 2010-07-29 2015-11-10 小林 光 SOLAR CELL, ITS MANUFACTURING METHOD, AND SOLAR CELL MANUFACTURING DEVICE
JP2016028429A (en) * 2010-07-29 2016-02-25 小林 光 Device for manufacturing solar battery
CN113764121A (en) * 2021-09-18 2021-12-07 西安电子科技大学 Antimony-doped tin dioxide conductive film and preparation method and application thereof
CN113764121B (en) * 2021-09-18 2022-06-21 西安电子科技大学 Antimony-doped tin dioxide conductive film and preparation method and application thereof

Also Published As

Publication number Publication date
JP5224570B2 (en) 2013-07-03
JP2008066317A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4708426B2 (en) Method for processing a semiconductor substrate
JP3604018B2 (en) Method for forming silicon dioxide film on silicon substrate surface, method for forming oxide film on semiconductor substrate surface, and method for manufacturing semiconductor device
TW305058B (en)
US8920877B2 (en) Preparation of epitaxial graphene surfaces for atomic layer deposition of dielectrics
TW200418185A (en) A method for making a semiconductor device having an ultra-thin high-k gate dielectric
JP2001319918A (en) Method for treating surface of substrate and the same for semiconductor device
WO2008018304A1 (en) Method for forming insulating film, apparatus for forming insulating film, method for manufacturing semiconductor device, semiconductor device and surface treatment method for silicon carbide substrate
TW201206857A (en) Method for passivating a silicon surface
TWI311781B (en) Thin film transistor and method for manufacturing same, display device, method for modifying oxidized film, method for forming oxidized film, semiconductor device and method for manufacturing same, and apparatus for manufacturing semiconductor device
JP4095615B2 (en) Method for forming oxide film, semiconductor device, and method for manufacturing semiconductor device
JPH10229080A (en) Processing method of oxide, deposition method of amorphous oxide film and amorphous tantalun oxide film
JP4567503B2 (en) Method for forming oxide film, semiconductor device, method for manufacturing semiconductor device, method for oxidizing SiC substrate, SiC-MOS type semiconductor device using the same, and SiC-MOS type integrated circuit using the same
JP4237147B2 (en) THIN FILM TRANSISTOR, METHOD FOR MANUFACTURING THE SAME, DISPLAY DEVICE, AND METHOD FOR MODIFIING OXIDE FILM
JP2002064093A (en) Method for forming oxide film on semiconductor substrate surface, and manufacturing method of semiconductor device
JP4372732B2 (en) Thin film transistor manufacturing method and oxide film modification method
JP2008283001A (en) Method of forming oxide film on polycrystalline silicon thin film, and semiconductor device comprising the oxide film
JP3571160B2 (en) Method for forming oxide film on semiconductor surface and method for manufacturing semiconductor device
JP5256444B2 (en) Insulating film forming method, semiconductor device manufacturing method, and semiconductor device manufacturing apparatus
JP2002289612A (en) Method for forming oxide film on semiconductor substrate surface and method for manufacturing semiconductor device
JP4027913B2 (en) Manufacturing method of semiconductor device
JP6162188B2 (en) Solar cell manufacturing equipment
Pap et al. Heavy water in gate stack processing
JP5666552B2 (en) SOLAR CELL, ITS MANUFACTURING METHOD, AND SOLAR CELL PRODUCTION DEVICE
KR20100053282A (en) Cleaning and oxidation of ge wafer surface with iodine-containing alcohol for semiconductor devices processing
TWI281190B (en) Fabrication of low leakage current metal/titanium dioxide/semiconductor capacitor by post-metallization annealing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791453

Country of ref document: EP

Kind code of ref document: A1