WO2008017295A2 - Installation de mesure ir pour la mesure et la représentation de la répartition de température à la surface d'un objet de mesure - Google Patents

Installation de mesure ir pour la mesure et la représentation de la répartition de température à la surface d'un objet de mesure Download PDF

Info

Publication number
WO2008017295A2
WO2008017295A2 PCT/DE2007/001404 DE2007001404W WO2008017295A2 WO 2008017295 A2 WO2008017295 A2 WO 2008017295A2 DE 2007001404 W DE2007001404 W DE 2007001404W WO 2008017295 A2 WO2008017295 A2 WO 2008017295A2
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
measuring
arrangement according
measuring arrangement
measurement object
Prior art date
Application number
PCT/DE2007/001404
Other languages
German (de)
English (en)
Other versions
WO2008017295A3 (fr
Inventor
Otto R. Hofmann
Andreas Juckenburg
Original Assignee
Infratec Gmbh Infrarotsensorik Und Messtechnik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infratec Gmbh Infrarotsensorik Und Messtechnik filed Critical Infratec Gmbh Infrarotsensorik Und Messtechnik
Publication of WO2008017295A2 publication Critical patent/WO2008017295A2/fr
Publication of WO2008017295A3 publication Critical patent/WO2008017295A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/07Arrangements for adjusting the solid angle of collected radiation, e.g. adjusting or orienting field of view, tracking position or encoding angular position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0808Convex mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/084Adjustable or slidable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means

Definitions

  • IR measuring device for measuring and displaying the temperature distribution on the surface of a measuring object
  • the invention relates to an IR measuring arrangement for measuring and displaying the temperature distribution on the surface of a measuring object according to the preamble of the claims.
  • a measuring object may preferably be cylindrical or prismatic objects whose shell dimensions are small (disk), equal (bolt) or large (rod) compared to their circumference. If they are hollow rod-shaped objects, these tubes may be cup-shaped, bottle-shaped or annular bodies.
  • the surface temperature distribution at the outer and / or inner circumferential surface of substantially rotationally symmetrical objects can be measured.
  • Such objects may also be waves, axles, ropes, chains, crucibles, glasses or the like.
  • the surface temperature distribution can also be detected on medical objects. It goes without saying that a temperature component of the material depth can also be contained in the surface temperature. The temperature should be measured without contact with pyrometers, radiation thermometers, bolometers, infrared cameras or other radiation temperature measuring instruments and displayed immediately.
  • DD 279 309 C2 discloses a device for non-contact measurement of the temperature of inner walls of tubular measuring objects.
  • the thermal radiation is detected and passed on other imaging components to a receiver.
  • the detection of IR radiation by refraction and imaging and is less accurate because the lens or the cone is very Idein, the IR radiation unfavorably dispersed during refraction and IR radiation from different original species or different Direction to be included in the picture.
  • DD 279 309 C2 is a special application which is far from being applicable to inner wall temperature measurement in any case and gives no indication as to how, for example, it is necessary to measure when measuring the outer wall temperature. Overall, the optical arrangement made there is very complex and not very accurate.
  • the invention is intended to avoid the disadvantages and to provide an instrumentally simple possibility of temperature measurement and display, in which a temperature response during the measurement is not possible and the automation of the measurement is conveniently accessible.
  • the IR mirror assembly itself may include a one-piece mirror which surrounds or is surrounded by the object to be scanned and displayed in terms of temperature and which is conical or funnel-shaped. If this is a conical reflection surface, so the lateral surface of a pyramid are included as well as the lateral surfaces of corresponding pyramid or truncated cones. at The cones or pyramids can also be oblique mirror arrangements.
  • the conical or funnel mirror can also consist of a plurality of individual mirrors, which are only required to simultaneously reflect the thermal radiation emanating from the surface of a test object to be thermographed onto a suitable sensor, preferably a thermal camera.
  • a suitable sensor preferably a thermal camera.
  • the detection of the distribution of the heat radiation of an object circumference or of a larger part of the circumference of the measurement object can advantageously be done digitally and registered or made visible in an evaluation device.
  • the sensor may be arranged in extension of the geometric axis of the object or laterally to this axis;
  • the sensor axis and the geometrical axis of the measurement object can thus include an angle of 0 ° to 90 °, depending on the specific application conditions.
  • an IR deflecting mirror can advantageously be inserted at a suitable location between the circumference-detecting IR mirror arrangement and the IR sensor.
  • the IR sensor can be arranged inclined to the measurement object or to its geometric axis.
  • the individual mirrors are advantageously arranged adjustable, and that each is on its own side pivotally mounted and adjustable parallel to the object axis. Depending on the application, they can advantageously be oriented not only spatially differently, but also different. Have sizes and shapes.
  • the IR mirror assembly or its carrier consists of at least two separable parts in the axial direction, which can be wrapped around a measurement object in a simple manner. Finally, it is possible to design the IR mirror arrangement in case of need such that it has curvatures in the planes containing the geometric axis of the measurement object.
  • the IR Spiegelanordmmg is advantageously associated with an additional body having both a reference body and a reference surface and a shell, which may have a curved or enveloping shape. Their temperature is adjusted, regulated and / or measured. IR mirror arrangement and reference body can be heated or cooled for this purpose electrically or by means of a mass flow. A reference body is always necessary if the measurement object is not at least approximately a black body. The emissivity of the reference body should be known or can be measured.
  • the one or more reference bodies is / are arranged at the funnel mirror around the measurement object and at the cone mirror in the measurement object and are firmly connected to the respective IR mirror arrangement.
  • heating elements and temperature sensors are provided.
  • the shape of the surface of the auxiliary body is such that it occupies a large solid angle over the peripheral surface to be measured and comes close to the properties of a black body. This ensures that, in the case of a partially reflective scope, the IR radiation coming from the additional body and directed both circumferentially and diffusely in the IR measuring arrangement can be taken into account and thus the correct peripheral temperature is determined.
  • the dimensioning of the reflection angle of the IR mirrors depends in particular on the position and size of the additional body and on the diameter of the measurement object, the measuring angle of the measuring device (the camera field of view) and the required distance of the measurement object to the IR mirror arrangement.
  • the overall design of the IR mirror assembly and the additional body allows for assumed reflectivity of the measurement object (no black body) that the majority of the directional and diffuse ambient heat radiation to the measurement object originates from the auxiliary body. If this condition is fulfilled, then the reference body temperature and the emission / absorption values can be taken into account in the evaluation of the measured values of the IR measuring device and thus the true surface temperature of the body can be determined.
  • the body and the IR mirror arrangement are optionally arranged with the IR sensor continuously or in stages so as to be adjustable relative to one another by means of suitable mechanical means.
  • Figures 1 to 3 and 6 represent axial sections
  • Figures 4 and 5 include perspective drawings of IR mirror assemblies. In detail show:
  • Fig. 1 shows a first embodiment of the invention, in which a
  • FIG. 2 shows a second embodiment of the invention, in which a cone mirror is surrounded by a measurement object and a reference body is attached to the cone base surface,
  • Fig. 3 is a fragmentary view of a third
  • Fig. 4 shows a fourth embodiment of the invention with an array of individual mirrors, all on one
  • FIG. 5 shows a fifth exemplary embodiment of the invention in which individual mirrors of different shape and size are used
  • FIG. 6 shows a sixth exemplary embodiment according to the invention with an additional body with a curved lateral surface.
  • Fig. 1 is a measuring object 10, for example.
  • auxiliary body 16 which is connected to the funnel mirror 12.
  • Heating or cooling elements 17 are provided, which ensure a constant maintenance of the temperature of the reference body 16 and falsifying outer
  • temperature sensors or thermocouples 18 are arranged in the additional body.
  • the surface detected by the IR measuring device 19 with respect to its temperature at the same time is the annular peripheral region 21 of the measuring object 10.
  • the surface detected by the IR measuring device 19 with respect to its temperature at the same time is the annular peripheral region 21 of the measuring object 10.
  • its continuous or stepwise displacement of the measuring object or the IR mirror arrangement and repetition of the thermographic recording is required.
  • FIG. 2 shows a hollow cylindrical, non-black test object 10 from whose inner surface 101 the temperature is to be determined and displayed.
  • a truncated cone-like mirror 22 is arranged substantially concentric to the axis XX and provided on its larger bottom surface 221 with a reference cylinder 23 in the form of a solid cylinder which prevents the measuring of the surface temperature from being distorted by radiation incident from the surroundings of a measuring region 21 becomes.
  • the smaller top surface 222 of the truncated cone-like mirror 22 faces a preferably plane IR deflecting mirror 14, which reflects an IR beam path 24 coming from the mirror 22 unadulterated into an IR measuring device 19, the measured values of which are accessible for viewing in a display and evaluation unit 25 / or further processed.
  • the measuring angle of the IR measuring device 19 in the vicinity of the measuring object 10 is denoted by 26.
  • the temperature measurement in the measuring range 21 can be made properly without external influences, it is also possible to make do without a reference body, if these foreign influences are known and in the evaluation in the Unit 25 (display and / or evaluation unit) can be taken into account.
  • FIG. 3 again shows a hollow measuring object 10 whose surface temperature is to be determined on the inside 101.
  • a cone mirror 22 is arranged coaxially with respect to a common axis X-X, with which a reference body 23 is connected to the IR measuring device (not shown).
  • the conical mirror 22 reflects the heat radiation path 24 emanating from a defined measuring region 21 of the inner wall 101 coaxial with the optical and mechanical axis XX in the direction of an IR measuring device, not shown, which is either arranged axially or to which the heat radiation path 24 via one or more plane or curved deflection mirrors to be led.
  • the cone mirror 22 is connected to a parallel to the axis X-X directed rack 27 which slides in a guide 28 and is in engagement with a driven by a motor 29 via a shaft 30 pinion 31.
  • a support 32 carries the entire components from the motor 29 to the cone mirror 22 and is movable relative to the measurement object 10.
  • cone mirror 22 and reference body 23 are axially displaced relative to the measurement object 10, so that it is possible to successively determine the surface temperature of the inner wall 101 by displacing the measurement area 21.
  • a common annular support 33 is provided with handle 330 for eight individual planar mirrors 34, all of which are aligned with the circumference or a peripheral region of a cylindrical measurement object 10 with the geometric axis XX.
  • Each individual mirror 34 is mounted on a mirror holder 341 which rotates on the carrier 33 about an axis substantially parallel to the axis XX by means of a (height-adjustable) stand 342 and on this stand by means of a hinge 343 about an axis substantially perpendicular to the stand is pivotable.
  • the individual mirrors 34 are in a regular arrangement in the manner of a Funnel mirror around an annular recess 331, through which the measurement object 10 is guided, and reflect an emanating from the periphery of the measurement object 10 IR radiation 24 in the direction of the geometric axis XX of the measurement object. If this measurement object is a black body whose emissivity is "one", a reference body need not be provided. It goes without saying that the reflectivity of the mirrors 34 must be known or measurable. Incidentally, what has been said about FIGS. 1 to 3 applies at least analogously.
  • a measuring object 10 with the geometric axis X-X is surrounded by a carrier 33 for mirrors 35, which can have different sizes, shapes and spatial orientation. In the present case, only their spatial orientations are different.
  • Each mirror 35 is connected via a ball or universal joint 351 with the upper end of a stand 352, which in turn is height-adjustable parallel to the axis X-X relative to the carrier 33.
  • a reference body 36 is connected to the holder 33, which emits a known radiation energy during the measurement and shields external temperature influences. All mirrors 35 are aligned with a peripheral region 21 of the measurement object 10, whose surface temperature is to be measured and displayed, and radiation energy is supplied by the reference body 36.
  • the IR radiation emitted by the peripheral region 21 is reflected by the mirrors 35 at acute angles to the geometric axis X-X of the measuring object 10 in the direction of an IR measuring device 19.
  • Such guidance of the IR beam path can be of importance for reasons of space.
  • the carrier 33 consists of two parts 332 and 333, which are initially single and only after they have been wrapped around the test object 10, at their. Separating points 334 firmly connected to each other (screwed, clamped) have been. This simplifies the technology for measurement.
  • FIG. 6 shows a hollow measuring object 10 with a geometric axis X-X whose inner surface 101 is to be measured thermographically. Because of the size of the measurement object 10, this is only in Measuring areas 21 of the surfaces possible. Inside the measuring object 10 there is a truncated cone-like mirror 22, which can be adjusted parallel to the axis XX and has a spindle 15, to whose bottom surface 221 a reference body 36 is attached.
  • the provided with heating and / or cooling elements 17 and thermocouples 18 reference body 36 has a specially curved outer surface 361, which ensures that the coming of the reference body 36 and directed at the measuring range 21 and diffusely reflected IR radiation 24 detected maximum and from the IR Measuring device (not shown) is taken into account.
  • the application of the invention is in principle not limited to rotationally symmetric measurement objects.
  • the IR mirror assembly and / or the deflection mirrors may be curved.
  • the additional body can consist of a reference body and a protective and heat-insulating sheath or the reference body can act as such. All in the description, the following claims and the drawings illustrated features may be essential to the invention both individually and in any combination.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

L'invention concerne une installation de mesure IR, constituée d'un capteur IR et d'une installation de miroir IR, pour la détermination de la répartition de température à la surface d'un objet de mesure, qui s'étend axialement et dans la direction du périmètre de l'objet de mesure, à l'aide d'un capteur IR et d'une installation de miroir IR. Elle concerne une possibilité d'instrumentation facile de la mesure et de la représentation de température dans laquelle un passage de température est exclu pendant la mesure et qui permet d'accéder favorablement à l'automatisation de la mesure. L'installation de miroir IR est en outre conçue de telle sorte qu'elle détecte simultanément par thermographie le périmètre ou une partie du périmètre de l'objet de mesure. L'invention utilise un capteur IR qui permet de représenter simultanément la surface détectée par thermographie.
PCT/DE2007/001404 2006-08-05 2007-08-02 Installation de mesure ir pour la mesure et la représentation de la répartition de température à la surface d'un objet de mesure WO2008017295A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006039069A DE102006039069B3 (de) 2006-08-05 2006-08-05 IR-Messanordnung zur Messung und Darstellung der Temperaturverteilung an der Oberfläche eines Messobjektes
DE102006039069.5 2006-08-05

Publications (2)

Publication Number Publication Date
WO2008017295A2 true WO2008017295A2 (fr) 2008-02-14
WO2008017295A3 WO2008017295A3 (fr) 2008-04-10

Family

ID=38670711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/001404 WO2008017295A2 (fr) 2006-08-05 2007-08-02 Installation de mesure ir pour la mesure et la représentation de la répartition de température à la surface d'un objet de mesure

Country Status (2)

Country Link
DE (1) DE102006039069B3 (fr)
WO (1) WO2008017295A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241554A (zh) * 2015-09-29 2016-01-13 北京环境特性研究所 一种外场条件下的面源黑体型辐射源及其标定方法
CN113138027A (zh) * 2021-05-07 2021-07-20 东南大学 一种基于双向折射率分布函数的远红外非视域物体定位方法
CN113804304A (zh) * 2021-08-26 2021-12-17 云南中烟工业有限责任公司 一种烟条温度检测装置及烟条温度检测方法
DE102022126103A1 (de) 2022-10-10 2024-04-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Vorrichtung zur Messung von Temperaturen innerhalb eines thermisch erweichtes, thermoplastisches Material aufweisenden Körpers sowie dessen Verwendung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04352118A (ja) * 1991-05-30 1992-12-07 Asahi Optical Co Ltd 赤外内視鏡の先端部
US20020076178A1 (en) * 2000-12-21 2002-06-20 Paul Klocek Method and apparatus for infrared imaging in small passageways
US20030028114A1 (en) * 1995-09-20 2003-02-06 Texas Heart Institute Method and apparatus for detecting vulnerable atherosclerotic plaque

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4409042A (en) * 1982-03-19 1983-10-11 Western Electric Company, Inc. Method and apparatus for measuring the temperature of moving elongated articles and application thereof
DD279309C2 (de) * 1988-12-30 1991-01-03 Oberspree Kabelwerke Veb K Vorrichtung zur beruehrungslosen messung der temperatur von innenwaenden
GB9222082D0 (en) * 1992-10-21 1992-12-02 Davy Mckee Poole A radiation pyrometer assembly for sensing the temperature of an elongate body moving longitudinally
DE19736769C1 (de) * 1997-08-23 1998-10-15 Continental Ag Vorrichtung und Verfahren zur Ermittlung und/oder zur Darstellung der in der Lauffläche eines Reifens beim Abrollen erzeugten Temperatur
IT1320875B1 (it) * 2000-01-18 2003-12-10 Gd Spa Metodo ed unita' per il rilevamento della temperatura superficiale diun elemento riscaldante .
DE202004004402U1 (de) * 2004-03-20 2004-11-11 Heitronics Infrarot Messtechnik Gmbh Vorrichtung zur Bestimmung der Temperatur von Drähten und lang gestreckten Objekten

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04352118A (ja) * 1991-05-30 1992-12-07 Asahi Optical Co Ltd 赤外内視鏡の先端部
US20030028114A1 (en) * 1995-09-20 2003-02-06 Texas Heart Institute Method and apparatus for detecting vulnerable atherosclerotic plaque
US20020076178A1 (en) * 2000-12-21 2002-06-20 Paul Klocek Method and apparatus for infrared imaging in small passageways

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241554A (zh) * 2015-09-29 2016-01-13 北京环境特性研究所 一种外场条件下的面源黑体型辐射源及其标定方法
CN113138027A (zh) * 2021-05-07 2021-07-20 东南大学 一种基于双向折射率分布函数的远红外非视域物体定位方法
CN113804304A (zh) * 2021-08-26 2021-12-17 云南中烟工业有限责任公司 一种烟条温度检测装置及烟条温度检测方法
DE102022126103A1 (de) 2022-10-10 2024-04-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Vorrichtung zur Messung von Temperaturen innerhalb eines thermisch erweichtes, thermoplastisches Material aufweisenden Körpers sowie dessen Verwendung

Also Published As

Publication number Publication date
DE102006039069B3 (de) 2008-03-06
WO2008017295A3 (fr) 2008-04-10

Similar Documents

Publication Publication Date Title
DE102015001421B4 (de) Vorrichtung und Verfahren zur Strahldiagnose an Laserbearbeitungs-Optiken (PRl-2015-001)
EP3346230B1 (fr) Dispositif et procede de mesure de la courbure d'un fil
DE102006039069B3 (de) IR-Messanordnung zur Messung und Darstellung der Temperaturverteilung an der Oberfläche eines Messobjektes
EP2693205B1 (fr) Procédé et dispositif destinés à l'examen photothermique d'un échantillon
DE19754944A1 (de) Temperaturmeßgerät mit Lichtzielsystem und Verfahren zum Zielen mit Licht
EP1807790A1 (fr) Procede et dispositif pour obtenir des donnees biometriques
DE3933057C2 (fr)
EP3006895B1 (fr) Appareil de suivi laser avec blindage de passage d'air chaud pour le rayon de mesure
DE102015203314B4 (de) Verfahren und System zum Überwachen von Prozessen in einer thermischen Prozesskammer
DE102010004884A1 (de) Funduskamera
DE102011103818A1 (de) Infrarot-Sensoranordnung und deren Verwendung
DE4320845C1 (de) Anordnung zur Messung von Streulicht in Bohrungen von Werkstücken oder in Rohren
DE102010049401A1 (de) Vorrichtung zum Erfassen von Messinformationen von einer inneren Oberfläche eines Hohlkörpers, insbesondere einer Bohrung eines ein- oder zweiwelligen Extruderzylinders
DE10311247B4 (de) Portable Einrichtung zum Erfassen einer Lage und von Abmessungen eines Objekts
WO1990001688A1 (fr) Camera avec mosaique de detecteurs refroidie
EP0265417A2 (fr) Dispositif de détection des paliers et/ou des bandages de roues inacceptablement échauffées
EP1797408A1 (fr) Bougie d'allumage a capteur optique
DE1279942B (de) Vorrichtung zum periodischen Abtasten eines Gegenstandes mit einem Strahlendetektor
DE19630437A1 (de) Vorrichtung zum Bearbeiten, beispielsweise Schweißen und Schneiden, eines Werkstückes mittels eines Bearbeitungslaserstrahles sowie Detektorvorrichtung zum Anbau an eine solche Vorrichtung
EP2133668A1 (fr) Mesure non destructive du volume de remplissage d'un récipient rempli de liquide
DE102004053659B3 (de) Verfahren und Vorrichtung zur berührungslosen Erfassung von thermischen Eigenschaften einer Objektoberfläche
DE10227299A1 (de) Scanner für die optische Objekterfassung
EP1810218A2 (fr) Procede et dispositif de detection de donnees biometriques
DE19746662A1 (de) Meßanordnung zum berührungslosen Erfassen der Innenkontur von Hohlräumen mit einer Lichtquelle
WO2010017858A1 (fr) Dispositif pour enregistrer des données biométriques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785702

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07785702

Country of ref document: EP

Kind code of ref document: A2