JP2008066317A - Method for forming insulation film, apparatus for forming insulation film, method for manufacturing semiconductor device, semiconductor device, and surface treatment method for silicon carbide substrate - Google Patents

Method for forming insulation film, apparatus for forming insulation film, method for manufacturing semiconductor device, semiconductor device, and surface treatment method for silicon carbide substrate Download PDF

Info

Publication number
JP2008066317A
JP2008066317A JP2006218012A JP2006218012A JP2008066317A JP 2008066317 A JP2008066317 A JP 2008066317A JP 2006218012 A JP2006218012 A JP 2006218012A JP 2006218012 A JP2006218012 A JP 2006218012A JP 2008066317 A JP2008066317 A JP 2008066317A
Authority
JP
Japan
Prior art keywords
insulating film
solution
substrate
forming
substrate surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006218012A
Other languages
Japanese (ja)
Other versions
JP5224570B2 (en
Inventor
Hikari Kobayashi
光 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2006218012A priority Critical patent/JP5224570B2/en
Priority to PCT/JP2007/064759 priority patent/WO2008018304A1/en
Publication of JP2008066317A publication Critical patent/JP2008066317A/en
Application granted granted Critical
Publication of JP5224570B2 publication Critical patent/JP5224570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treatment method as pre-treatment for effectively forming a chemical oxide film at a low temperature when forming an insulation film that can be applied to a semiconductor device using silicon carbide (SiC) or the like. <P>SOLUTION: After heating the surface of a substrate 10 in a hydrogen-containing atmosphere, the surface is immersed into an oxidizing solution 22, or the solution 22 is sprayed over the surface, or the surface is exposed to the vapor of the solution 22. Consequently, the reactivity of the surface of the substrate 10 which is in contact with the oxidizing solution 22 is improved, and an insulation film which exhibits high performance even if formed thin is formed on the surface of the substrate 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、基材表面、詳しくは、シリコンカーバイド、シリコン、ポリシリコンの群から選ばれる、その基材表面への絶縁膜形成方法、その絶縁膜形成装置、その絶縁膜を備える半導体装置の製造方法、およびその半導体装置、並びにシリコンカーバイドの基板の表面処理方法に関する。   The present invention relates to a method for forming an insulating film on a surface of a base material, more specifically, selected from the group of silicon carbide, silicon, and polysilicon, a method for forming the insulating film on the surface of the base material, and a method for manufacturing a semiconductor device including the insulating film. The present invention relates to a method, a semiconductor device thereof, and a surface treatment method of a substrate of silicon carbide.

半導体装置、とりわけMOS構造の半導体装置(ダイオードやトランジスタ)では、高集積化、高密度化に伴う回路要素の微細化で、それに用いられる絶縁膜の性能向上が重要である。例えば、シリコン基板を用いて構成される半導体装置、とりわけMOSトランジスタやMOSキャパシタの場合は、そのゲート絶縁膜や容量絶縁膜などの絶縁膜を形成するために、いわゆる高温熱酸化法が用いられる。この方法では、シリコン基板が、乾燥酸素(ドライ)や水蒸気(ウェット)などの酸化性気体中、800℃以上の高温で加熱処理されることにより、二酸化シリコン(SiO)膜がシリコン基板表面に形成される。しかし、この場合、初期の二酸化シリコン膜の成長速度が速く、この間の膜厚制御が極めて難しいため、例えば膜厚数ナノメートル(nm)以下の高性能な極薄SiO膜を制御良く形成することには相当の困難がある。また、高温熱酸化法ではシリコン基板中のドーパントの拡散が起こり、長時間の熱処理で厚い被膜を形成するときには、浅い接合の変動や破壊にも配慮も必要となる。 In semiconductor devices, particularly MOS-structured semiconductor devices (diodes and transistors), it is important to improve the performance of insulating films used for miniaturization of circuit elements accompanying higher integration and higher density. For example, in the case of a semiconductor device configured using a silicon substrate, particularly a MOS transistor or a MOS capacitor, a so-called high temperature thermal oxidation method is used to form an insulating film such as a gate insulating film or a capacitive insulating film. In this method, the silicon substrate is heated at a high temperature of 800 ° C. or higher in an oxidizing gas such as dry oxygen (dry) or water vapor (wet), so that the silicon dioxide (SiO 2 ) film is formed on the surface of the silicon substrate. It is formed. However, in this case, since the initial growth rate of the silicon dioxide film is fast and it is extremely difficult to control the film thickness during this period, for example, a high performance ultrathin SiO 2 film having a film thickness of several nanometers (nm) or less is formed with good control. There are considerable difficulties. Further, in the high-temperature thermal oxidation method, dopant diffusion in the silicon substrate occurs, and when a thick film is formed by long-time heat treatment, consideration must be given to fluctuation and destruction of shallow junctions.

他方、基板がシリコンカーバイド(SiC)の場合は、MOSトランジスタのゲート絶縁膜の形成に際して、1100℃〜1200℃でのウェットあるいはドライの酸化性気体中の高温熱酸化法を採用して、厚さ数十ナノメートル(nm)の二酸化シリコン膜を形成する。しかしながら、この成膜には長時間を要するだけでなく、二酸化シリコン膜の膜質自体も、シリコン(Si)の高温熱酸化法で形成したSiO膜の場合に比較して性能的に不十分である。また、高温処理を要することは、必要とする設備コストの増大や、他のプロセスまたは使用材料に対する設計自由度の制限等により、工業化への大きな妨げとなる。そのため、特に基板がシリコンカーバイドの場合、いわゆるMOSデバイスの高性能化および工業化には依然として多くの課題が残されている。 On the other hand, when the substrate is silicon carbide (SiC), when forming the gate insulating film of the MOS transistor, a high temperature thermal oxidation method in a wet or dry oxidizing gas at 1100 ° C. to 1200 ° C. is adopted, A silicon dioxide film of several tens of nanometers (nm) is formed. However, this film formation requires not only a long time, but also the quality of the silicon dioxide film itself is insufficient in terms of performance compared with the case of the SiO 2 film formed by the high temperature thermal oxidation method of silicon (Si). is there. In addition, the necessity of high-temperature treatment greatly hinders industrialization due to an increase in necessary equipment costs and a restriction on the degree of freedom of design for other processes or materials used. Therefore, especially when the substrate is silicon carbide, many problems still remain in improving the performance and industrialization of so-called MOS devices.

さらに、基板がシリコンカーバイドの場合は、前述の課題に加え、基板表面に深い凹凸が存在するという問題と、形成された絶縁膜中に炭素が残存するために固定電荷密度および界面準位密度が高いという問題がある。従って、高温熱酸化法で形成した膜をシリコンカーバイド上にMOS構造を持つ半導体装置用のゲート絶縁膜として工業的に利用するための技術的障壁は非常に高い一方、産業界においては、その実現が強く要望されている。   Furthermore, in the case where the substrate is silicon carbide, in addition to the above-mentioned problems, there is a problem that deep irregularities exist on the surface of the substrate, and because the carbon remains in the formed insulating film, the fixed charge density and interface state density are low. There is a problem that it is expensive. Therefore, technical barriers for industrial use of a film formed by high-temperature thermal oxidation as a gate insulating film for a semiconductor device having a MOS structure on silicon carbide are very high. Is strongly demanded.

高温熱酸化法以外の絶縁膜形成方法としては、例えば、数百℃の条件下でモノシランなどを熱分解することによってシリコン基板表面にSiO膜を堆積させる化学的気相成長法(CVD)や、プラズマ中でSiO膜を堆積させる方法(PCVD)、あるいはスパッタや蒸着法などの種々の物理的気相堆積法(PVD)などがある。しかし、これらの気相堆積法も、MOSトランジスタのゲート絶縁膜としての要求を十分に満たすものとは言えない。 As an insulating film forming method other than the high temperature thermal oxidation method, for example, chemical vapor deposition (CVD), in which a SiO 2 film is deposited on the surface of a silicon substrate by thermally decomposing monosilane or the like under conditions of several hundred degrees Celsius, There are a method of depositing a SiO 2 film in plasma (PCVD), and various physical vapor deposition methods (PVD) such as sputtering and vapor deposition. However, these vapor deposition methods also do not sufficiently satisfy the requirements as gate insulating films of MOS transistors.

一方、本発明者は、既に、シリコンを含む半導体基板に対して酸化性溶液あるいはその気体を接触させて、その半導体基板の表面でSiO膜を形成する、いわば化学的な酸化技術を開発している(例えば、特許文献1参照)。 On the other hand, the present inventor has already developed a chemical oxidation technique that forms a SiO 2 film on the surface of a semiconductor substrate by bringing an oxidizing solution or gas into contact with the semiconductor substrate containing silicon. (For example, refer to Patent Document 1).

一般的に、半導体装置に適用される絶縁膜としては、シリコン基板上に高温熱酸化法により形成した二酸化シリコン膜が性能で安定しており、半導体装置の特性上は望ましい。しかしながら、半導体表面の諸形状の安定性ならびに工程の維持管理の観点からは、上記の化学的な酸化技術のように、低温条件下での絶縁膜形成に対する産業界の期待が非常に大きい。
特開2005−311302号公報(公開日:2005年11月4日) 特開2005−311303号公報(公開日:2005年11月4日) 特開2005−311352号公報(公開日:2005年11月4日) 特開2002−289612号公報(公開日:2002年10月4日) 長山、外2名、「化学的手法によるSiO2/Si構造の低温形成と分光学的観測」、日本物理学会講演概要集、社団法人日本物理学会、2003年8月15日、第58巻、第2号、p.771
In general, as an insulating film applied to a semiconductor device, a silicon dioxide film formed on a silicon substrate by a high-temperature thermal oxidation method is stable in performance, which is desirable in terms of characteristics of the semiconductor device. However, from the viewpoint of the stability of various shapes on the semiconductor surface and the maintenance of the process, the industry has a great expectation for forming an insulating film under low temperature conditions as in the above-described chemical oxidation technique.
Japanese Patent Laying-Open No. 2005-313102 (Publication date: November 4, 2005) Japanese Patent Laying-Open No. 2005-3131003 (Publication date: November 4, 2005) Japanese Patent Laying-Open No. 2005-313152 (Publication date: November 4, 2005) JP 2002-289612 A (publication date: October 4, 2002) Nagayama and 2 others, "Low-temperature formation and spectroscopic observation of SiO2 / Si structure by chemical method", Abstracts of lectures of the Physical Society of Japan, The Physical Society of Japan, August 15, 2003, Vol. 58, No. 2, p. 771

本発明の目的は特に以下に記載の点に限定されるものではないが、例えば、一つの目的は、立方晶のシリコンカーバイド(3C−SiC、以下、単にSiCあるいはシリコンカーバイドと総称する)のような表面の凹凸が大きく、あるいは界面準位密度の高い基板に対しても、化学的手法を用いて低温で高性能の酸化膜を形成し、それを工業的に利用することにある。具体的には、酸化性溶液、霧状溶液、あるいはその気体を用いて、基材表面に絶縁膜を化学的に形成する絶縁膜形成方法と、その絶縁膜を形成する装置、あるいは、その絶縁膜を備える半導体装置やその半導体装置の製造方法を提供することにある。   The object of the present invention is not particularly limited to the following points, but one object is, for example, cubic silicon carbide (3C-SiC, hereinafter simply referred to as SiC or silicon carbide). A high-performance oxide film is formed at a low temperature using a chemical method even on a substrate having a large surface irregularity or a high interface state density, and is used industrially. Specifically, an insulating film forming method for chemically forming an insulating film on a substrate surface using an oxidizing solution, a mist solution, or a gas thereof, an apparatus for forming the insulating film, or an insulating film A semiconductor device including a film and a method for manufacturing the semiconductor device are provided.

また、本発明の他の目的は、低温での酸化法として開発された化学酸化膜としての二酸化シリコン膜形成を、シリコンカーバイド、シリコン、ポリシリコンから選ばれる基板に対しても、一層安定、確実に行うことのできる基材表面への絶縁膜形成方法と、その絶縁膜を形成する装置、あるいは、その絶縁膜を備える半導体装置やその半導体装置の製造方法を提供することにある。   Another object of the present invention is to form a silicon dioxide film as a chemical oxide film developed as an oxidation method at a low temperature even more stably and reliably for a substrate selected from silicon carbide, silicon, and polysilicon. It is an object of the present invention to provide a method for forming an insulating film on a substrate surface, a device for forming the insulating film, a semiconductor device including the insulating film, and a method for manufacturing the semiconductor device.

また、本発明の他の目的は、例えば、シリコンカーバイド基板のような基板表面の平坦性が乏しく、かつ界面準位密度が高い基板に対しても、上述の化学的手法による酸化膜形成を効果的に行なうための、前処理としての表面処理方法を提供することにある。   Another object of the present invention is to provide an effect of forming an oxide film by the above-described chemical method even on a substrate having poor substrate surface flatness such as a silicon carbide substrate and a high interface state density. It is an object of the present invention to provide a surface treatment method as a pretreatment.

本発明を実施すれば、これまでは難しいとされていた、絶縁膜形成後の原子層レベルでの基材表面の平坦性向上、あるいは固定電荷や界面準位密度の低減が達成されることにより、極薄膜の高性能絶縁膜を形成することができる。   By carrying out the present invention, the flatness of the substrate surface at the atomic layer level after the formation of the insulating film, which has been considered difficult until now, or the reduction of fixed charge and interface state density is achieved. An ultra-thin high-performance insulating film can be formed.

本発明は、対象とする基材に対して特に厳格な限定を加えるものではないが、特に産業界からの要望も強い、シリコンカーバイド等を用いたMOSトランジスタ等に対して利用できる極薄絶縁膜の形成が低温プロセスで実現すれば、半導体産業等の発展に大きく寄与するものといえる。発明者は、化学的手法を用いた絶縁膜形成方法で得られた絶縁膜およびそれを用いた半導体装置等の性能の更なる向上を図るべく鋭意研究を進めた。その研究の結果、発明者は、これまでの発想を転換する新たな処理方法および製造方法を採用することにより、これまでに無い高性能の絶縁膜が基材表面に形成できることを知見した。発明者は、さらに、その絶縁膜により電気特性の優れた半導体装置が得られることも知見した。   The present invention does not impose any strict limitation on the target base material, but an extremely thin insulating film that can be used for MOS transistors using silicon carbide, etc. If this formation is realized by a low temperature process, it can be said that it will greatly contribute to the development of the semiconductor industry and the like. The inventor has intensively studied to further improve the performance of an insulating film obtained by a method of forming an insulating film using a chemical method and a semiconductor device using the insulating film. As a result of the research, the inventor has found that an unprecedented high-performance insulating film can be formed on the surface of a substrate by adopting a new processing method and manufacturing method that change the conventional idea. The inventor has also found that a semiconductor device having excellent electrical characteristics can be obtained by the insulating film.

すなわち、本発明の一つの基材表面への絶縁膜形成方法は、水素を含む雰囲気中で少なくとも基材表面を加熱した後、その基材表面を酸化性溶液中に浸漬し、またはその溶液を噴霧し、あるいはその溶液の蒸気に曝す工程を有している。   That is, in the method for forming an insulating film on one substrate surface of the present invention, after heating at least the substrate surface in an atmosphere containing hydrogen, the substrate surface is immersed in an oxidizing solution, or the solution is Spraying or exposing to the vapor of the solution.

これにより、上述のごとく、基材表面の平坦性向上、あるいは界面準位密度の低減を達成することで、半導体装置にも適用できる高性能な絶縁膜が得られる。   As a result, as described above, a high-performance insulating film that can be applied to a semiconductor device can be obtained by improving the flatness of the substrate surface or reducing the interface state density.

また、本発明における一つの半導体装置の製造方法は、上述のいずれか1つの方法によって絶縁膜を形成する工程を有している。   In addition, a method for manufacturing a semiconductor device according to the present invention includes a step of forming an insulating film by any one of the methods described above.

この製造方法を用いることにより、たとえ基材表面が物理的に粗い、あるいは界面準位密度の高い基材(例えば半導体基板)であっても、電気特性の優れた半導体装置を製造することができる。   By using this manufacturing method, a semiconductor device having excellent electrical characteristics can be manufactured even if the surface of the base material is physically rough or a base material (for example, a semiconductor substrate) having a high interface state density. .

また、本発明における一つの半導体装置は、上述のいずれか1つの方法によって形成された絶縁膜を備えている。   One semiconductor device according to the present invention includes an insulating film formed by any one of the methods described above.

この絶縁膜が形成されていれば、基材表面の平坦性が向上され、あるいは界面準位密度の低減が達成されるため、たとえ、当初の基材表面の平坦性が悪く、あるいは界面準位密度の高い基材(例えば半導体基板)であっても、電気特性の優れた半導体装置が得られる。   If this insulating film is formed, the flatness of the substrate surface is improved or the interface state density is reduced, so even if the initial flatness of the substrate surface is poor or the interface state is low. Even with a high-density base material (for example, a semiconductor substrate), a semiconductor device having excellent electrical characteristics can be obtained.

また、本発明の一つの絶縁膜形成装置は、水素を含む雰囲気中で少なくとも基材表面を加熱する手段と、その後、その基材表面を酸化性溶液中に浸漬し、またはその溶液を噴霧し、あるいはその蒸気に曝す手段を有している。   Also, one insulating film forming apparatus of the present invention comprises a means for heating at least the substrate surface in an atmosphere containing hydrogen, and then immersing the substrate surface in an oxidizing solution or spraying the solution. Or a means for exposure to the vapor.

これにより、基材表面の平坦性が向上され、あるいは界面準位密度の低減が達成されるため、例えば、その後にMOS構造の半導体装置を製造すると、その半導体装置に優れた電気特性が備わる。   As a result, the flatness of the substrate surface is improved or the interface state density is reduced. For example, when a semiconductor device having a MOS structure is subsequently manufactured, the semiconductor device has excellent electrical characteristics.

加えて、本発明のシリコンカーバイド基板の表面処理方法は、水素を含む雰囲気中において200℃以上500℃以下で加熱する工程を有している。   In addition, the silicon carbide substrate surface treatment method of the present invention includes a step of heating at 200 ° C. to 500 ° C. in an atmosphere containing hydrogen.

これにより、シリコンカーバイド表面層への水素の導入が促される。また、一旦シリコンカーバイド表面層に取り込まれた水素は、加熱処理によっても、本発明の効果を損なわない程度しか放出されない。その結果、その後に化学的酸化方法によって絶縁膜を形成すると、シリコンカーバイド表面への絶縁膜形成速度が向上する。さらに、その後に例えばMOS構造を製造すると、リーク電流の非常に少ない半導体装置が得られる。   This encourages the introduction of hydrogen into the silicon carbide surface layer. Further, hydrogen once taken into the silicon carbide surface layer is released only to the extent that the effects of the present invention are not impaired even by heat treatment. As a result, when an insulating film is subsequently formed by a chemical oxidation method, the speed of forming the insulating film on the silicon carbide surface is improved. Further, when a MOS structure is manufactured thereafter, for example, a semiconductor device with very little leakage current can be obtained.

本発明によれば、絶縁膜形成後の原子層レベルでの基材表面の平坦性向上、あるいは基材表面層の界面準位密度の低減を実現し、高性能な絶縁膜を形成することができる。また、本発明によって得られた絶縁膜を用いて半導体装置を製造することにより、電気的特性に優れた半導体装置が得られる。また、本発明をシリコンカーバイド基板に適用すれば、その後に化学的な酸化方法によって絶縁膜を形成することにより、シリコンカーバイド表面への絶縁膜形成速度が、従来と比較して約1.6倍に増加される。さらに、その後にMOS構造を製造すると、実用的にMOSトランジスタとして利用できる程度にまで十分にリーク電流が低減するため、高性能な半導体装置が得られる。   According to the present invention, it is possible to improve the flatness of the substrate surface at the atomic layer level after the formation of the insulating film or reduce the interface state density of the substrate surface layer and form a high-performance insulating film. it can. Further, by manufacturing a semiconductor device using the insulating film obtained according to the present invention, a semiconductor device having excellent electrical characteristics can be obtained. In addition, if the present invention is applied to a silicon carbide substrate, an insulating film is formed by a chemical oxidation method after that, so that the insulating film formation rate on the surface of the silicon carbide is about 1.6 times that of the conventional case. Will be increased. Further, when a MOS structure is manufactured thereafter, the leakage current is sufficiently reduced to such an extent that it can be practically used as a MOS transistor, so that a high-performance semiconductor device can be obtained.

つぎに、本発明の実施形態を、添付する図面に基づいて詳細に述べる。尚、この説明に際し、全図にわたり、共通する部分には共通する参照符号を付す。
<第1の実施形態>
図1Aおよび図1Bは、本実施形態の絶縁膜形成装置の説明図である。尚、本実施形態では、基材として、3C−SiC(立方晶のシリコンカーバイド)を用いた(以下、便宜上、基板またはシリコンカーバイド基板とする)。また、このシリコンカーバイド基板は、基板上に厚さ6μmのエピタキシャル成長層を形成した、面方位(100)であって、表面抵抗率が0.02〜0.03Ω・cmのn形基板であった。
Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this description, common parts are denoted by common reference symbols throughout the drawings.
<First Embodiment>
1A and 1B are explanatory views of the insulating film forming apparatus of the present embodiment. In this embodiment, 3C—SiC (cubic silicon carbide) is used as a base material (hereinafter referred to as a substrate or a silicon carbide substrate for convenience). Further, this silicon carbide substrate was an n-type substrate having a surface orientation (100) and a surface resistivity of 0.02 to 0.03 Ω · cm, in which an epitaxial growth layer having a thickness of 6 μm was formed on the substrate. .

まず、図1Aに示すような処理装置100を用いて、400℃に加熱された水素雰囲気中の処理チャンバー内で、20分間、この基板10が処理される。具体的には、ヒーター16により処理チャンバー14を加熱しつつ、水素ボンベから水素を処理チャンバー14内に導入することにより、処理チャンバー14の中で支持台12により支持された基板10が加熱処理される。このときのチャンバー内の処理条件は、常圧で水素100%であった。   First, the substrate 10 is processed for 20 minutes in a processing chamber in a hydrogen atmosphere heated to 400 ° C. using a processing apparatus 100 as shown in FIG. 1A. Specifically, by introducing hydrogen from the hydrogen cylinder into the processing chamber 14 while heating the processing chamber 14 with the heater 16, the substrate 10 supported by the support 12 in the processing chamber 14 is heat-treated. The The processing conditions in the chamber at this time were 100% hydrogen at normal pressure.

ここで、水素の濃度は75vol%以上であることが好ましく、80vol%以上であることがさらに好ましい。例えば、処理チャンバー内14に、常圧で水素濃度が80vol%以上の気体雰囲気中で、適宜処理温度を選択することにより、10〜60分程度の処理時間で本発明に基づく作用が奏される。このときは、水素以外の気体として、例えば図1Aに示す窒素のような不活性ガスを含めることができる。尚、50vol%未満でも本発明の効果が完全に失われることはないと考えられるが、水素濃度は高いほど好ましい。但し、水素はある範囲の濃度で使用すると爆発の危険性があり、その取り扱いは非常に難しい。したがって、そのような危険性を回避するという理由で使用濃度が制限される場合がある。   Here, the hydrogen concentration is preferably 75 vol% or more, and more preferably 80 vol% or more. For example, the operation based on the present invention can be achieved in a processing time of about 10 to 60 minutes by appropriately selecting a processing temperature in a gas atmosphere in the processing chamber 14 at a normal pressure and a hydrogen concentration of 80 vol% or more. . In this case, an inert gas such as nitrogen shown in FIG. 1A can be included as a gas other than hydrogen. In addition, although it is thought that even if it is less than 50 vol%, the effect of this invention is not lost completely, it is so preferable that hydrogen concentration is high. However, if hydrogen is used in a certain range of concentrations, there is a risk of explosion and its handling is very difficult. Therefore, the use concentration may be limited for the purpose of avoiding such danger.

また、加熱温度は、200℃以上500℃以下が好ましい。前記温度範囲以外であっても、本発明の効果が完全に失われることはないと考えられるが、200℃未満では、基板表面層に対して十分に水素が供給されない可能性があり、また、600℃を超えると、一度基板表面層に取り込まれた水素が、高温のために放出されてしまう可能性が高まるからである。これらの観点から、さらに好ましい加熱温度範囲は、250℃以上550℃以下であり、最も好ましいのは250℃以上500℃以下となる。   The heating temperature is preferably 200 ° C. or higher and 500 ° C. or lower. Even if it is outside the above temperature range, it is considered that the effect of the present invention is not completely lost, but if it is less than 200 ° C., hydrogen may not be sufficiently supplied to the substrate surface layer, This is because if the temperature exceeds 600 ° C., the hydrogen once taken into the substrate surface layer is likely to be released due to the high temperature. From these viewpoints, a more preferable heating temperature range is 250 ° C. or more and 550 ° C. or less, and most preferably 250 ° C. or more and 500 ° C. or less.

表1に、前述の水素雰囲気中での加熱処理の有無による基板の表面の粗さを比較した結果を示す。この表面粗さの測定はAFM(原子間力顕微鏡)を用いて行なった。   Table 1 shows the result of comparing the surface roughness of the substrate with and without the heat treatment in the hydrogen atmosphere. The surface roughness was measured using an AFM (atomic force microscope).

Figure 2008066317
Figure 2008066317

表1に示すとおり、本実施形態の処理を実施することにより、平均二乗粗さ(Root Mean Square)において、処理前の基板表面粗さの約60%が低減された。本実施形態のような低温処理方法にもかかわらず、基板表面の二乗平均粗さが0.5nm以下という原子層レベルの極めて平滑な表面を有するシリコンカーバイド基板を得ることが出来た。   As shown in Table 1, by performing the processing of the present embodiment, about 60% of the substrate surface roughness before processing was reduced in the mean square roughness. Despite the low-temperature treatment method as in this embodiment, a silicon carbide substrate having an extremely smooth surface at the atomic layer level with a root mean square roughness of 0.5 nm or less on the substrate surface could be obtained.

次に、図1Bに示すような処理装置200を用いて、前述の処理がなされた基板が酸化性の溶液に浸漬される。具体的には、便宜上図示しない公知の基板保持器具によって保持されている基板10は、処理槽24内に満たされた室温(約25℃)で濃度40wt%の濃硝酸(水溶液)22に浸漬される。この状態で、基板10は、ヒーター26(例えば、液体加熱用の耐酸性石英ヒーター)によりこの濃硝酸(水溶液)22が沸騰状態に近い状態まで加熱される。この状態が継続されると、最終的に沸点120.7℃、硝酸濃度68wt%の共沸状態の硝酸(共沸硝酸)に至る。その結果、そのまま加熱され続けても硝酸濃度および沸点は維持される。この状態を約7時間持続させた結果、図2Aに示すように、基板10上に均一な厚さの膜51を備える構造物500が形成された。   Next, using the processing apparatus 200 as shown in FIG. 1B, the substrate subjected to the above-described processing is immersed in an oxidizing solution. Specifically, the substrate 10 held by a known substrate holding tool (not shown) for convenience is immersed in concentrated nitric acid (aqueous solution) 22 having a concentration of 40 wt% at room temperature (about 25 ° C.) filled in the treatment tank 24. The In this state, the substrate 10 is heated to a state in which the concentrated nitric acid (aqueous solution) 22 is in a boiling state by a heater 26 (for example, an acid-resistant quartz heater for liquid heating). If this state is continued, it finally reaches azeotropic nitric acid (azeotropic nitric acid) having a boiling point of 120.7 ° C. and a nitric acid concentration of 68 wt%. As a result, the nitric acid concentration and boiling point are maintained even if heating is continued as it is. As a result of maintaining this state for about 7 hours, as shown in FIG. 2A, the structure 500 including the film 51 having a uniform thickness was formed on the substrate 10.

ここで、当初の濃硝酸(水溶液)の濃度は特に限定されるものではなく、40wt%以外の濃度(例えば、20wt%や60wt%)であっても、本発明の効果は奏される。また、酸化性溶液(ここでは濃硝酸)への浸漬処理における溶液の温度は、完全に沸騰状態に到達しなくてもよい。すなわち、酸化性溶液の加熱により硝酸濃度は順次高められることから、常に沸点まで加熱される必要はない。沸点近傍(例えば、沸点よりも1〜5℃程度低い温度)によっても本発明の効果は実質的に奏される。   Here, the concentration of the initial concentrated nitric acid (aqueous solution) is not particularly limited, and the effects of the present invention can be achieved even if the concentration is other than 40 wt% (for example, 20 wt% or 60 wt%). Further, the temperature of the solution in the immersion treatment in the oxidizing solution (here, concentrated nitric acid) may not reach the boiling state completely. That is, since the nitric acid concentration is sequentially increased by heating the oxidizing solution, it is not always necessary to heat to the boiling point. The effect of the present invention is substantially achieved even near the boiling point (for example, a temperature lower by about 1 to 5 ° C. than the boiling point).

さらに、本実施形態ように連続的な濃度の上昇を伴う溶液の代わりに、基板浸漬用の溶液として、沸点近傍または沸点に加熱された少なくとも1種類の所定濃度(例えば、40wt%や60wt%の濃硝酸(水溶液)と、略共沸状態または共沸状態の硝酸との、少なくとも2種類の溶液を予め用意してもよい。この場合も本実施形態の効果と同じような効果が奏される。ここで、沸点近傍であるとは、沸点よりも約1〜5℃低い温度であり、略共沸状態とは共沸状態の温度よりも約1〜5℃低い温度である。   Furthermore, instead of a solution with a continuous increase in concentration as in the present embodiment, at least one predetermined concentration (for example, 40 wt% or 60 wt%) heated near or at the boiling point is used as a substrate immersion solution. At least two kinds of solutions of concentrated nitric acid (aqueous solution) and nitric acid in a substantially azeotropic state or azeotropic state may be prepared in advance, and in this case, the same effect as that of the present embodiment is exhibited. Here, being near the boiling point is a temperature lower by about 1 to 5 ° C. than the boiling point, and the substantially azeotropic state is a temperature lower by about 1 to 5 ° C. than the temperature in the azeotropic state.

また、前述の2種類以上の溶液を用意して多段階に膜を形成する場合、初期の段階の処理(もし、二段階処理であれば、第1段階における処理)においては、必ずしも、酸化性溶液を当初から沸点近傍または沸点にまで加熱しておく必要はない。例えば、第1段階として、上述の水素を含む雰囲気中で加熱処理を行った後の基板10を室温で濃度40wt%の濃硝酸(水溶液)に浸漬した状態で逐次加熱して沸点近傍または沸点にまで昇温させることにより、0.1nm〜1nm厚の極めて薄い膜を形成させる。その後、第2段階として、より高濃度の略共沸硝酸または共沸硝酸に基板10を浸漬させることによって、所望の厚みまで継続的に膜を形成させるという方法であってもよい。このような場合でも、本発明の効果と同じような効果が奏される。   Further, when a film is formed in multiple stages by preparing two or more kinds of solutions as described above, in the initial stage process (if it is a two-stage process, the process in the first stage) is not necessarily oxidizing. It is not necessary to heat the solution from the beginning to near the boiling point or to the boiling point. For example, as the first stage, the substrate 10 after being subjected to the heat treatment in the atmosphere containing hydrogen described above is sequentially heated in a state of being immersed in concentrated nitric acid (aqueous solution) having a concentration of 40 wt% at room temperature so as to be close to or near the boiling point. By raising the temperature to 0.1 nm, an extremely thin film having a thickness of 0.1 nm to 1 nm is formed. Thereafter, as a second stage, the substrate 10 may be immersed in a higher concentration of substantially azeotropic nitric acid or azeotropic nitric acid to form a film continuously to a desired thickness. Even in such a case, an effect similar to the effect of the present invention is exhibited.

また、前述の水素雰囲気中での加熱処理を行なう前に基板10の表面に自然酸化膜が形成されているときは、例えば、濃度0.8vol%の希フッ酸溶液に約5分間浸漬し、さらに超純水で5分間リンス処理(洗浄)することにより、自然酸化膜は完全に除去される。   Further, when a natural oxide film is formed on the surface of the substrate 10 before performing the heat treatment in the hydrogen atmosphere described above, for example, it is immersed in a dilute hydrofluoric acid solution having a concentration of 0.8 vol% for about 5 minutes, Further, the natural oxide film is completely removed by rinsing (cleaning) with ultrapure water for 5 minutes.

図3は、TEM解析での断面図(写真)であり、基板10の表面と上述の処理により形成された膜51との界面は極めて平滑であることがわかる。本実施形態における膜の厚さtは、この断面図より約21nmであることが分かる。   FIG. 3 is a cross-sectional view (photograph) obtained by TEM analysis. It can be seen that the interface between the surface of the substrate 10 and the film 51 formed by the above-described processing is extremely smooth. It can be seen from this cross-sectional view that the thickness t of the film in this embodiment is about 21 nm.

次に、上述のシリコンカーバイド基板上に形成された膜をエックス線光電子スペクトル(XPS)測定装置で測定したところ、図4Aの特性図が得られた。この結果から、この膜の組成は二酸化シリコン(SiO)を主とする膜であることが分かった。 Next, when the film formed on the above-mentioned silicon carbide substrate was measured with an X-ray photoelectron spectrum (XPS) measuring device, the characteristic diagram of FIG. 4A was obtained. From this result, it was found that the composition of this film was a film mainly composed of silicon dioxide (SiO 2 ).

また、図4Bは、同じくXPS測定装置において、特にSiの2p軌道付近の結合エネルギー領域を拡大したものである。ここでは、比較のために、前述の水素雰囲気中での加熱処理を行なわず、その他の処理条件は同じにした場合の基材の表面上に形成された膜についても示している。具体的には、(a)は前述の水素雰囲気中での加熱処理を行なわなかった膜(比較例)の測定結果であり、(b)は本実施形態で形成された膜のものである。   FIG. 4B is an enlarged view of the binding energy region in the vicinity of the 2p orbit of Si in the same XPS measurement apparatus. Here, for comparison, a film formed on the surface of the base material when the above-described heat treatment in a hydrogen atmosphere is not performed and the other processing conditions are the same is also shown. Specifically, (a) is a measurement result of a film (comparative example) that was not subjected to the above-described heat treatment in a hydrogen atmosphere, and (b) is a film formed in the present embodiment.

この図に示すとおり、Si−C結合を示す101eV付近のピークが本実施形態により形成された膜(b)では観察されず、比較例の膜(a)でのみ観察された。これは、膜(a)の膜厚よりも、膜(b)の膜厚の方が厚いことを示している。ここで、前述のSi−C結合のピークとSi−O結合を示す104eV付近のピークとの間の面積強度比から、膜(a)の膜厚は約13nmであることが分かった。従って、図3の結果と比較すると、本実施形態により形成された膜の成膜速度は、水素雰囲気中で加熱処理を行わない場合と比較して1.6倍以上となった。これは、水素が基板の内部まで浸透してその結合を弱めると共に、硝酸の酸化力を助長して基板表面部のSiに強く作用する、あるいは硝酸溶液と接触する基板表面部のSiの活性度を向上させて、酸化反応が促進されることによるものと考えられる。詳細なメカニズムについては未だ解明されていないが、本実施形態で開示した成膜速度の著しい向上という技術的効果は、上述の処理の工業化を図る意味で大きな進歩となることは言うまでもない。   As shown in this figure, a peak in the vicinity of 101 eV indicating the Si—C bond was not observed in the film (b) formed according to this embodiment, but was observed only in the film (a) of the comparative example. This indicates that the film (b) is thicker than the film (a). Here, the film thickness of the film (a) was found to be about 13 nm from the area intensity ratio between the peak of the Si—C bond and the peak near 104 eV indicating the Si—O bond. Therefore, compared with the result of FIG. 3, the film formation rate of the film formed according to the present embodiment is 1.6 times or more compared with the case where the heat treatment is not performed in the hydrogen atmosphere. This is because hydrogen penetrates into the inside of the substrate and weakens its bond, and also promotes the oxidizing power of nitric acid to act strongly on Si on the surface of the substrate, or the activity of Si on the surface of the substrate in contact with the nitric acid solution This is thought to be due to the fact that the oxidation reaction is promoted. Although the detailed mechanism has not yet been elucidated, it goes without saying that the technical effect of significantly increasing the film formation rate disclosed in this embodiment is a significant advance in the sense of industrializing the above-described processing.

<第2の実施形態>
第1の実施形態による方法により形成された構造体500の両面に、電極用の金属膜(金属を含む膜)62,63を形成した。その後、絶縁膜51が形成されている側の金属膜62について、公知のフォトリソグラフィ工程によりこの金属膜を所望の電極形状(直径3mmの円形)にパターニングして、図2Bに示すようなMOSキャパシタ600を製造した。尚、この金属膜は、電極用Al合金(約1重量%のシリコン(Si)を含むアルミニウム(Al)合金)を、周知の抵抗加熱処理蒸着法により膜厚約200nmに堆積することにより形成されている(以下、この種の金属膜電極を単にAl電極と称する)。ここで、電極用の金属膜はこのAl電極に限るものではなく、他の金属であっても良い。また、この金属膜による電極に代えて、ポリシリコン電極を用いることもできる。
<Second Embodiment>
Electrode metal films (metal-containing films) 62 and 63 were formed on both surfaces of the structure 500 formed by the method according to the first embodiment. Thereafter, the metal film 62 on the side on which the insulating film 51 is formed is patterned into a desired electrode shape (circular with a diameter of 3 mm) by a known photolithography process to obtain a MOS capacitor as shown in FIG. 2B. 600 was produced. This metal film is formed by depositing an Al alloy for electrodes (aluminum (Al) alloy containing about 1% by weight of silicon (Si)) to a film thickness of about 200 nm by a well-known resistance heat treatment vapor deposition method. (Hereinafter, this type of metal film electrode is simply referred to as an Al electrode). Here, the metal film for the electrode is not limited to the Al electrode, and may be another metal. Further, a polysilicon electrode can be used instead of the electrode made of the metal film.

図5はこの実施形態のMOSキャパシタの静電容量(C)と印加電圧(V)との関係を示すC−V特性図である。この特性図で見られるように、十分なキャパシタ容量(静電容量)が得られた。また、この特性図からは界面準位の存在に起因するような性状も認められず、良好なC−V特性が達成されていることが分かる。   FIG. 5 is a CV characteristic diagram showing the relationship between the capacitance (C) of the MOS capacitor of this embodiment and the applied voltage (V). As can be seen from this characteristic diagram, a sufficient capacitor capacity (capacitance) was obtained. In addition, from this characteristic diagram, it is understood that no property due to the presence of the interface state is observed, and a good CV characteristic is achieved.

このC−V特性から算定される膜の厚さは、膜の組成が典型的な二酸化シリコン(SiO)であるとした場合に、21.3nmであることがわかった。これは、図3のTEM解析での断面図(写真)に基づく測定結果とよく一致している。 The film thickness calculated from the CV characteristics was found to be 21.3 nm when the film composition was typical silicon dioxide (SiO 2 ). This agrees well with the measurement result based on the cross-sectional view (photograph) in the TEM analysis of FIG.

また、図6はこの実施形態で製造したMOSキャパシタの、電流(I)と印加電圧(V)との関係、すなわちI−V特性図である。この特性図からもわかるように、絶縁破壊電圧が約25Vであり、この観点からも、本実施形態により形成された膜(二酸化シリコンを主とする膜)の高絶縁性が確認された。   FIG. 6 is a relationship between the current (I) and the applied voltage (V), that is, an IV characteristic diagram of the MOS capacitor manufactured in this embodiment. As can be seen from this characteristic diagram, the dielectric breakdown voltage is about 25 V, and from this point of view, the high insulating property of the film (film mainly composed of silicon dioxide) formed according to the present embodiment was confirmed.

さらに、図7においてリーク電流値の電圧依存性に関するI−V特性図を示す。ここで、先の実施形態で示した水素を含む雰囲気中での加熱処理を行なわずに製造したMOSキャパシタ(比較例)の特性図を(a)に示し、この実施形態で製造したMOSキャパシタの特性図を(b)に示す。この図からも明らかなように、水素を含む雰囲気中での加熱処理を行なうことによって、リーク電流値が大幅に低減されたことが分かる。このリーク電流の大幅な低減により、シリコンカーバイドのような界面準位密度の高い、あるいは平坦性の乏しい基板であっても、極薄膜を備えた半導体装置として十分に機能しうることが証明された。特に、シリコンカーバイドを用いたMOS型トランジスタに本発明を適用した場合、高周波トランジスタに用いる絶縁膜としても利用できる。   Further, FIG. 7 shows an IV characteristic diagram regarding the voltage dependence of the leakage current value. Here, a characteristic diagram of the MOS capacitor (comparative example) manufactured without performing the heat treatment in the atmosphere containing hydrogen shown in the previous embodiment is shown in (a), and the characteristic of the MOS capacitor manufactured in this embodiment is shown in FIG. The characteristic diagram is shown in (b). As is apparent from this figure, it can be seen that the leakage current value was significantly reduced by performing the heat treatment in an atmosphere containing hydrogen. This significant reduction in leakage current proves that even a substrate with high interface state density such as silicon carbide or poor flatness can function satisfactorily as a semiconductor device with an extremely thin film. . In particular, when the present invention is applied to a MOS type transistor using silicon carbide, it can be used as an insulating film used for a high-frequency transistor.

これまで、本発明の実施形態について具体的に説明したが、上述した実施形態は本発明を実施するための例示に過ぎない。例えば、本発明の効果を奏するには、必ずしも対象とする基材表面を酸化性溶液に浸漬させることを要しない。具体的には、図1Cに示すような処理装置300を用い、基板10と酸化性溶液22を所定の容器34に収め、その容器34をヒーター36により加熱することにより酸化性溶液22を蒸発させてもよい。これにより、基板10はその蒸気32に曝されるため、先の実施形態と同じようか効果が奏される。このとき、排気ポンプより適宜排気することにより、新鮮な蒸気32を常に基板10に曝すことができる。また、図1Dに示すような処理装置400を用い、所定の容器44に収めた基板10に対して、噴霧器46により、酸化性溶液のミスト42を噴射してもよい。この場合、ミスト42は酸化性溶液の蒸気であってもよいが、例えば、室温程度であって、その酸化性溶液の沸点まで達していないものであっても霧状に噴射できるという点で非常に有効である。   Although the embodiments of the present invention have been specifically described so far, the above-described embodiments are merely examples for carrying out the present invention. For example, in order to achieve the effects of the present invention, it is not always necessary to immerse the target substrate surface in an oxidizing solution. Specifically, using a processing apparatus 300 as shown in FIG. 1C, the substrate 10 and the oxidizing solution 22 are placed in a predetermined container 34, and the container 34 is heated by a heater 36 to evaporate the oxidizing solution 22. May be. Thereby, since the board | substrate 10 is exposed to the vapor | steam 32, an effect is show | played like the previous embodiment. At this time, fresh steam 32 can be always exposed to the substrate 10 by appropriately exhausting from the exhaust pump. In addition, using a processing apparatus 400 as shown in FIG. 1D, an oxidizing solution mist 42 may be sprayed to the substrate 10 contained in a predetermined container 44 by the sprayer 46. In this case, the mist 42 may be a vapor of an oxidizing solution. For example, even if the mist 42 is about room temperature and does not reach the boiling point of the oxidizing solution, the mist 42 can be sprayed in the form of a mist. It is effective for.

また、上述の実施形態では、濃度40wt%の高濃度硝酸を用いたが、これに代えて、過塩素酸、硫酸、オゾン溶解水、過酸化水素水、塩酸と過酸化水素水との混合溶液、硫酸と過酸化水素水との混合溶液、アンモニア水と過酸化水素水との混合溶液、硫酸と硝酸との混合溶液および王水の群から選ばれた少なくとも1つの酸化性を有する溶液、またはその溶液のミスト(霧)、あるいはその蒸気を用いてもよい。これらの溶液であっても、本発明の効果と同じような効果が奏される。   In the above-described embodiment, high concentration nitric acid having a concentration of 40 wt% is used. Instead, perchloric acid, sulfuric acid, ozone-dissolved water, hydrogen peroxide solution, and a mixed solution of hydrochloric acid and hydrogen peroxide solution are used. A mixed solution of sulfuric acid and hydrogen peroxide solution, a mixed solution of ammonia water and hydrogen peroxide solution, a mixed solution of sulfuric acid and nitric acid, and a solution having at least one oxidizing property selected from the group of aqua regia, or You may use the mist (mist) of the solution, or the vapor | steam. Even with these solutions, the same effects as those of the present invention can be obtained.

また、上述の本実施形態では、硝酸濃度が68wt%の沸騰状態の熱硝酸(いわゆる共沸硝酸)を用いたが、これに代えて共沸過塩素酸の溶液、またはその溶液のミスト(霧)、あるいはその蒸気を用いることもできる。尚、高濃度の酸化性溶液として水と強酸との共沸混合物を用いて、その共沸状態を維持すると、溶液および蒸気のそれぞれの濃度が一定になる。したがって、共沸混合物を用いれば、基板上に形成される膜の厚さが処理時間に依存するため、時間管理により膜厚制御が可能となる点で好ましい。   In the above-described embodiment, boiling nitric acid having a nitric acid concentration of 68 wt% (so-called azeotropic nitric acid) is used. Instead, a solution of azeotropic perchloric acid or a mist (mist) of the solution is used. ) Or its vapor. In addition, when the azeotropic state is maintained using an azeotropic mixture of water and strong acid as the high-concentration oxidizing solution, the concentrations of the solution and the vapor become constant. Therefore, the use of an azeotropic mixture is preferable in that the thickness of the film formed on the substrate depends on the processing time, so that the film thickness can be controlled by time management.

また、上述の実施形態では、基材として3C−SiC(立方晶のシリコンカーバイド)を用いたが、本発明は、基材として、六方晶のシリコンカーバイド(4H−SiCまたは6H−SiC)を用いた場合も本発明の効果と同じような効果が得られる。さらに、本発明によれば、上述の3C−SiC(立方晶のシリコンカーバイド)、六方晶のシリコンカーバイド(4H−SiCあるいは6H−SiC)以外のシリコンカーバイド、シリコンおよびポリシリコンの群から選ばれる基材に対しても、本発明の少なくとも一部の効果と同じような効果を有する絶縁膜が形成される。   In the above embodiment, 3C-SiC (cubic silicon carbide) is used as the base material. However, the present invention uses hexagonal silicon carbide (4H-SiC or 6H-SiC) as the base material. In the case of such a case, the same effect as that of the present invention can be obtained. Furthermore, according to the present invention, a group selected from the group consisting of silicon carbide, silicon and polysilicon other than the above-described 3C-SiC (cubic silicon carbide) and hexagonal silicon carbide (4H-SiC or 6H-SiC). Also on the material, an insulating film having the same effect as at least a part of the effect of the present invention is formed.

また、本発明は低温処理により高性能の絶縁膜形成を可能にするものであるから、絶縁膜を形成する対象となる基材には、樹脂基板の表面に形成された半導体膜も含まれる。例えば、いわゆるフレキシブル基板に対しても本発明を適用することができる。従って、本発明の精神および範囲内に存在する変形例は、すべて特許請求の範囲に含まれるものである。   In addition, since the present invention enables formation of a high-performance insulating film by low-temperature treatment, the base material on which the insulating film is formed includes a semiconductor film formed on the surface of the resin substrate. For example, the present invention can be applied to a so-called flexible substrate. Accordingly, all modifications that come within the spirit and scope of the present invention are intended to be included within the scope of the following claims.

本発明の1つの実施形態における絶縁膜形成装置のうち、水素含有雰囲気中の加熱処理装置である。It is the heat processing apparatus in hydrogen containing atmosphere among the insulating film formation apparatuses in one embodiment of this invention. 本発明の1つの実施形態における絶縁膜形成装置のうち、酸化性溶液による浸漬処理装置である。It is the immersion treatment apparatus by an oxidizing solution among the insulating film formation apparatuses in one embodiment of the present invention. 本発明の他の実施形態における絶縁膜形成装置のうち、酸化性溶液の蒸気による曝露装置である。It is the exposure apparatus by the vapor | steam of oxidizing solution among the insulating film formation apparatuses in other embodiment of this invention. 本発明の他の実施形態における絶縁膜形成装置のうち、酸化性溶液の蒸気または霧による曝露装置である。It is the exposure apparatus by the vapor | steam or mist of an oxidizing solution among the insulating film formation apparatuses in other embodiment of this invention. 本発明の1つの実施形態で製造された構造物の構成を説明する断面図である。It is sectional drawing explaining the structure of the structure manufactured by one Embodiment of this invention. 本発明の他の実施形態で製造された半導体装置(MOSキャパシタ)の構成を説明する断面図である。It is sectional drawing explaining the structure of the semiconductor device (MOS capacitor) manufactured by other embodiment of this invention. 本発明の1つの実施形態で形成された絶縁膜のTEM解析断面図である。It is a TEM analysis sectional view of an insulating film formed in one embodiment of the present invention. 本発明の1つの実施形態で形成された絶縁膜のエックス線光電子スペクトル(XPS)測定による特性図である。It is a characteristic view by the X-ray photoelectron spectrum (XPS) measurement of the insulating film formed in one embodiment of this invention. 本発明の1つの実施形態で形成された絶縁膜および比較用の絶縁膜のSi2pに関するエックス線光電子スペクトル(XPS)測定による特性図である。It is a characteristic view by the X-ray photoelectron spectrum (XPS) measurement regarding Si2p of the insulating film formed in one Embodiment of this invention, and the comparative insulating film. 本発明の他の実施形態で製造された半導体装置(MOSキャパシタ)のC−V特性図である。It is a CV characteristic figure of the semiconductor device (MOS capacitor) manufactured by other embodiment of this invention. 本発明の他の実施形態で製造された半導体装置(MOSキャパシタ)のI−V特性図である。It is an IV characteristic figure of the semiconductor device (MOS capacitor) manufactured by other embodiment of this invention. 本発明の他の実施形態で製造された半導体装置(MOSキャパシタ)のリーク電流値の電圧依存性に関するI−V特性図である。It is an IV characteristic figure regarding the voltage dependence of the leakage current value of the semiconductor device (MOS capacitor) manufactured by other embodiment of this invention.

符号の説明Explanation of symbols

10 基板
12 支持台
14 処理チャンバー
16,26,36 ヒーター
24 処理槽
34,44 容器
46 噴霧器
100,200,300,400 処理装置
51 絶縁膜
62,63 金属膜
500 構造体
600 MOSキャパシタ
DESCRIPTION OF SYMBOLS 10 Substrate 12 Support stand 14 Processing chamber 16, 26, 36 Heater 24 Processing tank 34, 44 Container 46 Sprayer 100, 200, 300, 400 Processing device 51 Insulating film 62, 63 Metal film 500 Structure 600 MOS capacitor

Claims (16)

水素を含む雰囲気中で少なくとも基材表面を加熱した後、前記基材表面を酸化性溶液中に浸漬し、または前記溶液を噴霧し、あるいは前記溶液の蒸気に曝す工程を有する基材表面への絶縁膜形成方法。 After heating at least the substrate surface in an atmosphere containing hydrogen, the substrate surface is immersed in an oxidizing solution, sprayed with the solution, or exposed to the vapor of the solution. Insulating film forming method. 前記酸化性溶液は、硝酸、過塩素酸、硫酸、オゾン溶解水、過酸化水素水、塩酸と過酸化水素水との混合溶液、硫酸と過酸化水素水との混合溶液、アンモニア水と過酸化水素水との混合溶液、硫酸と硝酸との混合溶液および王水の群から選ばれた少なくとも1つの溶液である請求項1に記載の基材表面への絶縁膜形成方法。 The oxidizing solution is nitric acid, perchloric acid, sulfuric acid, ozone-dissolved water, hydrogen peroxide solution, mixed solution of hydrochloric acid and hydrogen peroxide solution, mixed solution of sulfuric acid and hydrogen peroxide solution, ammonia water and peroxidation. The method for forming an insulating film on the substrate surface according to claim 1, wherein the insulating film is at least one solution selected from the group consisting of a mixed solution of hydrogen water, a mixed solution of sulfuric acid and nitric acid, and aqua regia. 前記雰囲気中における加熱温度は200℃以上600℃以下であり、前記酸化性溶液は濃度20%以上の硝酸溶液である請求項1に記載の基材表面への絶縁膜形成方法。 The method for forming an insulating film on a substrate surface according to claim 1, wherein the heating temperature in the atmosphere is 200 ° C or higher and 600 ° C or lower, and the oxidizing solution is a nitric acid solution having a concentration of 20% or higher. 前記水素の濃度が75vol%以上である請求項1に記載の基材表面への絶縁膜形成方法。 The method for forming an insulating film on the substrate surface according to claim 1, wherein the hydrogen concentration is 75 vol% or more. 前記基材が、シリコンカーバイド、シリコン、ポリシリコンの群から選ばれる請求項1に記載の基材表面への絶縁膜形成方法。 The method for forming an insulating film on the surface of the substrate according to claim 1, wherein the substrate is selected from the group consisting of silicon carbide, silicon, and polysilicon. 前記絶縁膜が主として二酸化シリコン(SiO)である請求項1に記載の基材表面への絶縁膜形成方法。 The method for forming an insulating film on a substrate surface according to claim 1, wherein the insulating film is mainly silicon dioxide (SiO 2 ). 前記酸化性溶液は、沸点近傍または沸点に加熱された熱硝酸である請求項1に記載の基材表面への絶縁膜形成方法。 The method for forming an insulating film on a substrate surface according to claim 1, wherein the oxidizing solution is hot nitric acid heated near or at the boiling point. 前記酸化性溶液は、室温から沸点近傍または沸点にまで加熱される熱硝酸である請求項1に記載の基材表面への絶縁膜形成方法。 The method for forming an insulating film on a substrate surface according to claim 1, wherein the oxidizing solution is hot nitric acid heated from room temperature to near or at the boiling point. 前記酸化性溶液は、沸点近傍または沸点に加熱された所定濃度の硝酸と、略共沸状態または共沸状態の硝酸との、少なくとも2種類である請求項1に記載の基材表面への絶縁膜形成方法。 2. The insulation to the substrate surface according to claim 1, wherein the oxidizing solution is at least two kinds of nitric acid having a predetermined concentration near or at a boiling point and nitric acid in a substantially azeotropic or azeotropic state. Film forming method. 前記酸化性溶液は、任意濃度の硝酸が室温から略共沸状態または共沸状態の硝酸になるまで加熱された溶液である請求項1に記載の基材表面への絶縁膜形成方法。 2. The method for forming an insulating film on a substrate surface according to claim 1, wherein the oxidizing solution is a solution heated from nitric acid having an arbitrary concentration to nitric acid in an approximately azeotropic or azeotropic state from room temperature. 請求項1に記載の方法によって絶縁膜を形成する工程を有する半導体装置の製造方法。 A method for manufacturing a semiconductor device, comprising a step of forming an insulating film by the method according to claim 1. 請求項1に記載の方法によって形成された絶縁膜を備える半導体装置。 A semiconductor device comprising an insulating film formed by the method according to claim 1. 水素を含む雰囲気中で少なくとも基材表面を加熱する手段と、その後、前記基材表面を酸化性溶液中に浸漬し、または前記溶液を噴霧し、あるいはその蒸気に曝す手段を有する基材表面への絶縁膜形成装置。 To a substrate surface having means for heating at least the surface of the substrate in an atmosphere containing hydrogen, and then means for immersing the substrate surface in an oxidizing solution, spraying the solution, or exposing the vapor to the vapor Insulating film forming apparatus. シリコンカーバイド基板の少なくとも表面を、水素を含む雰囲気中において200℃以上600℃以下で加熱する工程を有するシリコンカーバイド基板の表面処理方法。 A method for treating a surface of a silicon carbide substrate, comprising a step of heating at least a surface of the silicon carbide substrate at 200 ° C. to 600 ° C. in an atmosphere containing hydrogen. 前記水素の濃度が75vol%以上である請求項14に記載のシリコンカーバイド基板の表面処理方法。 The surface treatment method for a silicon carbide substrate according to claim 14, wherein the hydrogen concentration is 75 vol% or more. 請求項14に記載の方法によって形成される基板表面の二乗平均粗さ(Rq)が0.5nm以下のシリコンカーバイド基板。

A silicon carbide substrate having a root mean square roughness (Rq) of 0.5 nm or less of the substrate surface formed by the method according to claim 14.

JP2006218012A 2006-08-08 2006-08-10 Insulating film forming method and semiconductor device manufacturing method Expired - Fee Related JP5224570B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006218012A JP5224570B2 (en) 2006-08-08 2006-08-10 Insulating film forming method and semiconductor device manufacturing method
PCT/JP2007/064759 WO2008018304A1 (en) 2006-08-08 2007-07-27 Method for forming insulating film, apparatus for forming insulating film, method for manufacturing semiconductor device, semiconductor device and surface treatment method for silicon carbide substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006215822 2006-08-08
JP2006215822 2006-08-08
JP2006218012A JP5224570B2 (en) 2006-08-08 2006-08-10 Insulating film forming method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2008066317A true JP2008066317A (en) 2008-03-21
JP5224570B2 JP5224570B2 (en) 2013-07-03

Family

ID=39032838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218012A Expired - Fee Related JP5224570B2 (en) 2006-08-08 2006-08-10 Insulating film forming method and semiconductor device manufacturing method

Country Status (2)

Country Link
JP (1) JP5224570B2 (en)
WO (1) WO2008018304A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844846A (en) * 2010-02-16 2012-12-26 小林光 Solar cell, method for producing same, and apparatus for producing solar cell
WO2018054597A1 (en) * 2016-09-26 2018-03-29 Zf Friedrichshafen Ag Method of manufacturing an insulation layer on silicon carbide and semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014668A1 (en) * 2010-07-29 2012-02-02 株式会社Kit Solar cell and process for production thereof, and solar cell production device
JP5806667B2 (en) * 2010-07-29 2015-11-10 小林 光 SOLAR CELL, ITS MANUFACTURING METHOD, AND SOLAR CELL MANUFACTURING DEVICE
JP6162188B2 (en) * 2010-07-29 2017-07-12 小林 光 Solar cell manufacturing equipment
CN113764121B (en) * 2021-09-18 2022-06-21 西安电子科技大学 Antimony-doped tin dioxide conductive film and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684887A (en) * 1992-09-07 1994-03-25 Toshiba Corp Method and device for formation of protection film of semiconductor wafer
JPH06140615A (en) * 1992-10-27 1994-05-20 Olympus Optical Co Ltd Manufacture of solid-state image pick-up device
JPH11186256A (en) * 1997-12-19 1999-07-09 Fuji Electric Co Ltd Method of forming thermal oxide film of silicon carbide semiconductor device
JP2004047935A (en) * 2002-05-24 2004-02-12 Japan Science & Technology Corp Method for forming silicon dioxide film on surface of silicon base material, method for forming oxide film on surface of semiconductor base material and method for manufacturing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684887A (en) * 1992-09-07 1994-03-25 Toshiba Corp Method and device for formation of protection film of semiconductor wafer
JPH06140615A (en) * 1992-10-27 1994-05-20 Olympus Optical Co Ltd Manufacture of solid-state image pick-up device
JPH11186256A (en) * 1997-12-19 1999-07-09 Fuji Electric Co Ltd Method of forming thermal oxide film of silicon carbide semiconductor device
JP2004047935A (en) * 2002-05-24 2004-02-12 Japan Science & Technology Corp Method for forming silicon dioxide film on surface of silicon base material, method for forming oxide film on surface of semiconductor base material and method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844846A (en) * 2010-02-16 2012-12-26 小林光 Solar cell, method for producing same, and apparatus for producing solar cell
CN102844846B (en) * 2010-02-16 2015-07-01 小林光 Solar cell, method for producing same, and apparatus for producing solar cell
WO2018054597A1 (en) * 2016-09-26 2018-03-29 Zf Friedrichshafen Ag Method of manufacturing an insulation layer on silicon carbide and semiconductor device

Also Published As

Publication number Publication date
JP5224570B2 (en) 2013-07-03
WO2008018304A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP4708426B2 (en) Method for processing a semiconductor substrate
JP3604018B2 (en) Method for forming silicon dioxide film on silicon substrate surface, method for forming oxide film on semiconductor substrate surface, and method for manufacturing semiconductor device
JP5224570B2 (en) Insulating film forming method and semiconductor device manufacturing method
JP2001319918A (en) Method for treating surface of substrate and the same for semiconductor device
TW200418185A (en) A method for making a semiconductor device having an ultra-thin high-k gate dielectric
JP4095615B2 (en) Method for forming oxide film, semiconductor device, and method for manufacturing semiconductor device
TW200539341A (en) Thin film transistor and method for manufacturing same, display device, method for modifying oxidized film, method for forming oxidized film, semiconductor device and method for manufacturing same, and apparatus for manufacturing semiconductor device
TW201203385A (en) Silicon carbide semiconductor device manufacturing method
JP3122125B2 (en) Method of forming oxide film
JPH10229080A (en) Processing method of oxide, deposition method of amorphous oxide film and amorphous tantalun oxide film
JP4567503B2 (en) Method for forming oxide film, semiconductor device, method for manufacturing semiconductor device, method for oxidizing SiC substrate, SiC-MOS type semiconductor device using the same, and SiC-MOS type integrated circuit using the same
JP4237147B2 (en) THIN FILM TRANSISTOR, METHOD FOR MANUFACTURING THE SAME, DISPLAY DEVICE, AND METHOD FOR MODIFIING OXIDE FILM
WO2007010921A1 (en) Method for oxide film formation, semiconductor device comprising the oxide film, and process for producing the semiconductor device
JP2009267019A (en) Method for manufacturing semiconductor device
JP5256444B2 (en) Insulating film forming method, semiconductor device manufacturing method, and semiconductor device manufacturing apparatus
JP4372732B2 (en) Thin film transistor manufacturing method and oxide film modification method
JP2008283001A (en) Method of forming oxide film on polycrystalline silicon thin film, and semiconductor device comprising the oxide film
WO1990013912A1 (en) Silicon oxide film and semiconductor device having the same
JP2002289612A (en) Method for forming oxide film on semiconductor substrate surface and method for manufacturing semiconductor device
JP7397186B2 (en) Cap oxidation for FinFET formation
JP6162188B2 (en) Solar cell manufacturing equipment
TW202324579A (en) Integrated wet clean for gate stack development
JP4027913B2 (en) Manufacturing method of semiconductor device
WO2012014668A1 (en) Solar cell and process for production thereof, and solar cell production device
JP5666552B2 (en) SOLAR CELL, ITS MANUFACTURING METHOD, AND SOLAR CELL PRODUCTION DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees