WO2008016085A9 - Isoindoles, compounds prepared from the same, and processes for production of both - Google Patents

Isoindoles, compounds prepared from the same, and processes for production of both Download PDF

Info

Publication number
WO2008016085A9
WO2008016085A9 PCT/JP2007/065080 JP2007065080W WO2008016085A9 WO 2008016085 A9 WO2008016085 A9 WO 2008016085A9 JP 2007065080 W JP2007065080 W JP 2007065080W WO 2008016085 A9 WO2008016085 A9 WO 2008016085A9
Authority
WO
WIPO (PCT)
Prior art keywords
isoindole
represented
acid
integer
alkyl
Prior art date
Application number
PCT/JP2007/065080
Other languages
French (fr)
Japanese (ja)
Other versions
WO2008016085A1 (en
Inventor
Hidemitsu Uno
Go Masuda
Toshiya Iida
Original Assignee
Nippon Catalytic Chem Ind
Hidemitsu Uno
Go Masuda
Toshiya Iida
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Catalytic Chem Ind, Hidemitsu Uno, Go Masuda, Toshiya Iida filed Critical Nippon Catalytic Chem Ind
Publication of WO2008016085A1 publication Critical patent/WO2008016085A1/en
Publication of WO2008016085A9 publication Critical patent/WO2008016085A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring

Definitions

  • the present invention relates to a novel process for producing isoindoles and novel isoindoles. Furthermore, the present invention provides novel compounds obtained from isoindoles, specifically isoindole multimers (including polymers), isoindole derivatives (1-position substitution), ⁇ conjugated cyclic compounds (especially porphyrins) and porphyrin complexes, and the like It relates to a manufacturing method.
  • Isoindoles are used as pigment materials such as porphyrins, and are polymerized to form organic thin film transistors, organic solar cells, organic EL, electrophotographic photosensitive members, photorefractive materials, secondary batteries, capacitors, antistatic agents, It is expected to use for an electrochromic material etc.
  • porphyrins obtained from pyrroles are relatively easy to obtain despite having a very large ⁇ electron system, nonlinear optical materials, photoelectric conversion element dopants, photoconductive carrier generating materials, It has been actively studied as an optical recording material. In these porphyrins and the like, tuning of the absorption wavelength and the fluorescence emission wavelength is an important issue that affects the performance as a dye.
  • ⁇ electron system rather than using an electron donating group or electron withdrawing group as an auxiliary chromophore for longer wavelength and higher efficiency (increased absorption coefficient ⁇ ) of absorption and emission wavelengths Is effective.
  • porphyrins in which the ⁇ electron system is expanded include tetrabenzoporphyrins described below.
  • JP-A-2004 of JP-A-2004 of Japan uses tetrabenzoporphyrin or its copper complex in which ⁇ electron system is expanded with high planarity as a material of an organic electronic device, especially an organic semiconductor. -6750 or JP-A-2005-93990.
  • halogen-containing tetrabenzoporphyrin particularly fluorine-containing tetrabenzoporphyrin
  • OFET organic field effect transistor
  • tetrabenzoporphyrin due to its high planarity, tetrabenzoporphyrin has low solubility in organic solvents and can not be used as a starting material for synthesis of halogen-containing tetrabenzoporphyrin.
  • the complex (B) is not purified and is not isolated as a substance.
  • the complex (B) itself is not sufficiently synthesized by the influence of thermal polymerization etc., and (II) the synthesis method Even if the complex (B) itself is synthesized in, it is considered that its purification is difficult. This is because tetrabenzoporphyrin and complexes thereof have high planarity and low solubility, which makes purification difficult.
  • Halogen-containing tetrabenzoporphyrins are expected to be applied to organic electronic devices and the like.
  • the paper of D. E. Remy et al. Reports the synthesis of hexadecafluorotetrabenzoporphyrin zinc complex, but the substance has not been isolated, and also NMR It can not be said that the manufacturing method is not sufficiently established because it can not be measured.
  • Multimers in particular, polymers obtained from isoindoles are known to have superior properties as compared to other conductive polymers, and have been actively studied until now (for example, JP-A-S62) JP-A-S63-223031, JP-A-S63-307604, JP-A-H02-263824, JP-A-H02-263825, JP-A-H03-166225, etc.).
  • JP-A-S62-27062 polyisoindoles are described to be more stable than polyacetylene and to be less de-doped than polythiophene. Therefore, isoindole multimers are expected to be applied to a wide range of applications such as organic thin film transistors, organic solar cells, organic EL, electrophotographic photosensitive members, photorefractive materials, secondary batteries, capacitors, antistatic agents, electrochromic materials, etc. There is.
  • isoindole multimer As a method for producing this isoindole multimer, oxidative polymerization of isoindoles (or isoindolines of its reductant) has been known (for example, JP-A-S62-270621 and JP-A-S63-). 223031, etc.).
  • isoindoles which are starting materials for isoindole multimers, are unstable and difficult to handle.
  • isoindoles themselves were not readily available until now.
  • the conventionally known method for producing isoindoles is composed of a multistep reaction process, and isoindoles can not be easily produced.
  • tetrafluorobenzine is first formed, for example, by reaction of pentafluorobenzene with n-butyllithium, and then by Diels-Alder reaction of this with N-benzylpyrrole to form N-benzyl-7-aza-tetrafluoro. It is disclosed to produce 4,5,6,7-tetrafluoro-2H-isoindole by forming benzonorbornadiene and further subjecting it to hydrogenation and thermal decomposition.
  • the first object of the present invention is to provide a novel production method by which isoindoles which have hitherto been difficult to produce can be easily obtained.
  • the present invention also provides novel isoindoles, isoindole polymers, and methods of making the polymers.
  • the production method of the present invention which has achieved the first object is characterized in that a phthalonitrile represented by the following formula (1) (hereinafter sometimes abbreviated as “phthalonitrile (1)”) is reduced. It is a manufacturing method of iso indole shown in the following formula (2) (hereinafter sometimes abbreviated as “iso indole (2)”).
  • X represents a halogen atom
  • Y is R 1 , OR 2 or SR 3 (wherein R 1 , R 2 and R 3 are each independently alkyl, Represents an aryl or alkylaryl group, and, provided that m + n ⁇ 4, m represents an integer of 1 to 4; n represents an integer of 0 to 3;
  • a hydride reducing reagent such that 2 to 6 moles of hydride are contained per 1 mole of phthalonitrile (1).
  • Preferred hydride reduction reagents are aluminum hydrides or complexes thereof, or boron hydrides or complexes thereof.
  • reduction of phthalonitrile (1) by catalytic hydrogenation is also a preferred embodiment.
  • reducing phthalonitrile (1) by catalytic hydrogenation method means reducing phthalonitrile (1) by contact with hydrogen gas in the presence of a catalyst.
  • the present invention is a novel isoindole represented by the following formula (2) (excluding 4,5,6,7-tetrafluoro-2H-isoindole), or a novel N-substituted represented by the following formula (3)
  • the present invention further comprises a repeating unit represented by the following formula (4) or (5) by oxidative polymerization of isoindole (2) or N-substituted isoindole (3) produced by the above production method.
  • oxidative polymerization means chemical oxidative polymerization with an oxidizing agent or electrolytic oxidative polymerization by electrically oxidizing a monomer in a solvent in the presence of an electrolyte.
  • the second object of the present invention unlike the synthesis method of D. E. Remy et al., Is to produce a ⁇ -conjugated cyclic compound (especially halogen-containing tetrabenzoporphyrin) with high purity without using metal salt or metalloid salt.
  • Provide the technology to Another object of the present invention is to provide a method capable of producing not only zinc ions but also metal porphyrin complexes having various metal ions as central nuclei.
  • the production method of the present invention capable of achieving the second object is characterized in that the 1-substituted form of isoindole represented by the following formula (6) from the halogen-containing isoindole represented by the following formula (2) (hereinafter referred to as isoindole Production of a ⁇ -conjugated cyclic compound (hereinafter sometimes abbreviated as “ ⁇ -conjugated cyclic compound (7)”) represented by the following formula (7) via the 1-substituted compound may be abbreviated as “intermediate” It is characterized by
  • X represents a halogen atom.
  • Y represents R 1 , OR 2 or SR 3 (wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), provided that m + n ⁇ 4 And m represents an integer of 1 to 4 and n represents an integer of 0 to 3.
  • Z represents OH or NR 5 R 6 (wherein, R 5 and R 6 each independently represent a C 1-4 alkyl group).
  • A represents N or NH
  • j represents an integer of 1 to 5
  • k represents an integer of 0 or 1
  • a double line consisting of a solid line and a dotted line represents a single bond or a double bond
  • the cyclic compound represented by the formula (7) forms a ⁇ -conjugated system at the doublet.
  • C ab means that the carbon number is a or more and b or less
  • ⁇ conjugated system means that two or more double bonds are mutually single single bonds.
  • a halogen-containing tetrabenzoporphyrin represented by the following formula (7a) hereinafter sometimes abbreviated as “porphyrin (7a)”
  • porphyrin (7a) a halogen-containing tetrabenzoporphyrin represented by the following formula (7a) (hereinafter sometimes abbreviated as “porphyrin (7a)”) (in the following formula, X , Y, m, n and Z have the same meaning as described above).
  • the above 1-substituted isoindole is hydroxymethylated-2H-isoindole represented by the following formula (6c) or aminomethylated-2H-isoindole represented by the following formula (6d).
  • the hydroxymethylated-2H-isoindole represented by the above formula (6c) forms a first intermediate represented by the following formula (6b) by formylation of (I) isoindole (2), Then, a second intermediate represented by the following formula (6a) is formed by reducing this intermediate (6b) or by aminomethylenating (II) isoindole (2), and this intermediate
  • the compound is preferably produced by hydrolyzing (6a) to form a first intermediate represented by the following formula (6b) and then reducing the intermediate (6b) (in the formula, X , Y, m, n and Z have the same meanings as described above, and R 7 and R 8 each independently represent a C 1-4 alkyl group).
  • hydroxymethylated-2H-isoindole represented by the above formula (6c) is reacted with isoindole (2) and dialkylformamide in the presence of a phosphoryl halide to obtain a compound represented by the above formula (6b)
  • the first intermediate shown or the second intermediate of formula (6a) above can be formed and prepared from these intermediates.
  • the hydroxymethylated-2H-isoindole (6c) thus obtained is at least one aliphatic monocarboxylic acid selected from acetic acid, propionic acid and butyric acid, and / or ZnCl 2 , BF 3 and BF 3 It is preferable to produce porphyrin (7a) by cyclodehydration in the presence of at least one Lewis acid selected from O (C 2 H 5 ) 2 and then reacting with an oxidizing agent.
  • aminomethylated-2H-isoindole (2) aminomethylated-2H-isoindole represented by the above formula (6d) can be produced.
  • isoindole (2), formaldehyde, and dialkylamine are reacted in the presence of (I) acid (II) isoindole (2) is reacted with methylenedialkylammonium halide and then reacted with an oxidizing agent.
  • isoindole (2) is preferably represented by the following formula (2a), and 4,5,6,7-tetrafluoro-2H-isoindole More preferably, it is 4,5,6,7-tetrachloro-2H-isoindole.
  • X 1 and X 4 each independently represent F or Cl
  • X 2 and X 3 each independently represent H, F or Cl.
  • the present invention also provides aminomethylenated-1H-isoindole, formyl-2H-isoindole and hydroxymethylated-2H-isoindole represented by the following formulas (6a) to (6c). These compounds are useful for producing ⁇ -conjugated cyclic compounds (especially halogen-containing tetrabenzoporphyrins) as described above. Moreover, these compounds can be used not only in the production of porphyrins, but also in the production of polymer materials such as polyisoindolenine vinylene (wherein X, Y, m, n, R 7 and R 8 are Same meaning as above).
  • the present invention relates to a ⁇ -conjugated cyclic compound (7) (particularly porphyrin (7a)), and a halogen-containing tetrabenzoporphyrin complex represented by the following formula (8) (hereinafter sometimes abbreviated as "porphyrin complex (8)")
  • a halogen-containing tetrabenzoporphyrin complex represented by the following formula (8) (hereinafter sometimes abbreviated as "porphyrin complex (8)")
  • X and Y have the same meanings as described above, and M represents a metal or metalloid ion).
  • Porphyrin complex (8) can be produced by mixing porphyrin (7a) and a salt containing metal or metalloid ion M.
  • porphyrin (7a) is produced by cyclizing the 1-substituted form of isoindole represented by the above-mentioned formula (6). Once cyclization of the variant (6) is carried out, formation of a halogen-containing tetrabenzoporphyrinogen (a reduced form of porphyrin, hereinafter sometimes abbreviated as "porphyrinogen (11)") represented by the following formula (11) is once formed It is thought that. Then, porphyrin (7a) can be obtained by causing an oxidant (such as quinones or oxygen in the air) to act on this porphyrinogen (11).
  • an oxidant such as quinones or oxygen in the air
  • porphyrin complex (8) can also be produced by adding a salt containing a metal or metalloid ion M and subsequent oxidation. That is, porphyrin complex (8) can be produced by mixing porphyrinogen (11) and a salt containing metal or metalloid ion M and then causing an oxidant to act [in the following formula, X , Y, m and n have the same meaning as described above].
  • porphyrin complex (8) by mixing porphyrinogen (11) with a salt containing metal or metalloid ion M and then reacting with an oxidizing agent, preferably, (I) By reacting isoindole (2) with dialkylformamide in the presence of a phosphoryl halide to form an intermediate represented by the above formula (6b), and reducing this intermediate (6b) , Forming an intermediate represented by the above formula (6c), which is an acid (preferably at least one aliphatic monocarboxylic acid selected from acetic acid, propionic acid and butyric acid, and / or / or After mixing with ZnCl 2 , BF 3 and at least one Lewis acid selected from BF 3 ⁇ O (C 2 H 5 ) 2 and then with metal or metalloid ion containing salts M, the oxidizing agent is How to work, (II) reacting isoindole (2) with dialkylformamide in the presence of a phosphoryl halide to form an intermediate represented
  • Acid preferably at least one aliphatic monocarboxylic acid selected from acetic acid, propionic acid and butyric acid, and / or at least one selected from ZnCl 2 , BF 3 and BF 3 ⁇ O (C 2 H 5 ) 2
  • a seed Lewis acid
  • a metal or metalloid ion containing salt M followed by the action of an oxidizing agent
  • the oxidant acts How to (IV)
  • isoindole (2) is reacted with methylenedialkylammonium halide, and then the reaction mixture is mixed with a salt containing metal or metalloid ion M, and then the oxidizing agent is allowed to act.
  • a third object of the present invention is to provide a method for producing isoindole multimers using phthalonitriles, which are easier to handle and obtain than isoindoles, as a starting material.
  • the present invention which has achieved the third object, is a repeating unit represented by the following formula (2) characterized by catalytically hydrogenating a phthalonitrile represented by the following formula (9) in the presence of an acid.
  • D represents a halogen atom, R 1 , OR 2 or SR 3 (wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), p represents an integer of 0 to 4;
  • At least one selected from the group consisting of (I) acetic acid, trifluoroacetic acid, phosphoric acid, hydrochloric acid, nitric acid and sulfuric acid is used as the acid, (II) palladium It is a preferred embodiment to use at least one selected from the group consisting of a catalyst, a rhodium catalyst, a platinum catalyst and a nickel catalyst as a catalyst for catalytic hydrogenation.
  • a phthalonitrile represented by the above formula (9) is referred to as “phthalonitrile (9)” and an isoindole multimer having a repeating unit represented by the above formula (10) (or (4)) It may be abbreviated as isoindole multimer (10) (or (4)).
  • isoindole (2) can be produced by a simple reaction step of reducing phthalonitrile (1) (preferably by reduction using a hydride reducing reagent or reduction by catalytic hydrogenation method) It is characterized by Therefore, first, reduction with a hydride reducing reagent will be described.
  • the hydride reducing agent is preferably 2 to 6 moles, more preferably 2.5 to 5 moles, still more preferably 2.7 to 4.5 moles of hydride per 1 mole of phthalonitrile (1). It is recommended to use. As understood from the above-described presumed reaction mechanism, the optimum amount of the hydride reducing reagent is such that 3 moles of hydride will be contained with respect to 1 mole of phthalonitrile (1).
  • the hydride reducing reagent After the reduction reaction of phthalonitrile (1) with the hydride reducing reagent, the hydride reducing reagent is quenched with water. At this time, it is preferable to use an acid (preferably a protic acid) or an alkali together with water. This is because the yield of isoindole (2) is improved.
  • an acid preferably a protic acid
  • an acid preferably a protonic acid
  • a protonic acid in an amount that preferably makes the reaction system neutral to acidic.
  • a protonic acid in an amount such that proton (H + ) is preferably at least 1 mol, more preferably at least 1.5 mol, per 1 mol of hydride reducing reagent.
  • the amount of proton (H + ) is preferably 4 mol or less, more preferably 3 mol or less, with respect to 1 mol of the hydride reducing reagent.
  • the amount of alkali used is preferably 1 mol or more (more preferably 2 mol or more), preferably 5 mol or less (more preferably 3 mol or less) per 1 mol of hydride reducing reagent. When an excess of alkali is used, it may be neutralized before the next purification step, if necessary.
  • isoindole (2) is produced by the reduction reaction of the portion of the cyano group, and the halogen X and the substituent Y in the above formula are produced. Is considered not to significantly affect this reduction reaction. Therefore, in the present invention, it is considered that phthalonitrile (1) having all kinds of halogen X and substituent Y can be used.
  • the halogen atom in phthalonitrile (1) It is recommended that the number of X is 1 or more (ie, m ⁇ 1), preferably 2 or more, more preferably 3 or more, and still more preferably 4.
  • phthalonitrile (1) for example, those commercially available from Aldrich, Synquest, Azmax Co., Ltd. or Central Pharmaceutical Co., Ltd., or those which can be synthesized by known methods can be used.
  • X in the above formula represents a halogen atom, preferably a fluorine, chlorine or bromine atom, more preferably a fluorine or chlorine atom, still more preferably a fluorine atom.
  • X multiple types of halogen atoms may be present simultaneously.
  • R 1 , R 2 and R 3 in the above formulas are each independently preferably a C 1-20 alkyl group, more preferably a C 1-10 alkyl group, still more preferably a C 1-5 alkyl group; preferably C 6-20 aryl group, more preferably C 6-12 aryl group; or preferably C 7-20 alkyl aryl group, more preferably C 7-15 alkyl aryl group, still more preferably C 7-10 alkyl aryl group .
  • R 1 , R 2 and R 3 may contain a halogen atom on their carbon skeleton.
  • the plurality of R 1 , R 2 and R 3 may be different substituents (for example, an alkyl group and an aryl group) good.
  • halogen-containing phthalonitriles having only a halogen atom X as a substituent
  • Halogen-containing phthalonitriles are commercially available from, for example, Aldrich.
  • non-commercially available halogen-containing phthalonitriles can also be produced from commercially available halogen-containing phthalonitriles by a conventionally known halogen substitution reaction.
  • JP-A-2002-332254 uses a fluorine atom of fluorine-containing isophthalonitrile using a brominating agent (eg, sodium bromide, potassium bromide and lithium bromide, preferably sodium bromide and potassium bromide)
  • a brominating agent eg, sodium bromide, potassium bromide and lithium bromide, preferably sodium bromide and potassium bromide
  • a technique of substitution with a bromine atom is disclosed.
  • a brominating agent eg, sodium bromide, potassium bromide and lithium bromide, preferably sodium bromide and potassium bromide
  • halogen-containing phthalonitriles include 4-fluorophthalonitrile, tetrafluorophthalonitrile, 4,5-dichlorophthalonitrile, tetrachlorophthalonitrile, 4-chloro-3,5,6-trifluorophthalonitrile, etc. Be Among these, tetrafluorophthalonitrile is preferable from the viewpoint of availability and the like.
  • Phthalonitriles (1) having an R 1 group as substituent Y can be prepared by a coupling reaction well known in the synthetic chemistry field using halogen-containing phthalonitriles.
  • phthalonitrile (1) having an R 1 group is specifically subjected to a coupling reaction of a halogen-containing phthalonitrile with a Grignard reagent in the presence of a nickel or palladium catalyst, and specifically the halogen atom of the halogen-containing phthalonitrile It can be obtained by substitution with an alkyl, aryl or alkylaryl group from a Grignard reagent.
  • This coupling reaction is well known in the synthetic chemistry field as Kumada-Tamao coupling.
  • the phthalonitrile (1) having an R 1 group can also be obtained by conducting a coupling reaction of a halogen-containing phthalonitrile with an organic boron compound in the presence of a palladium catalyst.
  • This coupling reaction is also well known in the synthetic chemistry field as Suzuki-Miyaura coupling.
  • Phthalonitriles (1) having an OR 2 group or an SR 3 group as a substituent Y are halogens of halogen-containing phthalonitriles by a conventionally known method, for example, a method as described in JP-A-2002-302477. It can be produced by replacing the atom with HOR 2 and / or HSR 3 .
  • the halogen-containing phthalonitrile used in this aromatic nucleophilic substitution reaction is preferably fluorine-containing and / or chlorine-containing phthalonitrile, more preferably fluorine-containing phthalonitrile, still more preferably tetra-methane, from the viewpoint of reactivity to the halogen substitution reaction. It is fluorophthalonitrile.
  • the nucleophilic substitution reaction of the halogen-containing phthalonitrile preferentially proceeds at the 4- and 5-positions of the phthalonitrile. Therefore, from the viewpoint of easy availability, as the phthalonitrile (1) having an OR 2 group or an SR 3 group, the following formula (1a) or (1d), in particular, the following formula (1b) or (1c), or Phthalonitriles shown by 1e) or (1f) are preferred.
  • Y 1 and Y 2 each independently represent OR 2 or SR 3
  • R 2 and R 3 are each independently preferably, preferably a C 1-20 alkyl group Preferably a C 1-10 alkyl group, more preferably a C 1-5 alkyl group; preferably a C 6-20 aryl group, more preferably a C 6-12 aryl group; or preferably a C 7-20 alkyl aryl group, Preferably, it represents a C 7-15 alkylaryl group, more preferably a C 7-10 alkylaryl group.
  • R 2 and R 3 may also contain a halogen atom on their carbon skeleton.
  • R 2 and R 3 in the above formula (1e) or (1f) may be the same or different, but are preferably the same from the viewpoint of easiness of production.
  • metal or metalloid hydrides or their complexes can be used as the hydride reduction reagent.
  • metal hydrides and the like include the following.
  • Aluminum hydrides such as alkylalanes, dialkylalanes, alkoxyalanes and dialkoxyalanes.
  • Boro hydrides such as diborane (B 2 H 6 ), alkyl boranes, dialkyl boranes, alkoxy boranes, dialkoxy boranes and the like.
  • Silicon hydrides such as Cl 2 SiH 2 , Cl 3 SiH, R 2 SiH 2 , R 3 SiH, ((CH 3 ) 3 Si) 3 SiH, polymethylhydrosilane, wherein R is alkyl, aryl, benzyl or alkoxy Represents a group).
  • Tin hydrides such as R 2 SnH 2 , R 3 SnH, Ph 2 SnH 2 , Ph 3 SnH, (n-Bu) 2 SnH 2 , triethyltin hydride, trimethyltin hydride and the like (wherein R is alkyl, aryl Or an alkoxy group).
  • hydride reducing reagent only one type can be used alone, or two or more types can be used in combination.
  • the hydride reducing reagent may be used in combination with a Lewis acid. It is believed that the addition of the Lewis acid accelerates the reduction reaction, especially when using silicon hydride or tin hydride. In the present invention, only one Lewis acid can be used alone, or two or more Lewis acids can be used in combination.
  • the Lewis acid is not particularly limited.
  • AlCl 3 , AlBr 3 , TiCl 4 , SnCl 2 , SnCl 4 , SnCl 4 , FeCl 3 , BF 3 , BF 3 .O (C 2 H 5 ) 2 , trispentafluorophenyl boron Listed are halogen compounds of NbF 5 , TaF 5 , PF 5 , AsF 5 , SbF 5 etc.
  • Periodic Table Group IIIB, IVA, IVB, VA or VB elements, their complexes or alkoxide compounds Be
  • the reduction reaction in the method of the present invention is usually carried out using a solvent.
  • the solvent is not particularly limited, but those which can dissolve phthalonitrile (1) which is a starting material are preferable.
  • solvents for example, chlorohydrocarbons such as chloroform and methylene chloride; aromatic hydrocarbons such as benzene, toluene and xylene; ethers such as THF, dioxane, cyclopentyl methyl ether, diisopropyl ether and diethyl ether; dimethylformamide, Amides such as dimethylacetamide; and sulfolanes such as sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane and the like can be mentioned.
  • the solvents can be used alone or in combination of two or more.
  • the concentration of phthalonitrile (1) is preferably about 0.01 to 1 M, more preferably about 0.05 to 0.5 M.
  • the solution of hydride reduction reagent may be added slowly while cooling the solution of phthalonitriles, or the solution of phthalonitriles may be added slowly while cooling the solution of the hydride reduction reagent.
  • the temperature of the reduction reaction is also influenced by the solvent used, but is preferably 0 ° C. or more, more preferably 20 ° C. or more, preferably 150 ° C. or less, more preferably 120 ° C. or less.
  • the time of the reduction reaction is preferably 30 minutes or more, more preferably 1 hour or more, still more preferably 2 hours or more, preferably 48 hours or less, more preferably 24 hours or less.
  • reaction mixture In order to improve the yield of the desired product isoindole (2), it is preferable to mix the reaction mixture with a protonic acid or alkali after the reduction reaction using a hydride reducing reagent.
  • the reaction mixture after the reduction reaction and the protonic acid are preferably at a temperature of about -30 ° C to 30 ° C, more preferably at a temperature of about -10 ° C to 10 ° C, and even more preferably under cooling in an ice bath or the like (about 0 ° C). It is recommended to mix in.
  • inorganic protonic acids include hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid; phosphoric acids such as orthophosphoric acid and pyrophosphoric acid; perhalogen acids such as perchloric acid; phosphomolybdic acid, silicomolybdic acid, Examples thereof include heteropolyacids such as phosphotungstic acid, silicotungstic acid, lintungstomolybdic acid, and phosphovanadomolybdic acid.
  • organic protic acids include arylsulfonic acids such as benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, etc .; methanesulfonic acid, trifluoromethanesulfonic acid, trichloromethanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, t- Alkyl sulfonic acids such as butyl sulfonic acid; formic acid, acetic acid, propionic acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, trifluoroacetic acid, pentafluoropropionic acid, n-butyric acid, isobutyric acid, pivalic acid, valeric acid, caproic acid, Saturated aliphatic carboxylic acids such as caprylic acid, capric acid, lauric acid, myristic
  • the alkali is preferably an alkali metal or alkaline earth metal hydroxide, carbonate, monocarboxylate (such as acetate), dicarboxylate (such as oxalate), organic amine and the like.
  • alkali metal hydroxides in particular, LiOH, NaOH, KOH which are strong bases are preferable. From the viewpoint of cost, NaOH is more preferable.
  • organic amine ethanolamine and methylamine which can form a complex with boron or the like to promote elimination of the hydride reducing reagent residue are more preferable.
  • One of these alkalis may be used alone, or two or more thereof may be used in combination.
  • the purification means is not particularly limited, and means generally used in the technical field such as silica gel column chromatography, alumina column chromatography, sublimation purification, recrystallization and the like can be used.
  • isoindole (2) can also be produced by reducing phthalonitrile (1) by catalytic hydrogenation.
  • catalyst used for the catalytic hydrogenation reaction conventional metal catalysts known in the art can be used.
  • the metal catalyst is used in such an amount that the central metal of the catalyst is preferably 0.01 to 30 mol%, more preferably 0.1 to 20 mol%, still more preferably 1 to 10 mol% with respect to phthalonitrile (1). It is recommended to use
  • the metal catalyst examples include homogeneous catalysts constituted by coordinating phosphine or the like to ruthenium or rhodium.
  • a heterogeneous catalyst in the present invention.
  • a catalyst in which fine metal powder is supported on a carrier is preferable.
  • heterogeneous catalysts include metals such as nickel, Raney nickel, copper-chromium oxide, ruthenium, palladium, rhodium, platinum or oxides or hydroxides thereof (including those in powder form) such as activated carbon, alumina, diatomaceous earth, etc. And those supported on the carrier of Among these, a catalyst in which palladium is supported on activated carbon is more preferable because it exhibits excellent catalytic activity.
  • a step of activating the catalyst by mixing it with a protic acid in a hydrogen atmosphere prior to the catalytic hydrogenation reaction may be adopted as needed.
  • the objective isoindole (2) can be obtained without using a protic acid, it is recommended to use a protic acid in order to improve the yield.
  • the protonic acid described above can be used as the protonic acid used for activation. Among these, trifluoroacetic acid, hydrochloric acid, nitric acid and sulfuric acid are preferable. More or less amount of protonic acid relative to phthalonitrile (1) generates a large amount of impurities and reduces the yield.
  • the amount of proton (H + ) is preferably 0.6 to 1.6 mol, more preferably 0.8 to 1.2 mol, still more preferably 0.9 to 1 mol of phthalonitrile (1) as a raw material. It is recommended to use the protic acid to be 1.1 mole, most preferably 1 mole.
  • the activation temperature is usually from room temperature to about 50 ° C., and the activation time is preferably 10 minutes or more, more preferably 30 minutes or more, still more preferably 1 hour or more, preferably 5 hours or less. More preferably, it is 3 hours or less, still more preferably 2 hours or less.
  • the reduction by catalytic hydrogenation is usually carried out using a solvent.
  • the solvent is not particularly limited, but those which can dissolve the above-mentioned phthalonitrile (1) which is a starting material are preferable.
  • solvents for example, aromatic hydrocarbons such as benzene, toluene, xylene and the like; ethers such as THF, dioxane, cyclopentyl methyl ether, diisopropyl ether, diethyl ether and the like; alcohols such as methanol, ethanol, propanol and the like; methyl acetate, ethyl acetate , Esters such as propyl acetate and butyl acetate; amides such as dimethylformamide, dimethylacetamide; sulfolanes such as sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane; and formic acid, acetic acid, propionic acid, trifluoro
  • the concentration of phthalonitrile (1) is preferably about 0.01 to 1 M, more preferably about 0.05 to 0.5 M.
  • the temperature of the catalytic hydrogenation is also affected by the solvent used, but is preferably 0 ° C. or more, more preferably 20 ° C. or more, preferably 150 ° C. or less, more preferably 120 ° C. or less.
  • the time of the reduction reaction is preferably 30 minutes or more, more preferably 1 hour or more, still more preferably 2 hours or more, preferably 72 hours or less, more preferably 48 hours or less.
  • the hydrogen pressure is preferably 1.1 atmospheres or more, more preferably 1.5 atmospheres or more, and further preferably 2 atmospheres or more. However, the hydrogen pressure is preferably 5 atm or less, more preferably 3 atm or less, due to the restriction of equipment and the like.
  • Hydrogen gas can be constantly supplied to the reaction system to carry out a catalytic hydrogenation reaction.
  • the reaction system is sealed to carry out a catalytic hydrogenation reaction, and after the pressure in the system decreases as the reaction proceeds, hydrogen gas can be supplied again. It is desirable to depressurize the reaction system prior to the hydrogen gas supply.
  • the novel isoindole represented by the above formula (2) other than 4,5,6,7-tetrafluoro-2H-isoindole can be produced by the production method of the present invention described above.
  • the present invention also provides such a novel isoindole (2).
  • the novel isoindole (2) or N-substituted isoindole (3) of the present invention can be used as a raw material for polyisoindole or dyes.
  • isoindole (2) can be further used as a raw material of porphyrin.
  • R 4 in the above formula (3) (and formula (5)) is preferably a C 1-10 alkyl group, more preferably a C 1-5 alkyl group (eg methyl group, ethyl group, n-propyl group, n -Butyl group, n-pentyl group etc.); preferably C 6-20 aryl group, more preferably C 6-12 aryl group (eg phenyl group, tolyl group etc.); preferably C 7-15 alkyl aryl group, more preferably Preferably, a C 7-10 alkyl aryl group (eg, a benzyl group etc.); or preferably a C 2-10 acyl group, more preferably a C 2-5 acyl group (eg, an acetyl group, a benzoyl group, a t-butoxycarbonyl group etc.) It is.
  • a C 1-10 alkyl group more preferably a C 1-5 alkyl group (eg methyl group,
  • N-substituted isoindole (3) from isoindole (2)
  • various known methods for obtaining a substituted amine from an amine can be used. Below, some examples are shown.
  • R 4 is an alkyl group or an alkyl aryl by reacting isoindole (2) with halogenated alkyl or halogenated alkyl aryl (wherein a halogen is bonded to a carbon atom of the alkyl moiety) in the presence of a base
  • the group N-substituted isoindole (3) can be prepared.
  • a strong base eg, n-butyllithium, alkali metal hydride (eg, NaH, KH), etc.
  • This alkylation reaction is carried out, for example, usually at about -100 ° C to 100 ° C, preferably at about -80 ° C to 70 ° C.
  • the halogenated alkyl is preferably one having about 1 to 10 carbon atoms (preferably about 1 to 5 carbon atoms), more preferably a primary alkyl halide, still more preferably a primary alkyl iodide (eg methyl iodide) Ethyl iodide, n-propyl iodide, n-butyl iodide, n-pentyl iodide and the like).
  • the halogenated alkylaryl is preferably one having about 7 to 15 carbon atoms (preferably about 7 to 10 carbon atoms), and more preferably a halogenated alkyl aryl iodide (eg, benzyl iodide).
  • N-substituted isoindoles (3) in which R 4 is an aryl group can be produced, for example, by the well-known personal name reaction Buchwald-Hartwig cross coupling reaction. Specifically, N-substituted isoindole (3) wherein R 4 is an aryl group is produced by reacting isoindole (2) with a halogenated aryl or aryl triflate in the presence of a Pd catalyst and a strong base it can.
  • phosphine ligands eg, 2,2'-bis (diphenylphosphino) -1,1-binaphthyl, 2,2'-bis (diphenylphosphino) biphenyl etc.
  • dibenzylidene eg, 2,2'-bis (diphenylphosphino) -1,1-binaphthyl, 2,2'-bis (diphenylphosphino) biphenyl etc.
  • Those containing an acetone ligand or the like are used.
  • lithium bis (trimethylsilyl) amide, NaOt-Bu, K 2 CO 3 and the like are generally used.
  • aryl halides having about 6 to 20 carbon atoms (preferably about 6 to 12 carbon atoms) are preferred, and aryl iodides or bromides (eg iodobenzene, 4-iodotoluene etc.) Is more preferred.
  • the reaction may proceed at a temperature as low as room temperature, but the reaction temperature is generally about 50 to 150.degree.
  • isoindole (2) by reacting isoindole (2) with an acyl halide or an acid anhydride (Schotten-Baumann reaction) in a basic aqueous solution (eg NaOH aqueous solution) or a basic organic solution (eg pyridine solution) And N-substituted isoindole (3) wherein R 4 is an acyl group.
  • a basic aqueous solution eg NaOH aqueous solution
  • a basic organic solution eg pyridine solution
  • R 4 isoindole (3) wherein R 4 is an acyl group.
  • the reaction partner of isoindole (2) include acetic anhydride, acetyl chloride, benzoyl chloride and the like.
  • t-Butoxycarbonyl groups are well known as protecting groups for amino groups, for example di-t-butyl dicarbonate and isoindole (2) in the presence of a base such as pyridine, triethylamine, n-BuLi or NaH Can be introduced by reacting
  • Polyisoindole (4) obtained by polymerizing isoindole (2) or N-substituted isoindole (3) of the present invention (hereinafter sometimes abbreviated as "isoindole (2) or (3)") Or (5), particularly poly (fluorine-containing isoindole) is particularly useful as a conductive material, more specifically, as an electrode material, display material, electromagnetic wave shielding material and the like in the field of organic thin film transistors and organic solar cells.
  • the polymerization can be carried out by a known method such as electrolytic oxidation polymerization or chemical oxidation polymerization.
  • the polyisoindole (4) or (5) may be optionally doped.
  • chemical oxidative polymerization will be described as a polymerization method.
  • an oxidizing agent used in chemical oxidative polymerization for example, oxygen, hydrogen peroxide; tetrachloro-1,2-benzoquinone, tetrachloro-1,4-benzoquinone, 2,3-dichloro-5,6-dicyano-1 Quinones such as 4, 4-benzoquinone; halogens such as iodine, bromine and chlorine; metal chlorides such as iron (III) chloride and copper (II) chloride; metal oxides such as manganese dioxide, lead dioxide and osmium tetraoxide; Nitric acid, oxo acids such as chloric acid; potassium chlorate, sodium hypochlorite, sodium bromate, potassium bromate, potassium permanganate, potassium dichromate, potassium persulfate, sodium persulfate, potassium persulfate, ammonium persulfate, etc.
  • An acid salt is mentioned.
  • oxygen, hydrogen peroxide, quinones, halogens and metal chlorides are preferable, and oxygen and metal chlorides are more preferable.
  • the oxidizing agent may be used alone or in combination of two or more.
  • an acid catalyst for example, an inorganic acid such as hydrochloric acid, nitric acid or sulfuric acid
  • a metal catalyst for example, an oxide such as lead, manganese or silver
  • copper (I) chloride, copper (I) chloride-chloride Aluminum or the like may be used. It is recommended to use a catalyst, especially when using oxygen as an oxidant.
  • the amount of the oxidizing agent excluding oxygen is preferably 1 mol or more (more preferably 2 mol or more), preferably 6 mol or less (more preferably 5 mol or less) per 1 mol of isoindoles.
  • Chemical oxidative polymerization is usually carried out in a solvent.
  • a solvent for chemical oxidative polymerization for example, chlorinated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, dichloroethane, tetrachloroethane, chlorobenzene and the like; nitrohydrocarbons such as nitromethane, nitroethane, nitrobenzene and the like; N- And amides such as methyl pyrrolidone; and carbon disulfide.
  • the solvents may be used alone or in combination of two or more.
  • the concentration of isoindole (2) or (3) when a solvent is used is preferably about 0.01 to 1 M, more preferably about 0.05 to 0.5 M.
  • Chemical oxidative polymerization is generally carried out at a temperature in the range of about -80 ° C. to 100 ° C. (preferably about -20 ° C. to 60 ° C.) for about 0.1 to 100 hours (preferably 0 °) depending on the solvent used. 5 to 72 hours).
  • the reaction apparatus is not limited, and a reaction apparatus used for producing polypyrrole, polythiophene and the like by electrolytic oxidation polymerization can be used.
  • the electrolyte include tetraethylammonium bromide, tetraethylammonium chloride, tetraethylammonium fluoride, tetra-n-butylammonium bromide, tetra-n-butylammonium chloride, tetra-n-butylammonium fluoride, tetraethylammonium tetrafluoroborate, and tetraethylammonium tetrafluoroborate.
  • Ammonium salts such as n-butylammonium hexafluorophosphate and tetra-n-butylammonium hexafluoroantimony; phosphonium salts such as tetraphenylphosphonium bromide and tetraphenylphosphonium chloride; lithium salts such as lithium perchlorate and lithium hexafluoroborate; Sulfonates such as potassium benzenesulfonate and sodium toluenesulfonate; sulfuric acid, Acid, an acid such as trifluoroacetic acid.
  • These electrolytes may be used alone or in combination of two or more. The anions of these electrolytes are incorporated into the polymer as a dopant during electrolytic oxidation polymerization.
  • Solvents for electrolytic oxidation polymerization include, for example, chlorinated hydrocarbons such as methylene chloride; nitriles such as acetonitrile, benzonitrile and propionitrile; cyclic ethers such as dioxane, tetrahydrofuran and propylene carbonate; sulfolane, 3-methylsulfolane And sulfolanes such as 2,4-dimethyl sulfolane; and amides such as dimethylformamide and dimethylacetamide.
  • the solvents may be used alone or in combination of two or more.
  • the concentration of isoindole (2) or (3) when a solvent is used is preferably about 0.01 to 1 M, more preferably about 0.05 to 0.5 M.
  • the electrolytic oxidation polymerization is generally performed at a temperature in the range of about -80 ° C. to about 100 ° C. (preferably about -20 ° C. to about 60 ° C.) for about 0.1 to about 100 hours (preferably 0. 5 to 72 hours).
  • the current density in electrolytic oxidation polymerization is generally about 1.0 to 5.0 mA / cm 2 .
  • isoindole (2) or (3) can be polymerized to produce a polymer.
  • isoindole (2) or (3) may be used to form a homopolymer, but also two or more of these may be used in combination to form a copolymer. It is also possible to copolymerize isoindole (2) and / or (3) with other monomers (eg pyrrole, thiophene) to form a copolymer.
  • the polyisoindoles (4) or (5) of the present invention encompass both homopolymers and copolymers.
  • the total content of isoindole (2) and / or (3) in the used monomers ie, the above formula (4) and / or (5) in the copolymer Is preferably 10% by mass or more.
  • the weight average molecular weight (value by GPC measurement in terms of styrene) of the polyisoindole (4) or (5) of the present invention is usually about 1,000 to 500,000, preferably about 3,000 to 300,000, Preferably, it is about 5,000 to 100,000.
  • the production method of the present invention forms intermediate (6) (1-substituted isoindole) from isoindole (2), and then produces ⁇ -conjugated cyclic compound (7) (particularly porphyrin (7a)).
  • the reason why the selectivity and the yield are improved by passing through the intermediate is that, when it is attempted to produce a ⁇ -conjugated cyclic compound (especially tetrabenzoporphyrin) directly from isoindole, the isoindole ring is activated to form a non-porphyrin.
  • the 1-position substituent, not the isoindole ring, is activated to smoothly form a ⁇ -conjugated cyclic compound.
  • the present invention is not limited to such an estimation mechanism.
  • the method for producing a ⁇ -conjugated cyclic compound (in particular, halogen-containing tetrabenzoporphyrin) of the present invention is characterized in that a 1-substituted form of halogen-containing isoindole is once formed as an intermediate.
  • ⁇ -conjugated cyclic compounds represented by the following formulas (7b) to (7d) are abbreviated as “corrole (7b)”, “saphyrin (7c)” and “pentaphilin (7d)”, respectively.
  • the present invention also provides the 1-substituted halogen-containing isoindole itself.
  • These 1-substituted compounds not only have the advantage of being useful for the preparation of ⁇ -conjugated cyclic compounds (especially halogen-containing tetrabenzoporphyrins) as described above, but also have the advantage of being more stable than unsubstituted halogen-containing isoindoles. Have.
  • these 1-substituted compounds can also be used for the production of compounds other than ⁇ -conjugated cyclic compounds, for example, polymers such as polyisoindolenine vinylene.
  • a trace amount of polymer or other cyclic compound is formed as a by-product.
  • the isoindole (2) used in the method for producing the ⁇ -conjugated cyclic compound (7) of the present invention can be obtained or produced as described above.
  • isoindoles (2) those represented by the above formula (2a) are preferable from the viewpoint of stability and the like, and 4,5,6,7-tetrafluoroiso-2H-indole or 4,5,6, 6 7-tetrachloro-2H-isoindole is more preferred, and 4,5,6,7-tetrafluoro-2H-isoindole is more preferred.
  • hydroxymethylated-2H-isoindole (6c) or aminomethylated-2H-isoindole (6d) from isoindole (2) there is no particular limitation on the method for producing hydroxymethylated-2H-isoindole (6c) or aminomethylated-2H-isoindole (6d) from isoindole (2), and it is known in the field of synthetic organic chemistry Can be used in any way.
  • hydroxymethylated-2H-isoindole (6c) is formylated with Vilsmeier and then reduced to give aminomethylated-2H-isoindole (6d) as Mannich reaction. It is preferable to manufacture by this.
  • phosphoryl halide used for the Vilsmeier reaction for example, phosphoryl fluoride, phosphoryl chloride or phosphoryl bromide can be mentioned, and among these, phosphoryl chloride is preferable from the viewpoint of reactivity.
  • sulfonyl chlorides such as p-toluenesulfonyl chloride, methanesulfonyl chloride, trifluoromethane sulfonyl chloride, 2,2,2-trifluoroethane sulfonyl chloride, etc.
  • dialkylformamide and phosphoryl halide in an equivalent or more amount with respect to isoindole (2).
  • the amount of dialkylformamide and halogenated phosphoryl is preferably 1 mol or more, more preferably 1.1 mol or more, and still more preferably 1.3 mol or more, per 1 mol of isoindole (2).
  • the amount of dialkylformamide or the like is preferably 5 mol or less, more preferably 3 mol or less, still more preferably 2 mol or less, per 1 mol of isoindole (2).
  • the Vilsmeier reaction for producing intermediates (6a) or (6b) is usually carried out in solution.
  • One of the starting materials dialkylformamide, in particular DMF, can be used as a solvent substitute.
  • other solvents for example, chlorohydrocarbons such as chloroform and methylene chloride; halogenated benzenes such as chlorobenzene; and alkylbenzenes such as toluene and xylene can be used.
  • the solution concentration of isoindole (2) is preferably about 0.01 to 2 M, more preferably about 0.05 to 1 M.
  • the isols (2), phosphoryl halide, and dialkyl formamide may be mixed to form Vilsmeier reagent ([R 7 R 8 NCHCHX 5 ] (+) X 5 ( ⁇ ) ) in the reaction system.
  • the phosphoryl halide and dialkylformamide may be mixed to form the Vilsmeier reagent in advance.
  • isoindole (2) may be added to Vilsmeier reagent, or conversely, Vilsmeier reagent may be added to isoindole (2). In each of the addition and mixing steps, cooling may be performed as necessary in order to suppress heat generation.
  • the temperature of the Vilsmeier reaction is influenced by the solvent used, but is usually 0 ° C. or more, preferably 20 ° C. or more, preferably 140 ° C. or less, more preferably 120 ° C. or less.
  • the time of Vilsmeier reaction is preferably 5 minutes or more, more preferably 10 minutes or more, more preferably 30 minutes or more, preferably 20 hours or less, more preferably 15 hours or less, still more preferably 10 hours or less.
  • Aminomethylenated-1H-isoindole (6a) can be readily converted to formylated-2H-isoindole (6b) by hydrolysis.
  • This hydrolysis can be carried out simply by mixing aminomethylenated-1H-isoindole (6a) and water, but it is preferable to use an aqueous alkaline solution such as sodium acetate, sodium hydrogencarbonate or sodium hydroxide.
  • an aqueous alkaline solution such as sodium acetate, sodium hydrogencarbonate or sodium hydroxide.
  • the temperature of hydrolysis is usually 0 to 100 ° C., preferably 20 to 80 ° C.
  • the time is usually 0.5 to 10 hours, preferably 1 to 5 hours.
  • Hydroxymethylated-2H-isoindole (6c) can be prepared by reducing formylation-2H-isoindole (6b).
  • the reduction of formyl groups (aldehydes) to hydroxymethyl groups (alcohols) is easy and can be done by methods well known in the art of synthetic organic chemistry.
  • the reducing agent include complexes of boron hydrides such as NaBH 4 and BH 3 -THF, and complexes of aluminum hydrides such as LiAlH 4 and diisobutylaluminum hydride.
  • the reaction mixture as it is is used to prepare the following intermediates or ⁇ -conjugated cyclic compounds (7) (especially porphyrin (7a)): It can also be used for manufacturing. However, in order to produce highly pure ⁇ -conjugated cyclic compound (7), it is recommended to purify one or more of intermediates (6a), (6b) and (6c) and then use it in the next step Be done.
  • a purification method for example, silica gel column chromatography, alumina column chromatography, sublimation purification, recrystallization, crystallization and the like can be used.
  • Hydroxymethylated-2H-isoindole (6c) is more stabilized than the starting material isoindole (2), but is more reactive than the pyrrole used to make regular porphyrins . Therefore, when hydroxymethylated-2H-isoindole (6c) is reacted in the presence of chloroacetic acid or the like usually used to synthesize porphyrin from pyrrole, it is polymerized to form isoindole oligomers and the like.
  • acids for this such as acetic acid, aliphatic monocarboxylic acids such as propionic and butyric; succinic acid, glutaric acid, adipic acid, aliphatic dicarboxylic acids such as pimelic acid; and ZnCl 2, BF 3 and BF 3 ⁇ O
  • Weak Lewis acids such as (C 2 H 5 ) 2 can be used, of which the said aliphatic monocarboxylic acids and the said Lewis acids are preferred.
  • the aliphatic monocarboxylic acid and / or the Lewis acid can be used alone or in combination of two or more.
  • the above-mentioned dehydrating cyclization may be carried out after isolating hydroxymethylated-2H-isoindole (6c), or after reduction of formylated-2H-isoindole (6b), the reaction mixture is used as it is May be
  • the isolated hydroxymethylated-2H-isoindole (6c) is used for dehydrating cyclization, the amount of the acid used per mole of hydroxymethylated-2H-isoindole (6c) is 1.5 moles in the Lewis acid.
  • the degree is about 1.5 moles or more in the aliphatic carboxylic acid.
  • the aliphatic carboxylic acid can also be used in excess as a solvent.
  • said aliphatic carboxylic acid is for quenching of the hydride reducing reagent Can also be used.
  • the aliphatic carboxylic acid is preferably used in excess.
  • the reaction temperature of the dehydrocyclization of hydroxymethylated-2H-isoindole (6c) may be appropriately set according to its reactivity, and is, for example, usually 0 ° C. or higher, preferably 20 ° C. or higher, preferably 140 C. or less, more preferably 120 ° C. or less.
  • the reaction time is preferably 0.1 hours or more, more preferably 0.5 hours or more, preferably 96 hours or less, more preferably 72 hours or less.
  • a reduced form of the ⁇ -conjugated cyclic compound (7) (in particular, porphyrinogen (11)) is obtained, and by oxidizing this with an oxidizing agent, the ⁇ -conjugated cyclic compound (7) (particularly, porphyrin (7a)) can be produced.
  • this weak acid may or may not be neutralized before oxidation of the reduced form of the ⁇ -conjugated cyclic compound (7) (especially porphyrinogen (11)).
  • oxygen oxygen-containing gases such as air; p-chloranil (6,3,5,6-tetrachloro-p-benzoquinone), DDQ (6,3-dicyano-5,6-dichloro) Quinones such as -p-benzoquinone)
  • the oxidizing agents can be used alone or in combination of two or more.
  • the oxidation reaction temperature is, for example, usually 10 ° C. or more, preferably 20 ° C. or more, preferably 100 ° C. or less, more preferably 80 ° C. or less.
  • the reaction time is preferably 30 minutes or more, more preferably 1 hour or more, preferably 48 hours or less, more preferably 24 hours or less.
  • the reaction for synthesizing ⁇ -conjugated cyclic compound (7) (particularly porphyrin (7a)) from hydroxymethylated-2H-isoindole (6c) by dehydration cyclization and oxidation is usually a solution reaction.
  • the aliphatic carboxylic acid can be used as a solvent therefor.
  • chlorinated hydrocarbons such as chloroform and methylene chloride
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • ethers such as THF, dioxane, cyclopentyl methyl ether, diisopropyl ether and diethyl ether
  • Alcohols such as methanol, ethanol and propanol
  • esters such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate
  • amides such as dimethylformamide and dimethylacetamide.
  • the solvents can be used alone or in combination of two or more.
  • the concentration of the starting material hydroxymethylated-2H-isoindole (6c) is preferably about 1 to 1000 mM, more preferably about 5 to 500 mM.
  • the ⁇ -conjugated cyclic compound (7) (particularly porphyrin (7a)) obtained as described above can be purified by sublimation, recrystallization, crystallization or the like.
  • it is a porphyrin (7a) having a substituent such as a phenoxy group, it can also be purified by silica gel column chromatography or alumina column chromatography.
  • Aminomethylated-2H-isoindole (6d) is an isoindole (2), formaldehyde, and a dialkylamine NHR 5 R 6 (wherein R 5 and R 6 are each independently C) in the presence of an acid 1 to 4 alkyl group) can be produced by the Mannich reaction.
  • halogenated methylene dialkyl ammonium H 2 C NR 5 R 6 X 6 prepared in advance, wherein R 5 and R 6 each independently represent a C 1-4 alkyl group, and X 6 represents a halogen atom. Mannich reaction may be carried out using is.) And isoindole (2).
  • Examples of the acid used for this Mannich reaction include inorganic acids such as hydrohalic acid (hydrochloric acid, hydrofluoric acid, hydrobromic acid, hydroiodic acid), nitric acid, sulfuric acid; and formic acid, trifluoroacetic acid, trichloroacetic acid, etc. And the like.
  • hydrochloric acid, hydrobromic acid, sulfuric acid and trifluoroacetic acid are preferable. It is recommended to use a monobasic acid in an amount of preferably 1 to 2 moles, more preferably 1.1 to 1.5 moles, relative to 1 mole of isoindole (2).
  • the recommended amount to be used is an amount obtained by multiplying the above amount of monobasic acid by the valence number of polybasic acid.
  • the methylenedialkylammonium halide can be prepared from formaldehyde and a dialkylamine, or for example methylenedimethylammonium halide can be obtained from Aldrich.
  • a dialkyl dialkyl halide methylene dimethyl dimethyl halide is preferable, and methylene dimethyl ammonium iodide and methylene dimethyl ammonium chloride are more preferable.
  • the amount of methylenedialkylammonium halide is preferably 1 to 2.5 mol, more preferably 1.05 to 2 mol, still more preferably 1.1 to 1.5 mol, per 1 mol of isoindole (2). Recommended for use with
  • the Mannich reaction is usually performed using a solvent.
  • solvents chlorohydrocarbons such as chloroform and methylene chloride; aromatic hydrocarbons such as benzene, toluene and xylene; ethers such as THF, dioxane, cyclopentyl methyl ether, diisopropyl ether and diethyl ether; methanol, ethanol, Alcohols such as propanol; esters such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate; and nitriles such as acetonitrile, propionitrile and benzonitrile can be mentioned.
  • the solvents can be used alone or in combination of two or more.
  • the concentration of the starting material isoindole (2) is preferably about 0.01 to 2 M, more preferably about 0.05 to 1 M.
  • the temperature of the above Mannich reaction is influenced by the solvent used, etc., but is usually 0 ° C. or more, preferably 20 ° C. or more, preferably 120 ° C. or less, more preferably 100 ° C. or less.
  • the reaction time is preferably 1 hour or more, more preferably 2 hours or more, preferably 72 hours or less, more preferably 48 hours or less.
  • Intermediate (6d) which is a 1-position substitution of isoindole (2), is considered to be more stable than isoindole (2), as with intermediates (6a) to (6c).
  • the intermediate (6d) is more active than the intermediate (6c), it is cyclized as soon as it is formed, thereby reducing the ⁇ -conjugated cyclic compound (7) (especially porphyrinogen (11)), The ⁇ -conjugated cyclic compound (7) (especially porphyrin (7a)) is then formed.
  • the ⁇ -conjugated cyclic compound (7) can be produced by causing the oxidizing agent to act after the Mannich reaction.
  • the Mannich reaction and the subsequent oxidation reaction after the cyclization reaction can be carried out in the same manner as described above.
  • porphyrins (7a) obtained as described above can be combined with various metal or metalloid ions to form porphyrin complexes (8), as is well known in the field of porphyrin chemistry.
  • metal or metalloid ions to be bound to the porphyrin complex (8) include Group 2 elements excluding Be and Ra, rare earth elements, Th, U, Group 4 to 12 elements, and Group 13 elements excluding B. Mention may be made of the ions of Group 14 elements excluding C and Group 15 elements excluding N and P. Among these, metal ions are preferable, and Co, Zn, Cu, Ni, Pd, Pt, Fe or Mn ions are more preferable.
  • the porphyrin ligand can be bound to a trivalent or higher metal or metalloid ion, in which case the central metal of the porphyrin complex is bound to a halogen, an alkyl, an alkoxyl group or the like to balance the charge.
  • porphyrin complexes (8) of these metals or metalloids metal salts containing metal or metalloid ions, such as halide salts (in particular chloride salts, bromide salts and iodide salts) or acetates, etc. And porphyrin (7a) may be mixed. It is also possible to add a metal salt containing metal or metalloid ion followed by oxidation after cyclization of intermediate (6c) or (6d) and before oxidation (ie, at the stage of porphyrinogen (11)). , Porphyrin complex (8) can be formed. This complexing reaction is usually carried out in a solvent, and as the solvent therefor, the same one as in the preparation of porphyrin can be used.
  • halide salts in particular chloride salts, bromide salts and iodide salts
  • porphyrin (7a) may be mixed. It is also possible to add a metal salt containing metal or metalloid ion followed by oxidation after cyclization of
  • the temperature for the complexing reaction is preferably 0 ° C. or more, more preferably 10 ° C. or more, preferably 80 ° C. or less, more preferably 60 ° C. or less.
  • the time for the complexation reaction is preferably 1 hour or more, more preferably 2 hours or more, preferably 96 hours or less, more preferably 72 hours or less.
  • porphyrin (7a) and porphyrin complexes (8) of the present invention hexadecafluoro-tetrabenzoporphyrin and 2 1, 2 2, 2 3, 2 4, 7 1, 7 2, 7 3, 7 4, 12 1, 12 2 , 12 3 , 12 4 , 17 1 , 17 2 , 17 3 , 17 4 -hexadecachloro-21H, 23H-tetrabenzoporphyrin and complexes thereof are preferred, and hexadecafluorotetrabenzoporphyrin and complexes thereof are preferred. Since fluorine or chlorine, in particular fluorine, is electron-withdrawing, porphyrins containing a large number of them and complexes thereof are expected to be particularly applicable to materials of n-type organic semiconductors or organic field effect transistors. .
  • the present invention which relates to a method for producing isoindole multimer, will now be described in detail.
  • the method for producing an isoindole multimer of the present invention is characterized in that phthalonitriles are used as starting materials, not isoindoles.
  • the phthalonitriles are much more stable and easier to handle than isoindoles.
  • phthalonitriles are sold as raw materials, such as a pigment, and are easily available.
  • intermediate (e) an imino group A dimer having an isoindoline skeleton and an isoindole skeleton is formed.
  • intermediate (e) an imino group A dimer having an isoindoline skeleton and an isoindole skeleton is formed.
  • a dimer (f) of 2H-isoindoles is formed by hydrogen addition to the imino group as described above and elimination of the amino group (also a dimer ( f) are also included within the scope of isoindole multimers (10) of the present invention). It is thought that by repeating such a reaction, an isoindole multimer (10) having a repeating number of 2 or more is formed from phthalonitrile (9).
  • the phthalonitrile (9) used in the present invention includes phthalonitrile (unsubstituted phthalonitrile) or substituted phthalonitrile having a substituent such as a halogen atom as described above.
  • the substituted phthalonitriles include those having only one type of substituent (for example, a halogen atom) or two or more types of substituents (for example, a halogen and an alkyl group).
  • the halogen atom of phthalonitrile (9) is preferably a fluorine, chlorine or bromine atom, more preferably a fluorine or chlorine atom, still more preferably a fluorine atom.
  • phthalonitrile (9) plural kinds of halogen atoms may be present at the same time.
  • R 1 , R 2 and R 3 in the above formula (9) are each independently preferably a C 1 to C 20 alkyl group, more preferably a C 1 to C 10 alkyl group, still more preferably C 1 to C 5 Alkyl group; preferably C 6 -C 20 aryl group, more preferably C 6 -C 12 aryl group; or preferably C 7 -C 20 alkyl aryl group, more preferably C 7 -C 15 alkyl aryl group, more preferably Is a C 7 -C 10 alkylaryl group.
  • R 1 , R 2 and R 3 may contain a halogen atom on their carbon skeleton.
  • the plurality of R 1 , R 2 and R 3 may be different substituents (for example, an alkyl group and an aryl group) good.
  • phthalonitrile (1) having a halogen atom X is preferable.
  • Isoindole multimer (4) produced from phthalonitrile (1) having a halogen atom (in particular, a fluorine atom which is a strong electron-withdrawing group) is expected to be applied to new applications such as n-type semiconductors This is because that.
  • the number m of halogen atoms X is preferably 2 or more, more preferably 3 or more, and still more preferably 4.
  • examples of R 1, R 2 and R 3 include those described above.
  • Phthalonitriles can be obtained or manufactured as described above.
  • phthalonitriles used in the method for producing an isoindole multimer phthalides represented by the above-mentioned formula (1a) or (1d), particularly above-mentioned formula (1b) or (1c), or above-mentioned formula (1e) or (1f) Nitriles are preferred.
  • inorganic or organic protic acid is preferable.
  • inorganic protonic acids include hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid; phosphoric acids such as orthophosphoric acid and pyrophosphoric acid; perhalogen acids such as perchloric acid; phosphomolybdic acid, silicomolybdic acid, Examples thereof include heteropolyacids such as phosphotungstic acid, silicotungstic acid, lintungstomolybdic acid, and phosphovanadomolybdic acid.
  • organic protic acids include arylsulfonic acids such as benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, etc .; methanesulfonic acid, trifluoromethanesulfonic acid, trichloromethanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, t- Alkyl sulfonic acids such as butyl sulfonic acid; formic acid, acetic acid, propionic acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, trifluoroacetic acid, pentafluoropropionic acid, n-butyric acid, isobutyric acid, pivalic acid, valeric acid, caproic acid, Saturated aliphatic carboxylic acids such as caprylic acid, capric acid, lauric acid, myristic
  • protic acids acetic acid, trifluoroacetic acid, phosphoric acid, hydrochloric acid, nitric acid and sulfuric acid are preferable.
  • the amount of proton (H + ) be equal to or more than the molar amount of phthalonitrile (9) as the starting material. It is because polymerization can be promoted by using an equimolar or more proton.
  • the amount of proton is preferably 1 to 10 moles, more preferably 1.05 to 7 moles, and still more preferably 1.1 to 5 moles relative to 1 mole of phthalonitrile (9).
  • the central metal of the catalyst is 0.01 to 30% by mole, more preferably 0.1 to 20% by mole, still more preferably 1 to 10% by mole relative to phthalonitrile (9). It is recommended to use metal catalysts.
  • the metal catalyst examples include homogeneous catalysts constituted by coordinating phosphine or the like to ruthenium or rhodium.
  • a heterogeneous catalyst in the present invention.
  • a catalyst in which fine metal powder is supported on a carrier is preferable.
  • Heterogeneous catalysts for example, metals such as nickel, Raney nickel, copper-chromium oxide, ruthenium, palladium, rhodium, platinum and platinum oxide, or fine powders of these metals supported on a support such as activated carbon, alumina, diatomaceous earth It can be mentioned.
  • metal catalysts palladium catalysts, rhodium catalysts, platinum catalysts and nickel catalysts are preferable, and from the viewpoint of catalytic activity, catalysts in which palladium is supported on activated carbon are more preferable.
  • a catalyst activation step of mixing the catalyst and the protonic acid under a hydrogen atmosphere before catalytic hydrogenation may be employed as needed.
  • the activation temperature is usually from room temperature to about 50 ° C.
  • the activation time is preferably 10 minutes or more, more preferably 30 minutes or more, still more preferably 1 hour or more, preferably 5 hours or less. More preferably, it is 3 hours or less, still more preferably 2 hours or less.
  • the catalytic hydrogenation is usually carried out using a solvent.
  • the solvent is not particularly limited, but those which can dissolve phthalonitrile (9) which is a starting material are preferable.
  • solvents for example, aromatic hydrocarbons such as benzene, toluene, xylene and the like; ethers such as THF, dioxane, cyclopentyl methyl ether, diisopropyl ether, diethyl ether and the like; alcohols such as methanol, ethanol, propanol and the like; methyl acetate, ethyl acetate , Esters such as propyl acetate and butyl acetate; amides such as dimethylformamide, dimethylacetamide; sulfolanes such as sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane; and formic acid, acetic acid, propionic acid, trifluoroacetic acid Etc.
  • solvents of amides or acetic acids and water can also be used.
  • the solvents can be used alone or in combination of two or more.
  • solvents in which the solubility of the isoindole multimer is high such as ethyl acetate, propyl acetate, dimethylformamide, dimethylacetamide, sulfolane, 3-methylsulfolane and 2,4-dimethylsulfolane are preferable.
  • concentration of phthalonitrile (9) is preferably about 0.01 to 5 M, more preferably about 0.05 to 1 M.
  • the temperature of the catalytic hydrogenation is also affected by the solvent used, but is preferably 0 ° C. or more, more preferably 20 ° C. or more, preferably 150 ° C. or less, more preferably 120 ° C. or less.
  • the time of the catalytic hydrogenation reaction is preferably 30 minutes or more, more preferably 1 hour or more, still more preferably 2 hours or more, preferably 48 hours or less, more preferably 24 hours or less.
  • the hydrogen pressure is preferably 1.1 atmospheres or more, more preferably 1.5 atmospheres or more, and further preferably 2 atmospheres or more. However, the hydrogen pressure is preferably 5 atm or less, more preferably 3 atm or less, due to the restriction of equipment and the like.
  • Catalytic hydrogenation can be carried out by continuously supplying hydrogen gas to the reaction system.
  • the reaction system is sealed to carry out catalytic hydrogenation, and after the pressure in the system decreases as the reaction proceeds, hydrogen gas can be supplied again. It is desirable to depressurize the reaction system prior to the hydrogen gas supply. Further, in order to adsorb a large amount of hydrogen to the catalyst, it is a preferable embodiment to repeat the decompression and the supply of hydrogen gas a plurality of times, especially when the catalytic hydrogenation is performed in the presence of a solvent.
  • the number of repeating units of the isoindole multimer to be produced is 2 or more, preferably 3 or more, more preferably 5 or more. This is because as the number of repeating units of isoindole multimer increases and the molecular weight increases, the mechanical properties as a multimer, particularly as a polymer, improve. However, isoindole multimers having too large a molecular weight are difficult to produce and the handleability of the multimer itself is also reduced. Therefore, the weight average molecular weight (value by GPC measurement in terms of polystyrene) of the isoindole multimer is preferably about 1,000 to 500,000, more preferably about 3,000 to 300,000, and still more preferably 5,000 to 10 It is about 10,000.
  • doping may be performed by a known method in order to improve the conductivity of the multimer.
  • Examples 1 to 21 are examples of isoindoles (2) and (3) of the present invention, and polyisoindoles (4) and (5).
  • Examples 35 to 38 are examples relating to the isoindole multimer (10) of the present invention.
  • Example 1 Reduction of tetrafluorophthalonitrile with hydrogenated diisobutylaluminum
  • Example 2 Reduction of Tetrafluorophthalonitrile with Diisobutylaluminium The reaction was carried out under the same conditions as in Example 1, but only 100 ml of water was added during quenching without using a protonic acid. Shortly after the addition of water, the reaction solution gelled. The solid matter was removed by celite filtration, and purification was performed by the same operation as in Example 1. As a result, the target substance 4,5,6,7-tetrafluoro-2H-isoindole was obtained in a yield of 0.6% (0.017 g) , 0.09 mmol).
  • Example 3 Reduction of tetrafluorophthalonitrile by hydrogenated diisobutylaluminum In the same manner as in Example 1, except that the concentrate was purified by sublimation, 4,5,6,7-tetrafluoro-2H-isoindole was used. The yield was 9.87% (0.28 g, 1.48 mmol).
  • Example 4 Reduction of Tetrafluorophthalonitrile with Diisobutylaluminum Hydrogenate 0.2 g (1.06 mmol) of tetrafluorophthalonitrile was added to an eggplant flask and purged with nitrogen, and then 6 ml of dehydrated toluene was added. While cooling in an ice bath, 4.21 ml (4 mmol) of a 0.95 M solution of diisobutylaluminum hydride in toluene was slowly added dropwise, and after returning to room temperature, the mixture was stirred for 23 hours. After that, 15 ml (15 mmol) of 1 M aqueous NaOH solution was slowly added to the reaction mixture.
  • Example 5 Reduction of 4,5-bis (pentafluorophenoxy) -3,6-difluorophthalonitrile with diisobutylaluminum hydride
  • the raw material 4,5-bis (pentafluorophenoxy) -3,6-difluorophthalonitrile was first prepared as follows: 20.1 g of tetrafluorophthalonitrile in a 200 ml reaction vessel equipped with a dropping funnel and a thermometer 100.45 mmol), 13.99 g (240.79 mmol) of potassium fluoride and 130 ml of methyl isobutyl ketone were added.
  • the concentrate is purified by reprecipitation with a toluene / hexane solvent to give 4,5-bis (pentafluorophenoxy) -3,6-difluorophthalonitrile in a yield of 70.83% (37.4 g, 70.81 mmol). Obtained by).
  • Example 7 Reduction of 4,5-bis (pentafluorothiophenoxy) -3,6-difluorophthalonitrile with diisobutylaluminum hydride
  • the starting 4-chloro-3,5,6-trifluorophthalonitrile was first prepared as follows: 1000 g (5 mol) of tetrafluorophthalonitrile, N-methyl-2 in a 5 L reaction vessel equipped with a reflux condenser. 1004 g of pyrrolidone and 2343 g of acetonitrile were charged, the temperature was raised to 75 ° C., 233 g (5.5 mol) of lithium chloride were successively added, and reaction was carried out at this temperature for 7 hours. The reaction solution was concentrated by an evaporator to remove any acetonitrile, and then the concentrate was poured into water, and the precipitate was filtered to obtain a crudely purified product.
  • the crude product is dissolved in methyl isobutyl ketone and washed with water to remove inorganic salts, the aqueous phase and the organic phase are separated, the organic phase is dried over anhydrous sodium sulfate, concentrated by an evaporator and concentrated Under reduced pressure to give 4-chloro-3,5,6-trifluorophthalonitrile in a yield of 40.7% (440.5 g, 2.03 mol).
  • reaction solution was returned to room temperature again, and while cooling in an ice bath, it was quenched by adding 18 ml (36 mmol) of 2 M hydrochloric acid.
  • the reaction product was extracted with ethyl acetate, washed with distilled water and then with brine and dried over anhydrous sodium sulfate, and the extract was concentrated by an evaporator.
  • the concentrate was purified by silica gel column chromatography (solvent: dichloromethane). The desired product 4,5,6,7-tetrafluoro-2H-isoindole was obtained in a yield of 37% (1.05 g, 5.55 mmol).
  • Example 12 Reduction of tetrafluorophthalonitrile by catalytic hydrogenation
  • the catalyst is activated by stirring for 10 minutes at room temperature while being pressurized with a hydrogen balloon (about 1.1 atm) It turned Thereafter, a solution of 1.50 g (7.5 mmol) of tetrafluorophthalonitrile dissolved in 20 ml of toluene was added to an eggplant flask and vigorously stirred at room temperature for 13 hours.
  • the reaction solution is neutralized with aqueous sodium bicarbonate solution, then the Pd catalyst (Pd / C) is removed by celite filtration, extracted with chloroform, washed with distilled water and then with saturated brine, dried over anhydrous sodium sulfate and then extracted
  • the product was concentrated by an evaporator.
  • the concentrate was purified by silica gel column chromatography (solvent: chloroform). The desired product 4,5,6,7-tetrafluoro-2H-isoindole was obtained in 41.6% yield (0.59 g, 3.12 mmol).
  • Example 13 Reduction of tetrafluorophthalonitrile by catalytic hydrogenation
  • Example 14 Reduction of tetrafluorophthalonitrile by catalytic hydrogenation
  • Example 15 Reduction of tetrafluorophthalonitrile by catalytic hydrogenation
  • the catalyst is activated by stirring for 10 minutes at room temperature while being pressurized with a hydrogen balloon (about 1.1 atm) It turned Thereafter, a solution of 15 g (75 mmol) of tetrafluorophthalonitrile in a mixed solvent of 200 ml of toluene and 200 ml of ethyl acetate was added to an eggplant flask and stirred at room temperature for 14 hours.
  • the reaction solution is neutralized with aqueous sodium bicarbonate solution, then the Pd catalyst is removed by Celite filtration, extracted with toluene, washed with distilled water and then with saturated brine, and dried over anhydrous sodium sulfate, and the extract is concentrated by an evaporator did.
  • the concentrate was purified by silica gel column chromatography (solvent: chloroform). The desired product 4,5,6,7-tetrafluoro-2H-isoindole was obtained in a 28% yield (3.976 g, 21.02 mmol).
  • Example 16 Reduction of 4,5-bis (pentafluorophenyl) -3,6-difluorophthalonitrile by catalytic hydrogenation
  • a catalyst purchased from Aldrich, Pd: 10% by mass
  • palladium supported on activated carbon in a 100 ml three-necked reaction vessel (0.86 g of Pd: 0.81 mmol), 30 ml of methanol, 0.5 ml of 3 M sulfuric acid (1.5 mmol) was added.
  • the system is depressurized and nitrogen supply operation (nitrogen substitution) is repeated three times, and then the pressure reduction and hydrogen supply operation (hydrogen substitution) are repeated three times, and then pressure is applied with a hydrogen balloon (approximately 1
  • the catalyst was activated by stirring for about 5 minutes at room temperature under a pressure of 1 atm.
  • the catalyst is activated by stirring for 10 minutes at room temperature while being pressurized (about 1.1 atm) with a hydrogen balloon It turned Thereafter, a solution of 3.00 g (7.42 mmol) of 4,5-bis (2,5-dimethylphenoxy) -3,6-difluorophthalonitrile in 20 ml of ethyl acetate is added to the flask and the solution is allowed to stand at room temperature for 14 hours. Stir vigorously.
  • the reaction solution is neutralized with aqueous sodium bicarbonate solution, then the Pd catalyst is removed by Celite filtration, extracted with toluene, washed with distilled water and then with saturated brine, and dried over anhydrous sodium sulfate, and the extract is concentrated by an evaporator did.
  • the concentrate was purified by silica gel column chromatography (solvent: chloroform).
  • the desired product, 5,6-bis (2,5-dimethylphenoxy) -4,7-difluoro-2H-isoindole was obtained in 21% yield (0.623 g, 1.58 mmol).
  • Example 18 Alkylation of 4,5,6,7-tetrafluoro-2H-isoindole with methyl iodide
  • the concentrate is purified by silica gel column chromatography (solvent: ethyl acetate) to give the target 4,5,6,7-tetrafluoro-2-methylisoindole in a yield of 58.2% (0.060 g) , 0.295 mmol).
  • the concentrate is purified by silica gel column chromatography (solvent: ethyl acetate) to give the target 4,5,6,7-tetrafluoro-2-n-pentylisoindole in a yield of 83.6% (0%). .564 g, 2.176 mmol).
  • Example 20 Oxidative polymerization of 4,5,6,7-tetrafluoro-2H-isoindole 0.18 g (0.95 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole is weighed in an eggplant flask. Then, 4.3 g of chloroform was added to this and stirred to prepare an isoindole solution. In a separate container, 0.63 g (3.88 mmol) of iron (III) chloride was weighed, and 3.4 g of water was added to prepare an aqueous iron chloride solution.
  • the aqueous iron chloride solution was slowly added to the previously prepared isoindole solution, and after stirring at room temperature for 48 hours, the reaction solution was poured into a large amount of water.
  • the solution obtained by filtration is washed with dilute hydrochloric acid, water and then chloroform, and then the residue is vacuum-dried to obtain black poly (4,5,6,7-tetrafluoro-2H-isoindole). 0.109 g (converted yield 61.2%) was obtained.
  • the conductivity of the polymer (measured by the two-terminal method) was 4 ⁇ 10 ⁇ 6 S / cm 2 .
  • Example 21 Oxidative polymerization of 4,5,6,7-tetrafluoro-2-n-pentylisoindole
  • 0.248 g of 4,5,6,7-tetrafluoro-2-n-pentylisoindole was added. 0.96 mmol) was weighed, and to this, 4.5 g of chloroform was added and stirred to prepare an isoindole solution.
  • 0.62 g (3.82 mmol) of iron (III) chloride was weighed out, and 3.5 g of water was added to prepare an aqueous iron chloride solution.
  • the aqueous iron chloride solution was slowly added to the previously prepared isoindole solution, and after stirring at room temperature for 48 hours, the reaction solution was poured into a large amount of water.
  • the solution obtained by filtration is washed with dilute hydrochloric acid, water and then chloroform, and then the residue is vacuum-dried to obtain black poly (4,5,6,7-tetrafluoro-2-n-pentyl).
  • 0.05 g (converted yield 20.3%) of isoindole was obtained.
  • a 50 ml two-necked eggplant flask equipped with a reflux apparatus is purged with nitrogen, 0.21 ml (2.75 mmol) of dimethylformamide is added while cooling with an ice bath, and 0.26 ml (2.75 mmol) of phosphoryl chloride is slowly added thereto. It was added dropwise and stirred for 15 minutes. 2 ml of methylene chloride is added to dissolve the precipitated solid, and a solution of 480 mg (2.54 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole in 2 ml of methylene chloride is slowly added dropwise thereto, and then The ice bath was removed and heated to 55 ° C. and refluxed for 15 minutes.
  • reaction mixture is then cooled to room temperature, and a solution of 1.25 g of sodium acetate dissolved in 2.5 ml of ion-exchanged water is slowly added, and then the reaction mixture is extracted with diethyl ether, and the extracted organic phase is washed with an aqueous solution of sodium hydrogen carbonate After washing and drying over anhydrous sodium sulfate, concentration under reduced pressure gave a brown solid.
  • a 50 ml two-necked eggplant flask equipped with a reflux apparatus is purged with nitrogen, 0.21 ml (2.75 mmol) of dimethylformamide is added while cooling with an ice bath, and 0.26 ml (2.75 mmol) of phosphoryl chloride is slowly added thereto. It was added dropwise and stirred for 15 minutes. 1.5 ml of methylene chloride was added to the precipitated solid to dissolve the solid, and a solution of 470 mg (2.49 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole in 6 ml of methylene chloride was slowly added to the solid. It was added dropwise and then the ice bath was removed and heated to 55 ° C.
  • Example 28 1- (N, N- dimethylamino) methyl-5,6-bis (pentafluorophenyl) -4,7 undergo difluoro -2H- isoindole ( "aminomethyl body") 2 2, 2 3 , 7 2 , 7 3 , 12 2 , 12 3 , 17 2 , 17 3 -octakis (pentafluorophenyl)-2 1 , 2 4 , 7 1 , 7 4 , 12 1 , 12 4 , 17 1 , 17 4 Of 1-octafluoro-21H, 23H-tetrabenzoporphyrin (hereinafter abbreviated as "octakis (pentafluorophenyl) octafluorotetrabenzoporphyrin”)
  • the concentrate is purified by silica gel column chromatography (solvent: ethyl acetate 50% by volume / hexane 50% by volume) to obtain 12 mg (0.006 mmol, yield 6.0) of octakis (pentafluorophenyl) octafluorotetrabenzoporphyrin. %) Got.
  • Example 29 Preparation of hexadecafluorotetrabenzoporphyrin zinc complex (hereinafter abbreviated as "porphyrin zinc complex")
  • porphyrin zinc complex 300 mg (1.59 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole ) And 300 mg (1.62 mmol) of methylenedimethyliodide were added, and after purging with nitrogen, 69.3 g of methylene chloride was added, and the mixture was stirred at room temperature for 48 hours. After that, the atmosphere was opened from the nitrogen atmosphere to the atmosphere, 256 mg (1.40 mmol) of zinc acetate was added, and the mixture was stirred at the atmosphere and at room temperature for further 48 hours.
  • Oxidation of porphyrinogen is presumed to be mainly performed by stirring under this atmosphere. Thereafter, the reaction solution was transferred to a separatory funnel, washed with water, and concentrated by an evaporator. The concentrate was ultrasonically washed three times with methanol and ethyl acetate to obtain 92 mg (0.107 mmol, yield 26.9%) of a porphyrin zinc complex.
  • Example 30 Preparation of Porphyrin Zinc Complex
  • 517 mg (2.734 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole and 528 mg (2.85 mmol) of methylenedimethylammonium iodide are added and then nitrogen is added.
  • 41.27 g of acetonitrile was added and stirred at room temperature for 48 hours.
  • 700 mg (3.81 mmol) of zinc acetate was added, and the mixture was stirred at room temperature for another 6 hours, and then 910 mg (4.008 mmol) of DDQ was added and stirred at room temperature for another 24 hours.
  • reaction solution is poured into 60 g of saturated aqueous sodium bicarbonate solution, the filtrate is collected by filtration, and the filtrate is washed with methanol and then with isopropyl alcohol, and then 50 mg (0.058 mmol, yield 8. 49%).
  • Example 31 Preparation of hexadecafluorotetrabenzoporphyrin copper complex (hereinafter abbreviated as "porphyrin copper complex")
  • porphyrin copper complex hexadecafluorotetrabenzoporphyrin copper complex
  • 700 mg 3.70 mmol
  • methylenedimethyliodide 700 mg (3.78 mmol)
  • acetonitrile 98.3 g
  • the atmosphere was opened to the atmosphere, 744 mg (3.73 mmol) of copper acetate monohydrate was added, and the mixture was stirred for 48 hours under the atmosphere and at room temperature.
  • Oxidation of porphyrinogen is presumed to be mainly performed by stirring under this atmosphere. After that, the reaction solution was concentrated by an evaporator, and the concentrate was ultrasonically washed with methanol, ethyl acetate and then THF to obtain 250 mg (0.291 mmol, yield 31.4%) of a porphyrin copper complex.
  • Example 32 Preparation of hexadecafluorotetrabenzoporphyrin nickel complex (hereinafter abbreviated as "porphyrin nickel complex")
  • porphyrin nickel complex hexadecafluorotetrabenzoporphyrin nickel complex
  • 100 mg (0.529 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole 100 mg (0.54 mmol) of methylenedimethyliodide were added and the atmosphere was replaced with nitrogen, 5.53 g of acetonitrile was added and the mixture was stirred at room temperature for 24 hours.
  • 133 mg (0.534 mmol) of nickel acetate tetrahydrate were added, and the mixture was stirred at room temperature for 22 hours.
  • Example 33 Preparation of hexadecafluorotetrabenzoporphyrin cobalt complex (hereinafter abbreviated as "porphyrin cobalt complex")
  • porphyrin cobalt complex hexadecafluorotetrabenzoporphyrin cobalt complex
  • 100 mg (0.54 mmol) of methylenedimethyliodide were added, and the atmosphere was purged with nitrogen, and then 5.54 g of acetonitrile was added and stirred at room temperature for 24 hours.
  • 134 mg (0.538 mmol) of cobalt acetate tetrahydrate was added, and the mixture was stirred at room temperature for 22 hours.
  • Example 34 Preparation of octakis (pentafluorophenyl) octafluorotetrabenzoporphyrin zinc complex
  • a reaction vessel 200 mg (0.40 mmol) of 5,6-bis (pentafluorophenyl) -4,7-difluoro-2H-isoindole
  • 76.3 mg (0.41 mmol) of methylenedimethylammonium iodide was added and the atmosphere was replaced with nitrogen, 17.7 g of acetonitrile was added and stirred at room temperature for 48 hours.
  • the concentrate is purified by silica gel chromatography (solvent: ethyl acetate 20% by volume / hexane 80% by volume) to obtain 21 mg (0.010 mmol, yield) of octakis (pentafluorophenyl) octafluorotetrabenzoporphyrin zinc complex. 2%).
  • Example 35 Preparation of (4,5,6,7-tetrafluoro-2H-isoindole) Multimer
  • the catalyst was activated by stirring at room temperature for 10 minutes while being pressurized with a hydrogen balloon.
  • the concentrate is purified by silica gel column chromatography (solvent: ethyl acetate) to obtain 6.19 g (converted yield) of (4,5,6,7-tetrafluoro-2H-isoindole) multimer of interest 65.5%) obtained.
  • Example 36 Preparation of (4,7-difluoro-5,6-bis (2,5-dimethylphenoxy) -2H-isoindole) Multimer A catalyst in which palladium was supported on activated carbon in a 100 ml three-necked flask (Purchase from Aldrich, Pd: 10% by mass) 1.01 g (Pd amount: 0.94 mmol), 5.1 g of methanol, and 1.5 ml (4.5 mmol) of 3 M sulfuric acid were added.
  • the catalyst is activated by stirring for 10 minutes at room temperature while pressurized with a hydrogen balloon (about 1.1 atm) It turned Thereafter, a solution of 3.00 g (7.42 mmol) of 3,6-difluoro-4,5-bis (2,5-dimethylphenoxy) phthalonitrile dissolved in 15 ml of ethyl acetate is added to the flask and the reaction is continued for 14 hours at room temperature. It stirred. The reaction solution was neutralized with aqueous sodium bicarbonate solution, and the palladium catalyst was removed by celite filtration.
  • the filtrate was extracted with toluene, washed with distilled water and then with saturated brine, and dried over anhydrous sodium sulfate, and the extract was concentrated by an evaporator.
  • the concentrate is purified by silica gel column chromatography (solvent: chloroform) to obtain the desired (4,7-difluoro-5,6-bis (2,5-dimethylphenoxy) -2H-isoindole) multimer. And 1.01 g (converted yield 34.9%) were obtained.
  • Example 37 Preparation of (4,7-difluoro-5,6-bis (pentafluorophenyl) -2H-isoindole) Multimer A catalyst in which palladium was supported on activated carbon in a 20 ml two-necked flask (from Aldrich) 0.3 g (Pd: 0.28 mmol), 3 g of methanol, 0.4 ml (1.2 mmol) of 3 M sulfuric acid were added.
  • the catalyst is activated by stirring for 10 minutes at room temperature while pressurized with a hydrogen balloon (about 1.1 atm) It turned Thereafter, a solution of 1.00 g (2.02 mmol) of 3,6-difluoro-4,5-bis (pentafluorophenyl) phthalonitrile dissolved in 5.1 g of ethyl acetate is added to the flask and stirred at room temperature for 14 hours did. The reaction solution was neutralized with aqueous sodium bicarbonate solution, and the palladium catalyst was removed by celite filtration.
  • the filtrate was extracted with toluene, washed with distilled water and then with saturated brine, and dried over anhydrous sodium sulfate, and the extract was concentrated by an evaporator.
  • the concentrate is purified by silica gel column chromatography (solvent: chloroform) to obtain the desired (4,7-difluoro-5,6-bis (pentafluorophenyl) -2H-isoindole) multimer, 0. 34 g (converted yield 43.1%) were obtained.
  • Example 38 Preparation of (5,6-dichloro-2H-isoindole) Multimer A catalyst in which palladium was supported on activated carbon in a 200 ml three-necked flask (purchased from Aldrich, Pd: 10% by mass). 00 g (Pd amount: 0.94 mmol), 5 g of methanol and 4.1 ml (12.3 mmol) of 3 M sulfuric acid were added.
  • the catalyst is activated by stirring for 10 minutes at room temperature while pressurized with a hydrogen balloon (about 1.1 atm) It turned Thereafter, a solution of 3.00 g (15.23 mmol) of 4,5-dichlorophthalonitrile in 90 ml of ethyl acetate was added to the flask and stirred at room temperature for 14 hours. The reaction solution was neutralized with sodium bicarbonate aqueous solution and then washed with ethyl acetate while removing the palladium catalyst by celite filtration.
  • the filtrate was washed with distilled water and then saturated brine, dried over anhydrous sodium sulfate and concentrated by an evaporator. After adding methanol to this concentrate and vigorously stirring, low molecular weight substances are removed by filtration to obtain 0.76 g of a target (5,6-dichloro-2H-isoindole) polymer (conversion yield 25) .3%) obtained.
  • the method for producing isoindoles of the present invention has fewer reaction steps and can produce isoindoles more inexpensively than conventional methods.
  • the production method of the present invention can use various phthalonitriles because the reaction process is simple, and thereby various novel isoindoles can be manufactured. These novel isoindoles are expected to be used as constituent materials for organic thin film transistors, organic solar cells and the like as pigment materials or by polymerizing.
  • the process for producing the ⁇ -conjugated cyclic compound (7) of the present invention is characterized in that the ⁇ -conjugated cyclic compound (7) (particularly porphyrin (7a)) is produced from isoindole (2) via the intermediate (6).
  • the ⁇ -conjugated cyclic compound (7) (particularly porphyrin (7a)) is produced from isoindole (2) via the intermediate (6).
  • the halogen-containing tetrabenzoporphyrin can be selectively produced in high purity.
  • halogen-containing tetrabenzoporphyrin can be produced without using a metal salt.
  • the ⁇ -conjugated cyclic compounds (7) of the present invention (preferably porphyrin (7a), corrole (7b), saphyrin (7b) and pentaphyrin (7d); more preferably porphyrin (7a)) have various uses, such as organic Electronic devices, particularly organic conductive materials, organic semiconductor materials, n-type organic field effect transistors (OFETs), solar cell materials, photoconductive elements, non-linear optical materials, photoelectric conversion element dopants, photoconductive carrier generating materials, optical recording materials And catalysts and the like. Furthermore, the porphyrin complex (8) of the present invention can be applied to the same application.
  • the compounds represented by the above formulas (6a) to (6c) can be applied not only to the production of the ⁇ -conjugated cyclic compound (7) but also to the production of polymer materials such as polyisoindolenine vinylene.
  • the method for producing an isoindole multimer of the present invention can produce an isoindole multimer by using phthalonitriles which are more stable and easier to obtain than isoindoles as a starting material.
  • the isoindole multimer obtained by the production method of the present invention is useful as a conductive material, more specifically, as an electrode material, a display material, an electromagnetic wave shielding material and the like in the field of organic thin film transistors and organic solar cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Indole Compounds (AREA)

Abstract

The invention provides a process for the production of isoindoles represented by the general formula (2) by a simple means of reducing phthalonitriles represented by the general formula (1). Isoindole polymers, π-conjugated cyclic compounds (particularly porphyrins) and porphyrin complexes which are useful as organic semiconductors can be prepared from the isoindoles obtained by the process. Further, the invention also provides a process for producing isoindole polymers directly by using not isoindoles but phthalonitriles as the starting compound.

Description

イソインドール類およびそれから得られる化合物、並びにそれらの製造方法Isoindoles, compounds obtained therefrom, and methods for producing them
 本発明は、イソインドール類の新規製造方法および新規イソインドール類に関するものである。さらに本発明は、イソインドール類から得られる新規化合物、詳しくはイソインドール多量体(ポリマーを含む)、イソインドール誘導体(1位置換体)、π共役環状化合物(特にポルフィリン)およびポルフィリン錯体、並びにそれらの製造方法に関するものである。 The present invention relates to a novel process for producing isoindoles and novel isoindoles. Furthermore, the present invention provides novel compounds obtained from isoindoles, specifically isoindole multimers (including polymers), isoindole derivatives (1-position substitution), π conjugated cyclic compounds (especially porphyrins) and porphyrin complexes, and the like It relates to a manufacturing method.
 イソインドール類は、ポルフィリン等の色素原料として用いられ、またポリマー化することで、有機薄膜トランジスタや有機太陽電池、有機EL、電子写真感光体、フォトリフラクティブ材料、二次電池、キャパシタ、帯電防止剤、エレクトロクロミック材料等に用いることが期待されている。 Isoindoles are used as pigment materials such as porphyrins, and are polymerized to form organic thin film transistors, organic solar cells, organic EL, electrophotographic photosensitive members, photorefractive materials, secondary batteries, capacitors, antistatic agents, It is expected to use for an electrochromic material etc.
 ピロール類(イソインドール類を含む)から得られるポルフィリンは、非常に大きなπ電子系を有するにもかかわらず比較的入手しやすいことから、非線形光学材料、光電変換素子ドーパント、光電導キャリヤ発生材料、光記録材料などとして盛んに研究されてきた。これらのポルフィリン等において、吸収波長や蛍光発光波長のチューニングは、色素としての性能を左右する重要な問題である。 Since porphyrins obtained from pyrroles (including isoindoles) are relatively easy to obtain despite having a very large π electron system, nonlinear optical materials, photoelectric conversion element dopants, photoconductive carrier generating materials, It has been actively studied as an optical recording material. In these porphyrins and the like, tuning of the absorption wavelength and the fluorescence emission wavelength is an important issue that affects the performance as a dye.
 吸収および発光波長の長波長化や高効率化(吸光係数εの増大化)のためには、電子供与性基または電子求引性基を助色団として用いるよりも、π電子系を拡張することが効果的である。π電子系を拡張したポルフィリンとして、以下に記載するテトラベンゾポルフィリンが挙げられる。 Expand the π electron system rather than using an electron donating group or electron withdrawing group as an auxiliary chromophore for longer wavelength and higher efficiency (increased absorption coefficient ε) of absorption and emission wavelengths Is effective. Examples of porphyrins in which the π electron system is expanded include tetrabenzoporphyrins described below.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記のように平面性が高くπ電子系が拡張されたテトラベンゾポルフィリンまたはその銅錯体を、有機電子デバイス、特に有機半導体の材料として使用することが、日本国公開特許公報のJP-A-2004-6750またはJP-A-2005-93990に記載されている。 As described above, JP-A-2004 of JP-A-2004 of Japan uses tetrabenzoporphyrin or its copper complex in which π electron system is expanded with high planarity as a material of an organic electronic device, especially an organic semiconductor. -6750 or JP-A-2005-93990.
 ハロゲンを含有するテトラベンゾポルフィリン、特に含フッ素テトラベンゾポルフィリンを合成できれば、有機電子デバイス、特にn型有機電界効果型トランジスター(OFET)や導電性材料として有用と思われる。しかしテトラベンゾポルフィリンは、その平面性が高いため、有機溶媒への溶解度が低く、含ハロゲンテトラベンゾポルフィリン合成の出発物質として用いることはできない。なお上記のJP-A-2004-6750またはJP-A-2005-93990では、含フッ素テトラベンゾポルフィリンまたはその銅錯体について言及されているが、現に製造されておらず、それらの製造方法は不明である。 If it is possible to synthesize halogen-containing tetrabenzoporphyrin, particularly fluorine-containing tetrabenzoporphyrin, it may be useful as an organic electronic device, particularly an n-type organic field effect transistor (OFET) or a conductive material. However, due to its high planarity, tetrabenzoporphyrin has low solubility in organic solvents and can not be used as a starting material for synthesis of halogen-containing tetrabenzoporphyrin. Although JP-A-2004-6750 or JP-A-2005-93990 mentioned above mentions fluorine-containing tetrabenzoporphyrin or its copper complex, it is not currently manufactured, and the method of manufacturing them is unknown. is there.
 D. E. Remy らは、Tetrahedron Lett, 1983, 24, p. 1451-1454 で、下記式で示すように、4,5,6,7-テトラフルオロ-2H-イソインドール(A)、ホルムアルデヒドおよび酢酸亜鉛(II)を反応させて、21,22,23,24,71,72,73,74,121,122,123,124,171,172,173,174-ヘキサデカフルオロ-21H,23H-テトラベンゾポルフィリン(以下「ヘキサデカフルオロテトラベンゾポルフィリン」と略称する)の亜鉛(II)錯体(B)を合成したと報告している。 DE Remy et al., Tetrahedron Lett, 1983, 24, p. 1451-1454, has the following formula: 4,5,6,7-tetrafluoro-2H-isoindole (A), formaldehyde and zinc acetate II) is reacted, 2 1 2 2 2 2 3 2 4 2 7 1 7 2 7 3 7 4 12 1 12 2 12 3 12 4 17 1 17 2 17 It is reported that a zinc (II) complex (B) of 3 , 17, 4 -hexadecafluoro-21H, 23H-tetrabenzoporphyrin (hereinafter abbreviated as "hexadecafluorotetrabenzoporphyrin") is synthesized.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 D. E. Remy ら の論文では、紫外-可視吸収分光法および質量分析の結果のみで、上記錯体(B)を合成したと報告しているが、合成したとされる亜鉛(II)錯体(B)は、NMR測定ができず、また物質として単離されていない。NMRが測定できなかったことについて、D. E. Remy らの論文では、常磁性の不純物が存在しているためと推測している。しかし出発物質が亜鉛(II)塩および有機物の出発物質であるにもかかわらず、NMR測定を妨げることができるほど安定な常磁性種(亜鉛(I)錯体または有機ラジカルなど)が形成されるとは考えにくい。D. E. Remy らは見落としているが、上記錯体(B)のNMRが測定できなかった理由として、熱重合反応によりイソインドールオリゴマーが形成されたことなどが考えられる。また上記錯体(B)の分子量は861.81であるにもかかわらず、D. E. Remy らの論文の質量分析では、理論値から大きく外れた877という実測値が得られており、D. E. Remy らの論文において高純度の上記錯体(B)が得られているとは考えられない。 D. E. Remy et al. Report that the above complex (B) was synthesized only by the results of ultraviolet-visible absorption spectroscopy and mass spectrometry, but the zinc (II) complex which is said to be synthesized ( B) can not measure NMR and is not isolated as a substance. D. E. Remy et al. Postulates that paramagnetic impurities are present in that the NMR could not be measured. However, despite the fact that the starting material is a zinc (II) salt and an organic starting material, a paramagnetic species (such as a zinc (I) complex or an organic radical) is formed that is sufficiently stable to prevent NMR measurements. Is hard to think. D. E. Remy et al. Overlooked, but as the reason why the NMR of the above complex (B) could not be measured, it is considered that an isoindole oligomer was formed by a thermal polymerization reaction. Although the molecular weight of the complex (B) is 861.81, the mass analysis of the paper of D. E. Remy et al. Gives an actual measurement value of 877 which is far from the theoretical value. It is not considered that the above-mentioned complex (B) of high purity is obtained in the paper of E. Remy et al.
 さらに D. E. Remy らの論文では、上記錯体(B)は精製されておらず、物質として単離されていない。単離されていない理由として、(I)D. E. Remy らの論文の合成法では熱重合などの影響で錯体(B)自体が充分に合成されていないこと、および(II)該合成法で錯体(B)自体が合成されていたとしても、その精製が困難であることが考えられる。なぜならテトラベンゾポルフィリンおよびその錯体は、平面性が高いため溶解性が低く、精製が困難だからである。 Furthermore, in the article of D. E. Remy et al., The complex (B) is not purified and is not isolated as a substance. (I) In the synthesis method of the paper of D. E. Remy et al., The complex (B) itself is not sufficiently synthesized by the influence of thermal polymerization etc., and (II) the synthesis method Even if the complex (B) itself is synthesized in, it is considered that its purification is difficult. This is because tetrabenzoporphyrin and complexes thereof have high planarity and low solubility, which makes purification difficult.
 D. E. Remy らの論文は、金属の不存在下では収率が低く、金属イオンが反応に参加することが重要であると報告している(D. E. Remy らの論文の第1453頁第6行~第11行、殊に第11行参照)。D. E. Remy らの論文にも記載されているように、一般にポルフィリン合成では、反応系中に金属イオンが存在すると、その金属イオンが中心核として作用するため、ポルフィリン環が形成されやすいという説もある。 The article by D. E. Remy et al. Reports that the yield is low in the absence of metal and it is important that metal ions participate in the reaction (No. 1453 of the article by D. E. Remy et al. Page 6 to line 11, especially line 11). As described in the paper by D. E. Remy et al., In general, in the case of porphyrin synthesis, when a metal ion is present in the reaction system, the metal ion acts as a central nucleus, so that a porphyrin ring is likely to be formed. There is also a theory.
 また D. E. Remy らの論文では、酢酸亜鉛(II)に替えて、酢酸ニッケル(II)または酢酸銅(II)を用いると、目的とする生成物が、痕跡量でしか検出されないと報告している(D. E. Remy らの論文の第1453頁第12行~第18行、殊に第15行~第16行参照)。このようにD. E. Remy らの論文の合成反応では、酢酸亜鉛(II)の存在が必須である。 Also, in the paper of D. E. Remy et al., It is reported that if nickel (II) acetate or copper (II) acetate is used instead of zinc (II) acetate, only a trace amount of the desired product is detected. (Refer to D. E. Remy et al., Page 1453, line 12 to line 18, particularly line 15 to line 16). Thus, in the synthesis reaction of D. E. Remy et al., The presence of zinc (II) acetate is essential.
 含ハロゲンテトラベンゾポルフィリンは、有機電子デバイス等への応用が期待されている。しかし含ハロゲンテトラベンゾポルフィリンの製造例として、D. E. Remy らの論文はヘキサデカフルオロテトラベンゾポルフィリン亜鉛錯体の合成を報告しているが、該物質は単離されておらず、且つNMRも測定できないなど、その製造方法が充分に確立されているとは言い難い。 Halogen-containing tetrabenzoporphyrins are expected to be applied to organic electronic devices and the like. However, as an example of the preparation of halogen-containing tetrabenzoporphyrins, the paper of D. E. Remy et al. Reports the synthesis of hexadecafluorotetrabenzoporphyrin zinc complex, but the substance has not been isolated, and also NMR It can not be said that the manufacturing method is not sufficiently established because it can not be measured.
 またD. E. Remy らの論文の合成法では、酢酸亜鉛(II)の存在が必須であり、無金属ポルフィリンではなく、亜鉛ポルフィリン錯体が生成物として得られると報告されている。しかしテトラベンゾポルフィリンおよびその錯体は精製が困難であるため、無金属ポルフィリンを、高純度で製造できることが望ましい。高純度の無金属ポルフィリンが得られれば、D. E. Remy らの論文 で報告されるような亜鉛以外の金属ポルフィリン錯体も高純度で製造でき、且つそのようにして得られる無金属ポルフィリン自体または様々な錯体を、有機デバイス材料として有効に利用できる。 Also, in the synthesis method of D. E. Remy et al., The presence of zinc (II) acetate is essential, and it is reported that a zinc porphyrin complex can be obtained as a product, not a metal free porphyrin. However, since tetrabenzoporphyrin and its complex are difficult to purify, it is desirable that metal-free porphyrin can be produced with high purity. If high purity metal-free porphyrins are obtained, metal porphyrin complexes other than zinc as reported in the article of D. E. Remy et al. Can also be produced with high purity, and the metal-free porphyrins themselves or so obtained as such Various complexes can be effectively utilized as organic device materials.
 イソインドール類から得られる多量体(特にポリマー)は、他の導電性ポリマーに比べて、優れた特性を有することが知られており、これまで盛んに研究されている(例えばJP-A-S62-270621、JP-A-S63-223031、JP-A-S63-307604、JP-A-H02-263824、JP-A-H02-263825、JP-A-H03-166225など)。 Multimers (in particular, polymers) obtained from isoindoles are known to have superior properties as compared to other conductive polymers, and have been actively studied until now (for example, JP-A-S62) JP-A-S63-223031, JP-A-S63-307604, JP-A-H02-263824, JP-A-H02-263825, JP-A-H03-166225, etc.).
 JP-A-S62-270621では、ポリイソインドールは、ポリアセチレンよりも安定性が高く、またポリチオフェンよりもデドープしにくいと記載されている。そのためイソインドール多量体は、有機薄膜トランジスタや有機太陽電池、有機EL、電子写真感光体、フォトリフラクティブ材料、二次電池、キャパシタ、帯電防止剤、エレクトロクロミック材料等の幅広い用途への応用が期待されている。 In JP-A-S62-270621, polyisoindoles are described to be more stable than polyacetylene and to be less de-doped than polythiophene. Therefore, isoindole multimers are expected to be applied to a wide range of applications such as organic thin film transistors, organic solar cells, organic EL, electrophotographic photosensitive members, photorefractive materials, secondary batteries, capacitors, antistatic agents, electrochromic materials, etc. There is.
 このイソインドール多量体の製造方法として、これまで、イソインドール類(またはその還元体のイソインドリン類)の酸化重合が知られている(例えばJP-A-S62-270621およびJP-A-S63-223031など)。しかしイソインドール多量体の出発原料であるイソインドール類は不安定であり、取り扱いが面倒である。さらにイソインドール類自体、これまで容易に入手できなかった。従来知られているイソインドール類の製造方法は、多段階の反応工程からなるものであり、イソインドール類を簡単に製造できなかったからである。 As a method for producing this isoindole multimer, oxidative polymerization of isoindoles (or isoindolines of its reductant) has been known (for example, JP-A-S62-270621 and JP-A-S63-). 223031, etc.). However, isoindoles, which are starting materials for isoindole multimers, are unstable and difficult to handle. Furthermore, isoindoles themselves were not readily available until now. The conventionally known method for producing isoindoles is composed of a multistep reaction process, and isoindoles can not be easily produced.
 例えば J. Borstein, D. E. Remy, and J. E. Shields, "SYNTHESIS AND REACTIONS OF 4,5,6,7-TETRAFLUOROISOINDOLE", Tetrahedron Lett., 1974, pp. 4247 - 4250 では、下記式で示されるように、まずペンタフルオロベンゼンとn-ブチルリチウムとの反応などによりテトラフルオロベンザインを形成し、次いでこれとN-ベンジルピロールとのディールス-アルダー反応によりN-ベンジル-7-アザ-テトラフルオロベンゾノルボルナジエンを形成し、さらに水素添加、熱分解を経て、4,5,6,7-テトラフルオロ-2H-イソインドールを製造することが開示されている。 For example, in J. Borstein, D. E. Remy, and J. E. Shields, "SYNTHESIS AND REACTIONS OF 4, 5, 6, 7-TETRAFLUOROISOINDOLE", Tetrahedron Lett., 1974, pp. 4247-4250, As shown, tetrafluorobenzine is first formed, for example, by reaction of pentafluorobenzene with n-butyllithium, and then by Diels-Alder reaction of this with N-benzylpyrrole to form N-benzyl-7-aza-tetrafluoro. It is disclosed to produce 4,5,6,7-tetrafluoro-2H-isoindole by forming benzonorbornadiene and further subjecting it to hydrogenation and thermal decomposition.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 また P. S. Anderson, M. E. Christry, E. L. Engelhardt, G. F. Lundell and G. S.
 Ponticello, "N-Trimethlysilylpyrroles as Diense in the Syntehsis of 1,4-Dihydoronaphthalen-1,4-imines and Isoindoles (1)", J. Hetercyclic Chem., 1977, 14, pp. 213 - 218 では、下記式で示されるように、まず上述の方法などで形成したテトラフルオロベンザインとN-トリメチルシリルピロールとを反応させた後、水でクエンチして、テトラフルオロ-1,4-ジヒドロナフタレン-1,4-イミンを形成し、さらにこれとN’-α-クロロベンジリデン-N2-フェニルヒドラジンとを反応させて、4,5,6,7-テトラフルオロ-2H-イソインドールを製造することが開示されている。
Also, P. S. Anderson, M. E. Christry, E. L. Engelhardt, G. F. Lundell and G. S.
In Ponticello, "N-Trimethlysillpyrroles as Diense in the Syntehsis of 1,4-Dihydronaphthalen-1, 4-imines and Isoindoles (1)", J. Heterocyclic Chem., 1977, 14, pp. 213-218, As shown, first react tetrafluorobenzine formed by the above method with N-trimethylsilylpyrrole, and then quench with water to give tetrafluoro-1,4-dihydronaphthalene-1,4-imine It is disclosed to form 4,5,6,7-tetrafluoro-2H-isoindole by forming it and reacting it with N'-α-chlorobenzylidene-N 2 -phenylhydrazine.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 本発明の第1の目的は、これまで製造が困難であったイソインドール類を、簡便に得ることができる新規な製造方法を提供することにある。また本発明は、新規なイソインドール類、イソインドールポリマー、および該ポリマーの製造方法も提供する。 The first object of the present invention is to provide a novel production method by which isoindoles which have hitherto been difficult to produce can be easily obtained. The present invention also provides novel isoindoles, isoindole polymers, and methods of making the polymers.
 第1の目的を達成し得た本発明の製造方法とは、下記式(1)で示されるフタロニトリル(以下「フタロニトリル(1)」と略称することがある)を還元することを特徴とする、下記式(2)で示されるイソインドール(以下「イソインドール(2)」と略称することがある)の製造方法である。 The production method of the present invention which has achieved the first object is characterized in that a phthalonitrile represented by the following formula (1) (hereinafter sometimes abbreviated as "phthalonitrile (1)") is reduced. It is a manufacturing method of iso indole shown in the following formula (2) (hereinafter sometimes abbreviated as “iso indole (2)”).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上記式(1)および(2)中、Xは、ハロゲン原子を表し、Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立に、アルキル、アリールまたはアルキルアリール基を表し、)を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表す。 In the above formulas (1) and (2), X represents a halogen atom, Y is R 1 , OR 2 or SR 3 (wherein R 1 , R 2 and R 3 are each independently alkyl, Represents an aryl or alkylaryl group, and, provided that m + n ≦ 4, m represents an integer of 1 to 4; n represents an integer of 0 to 3;
 本発明において、フタロニトリル(1)をヒドリド還元試薬により還元することが好ましく、フタロニトリル(1)1モルに対し、ヒドリドが2~6モルになるようにヒドリド還元試薬を使用することがより好ましい。さらにフタロニトリル(1)とヒドリド還元試薬とを混合し、還元反応を行った後、反応混合物とプロトン酸またはアルカリとを混合することが推奨される。好ましいヒドリド還元試薬は、アルミニウム水素化物若しくはその錯体、またはホウ素水素化物若しくはその錯体である。 In the present invention, it is preferable to reduce phthalonitrile (1) with a hydride reducing reagent, and it is more preferable to use a hydride reducing reagent such that 2 to 6 moles of hydride are contained per 1 mole of phthalonitrile (1). . Furthermore, it is recommended to mix the reaction mixture with the protonic acid or the alkali after the phthalonitrile (1) and the hydride reducing reagent are mixed and the reduction reaction is carried out. Preferred hydride reduction reagents are aluminum hydrides or complexes thereof, or boron hydrides or complexes thereof.
 また本発明において、フタロニトリル(1)を接触水素化法で還元することも、好ましい実施態様である。ここで「フタロニトリル(1)を接触水素化法で還元する」とは、触媒存在下にて、フタロニトリル(1)を水素ガスと接触させて還元することを意味する。 In the present invention, reduction of phthalonitrile (1) by catalytic hydrogenation is also a preferred embodiment. Here, "reducing phthalonitrile (1) by catalytic hydrogenation method" means reducing phthalonitrile (1) by contact with hydrogen gas in the presence of a catalyst.
 本発明は、下記式(2)で示される新規のイソインドール(4,5,6,7-テトラフルオロ-2H-イソインドールを除く)、または下記式(3)で示される新規のN-置換イソインドール(Xがフッ素原子であり、且つm=4であるものを除く。以下「N-置換イソインドール(3)」と略称することがある)を提供する(下記式中、X、Y、mおよびnは、上記と同じ意味であり、R4は、アルキル、アリール、アルキルアリールまたはアシル基を表す)。 The present invention is a novel isoindole represented by the following formula (2) (excluding 4,5,6,7-tetrafluoro-2H-isoindole), or a novel N-substituted represented by the following formula (3) An isoindole is provided (except that in which X is a fluorine atom and m = 4, hereinafter may be abbreviated as “N-substituted isoindole (3)”) (wherein X, Y, m and n have the same meaning as described above, and R 4 represents an alkyl, aryl, alkylaryl or acyl group).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 本発明は、さらに、上記製造方法によって製造されるイソインドール(2)またはN-置換イソインドール(3)を酸化重合することによって、下記式(4)または(5)で示される繰返し単位を有するポリマーを製造する方法、並びに下記式(4)または(5)で示される繰返し単位を有するポリマー自体(Xがフッ素原子であり、且つm=4であるものを除く、以下、それぞれを「ポリイソインドール(4)」、「ポリイソインドール(5)」と略称することがある)も提供する(下記式中、X、Y、R4、mおよびnは、上記と同じ意味である)。なお本発明において「酸化重合」とは、酸化剤による化学的酸化重合、または電解質の存在下で溶媒中のモノマーを電気的に酸化することによる電解酸化重合を意味する。 The present invention further comprises a repeating unit represented by the following formula (4) or (5) by oxidative polymerization of isoindole (2) or N-substituted isoindole (3) produced by the above production method. A method for producing a polymer, and a polymer itself having a repeating unit represented by the following formula (4) or (5) (except that in which X is a fluorine atom and m = 4, each of Also provided are indole (4) ′ ′, sometimes abbreviated as “polyisoindole (5)” (wherein X, Y, R 4 , m and n are as defined above). In the present invention, “oxidative polymerization” means chemical oxidative polymerization with an oxidizing agent or electrolytic oxidative polymerization by electrically oxidizing a monomer in a solvent in the presence of an electrolyte.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 本発明の第2の目的は、D. E. Remy らの合成法と異なり、金属塩または半金属塩を用いずに、且つ高純度でπ共役環状化合物(特に含ハロゲンテトラベンゾポルフィリン)を製造する技術を提供することである。また本発明は、亜鉛イオンだけでなく、様々な金属イオンを中心核として有する金属ポルフィリン錯体も製造できる方法を提供することも目的とする。 The second object of the present invention, unlike the synthesis method of D. E. Remy et al., Is to produce a π-conjugated cyclic compound (especially halogen-containing tetrabenzoporphyrin) with high purity without using metal salt or metalloid salt. Provide the technology to Another object of the present invention is to provide a method capable of producing not only zinc ions but also metal porphyrin complexes having various metal ions as central nuclei.
 第2の目的を達成し得た本発明の製造方法は、下記式(2)で示される含ハロゲンイソインドールから、下記式(6)で示されるイソインドールの1位置換体(以下、イソインドールの1位置換体を「中間体」と略称することがある)を経て、下記式(7)で示されるπ共役環状化合物(以下「π共役環状化合物(7)」と略称することがある)を製造することを特徴とする。 The production method of the present invention capable of achieving the second object is characterized in that the 1-substituted form of isoindole represented by the following formula (6) from the halogen-containing isoindole represented by the following formula (2) (hereinafter referred to as isoindole Production of a π-conjugated cyclic compound (hereinafter sometimes abbreviated as “π-conjugated cyclic compound (7)”) represented by the following formula (7) via the 1-substituted compound may be abbreviated as “intermediate” It is characterized by
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記式中、Xは、ハロゲン原子を表す。
 Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立にアルキル、アリールまたはアルキルアリール基を表す。)を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表す。
 Zは、OHまたはNR56(式中、R5およびR6は、それぞれ独立にC1-4アルキル基を表す。)を表す。
 Aは、NまたはNHを表し、jは、1~5の整数を表し、kは、0または1の整数を表し、実線および点線からなる二重線は、単結合または二重結合を表し、式(7)で示される環状化合物は、二重線の部分でπ共役系を形成する。
In the above formulae, X represents a halogen atom.
Y represents R 1 , OR 2 or SR 3 (wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), provided that m + n ≦ 4 And m represents an integer of 1 to 4 and n represents an integer of 0 to 3.
Z represents OH or NR 5 R 6 (wherein, R 5 and R 6 each independently represent a C 1-4 alkyl group).
A represents N or NH, j represents an integer of 1 to 5, k represents an integer of 0 or 1, and a double line consisting of a solid line and a dotted line represents a single bond or a double bond, The cyclic compound represented by the formula (7) forms a π-conjugated system at the doublet.
 なお本発明において、「Ca-b」とは、炭素数がa以上、b以下であることを意味し、「π共役系」とは、2個以上の二重結合が互いにただ1つの単結合をはさんで連なる構造を意味し、「k=0であるπ共役環状化合物」とは、式(7)中の(C)kの両端にあるイソインドール環同士が直接結合している化合物を意味する。 In the present invention, “C ab ” means that the carbon number is a or more and b or less, and “π conjugated system” means that two or more double bonds are mutually single single bonds. "P-conjugated cyclic compound where k = 0" means a compound in which isoindole rings at both ends of (C) k in formula (7) are directly bonded to each other. Do.
 上記の本発明の製造方法の中でも、下記式(7a)で示される含ハロゲンテトラベンゾポルフィリン(以下「ポルフィリン(7a)」と略称することがある)を製造することが好ましい(下記式中、X、Y、m、n、Zは、上記と同じ意味である)。 Among the above-mentioned production methods of the present invention, it is preferable to produce a halogen-containing tetrabenzoporphyrin represented by the following formula (7a) (hereinafter sometimes abbreviated as “porphyrin (7a)”) (in the following formula, X , Y, m, n and Z have the same meaning as described above).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 本発明において、上記イソインドールの1位置換体は、下記式(6c)で示されるヒドロキシメチル化-2H-イソインドール、または下記式(6d)で示されるアミノメチル化-2H-イソインドールである。 In the present invention, the above 1-substituted isoindole is hydroxymethylated-2H-isoindole represented by the following formula (6c) or aminomethylated-2H-isoindole represented by the following formula (6d).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 上記式(6c)で示されるヒドロキシメチル化-2H-イソインドールは、(I)イソインドール(2)をホルミル化することによって、下記式(6b)で示される第1の中間体を形成し、次いでこの中間体(6b)を還元することにより、または(II)イソインドール(2)をアミノメチレン化することによって、下記式(6a)で示される第2の中間体を形成し、この中間体(6a)を加水分解することによって、下記式(6b)で示される第1の中間体を形成し、次いでこの中間体(6b)を還元することにより製造することが好ましい(下記式中、X、Y、m、n、Zは、上記と同じ意味であり、R7およびR8は、それぞれ独立にC1-4アルキル基を表す)。 The hydroxymethylated-2H-isoindole represented by the above formula (6c) forms a first intermediate represented by the following formula (6b) by formylation of (I) isoindole (2), Then, a second intermediate represented by the following formula (6a) is formed by reducing this intermediate (6b) or by aminomethylenating (II) isoindole (2), and this intermediate The compound is preferably produced by hydrolyzing (6a) to form a first intermediate represented by the following formula (6b) and then reducing the intermediate (6b) (in the formula, X , Y, m, n and Z have the same meanings as described above, and R 7 and R 8 each independently represent a C 1-4 alkyl group).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 上記式(6c)で示されるヒドロキシメチル化-2H-イソインドールは、より好ましくは、ハロゲン化ホスホリルの存在下で、イソインドール(2)とジアルキルホルムアミドとを反応させて、上記式(6b)で示される第1の中間体または上記式(6a)で示される第2の中間体を形成し、これらの中間体から製造することができる。このようにして得られるヒドロキシメチル化-2H-イソインドール(6c)を、酢酸、プロピオン酸および酪酸から選択される少なくとも1種の脂肪族モノカルボン酸、および/またはZnCl2、BF3およびBF3・O(C252から選択される少なくとも1種のルイス酸の存在下で脱水環化し、次いで酸化剤を作用させることにより、ポルフィリン(7a)を製造することが好ましい。 More preferably, hydroxymethylated-2H-isoindole represented by the above formula (6c) is reacted with isoindole (2) and dialkylformamide in the presence of a phosphoryl halide to obtain a compound represented by the above formula (6b) The first intermediate shown or the second intermediate of formula (6a) above can be formed and prepared from these intermediates. The hydroxymethylated-2H-isoindole (6c) thus obtained is at least one aliphatic monocarboxylic acid selected from acetic acid, propionic acid and butyric acid, and / or ZnCl 2 , BF 3 and BF 3 It is preferable to produce porphyrin (7a) by cyclodehydration in the presence of at least one Lewis acid selected from O (C 2 H 5 ) 2 and then reacting with an oxidizing agent.
 イソインドール(2)をアミノメチル化することによって、上記式(6d)で示されるアミノメチル化-2H-イソインドールを製造することができる。このアミノメチル化-2H-イソインドール(6d)を経て、ポルフィリン(7a)を製造する好ましい方法として、(I)酸の存在下で、イソインドール(2)と、ホルムアルデヒドと、ジアルキルアミンとを反応させ、次いで酸化剤を作用させる方法、または(II)イソインドール(2)と、ハロゲン化メチレンジアルキルアンモニウムとを反応させ、次いで酸化剤を作用させる方法が挙げられる。 By aminomethylating isoindole (2), aminomethylated-2H-isoindole represented by the above formula (6d) can be produced. As a preferred method of producing porphyrin (7a) via this aminomethylated-2H-isoindole (6d), isoindole (2), formaldehyde, and dialkylamine are reacted in the presence of (I) acid (II) isoindole (2) is reacted with methylenedialkylammonium halide and then reacted with an oxidizing agent.
 本発明の含ハロゲンテトラベンゾポルフィリンの製造方法において、イソインドール(2)が、下記式(2a)で示されるものであることが好ましく、4,5,6,7-テトラフルオロ-2H-イソインドールまたは4,5,6,7-テトラクロロ-2H-イソインドールであることがより好ましい。 In the method for producing halogen-containing tetrabenzoporphyrin of the present invention, isoindole (2) is preferably represented by the following formula (2a), and 4,5,6,7-tetrafluoro-2H-isoindole More preferably, it is 4,5,6,7-tetrachloro-2H-isoindole.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 上記式中、X1およびX4は、それぞれ独立にFまたはClを表し、X2およびX3は、それぞれ独立にH、FまたはClを表す。 In the above formulae, X 1 and X 4 each independently represent F or Cl, and X 2 and X 3 each independently represent H, F or Cl.
 また本発明は、下記式(6a)~(6c)で示されるアミノメチレン化-1H-イソインドール、ホルミル化-2H-イソインドールおよびヒドロキシメチル化-2H-イソインドールも提供する。これらの化合物は、上記のようにπ共役環状化合物(特に含ハロゲンテトラベンゾポルフィリン)を製造するために有用である。またこれらの化合物は、ポルフィリンの製造だけでなく、ポリイソインドレニンビニレンのようなポリマー材料の製造に用いることができる(下記式中、X、Y、m、n、R7およびR8は、上記と同じ意味である)。 The present invention also provides aminomethylenated-1H-isoindole, formyl-2H-isoindole and hydroxymethylated-2H-isoindole represented by the following formulas (6a) to (6c). These compounds are useful for producing π-conjugated cyclic compounds (especially halogen-containing tetrabenzoporphyrins) as described above. Moreover, these compounds can be used not only in the production of porphyrins, but also in the production of polymer materials such as polyisoindolenine vinylene (wherein X, Y, m, n, R 7 and R 8 are Same meaning as above).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 本発明は、π共役環状化合物(7)(特にポルフィリン(7a))、および下記式(8)で示される含ハロゲンテトラベンゾポルフィリン錯体(以下「ポルフィリン錯体(8)」と略称することがある)も提供する(下記式中、X、Yは、上記と同じ意味であり、Mは、金属または半金属イオンを表す。)。 The present invention relates to a π-conjugated cyclic compound (7) (particularly porphyrin (7a)), and a halogen-containing tetrabenzoporphyrin complex represented by the following formula (8) (hereinafter sometimes abbreviated as "porphyrin complex (8)") (In the following formulas, X and Y have the same meanings as described above, and M represents a metal or metalloid ion).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 ポルフィリン錯体(8)は、ポルフィリン(7a)と金属または半金属イオンMを含む塩とを混合すれば、製造できる。 Porphyrin complex (8) can be produced by mixing porphyrin (7a) and a salt containing metal or metalloid ion M.
 本発明の含ハロゲンテトラベンゾポルフィリンの製造方法では、上記式(6)で示されるイソインドールの1位置換体を環化することにより、ポルフィリン(7a)を製造しているが、イソインドールの1位置換体(6)を環化すると、一旦、下記式(11)で示される含ハロゲンテトラベンゾポルフィリノーゲン(ポルフィリンの還元体、以下「ポルフィリノーゲン(11)」と略称することがある)が形成すると考えられる。そしてこのポルフィリノーゲン(11)に対して酸化剤(例えばキノン類または空気中の酸素など)を作用させれば、ポルフィリン(7a)が得られる。そこで上記の含ハロゲンテトラベンゾポルフィリン製法の途中で、即ちイソインドールの1位置換体(6)の環化後かつ酸化前の段階(即ちポルフィリノーゲン(11)が形成していると考えられる段階)で、金属または半金属イオンMを含む塩を添加し、その後に酸化を行うことによっても、ポルフィリン錯体(8)を製造できる。即ち、ポルフィリノーゲン(11)と、金属または半金属イオンMを含む塩とを混合した後に、酸化剤を作用させることにより、ポルフィリン錯体(8)を製造することができる〔下記式中、X、Y、mおよびnは、上記と同じ意味である〕。 In the method for producing halogen-containing tetrabenzoporphyrin of the present invention, porphyrin (7a) is produced by cyclizing the 1-substituted form of isoindole represented by the above-mentioned formula (6). Once cyclization of the variant (6) is carried out, formation of a halogen-containing tetrabenzoporphyrinogen (a reduced form of porphyrin, hereinafter sometimes abbreviated as "porphyrinogen (11)") represented by the following formula (11) is once formed It is thought that. Then, porphyrin (7a) can be obtained by causing an oxidant (such as quinones or oxygen in the air) to act on this porphyrinogen (11). Therefore, during the above halogen-containing tetrabenzoporphyrin preparation process, that is, the step after cyclization and before oxidation of the 1-position substitution (6) of isoindole (that is, the step considered to be formed by porphyrinogen (11)) The porphyrin complex (8) can also be produced by adding a salt containing a metal or metalloid ion M and subsequent oxidation. That is, porphyrin complex (8) can be produced by mixing porphyrinogen (11) and a salt containing metal or metalloid ion M and then causing an oxidant to act [in the following formula, X , Y, m and n have the same meaning as described above].
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 ポルフィリノーゲン(11)と金属または半金属イオンMを含む塩とを混合した後に、酸化剤を作用させることによるポルフィリン錯体(8)の製造方法としては、好ましくは、
 (I)ハロゲン化ホスホリルの存在下で、イソインドール(2)とジアルキルホルムアミドとを反応させて、上記式(6b)で示される中間体を形成し、この中間体(6b)を還元することにより、上記式(6c)で示される中間体を形成し、この中間体(6c)を、酸(好ましくは酢酸、プロピオン酸および酪酸から選択される少なくとも1種の脂肪族モノカルボン酸、および/またはZnCl2、BF3およびBF3・O(C252から選択される少なくとも1種のルイス酸)と混合し、次いで金属または半金属イオンMを含む塩と混合した後に、酸化剤を作用させる方法、
 (II)ハロゲン化ホスホリルの存在下で、イソインドール(2)とジアルキルホルムアミドとを反応させて、上記式(6a)で示される中間体を形成し、この中間体(6a)を加水分解することにより、上記式(6b)で示される中間体を形成し、この中間体(6b)を還元することにより、上記式(6c)で示される中間体を形成し、この中間体(6c)を、酸(好ましくは酢酸、プロピオン酸および酪酸から選択される少なくとも1種の脂肪族モノカルボン酸、および/またはZnCl2、BF3およびBF3・O(C252から選択される少なくとも1種のルイス酸)と混合し、次いで金属または半金属イオンMを含む塩と混合した後に、酸化剤を作用させる方法、
 (III)酸の存在下で、イソインドール(2)と、ホルムアルデヒドと、ジアルキルアミンとを反応させ、次いで反応混合物と、金属または半金属イオンMを含む塩とを混合した後に、酸化剤を作用させる方法、
 (IV)イソインドール(2)と、ハロゲン化メチレンジアルキルアンモニウムとを反応させ、次いで反応混合物と、金属または半金属イオンMを含む塩とを混合した後に、酸化剤を作用させる方法
が挙げられる。
As a method for producing porphyrin complex (8) by mixing porphyrinogen (11) with a salt containing metal or metalloid ion M and then reacting with an oxidizing agent, preferably,
(I) By reacting isoindole (2) with dialkylformamide in the presence of a phosphoryl halide to form an intermediate represented by the above formula (6b), and reducing this intermediate (6b) , Forming an intermediate represented by the above formula (6c), which is an acid (preferably at least one aliphatic monocarboxylic acid selected from acetic acid, propionic acid and butyric acid, and / or / or After mixing with ZnCl 2 , BF 3 and at least one Lewis acid selected from BF 3 · O (C 2 H 5 ) 2 and then with metal or metalloid ion containing salts M, the oxidizing agent is How to work,
(II) reacting isoindole (2) with dialkylformamide in the presence of a phosphoryl halide to form an intermediate represented by the above formula (6a) and hydrolyzing this intermediate (6a) Thus, an intermediate represented by the above formula (6b) is formed, and the intermediate (6b) is reduced to form an intermediate represented by the above formula (6c). Acid (preferably at least one aliphatic monocarboxylic acid selected from acetic acid, propionic acid and butyric acid, and / or at least one selected from ZnCl 2 , BF 3 and BF 3 · O (C 2 H 5 ) 2 Mixing with a seed (Lewis acid) and then mixing with a metal or metalloid ion containing salt M, followed by the action of an oxidizing agent,
After the reaction of isoindole (2), formaldehyde and dialkylamine in the presence of (III) acid, and then mixing the reaction mixture with the metal or metalloid metal salt M, the oxidant acts How to
(IV) A method in which isoindole (2) is reacted with methylenedialkylammonium halide, and then the reaction mixture is mixed with a salt containing metal or metalloid ion M, and then the oxidizing agent is allowed to act.
 本発明の第3の目的は、イソインドール類よりも取扱いおよび入手が容易なフタロニトリル類を出発原料として用いて、イソインドール多量体を製造する方法を提供することである。 A third object of the present invention is to provide a method for producing isoindole multimers using phthalonitriles, which are easier to handle and obtain than isoindoles, as a starting material.
 第3の目的を達成し得た本発明とは、下記式(9)で示されるフタロニトリルを、酸の存在下で接触水素化することを特徴とする下記式(2)で示される繰返し単位を有する多量体の製造方法である。なお本発明において「接触水素化」とは、上述と同様の意味であり、「多量体」とは、「繰返し単位が2以上であるもの」を意味する。 The present invention, which has achieved the third object, is a repeating unit represented by the following formula (2) characterized by catalytically hydrogenating a phthalonitrile represented by the following formula (9) in the presence of an acid. A method of producing a multimer having In the present invention, "catalytic hydrogenation" has the same meaning as described above, and "multimer" means "having two or more repeating units".
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 上記式中、Dは、ハロゲン原子、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立に、アルキル、アリールまたはアルキルアリール基を表す。)を表し、pは0~4の整数を表す。 In the above formulae, D represents a halogen atom, R 1 , OR 2 or SR 3 (wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), p represents an integer of 0 to 4;
 本発明のイソインドール多量体の製造方法において、(I)酢酸、トリフルオロ酢酸、リン酸、塩酸、硝酸および硫酸よりなる群から選ばれる少なくとも1種を、前記酸として用いること、(II)パラジウム触媒、ロジウム触媒、白金触媒およびニッケル触媒よりなる群から選ばれる少なくとも1種を、接触水素化のための触媒として用いることが好ましい態様である。 In the method for producing an isoindole multimer according to the present invention, at least one selected from the group consisting of (I) acetic acid, trifluoroacetic acid, phosphoric acid, hydrochloric acid, nitric acid and sulfuric acid is used as the acid, (II) palladium It is a preferred embodiment to use at least one selected from the group consisting of a catalyst, a rhodium catalyst, a platinum catalyst and a nickel catalyst as a catalyst for catalytic hydrogenation.
 また本発明のイソインドール多量体の製造方法の好ましい一態様として、下記式(1)で示されるフタロニトリルを用いて、下記式(4)で示される繰返し単位を有する多量体を製造する製造方法が挙げられる(下記式中、X、Y、mおよびnは、上記と同じ意味である)。 Moreover, as a preferred embodiment of the method for producing an isoindole multimer of the present invention, a method for producing a multimer having a repeating unit represented by the following formula (4) using a phthalonitrile represented by the following formula (1) (In the following formulas, X, Y, m and n have the same meaning as described above).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 なお以下では、上記式(9)で示されるフタロニトリルを、「フタロニトリル(9)」と、上記式(10)(または(4))で示される繰返し単位を有するイソインドール多量体を、「イソインドール多量体(10)(または(4))」と略称することがある。 In the following, a phthalonitrile represented by the above formula (9) is referred to as “phthalonitrile (9)” and an isoindole multimer having a repeating unit represented by the above formula (10) (or (4)) It may be abbreviated as isoindole multimer (10) (or (4)).
 まずイソインドール類の製造方法に関する本発明から説明する。
 本発明の製造方法は、フタロニトリル(1)を還元するという簡便な反応工程によって(好ましくはヒドリド還元試薬を用いた還元または接触水素化法での還元によって)、イソインドール(2)を製造できることを特徴とする。よって、まずヒドリド還元試薬による還元について説明する。
The present invention will first be described with respect to a method for producing isoindoles.
According to the production method of the present invention, isoindole (2) can be produced by a simple reaction step of reducing phthalonitrile (1) (preferably by reduction using a hydride reducing reagent or reduction by catalytic hydrogenation method) It is characterized by Therefore, first, reduction with a hydride reducing reagent will be described.
 テトラフルオロフタロニトリルを、水素化ジイソブチルアルミニウムで還元することによって、4,5,6,7-テトラフルオロ-2H-イソインドールを製造するという本発明の好ましい実施態様において、下記式で示すような反応機構が進行すると推定される。なお接触水素化法でも、同様の反応機構が進行すると推定される。但し本発明は、このような推定に限定されない: In a preferred embodiment of the present invention in which 4,5,6,7-tetrafluoro-2H-isoindole is produced by reducing tetrafluorophthalonitrile with hydrogenated diisobutylaluminum, the reaction as shown by the following formula: It is estimated that the mechanism proceeds. In addition, it is presumed that the same reaction mechanism proceeds in the catalytic hydrogenation method. However, the invention is not limited to such an estimation:
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 ヒドリド還元試薬が少なすぎると、目的物であるイソインドール(2)の収率が低下する。一方、ヒドリド還元試薬が多すぎると、フタロニトリル(1)のハロゲンがヒドリドにより置換される副反応が起こるおそれがある。よってフタロニトリル(1)1モルに対し、ヒドリドが、好ましくは2~6モル、より好ましくは2.5~5モル、さらに好ましくは2.7~4.5モルになるようにヒドリド還元試薬を使用することが推奨される。なお上記の推定反応機構から分かるように、ヒドリド還元試薬の最適量は、フタロニトリル(1)1モルに対し、ヒドリドが3モルとなるような量である。 If the amount of hydride reduction reagent is too small, the yield of the desired product isoindole (2) decreases. On the other hand, when the amount of the hydride reducing reagent is too large, there is a possibility that a side reaction may occur in which the halogen of phthalonitrile (1) is substituted by hydride. Therefore, the hydride reducing agent is preferably 2 to 6 moles, more preferably 2.5 to 5 moles, still more preferably 2.7 to 4.5 moles of hydride per 1 mole of phthalonitrile (1). It is recommended to use. As understood from the above-described presumed reaction mechanism, the optimum amount of the hydride reducing reagent is such that 3 moles of hydride will be contained with respect to 1 mole of phthalonitrile (1).
 フタロニトリル(1)とヒドリド還元試薬との還元反応後に、ヒドリド還元試薬を水でクエンチする。この際、水と共に酸(好ましくはプロトン酸)またはアルカリを用いることが好ましい。なぜならイソインドール(2)の収率が向上するからである。 After the reduction reaction of phthalonitrile (1) with the hydride reducing reagent, the hydride reducing reagent is quenched with water. At this time, it is preferable to use an acid (preferably a protic acid) or an alkali together with water. This is because the yield of isoindole (2) is improved.
 プロトン酸またはアルカリを用いることで収率が向上する理由として、以下のようなことが推定される。但し本発明はこの推定に限定されない:上記の推定反応機構で示したように、還元反応後では、ヒドリド還元試薬の残基(例えばアルミニウムまたはホウ素)がイソインドール(2)の窒素に付加したままの状態であると考えられる。この残基が付加したままだと、その後のシリカゲルカラムクロマトグラフィーなどの精製が上手くいかないことも考えられる。そこでプロトン酸またはアルカリを添加して、残基の脱離を促進することにより、精製収率が向上すると考えられる。なおNaOH等の強塩基を混合することによっても、イソインドール(2)の収率が向上することは驚くべきことである。なぜなら出発原料であるフタロニトリル(1)は、NaOH等と混合すると、炭素と結合しているハロゲンが外れるからである。しかし本発明者らが検討した結果、反応混合物とNaOH等とを混合しても、ハロゲンが外れず、イソインドール(2)の精製収率が向上することを見出した。 The following can be presumed as the reason why the yield is improved by using a protonic acid or an alkali. However, the present invention is not limited to this assumption: As shown in the above-described presumed reaction mechanism, after reduction reaction, residue of hydride reducing reagent (for example, aluminum or boron) remains attached to nitrogen of isoindole (2) It is considered to be in the state of If this residue is added, it may be considered that the subsequent purification such as silica gel column chromatography does not work well. Therefore, it is considered that the purification yield is improved by promoting the elimination of the residue by adding a protonic acid or alkali. It is surprising that the yield of isoindole (2) is also improved by mixing a strong base such as NaOH. This is because phthalonitrile (1) which is the starting material is mixed with NaOH or the like to release the halogen bonded to carbon. However, as a result of investigations by the present inventors, it has been found that mixing of the reaction mixture with NaOH or the like does not release the halogen, and the purification yield of isoindole (2) is improved.
 還元反応後に水でクエンチする際には、酸またはアルカリを用いなくても、またはヒドリド還元試薬に対して過少量の酸またはアルカリを用いても良い。しかし収率の観点から、好ましくは反応系が中性ないし酸性になる量の酸、殊にプロトン酸を用いることが推奨される。具体的にはプロトン酸を、ヒドリド還元試薬1モルに対してプロトン(H+)が、好ましくは1モル以上、より好ましくは1.5モル以上となるような量で使用することが推奨される。但しプロトン酸も、その後の処理工程、殊に精製工程に悪影響を及ぼすおそれがあるので、過剰量のプロトン酸を用いた場合、残りのプロトン酸を塩基で中和することが好ましい。よってその後の処理工程を考慮すると、プロトン(H+)量は、ヒドリド還元試薬1モルに対して、好ましくは4モル以下、より好ましくは3モル以下である。 When quenching with water after the reduction reaction, it is possible not to use an acid or an alkali, or to use an extremely small amount of acid or alkali relative to the hydride reduction reagent. However, from the viewpoint of yield, it is recommended to use an acid, preferably a protonic acid, in an amount that preferably makes the reaction system neutral to acidic. Specifically, it is recommended to use a protonic acid in an amount such that proton (H + ) is preferably at least 1 mol, more preferably at least 1.5 mol, per 1 mol of hydride reducing reagent. . However, since protonic acid may also adversely affect the subsequent processing steps, particularly the purification step, when an excess of protonic acid is used, it is preferable to neutralize the remaining protonic acid with a base. Therefore, in consideration of the subsequent treatment steps, the amount of proton (H + ) is preferably 4 mol or less, more preferably 3 mol or less, with respect to 1 mol of the hydride reducing reagent.
 同様に収率の観点から、還元反応後に、反応混合物とアルカリとを混合することが推奨される。アルカリの使用量は、ヒドリド還元試薬1モルに対して、好ましくは1モル以上(より好ましくは2モル以上)、好ましくは5モル以下(より好ましくは3モル以下)である。過剰量のアルカリを用いた場合、必要に応じて、次の精製工程の前に中和してもよい。 Likewise, from the viewpoint of yield, it is recommended to mix the reaction mixture and the alkali after the reduction reaction. The amount of alkali used is preferably 1 mol or more (more preferably 2 mol or more), preferably 5 mol or less (more preferably 3 mol or less) per 1 mol of hydride reducing reagent. When an excess of alkali is used, it may be neutralized before the next purification step, if necessary.
 本発明の製造方法では、上で示したように、シアノ基の部分が還元反応を受けることにより、イソインドール(2)が製造されていると推定され、上記式中のハロゲンXおよび置換基Yは、この還元反応に大きな影響を及ぼさないと考えられる。そのため本発明では、あらゆる種類のハロゲンXおよび置換基Yを有するフタロニトリル(1)を使用できると考えられる。但し、目的物のイソインドール(2)は、ハロゲン原子が存在することによって安定化されると考えられるので、イソインドール(2)の安定性の観点からは、フタロニトリル(1)中のハロゲン原子Xの数は、1以上(即ちm≧1)、好ましくは2以上、より好ましくは3以上、さらに好ましくは4であることが推奨される。フタロニトリル(1)として、例えばアルドリッチ社、シンクエスト社、アズマックス株式会社若しくはセントラル薬品株式会社などから市販されているもの、または既知の方法で合成できるものが使用できる。 In the production method of the present invention, as shown above, it is presumed that isoindole (2) is produced by the reduction reaction of the portion of the cyano group, and the halogen X and the substituent Y in the above formula are produced. Is considered not to significantly affect this reduction reaction. Therefore, in the present invention, it is considered that phthalonitrile (1) having all kinds of halogen X and substituent Y can be used. However, since it is considered that the target substance isoindole (2) is stabilized by the presence of a halogen atom, from the viewpoint of the stability of isoindole (2), the halogen atom in phthalonitrile (1) It is recommended that the number of X is 1 or more (ie, m ≧ 1), preferably 2 or more, more preferably 3 or more, and still more preferably 4. As phthalonitrile (1), for example, those commercially available from Aldrich, Synquest, Azmax Co., Ltd. or Central Pharmaceutical Co., Ltd., or those which can be synthesized by known methods can be used.
 上記式中のXは、ハロゲン原子を表し、好ましくはフッ素、塩素または臭素原子、より好ましくはフッ素または塩素原子、さらに好ましくはフッ素原子である。Xとして、同時に複数種のハロゲン原子が存在しても良い。上記式中のR1、R2およびR3は、それぞれ独立に、好ましくはC1-20アルキル基、より好ましくはC1-10アルキル基、さらに好ましくはC1-5アルキル基;好ましくはC6-20アリール基、より好ましくはC6-12アリール基;または好ましくはC7-20アルキルアリール基、より好ましくはC7-15アルキルアリール基、さらに好ましくはC7-10アルキルアリール基である。R1、R2およびR3は、その炭素骨格上に、ハロゲン原子を含有していても良い。置換基Yとして、R1、OR2およびSR3のいずれかが複数存在する場合、複数存在するR1、R2およびR3は、異なる置換基(例えばアルキル基とアリール基)であっても良い。 X in the above formula represents a halogen atom, preferably a fluorine, chlorine or bromine atom, more preferably a fluorine or chlorine atom, still more preferably a fluorine atom. As X, multiple types of halogen atoms may be present simultaneously. R 1 , R 2 and R 3 in the above formulas are each independently preferably a C 1-20 alkyl group, more preferably a C 1-10 alkyl group, still more preferably a C 1-5 alkyl group; preferably C 6-20 aryl group, more preferably C 6-12 aryl group; or preferably C 7-20 alkyl aryl group, more preferably C 7-15 alkyl aryl group, still more preferably C 7-10 alkyl aryl group . R 1 , R 2 and R 3 may contain a halogen atom on their carbon skeleton. When any one of R 1 , OR 2 and SR 3 exists as a substituent Y, the plurality of R 1 , R 2 and R 3 may be different substituents (for example, an alkyl group and an aryl group) good.
 フタロニトリル(1)として、まずn=0であるもの、即ち置換基としてハロゲン原子Xのみを有する含ハロゲンフタロニトリルが挙げられる。含ハロゲンフタロニトリルは、アルドリッチ社などから販売されている。また市販の含ハロゲンフタロニトリルから、従来既知のハロゲン置換反応により、市販されていない含ハロゲンフタロニトリルを製造することもできる。 As the phthalonitrile (1), first, those having n = 0, that is, halogen-containing phthalonitriles having only a halogen atom X as a substituent can be mentioned. Halogen-containing phthalonitriles are commercially available from, for example, Aldrich. Also, non-commercially available halogen-containing phthalonitriles can also be produced from commercially available halogen-containing phthalonitriles by a conventionally known halogen substitution reaction.
 例えばJP-A-2002-332254には、含フッ素イソフタロニトリルのフッ素原子を、臭化剤(例えば臭化ナトリウム、臭化カリウムおよび臭化リチウム、好ましくは臭化ナトリウムおよび臭化カリウム)を用いて、臭素原子で置換する技術が開示されている。また By J. M. Birchell, R. N. Haszeldlne, and J. O. Morley, "Polyfluoroarenes. Part XI. Reactions of Tetrafluorophthalronitrile with Nucleophilic Reagents",
 J. Chem. Soc. (C), 1970, p. 456 - 462 には、テトラフルオロイソフタロニトリルのフッ素原子を、LiClを用いて、塩素原子で置換する技術が開示されている。
For example, JP-A-2002-332254 uses a fluorine atom of fluorine-containing isophthalonitrile using a brominating agent (eg, sodium bromide, potassium bromide and lithium bromide, preferably sodium bromide and potassium bromide) Thus, a technique of substitution with a bromine atom is disclosed. Also By J. M. Birchell, R. N. Haszeldlne, and J. O. Morley, "Polyfluoroarenes. Part XI. Reactions of Tetrafluorophthalonitriles with Nucleophilic Reagents",
J. Chem. Soc. (C), 1970, p. 456- 462 discloses a technique for substituting a fluorine atom of tetrafluoroisophthalonitrile with a chlorine atom using LiCl.
 含ハロゲンフタロニトリルの具体例として、4-フルオロフタロニトリル、テトラフルオロフタロニトリル、4,5-ジクロロフタロニトリル、テトラクロロフタロニトリル、4-クロロ-3,5,6-トリフルオロフタロニトリルなどが挙げられる。これらの中でも、入手容易性などの観点から、テトラフルオロフタロニトリルが好ましい。 Specific examples of halogen-containing phthalonitriles include 4-fluorophthalonitrile, tetrafluorophthalonitrile, 4,5-dichlorophthalonitrile, tetrachlorophthalonitrile, 4-chloro-3,5,6-trifluorophthalonitrile, etc. Be Among these, tetrafluorophthalonitrile is preferable from the viewpoint of availability and the like.
 置換基Yとして、R1基を有するフタロニトリル(1)は、含ハロゲンフタロニトリルを用いて、合成化学分野で周知であるカップリング反応により製造することができる。例えばR1基を有するフタロニトリル(1)は、ニッケルやパラジウム触媒の存在下で、含ハロゲンフタロニトリルとグリニャール試薬とのカップリング反応を行うことにより、詳しくは含ハロゲンフタロニトリルのハロゲン原子を、グリニャール試薬からのアルキル、アリールまたはアルキルアリール基で置換することにより、得ることができる。このカップリング反応は、熊田-玉尾カップリングとして、合成化学分野でよく知られている。またR1基を有するフタロニトリル(1)は、パラジウム触媒の存在下で、含ハロゲンフタロニトリルと有機ホウ素化合物とのカップリング反応を行うことによっても得ることができる。このカップリング反応も、鈴木-宮浦カップリングとして、合成化学分野でよく知られている。 Phthalonitriles (1) having an R 1 group as substituent Y can be prepared by a coupling reaction well known in the synthetic chemistry field using halogen-containing phthalonitriles. For example, phthalonitrile (1) having an R 1 group is specifically subjected to a coupling reaction of a halogen-containing phthalonitrile with a Grignard reagent in the presence of a nickel or palladium catalyst, and specifically the halogen atom of the halogen-containing phthalonitrile It can be obtained by substitution with an alkyl, aryl or alkylaryl group from a Grignard reagent. This coupling reaction is well known in the synthetic chemistry field as Kumada-Tamao coupling. The phthalonitrile (1) having an R 1 group can also be obtained by conducting a coupling reaction of a halogen-containing phthalonitrile with an organic boron compound in the presence of a palladium catalyst. This coupling reaction is also well known in the synthetic chemistry field as Suzuki-Miyaura coupling.
 置換基Yとして、OR2基またはSR3基を有するフタロニトリル(1)は、従来既知の方法、例えばJP-A-2002-302477に記載されているような方法により、含ハロゲンフタロニトリルのハロゲン原子を、HOR2および/またはHSR3で置換することによって、製造することができる。この芳香族求核置換反応に用いる含ハロゲンフタロニトリルは、ハロゲンの置換反応に対する反応性の観点から、好ましくは含フッ素および/または含塩素フタロニトリル、より好ましくは含フッ素フタロニトリル、さらに好ましくはテトラフルオロフタロニトリルである。また含ハロゲンフタロニトリルの求核置換反応は、フタロニトリルの4位および5位で優先的に進行する。よって入手容易性の観点から、OR2基またはSR3基を有するフタロニトリル(1)として、下記式(1a)または(1d)、殊に下記式(1b)または(1c)、あるいは下記式(1e)または(1f)で示されるフタロニトリルが好ましい。 Phthalonitriles (1) having an OR 2 group or an SR 3 group as a substituent Y are halogens of halogen-containing phthalonitriles by a conventionally known method, for example, a method as described in JP-A-2002-302477. It can be produced by replacing the atom with HOR 2 and / or HSR 3 . The halogen-containing phthalonitrile used in this aromatic nucleophilic substitution reaction is preferably fluorine-containing and / or chlorine-containing phthalonitrile, more preferably fluorine-containing phthalonitrile, still more preferably tetra-methane, from the viewpoint of reactivity to the halogen substitution reaction. It is fluorophthalonitrile. Also, the nucleophilic substitution reaction of the halogen-containing phthalonitrile preferentially proceeds at the 4- and 5-positions of the phthalonitrile. Therefore, from the viewpoint of easy availability, as the phthalonitrile (1) having an OR 2 group or an SR 3 group, the following formula (1a) or (1d), in particular, the following formula (1b) or (1c), or Phthalonitriles shown by 1e) or (1f) are preferred.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 上記式(1a)~(1f)中、Y1およびY2は、それぞれ独立にOR2またはSR3を表し、R2およびR3は、それぞれ独立に、好ましくはC1-20アルキル基、より好ましくはC1-10アルキル基、さらに好ましくはC1-5アルキル基;好ましくはC6-20アリール基、より好ましくはC6-12アリール基;または好ましくはC7-20アルキルアリール基、より好ましくはC7-15アルキルアリール基、さらに好ましくはC7-10アルキルアリール基を表す。またR2およびR3は、その炭素骨格上に、ハロゲン原子を含有していても良い。上記式(1e)または(1f)中のR2およびR3は、同一のものでも、異なるものでも良いが、製造の容易性の観点から、同一のものであることが好ましい。 In the above formulas (1a) to (1f), Y 1 and Y 2 each independently represent OR 2 or SR 3 , and R 2 and R 3 are each independently preferably, preferably a C 1-20 alkyl group Preferably a C 1-10 alkyl group, more preferably a C 1-5 alkyl group; preferably a C 6-20 aryl group, more preferably a C 6-12 aryl group; or preferably a C 7-20 alkyl aryl group, Preferably, it represents a C 7-15 alkylaryl group, more preferably a C 7-10 alkylaryl group. R 2 and R 3 may also contain a halogen atom on their carbon skeleton. R 2 and R 3 in the above formula (1e) or (1f) may be the same or different, but are preferably the same from the viewpoint of easiness of production.
 ヒドリド還元試薬として、金属若しくは半金属の水素化物またはそれらの錯体を用いることができる。金属水素化物等として、例えば以下のものを挙げることができる。 As the hydride reduction reagent, metal or metalloid hydrides or their complexes can be used. Examples of metal hydrides and the like include the following.
 アルキルアラン、ジアルキルアラン、アルコキシアラン、ジアルコキシアラン等のアルミニウム水素化物。 Aluminum hydrides such as alkylalanes, dialkylalanes, alkoxyalanes and dialkoxyalanes.
 LiAlH4、LiAlH3R、LiAlH22、LiAlHR3、NaAlH4、NaAlH3R、NaAlH22、NaAlHR3、NaAlH2(OCH2CH2OCH32、Al23(OCH2CH2OCH33、R3N-AlH3、Et2O-AlH3等のアルミニウム水素化物の錯体(式中Rは、アルキル、アリールまたはアルコキシ基を表す。)。 LiAlH 4, LiAlH 3 R, LiAlH 2 R 2, LiAlHR 3, NaAlH 4, NaAlH 3 R, NaAlH 2 R 2, NaAlHR 3, NaAlH 2 (OCH 2 CH 2 OCH 3) 2, Al 2 H 3 (OCH 2 CH 2 OCH 3 ) 3 , R 3 N—AlH 3 , complexes of aluminum hydride such as Et 2 O—AlH 3 (wherein R represents an alkyl, aryl or alkoxy group).
 ジボラン(B26)、アルキルボラン、ジアルキルボラン、アルコキシボラン、ジアルコキシボラン等のホウ素水素化物。 Boro hydrides such as diborane (B 2 H 6 ), alkyl boranes, dialkyl boranes, alkoxy boranes, dialkoxy boranes and the like.
 NaBH4、NaBH3R、NaBH22、NaBHR3、NaBH3CN、NaBH3N(CH32、NaBH3(NH(t-Bu))NaBH33、NaBH2(SCH2CH2S)、LiBH4、LiBH3R、LiBH22、LiBHR3、H3N-BH3、RH2N-BH3、R2HN-BH3、R3N-BH3、THF-BH3、ピリジン-BH3、R2HP-BH3、R3P-BH3、KBHR3等のホウ素水素化物の錯体(式中Rは、アルキル、アリールまたはアルコキシ基を表す。)。 NaBH 4, NaBH 3 R, NaBH 2 R 2, NaBHR 3, NaBH 3 CN, NaBH 3 N (CH 3) 2, NaBH 3 (NH (t-Bu)), NaBH 3 S 3, NaBH 2 (SCH 2 CH 2 S), LiBH 4, LiBH 3 R, LiBH 2 R 2, LiBHR 3, H 3 N-BH 3, RH 2 N-BH 3, R 2 HN-BH 3, R 3 N-BH 3, THF-BH 3 , complexes of boron hydrides such as pyridine-BH 3 , R 2 HP-BH 3 , R 3 P-BH 3 , KBHR 3 (wherein R represents an alkyl, aryl or alkoxy group).
 Cl2SiH2、Cl3SiH、R2SiH2、R3SiH、((CH33Si)3SiH、ポリメチルヒドロシラン等のケイ素水素化物(式中Rは、アルキル、アリール、ベンジルまたはアルコキシ基を表す。)。 Silicon hydrides such as Cl 2 SiH 2 , Cl 3 SiH, R 2 SiH 2 , R 3 SiH, ((CH 3 ) 3 Si) 3 SiH, polymethylhydrosilane, wherein R is alkyl, aryl, benzyl or alkoxy Represents a group).
 R2SnH2、R3SnH、Ph2SnH2、Ph3SnH、(n-Bu)2SnH2、水素化トリエチルスズ、水素化トリメチルスズ等のスズ水素化物(式中Rは、アルキル、アリールまたはアルコキシ基を表す。)。 Tin hydrides such as R 2 SnH 2 , R 3 SnH, Ph 2 SnH 2 , Ph 3 SnH, (n-Bu) 2 SnH 2 , triethyltin hydride, trimethyltin hydride and the like (wherein R is alkyl, aryl Or an alkoxy group).
 上記のものの中でも、反応性の観点から、アルミニウム水素化物若しくはその錯体、またはホウ素水素化物若しくはその錯体が好ましく、水素化ジイソブチルアルミニウム、およびBH3錯体がより好ましい。ヒドリド還元試薬は、1種のみを単独で用いることができ、2種以上を併用することもできる。 Among the above, from the viewpoint of reactivity, aluminum hydride or a complex thereof or boron hydride or a complex thereof is preferable, and hydrogenated diisobutylaluminum and a BH 3 complex are more preferable. As the hydride reducing reagent, only one type can be used alone, or two or more types can be used in combination.
 ヒドリド還元試薬は、ルイス酸と組み合わせて使用してもよい。ルイス酸を添加すると、殊にケイ素水素化物またはスズ水素化物を使用する場合、還元反応の進行が促進されると考えられる。本発明において、1種のみのルイス酸を単独で、または2種以上のルイス酸を組み合わせて用いることができる。 The hydride reducing reagent may be used in combination with a Lewis acid. It is believed that the addition of the Lewis acid accelerates the reduction reaction, especially when using silicon hydride or tin hydride. In the present invention, only one Lewis acid can be used alone, or two or more Lewis acids can be used in combination.
 ルイス酸としては、特に限定は無く、例えばAlCl3、AlBr3、TiCl4、SnCl2、SnCl4、FeCl3、BF3、BF3・O(C252、トリスペンタフルオロフェニルホウ素、NbF5、TaF5、PF5、AsF5、SbF5等の周期律表第IIIB族、第IVA族、第IVB族、第VA族または第VB族元素のハロゲン化合物、その錯体またはアルコキシド化合物が挙げられる。 The Lewis acid is not particularly limited. For example, AlCl 3 , AlBr 3 , TiCl 4 , SnCl 2 , SnCl 4 , SnCl 4 , FeCl 3 , BF 3 , BF 3 .O (C 2 H 5 ) 2 , trispentafluorophenyl boron, Listed are halogen compounds of NbF 5 , TaF 5 , PF 5 , AsF 5 , SbF 5 etc. Periodic Table Group IIIB, IVA, IVB, VA or VB elements, their complexes or alkoxide compounds Be
 本発明の方法における還元反応は、通常、溶媒を用いて行われる。溶媒としては特に限定は無いが、出発原料であるフタロニトリル(1)を溶解できるものが好ましい。溶媒として、例えばクロロホルム、塩化メチレン等の塩素系炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;THF、ジオキサン、シクロペンチルメチルエーテル、ジイソプロピルエーテル、ジエチルエーテル等のエーテル類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;およびスルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等のスルホラン類などを挙げることができる。溶媒は、単独で、または2種以上組み合わせて用いることができる。溶媒を用いる場合、フタロニトリル(1)の濃度は、好ましくは0.01~1M程度、より好ましくは0.05~0.5M程度である。 The reduction reaction in the method of the present invention is usually carried out using a solvent. The solvent is not particularly limited, but those which can dissolve phthalonitrile (1) which is a starting material are preferable. As solvents, for example, chlorohydrocarbons such as chloroform and methylene chloride; aromatic hydrocarbons such as benzene, toluene and xylene; ethers such as THF, dioxane, cyclopentyl methyl ether, diisopropyl ether and diethyl ether; dimethylformamide, Amides such as dimethylacetamide; and sulfolanes such as sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane and the like can be mentioned. The solvents can be used alone or in combination of two or more. When a solvent is used, the concentration of phthalonitrile (1) is preferably about 0.01 to 1 M, more preferably about 0.05 to 0.5 M.
 ヒドリド還元試薬を用いた還元反応では、還元試薬の分解を抑制するために、窒素またはアルゴンなどの不活性ガス雰囲気下で行うことが好ましい。またフタロニトリル類の溶液を冷却しながら、ヒドリド還元試薬の溶液をゆっくりと添加しても良いし、ヒドリド還元試薬の溶液を冷却しながら、フタロニトリル類の溶液をゆっくりと添加しても良い。還元反応の温度は、用いる溶媒などにも影響されるが、好ましくは0℃以上、より好ましくは20℃以上であり、好ましくは150℃以下、より好ましくは120℃以下である。還元反応の時間は、好ましくは30分以上、より好ましくは1時間以上、さらに好ましくは2時間以上であり、好ましくは48時間以下、より好ましくは24時間以下である。 In the reduction reaction using a hydride reducing reagent, in order to suppress decomposition of the reducing reagent, it is preferable to carry out under an inert gas atmosphere such as nitrogen or argon. In addition, the solution of hydride reduction reagent may be added slowly while cooling the solution of phthalonitriles, or the solution of phthalonitriles may be added slowly while cooling the solution of the hydride reduction reagent. The temperature of the reduction reaction is also influenced by the solvent used, but is preferably 0 ° C. or more, more preferably 20 ° C. or more, preferably 150 ° C. or less, more preferably 120 ° C. or less. The time of the reduction reaction is preferably 30 minutes or more, more preferably 1 hour or more, still more preferably 2 hours or more, preferably 48 hours or less, more preferably 24 hours or less.
 目的物であるイソインドール(2)の収率を向上させるために、ヒドリド還元試薬を用いた還元反応の後に、反応混合物とプロトン酸またはアルカリとを混合することが好ましい。 In order to improve the yield of the desired product isoindole (2), it is preferable to mix the reaction mixture with a protonic acid or alkali after the reduction reaction using a hydride reducing reagent.
 まずプロトン酸を用いる場合について説明する。プロトン酸には特に限定は無く、有機または無機プロトン酸を使用することができる。本発明において、1種のみのプロトン酸を単独で、または2種以上のプロトン酸を組み合わせて用いることができる。還元反応後の反応混合物とプロトン酸とは、好ましくは-30℃~30℃程度、より好ましくは-10℃~10℃程度の温度で、さらに好ましくは氷浴などでの冷却下(0℃程度)で混合することが推奨される。 First, the case of using a protonic acid will be described. There is no particular limitation on the protic acid, and organic or inorganic protic acids can be used. In the present invention, only one protonic acid can be used alone, or two or more protonic acids can be used in combination. The reaction mixture after the reduction reaction and the protonic acid are preferably at a temperature of about -30 ° C to 30 ° C, more preferably at a temperature of about -10 ° C to 10 ° C, and even more preferably under cooling in an ice bath or the like (about 0 ° C). It is recommended to mix in.
 無機プロトン酸としては、例えば塩酸、臭化水素酸、ヨウ化水素酸、硝酸、硫酸;オルトリン酸、ピロリン酸等のリン酸;過塩素酸等の過ハロゲン酸;リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、ケイタングステン酸、リンタングストモリブデン酸、リンバナドモリブデン酸等のヘテロポリ酸などが挙げられる。 Examples of inorganic protonic acids include hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid; phosphoric acids such as orthophosphoric acid and pyrophosphoric acid; perhalogen acids such as perchloric acid; phosphomolybdic acid, silicomolybdic acid, Examples thereof include heteropolyacids such as phosphotungstic acid, silicotungstic acid, lintungstomolybdic acid, and phosphovanadomolybdic acid.
 有機プロトン酸としては、例えばベンゼンスルホン酸、p-トルエンスルホン酸、ナフタレンスルホン酸等のアリールスルホン酸;メタンスルホン酸、トリフルオロメタンスルホン酸、トリクロロメタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、t-ブチルスルホン酸等のアルキルスルホン酸;ギ酸、酢酸、プロピオン酸、クロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ペンタフルオロプロピオン酸、n-酪酸、イソ酪酸、ピバリン酸、吉草酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、シクロヘキサンカルボン酸等の飽和脂肪族カルボン酸;アクリル酸、メタクリル酸、プロピオール酸、クロトン酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、オレイン酸等の不飽和脂肪族カルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタル酸等の芳香族カルボン酸などが挙げられる。 Examples of organic protic acids include arylsulfonic acids such as benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, etc .; methanesulfonic acid, trifluoromethanesulfonic acid, trichloromethanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, t- Alkyl sulfonic acids such as butyl sulfonic acid; formic acid, acetic acid, propionic acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, trifluoroacetic acid, pentafluoropropionic acid, n-butyric acid, isobutyric acid, pivalic acid, valeric acid, caproic acid, Saturated aliphatic carboxylic acids such as caprylic acid, capric acid, lauric acid, myristic acid, cyclohexane carboxylic acid; acrylic acid, methacrylic acid, propiolic acid, crotonic acid, maleic acid, fumaric acid, citraconic acid, mesaconic acid, oleic acid, etc. Unsaturation of Aliphatic carboxylic acid; benzoic acid, phthalic acid, isophthalic acid, and aromatic carboxylic acids such as terephthalic acid.
 次にアルカリを用いる場合について説明する。還元反応後に反応混合物とアルカリとを、好ましくは-30℃~30℃程度、より好ましくは-10℃~10℃程度の温度で混合することが推奨される。アルカリとしては、好ましくはアルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、モノカルボン酸塩(酢酸塩など)、ジカルボン酸塩(シュウ酸塩など);有機アミンなどが挙げられる。これらの中でも、強塩基であるアルカリ金属水酸化物(殊にLiOH、NaOH、KOH)が好ましい。コストの観点から、NaOHがより好ましい。また有機アミンとして、ホウ素などと錯体を形成してヒドリド還元試薬残基の脱離を促進できるエタノールアミン、メチルアミンがより好ましい。これらアルカリの1種を単独で用いてもよく、2種以上を併用してもよい。 Next, the case of using an alkali will be described. It is recommended to mix the reaction mixture and the alkali after the reduction reaction, preferably at a temperature of about -30 ° C to about 30 ° C, more preferably about -10 ° C to about 10 ° C. The alkali is preferably an alkali metal or alkaline earth metal hydroxide, carbonate, monocarboxylate (such as acetate), dicarboxylate (such as oxalate), organic amine and the like. Among these, alkali metal hydroxides (in particular, LiOH, NaOH, KOH) which are strong bases are preferable. From the viewpoint of cost, NaOH is more preferable. Further, as the organic amine, ethanolamine and methylamine which can form a complex with boron or the like to promote elimination of the hydride reducing reagent residue are more preferable. One of these alkalis may be used alone, or two or more thereof may be used in combination.
 ヒドリド還元試薬による還元反応の後、反応混合物から通常の処理工程により、目的物であるイソインドール(2)を精製することが推奨される。例えば過剰のプロトン酸またはアルカリを用いた場合は、中和工程、水または食塩水などによる洗浄工程、濃縮工程および精製工程を行うことが推奨される。本発明において精製手段には特に限定はなく、該技術分野で通常使用されている手段、例えばシリカゲルカラムクロマトグラフィー、アルミナカラムクロマトグラフィー、昇華精製、再結晶などを使用することができる。 After the reduction reaction with a hydride reducing reagent, it is recommended to purify the desired product isoindole (2) from the reaction mixture by a conventional treatment process. For example, when an excess of protonic acid or alkali is used, it is recommended to carry out a neutralization step, a washing step with water or saline, a concentration step and a purification step. In the present invention, the purification means is not particularly limited, and means generally used in the technical field such as silica gel column chromatography, alumina column chromatography, sublimation purification, recrystallization and the like can be used.
 本発明において、フタロニトリル(1)を接触水素化法で還元することによっても、イソインドール(2)を製造することができる。接触水素化反応に用いる触媒としては、該技術分野で知られている通常の金属触媒を使用することができる。フタロニトリル(1)に対して触媒の中心金属が好ましくは0.01~30モル%、より好ましくは0.1~20モル%、さらに好ましくは1~10モル%となるような量で金属触媒を使用することが推奨される。 In the present invention, isoindole (2) can also be produced by reducing phthalonitrile (1) by catalytic hydrogenation. As the catalyst used for the catalytic hydrogenation reaction, conventional metal catalysts known in the art can be used. The metal catalyst is used in such an amount that the central metal of the catalyst is preferably 0.01 to 30 mol%, more preferably 0.1 to 20 mol%, still more preferably 1 to 10 mol% with respect to phthalonitrile (1). It is recommended to use
 金属触媒として、ルテニウムやロジウムにホスフィンなどが配位して構成される均一触媒が挙げられる。但し反応性、反応後の回収および再生処理の容易性を考慮すると、本発明において、不均一触媒を用いることが好ましい。不均一触媒の中でも、表面積を増大させて触媒活性を向上させるために、金属の微粉末を担体に担持させた触媒が好ましい。不均一触媒として、例えばニッケル、ラネーニッケル、銅-酸化クロム、ルテニウム、パラジウム、ロジウム、白金などの金属またはこれらの酸化物若しくは水酸化物など(粉末形状のものを含む)を活性炭、アルミナ、珪藻土などの担体に担持させたものが挙げられる。これらの中でも、活性炭にパラジウムを担持させた触媒が、優れた触媒活性を示すので、より好ましい。 Examples of the metal catalyst include homogeneous catalysts constituted by coordinating phosphine or the like to ruthenium or rhodium. However, in view of reactivity, easiness of recovery after reaction and regeneration treatment, it is preferable to use a heterogeneous catalyst in the present invention. Among heterogeneous catalysts, in order to increase the surface area and improve the catalytic activity, a catalyst in which fine metal powder is supported on a carrier is preferable. Examples of heterogeneous catalysts include metals such as nickel, Raney nickel, copper-chromium oxide, ruthenium, palladium, rhodium, platinum or oxides or hydroxides thereof (including those in powder form) such as activated carbon, alumina, diatomaceous earth, etc. And those supported on the carrier of Among these, a catalyst in which palladium is supported on activated carbon is more preferable because it exhibits excellent catalytic activity.
 不均一触媒を使用する場合、接触水素化反応の前に触媒を、水素雰囲気下においてプロトン酸と混合して活性化する工程を、必要に応じて採用しても良い。プロトン酸を用いなくても目的物のイソインドール(2)は得られるが、収率を向上させるためには、プロトン酸を用いることが推奨される。活性化に用いるプロトン酸としては、上述のプロトン酸を用いることができる。中でも、トリフルオロ酢酸、塩酸、硝酸、硫酸が好ましい。プロトン酸の量が、フタロニトリル(1)に対して、多くても、少なくても、不純物が多く生成し、収率が低下する。よって原料のフタロニトリル(1)1モルに対し、プロトン(H+)が、好ましくは0.6~1.6モル、より好ましくは0.8~1.2モル、さらに好ましくは0.9~1.1モル、最も好ましくは1モルになるようにプロトン酸を使用することが推奨される。活性化の温度は、通常、室温~50℃程度であり、活性化の時間は、好ましくは10分以上、より好ましくは30分以上、さらに好ましくは1時間以上であり、好ましくは5時間以下、より好ましくは3時間以下、さらに好ましくは2時間以下である。 When a heterogeneous catalyst is used, a step of activating the catalyst by mixing it with a protic acid in a hydrogen atmosphere prior to the catalytic hydrogenation reaction may be adopted as needed. Although the objective isoindole (2) can be obtained without using a protic acid, it is recommended to use a protic acid in order to improve the yield. The protonic acid described above can be used as the protonic acid used for activation. Among these, trifluoroacetic acid, hydrochloric acid, nitric acid and sulfuric acid are preferable. More or less amount of protonic acid relative to phthalonitrile (1) generates a large amount of impurities and reduces the yield. Therefore, the amount of proton (H + ) is preferably 0.6 to 1.6 mol, more preferably 0.8 to 1.2 mol, still more preferably 0.9 to 1 mol of phthalonitrile (1) as a raw material. It is recommended to use the protic acid to be 1.1 mole, most preferably 1 mole. The activation temperature is usually from room temperature to about 50 ° C., and the activation time is preferably 10 minutes or more, more preferably 30 minutes or more, still more preferably 1 hour or more, preferably 5 hours or less. More preferably, it is 3 hours or less, still more preferably 2 hours or less.
 接触水素化による還元の場合も、通常、溶媒を用いて行われる。溶媒としては特に限定は無いが、出発原料である上記フタロニトリル(1)を溶解できるものが好ましい。溶媒として、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類;THF、ジオキサン、シクロペンチルメチルエーテル、ジイソプロピルエーテル、ジエチルエーテル等のエーテル類;メタノール、エタノール、プロパノール等のアルコール類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等のスルホラン類;およびギ酸、酢酸、プロピオン酸、トリフルオロ酢酸等のカルボン酸類などを挙げることができる。また接触水素化法では、アミド類または酢酸類と水との混合溶媒も使用できる。溶媒は、単独で、または2種以上組み合わせて用いることができる。溶媒を用いる場合、フタロニトリル(1)の濃度は、好ましくは0.01~1M程度、より好ましくは0.05~0.5M程度である。 The reduction by catalytic hydrogenation is usually carried out using a solvent. The solvent is not particularly limited, but those which can dissolve the above-mentioned phthalonitrile (1) which is a starting material are preferable. As solvents, for example, aromatic hydrocarbons such as benzene, toluene, xylene and the like; ethers such as THF, dioxane, cyclopentyl methyl ether, diisopropyl ether, diethyl ether and the like; alcohols such as methanol, ethanol, propanol and the like; methyl acetate, ethyl acetate , Esters such as propyl acetate and butyl acetate; amides such as dimethylformamide, dimethylacetamide; sulfolanes such as sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane; and formic acid, acetic acid, propionic acid, trifluoroacetic acid Etc. can be mentioned. In the catalytic hydrogenation method, mixed solvents of amides or acetic acids and water can also be used. The solvents can be used alone or in combination of two or more. When a solvent is used, the concentration of phthalonitrile (1) is preferably about 0.01 to 1 M, more preferably about 0.05 to 0.5 M.
 接触水素化の温度は、用いる溶媒などにも影響されるが、好ましくは0℃以上、より好ましくは20℃以上であり、好ましくは150℃以下、より好ましくは120℃以下である。還元反応の時間は、好ましくは30分以上、より好ましくは1時間以上、さらに好ましくは2時間以上であり、好ましくは72時間以下、より好ましくは48時間以下である。接触水素化を促進するために、水素を加圧状態で用いることが好ましい。水素圧は、好ましくは1.1気圧以上、より好ましくは1.5気圧以上、さらに好ましくは2気圧以上である。但し設備の制約などから水素圧は、好ましくは5気圧以下、より好ましくは3気圧以下である。 The temperature of the catalytic hydrogenation is also affected by the solvent used, but is preferably 0 ° C. or more, more preferably 20 ° C. or more, preferably 150 ° C. or less, more preferably 120 ° C. or less. The time of the reduction reaction is preferably 30 minutes or more, more preferably 1 hour or more, still more preferably 2 hours or more, preferably 72 hours or less, more preferably 48 hours or less. It is preferred to use hydrogen under pressure to promote catalytic hydrogenation. The hydrogen pressure is preferably 1.1 atmospheres or more, more preferably 1.5 atmospheres or more, and further preferably 2 atmospheres or more. However, the hydrogen pressure is preferably 5 atm or less, more preferably 3 atm or less, due to the restriction of equipment and the like.
 反応系に絶えず水素ガスを供給して、接触水素化反応を行うことができる。また一定圧まで水素ガスを供給した後に、反応系を密閉して接触水素化反応を行い、反応の進行に伴い系内の圧力が低下してから、再び水素ガスを供給することもできる。水素ガス供給の前に、反応系を減圧にすることが望ましい。また触媒に多くの水素原子を吸着させるために、減圧および水素ガスの供給を複数回繰り返して行うことが、好ましい実施態様である。 Hydrogen gas can be constantly supplied to the reaction system to carry out a catalytic hydrogenation reaction. Alternatively, after hydrogen gas is supplied to a constant pressure, the reaction system is sealed to carry out a catalytic hydrogenation reaction, and after the pressure in the system decreases as the reaction proceeds, hydrogen gas can be supplied again. It is desirable to depressurize the reaction system prior to the hydrogen gas supply. In addition, in order to cause a large amount of hydrogen atoms to be adsorbed to the catalyst, it is a preferred embodiment to repeat the pressure reduction and the supply of hydrogen gas a plurality of times.
 上で説明した本発明の製造方法により、4,5,6,7-テトラフルオロ-2H-イソインドール以外の、上記式(2)で示される新規イソインドールを製造することができる。よって本発明は、このような新規イソインドール(2)も提供する。さらに本発明は、イソインドール(2)から得られる新規のN-置換イソインドール(3)(Xがフッ素原子であり、且つm=4であるものを除く)も提供する。本発明の新規イソインドール(2)またはN-置換イソインドール(3)はポリイソインドールまたは色素等の原料として用いることができる。またイソインドール(2)は、さらにポルフィリンの原料として用いることができる。 The novel isoindole represented by the above formula (2) other than 4,5,6,7-tetrafluoro-2H-isoindole can be produced by the production method of the present invention described above. Thus, the present invention also provides such a novel isoindole (2). Furthermore, the present invention also provides novel N-substituted isoindoles (3) obtained from isoindole (2) (except those in which X is a fluorine atom and m = 4). The novel isoindole (2) or N-substituted isoindole (3) of the present invention can be used as a raw material for polyisoindole or dyes. Moreover, isoindole (2) can be further used as a raw material of porphyrin.
 上記式(3)(および式(5))中のR4は、好ましくはC1-10アルキル基、より好ましくはC1-5アルキル基(例えばメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基など);好ましくはC6-20アリール基、より好ましくはC6-12アリール基(例えばフェニル基、トリル基など);好ましくはC7-15アルキルアリール基、より好ましくはC7-10アルキルアリール基(例えばベンジル基など);または好ましくはC2-10アシル基、より好ましくはC2-5アシル基(例えばアセチル基、ベンゾイル基、t-ブトキシカルボニル基など)である。 R 4 in the above formula (3) (and formula (5)) is preferably a C 1-10 alkyl group, more preferably a C 1-5 alkyl group (eg methyl group, ethyl group, n-propyl group, n -Butyl group, n-pentyl group etc.); preferably C 6-20 aryl group, more preferably C 6-12 aryl group (eg phenyl group, tolyl group etc.); preferably C 7-15 alkyl aryl group, more preferably Preferably, a C 7-10 alkyl aryl group (eg, a benzyl group etc.); or preferably a C 2-10 acyl group, more preferably a C 2-5 acyl group (eg, an acetyl group, a benzoyl group, a t-butoxycarbonyl group etc.) It is.
 イソインドール(2)からN-置換イソインドール(3)を得る方法には特に限定は無く、アミンから置換アミンを得るために知られている様々な方法を用いることができる。以下では、いくつかの例を示す。 There is no particular limitation on the method for obtaining N-substituted isoindole (3) from isoindole (2), and various known methods for obtaining a substituted amine from an amine can be used. Below, some examples are shown.
 イソインドール(2)とハロゲン化アルキルまたはハロゲン化アルキルアリール(ハロゲンがアルキル部分の炭素原子と結合しているもの)とを、塩基の存在下で反応させることにより、R4がアルキル基またはアルキルアリール基であるN-置換イソインドール(3)を製造できる。塩基としては、強塩基(例えばn-ブチルリチウム、水素化アルカリ金属(例えばNaH、KH)など)が好ましい。このアルキル化反応は、例えば、通常-100℃~100℃程度、好ましくは-80℃~70℃程度で行われる。ハロゲン化アルキルとしては、炭素数が1~10程度(好ましくは1~5程度)のものが好ましく、より好ましくは第1級ハロゲン化アルキル、さらに好ましくは第1級ヨウ化アルキル(例えばヨウ化メチル、ヨウ化エチル、ヨウ化-n-プロピル、ヨウ化-n-ブチル、ヨウ化-n-ペンチルなど)である。ハロゲン化アルキルアリールとしては、炭素数が7~15程度(好ましくは7~10程度)のものが好ましく、より好ましくはヨウ化ハロゲン化アルキルアリール(例えばヨウ化ベンジルなど)である。 R 4 is an alkyl group or an alkyl aryl by reacting isoindole (2) with halogenated alkyl or halogenated alkyl aryl (wherein a halogen is bonded to a carbon atom of the alkyl moiety) in the presence of a base The group N-substituted isoindole (3) can be prepared. As the base, a strong base (eg, n-butyllithium, alkali metal hydride (eg, NaH, KH), etc.) is preferable. This alkylation reaction is carried out, for example, usually at about -100 ° C to 100 ° C, preferably at about -80 ° C to 70 ° C. The halogenated alkyl is preferably one having about 1 to 10 carbon atoms (preferably about 1 to 5 carbon atoms), more preferably a primary alkyl halide, still more preferably a primary alkyl iodide (eg methyl iodide) Ethyl iodide, n-propyl iodide, n-butyl iodide, n-pentyl iodide and the like). The halogenated alkylaryl is preferably one having about 7 to 15 carbon atoms (preferably about 7 to 10 carbon atoms), and more preferably a halogenated alkyl aryl iodide (eg, benzyl iodide).
 R4がアリール基であるN-置換イソインドール(3)は、例えば有名な人名反応であるBuchwald-Hartwigクロスカップリング反応により製造できる。具体的にはPd触媒および強塩基の存在下で、イソインドール(2)とハロゲン化アリールまたはアリールトリフラートとを反応させることにより、R4がアリール基であるN-置換イソインドール(3)を製造できる。Pd触媒としては、一般的に、ホスフィン配位子(例えば2,2’-ビス(ジフェニルホスフィノ)-1,1-ビナフチル、2,2’-ビス(ジフェニルホスフィノ)ビフェニルなど)またはジベンジリデンアセトン配位子などを含むものが使用される。強塩基としては、一般的に、リチウムビス(トリメチルシリル)アミド、NaO-t-Bu、K2CO3などが用いられる。イソインドール(2)との反応相手として、炭素数が6~20程度(好ましくは6~12程度)のハロゲン化アリールが好ましく、ヨウ化または臭化アリール(例えばヨードベンゼン、4-ヨードトルエンなど)がより好ましい。この反応は室温程度の低い温度で進行することもあるが、その反応温度は、一般的に50~150℃程度である。 N-substituted isoindoles (3) in which R 4 is an aryl group can be produced, for example, by the well-known personal name reaction Buchwald-Hartwig cross coupling reaction. Specifically, N-substituted isoindole (3) wherein R 4 is an aryl group is produced by reacting isoindole (2) with a halogenated aryl or aryl triflate in the presence of a Pd catalyst and a strong base it can. As a Pd catalyst, phosphine ligands (eg, 2,2'-bis (diphenylphosphino) -1,1-binaphthyl, 2,2'-bis (diphenylphosphino) biphenyl etc.) or dibenzylidene are generally used. Those containing an acetone ligand or the like are used. As a strong base, lithium bis (trimethylsilyl) amide, NaOt-Bu, K 2 CO 3 and the like are generally used. As a reaction partner with isoindole (2), aryl halides having about 6 to 20 carbon atoms (preferably about 6 to 12 carbon atoms) are preferred, and aryl iodides or bromides (eg iodobenzene, 4-iodotoluene etc.) Is more preferred. The reaction may proceed at a temperature as low as room temperature, but the reaction temperature is generally about 50 to 150.degree.
 R4がアシル基であるN-置換イソインドール(3)は、炭素数が2~10程度(好ましくは2~5程度)のハロゲン化アシル、酸無水物、カルボン酸エステル、カルボン酸アミド、カルボン酸を用いるアシル化反応によって製造できる。但し反応性の観点から、ハロゲン化アシル(好ましくは塩化アシル)または酸無水物を用いることが推奨される。具体的には塩基性水溶液(例えばNaOH水溶液)または塩基性の有機溶液(例えばピリジン溶液)中で、イソインドール(2)とハロゲン化アシルまたは酸無水物とを反応させることにより(Schotten-Baumann反応)、R4がアシル基であるN-置換イソインドール(3)を製造できる。イソインドール(2)の反応相手としては、例えば無水酢酸、塩化アセチル、塩化ベンゾイルなどが挙げられる。 N-substituted isoindole (3) wherein R 4 is an acyl group is an acyl halide having 2 to about 10 carbon atoms (preferably about 2 to 5 carbon atoms), an acid anhydride, a carboxylic acid ester, a carboxylic acid amide, a carbonic acid It can be produced by an acylation reaction using an acid. However, from the viewpoint of reactivity, it is recommended to use an acyl halide (preferably acyl chloride) or an acid anhydride. Specifically, by reacting isoindole (2) with an acyl halide or an acid anhydride (Schotten-Baumann reaction) in a basic aqueous solution (eg NaOH aqueous solution) or a basic organic solution (eg pyridine solution) And N-substituted isoindole (3) wherein R 4 is an acyl group. Examples of the reaction partner of isoindole (2) include acetic anhydride, acetyl chloride, benzoyl chloride and the like.
 またR4のアシル基の特殊な例として、t-ブトキシカルボニル基((CH3)CO-C(=O)-)を挙げることができる。t-ブトキシカルボニル基は、アミノ基の保護基としてよく知られており、例えばピリジン、トリエチルアミン、n-BuLiまたはNaHなどの塩基の存在下で、ジ-t-ブチルジカルボネートとイソインドール(2)とを反応させることで導入することができる。 Further, as a specific example of the acyl group of R 4 , t-butoxycarbonyl group ((CH 3 ) CO—C (= O) —) can be mentioned. t-Butoxycarbonyl groups are well known as protecting groups for amino groups, for example di-t-butyl dicarbonate and isoindole (2) in the presence of a base such as pyridine, triethylamine, n-BuLi or NaH Can be introduced by reacting
 本発明のイソインドール(2)またはN-置換イソインドール(3)(以下「イソインドール(2)または(3)」と略称することがある)を重合することで得られるポリイソインドール(4)または(5)、特にポリ(含フッ素イソインドール)は、導電性材料として、より詳しくは有機薄膜トランジスタや有機太陽電池等の分野における電極材料、表示材料、電磁波遮蔽材料等として有用である。ポリマー化は、電解酸化重合や化学的酸化重合等の公知の方法で行うことができる。ポリイソインドール(4)または(5)には、必要に応じてドープしてもよい。 Polyisoindole (4) obtained by polymerizing isoindole (2) or N-substituted isoindole (3) of the present invention (hereinafter sometimes abbreviated as "isoindole (2) or (3)") Or (5), particularly poly (fluorine-containing isoindole) is particularly useful as a conductive material, more specifically, as an electrode material, display material, electromagnetic wave shielding material and the like in the field of organic thin film transistors and organic solar cells. The polymerization can be carried out by a known method such as electrolytic oxidation polymerization or chemical oxidation polymerization. The polyisoindole (4) or (5) may be optionally doped.
 重合法として、まず化学的酸化重合から説明する。化学的酸化重合で用いられる酸化剤としては、例えば酸素、過酸化水素;テトラクロロ-1,2-ベンゾキノン、テトラクロロ-1,4-ベンゾキノン、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノンなどのキノン類;ヨウ素、臭素、塩素などのハロゲン;塩化鉄(III)、塩化銅(II)などの金属塩化物;二酸化マンガン、二酸化鉛、四酸化オスミウムなどの金属酸化物;硝酸、塩素酸などのオキソ酸;塩素酸カリウム、次亜塩素酸ナトリウム、臭素酸ナトリウム、臭素酸カリウム、過マンガン酸カリウム、二クロム酸カリウム、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウムなどのオキソ酸塩が挙げられる。これら酸化剤の中でも、酸素、過酸化水素、キノン類、ハロゲン、金属塩化物が好ましく、酸素、金属塩化物がより好ましい。酸化剤は、1種のみを用いても、2種以上を併用してもよい。酸化重合では、必要に応じて酸触媒(例えば塩酸、硝酸、硫酸などの無機酸)または金属触媒(例えば鉛、マンガン、銀などの酸化物、塩化銅(I)、塩化銅(I)-塩化アルミニウムなど)を用いてもよい。殊に酸素を酸化剤として用いる場合、触媒を使用することが推奨される。酸素を除く酸化剤の量は、イソインドール類1モルに対して、好ましくは1モル以上(より好ましくは2モル以上)であり、好ましくは6モル以下(より好ましくは5モル以下)である。 First, chemical oxidative polymerization will be described as a polymerization method. As an oxidizing agent used in chemical oxidative polymerization, for example, oxygen, hydrogen peroxide; tetrachloro-1,2-benzoquinone, tetrachloro-1,4-benzoquinone, 2,3-dichloro-5,6-dicyano-1 Quinones such as 4, 4-benzoquinone; halogens such as iodine, bromine and chlorine; metal chlorides such as iron (III) chloride and copper (II) chloride; metal oxides such as manganese dioxide, lead dioxide and osmium tetraoxide; Nitric acid, oxo acids such as chloric acid; potassium chlorate, sodium hypochlorite, sodium bromate, potassium bromate, potassium permanganate, potassium dichromate, potassium persulfate, sodium persulfate, potassium persulfate, ammonium persulfate, etc. An acid salt is mentioned. Among these oxidizing agents, oxygen, hydrogen peroxide, quinones, halogens and metal chlorides are preferable, and oxygen and metal chlorides are more preferable. The oxidizing agent may be used alone or in combination of two or more. In the oxidation polymerization, if necessary, an acid catalyst (for example, an inorganic acid such as hydrochloric acid, nitric acid or sulfuric acid) or a metal catalyst (for example, an oxide such as lead, manganese or silver), copper (I) chloride, copper (I) chloride-chloride Aluminum or the like may be used. It is recommended to use a catalyst, especially when using oxygen as an oxidant. The amount of the oxidizing agent excluding oxygen is preferably 1 mol or more (more preferably 2 mol or more), preferably 6 mol or less (more preferably 5 mol or less) per 1 mol of isoindoles.
 化学的酸化重合は、通常、溶媒中で行われる。化学的酸化重合のための溶媒としては、例えばクロロホルム、塩化メチレン、四塩化炭素、ジクロロエタン、テトラクロロエタン、クロロベンゼン等の塩素系炭化水素類;ニトロメタン、ニトロエタン、ニトロベンゼン等のニトロ系炭化水素類;N-メチルピロリドン等のアミド類;および二硫化炭素などを挙げることができる。溶媒は、単独で使用してもよく、2種以上を併用してもよい。溶媒を用いる場合のイソインドール(2)または(3)の濃度は、好ましくは0.01~1M程度、より好ましくは0.05~0.5M程度である。化学的酸化重合は、使用する溶媒に応じて、一般に-80℃~100℃程度(好ましくは-20℃~60℃程度)の範囲の温度で、一般に0.1~100時間程度(好ましくは0.5~72時間程度)行われる。 Chemical oxidative polymerization is usually carried out in a solvent. As a solvent for chemical oxidative polymerization, for example, chlorinated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, dichloroethane, tetrachloroethane, chlorobenzene and the like; nitrohydrocarbons such as nitromethane, nitroethane, nitrobenzene and the like; N- And amides such as methyl pyrrolidone; and carbon disulfide. The solvents may be used alone or in combination of two or more. The concentration of isoindole (2) or (3) when a solvent is used is preferably about 0.01 to 1 M, more preferably about 0.05 to 0.5 M. Chemical oxidative polymerization is generally carried out at a temperature in the range of about -80 ° C. to 100 ° C. (preferably about -20 ° C. to 60 ° C.) for about 0.1 to 100 hours (preferably 0 °) depending on the solvent used. 5 to 72 hours).
 次に電解酸化重合について説明する。本発明では、反応装置について限定は無く、電解酸化重合によるポリピロールやポリチオフェン等の製造で用いられる反応装置を用いることができる。電解質としては、例えばテトラエチルアンモニウムブロミド、テトラエチルアンモニウムクロリド、テトラエチルアンモニウムフルオリド、テトラ-n-ブチルアンモニウムブロミド、テトラ-n-ブチルアンモニウムクロリド、テトラ-n-ブチルアンモニウムフルオリド、テトラエチルアンモニウムテトラフルオロボレート、テトラ-n-ブチルアンモニウムヘキサフルオロホスフェート、テトラ-n-ブチルアンモニウムヘキサフルオロアンチモン等のアンモニム塩;テトラフェニルホスホニウムブロミド、テトラフェニルホスホニウムクロリド等のホスホニウム塩;リチウムパークロレート、リチウムヘキサフルオロボレート等のリチウム塩;ベンゼンスルホン酸カリウム、トルエンスルホン酸ナトリウム等のスルホン酸塩;硫酸、塩酸、トリフルオロ酢酸等の酸などが挙げられる。これら電解質は、単独で用いてもよく、2種以上を併用してもよい。これら電解質の陰イオンは、電解酸化重合の際にドーパントとしてポリマー中に取り込まれる。 Next, electrolytic oxidation polymerization will be described. In the present invention, the reaction apparatus is not limited, and a reaction apparatus used for producing polypyrrole, polythiophene and the like by electrolytic oxidation polymerization can be used. Examples of the electrolyte include tetraethylammonium bromide, tetraethylammonium chloride, tetraethylammonium fluoride, tetra-n-butylammonium bromide, tetra-n-butylammonium chloride, tetra-n-butylammonium fluoride, tetraethylammonium tetrafluoroborate, and tetraethylammonium tetrafluoroborate. Ammonium salts such as n-butylammonium hexafluorophosphate and tetra-n-butylammonium hexafluoroantimony; phosphonium salts such as tetraphenylphosphonium bromide and tetraphenylphosphonium chloride; lithium salts such as lithium perchlorate and lithium hexafluoroborate; Sulfonates such as potassium benzenesulfonate and sodium toluenesulfonate; sulfuric acid, Acid, an acid such as trifluoroacetic acid. These electrolytes may be used alone or in combination of two or more. The anions of these electrolytes are incorporated into the polymer as a dopant during electrolytic oxidation polymerization.
 電解酸化重合の溶媒としては、例えば塩化メチレン等の塩素系炭化水素類;アセトニトリル、ベンゾニトリル、プロピオニトリル等のニトリル類;ジオキサン、テトラヒドロフラン、プロピレンカーボネート等の環状エーテル類;スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等のスルホラン類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類などが挙げられる。溶媒は、単独で使用してもよく、2種以上を併用してもよい。溶媒を用いる場合のイソインドール(2)または(3)の濃度は、好ましくは0.01~1M程度、より好ましくは0.05~0.5M程度である。電解酸化重合は、使用する溶媒に応じて、一般に-80℃~100℃程度(好ましくは-20℃~60℃程度)の範囲の温度で、一般に0.1~100時間程度(好ましくは0.5~72時間程度)行われる。電解酸化重合の際の電流密度は、一般に1.0~5.0mA/cm2程度である。 Solvents for electrolytic oxidation polymerization include, for example, chlorinated hydrocarbons such as methylene chloride; nitriles such as acetonitrile, benzonitrile and propionitrile; cyclic ethers such as dioxane, tetrahydrofuran and propylene carbonate; sulfolane, 3-methylsulfolane And sulfolanes such as 2,4-dimethyl sulfolane; and amides such as dimethylformamide and dimethylacetamide. The solvents may be used alone or in combination of two or more. The concentration of isoindole (2) or (3) when a solvent is used is preferably about 0.01 to 1 M, more preferably about 0.05 to 0.5 M. The electrolytic oxidation polymerization is generally performed at a temperature in the range of about -80 ° C. to about 100 ° C. (preferably about -20 ° C. to about 60 ° C.) for about 0.1 to about 100 hours (preferably 0. 5 to 72 hours). The current density in electrolytic oxidation polymerization is generally about 1.0 to 5.0 mA / cm 2 .
 上記のような酸化重合により、イソインドール(2)または(3)を重合してポリマーを製造できる。本発明の方法では、イソインドール(2)または(3)の1種のみを用いてホモポリマーを形成するだけでなく、これらの2種以上を併用してコポリマーを形成することもできる。またイソインドール(2)および/または(3)と、それ以外のモノマー(例えばピロール、チオフェン)とを共重合してコポリマーを形成することもできる。よって本発明のポリイソインドール(4)または(5)は、ホモポリマーおよびコポリマーの両方を包含する。ピロール等の他のモノマーを用いてコポリマーを形成する場合、使用モノマー中のイソインドール(2)および/または(3)の合計含有量(即ちコポリマー中の上記式(4)および/または(5)の合計含有量)は、好ましくは10質量%以上である。 By oxidative polymerization as described above, isoindole (2) or (3) can be polymerized to produce a polymer. In the method of the present invention, not only one homopolymer of isoindole (2) or (3) may be used to form a homopolymer, but also two or more of these may be used in combination to form a copolymer. It is also possible to copolymerize isoindole (2) and / or (3) with other monomers (eg pyrrole, thiophene) to form a copolymer. Thus, the polyisoindoles (4) or (5) of the present invention encompass both homopolymers and copolymers. When forming a copolymer using other monomers such as pyrrole, the total content of isoindole (2) and / or (3) in the used monomers (ie, the above formula (4) and / or (5) in the copolymer Is preferably 10% by mass or more.
 本発明のポリイソインドール(4)または(5)の重量平均分子量(スチレン換算でのGPC測定による値)は、通常、1,000~50万程度、好ましくは3,000~30万程度、より好ましくは5,000~10万程度である。 The weight average molecular weight (value by GPC measurement in terms of styrene) of the polyisoindole (4) or (5) of the present invention is usually about 1,000 to 500,000, preferably about 3,000 to 300,000, Preferably, it is about 5,000 to 100,000.
 次にπ共役環状化合物の製造方法に関する本発明を説明する。以下では、π共役環状化合物(7)の中でも、代表的なポルフィリン(7a)の製造方法を中心に説明する。本発明の製造方法は、イソインドール(2)から、一旦、中間体(6)(イソインドールの1位置換体)を形成し、それからπ共役環状化合物(7)(特にポルフィリン(7a))を製造することを特徴とする。これに対し、ベンゼン環で修飾されていない通常のポルフィリンをピロールから合成する場合、(I)酸の存在下でピロールとホルムアルデヒドとを反応させて、一段階でポルフィリンを製造する方法、または(II)ピロールから、一旦、中間体として2位置換体(例えば2-ヒドロキシメチルピロールまたは2-ジメチルアミノメチルピロール)を形成し、この2位置換体を環化することによる、多段階でポルフィリンを製造する方法などが知られている。 Next, the present invention will be described with respect to a method for producing a π-conjugated cyclic compound. In the following, among the π-conjugated cyclic compounds (7), a method of producing a representative porphyrin (7a) will be mainly described. The production method of the present invention forms intermediate (6) (1-substituted isoindole) from isoindole (2), and then produces π-conjugated cyclic compound (7) (particularly porphyrin (7a)). It is characterized by On the other hand, when a conventional porphyrin which is not modified with benzene ring is synthesized from pyrrole, a method of producing porphyrin in one step by reacting pyrrole with formaldehyde in the presence of acid (I), or (II 2.) A method for preparing porphyrin in multiple steps by forming 2-substituted form (for example, 2-hydroxymethylpyrrole or 2-dimethylaminomethylpyrrole) as an intermediate from pyrrole once and cyclizing this 2-position substituted form Etc. are known.
 しかし本発明者らが検討した結果、ピロールと同様に一段階反応でイソインドールを環化(特にポルフィリン化)しようとしても、π共役環状化合物(特にテトラベンゾポルフィリン)が充分に得られないことを見出した。テトラベンゾポルフィリンが充分に得られない理由として、ピロールと異なりイソインドールは、重合しやすい1H-イソインドール構造をとり、一段階反応では、環化反応だけでなく重合反応も生ずるためであると推察される。 However, as a result of investigations by the present inventors, it has been found that even if it is attempted to cyclize (in particular, porphyrinate) isoindole in a one-step reaction like pyrrole, a π-conjugated cyclic compound (especially tetrabenzoporphyrin) is not sufficiently obtained. I found it. The reason why tetrabenzoporphyrin can not be obtained sufficiently is that, unlike pyrrole, isoindole has an easily polymerizable 1H-isoindole structure, and in one-step reaction, not only cyclization but also polymerization occurs. Be done.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 そこで本発明者らがさらに検討を続けた結果、含ハロゲンイソインドールから一段階反応で直接、π共役環状化合物を製造するのではなく、一旦、中間体としてイソインドールの1位置換体(ヒドロキシメチル体またはアミノメチル体)を形成する多段階反応により、π共役環状化合物(特に含ハロゲンテトラベンゾポルフィリン)を良好な選択率および収率で製造できることを見出した。中間体を経ることで選択率および収率が向上する理由としては、イソインドールから直接、π共役環状化合物(特にテトラベンゾポルフィリン)を製造しようとすると、イソインドール環が活性化されて、ポルフィリン以外の重合物が形成されるが、中間体では、イソインドール環ではなく1位置換基が活性化されて、スムーズにπ共役環状化合物が形成されることが考えられる。なお本発明は、このような推定メカニズムに限定されない。 Then, as a result of the present inventors continuing investigation further, 1-position substitution of isoindole (hydroxymethyl form as an intermediate, instead of directly producing a π-conjugated cyclic compound in a one-step reaction from halogen-containing isoindole Alternatively, it has been found that a π-conjugated cyclic compound (particularly, halogen-containing tetrabenzoporphyrin) can be produced with good selectivity and yield by a multistep reaction forming an aminomethyl form. The reason why the selectivity and the yield are improved by passing through the intermediate is that, when it is attempted to produce a π-conjugated cyclic compound (especially tetrabenzoporphyrin) directly from isoindole, the isoindole ring is activated to form a non-porphyrin. In the intermediate, it is considered that the 1-position substituent, not the isoindole ring, is activated to smoothly form a π-conjugated cyclic compound. The present invention is not limited to such an estimation mechanism.
 よって本発明のπ共役環状化合物(特に含ハロゲンテトラベンゾポルフィリン)の製造方法は、中間体として含ハロゲンイソインドールの1位置換体を一旦形成することを特徴とする。 Therefore, the method for producing a π-conjugated cyclic compound (in particular, halogen-containing tetrabenzoporphyrin) of the present invention is characterized in that a 1-substituted form of halogen-containing isoindole is once formed as an intermediate.
 製造するπ共役環状化合物として、ポルフィリン(7a);下記式(7b)で示されるコロール(上記式(7)中、j=1、k=0);下記式(7c)で示されるサフィリン(上記式(7)中、j=2、k=0);および下記式(7d)で示されるペンタフィリン(上記式(7)中、j=2、k=1)が好ましく、ポルフィリン(7a)がより好ましい。以下では下記式(7b)~(7d)で示されるπ共役環状化合物を、それぞれ、「コロール(7b)」、「サフィリン(7c)」および「ペンタフィリン(7d)」と略称する。 As a π-conjugated cyclic compound to be produced, porphyrin (7a); corrole represented by the following formula (7b) (in the above formula (7), j = 1, k = 0); saphyrin represented by the following formula (7c) In the formula (7), j = 2, k = 0); and pentaphilin represented by the following formula (7d) (in the above formula (7), j = 2, k = 1) is preferable, and the porphyrin (7a) is More preferable. Hereinafter, π-conjugated cyclic compounds represented by the following formulas (7b) to (7d) are abbreviated as “corrole (7b)”, “saphyrin (7c)” and “pentaphilin (7d)”, respectively.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 本発明は、含ハロゲンイソインドールの1位置換体自体も提供する。これら1位置換体は、上記のようにπ共役環状化合物(特に含ハロゲンテトラベンゾポルフィリン)の製造に有用であるという利点を有するだけでなく、無置換の含ハロゲンイソインドールよりも安定であるという利点を有する。さらにこれら1位置換体は、π共役環状化合物以外の化合物、例えばポリイソインドレニンビニレンのような重合体の製造にも利用できる。本発明の含ハロゲンテトラベンゾポルフィリンの製造方法でも、副生成物として、微量の重合体、または他の環状化合物が形成されている。 The present invention also provides the 1-substituted halogen-containing isoindole itself. These 1-substituted compounds not only have the advantage of being useful for the preparation of π-conjugated cyclic compounds (especially halogen-containing tetrabenzoporphyrins) as described above, but also have the advantage of being more stable than unsubstituted halogen-containing isoindoles. Have. Furthermore, these 1-substituted compounds can also be used for the production of compounds other than π-conjugated cyclic compounds, for example, polymers such as polyisoindolenine vinylene. Also in the method for producing halogen-containing tetrabenzoporphyrin of the present invention, a trace amount of polymer or other cyclic compound is formed as a by-product.
 本発明のπ共役環状化合物(7)の製造方法で用いるイソインドール(2)は、上述のように入手または製造することができる。 The isoindole (2) used in the method for producing the π-conjugated cyclic compound (7) of the present invention can be obtained or produced as described above.
 イソインドール(2)の中でも、安定性などの観点から、上記式(2a)で表されるものが好ましく、4,5,6,7-テトラフルオロイソ-2H-インドールまたは4,5,6,7-テトラクロロ-2H-イソインドールがより好ましく、4,5,6,7-テトラフルオロ-2H-イソインドールがさらに好ましい。 Among isoindoles (2), those represented by the above formula (2a) are preferable from the viewpoint of stability and the like, and 4,5,6,7-tetrafluoroiso-2H-indole or 4,5,6, 6 7-tetrachloro-2H-isoindole is more preferred, and 4,5,6,7-tetrafluoro-2H-isoindole is more preferred.
 イソインドール(2)から、ヒドロキシメチル化-2H-イソインドール(6c)またはアミノメチル化-2H-イソインドール(6d)を製造する方法には特に限定は無く、有機合成化学の分野で知られているあらゆる方法を使用することができる。しかし反応の容易性などの観点から、ヒドロキシメチル化-2H-イソインドール(6c)は、Vilsmeier反応でホルミル化した後に還元することにより、アミノメチル化-2H-イソインドール(6d)は、Mannich反応により製造することが好ましい。 There is no particular limitation on the method for producing hydroxymethylated-2H-isoindole (6c) or aminomethylated-2H-isoindole (6d) from isoindole (2), and it is known in the field of synthetic organic chemistry Can be used in any way. However, from the viewpoint of ease of reaction, etc., hydroxymethylated-2H-isoindole (6c) is formylated with Vilsmeier and then reduced to give aminomethylated-2H-isoindole (6d) as Mannich reaction. It is preferable to manufacture by this.
 まずヒドロキシメチル化-2H-イソインドール(6c)の好ましい製造方法を説明する。ハロゲン化ホスホリルPOX5 3(式中、X5は、F、ClまたはBrを表す。)の存在下で、イソインドール(2)とジアルキルホルムアミドHCONR78(式中、R7およびR8は、それぞれ独立にC1-4アルキル基を表す)とを反応させるVilsmeier反応では、反応条件の違いにより、詳しくは基質の反応性または反応温度の違いにより、第1の中間体であるホルミル化-2H-イソインドール(6b)、または第2の中間体であるアミノメチレン化-1H-イソインドール(6a)が形成される。例えばイソインドール(2)として4,5,6,7-テトラフルオロ-2H-イソインドールを用いた場合、Vilsmeier反応における加水分解反応を還流下で行うと第1の中間体(6b)が得られ、反応を室温下で行うと第2の中間体(6a)が得られる。なお第2の中間体(6a)が得られた場合、これを加水分解することにより、容易に第1の中間体(6b)に転化することができる。 First, a preferred method for producing hydroxymethylated-2H-isoindole (6c) is described. Phosphoryl halide POX 5 3 (wherein, X 5 is, F, represents. Cl or Br) in the presence of, isoindole (2) with a dialkyl formamide HCONR 7 R 8 (wherein, R 7 and R 8 are In the Vilsmeier reaction in which each is independently represented by a C 1-4 alkyl group, the first intermediate formylation, which is a first intermediate, is caused by differences in reaction conditions, specifically by differences in substrate reactivity or reaction temperature. 2H-isoindole (6b) or a second intermediate aminomethylenated-1H-isoindole (6a) is formed. For example, when 4,5,6,7-tetrafluoro-2H-isoindole is used as isoindole (2), the hydrolysis reaction in Vilsmeier reaction is carried out under reflux to obtain the first intermediate (6b) The reaction is carried out at room temperature to give a second intermediate (6a). When the second intermediate (6a) is obtained, it can be easily converted to the first intermediate (6b) by hydrolysis.
 Vilsmeier反応に用いるハロゲン化ホスホリルとして、例えばフッ化ホスホリル、塩化ホスホリルまたは臭化ホスホリルが挙げられるが、これらの中でも反応性の観点から、塩化ホスホリルが好ましい。またハロゲン化ホスホリルの代わりに、またはハロゲン化ホスホリルと共に、p-トルエンスルホニルクロリド、メタンスルホニルクロリド、トリフルオロメタンスルホニルクロリド、2,2,2-トリフルオロエタンスルホニルクロリド等のスルホニルクロリド類、トリフルオロメタンスルホン酸無水物、メタンスルホン酸無水物、スルホン酸無水物等のスルホン酸無水物類、ホスゲン、チオホスゲン、オキサリルクロリドなども使用できる。ジアルキルホルムアミドとして、例えばジメチルホルムアミド(DMF)、ジエチルホルムアミド、ジイソプロピルホルムアミドおよびジブチルホルムアミドなどが挙げられるが、これらの中でもDMF(R7=R8=CH3)が好ましい。中間体(6a)または(6b)への転化率を高めるため、ジアルキルホルムアミドおよびハロゲン化ホスホリルは、イソインドール(2)に対して当量以上で用いることが好ましい。具体的にはジアルキルホルムアミドおよびハロゲン化ホスホリル量は、イソインドール(2)1モルに対してそれぞれ、好ましくは1モル以上、より好ましくは1.1モル以上、さらに好ましくは1.3モル以上である。しかしジアルキルホルムアミド等の量があまりに過剰であると、原料および精製コストが増大する。そこでジアルキルホルムアミドおよびハロゲン化ホスホリル量は、イソインドール(2)1モルに対してそれぞれ、好ましくは5モル以下、より好ましくは3モル以下、さらに好ましくは2モル以下である。 As the phosphoryl halide used for the Vilsmeier reaction, for example, phosphoryl fluoride, phosphoryl chloride or phosphoryl bromide can be mentioned, and among these, phosphoryl chloride is preferable from the viewpoint of reactivity. In addition, sulfonyl chlorides such as p-toluenesulfonyl chloride, methanesulfonyl chloride, trifluoromethane sulfonyl chloride, 2,2,2-trifluoroethane sulfonyl chloride, etc. instead of phosphoryl halide or together with phosphoryl halide, trifluoromethane sulfonic acid Anhydrides, sulfonic acid anhydrides such as methanesulfonic acid anhydride and sulfonic acid anhydride, phosgene, thiophosgene, oxalyl chloride and the like can also be used. Examples of the dialkylformamide include dimethylformamide (DMF), diethylformamide, diisopropylformamide and dibutylformamide, among which DMF (R 7 = R 8 = CH 3 ) is preferable. In order to increase the conversion to intermediates (6a) or (6b), it is preferable to use dialkylformamide and phosphoryl halide in an equivalent or more amount with respect to isoindole (2). Specifically, the amount of dialkylformamide and halogenated phosphoryl is preferably 1 mol or more, more preferably 1.1 mol or more, and still more preferably 1.3 mol or more, per 1 mol of isoindole (2). . However, if the amount of dialkylformamide or the like is too much, the cost of raw materials and purification increases. Therefore, the amount of the dialkylformamide and the halogenated phosphoryl is preferably 5 mol or less, more preferably 3 mol or less, still more preferably 2 mol or less, per 1 mol of isoindole (2).
 中間体(6a)または(6b)を製造するためのVilsmeier反応は、通常、溶液中で行われる。出発物質の1つであるジアルキルホルムアミド、特にDMFは、溶媒の代わりとして用いることができる。その他の溶媒として、例えばクロロホルム、塩化メチレン等の塩素系炭化水素類;クロロベンゼン等のハロゲン化ベンゼン類;およびトルエン、キシレン等のアルキルベンゼン類を用いることができる。イソインドール(2)の溶液濃度は、好ましくは0.01~2M程度、より好ましくは0.05~1M程度である。 The Vilsmeier reaction for producing intermediates (6a) or (6b) is usually carried out in solution. One of the starting materials, dialkylformamide, in particular DMF, can be used as a solvent substitute. As other solvents, for example, chlorohydrocarbons such as chloroform and methylene chloride; halogenated benzenes such as chlorobenzene; and alkylbenzenes such as toluene and xylene can be used. The solution concentration of isoindole (2) is preferably about 0.01 to 2 M, more preferably about 0.05 to 1 M.
 イソインドール(2)、ハロゲン化ホスホリル、およびジアルキルホルムアミドを混合して反応系中でVilsmeier試薬([R78N=CHX5(+)5(-))を形成させてもよいし、先にハロゲン化ホスホリルとジアルキルホルムアミドとを混合して、予めVilsmeier試薬を形成させてもよい。予めVilsmeier試薬を形成する場合、Vilsmeier試薬中にイソインドール(2)を添加しても良いし、逆にイソインドール(2)にVilsmeier試薬を添加しても良い。それぞれの添加・混合工程では発熱を抑制するために、必要に応じて冷却すればよい。Vilsmeier反応の温度は、用いる溶媒などにも影響されるが、通常0℃以上、好ましくは20℃以上であり、好ましくは140℃以下、より好ましくは120℃以下である。Vilsmeier反応の時間は、好ましくは5分以上、より好ましくは10分以上、より好ましくは30分以上であり、好ましくは20時間以下、より好ましくは15時間以下、さらに好ましくは10時間以下である。 The isols (2), phosphoryl halide, and dialkyl formamide may be mixed to form Vilsmeier reagent ([R 7 R 8 NCHCHX 5 ] (+) X 5 (−) ) in the reaction system. Alternatively, the phosphoryl halide and dialkylformamide may be mixed to form the Vilsmeier reagent in advance. When Vilsmeier reagent is formed in advance, isoindole (2) may be added to Vilsmeier reagent, or conversely, Vilsmeier reagent may be added to isoindole (2). In each of the addition and mixing steps, cooling may be performed as necessary in order to suppress heat generation. The temperature of the Vilsmeier reaction is influenced by the solvent used, but is usually 0 ° C. or more, preferably 20 ° C. or more, preferably 140 ° C. or less, more preferably 120 ° C. or less. The time of Vilsmeier reaction is preferably 5 minutes or more, more preferably 10 minutes or more, more preferably 30 minutes or more, preferably 20 hours or less, more preferably 15 hours or less, still more preferably 10 hours or less.
 アミノメチレン化-1H-イソインドール(6a)は、加水分解により、ホルミル化-2H-イソインドール(6b)に容易に転化することができる。この加水分解は、アミノメチレン化-1H-イソインドール(6a)と水とを混合するだけでも行い得るが、酢酸ナトリウム、炭酸水素ナトリウムまたは水酸化ナトリウムなどのようなアルカリ水溶液を用いることが好ましい。アルカリ水溶液を用いる場合、加水分解の温度は、通常0~100℃、好ましくは20~80℃であり、その時間は通常0.5~10時間、好ましくは1~5時間である。 Aminomethylenated-1H-isoindole (6a) can be readily converted to formylated-2H-isoindole (6b) by hydrolysis. This hydrolysis can be carried out simply by mixing aminomethylenated-1H-isoindole (6a) and water, but it is preferable to use an aqueous alkaline solution such as sodium acetate, sodium hydrogencarbonate or sodium hydroxide. When an aqueous alkaline solution is used, the temperature of hydrolysis is usually 0 to 100 ° C., preferably 20 to 80 ° C., and the time is usually 0.5 to 10 hours, preferably 1 to 5 hours.
 ホルミル化-2H-イソインドール(6b)を還元することにより、ヒドロキシメチル化-2H-イソインドール(6c)を製造することができる。ホルミル基(アルデヒド)からヒドロキシメチル基(アルコール)への還元は容易であり、有機合成化学の分野において周知の方法で行うことができる。還元剤としては、例えばNaBH4、BH3-THF等のホウ素水素化物の錯体、LiAlH4、水素化ジイソブチルアルミニウム等のアルミニウム水素化物の錯体などが挙げられる。なおイソインドール環の還元を抑制して、ホルミル基だけが条件で還元を行う必要がある。例えばLiAlH4のような強い還元剤を用いる場合、還元反応を短時間で終了させればよい。 Hydroxymethylated-2H-isoindole (6c) can be prepared by reducing formylation-2H-isoindole (6b). The reduction of formyl groups (aldehydes) to hydroxymethyl groups (alcohols) is easy and can be done by methods well known in the art of synthetic organic chemistry. Examples of the reducing agent include complexes of boron hydrides such as NaBH 4 and BH 3 -THF, and complexes of aluminum hydrides such as LiAlH 4 and diisobutylaluminum hydride. In addition, it is necessary to suppress the reduction of the isoindole ring and to perform the reduction only under the condition of the formyl group. For example, when using a strong reducing agent such as LiAlH 4, it is sufficient to terminate the reduction reaction in a short time.
 中間体(6a)、(6b)または(6c)を製造した後、これらを精製せずに、反応混合物のまま、次の中間体またはπ共役環状化合物(7)(特にポルフィリン(7a))の製造に用いることもできる。しかし純度の高いπ共役環状化合物(7)を製造するためには、中間体(6a)、(6b)および(6c)の1つ以上を精製してから、次の工程で使用することが推奨される。精製手段として、例えばシリカゲルカラムクロマトグラフィー、アルミナカラムクロマトグラフィー、昇華精製、再結晶、晶析などが利用できる。 After preparing the intermediates (6a), (6b) or (6c), without purifying them, the reaction mixture as it is is used to prepare the following intermediates or π-conjugated cyclic compounds (7) (especially porphyrin (7a)): It can also be used for manufacturing. However, in order to produce highly pure π-conjugated cyclic compound (7), it is recommended to purify one or more of intermediates (6a), (6b) and (6c) and then use it in the next step Be done. As a purification method, for example, silica gel column chromatography, alumina column chromatography, sublimation purification, recrystallization, crystallization and the like can be used.
 ヒドロキシメチル化-2H-イソインドール(6c)は、出発物質であるイソインドール(2)よりも安定化されているが、通常のポルフィリンを製造するために使用されるピロールと比べて反応性が高い。そのためピロールからポルフィリンを合成するために通常用いられるクロロ酢酸などの存在下で、ヒドロキシメチル化-2H-イソインドール(6c)を反応させると、重合してイソインドールオリゴマーなどが形成される。重合反応を抑制しつつ、ヒドロキシメチル化-2H-イソインドール(6c)からπ共役環状化合物(7)(特にポルフィリン(7a))を製造するためには、クロロ酢酸よりも弱い酸を用いて脱水環化することが必要である。このための酸として、例えば酢酸、プロピオン酸および酪酸などの脂肪族モノカルボン酸;コハク酸、グルタル酸、アジピン酸、ピメリン酸などの脂肪族ジカルボン酸;およびZnCl2、BF3およびBF3・O(C252などの弱いルイス酸を使用することができ、これらの中でも前記脂肪族モノカルボン酸および前記ルイス酸が好ましい。前記脂肪族モノカルボン酸および/または前記ルイス酸は、単独で、または2種以上を組み合わせて用いることができる。 Hydroxymethylated-2H-isoindole (6c) is more stabilized than the starting material isoindole (2), but is more reactive than the pyrrole used to make regular porphyrins . Therefore, when hydroxymethylated-2H-isoindole (6c) is reacted in the presence of chloroacetic acid or the like usually used to synthesize porphyrin from pyrrole, it is polymerized to form isoindole oligomers and the like. In order to produce π-conjugated cyclic compound (7) (especially porphyrin (7a)) from hydroxymethylated-2H-isoindole (6c) while suppressing the polymerization reaction, dehydration using an acid weaker than chloroacetic acid It is necessary to cyclize. As acids for this, such as acetic acid, aliphatic monocarboxylic acids such as propionic and butyric; succinic acid, glutaric acid, adipic acid, aliphatic dicarboxylic acids such as pimelic acid; and ZnCl 2, BF 3 and BF 3 · O Weak Lewis acids such as (C 2 H 5 ) 2 can be used, of which the said aliphatic monocarboxylic acids and the said Lewis acids are preferred. The aliphatic monocarboxylic acid and / or the Lewis acid can be used alone or in combination of two or more.
 上述の脱水環化は、ヒドロキシメチル化-2H-イソインドール(6c)を単離してから行ってもよいし、またホルミル化-2H-イソインドール(6b)を還元した後、反応混合物をそのまま用いてもよい。単離したヒドロキシメチル化-2H-イソインドール(6c)を脱水環化に用いる場合、ヒドロキシメチル化-2H-イソインドール(6c)1モルに対する酸の使用量は、前記ルイス酸では1.5モル程度、前記脂肪族カルボン酸では1.5モル程度以上である。また前記脂肪族カルボン酸は、溶媒として、過剰量で使用できる。ヒドリド還元試薬を用いて得られたヒドロキシメチル化-2H-イソインドール(6c)を単離せずに反応混合物を脱水環化に用いる場合、前記脂肪族カルボン酸を、ヒドリド還元試薬のクエンチのためにも使用することができる。この場合、前記脂肪族カルボン酸は、過剰量で用いることが好ましい。 The above-mentioned dehydrating cyclization may be carried out after isolating hydroxymethylated-2H-isoindole (6c), or after reduction of formylated-2H-isoindole (6b), the reaction mixture is used as it is May be When the isolated hydroxymethylated-2H-isoindole (6c) is used for dehydrating cyclization, the amount of the acid used per mole of hydroxymethylated-2H-isoindole (6c) is 1.5 moles in the Lewis acid. The degree is about 1.5 moles or more in the aliphatic carboxylic acid. The aliphatic carboxylic acid can also be used in excess as a solvent. When the reaction mixture is used for dehydrating cyclization without isolation of the hydroxymethylated-2H-isoindole (6c) obtained with a hydride reducing reagent, said aliphatic carboxylic acid is for quenching of the hydride reducing reagent Can also be used. In this case, the aliphatic carboxylic acid is preferably used in excess.
 ヒドロキシメチル化-2H-イソインドール(6c)の脱水環化の反応温度は、その反応性に応じて適宜設定すればよく、例えば、通常0℃以上、好ましくは20℃以上であり、好ましくは140℃以下、より好ましくは120℃以下である。この反応時間は、好ましくは0.1時間以上、より好ましくは0.5時間以上であり、好ましくは96時間以下、より好ましくは72時間以下である。 The reaction temperature of the dehydrocyclization of hydroxymethylated-2H-isoindole (6c) may be appropriately set according to its reactivity, and is, for example, usually 0 ° C. or higher, preferably 20 ° C. or higher, preferably 140 C. or less, more preferably 120 ° C. or less. The reaction time is preferably 0.1 hours or more, more preferably 0.5 hours or more, preferably 96 hours or less, more preferably 72 hours or less.
 上記の脱水環化により、π共役環状化合物(7)の還元体(特にポルフィリノーゲン(11))が得られ、これを酸化剤で酸化することにより、π共役環状化合物(7)(特にポルフィリン(7a))を製造することができる。脱水環化で酢酸程度の弱酸を用いた場合、π共役環状化合物(7)の還元体(特にポルフィリノーゲン(11))の酸化前にこの弱酸を、中和しても、しなくても良いが、好ましくは酸化工程の前に、脱水環化で用いた酸を中和することが推奨される。 By the above-described dehydrating cyclization, a reduced form of the π-conjugated cyclic compound (7) (in particular, porphyrinogen (11)) is obtained, and by oxidizing this with an oxidizing agent, the π-conjugated cyclic compound (7) (particularly, porphyrin (7a)) can be produced. When a weak acid of acetic acid or so is used in the cyclodehydration, this weak acid may or may not be neutralized before oxidation of the reduced form of the π-conjugated cyclic compound (7) (especially porphyrinogen (11)). Although good, preferably prior to the oxidation step, it is recommended to neutralize the acid used in the cyclodehydration.
 このための酸化剤として、酸素、空気等の酸素含有ガス;およびp-クロラニル(6,3,5,6-テトラクロロ-p-ベンゾキノン)、DDQ(6,3-ジシアノ-5,6-ジクロロ-p-ベンゾキノン)等のキノン類を使用できる。酸化剤は、単独で、または2種以上を組み合わせて用いることができる。酸化反応温度は、例えば、通常10℃以上、好ましくは20℃以上であり、好ましくは100℃以下、より好ましくは80℃以下である。この反応時間は、好ましくは30分以上、より好ましくは1時間以上であり、好ましくは48時間以下、より好ましくは24時間以下である。 As oxidizing agents for this purpose, oxygen, oxygen-containing gases such as air; p-chloranil (6,3,5,6-tetrachloro-p-benzoquinone), DDQ (6,3-dicyano-5,6-dichloro) Quinones such as -p-benzoquinone) can be used. The oxidizing agents can be used alone or in combination of two or more. The oxidation reaction temperature is, for example, usually 10 ° C. or more, preferably 20 ° C. or more, preferably 100 ° C. or less, more preferably 80 ° C. or less. The reaction time is preferably 30 minutes or more, more preferably 1 hour or more, preferably 48 hours or less, more preferably 24 hours or less.
 ヒドロキシメチル化-2H-イソインドール(6c)から、脱水環化および酸化により、π共役環状化合物(7)(特にポルフィリン(7a))を合成する反応は、通常、溶液反応である。そのための溶媒として、前記脂肪族カルボン酸を使用できる。またこれ以外の溶媒として、例えばクロロホルム、塩化メチレン等の塩素系炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;THF、ジオキサン、シクロペンチルメチルエーテル、ジイソプロピルエーテル、ジエチルエーテル等のエーテル類;メタノール、エタノール、プロパノール等のアルコール類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類;およびジメチルホルムアミド、ジメチルアセトアミド等のアミド類などを挙げることができる。溶媒は、単独で、または2種以上組み合わせて用いることができる。溶媒を用いる場合、出発原料であるヒドロキシメチル化-2H-イソインドール(6c)の濃度は、好ましくは1~1000mM程度、より好ましくは5~500mM程度である。 The reaction for synthesizing π-conjugated cyclic compound (7) (particularly porphyrin (7a)) from hydroxymethylated-2H-isoindole (6c) by dehydration cyclization and oxidation is usually a solution reaction. The aliphatic carboxylic acid can be used as a solvent therefor. Further, as other solvents, for example, chlorinated hydrocarbons such as chloroform and methylene chloride; aromatic hydrocarbons such as benzene, toluene and xylene; ethers such as THF, dioxane, cyclopentyl methyl ether, diisopropyl ether and diethyl ether Alcohols such as methanol, ethanol and propanol; esters such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate; and amides such as dimethylformamide and dimethylacetamide. The solvents can be used alone or in combination of two or more. When a solvent is used, the concentration of the starting material hydroxymethylated-2H-isoindole (6c) is preferably about 1 to 1000 mM, more preferably about 5 to 500 mM.
 上記のようにして得られたπ共役環状化合物(7)(特にポルフィリン(7a))は、昇華、再結晶、晶析などにより精製することができる。例えばフェノキシ基のような置換基を有するポルフィリン(7a)であれば、シリカゲルカラムクロマトグラフィー、アルミナカラムクロマトグラフィーで精製することもできる。 The π-conjugated cyclic compound (7) (particularly porphyrin (7a)) obtained as described above can be purified by sublimation, recrystallization, crystallization or the like. For example, if it is a porphyrin (7a) having a substituent such as a phenoxy group, it can also be purified by silica gel column chromatography or alumina column chromatography.
 次にアミノメチル化-2H-イソインドール(6d)の好ましい製造方法を説明する。アミノメチル化-2H-イソインドール(6d)は、酸の存在下で、イソインドール(2)と、ホルムアルデヒドと、ジアルキルアミンNHR56(式中、R5およびR6は、それぞれ独立にC1-4アルキル基を表す。)とを用いるMannich反応により、製造できる。また、予め調製したハロゲン化メチレンジアルキルアンモニウムH2C=NR566(式中、R5およびR6は、それぞれ独立にC1-4アルキル基を表し、X6は、ハロゲン原子を表す。)と、イソインドール(2)とを用いて、Mannich反応を行っても良い。 Next, a preferred method for producing aminomethylated-2H-isoindole (6d) is described. Aminomethylated-2H-isoindole (6d) is an isoindole (2), formaldehyde, and a dialkylamine NHR 5 R 6 (wherein R 5 and R 6 are each independently C) in the presence of an acid 1 to 4 alkyl group) can be produced by the Mannich reaction. In addition, halogenated methylene dialkyl ammonium H 2 C = NR 5 R 6 X 6 prepared in advance, wherein R 5 and R 6 each independently represent a C 1-4 alkyl group, and X 6 represents a halogen atom. Mannich reaction may be carried out using is.) And isoindole (2).
 まずホルムアルデヒドおよびジアルキルアミンを用いる場合について説明する。このMannich反応に用いる酸として、例えばハロゲン化水素酸(塩酸、フッ化水素酸、臭化水素酸、ヨウ化水素酸)、硝酸、硫酸等の無機酸;およびギ酸、トリフルオロ酢酸、トリクロロ酢酸等の有機酸を挙げることができ、これらの中でも塩酸、臭化水素酸、硫酸およびトリフルオロ酢酸が好ましい。一塩基酸を、イソインドール(2)1モルに対して、好ましくは1~2モル、より好ましくは1.1~1.5モルで使用することが推奨される。なお多塩基酸を用いる場合、推奨されるその使用量は、一塩基酸の上記量に、多塩基酸の価数を掛けた量である。またジアルキルアミンとして、例えばジメチルアミン、ジエチルアミン、ジイソプロピルアミンおよびジブチルアミンなどが挙げられるが、これらの中でも反応性などの観点から、ジメチルアミン(R5=R6=CH3)が好ましい。ジアルキルアミンおよびホルムアルデヒドを、イソインドール(2)1モルに対してそれぞれ、好ましくは1~2モル、より好ましくは1.1~1.5モルの量で使用することが推奨される。 First, the case of using formaldehyde and dialkylamine will be described. Examples of the acid used for this Mannich reaction include inorganic acids such as hydrohalic acid (hydrochloric acid, hydrofluoric acid, hydrobromic acid, hydroiodic acid), nitric acid, sulfuric acid; and formic acid, trifluoroacetic acid, trichloroacetic acid, etc. And the like. Among these, hydrochloric acid, hydrobromic acid, sulfuric acid and trifluoroacetic acid are preferable. It is recommended to use a monobasic acid in an amount of preferably 1 to 2 moles, more preferably 1.1 to 1.5 moles, relative to 1 mole of isoindole (2). When a polybasic acid is used, the recommended amount to be used is an amount obtained by multiplying the above amount of monobasic acid by the valence number of polybasic acid. Further, examples of the dialkylamine include dimethylamine, diethylamine, diisopropylamine and dibutylamine. Among these, dimethylamine (R 5 = R 6 = CH 3 ) is preferable from the viewpoint of reactivity and the like. It is recommended to use dialkylamine and formaldehyde, preferably in an amount of 1 to 2 moles, more preferably 1.1 to 1.5 moles, each with respect to 1 mole of isoindole (2).
 次にハロゲン化メチレンジアルキルアンモニウムを用いる場合について説明する。ハロゲン化メチレンジアルキルアンモニウムは、ホルムアルデヒドとジアルキルアミンとから製造することができ、また例えばハロゲン化メチレンジメチルアンモニウムは、アルドリッチ社から入手できる。ハロゲン化メチレンジアルキルアンモニウムとして、ハロゲン化メチレンジメチルアンモニウムが好ましく、ヨウ化メチレンジメチルアンモニウムおよび塩化メチレンジメチルアンモニウムがより好ましい。ハロゲン化メチレンジアルキルアンモニウムは、イソインドール(2)1モルに対して、好ましくは1~2.5モル、より好ましくは1.05~2モル、さらに好ましくは1.1~1.5モルの量で使用することが推奨される。 Next, the case of using a methylenedialkylammonium halide is described. The methylenedialkylammonium halide can be prepared from formaldehyde and a dialkylamine, or for example methylenedimethylammonium halide can be obtained from Aldrich. As the methylene dialkyl dialkyl halide, methylene dimethyl dimethyl halide is preferable, and methylene dimethyl ammonium iodide and methylene dimethyl ammonium chloride are more preferable. The amount of methylenedialkylammonium halide is preferably 1 to 2.5 mol, more preferably 1.05 to 2 mol, still more preferably 1.1 to 1.5 mol, per 1 mol of isoindole (2). Recommended for use with
 Mannich反応は、通常、溶媒を用いて行われる。溶媒として、クロロホルム、塩化メチレン等の塩素系炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;THF、ジオキサン、シクロペンチルメチルエーテル、ジイソプロピルエーテル、ジエチルエーテル等のエーテル類;メタノール、エタノール、プロパノール等のアルコール類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類;およびアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル類などを挙げることができる。溶媒は、単独で、または2種以上組み合わせて用いることができる。溶媒を用いる場合、出発原料であるイソインドール(2)の濃度は、好ましくは0.01~2M程度、より好ましくは0.05~1M程度である。 The Mannich reaction is usually performed using a solvent. As solvents, chlorohydrocarbons such as chloroform and methylene chloride; aromatic hydrocarbons such as benzene, toluene and xylene; ethers such as THF, dioxane, cyclopentyl methyl ether, diisopropyl ether and diethyl ether; methanol, ethanol, Alcohols such as propanol; esters such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate; and nitriles such as acetonitrile, propionitrile and benzonitrile can be mentioned. The solvents can be used alone or in combination of two or more. When a solvent is used, the concentration of the starting material isoindole (2) is preferably about 0.01 to 2 M, more preferably about 0.05 to 1 M.
 上記のMannich反応の温度は、用いる溶媒などにも影響されるが、通常0℃以上、好ましくは20℃以上であり、好ましくは120℃以下、より好ましくは100℃以下である。この反応時間は、好ましくは1時間以上、より好ましくは2時間以上であり、好ましくは72時間以下、より好ましくは48時間以下である。 The temperature of the above Mannich reaction is influenced by the solvent used, etc., but is usually 0 ° C. or more, preferably 20 ° C. or more, preferably 120 ° C. or less, more preferably 100 ° C. or less. The reaction time is preferably 1 hour or more, more preferably 2 hours or more, preferably 72 hours or less, more preferably 48 hours or less.
 イソインドール(2)の1位置換体である中間体(6d)は、中間体(6a)~(6c)と同様に、イソインドール(2)よりも安定であると考えられる。しかし中間体(6d)は、中間体(6c)と比べて活性であるため、形成されると直ぐに環化して、π共役環状化合物(7)の還元体(特にポルフィリノーゲン(11))、次いでπ共役環状化合物(7)(特にポルフィリン(7a))が形成される。よってMannich反応を経る本発明の方法では、上記Mannich反応の後で、酸化剤を作用させることにより、π共役環状化合物(7)を製造することができる。Mannich反応およびそれに続く環化反応後の酸化反応は、上述と同様にして行うことができる。 Intermediate (6d), which is a 1-position substitution of isoindole (2), is considered to be more stable than isoindole (2), as with intermediates (6a) to (6c). However, since the intermediate (6d) is more active than the intermediate (6c), it is cyclized as soon as it is formed, thereby reducing the π-conjugated cyclic compound (7) (especially porphyrinogen (11)), The π-conjugated cyclic compound (7) (especially porphyrin (7a)) is then formed. Thus, in the method of the present invention which undergoes the Mannich reaction, the π-conjugated cyclic compound (7) can be produced by causing the oxidizing agent to act after the Mannich reaction. The Mannich reaction and the subsequent oxidation reaction after the cyclization reaction can be carried out in the same manner as described above.
 上記のようにして得られたポルフィリン(7a)は、ポルフィリン化学の分野で良く知られているように、様々な金属または半金属イオンと結合してポルフィリン錯体(8)を形成することができる。ポルフィリン錯体(8)と結合する金属または半金属イオンとして、例えばBeおよびRaを除く第2族元素、希土類元素、Th、U、第4族~第12族元素、Bを除く第13族元素、Cを除く第14族元素、並びにNおよびPを除く第15族元素のイオンを挙げることができる。これらの中でも金属イオンが好ましく、Co、Zn、Cu、Ni、Pd、Pt、FeまたはMnイオンがより好ましい。ポルフィリン配位子は、3価以上の金属または半金属イオンと結合することができ、この場合にポルフィリン錯体の中心金属は、ハロゲン、アルキル、アルコキシル基等と結合して、電荷が釣り合わされる。 The porphyrins (7a) obtained as described above can be combined with various metal or metalloid ions to form porphyrin complexes (8), as is well known in the field of porphyrin chemistry. Examples of metal or metalloid ions to be bound to the porphyrin complex (8) include Group 2 elements excluding Be and Ra, rare earth elements, Th, U, Group 4 to 12 elements, and Group 13 elements excluding B. Mention may be made of the ions of Group 14 elements excluding C and Group 15 elements excluding N and P. Among these, metal ions are preferable, and Co, Zn, Cu, Ni, Pd, Pt, Fe or Mn ions are more preferable. The porphyrin ligand can be bound to a trivalent or higher metal or metalloid ion, in which case the central metal of the porphyrin complex is bound to a halogen, an alkyl, an alkoxyl group or the like to balance the charge.
 これら金属または半金属のポルフィリン錯体(8)を形成するためには、金属または半金属イオンを含む金属塩、例えばハロゲン化物塩(殊に塩化物塩、臭化物塩およびヨウ化物塩)または酢酸塩等と、ポルフィリン(7a)とを混合すればよい。また中間体(6c)または(6d)の環化後かつ酸化前(即ち、ポルフィリノーゲン(11)の段階)で、金属または半金属イオンを含む金属塩を添加した後、酸化することによっても、ポルフィリン錯体(8)を形成できる。この錯化反応は、通常、溶媒中で行われ、そのための溶媒としてはポルフィリン製造のものと同じものを使用できる。錯化反応のための温度は、好ましくは0℃以上、より好ましくは10℃以上であり、好ましくは80℃以下、より好ましくは60℃以下である。また錯化反応のための時間は、好ましくは1時間以上、より好ましくは2時間以上であり、好ましくは96時間以下、より好ましくは72時間以下である。 In order to form porphyrin complexes (8) of these metals or metalloids, metal salts containing metal or metalloid ions, such as halide salts (in particular chloride salts, bromide salts and iodide salts) or acetates, etc. And porphyrin (7a) may be mixed. It is also possible to add a metal salt containing metal or metalloid ion followed by oxidation after cyclization of intermediate (6c) or (6d) and before oxidation (ie, at the stage of porphyrinogen (11)). , Porphyrin complex (8) can be formed. This complexing reaction is usually carried out in a solvent, and as the solvent therefor, the same one as in the preparation of porphyrin can be used. The temperature for the complexing reaction is preferably 0 ° C. or more, more preferably 10 ° C. or more, preferably 80 ° C. or less, more preferably 60 ° C. or less. The time for the complexation reaction is preferably 1 hour or more, more preferably 2 hours or more, preferably 96 hours or less, more preferably 72 hours or less.
 本発明のポルフィリン(7a)およびポルフィリン錯体(8)の中でも、ヘキサデカフルオロテトラベンゾポルフィリンおよび21,22,23,24,71,72,73,74,121,122,123,124,171,172,173,174-ヘキサデカクロロ-21H,23H-テトラベンゾポルフィリンおよびその錯体が好ましく、ヘキサデカフルオロテトラベンゾポルフィリンおよびその錯体が好ましい。フッ素または塩素、特にフッ素は電子求引性であるので、それらを多数含有するポルフィリンおよびその錯体は、殊にn型の有機半導体または有機電界効果型トランジスタの材料への適用が期待できるからである。 Among the porphyrin (7a) and porphyrin complexes (8) of the present invention, hexadecafluoro-tetrabenzoporphyrin and 2 1, 2 2, 2 3, 2 4, 7 1, 7 2, 7 3, 7 4, 12 1, 12 2 , 12 3 , 12 4 , 17 1 , 17 2 , 17 3 , 17 4 -hexadecachloro-21H, 23H-tetrabenzoporphyrin and complexes thereof are preferred, and hexadecafluorotetrabenzoporphyrin and complexes thereof are preferred. Since fluorine or chlorine, in particular fluorine, is electron-withdrawing, porphyrins containing a large number of them and complexes thereof are expected to be particularly applicable to materials of n-type organic semiconductors or organic field effect transistors. .
 次にイソインドール多量体の製造方法に関する本発明を、詳細に説明する。本発明のイソインドール多量体の製造方法は、出発原料として、イソインドール類ではなく、フタロニトリル類を用いることを特徴の1つとする。このフタロニトリル類は、イソインドール類と比べてはるかに安定であり、取扱いが容易である。またフタロニトリル類は、顔料などの原料として販売されており、容易に入手できる。 The present invention, which relates to a method for producing isoindole multimer, will now be described in detail. The method for producing an isoindole multimer of the present invention is characterized in that phthalonitriles are used as starting materials, not isoindoles. The phthalonitriles are much more stable and easier to handle than isoindoles. Moreover, phthalonitriles are sold as raw materials, such as a pigment, and are easily available.
 本発明者らが鋭意検討した結果、驚くべきことに、フタロニトリル類を酸の存在下で接触水素化することにより、イソインドール多量体を製造できることを見出した。この反応メカニズムとして、以下の化学式で示されるようなものが推定される。但し本発明は、この推定メカニズムに限定されない。 As a result of intensive studies by the present inventors, it has been surprisingly found that catalytic hydrogenation of phthalonitriles in the presence of an acid can produce an isoindole multimer. As this reaction mechanism, what is shown by the following chemical formula is presumed. However, the present invention is not limited to this estimation mechanism.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 上記化学式で示されるように、まずフタロニトリル(9)のシアノ基に水素が付加し、次いで環化することにより、中間体(a)(1-イミノ-1H-イソインドール類)が形成される。この中間体(a)の第3級アミン窒素に酸(上記化学式ではプロトン)が付加することにより、中間体(b)が形成される。一方、中間体(a)の第3級アミン部分に水素が付加することにより、中間体(c)(1-イミノイソインドリン類)が形成され、さらに中間体(c)のイミノ基に水素が付加し、次いでアミノ基がアンモニアとして脱離することにより、中間体(d)(2H-イソインドール類)が形成される。このように中間体(a)に酸または水素のいずれかが付加することで、中間体(b)または(d)が形成され、これらが付加することにより、中間体(e)(イミノ基を有するイソインドリン骨格とイソインドール骨格とを有する二量体)が形成される。この中間体(e)から、先ほどと述べたようなイミノ基への水素付加およびアミノ基の脱離により、2H-イソインドール類の二量体(f)が形成される(なお二量体(f)も、本発明のイソインドール多量体(10)の範囲に含まれる)。このような反応を繰り返すことによって、フタロニトリル(9)から、繰返し数が2以上であるイソインドール多量体(10)が形成されると考えられる。 As shown by the above chemical formula, hydrogen is first added to the cyano group of phthalonitrile (9) and then cyclized to form intermediate (a) (1-imino-1H-isoindoles) . An acid (proton in the above chemical formula) is added to the tertiary amine nitrogen of this intermediate (a) to form an intermediate (b). On the other hand, addition of hydrogen to the tertiary amine portion of intermediate (a) forms intermediate (c) (1-iminoisoindolines), and hydrogen is further added to the imino group of intermediate (c). Addition is followed by elimination of the amino group as ammonia to form intermediate (d) (2H-isoindoles). Thus, either acid or hydrogen is added to intermediate (a) to form intermediate (b) or (d), and addition of these results in intermediate (e) (an imino group A dimer having an isoindoline skeleton and an isoindole skeleton is formed. From this intermediate (e), a dimer (f) of 2H-isoindoles is formed by hydrogen addition to the imino group as described above and elimination of the amino group (also a dimer ( f) are also included within the scope of isoindole multimers (10) of the present invention). It is thought that by repeating such a reaction, an isoindole multimer (10) having a repeating number of 2 or more is formed from phthalonitrile (9).
 本発明の製造方法では、上記で示すようにシアノ基部分の還元により反応系中でイソインドール類が形成し、次いでこれらが付加することにより、イソインドール多量体が形成されると推定される。そのためフタロニトリル(9)の置換基Dは、この反応(特に還元反応)に大きな影響を及ぼさないと推定される。そのため本発明の製造方法では、あらゆる種類のフタロニトリル(9)、より詳しくは、無置換のフタロニトリル(式(9)中でp=0)、又はあらゆる種類の置換基Dを有するフタロニトリル類を使用できる。 In the production method of the present invention, as shown above, it is presumed that isoindoles are formed in the reaction system by reduction of the cyano group, and then these are added to form an isoindole multimer. Therefore, it is presumed that the substituent D of phthalonitrile (9) does not greatly affect this reaction (particularly, the reduction reaction). Therefore, in the production method of the present invention, all kinds of phthalonitriles (9), more specifically, unsubstituted phthalonitriles (p = 0 in the formula (9)) or phthalonitriles having all kinds of substituents D Can be used.
 本発明で用いるフタロニトリル(9)には、上記のようにフタロニトリル(無置換フタロニトリル)、またはハロゲン原子等の置換基を有する置換フタロニトリル類が含まれる。置換フタロニトリル類には、1種の置換基のみ(例えばハロゲン原子)、または2種以上の置換基(例えばハロゲンとアルキル基)を有するものが含まれる。 The phthalonitrile (9) used in the present invention includes phthalonitrile (unsubstituted phthalonitrile) or substituted phthalonitrile having a substituent such as a halogen atom as described above. The substituted phthalonitriles include those having only one type of substituent (for example, a halogen atom) or two or more types of substituents (for example, a halogen and an alkyl group).
 フタロニトリル(9)のハロゲン原子としては、好ましくはフッ素、塩素または臭素原子、より好ましくはフッ素または塩素原子、さらに好ましくはフッ素原子である。フタロニトリル(9)中には、同時に複数種のハロゲン原子が存在しても良い。 The halogen atom of phthalonitrile (9) is preferably a fluorine, chlorine or bromine atom, more preferably a fluorine or chlorine atom, still more preferably a fluorine atom. In phthalonitrile (9), plural kinds of halogen atoms may be present at the same time.
 上記式(9)中のR1、R2およびR3は、それぞれ独立に、好ましくはC1~C20アルキル基、より好ましくはC1~C10アルキル基、さらに好ましくはC1~C5アルキル基;好ましくはC6~C20アリール基、より好ましくはC6~C12アリール基;または好ましくはC7~C20アルキルアリール基、より好ましくはC7~C15アルキルアリール基、さらに好ましくはC7~C10アルキルアリール基である。R1、R2およびR3は、その炭素骨格上に、ハロゲン原子を含有していても良い。置換基Dとして、R1、OR2およびSR3のいずれかが複数存在する場合、複数存在するR1、R2およびR3は、異なる置換基(例えばアルキル基とアリール基)であっても良い。 R 1 , R 2 and R 3 in the above formula (9) are each independently preferably a C 1 to C 20 alkyl group, more preferably a C 1 to C 10 alkyl group, still more preferably C 1 to C 5 Alkyl group; preferably C 6 -C 20 aryl group, more preferably C 6 -C 12 aryl group; or preferably C 7 -C 20 alkyl aryl group, more preferably C 7 -C 15 alkyl aryl group, more preferably Is a C 7 -C 10 alkylaryl group. R 1 , R 2 and R 3 may contain a halogen atom on their carbon skeleton. When any one of R 1 , OR 2 and SR 3 exists as a substituent D, the plurality of R 1 , R 2 and R 3 may be different substituents (for example, an alkyl group and an aryl group) good.
 上記フタロニトリル(9)の中でも、ハロゲン原子Xを有するフタロニトリル(1)が好ましい。ハロゲン原子(殊に、強い電子求引性基であるフッ素原子)を有するフタロニトリル(1)から製造されるイソインドール多量体(4)は、新しい用途、例えばn型半導体への適用が期待されるからである。上記式(1)中、ハロゲン原子Xの数mは、好ましくは2以上、より好ましくは3以上、さらに好ましくは4である。なお上記式(1)中のハロゲン原子X、R1、R2およびR3の例としては、上述のものが挙げられる。 Among the above phthalonitriles (9), phthalonitrile (1) having a halogen atom X is preferable. Isoindole multimer (4) produced from phthalonitrile (1) having a halogen atom (in particular, a fluorine atom which is a strong electron-withdrawing group) is expected to be applied to new applications such as n-type semiconductors This is because that. In the above formula (1), the number m of halogen atoms X is preferably 2 or more, more preferably 3 or more, and still more preferably 4. Incidentally halogen atom X in the formula (1), examples of R 1, R 2 and R 3 include those described above.
 フタロニトリル類は、上述のように入手または製造することができる。イソインドール多量体の製造方法に用いるフタロニトリル類として、上記式(1a)または(1d)、殊に上記式(1b)または(1c)、あるいは上記式(1e)または(1f)で示されるフタロニトリルが好ましい。 Phthalonitriles can be obtained or manufactured as described above. As phthalonitriles used in the method for producing an isoindole multimer, phthalides represented by the above-mentioned formula (1a) or (1d), particularly above-mentioned formula (1b) or (1c), or above-mentioned formula (1e) or (1f) Nitriles are preferred.
 本発明のイソインドール多量体の製造方法で用いる酸としては、無機または有機プロトン酸が好ましい。無機プロトン酸としては、例えば塩酸、臭化水素酸、ヨウ化水素酸、硝酸、硫酸;オルトリン酸、ピロリン酸等のリン酸;過塩素酸等の過ハロゲン酸;リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、ケイタングステン酸、リンタングストモリブデン酸、リンバナドモリブデン酸等のヘテロポリ酸などが挙げられる。 As an acid used by the manufacturing method of the iso indole multimer of this invention, inorganic or organic protic acid is preferable. Examples of inorganic protonic acids include hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid; phosphoric acids such as orthophosphoric acid and pyrophosphoric acid; perhalogen acids such as perchloric acid; phosphomolybdic acid, silicomolybdic acid, Examples thereof include heteropolyacids such as phosphotungstic acid, silicotungstic acid, lintungstomolybdic acid, and phosphovanadomolybdic acid.
 有機プロトン酸としては、例えばベンゼンスルホン酸、p-トルエンスルホン酸、ナフタレンスルホン酸等のアリールスルホン酸;メタンスルホン酸、トリフルオロメタンスルホン酸、トリクロロメタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、t-ブチルスルホン酸等のアルキルスルホン酸;ギ酸、酢酸、プロピオン酸、クロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ペンタフルオロプロピオン酸、n-酪酸、イソ酪酸、ピバリン酸、吉草酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、シクロヘキサンカルボン酸等の飽和脂肪族カルボン酸;アクリル酸、メタクリル酸、プロピオール酸、クロトン酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、オレイン酸等の不飽和脂肪族カルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタル酸等の芳香族カルボン酸などが挙げられる。 Examples of organic protic acids include arylsulfonic acids such as benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, etc .; methanesulfonic acid, trifluoromethanesulfonic acid, trichloromethanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, t- Alkyl sulfonic acids such as butyl sulfonic acid; formic acid, acetic acid, propionic acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, trifluoroacetic acid, pentafluoropropionic acid, n-butyric acid, isobutyric acid, pivalic acid, valeric acid, caproic acid, Saturated aliphatic carboxylic acids such as caprylic acid, capric acid, lauric acid, myristic acid, cyclohexane carboxylic acid; acrylic acid, methacrylic acid, propiolic acid, crotonic acid, maleic acid, fumaric acid, citraconic acid, mesaconic acid, oleic acid, etc. Unsaturation of Aliphatic carboxylic acid; benzoic acid, phthalic acid, isophthalic acid, and aromatic carboxylic acids such as terephthalic acid.
 前記プロトン酸の中でも、酢酸、トリフルオロ酢酸、リン酸、塩酸、硝酸および硫酸が好ましい。酸としてプロトン酸を用いる場合、プロトン(H+)量が、出発原料のフタロニトリル(9)と等モル以上とすることが推奨される。等モル以上のプロトンを用いることにより、重合を促進できるからである。プロトン量は、フタロニトリル(9)1モルに対して、好ましくは1~10モル、より好ましくは1.05~7モル、さらに好ましくは1.1~5モルである。 Among the protic acids, acetic acid, trifluoroacetic acid, phosphoric acid, hydrochloric acid, nitric acid and sulfuric acid are preferable. When using a protic acid as the acid, it is recommended that the amount of proton (H + ) be equal to or more than the molar amount of phthalonitrile (9) as the starting material. It is because polymerization can be promoted by using an equimolar or more proton. The amount of proton is preferably 1 to 10 moles, more preferably 1.05 to 7 moles, and still more preferably 1.1 to 5 moles relative to 1 mole of phthalonitrile (9).
 接触水素化に用いる触媒としては、該技術分野で知られている通常の金属触媒を使用することができる。フタロニトリル(9)に対して触媒の中心金属が、好ましくは0.01~30モル%、より好ましくは0.1~20モル%、さらに好ましくは1~10モル%となるような量で、金属触媒を使用することが推奨される。 As catalysts used for catalytic hydrogenation, conventional metal catalysts known in the art can be used. Preferably, the central metal of the catalyst is 0.01 to 30% by mole, more preferably 0.1 to 20% by mole, still more preferably 1 to 10% by mole relative to phthalonitrile (9). It is recommended to use metal catalysts.
 金属触媒として、ルテニウムやロジウムにホスフィンなどが配位して構成される均一触媒が挙げられる。但し反応性、反応後の回収および再生処理の容易性を考慮すると、本発明において、不均一触媒を用いることが好ましい。不均一触媒の中でも、表面積を増大させて触媒活性を向上させるために、金属の微粉末を担体に担持させた触媒が好ましい。不均一触媒として、例えばニッケル、ラネーニッケル、銅-酸化クロム、ルテニウム、パラジウム、ロジウム、白金、酸化白金などの金属、またはこれらの金属微粉末を活性炭、アルミナ、珪藻土などの担体に担持させたものが挙げられる。これら金属触媒の中でも、パラジウム触媒、ロジウム触媒、白金触媒およびニッケル触媒が好ましく、触媒活性の観点から、活性炭にパラジウムを担持させた触媒がより好ましい。 Examples of the metal catalyst include homogeneous catalysts constituted by coordinating phosphine or the like to ruthenium or rhodium. However, in view of reactivity, easiness of recovery after reaction and regeneration treatment, it is preferable to use a heterogeneous catalyst in the present invention. Among heterogeneous catalysts, in order to increase the surface area and improve the catalytic activity, a catalyst in which fine metal powder is supported on a carrier is preferable. Heterogeneous catalysts, for example, metals such as nickel, Raney nickel, copper-chromium oxide, ruthenium, palladium, rhodium, platinum and platinum oxide, or fine powders of these metals supported on a support such as activated carbon, alumina, diatomaceous earth It can be mentioned. Among these metal catalysts, palladium catalysts, rhodium catalysts, platinum catalysts and nickel catalysts are preferable, and from the viewpoint of catalytic activity, catalysts in which palladium is supported on activated carbon are more preferable.
 不均一触媒を使用する場合、接触水素化の前に、水素雰囲気下で触媒と前記プロトン酸とを混合する触媒活性化工程を、必要に応じて採用しても良い。活性化の温度は、通常、室温~50℃程度であり、活性化の時間は、好ましくは10分以上、より好ましくは30分以上、さらに好ましくは1時間以上であり、好ましくは5時間以下、より好ましくは3時間以下、さらに好ましくは2時間以下である。 When a heterogeneous catalyst is used, a catalyst activation step of mixing the catalyst and the protonic acid under a hydrogen atmosphere before catalytic hydrogenation may be employed as needed. The activation temperature is usually from room temperature to about 50 ° C., and the activation time is preferably 10 minutes or more, more preferably 30 minutes or more, still more preferably 1 hour or more, preferably 5 hours or less. More preferably, it is 3 hours or less, still more preferably 2 hours or less.
 接触水素化は、通常、溶媒を用いて行われる。溶媒としては特に限定は無いが、出発原料であるフタロニトリル(9)を溶解できるものが好ましい。溶媒として、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類;THF、ジオキサン、シクロペンチルメチルエーテル、ジイソプロピルエーテル、ジエチルエーテル等のエーテル類;メタノール、エタノール、プロパノール等のアルコール類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等のスルホラン類;およびギ酸、酢酸、プロピオン酸、トリフルオロ酢酸等のカルボン酸類などを挙げることができる。また接触水素化法では、アミド類または酢酸類と水との混合溶媒も使用できる。溶媒は、単独で、または2種以上組み合わせて用いることができる。これら溶媒の中でも、イソインドール多量体の溶解性が高い溶媒、例えば酢酸エチル、酢酸プロピル、ジメチルホルムアミド、ジメチルアセトアミド、スルホラン、3-メチルスルホランおよび2,4-ジメチルスルホランが好ましい。溶媒を用いる場合、フタロニトリル(9)の濃度は、好ましくは0.01~5M程度、より好ましくは0.05~1M程度である。 The catalytic hydrogenation is usually carried out using a solvent. The solvent is not particularly limited, but those which can dissolve phthalonitrile (9) which is a starting material are preferable. As solvents, for example, aromatic hydrocarbons such as benzene, toluene, xylene and the like; ethers such as THF, dioxane, cyclopentyl methyl ether, diisopropyl ether, diethyl ether and the like; alcohols such as methanol, ethanol, propanol and the like; methyl acetate, ethyl acetate , Esters such as propyl acetate and butyl acetate; amides such as dimethylformamide, dimethylacetamide; sulfolanes such as sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane; and formic acid, acetic acid, propionic acid, trifluoroacetic acid Etc. can be mentioned. In the catalytic hydrogenation method, mixed solvents of amides or acetic acids and water can also be used. The solvents can be used alone or in combination of two or more. Among these solvents, solvents in which the solubility of the isoindole multimer is high, such as ethyl acetate, propyl acetate, dimethylformamide, dimethylacetamide, sulfolane, 3-methylsulfolane and 2,4-dimethylsulfolane are preferable. When a solvent is used, the concentration of phthalonitrile (9) is preferably about 0.01 to 5 M, more preferably about 0.05 to 1 M.
 接触水素化の温度は、用いる溶媒などにも影響されるが、好ましくは0℃以上、より好ましくは20℃以上であり、好ましくは150℃以下、より好ましくは120℃以下である。接触水素化反応の時間は、好ましくは30分以上、より好ましくは1時間以上、さらに好ましくは2時間以上であり、好ましくは48時間以下、より好ましくは24時間以下である。接触水素化を促進するために、水素を加圧状態で用いることが好ましい。水素圧は、好ましくは1.1気圧以上、より好ましくは1.5気圧以上、さらに好ましくは2気圧以上である。但し設備の制約などから水素圧は、好ましくは5気圧以下、より好ましくは3気圧以下である。 The temperature of the catalytic hydrogenation is also affected by the solvent used, but is preferably 0 ° C. or more, more preferably 20 ° C. or more, preferably 150 ° C. or less, more preferably 120 ° C. or less. The time of the catalytic hydrogenation reaction is preferably 30 minutes or more, more preferably 1 hour or more, still more preferably 2 hours or more, preferably 48 hours or less, more preferably 24 hours or less. It is preferred to use hydrogen under pressure to promote catalytic hydrogenation. The hydrogen pressure is preferably 1.1 atmospheres or more, more preferably 1.5 atmospheres or more, and further preferably 2 atmospheres or more. However, the hydrogen pressure is preferably 5 atm or less, more preferably 3 atm or less, due to the restriction of equipment and the like.
 接触水素化は、反応系に絶えず水素ガスを供給して行うことができる。また一定圧まで水素ガスを供給した後に、反応系を密閉して接触水素化を行い、反応の進行に伴い系内の圧力が低下してから、再び水素ガスを供給することもできる。水素ガス供給の前に、反応系を減圧にすることが望ましい。また触媒に多くの水素を吸着させるために、減圧および水素ガスの供給を複数回繰り返して行うことが、殊に溶媒存在下で接触水素化を行う場合に、好ましい実施態様である。 Catalytic hydrogenation can be carried out by continuously supplying hydrogen gas to the reaction system. Alternatively, after hydrogen gas is supplied to a constant pressure, the reaction system is sealed to carry out catalytic hydrogenation, and after the pressure in the system decreases as the reaction proceeds, hydrogen gas can be supplied again. It is desirable to depressurize the reaction system prior to the hydrogen gas supply. Further, in order to adsorb a large amount of hydrogen to the catalyst, it is a preferable embodiment to repeat the decompression and the supply of hydrogen gas a plurality of times, especially when the catalytic hydrogenation is performed in the presence of a solvent.
 製造するイソインドール多量体の繰返し単位数は、2以上、好ましくは3以上、より好ましくは5以上である。イソインドール多量体の繰返し単位数が大きくなり、その分子量が増大するほど、多量体、特にポリマーとしての機械的特性が向上するからである。しかしあまりに大きな分子量を有するイソインドール多量体は、製造が難しく、また多量体自体の取扱い性も低下する。よってイソインドール多量体の重量平均分子量(ポリスチレン換算でのGPC測定による値)は、好ましくは1,000~50万程度、より好ましくは3,000~30万程度、さらに好ましくは5,000~10万程度である。 The number of repeating units of the isoindole multimer to be produced is 2 or more, preferably 3 or more, more preferably 5 or more. This is because as the number of repeating units of isoindole multimer increases and the molecular weight increases, the mechanical properties as a multimer, particularly as a polymer, improve. However, isoindole multimers having too large a molecular weight are difficult to produce and the handleability of the multimer itself is also reduced. Therefore, the weight average molecular weight (value by GPC measurement in terms of polystyrene) of the isoindole multimer is preferably about 1,000 to 500,000, more preferably about 3,000 to 300,000, and still more preferably 5,000 to 10 It is about 10,000.
 本発明の製造方法によりイソインドール多量体を製造した後、多量体の導電性を向上させるために、既知の方法でドーピングしても良い。 After the isoindole multimer is produced by the production method of the present invention, doping may be performed by a known method in order to improve the conductivity of the multimer.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be more specifically described by way of examples. However, the present invention is not limited by the following examples, and appropriate modifications may be made within the scope which can be adapted to the above-mentioned and the following gist. Of course, implementation is also possible, and all of them are included in the technical scope of the present invention.
 以下の実施例1~21は、本発明のイソインドール(2)および(3)、並びにポリイソインドール(4)および(5)に関する実施例である。実施例22~34は、本発明の中間体(6)(=「イソインドールの1位置換体」)、ポルフィリン(7a)およびポルフィリン錯体(8)に関する実施例である。実施例35~38は、本発明のイソインドール多量体(10)に関する実施例である。 The following Examples 1 to 21 are examples of isoindoles (2) and (3) of the present invention, and polyisoindoles (4) and (5). Examples 22 to 34 are examples of the intermediate (6) (= “the 1-position substitution of isoindole”), porphyrin (7a) and porphyrin complex (8) of the present invention. Examples 35 to 38 are examples relating to the isoindole multimer (10) of the present invention.
 実施例1:テトラフルオロフタロニトリルの水素化ジイソブチルアルミニウムによる還元 Example 1: Reduction of tetrafluorophthalonitrile with hydrogenated diisobutylaluminum
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 還流冷却器、滴下ロートおよび温度計を備えた四つ口反応容器に、テトラフルオロフタロニトリル(株式会社日本触媒製)3.0g(15.0mmol)を加え、窒素置換した後、シリンジで脱水トルエン75mlを加えた。氷浴中で冷却しながら、0.99Mの水素化ジイソブチルアルミニウム(関東化学株式会社から購入)のトルエン溶液61ml(60.3mmol)を、滴下ロートからゆっくりと滴下した。滴下終了後に室温で終夜撹拌した後、氷浴中で冷却しながら、2Mの塩酸45ml(90mmol)を加えてクエンチした。反応物を酢酸エチルで抽出し、重曹水で中和し、飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー(溶媒:ジクロロメタン)により精製した。目的物の4,5,6,7-テトラフルオロ-2H-イソインドールを、収率22.6%(0.64g、3.4mmol)で得た。 In a four-necked reaction vessel equipped with a reflux condenser, a dropping funnel, and a thermometer, 3.0 g (15.0 mmol) of tetrafluorophthalonitrile (manufactured by Nippon Shokubai Co., Ltd.) was added, and after nitrogen substitution, it was dehydrated with a syringe Added 75 ml. While cooling in an ice bath, 61 ml (60.3 mmol) of a 0.99 M solution of diisobutylaluminum hydride (purchased from Kanto Chemical Co., Ltd.) in toluene was slowly added dropwise from the dropping funnel. After completion of the dropwise addition, the mixture was stirred at room temperature overnight, and then quenched by adding 45 ml (90 mmol) of 2 M hydrochloric acid while cooling in an ice bath. The reaction product was extracted with ethyl acetate, neutralized with aqueous sodium bicarbonate solution, washed with saturated brine, and dried over anhydrous sodium sulfate, and the extract was concentrated by an evaporator. The concentrate was purified by silica gel column chromatography (solvent: dichloromethane). The desired product 4,5,6,7-tetrafluoro-2H-isoindole was obtained in 22.6% yield (0.64 g, 3.4 mmol).
 実施例2:テトラフルオロフタロニトリルの水素化ジイソブチルアルミニウムによる還元
 実施例1と同じ条件で反応を行ったが、クエンチの際にプロトン酸を用いずに、水100mlのみを添加した。水を加え始めて間もなく、反応溶液はゲル化した。セライトろ過で固形物を除き、実施例1と同じ操作で精製を行ったところ、目的物の4,5,6,7-テトラフルオロ-2H-イソインドールを収率0.6%(0.017g、0.09mmol)で得た。
Example 2 Reduction of Tetrafluorophthalonitrile with Diisobutylaluminium The reaction was carried out under the same conditions as in Example 1, but only 100 ml of water was added during quenching without using a protonic acid. Shortly after the addition of water, the reaction solution gelled. The solid matter was removed by celite filtration, and purification was performed by the same operation as in Example 1. As a result, the target substance 4,5,6,7-tetrafluoro-2H-isoindole was obtained in a yield of 0.6% (0.017 g) , 0.09 mmol).
 実施例3:テトラフルオロフタロニトリルの水素化ジイソブチルアルミニウムによる還元
 濃縮物を昇華精製したこと以外は、実施例1と同様の操作で、4,5,6,7-テトラフルオロ-2H-イソインドールを収率9.87%(0.28g、1.48mmol)で得た。
Example 3: Reduction of tetrafluorophthalonitrile by hydrogenated diisobutylaluminum In the same manner as in Example 1, except that the concentrate was purified by sublimation, 4,5,6,7-tetrafluoro-2H-isoindole was used. The yield was 9.87% (0.28 g, 1.48 mmol).
 実施例4:テトラフルオロフタロニトリルの水素化ジイソブチルアルミニウムによる還元
 テトラフルオロフタロニトリル0.2g(1.06mmol)をナスフラスコに加え、窒素置換した後、脱水トルエン6mlを加えた。氷浴中で冷却しながら、0.95Mの水素化ジイソブチルアルミニウムのトルエン溶液4.21ml(4mmol)をゆっくりと滴下し、室温に戻した後、23時間撹拌した。その後、反応混合物に1MのNaOH水溶液15ml(15mmol)をゆっくりと加えた。さらに酢酸エチルを加えて、ゲル状物をセライトろ過し、反応物を酢酸エチルで抽出し、純水で数回洗浄し、無水硫酸ナトリウムで脱水し、減圧下で溶媒を除去し、濃縮物を、シリカゲルショートカラムでのクロマトグラフィー(溶媒:クロロホルム)により精製した。目的物の4,5,6,7-テトラフルオロ-2H-イソインドール(肌色の固体)を、収率20.8%(39.4mg、0.21mmol)で得た。
Example 4 Reduction of Tetrafluorophthalonitrile with Diisobutylaluminum Hydrogenate 0.2 g (1.06 mmol) of tetrafluorophthalonitrile was added to an eggplant flask and purged with nitrogen, and then 6 ml of dehydrated toluene was added. While cooling in an ice bath, 4.21 ml (4 mmol) of a 0.95 M solution of diisobutylaluminum hydride in toluene was slowly added dropwise, and after returning to room temperature, the mixture was stirred for 23 hours. After that, 15 ml (15 mmol) of 1 M aqueous NaOH solution was slowly added to the reaction mixture. Further, ethyl acetate is added, the gel is filtered through celite, the reaction product is extracted with ethyl acetate, washed several times with pure water, dried over anhydrous sodium sulfate, the solvent is removed under reduced pressure, and the concentrate is The residue was purified by chromatography on silica gel short column (solvent: chloroform). The desired product 4,5,6,7-tetrafluoro-2H-isoindole (skin solid) was obtained in 20.8% yield (39.4 mg, 0.21 mmol).
 実施例5:4,5-ビス(ペンタフルオロフェノキシ)-3,6-ジフルオロフタロニトリルの水素化ジイソブチルアルミニウムによる還元 Example 5: Reduction of 4,5-bis (pentafluorophenoxy) -3,6-difluorophthalonitrile with diisobutylaluminum hydride
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 まず原料の4,5-ビス(ペンタフルオロフェノキシ)-3,6-ジフルオロフタロニトリルを以下のようにして製造した:滴下ロートおよび温度計を備えた200ml反応容器にテトラフルオロフタロニトリル20.1g(100.45mmol)、フッ化カリウム13.99g(240.79mmol)、メチルイソブチルケトン130mlを加えた。氷浴により冷却した後、滴下ロートから、メチルイソブチルケトン70ml中にペンタフルオロフェノール37.0g(201.02mmol)を溶解させた溶液をゆっくりと加え、次いで室温下で2日間撹拌して反応を行った。この反応溶液をろ過して無機塩を除き、分液ロートを用いて水洗し、無水硫酸ナトリウムで脱水した後、反応溶液をエバポレーターで濃縮した。濃縮物を、トルエン/ヘキサン溶媒で再沈精製することにより、4,5-ビス(ペンタフルオロフェノキシ)-3,6-ジフルオロフタロニトリルを、収率70.83%(37.4g、70.81mmol)で得た。 The raw material 4,5-bis (pentafluorophenoxy) -3,6-difluorophthalonitrile was first prepared as follows: 20.1 g of tetrafluorophthalonitrile in a 200 ml reaction vessel equipped with a dropping funnel and a thermometer 100.45 mmol), 13.99 g (240.79 mmol) of potassium fluoride and 130 ml of methyl isobutyl ketone were added. After cooling with an ice bath, a solution of 37.0 g (201.02 mmol) of pentafluorophenol dissolved in 70 ml of methyl isobutyl ketone is slowly added from the dropping funnel, and then the reaction is carried out by stirring at room temperature for 2 days The The reaction solution was filtered to remove inorganic salts, washed with water using a separatory funnel, and dried over anhydrous sodium sulfate, and then the reaction solution was concentrated with an evaporator. The concentrate is purified by reprecipitation with a toluene / hexane solvent to give 4,5-bis (pentafluorophenoxy) -3,6-difluorophthalonitrile in a yield of 70.83% (37.4 g, 70.81 mmol). Obtained by).
 次いで還流冷却器、滴下ロートおよび温度計を備えた四つ口反応容器に、4,5-ビス(ペンタフルオロフェノキシ)-3,6-ジフルオロフタロニトリル1.50g(2.84mmol)を加え、窒素置換した後、シリンジで脱水トルエン25.5mlを加えた。氷浴で冷却しながら、0.99Mの水素化ジイソブチルアルミニウム(関東化学株式会社から購入)のトルエン溶液11.5ml(11.4mmol)を、滴下ロートからゆっくりと滴下した。滴下終了後、95℃で4時間反応させた後、室温まで放冷し、続いて氷浴中で冷却しながら、2Mの塩酸10ml(20mmol)を加えてクエンチした。反応物を酢酸エチルで抽出し、重曹水で中和し、飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー(溶媒:ジクロロメタン)により精製した。目的物の5,6-ビス(ペンタフルオロフェノキシ)-4,7-ジフルオロ-2H-イソインドールを、収率34.04%(0.50g、0.97mmol)で得た。 Next, 1.50 g (2.84 mmol) of 4,5-bis (pentafluorophenoxy) -3,6-difluorophthalonitrile was added to a four-necked reaction vessel equipped with a reflux condenser, a dropping funnel and a thermometer, and nitrogen was added. After substitution, 25.5 ml of dehydrated toluene was added by a syringe. While cooling with an ice bath, 11.5 ml (11.4 mmol) of a toluene solution of 0.99 M hydrogenated diisobutylaluminum (purchased from Kanto Chemical Co., Ltd.) was slowly dropped from the dropping funnel. After completion of the dropwise addition, the reaction was allowed to proceed at 95 ° C. for 4 hours, and allowed to cool to room temperature, followed by quenching by adding 10 ml (20 mmol) of 2 M hydrochloric acid while cooling in an ice bath. The reaction product was extracted with ethyl acetate, neutralized with aqueous sodium bicarbonate solution, washed with saturated brine, and dried over anhydrous sodium sulfate, and the extract was concentrated by an evaporator. The concentrate was purified by silica gel column chromatography (solvent: dichloromethane). The desired product 5,6-bis (pentafluorophenoxy) -4,7-difluoro-2H-isoindole was obtained in a yield of 34.04% (0.50 g, 0.97 mmol).
 5,6-ビス(ペンタフルオロフェノキシ)-4,7-ジフルオロ-2H-イソインドールのスペクトルデータ
 (1)NMRスペクトル(装置:日本電子製、型式:JNM-AL400)
 1H-NMR(CDCl3):δ7.31(m、2H)、9.62(brs、1H)
 19F-NMR(CDCl3):δ-143.57(s、2F)、-157.50(m、4F)、-162.50(m、2F)、-163.49(m、4F)
 (2)マススペクトル(装置:日本電子製、型式:JMS-MS 700v)
 MS(EI):m/z=518(M+)(計算分子量:517)
Spectral data of 5,6-bis (pentafluorophenoxy) -4,7-difluoro-2H-isoindole (1) NMR spectrum (apparatus: JEOL, model: JNM-AL400)
1 H-NMR (CDCl 3 ): δ 7.31 (m, 2 H), 9.62 (brs, 1 H)
19 F-NMR (CDCl 3 ): δ-143.57 (s, 2F), -157.50 (m, 4F), -162.50 (m, 2F), -163.49 (m, 4F)
(2) Mass spectrum (Device: manufactured by Nippon Denshi, model: JMS-MS 700v)
MS (EI): m / z = 518 (M + ) (calculated molecular weight: 517)
 実施例6:4-ペンタフルオロフェノキシ-3,5,6-トリフルオロフタロニトリルの水素化ジイソブチルアルミニウムによる還元 Example 6: Reduction of 4-pentafluorophenoxy-3,5,6-trifluorophthalonitrile with diisobutylaluminum hydride
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 実施例5と同様の方法で製造した4-ペンタフルオロフェノキシ-3,5,6-トリフルオロフタロニトリル0.364g(1mmol)をナスフラスコに加え、窒素置換した後、脱水トルエン7mlを加えた。氷浴中で冷却しながら、0.99Mの水素化ジイソブチルアルミニウムのトルエン溶液4.04ml(4mmol)をゆっくりと滴下し、室温に戻した後、24時間撹拌した。その後、反応混合物に1MのNaOH水溶液16ml(16mmol)をゆっくりと加えた。さらに酢酸エチルを加えて、ゲル状物をセライトろ過し、反応物を酢酸エチルで抽出し、純水で数回洗浄し、無水硫酸ナトリウムで脱水し、減圧下で溶媒を除去し、濃縮物を、シリカゲルショートカラムでのクロマトグラフィー(溶媒:ジクロロメタン)により精製した。目的物の5-ペンタフルオロフェノキシ-4,6,7-トリフルオロ-2H-イソインドール(褐色の固体)を、収率17.5%(61.7mg、0.17mmol)で得た。 After 0.364 g (1 mmol) of 4-pentafluorophenoxy-3,5,6-trifluorophthalonitrile prepared in the same manner as in Example 5 was added to an eggplant flask and purged with nitrogen, 7 ml of dehydrated toluene was added. While cooling in an ice bath, 4.04 ml (4 mmol) of a 0.99 M solution of diisobutylaluminum hydride in toluene was slowly added dropwise, and after returning to room temperature, the mixture was stirred for 24 hours. After that, 16 ml (16 mmol) of 1 M aqueous NaOH solution was slowly added to the reaction mixture. Further, ethyl acetate is added, the gel is filtered through celite, the reaction product is extracted with ethyl acetate, washed several times with pure water, dried over anhydrous sodium sulfate, the solvent is removed under reduced pressure, and the concentrate is The residue was purified by chromatography on silica gel short column (solvent: dichloromethane). The objective 5-pentafluorophenoxy-4,6,7-trifluoro-2H-isoindole (brown solid) was obtained in a yield of 17.5% (61.7 mg, 0.17 mmol).
 5-ペンタフルオロフェノキシ-4,6,7-トリフルオロ-2H-イソインドールのNMRスペクトル(装置:日本電子製、型式:JNM-AL400)
 1H-NMR(CDCl3):δ7.35(m、2H)、9.57(brs、1H)
 19F-NMR(CDCl3):δ-143.22(s、1F)、-151.45(m、1F)、-157.15(m、2F)、-162.22(m、1F)、-163.02(m、1F)、163.31(m、2F)
NMR spectrum of 5-pentafluorophenoxy-4,6,7-trifluoro-2H-isoindole (apparatus: JEOL, model: JNM-AL400)
1 H-NMR (CDCl 3 ): δ 7.35 (m, 2 H), 9.57 (brs, 1 H)
19 F-NMR (CDCl 3 ): δ-143.22 (s, 1F), 151.45 (m, 1F), -157.15 (m, 2F), -162.22 (m, 1F), -163.02 (m, 1F), 163.31 (m, 2F)
 実施例7:4,5-ビス(ペンタフルオロチオフェノキシ)-3,6-ジフルオロフタロニトリルの水素化ジイソブチルアルミニウムによる還元 Example 7: Reduction of 4,5-bis (pentafluorothiophenoxy) -3,6-difluorophthalonitrile with diisobutylaluminum hydride
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 実施例5と同様の方法で製造した4,5-ビス(ペンタフルオロチオフェノキシ)-3,6-ジフルオロフタロニトリル0.560g(1mmol)をナスフラスコに加え、窒素置換した後、脱水トルエン30mlを加えた。氷浴中で冷却しながら、0.99Mの水素化ジイソブチルアルミニウムのトルエン溶液4.04ml(4mmol)をゆっくりと滴下し、室温に戻した後、24時間撹拌した。その後、反応混合物に1MのNaOH水溶液16ml(16mmol)をゆっくりと加えた。さらに酢酸エチルを加えて、ゲル状物をセライトろ過し、反応物を酢酸エチルで抽出し、純水で数回洗浄し、無水硫酸ナトリウムで脱水し、減圧下で溶媒を除去し、濃縮物を、シリカゲルショートカラムでのクロマトグラフィー(溶媒:ジクロロメタン)により精製した。目的物の5,6-ビス(ペンタフルオロチオフェノキシ)-4,7-ジフルオロ-2H-イソインドール(緑色の固体)を、収率20.2%(110.7mg、0.20mmol)で得た。 After adding 0.560 g (1 mmol) of 4,5-bis (pentafluorothiophenoxy) -3,6-difluorophthalonitrile prepared by the same method as in Example 5 to an eggplant flask and carrying out nitrogen substitution, 30 ml of dehydrated toluene was added. added. While cooling in an ice bath, 4.04 ml (4 mmol) of a 0.99 M solution of diisobutylaluminum hydride in toluene was slowly added dropwise, and after returning to room temperature, the mixture was stirred for 24 hours. After that, 16 ml (16 mmol) of 1 M aqueous NaOH solution was slowly added to the reaction mixture. Further, ethyl acetate is added, the gel is filtered through celite, the reaction product is extracted with ethyl acetate, washed several times with pure water, dried over anhydrous sodium sulfate, the solvent is removed under reduced pressure, and the concentrate is The residue was purified by chromatography on silica gel short column (solvent: dichloromethane). The desired product 5,6-bis (pentafluorothiophenoxy) -4,7-difluoro-2H-isoindole (green solid) was obtained in a yield of 20.2% (110.7 mg, 0.20 mmol) .
 5,6-ビス(ペンタフルオロチオフェノキシ)-4,7-ジフルオロ-2H-イソインドールのスペクトルデータ
 (1)NMRスペクトル(装置:日本電子製、型式:JNM-AL400)
 1H-NMR(CDCl3):δ7.35(q、J=1.5Hz、2H)、9.62(brs、1H)
 19F-NMR(CDCl3):δ-109.65(s、2F)、-134.32(m、4F)、-153.89(t、J=21Hz、2F)、-161.71(m、4F)
 (2)マススペクトル(装置:日本電子製、型式:JMS-MS 700v)
 MS(EI):m/z=549(M+)(計算分子量:548.95)
Spectral data of 5,6-bis (pentafluorothiophenoxy) -4,7-difluoro-2H-isoindole (1) NMR spectrum (apparatus: JEOL, model: JNM-AL400)
1 H-NMR (CDCl 3 ): δ 7.35 (q, J = 1.5 Hz, 2 H), 9.62 (brs, 1 H)
19 F-NMR (CDCl 3 ): δ-109.65 (s, 2F), -134.32 (m, 4F), -153.89 (t, J = 21 Hz, 2F), -161.71 (m. , 4F)
(2) Mass spectrum (Device: manufactured by Nippon Denshi, model: JMS-MS 700v)
MS (EI): m / z = 549 (M + ) (calculated molecular weight: 548.95)
 実施例8:4-クロロ-3,5,6-トリフルオロフタロニトリルの水素化ジイソブチルアルミニウムによる還元 Example 8: Reduction of 4-chloro-3,5,6-trifluorophthalonitrile with diisobutylaluminum hydride
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 まず原料の4-クロロ-3,5,6-トリフルオロフタロニトリルを以下のようにして製造した:還流冷却器を備えた5L反応容器にテトラフルオロフタロニトリル1000g(5mol)、N-メチル-2-ピロリドン1004g、アセトニトリル2343gを仕込み、75℃まで昇温した後、塩化リチウム233g(5.5mol)を逐次加え、この温度で7時間反応させた。反応溶液をエバポレーターにより濃縮し、あらかたのアセトニトリルを除去した後に、濃縮物を水へ注ぎ、析出物をろ過することで、粗精製物を得た。引き続き粗精製物をメチルイソブチルケトンに溶解させ、水洗することで無機塩を除去し、水相と有機相とを分離して、有機相を無水硫酸ナトリウムで脱水し、エバポレーターにより濃縮し、濃縮物を減圧蒸留することで、4-クロロ-3,5,6-トリフルオロフタロニトリルを、収率40.7%(440.5g、2.03mol)で得た。 The starting 4-chloro-3,5,6-trifluorophthalonitrile was first prepared as follows: 1000 g (5 mol) of tetrafluorophthalonitrile, N-methyl-2 in a 5 L reaction vessel equipped with a reflux condenser. 1004 g of pyrrolidone and 2343 g of acetonitrile were charged, the temperature was raised to 75 ° C., 233 g (5.5 mol) of lithium chloride were successively added, and reaction was carried out at this temperature for 7 hours. The reaction solution was concentrated by an evaporator to remove any acetonitrile, and then the concentrate was poured into water, and the precipitate was filtered to obtain a crudely purified product. Subsequently, the crude product is dissolved in methyl isobutyl ketone and washed with water to remove inorganic salts, the aqueous phase and the organic phase are separated, the organic phase is dried over anhydrous sodium sulfate, concentrated by an evaporator and concentrated Under reduced pressure to give 4-chloro-3,5,6-trifluorophthalonitrile in a yield of 40.7% (440.5 g, 2.03 mol).
 次いで還流冷却器、滴下ロートおよび温度計を備えた四つ口反応容器に、4-クロロ-3,5,6-トリフルオロフタロニトリル1.50g(6.93mmol)を加え、窒素置換した後、シリンジで脱水トルエン7mlを加えた。氷浴で冷却しながら、0.99Mの水素化ジイソブチルアルミニウム(関東化学株式会社から購入)のトルエン溶液28ml(27.7mmol)を、滴下ロートからゆっくりと滴下した。滴下終了後、95℃で4時間反応させた後、室温まで放冷し、続いて氷浴中で冷却しながら、2Mの塩酸21ml(42mmol)を加えてクエンチした。反応物を酢酸エチルで抽出し、重曹水で中和し、飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー(溶媒:ジクロロメタン)により精製した。目的物の5-クロロ-4,6,7-トリフルオロ-2H-イソインドールを、収率12.64%(0.18g、0.88mmol)で得た。 Next, 1.50 g (6.93 mmol) of 4-chloro-3,5,6-trifluorophthalonitrile is added to a four-necked reaction vessel equipped with a reflux condenser, a dropping funnel and a thermometer, and the system is purged with nitrogen, 7 ml of dehydrated toluene was added by a syringe. While cooling with an ice bath, 28 ml (27.7 mmol) of a toluene solution of 0.99 M hydrogenated diisobutylaluminum (purchased from Kanto Chemical Co., Ltd.) was slowly dropped from the dropping funnel. After completion of the dropwise addition, the reaction was allowed to proceed at 95 ° C. for 4 hours, and allowed to cool to room temperature, followed by quenching by adding 21 ml (42 mmol) of 2 M hydrochloric acid while cooling in an ice bath. The reaction product was extracted with ethyl acetate, neutralized with aqueous sodium bicarbonate solution, washed with saturated brine, and dried over anhydrous sodium sulfate, and the extract was concentrated by an evaporator. The concentrate was purified by silica gel column chromatography (solvent: dichloromethane). The desired product 5-chloro-4,6,7-trifluoro-2H-isoindole was obtained in a yield of 12.64% (0.18 g, 0.88 mmol).
 5-クロロ-4,6,7-トリフルオロ-2H-イソインドールのスペクトルデータ
 (1)NMRスペクトル(装置:日本電子製、型式:JNM-AL400)
 1H-NMR(CDCl3):δ7.29(m、2H)、9.39(brs、1H)
 19F-NMR(CDCl3):δ-125.66(dt、J=20Hz,2Hz、1F)、-150.76(dd、J=16Hz,2Hz、1F)、-151.58(ddd、J=20Hz,16Hz,2Hz、1F)、
 (2)マススペクトル(装置:日本電子製、型式:JMS-MS 700v)
 MS(EI):m/z=205(M+)(計算分子量:204.99)
Spectral data of 5-chloro-4,6,7-trifluoro-2H-isoindole (1) NMR spectrum (instrument: JEOL, model: JNM-AL400)
1 H-NMR (CDCl 3 ): δ 7.29 (m, 2H), 9.39 (brs, 1H)
19 F-NMR (CDCl 3 ): δ -125.66 (dt, J = 20 Hz, 2 Hz, 1 F), -150.76 (dd, J = 16 Hz, 2 Hz, 1 F), -151.58 (ddd, J = 20 Hz, 16 Hz, 2 Hz, 1 F),
(2) Mass spectrum (Device: manufactured by Nippon Denshi, model: JMS-MS 700v)
MS (EI): m / z = 205 (M + ) (calculated molecular weight: 204.99)
 実施例9:4,5-ジクロロ-3,6-ジフルオロフタロニトリルの水素化ジイソブチルアルミニウムによる還元 Example 9: Reduction of 4,5-dichloro-3,6-difluorophthalonitrile with diisobutylaluminum hydride
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 実施例8と同様の方法で製造した4,5-ジクロロ-3,6-ジフルオロフタロニトリル0.233g(1mmol)をナスフラスコに加え、窒素置換した後、脱水トルエン7mlを加えた。氷浴中で冷却しながら、0.99Mの水素化ジイソブチルアルミニウムのトルエン溶液4.04ml(4mmol)をゆっくりと滴下し、室温に戻した後、24時間撹拌した。その後、反応混合物に1MのNaOH水溶液16ml(16mmol)をゆっくりと加えた。さらに酢酸エチルを加えて、ゲル状物をセライトろ過し、反応物を酢酸エチルで抽出し、純水で数回洗浄し、無水硫酸ナトリウムで脱水し、減圧下で溶媒を除去し、濃縮物を、シリカゲルショートカラムでのクロマトグラフィー(溶媒:ジクロロメタン)により精製した。目的物の5,6-ジクロロ-4,7-ジフルオロ-2H-イソインドール(淡黄色の固体)を、収率27.1%(60.3mg、0.27mmol)で得た。 0.233 g (1 mmol) of 4,5-dichloro-3,6-difluorophthalonitrile prepared in the same manner as in Example 8 was added to an eggplant flask and purged with nitrogen, and then 7 ml of dehydrated toluene was added. While cooling in an ice bath, 4.04 ml (4 mmol) of a 0.99 M solution of diisobutylaluminum hydride in toluene was slowly added dropwise, and after returning to room temperature, the mixture was stirred for 24 hours. After that, 16 ml (16 mmol) of 1 M aqueous NaOH solution was slowly added to the reaction mixture. Further, ethyl acetate is added, the gel is filtered through celite, the reaction product is extracted with ethyl acetate, washed several times with pure water, dried over anhydrous sodium sulfate, the solvent is removed under reduced pressure, and the concentrate is The residue was purified by chromatography on silica gel short column (solvent: dichloromethane). The desired product, 5,6-dichloro-4,7-difluoro-2H-isoindole (a pale yellow solid) was obtained in a yield of 27.1% (60.3 mg, 0.27 mmol).
 5,6-ジクロロ-4,7-ジフルオロ-2H-イソインドールのスペクトルデータ
 (1)NMRスペクトル(装置:日本電子製、型式:JNM-AL400)
 1H-NMR(CDCl3):δ7.33(q、J=1.5Hz、2H)、9.50(brs、1H)
 19F-NMR(CDCl3):δ-122.01(s、2F)
 (2)マススペクトル(装置:日本電子製、型式:JMS-MS 700v)
 MS(EI):m/z=221(M+)(計算分子量:220.96)
Spectral data of 5,6-dichloro-4,7-difluoro-2H-isoindole (1) NMR spectrum (apparatus: JEOL, model: JNM-AL400)
1 H-NMR (CDCl 3 ): δ 7.33 (q, J = 1.5 Hz, 2 H), 9.50 (brs, 1 H)
19 F-NMR (CDCl 3 ): δ-122.01 (s, 2F)
(2) Mass spectrum (Device: manufactured by Nippon Denshi, model: JMS-MS 700v)
MS (EI): m / z = 221 (M + ) (calculated molecular weight: 220.96)
 実施例10:4,5-ビス(ヘキシルチオ)-3,6-ジフルオロフタロニトリルの水素化ジイソブチルアルミニウムによる還元 Example 10: Reduction of 4,5-bis (hexylthio) -3,6-difluorophthalonitrile with diisobutylaluminum hydride
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 実施例5と同様の方法で製造した4,5-ビス(ヘキシルチオ)-3,6-ジフルオロフタロニトリル2.0g(5.04mmol)をナスフラスコに加え、窒素置換した後、脱水トルエン40mlを加えた。氷浴中で冷却しながら、0.99Mの水素化ジイソブチルアルミニウムのトルエン溶液20.5ml(20.30mmol)をゆっくりと滴下し、室温に戻した後、16時間撹拌した。その後、反応混合物に1MのNaOH水溶液20ml(20mmol)をゆっくりと加えた。さらに酢酸エチルを加えて、ゲル状物をセライトろ過し、反応物を酢酸エチルで抽出し、純水で数回洗浄し、無水硫酸ナトリウムで脱水し、減圧下で溶媒を除去し、濃縮物を、シリカゲルショートカラムでのクロマトグラフィー(溶媒:ジクロロメタン)により精製した。目的物の5,6-ビス(ヘキシルチオ)-4,7-ジフルオロ-2H-イソインドール(黄色の液体)を、収率22.1%(60.429g、1.11mmol)で得た。 After adding 2.0 g (5.04 mmol) of 4,5-bis (hexylthio) -3,6-difluorophthalonitrile prepared by the same method as in Example 5 to an eggplant flask and carrying out nitrogen substitution, 40 ml of dehydrated toluene was added. The While cooling in an ice bath, 20.5 ml (20.30 mmol) of a 0.99 M solution of diisobutylaluminum hydride in toluene was slowly added dropwise, and after returning to room temperature, the mixture was stirred for 16 hours. Then, 20 ml (20 mmol) of 1 M aqueous NaOH solution was slowly added to the reaction mixture. Further, ethyl acetate is added, the gel is filtered through celite, the reaction product is extracted with ethyl acetate, washed several times with pure water, dried over anhydrous sodium sulfate, the solvent is removed under reduced pressure, and the concentrate is The residue was purified by chromatography on silica gel short column (solvent: dichloromethane). The desired product 5,6-bis (hexylthio) -4,7-difluoro-2H-isoindole (yellow liquid) was obtained in a yield of 22.1% (60.429 g, 1.11 mmol).
 5,6-ビス(ヘキシルチオ)-4,7-ジフルオロ-2H-イソインドールのNMRスペクトル(装置:バリアン社製、型式:マーキュリー2000)
 1H-NMR(CDCl3):δ0.85(t、6H、J=6.4Hz)、1.26~1.66(m、16H)、2.89(t、4H,J=7.3Hz)、7.32(m、2H)、9.6(brs、1H)
 19F-NMR(CDCl3、ヘキサフルオロベンゼン):δ50.08(s、2F)
NMR spectrum of 5,6-bis (hexylthio) -4,7-difluoro-2H-isoindole (apparatus: manufactured by Varian, model: Mercury 2000)
1 H-NMR (CDCl 3 ): δ 0.85 (t, 6 H, J = 6.4 Hz), 1.26 to 1.66 (m, 16 H), 2.89 (t, 4 H, J = 7.3 Hz ), 7.32 (m, 2 H), 9.6 (brs, 1 H)
19 F-NMR (CDCl 3 , hexafluorobenzene): δ 50.08 (s, 2F)
 実施例11:テトラフルオロフタロニトリルのBH3による還元 Example 11: Reduction of tetrafluorophthalonitrile with BH 3
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 還流冷却器、滴下ロートおよび温度計を備えた三つ口反応容器を窒素置換した後、0.99MのTHF-BH3錯体(関東化学株式会社より購入)のTHF溶液20ml(19.8mmol)およびTHF35mlを加えた。別途、テトラフルオロフタロニトリル3.0g(14.99mmol)をトルエン10mlに溶解させた溶液を準備し、この溶液を、室温下で反応容器にゆっくりと滴下した。滴下終了後、65℃まで加熱して4時間反応させた。その後、再び反応溶液を室温まで戻し、氷浴中で冷却しながら、2Mの塩酸18ml(36mmol)を加えてクエンチした。反応物を酢酸エチルで抽出し、蒸留水、次いで飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー(溶媒:ジクロロメタン)により精製した。目的物の4,5,6,7-テトラフルオロ-2H-イソインドールを、収率37%(1.05g、5.55mmol)で得た。 After replacing the three-necked reaction vessel equipped with a reflux condenser, a dropping funnel and a thermometer with nitrogen, 20 ml (19.8 mmol) of a 0.99 M THF-BH 3 complex (purchased from Kanto Chemical Co., Ltd.) in THF and 35 ml of THF was added. Separately, a solution of 3.0 g (14.99 mmol) of tetrafluorophthalonitrile dissolved in 10 ml of toluene was prepared, and this solution was slowly dropped into the reaction vessel at room temperature. After completion of the dropwise addition, the mixture was heated to 65 ° C. and reacted for 4 hours. After that, the reaction solution was returned to room temperature again, and while cooling in an ice bath, it was quenched by adding 18 ml (36 mmol) of 2 M hydrochloric acid. The reaction product was extracted with ethyl acetate, washed with distilled water and then with brine and dried over anhydrous sodium sulfate, and the extract was concentrated by an evaporator. The concentrate was purified by silica gel column chromatography (solvent: dichloromethane). The desired product 4,5,6,7-tetrafluoro-2H-isoindole was obtained in a yield of 37% (1.05 g, 5.55 mmol).
 実施例12:テトラフルオロフタロニトリルの接触水素化法による還元 Example 12: Reduction of tetrafluorophthalonitrile by catalytic hydrogenation
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 100mlの三つ口フラスコに、活性炭にパラジウムを担持させた触媒(アルドリッチ社より購入、Pd:10質量%)0.75g(Pd量:0.70mmol)、メタノール30ml、3Mの硫酸1.3ml(3.9mmol)を添加した。次いで系内を減圧にしてから水素を供給する操作(水素置換)を3回繰り返した後、水素バルーンで加圧(約1.1気圧)した状態で、室温で10分間撹拌して触媒を活性化させた。その後にテトラフルオロフタロニトリル1.50g(7.5mmol)をトルエン20mlに溶解させた溶液をナスフラスコに加えて、室温で13時間激しく撹拌した。反応溶液を重曹水で中和した後、セライトろ過によりPd触媒(Pd/C)を除去し、クロロホルムで抽出し、蒸留水、次いで飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー(溶媒:クロロホルム)により精製した。目的物の4,5,6,7-テトラフルオロ-2H-イソインドールを、収率41.6%(0.59g、3.12mmol)で得た。 In a 100 ml three-necked flask, palladium activated carbon supported palladium (purchased from Aldrich, Pd: 10% by mass) 0.75 g (Pd amount: 0.70 mmol), 30 ml of methanol, 1.3 ml of 3 M sulfuric acid 3.9 mmol) were added. Next, after the system is depressurized and the operation of supplying hydrogen (hydrogen substitution) is repeated three times, the catalyst is activated by stirring for 10 minutes at room temperature while being pressurized with a hydrogen balloon (about 1.1 atm) It turned Thereafter, a solution of 1.50 g (7.5 mmol) of tetrafluorophthalonitrile dissolved in 20 ml of toluene was added to an eggplant flask and vigorously stirred at room temperature for 13 hours. The reaction solution is neutralized with aqueous sodium bicarbonate solution, then the Pd catalyst (Pd / C) is removed by celite filtration, extracted with chloroform, washed with distilled water and then with saturated brine, dried over anhydrous sodium sulfate and then extracted The product was concentrated by an evaporator. The concentrate was purified by silica gel column chromatography (solvent: chloroform). The desired product 4,5,6,7-tetrafluoro-2H-isoindole was obtained in 41.6% yield (0.59 g, 3.12 mmol).
 実施例13:テトラフルオロフタロニトリルの接触水素化法による還元 Example 13: Reduction of tetrafluorophthalonitrile by catalytic hydrogenation
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 100mlの三つ口フラスコに、活性炭にパラジウムを担持させた触媒(アルドリッチ社より購入、Pd:10質量%)0.5g(Pd量:0.47mmol)、酢酸エチル20ml、トリフルオロ酢酸0.6g(5.26mmol)を添加した。次いで系内を減圧にしてから水素を供給する操作(水素置換)を3回繰り返した後、水素バルーンで加圧(約1.1気圧)した状態で、室温下で30分間撹拌して触媒を活性化させた。その後にテトラフルオロフタロニトリル1.00g(5mmol)を酢酸エチル20mlに溶解させた溶液をナスフラスコに加えて、室温で13時間激しく撹拌した。反応溶液を重曹水で中和した後、セライトろ過によりPd触媒(Pd/C)を除去し、クロロホルムで抽出し、蒸留水、次いで飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー(溶媒:クロロホルム)により精製した。目的物の4,5,6,7-テトラフルオロ-2H-イソインドールを、収率33.4%(0.316g、1.67mmol)で得た。 0.5 g (Pd amount: 0.47 mmol), a catalyst (purchased from Aldrich, Pd: 10% by mass) in which palladium is supported on activated carbon in a 100 ml three-necked flask, 20 ml of ethyl acetate, 0.6 g of trifluoroacetic acid (5.26 mmol) was added. Next, after the system is depressurized and the operation of supplying hydrogen (hydrogen substitution) is repeated three times, the catalyst is stirred for 30 minutes at room temperature under pressure (about 1.1 atm) with a hydrogen balloon. It was activated. Thereafter, a solution of 1.00 g (5 mmol) of tetrafluorophthalonitrile dissolved in 20 ml of ethyl acetate was added to an eggplant flask and vigorously stirred at room temperature for 13 hours. The reaction solution is neutralized with aqueous sodium bicarbonate solution, then the Pd catalyst (Pd / C) is removed by celite filtration, extracted with chloroform, washed with distilled water and then with saturated brine, dried over anhydrous sodium sulfate and then extracted The product was concentrated by an evaporator. The concentrate was purified by silica gel column chromatography (solvent: chloroform). The desired product 4,5,6,7-tetrafluoro-2H-isoindole was obtained in 33.4% yield (0.316 g, 1.67 mmol).
 実施例14:テトラフルオロフタロニトリルの接触水素化法による還元 Example 14: Reduction of tetrafluorophthalonitrile by catalytic hydrogenation
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 100mlのナスフラスコに、Rh/アルミナ触媒(アルドリッチ社より購入、Rh:5質量%)1.0g(Rh量:0.49mmol)およびメタノール20mlを加えて、水素置換し、室温下で45分間撹拌した。その後に酢酸0.28ml(5mmol)を加え、テトラフルオロフタロニトリル1.0g(5mmol)をメタノール20mlに溶解させた溶液を滴下し、再び水素置換した後、室温で65時間撹拌した。その後に飽和炭酸水素ナトリウム水溶液4.5mlを加え、セライトろ過し、酢酸エチル、クロロホルムで抽出し、蒸留水で洗浄し、減圧下で濃縮して黒紫色の固体0.96gを得た。これをシリカシリカゲルカラムクロマトグラフィー(溶媒:クロロホルム)により精製して、肌色の固体として、目的物の4,5,6,7-テトラフルオロ-2H-イソインドールを、収率4.1%(0.038g、0.20mmol)で得た。 In a 100 ml eggplant flask, 1.0 g (Rh amount: 0.49 mmol) of Rh / alumina catalyst (purchased from Aldrich, Rh: 5% by mass) and 20 ml of methanol are added and hydrogen-replaced, and stirred at room temperature for 45 minutes did. Thereafter, 0.28 ml (5 mmol) of acetic acid was added, a solution of 1.0 g (5 mmol) of tetrafluorophthalonitrile dissolved in 20 ml of methanol was added dropwise, and after hydrogen substitution again, the mixture was stirred at room temperature for 65 hours. Thereafter, 4.5 ml of a saturated aqueous solution of sodium hydrogen carbonate was added, followed by filtration through Celite, extraction with ethyl acetate and chloroform, washing with distilled water, and concentration under reduced pressure to obtain 0.96 g of a black purple solid. The product is purified by silica gel column chromatography (solvent: chloroform) to give 4,5,6,7-tetrafluoro-2H-isoindole as a skin-colored solid in a yield of 4.1% (0%). .038 g, 0.20 mmol).
 実施例15:テトラフルオロフタロニトリルの接触水素化法による還元 Example 15: Reduction of tetrafluorophthalonitrile by catalytic hydrogenation
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 1000mlの三つ口フラスコに、活性炭に水酸化パラジウムを担持させた触媒(アルドリッチ社より購入、Pd:20質量%)3.77g(Pd量:7.09mmol)、メタノール300ml、3Mの硫酸12.5ml(37.5mmol)を添加した。次いで系内を減圧にしてから水素を供給する操作(水素置換)を3回繰り返した後、水素バルーンで加圧(約1.1気圧)した状態で、室温で10分間撹拌して触媒を活性化させた。その後にテトラフルオロフタロニトリル15g(75mmol)をトルエン200mlおよび酢酸エチル200mlの混合溶媒に溶解させた溶液をナスフラスコに加えて、室温で14時間撹拌した。反応溶液を重曹水で中和した後、セライトろ過によりPd触媒を除去し、トルエンで抽出し、蒸留水、次いで飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー(溶媒:クロロホルム)により精製した。目的物の4,5,6,7-テトラフルオロ-2H-イソインドールを、収率28%(3.976g、21.02mmol)で得た。 In a 1000 ml three-necked flask, 3.77 g (Pd: 7.09 mmol) of palladium hydroxide supported on activated carbon (purchased from Aldrich, Pd: 20% by mass), 300 ml of methanol, and 3 M sulfuric acid 12. 5 ml (37.5 mmol) were added. Next, after the system is depressurized and the operation of supplying hydrogen (hydrogen substitution) is repeated three times, the catalyst is activated by stirring for 10 minutes at room temperature while being pressurized with a hydrogen balloon (about 1.1 atm) It turned Thereafter, a solution of 15 g (75 mmol) of tetrafluorophthalonitrile in a mixed solvent of 200 ml of toluene and 200 ml of ethyl acetate was added to an eggplant flask and stirred at room temperature for 14 hours. The reaction solution is neutralized with aqueous sodium bicarbonate solution, then the Pd catalyst is removed by Celite filtration, extracted with toluene, washed with distilled water and then with saturated brine, and dried over anhydrous sodium sulfate, and the extract is concentrated by an evaporator did. The concentrate was purified by silica gel column chromatography (solvent: chloroform). The desired product 4,5,6,7-tetrafluoro-2H-isoindole was obtained in a 28% yield (3.976 g, 21.02 mmol).
 実施例16:4,5-ビス(ペンタフルオロフェニル)-3,6-ジフルオロフタロニトリルの接触水素化法による還元 Example 16: Reduction of 4,5-bis (pentafluorophenyl) -3,6-difluorophthalonitrile by catalytic hydrogenation
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 100mlの三つ口反応容器に、活性炭にパラジウムを担持させた触媒(アルドリッチ社より購入、Pd:10質量%)0.86g(Pd量:0.81mmol)、メタノール30ml、3Mの硫酸0.5ml(1.5mmol)を添加した。系内を減圧にしてから窒素を供給する操作(窒素置換)を3回繰り返し、次いで減圧にしてから水素を供給する操作(水素置換)を3回繰り返した後、水素バルーンで加圧(約1.1気圧)にした状態で、室温で約5分間撹拌して触媒を活性化させた。その後に4,5-ビス(ペンタフルオロフェニル)-3,6-ジフルオロフタロニトリル1.50g(3.02mmol)をトルエン15mlおよび酢酸エチル30mlの混合溶媒に溶解させた溶液を反応溶液に加えて、室温で15時間激しく撹拌した。反応溶液を重曹水で中和した後、酢酸エチルで抽出し、蒸留水、次いで飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー(溶媒:クロロホルム)により精製した。目的物の5,6-ビス(ペンタフルオロフェニル)-4,7-ジフルオロ-2H-イソインドールを、収率49.1%(0.72g、1.48mmol)で得た。 A catalyst (purchased from Aldrich, Pd: 10% by mass) with palladium supported on activated carbon in a 100 ml three-necked reaction vessel (0.86 g of Pd: 0.81 mmol), 30 ml of methanol, 0.5 ml of 3 M sulfuric acid (1.5 mmol) was added. The system is depressurized and nitrogen supply operation (nitrogen substitution) is repeated three times, and then the pressure reduction and hydrogen supply operation (hydrogen substitution) are repeated three times, and then pressure is applied with a hydrogen balloon (approximately 1 The catalyst was activated by stirring for about 5 minutes at room temperature under a pressure of 1 atm. Thereafter, a solution of 1.50 g (3.02 mmol) of 4,5-bis (pentafluorophenyl) -3,6-difluorophthalonitrile in a mixed solvent of 15 ml of toluene and 30 ml of ethyl acetate is added to the reaction solution, Stir vigorously at room temperature for 15 hours. The reaction solution was neutralized with aqueous sodium bicarbonate solution, extracted with ethyl acetate, washed with distilled water and then with saturated brine, and dried over anhydrous sodium sulfate, and the extract was concentrated by an evaporator. The concentrate was purified by silica gel column chromatography (solvent: chloroform). The desired product 5,6-bis (pentafluorophenyl) -4,7-difluoro-2H-isoindole was obtained in a yield of 49.1% (0.72 g, 1.48 mmol).
 5,6-ビス(ペンタフルオロフェニル)-4,7-ジフルオロ-2H-イソインドールのスペクトルデータ
 (1)NMRスペクトル(装置:日本電子製、型式:JNM-AL400)
 1H-NMR((CD32CO):δ7.78(s、2H)、12.34(brs、1H)
 19F-NMR((CD32CO):δ-115.2179(s、2F)、-133.78(d、J=22Hz、4F)、-147.68(t、J=21Hz、2F)、-156.37(t、J=18Hz、4F)
 (2)マススペクトル(装置:日本電子製、型式:JMS-MS 700V)
 MS(EI):m/z=485(M+)(計算分子量:485.01)
Spectral data of 5,6-bis (pentafluorophenyl) -4,7-difluoro-2H-isoindole (1) NMR spectrum (apparatus: JEOL, model: JNM-AL400)
1 H-NMR ((CD 3 ) 2 CO): δ 7.78 (s, 2 H), 12.34 (brs, 1 H)
19 F-NMR ((CD 3 ) 2 CO): δ-115.2179 (s, 2F), -133.78 (d, J = 22 Hz, 4F), -147.68 (t, J = 21 Hz, 2F) ), -156.37 (t, J = 18 Hz, 4 F)
(2) Mass spectrum (Device: manufactured by Nippon Denshi, model: JMS-MS 700V)
MS (EI): m / z = 485 (M + ) (calculated molecular weight: 485.01)
 実施例17:4,5-ビス(2,5-ジメチルフェノキシ)-3,6-ジフルオロフタロニトリルの接触水素化法による還元 Example 17 Reduction of 4,5-bis (2,5-dimethylphenoxy) -3,6-difluorophthalonitrile by catalytic hydrogenation
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 100mlの三つ口フラスコに、活性炭にパラジウムを担持させた触媒(アルドリッチ社より購入、Pd:10質量%)1.00g(Pd量:0.94mmol)、メタノール5ml、3Mの硫酸1.25ml(3.75mmol)を添加した。系内を減圧にしてから水素を供給する操作(水素置換)を3回繰り返した後、水素バルーンで加圧(約1.1気圧)にした状態で、室温で10分間撹拌して触媒を活性化させた。その後に4,5-ビス(2,5-ジメチルフェノキシ)-3,6-ジフルオロフタロニトリル3.00g(7.42mmol)を酢酸エチル20mlに溶解させた溶液をフラスコに加えて、室温で14時間激しく撹拌した。反応溶液を重曹水で中和した後、セライトろ過によりPd触媒を除去し、トルエンで抽出し、蒸留水、次いで飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー(溶媒:クロロホルム)により精製した。目的物の5,6-ビス(2,5-ジメチルフェノキシ)-4,7-ジフルオロ-2H-イソインドールを、収率21%(0.623g、1.58mmol)で得た。 In a 100 ml three-necked flask, a catalyst of palladium supported on activated carbon (purchased from Aldrich, Pd: 10% by mass) 1.00 g (Pd amount: 0.94 mmol), 5 ml of methanol, 1.25 ml of 3 M sulfuric acid 3.75 mmol) were added. After the system has been depressurized and the operation of supplying hydrogen (hydrogen substitution) is repeated three times, the catalyst is activated by stirring for 10 minutes at room temperature while being pressurized (about 1.1 atm) with a hydrogen balloon It turned Thereafter, a solution of 3.00 g (7.42 mmol) of 4,5-bis (2,5-dimethylphenoxy) -3,6-difluorophthalonitrile in 20 ml of ethyl acetate is added to the flask and the solution is allowed to stand at room temperature for 14 hours. Stir vigorously. The reaction solution is neutralized with aqueous sodium bicarbonate solution, then the Pd catalyst is removed by Celite filtration, extracted with toluene, washed with distilled water and then with saturated brine, and dried over anhydrous sodium sulfate, and the extract is concentrated by an evaporator did. The concentrate was purified by silica gel column chromatography (solvent: chloroform). The desired product, 5,6-bis (2,5-dimethylphenoxy) -4,7-difluoro-2H-isoindole was obtained in 21% yield (0.623 g, 1.58 mmol).
 5,6-ビス(2,5-ジメチルフェノキシ)-4,7-ジフルオロ-2H-イソインドールのNMRスペクトル(装置:バリアン社製、型式:マーキュリー2000)
 1H-NMR(CDCl3):δ1.83(s、3H)、2.16(s、3H)、6.46(s、1H)、6.67(d、1H、J=7.30Hz)、6.93(d、1H、J=7.30Hz)、7.35(m、2H)、9.47(brs、1H)
 19F-NMR(CDCl3、ヘキサフルオロベンゼン):δ19.39(s、2F)
NMR spectrum of 5,6-bis (2,5-dimethylphenoxy) -4,7-difluoro-2H-isoindole (Device: manufactured by Varian, model: Mercury 2000)
1 H-NMR (CDCl 3 ): δ 1.83 (s, 3 H), 2.16 (s, 3 H), 6.46 (s, 1 H), 6.67 (d, 1 H, J = 7.30 Hz) , 6.93 (d, 1 H, J = 7.30 Hz), 7.35 (m, 2 H), 9.47 (brs, 1 H)
19 F-NMR (CDCl 3 , hexafluorobenzene): δ 19.39 (s, 2F)
 実施例18:4,5,6,7-テトラフルオロ-2H-イソインドールのヨウ化メチルによるアルキル化 Example 18: Alkylation of 4,5,6,7-tetrafluoro-2H-isoindole with methyl iodide
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 10mlの二口反応容器に4,5,6,7-テトラフルオロ-2H-イソインドール0.096g(0.507mmol)を加え、窒素置換した後、脱水THF3.5mlを加えて-78℃まで冷却した。その中へ、シリンジを用いて1.57Mのn-ブチルリチウムのn-ヘキサン溶液0.6ml(0.942mmol)をゆっくりと加えた後、-78℃で30分撹拌した。次いでその中へ、シリンジを用いてヨウ化メチル0.2g(1.409mmol)をゆっくりと加えた後、冷却せずにそのまま14時間撹拌した。水を加えて反応を終了させ、酢酸エチルで反応物を抽出し、その有機相を、順に重曹水、水および飽和食塩水で洗浄してから、無水硫酸ナトリウムで脱水した。ろ過により無水硫酸ナトリウムを除去した後、有機相を濃縮した。この濃縮物をシリカゲルカラムクロマトグラフィー(溶媒:酢酸エチル)で精製して、目的物の4,5,6,7-テトラフルオロ-2-メチルイソインドールを、収率58.2%(0.060g、0.295mmol)で得た。 In a 10 ml two-necked reaction vessel, 0.096 g (0.507 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole was added, and after replacing with nitrogen, 3.5 ml of dehydrated THF was added and cooled to −78 ° C. did. Thereto, 0.6 ml (0.942 mmol) of a 1.57 M n-butyllithium n-hexane solution was slowly added using a syringe and stirred at -78 ° C. for 30 minutes. Then, 0.2 g (1.409 mmol) of methyl iodide was slowly added to it using a syringe and stirred for 14 hours as it was without cooling. Water was added to terminate the reaction, the reaction product was extracted with ethyl acetate, and the organic phase was washed successively with aqueous sodium bicarbonate solution, water and saturated brine, and then dried over anhydrous sodium sulfate. After removing anhydrous sodium sulfate by filtration, the organic phase was concentrated. The concentrate is purified by silica gel column chromatography (solvent: ethyl acetate) to give the target 4,5,6,7-tetrafluoro-2-methylisoindole in a yield of 58.2% (0.060 g) , 0.295 mmol).
 実施例19:4,5,6,7-テトラフルオロ-2H-イソインドールのヨウ化-n-ペンチルによるアルキル化 Example 19: Alkylation of 4,5,6,7-tetrafluoro-2H-isoindole with iodination-n-pentyl
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 10mlの二口反応容器に4,5,6,7-テトラフルオロ-2H-イソインドール0.49g(2.59mmol)を加え、窒素置換した後、脱水THF17mlを加えて-78℃まで冷却した。その中へ、シリンジを用いて1.57Mのn-ブチルリチウムのn-ヘキサン溶液2ml(3.14mmol)をゆっくりと加えた後、-78℃で30分撹拌した。次いでその中へ、シリンジを用いてヨウ化-n-ペンチル0.67g(3.38mmol)をゆっくりと加えた後、冷却せずにそのまま14時間撹拌した。水を加えて反応を終了させ、酢酸エチルで反応物を抽出し、その有機相を、順に重曹水、水および飽和食塩水で洗浄してから、無水硫酸ナトリウムで脱水した。ろ過により無水硫酸ナトリウムを除去した後、有機相を濃縮した。この濃縮物をシリカゲルカラムクロマトグラフィー(溶媒:酢酸エチル)で精製して、目的物の4,5,6,7-テトラフルオロ-2-n-ペンチルイソインドールを、収率83.6%(0.564g、2.176mmol)で得た。 In a 10 ml two-necked reaction vessel, 0.49 g (2.59 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole was added, and after nitrogen substitution, 17 ml of dehydrated THF was added and cooled to -78.degree. Thereto, 2 ml (3.14 mmol) of a 1.57 M n-butyllithium n-hexane solution was slowly added using a syringe, and the mixture was stirred at -78 ° C for 30 minutes. Then, 0.67 g (3.38 mmol) of i-n-pentyl iodide was slowly added to it using a syringe, and the solution was stirred for 14 hours without cooling. Water was added to terminate the reaction, the reaction product was extracted with ethyl acetate, and the organic phase was washed successively with aqueous sodium bicarbonate solution, water and saturated brine, and then dried over anhydrous sodium sulfate. After removing anhydrous sodium sulfate by filtration, the organic phase was concentrated. The concentrate is purified by silica gel column chromatography (solvent: ethyl acetate) to give the target 4,5,6,7-tetrafluoro-2-n-pentylisoindole in a yield of 83.6% (0%). .564 g, 2.176 mmol).
 4,5,6,7-テトラフルオロ-2-n-ペンチルイソインドールのマススペクトル(装置:日本電子製、型式:JMS-MS 700v)
 MS(EI):m/z=259(M+)(計算分子量:259.1)
Mass spectrum of 4,5,6,7-tetrafluoro-2-n-pentylisoindole (apparatus: JEOL, model: JMS-MS 700v)
MS (EI): m / z = 259 (M + ) (calculated molecular weight: 259.1)
 実施例20:4,5,6,7-テトラフルオロ-2H-イソインドールの酸化重合
 ナスフラスコに4,5,6,7-テトラフルオロ-2H-イソインドール0.18g(0.95mmol)を秤り取り、これにクロロホルム4.3gを添加・撹拌して、イソインドール溶液を調製した。別の容器に塩化鉄(III)0.63g(3.88mmol)を秤り取り、水3.4gを加えて塩化鉄水溶液を調製した。この塩化鉄水溶液を、先に調製したイソインドール溶液にゆっくりと加え、室温下で48時間撹拌した後、反応溶液を大量の水に注いだ。この溶液をろ過して得た残渣を、希塩酸、水、次いでクロロホルムをかけて洗い流した後、真空乾燥することで、黒色のポリ(4,5,6,7-テトラフルオロ-2H-イソインドール)0.109g(換算収率61.2%)を得た。
Example 20: Oxidative polymerization of 4,5,6,7-tetrafluoro-2H-isoindole 0.18 g (0.95 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole is weighed in an eggplant flask. Then, 4.3 g of chloroform was added to this and stirred to prepare an isoindole solution. In a separate container, 0.63 g (3.88 mmol) of iron (III) chloride was weighed, and 3.4 g of water was added to prepare an aqueous iron chloride solution. The aqueous iron chloride solution was slowly added to the previously prepared isoindole solution, and after stirring at room temperature for 48 hours, the reaction solution was poured into a large amount of water. The solution obtained by filtration is washed with dilute hydrochloric acid, water and then chloroform, and then the residue is vacuum-dried to obtain black poly (4,5,6,7-tetrafluoro-2H-isoindole). 0.109 g (converted yield 61.2%) was obtained.
 得られたポリマーの平均分子量(ポリスチレン換算でのGPCにより測定値)は、Mn=23,400、Mw=41,200であった。またポリマーの電導度(2端子法による測定値)は、4×10-6S/cm2であった。 The average molecular weight of the obtained polymer (as measured by GPC in terms of polystyrene) was Mn = 23,400 and Mw = 41,200. The conductivity of the polymer (measured by the two-terminal method) was 4 × 10 −6 S / cm 2 .
 実施例21:4,5,6,7-テトラフルオロ-2-n-ペンチルイソインドールの酸化重合
 ナスフラスコに4,5,6,7-テトラフルオロ-2-n-ペンチルイソインドール0.248g(0.96mmol)を秤り取り、これにクロロホルム4.5gを添加・撹拌して、イソインドール溶液を調製した。別の容器に塩化鉄(III)0.62g(3.82mmol)を秤り取り、水3.5gを加えて塩化鉄水溶液を調製した。この塩化鉄水溶液を、先に調製したイソインドール溶液にゆっくりと加え、室温下で48時間撹拌した後、反応溶液を大量の水に注いだ。この溶液をろ過して得た残渣を、希塩酸、水、次いでクロロホルムをかけて洗い流した後、真空乾燥することで、黒色のポリ(4,5,6,7-テトラフルオロ-2-n-ペンチルイソインドール)0.05g(換算収率20.3%)を得た。得られたポリマーの平均分子量(ポリスチレン換算でのGPCにより測定値)は、Mn=20,400、Mw=29,500であった。
Example 21 Oxidative polymerization of 4,5,6,7-tetrafluoro-2-n-pentylisoindole In an eggplant flask, 0.248 g of 4,5,6,7-tetrafluoro-2-n-pentylisoindole was added. 0.96 mmol) was weighed, and to this, 4.5 g of chloroform was added and stirred to prepare an isoindole solution. In a separate container, 0.62 g (3.82 mmol) of iron (III) chloride was weighed out, and 3.5 g of water was added to prepare an aqueous iron chloride solution. The aqueous iron chloride solution was slowly added to the previously prepared isoindole solution, and after stirring at room temperature for 48 hours, the reaction solution was poured into a large amount of water. The solution obtained by filtration is washed with dilute hydrochloric acid, water and then chloroform, and then the residue is vacuum-dried to obtain black poly (4,5,6,7-tetrafluoro-2-n-pentyl). 0.05 g (converted yield 20.3%) of isoindole was obtained. The average molecular weight of the obtained polymer (measured by GPC in terms of polystyrene) was Mn = 20,400 and Mw = 29,500.
 実施例22:1-(N,N-ジメチルアミノメチレン)-4,5,6,7-テトラフルオロ-1H-イソインドール(以下「アミノメチレン体」と略称する。)の製造 Example 22 Preparation of 2- (N, N-dimethylaminomethylene) -4,5,6,7-tetrafluoro-1H-isoindole (hereinafter abbreviated as "amino methylene compound")
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 還流装置を備えた50mlの二口ナスフラスコを窒素置換し、氷浴で冷却しながらジメチルホルムアミド0.21ml(2.75mmol)を加え、そこに塩化ホスホリル0.26ml(2.75mmol)をゆっくりと滴下し、15分間撹拌した。塩化メチレン2mlを加えて析出した固体を溶かし、そこに4,5,6,7-テトラフルオロ-2H-イソインドール480mg(2.54mmol)を塩化メチレン2mlに溶かした溶液をゆっくりと滴下し、その後氷浴を外して55℃に加熱し、15分間還流した。次に室温まで冷却して、酢酸ナトリウム1.25gをイオン交換水2.5mlに溶かした溶液をゆっくりと加えた後、反応混合物をジエチルエーテルで抽出し、抽出した有機相を炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで脱水した後、減圧下で濃縮して、褐色の固体を得た。これをシリカゲルクロマトグラフィー(溶媒:クロロホルム)で精製し、アミノメチレン体350mg(1.43mmol、収率58.7%)を得た。 A 50 ml two-necked eggplant flask equipped with a reflux apparatus is purged with nitrogen, 0.21 ml (2.75 mmol) of dimethylformamide is added while cooling with an ice bath, and 0.26 ml (2.75 mmol) of phosphoryl chloride is slowly added thereto. It was added dropwise and stirred for 15 minutes. 2 ml of methylene chloride is added to dissolve the precipitated solid, and a solution of 480 mg (2.54 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole in 2 ml of methylene chloride is slowly added dropwise thereto, and then The ice bath was removed and heated to 55 ° C. and refluxed for 15 minutes. The reaction mixture is then cooled to room temperature, and a solution of 1.25 g of sodium acetate dissolved in 2.5 ml of ion-exchanged water is slowly added, and then the reaction mixture is extracted with diethyl ether, and the extracted organic phase is washed with an aqueous solution of sodium hydrogen carbonate After washing and drying over anhydrous sodium sulfate, concentration under reduced pressure gave a brown solid. This was purified by silica gel chromatography (solvent: chloroform) to obtain 350 mg (1.43 mmol, yield 58.7%) of an aminomethylene compound.
 アミノメチレン体のスペクトルデータ
 (1)NMRスペクトル(装置:日本電子製、型式:JNM-AL400)
 1H-NMR(CDCl3):δ3.39(s、3H)、3.78(s、3H)、7.53(s、1H)、8.09(s、1H)
 19F-NMR(CDCl3):δ-166.15(dd、J=21、20Hz、1F)、-161.89(dd、J=21、20Hz、1F)、-151.46(dd、J=21、20Hz、1F)、-148.22(dd、J=21、20Hz、1F)
 (2)マススペクトル(装置:日本電子製、型式:JMS-MS 700v型)
 MS(EI):m/z=244(M+)(計算分子量:244.19)
Spectrum data of amino methylene compound (1) NMR spectrum (Device: JEOL, model: JNM-AL400)
1 H-NMR (CDCl 3 ): δ 3.39 (s, 3 H), 3.78 (s, 3 H), 7.53 (s, 1 H), 8.09 (s, 1 H)
19 F-NMR (CDCl 3 ): δ-166.15 (dd, J = 21, 20 Hz, 1 F), −161.89 (dd, J = 21, 20 Hz, 1 F), −151.46 (dd, J = 21, 20 Hz, 1 F), -148.22 (dd, J = 21, 20 Hz, 1 F)
(2) Mass spectrum (Device: manufactured by Nippon Denshi, model: JMS-MS 700v type)
MS (EI): m / z = 244 (M + ) (calculated molecular weight: 244.19)
 実施例23:1-ホルミル-4,5,6,7-テトラフルオロ-2H-イソインドール(以下「ホルミル体」と略称する)の製造 Example 23 Preparation of 1-formyl-4,5,6,7-tetrafluoro-2H-isoindole (hereinafter abbreviated as "formyl form")
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 還流装置を備えた50mlの二口ナスフラスコを窒素置換し、氷浴で冷却しながらジメチルホルムアミド0.21ml(2.75mmol)を加え、そこに塩化ホスホリル0.26ml(2.75mmol)をゆっくりと滴下し、15分間撹拌した。析出した固体に塩化メチレン1.5mlを加えて固体を溶かし、そこに4,5,6,7-テトラフルオロ-2H-イソインドール470mg(2.49mmol)を塩化メチレン6mlに溶かした溶液をゆっくりと滴下し、その後氷浴を外して55℃に加熱し、15分間還流した。次に室温まで冷却して、酢酸ナトリウム1.25gをイオン交換水2.5mlに溶かした溶液をゆっくりと加えた後、55℃で2時間還流し、室温まで冷却した。次いで反応混合物を、ジエチルエーテルで抽出し、抽出した有機相を炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで脱水した後、減圧下で濃縮して、褐色の固体を得た。これをシリカゲルクロマトグラフィー(溶媒:酢酸エチル30体積%/ヘキサン70体積%)で精製し、ホルミル体70mg(0.322mmol、収率13.0%)を得た。 A 50 ml two-necked eggplant flask equipped with a reflux apparatus is purged with nitrogen, 0.21 ml (2.75 mmol) of dimethylformamide is added while cooling with an ice bath, and 0.26 ml (2.75 mmol) of phosphoryl chloride is slowly added thereto. It was added dropwise and stirred for 15 minutes. 1.5 ml of methylene chloride was added to the precipitated solid to dissolve the solid, and a solution of 470 mg (2.49 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole in 6 ml of methylene chloride was slowly added to the solid. It was added dropwise and then the ice bath was removed and heated to 55 ° C. and refluxed for 15 minutes. The reaction solution was then cooled to room temperature, and a solution of 1.25 g of sodium acetate dissolved in 2.5 ml of ion-exchanged water was slowly added, followed by refluxing at 55 ° C. for 2 hours and cooling to room temperature. The reaction mixture was then extracted with diethyl ether, and the extracted organic phase was washed with aqueous sodium hydrogen carbonate solution, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give a brown solid. This was purified by silica gel chromatography (solvent: ethyl acetate 30% by volume / hexane 70% by volume) to obtain 70 mg (0.322 mmol, 13.0% yield) of a formyl form.
 ホルミル体のスペクトルデータ
 (1)NMRスペクトル(装置:日本電子製、型式:JNM-AL400)
 1H-NMR((CD32CO):δ8.01(s、1H)、9.81(s、1H)
 19F-NMR((CD32CO)):δ-168.54(dd、J=17、18Hz、1F)、-162.64(dd、J=17、18Hz、1F)、-149.20(dd、J=20、18Hz、1F)、-146.90(brs、1F)
 (2)マススペクトル(装置:日本電子製、型式:JMS-MS 700v型)
 MS(EI):m/z=217(M+)(計算分子量:217.12)
Spectrum data of formyl form (1) NMR spectrum (apparatus: manufactured by JEOL, model: JNM-AL400)
1 H-NMR ((CD 3 ) 2 CO): δ 8.01 (s, 1 H), 9. 81 (s, 1 H)
19 F-NMR ((CD 3 ) 2 CO)): δ-168.54 (dd, J = 17, 18 Hz, 1 F), −162.64 (dd, J = 17, 18 Hz, 1 F), −149. 20 (dd, J = 20, 18 Hz, 1 F), -146.90 (brs, 1 F)
(2) Mass spectrum (Device: manufactured by Nippon Denshi, model: JMS-MS 700v type)
MS (EI): m / z = 217 (M + ) (calculated molecular weight: 217.12)
 実施例24:アミノメチレン体からのホルミル体の製造 Example 24 Preparation of Formyl Form from Amino Methylene Form
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 還流装置を備えた100mlのナスフラスコにアミノメチレン体326.7mg(1.34mmol)を加えて窒素置換し、これにエタノール35mlを加えて溶解させた後、1MのNaOH水溶液2ml(2mmol)を加えて、60℃で1.5時間加熱し、室温まで冷却した。次いで反応混合物を、酢酸エチルで抽出し、水によりエタノールを除去し、無水硫酸ナトリウムで脱水した後、減圧下で濃縮することにより、白色固体として、ホルミル体208.6mg(0.96mmol、収率71.7%)を得た。 326.7 mg (1.34 mmol) of aminomethylene was added to a 100 ml eggplant flask equipped with a reflux apparatus and purged with nitrogen, and 35 ml of ethanol was added thereto for dissolution, and then 2 ml (2 mmol) of 1 M aqueous NaOH solution was added The mixture was heated at 60.degree. C. for 1.5 hours and cooled to room temperature. The reaction mixture is then extracted with ethyl acetate, ethanol is removed by water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain 208.6 mg (0.96 mmol, yield) of formyl as a white solid. 71.7%).
 実施例25:1-ヒドロキシメチル-4,5,6,7-テトラフルオロ-2H-イソインドール(以下「ヒドロキシメチル体」と略称する)の製造 Example 25 Preparation of 1-hydroxymethyl-4,5,6,7-tetrafluoro-2H-isoindole (hereinafter abbreviated as "hydroxymethyl")
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 100mlのナスフラスコにホルミル体108.6mg(0.5mmol)を加えて窒素置換し、これに乾燥THF20mlを加え、-78℃で撹拌しながら1Mの水素化ジイソブチルアルミニウム溶液1.1ml(1.1mmol)を加え、さらに2時間撹拌した。-78℃のまま1MのHClを加えてクエンチし、室温に戻してから反応混合物を、酢酸エチルで抽出し、炭酸水素ナトリウム水溶液および水で洗浄し、無水硫酸ナトリウムで脱水した後、減圧下で濃縮することにより、赤紫色の固体として、ヒドロキシメチル体103mg(0.47mmol、粗収率94%)を得た。 108.6 mg (0.5 mmol) of formyl compound is added to a 100 ml eggplant flask and purged with nitrogen, 20 ml of dry THF is added thereto, and 1.1 ml (1.1 mmol) of 1 M diisobutylaluminum hydride solution is stirred at -78 ° C. ) Was added and stirred for another 2 hours. Quench with 1 M HCl still at -78 ° C., return to room temperature and extract the reaction mixture with ethyl acetate, wash with aqueous sodium bicarbonate and water, dry over anhydrous sodium sulfate and then under reduced pressure Concentration gave 103 mg (0.47 mmol, crude yield 94%) of the hydroxymethyl compound as a reddish-purple solid.
 実施例26:ヒドロキシメチル体からのヘキサデカフルオロテトラベンゾポルフィリンの製造 Example 26: Preparation of hexadecafluorotetrabenzoporphyrin from hydroxymethyl form
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 実施例25で得られたヒドロキシメチル体103mg(粗収量0.47mmol)を、そのまま100mlのナスフラスコに加えて窒素置換した後、エタノール47mlを加えて溶解させ、酢酸3ml(51.8mmol)を加えた後、室温で3日間撹拌した。次いで反応混合物にトリエチルアミン3.18ml(51.8mmol)を加えて中和した後、DDQ(2,3-ジシアノ-5,6-ジクロロ-p-ベンゾキノン)119.3mg(0.47mmol)を加えて室温で一晩撹拌した。次いで反応混合物を吸引ろ過することにより、深緑色の固体として、ヘキサデカフルオロテトラベンゾポルフィリン28mg(粗収量0.035mmol、粗収率29.8%)を得た。 103 mg (crude yield 0.47 mmol) of the hydroxymethyl compound obtained in Example 25 is directly added to a 100 ml eggplant flask and purged with nitrogen, and then 47 ml of ethanol is added and dissolved, and 3 ml (51.8 mmol) of acetic acid is added After stirring, it was stirred at room temperature for 3 days. Then, 3.18 ml (51.8 mmol) of triethylamine is added to the reaction mixture for neutralization, and then 119.3 mg (0.47 mmol) of DDQ (2,3-dicyano-5,6-dichloro-p-benzoquinone) is added. Stir at room temperature overnight. Then, the reaction mixture was suction filtered to obtain 28 mg (crude yield: 0.035 mmol, crude yield: 29.8%) of hexadecafluorotetrabenzoporphyrin as a dark green solid.
 ヘキサデカフルオロテトラベンゾポルフィリンのスペクトルデータ
 (1)マススペクトル(装置:アプライド・バイオシステムズ製、型式:Voyager-DETM PRO)
 MS(TOF-MS):m/z=798.80(M+)(計算分子量:798.03)
 (2)紫外-可視吸収スペクトル(装置:日立ハイテクノロジーズ製、型式:U-2800)
 λmax(CHCl3)=416、430、599、667、690nm
Spectral data of hexadecafluorotetrabenzoporphyrin (1) Mass spectrum (apparatus: manufactured by Applied Biosystems, model: Voyager-DE TM PRO)
MS (TOF-MS): m / z = 798.80 (M + ) (calculated molecular weight: 798.03)
(2) Ultraviolet-visible absorption spectrum (apparatus: manufactured by Hitachi High-Technologies, model: U-2800)
λ max (CHCl 3 ) = 416, 430, 599, 667, 690 nm
 なおTOF-MS測定から、粗生成物中に、下記式で示されるコロール(実測値:m/z=785.87、計算分子量:786.03)、サフィリン(実測値:m/z=985.95、計算分子量:985.04)およびペンタフィリン(実測値:m/z=997.93、計算分子量:997.04)が生成していることを確認した。 In addition, from TOF-MS measurement, corrole represented by the following formula (actual value: m / z = 785.87, calculated molecular weight: 786.03), saphirin (actual value: m / z = 985.) In a crude product. It was confirmed that 95, calculated molecular weight: 985.04) and pentaphilin (found value: m / z = 997.93, calculated molecular weight: 997.04) were formed.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 実施例27:1-(N,N-ジメチルアミノ)メチル-4,5,6,7-テトラフルオロ-2H-イソインドール(「アミノメチル体」)を経るヘキサデカフルオロテトラベンゾポルフィリンの製造 Example 27 Preparation of hexadecafluorotetrabenzoporphyrin via 1- (N, N-dimethylamino) methyl-4,5,6,7-tetrafluoro-2H-isoindole ("aminomethyl")
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 反応容器に、4,5,6,7-テトラフルオロ-2H-イソインドール100mg(0.529mmol)およびヨウ化メチレンジメチルアンモニウム102mg(0.553mmol)を加えて窒素置換した後に、アセトニトリル8.41gを加え、室温で32時間撹拌した。その後DDQ 150mg(661mmol)を加えて、室温でさらに24時間撹拌した。その後に飽和重曹水14.2gを加えて反応を終了させた。反応液を濾過して得られた濾物を、さらにメタノール、次いでクロロホルムで超音波洗浄することにより、ヘキサデカフルオロテトラベンゾポルフィリン20mg(0.025mmol、収率18.94%)を得た。 After 100 mg (0.529 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole and 102 mg (0.553 mmol) of methylenedimethylammonium iodide were added to a reaction vessel and nitrogen substitution was carried out, 8.41 g of acetonitrile was added. Add and stir at room temperature for 32 hours. After that, 150 mg (661 mmol) of DDQ was added and stirred at room temperature for another 24 hours. Thereafter, 14.2 g of saturated aqueous sodium bicarbonate solution was added to terminate the reaction. The filtrate obtained by filtering the reaction solution was further ultrasonically washed with methanol and then chloroform to obtain 20 mg (0.025 mmol, yield 18.94%) of hexadecafluorotetrabenzoporphyrin.
 実施例28:1-(N,N-ジメチルアミノ)メチル-5,6-ビス(ペンタフルオロフェニル)-4,7-ジフルオロ-2H-イソインドール(「アミノメチル体」)を経る22,23,72,73,122,123,172,173-オクタキス(ペンタフルオロフェニル)-21,24,71,74,121,124,171,174-オクタフルオロ-21H,23H-テトラベンゾポルフィリン(以下「オクタキス(ペンタフルオロフェニル)オクタフルオロテトラベンゾポルフィリン」と略称する)の製造 Example 28: 1- (N, N- dimethylamino) methyl-5,6-bis (pentafluorophenyl) -4,7 undergo difluoro -2H- isoindole ( "aminomethyl body") 2 2, 2 3 , 7 2 , 7 3 , 12 2 , 12 3 , 17 2 , 17 3 -octakis (pentafluorophenyl)-2 1 , 2 4 , 7 1 , 7 4 , 12 1 , 12 4 , 17 1 , 17 4 Of 1-octafluoro-21H, 23H-tetrabenzoporphyrin (hereinafter abbreviated as "octakis (pentafluorophenyl) octafluorotetrabenzoporphyrin")
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 反応容器に、5,6-ビス(ペンタフルオロフェニル)-4,7-ジフルオロ-2H-イソインドール200mg(0.40mmol)およびヨウ化メチレンジメチルアンモニウム76.3mg(0.41mmol)を加えて窒素置換した後に、アセトニトリル17.7gを加え、室温で48時間撹拌した。反応後、エバポレーターを用いて反応液を濃縮し、続けて濃縮物をクロロホルムに溶解させて、クロロホルム相を水で洗浄した後、無水硫酸ナトリウムで脱水し、再度エバポレーターにより濃縮した。濃縮物を、シリカゲルカラムクロマトグラフィー(溶媒:酢酸エチル50体積%/ヘキサン50体積%)で精製することにより、オクタキス(ペンタフルオロフェニル)オクタフルオロテトラベンゾポルフィリン12mg(0.006mmol、収率6.0%)を得た。 Into a reaction vessel, 200 mg (0.40 mmol) of 5,6-bis (pentafluorophenyl) -4,7-difluoro-2H-isoindole and 76.3 mg (0.41 mmol) of methylenedimethylammonium iodide were added and nitrogen substitution was carried out After that, 17.7 g of acetonitrile was added and stirred at room temperature for 48 hours. After the reaction, the reaction solution was concentrated using an evaporator, and subsequently, the concentrate was dissolved in chloroform, and the chloroform phase was washed with water, dried over anhydrous sodium sulfate, and concentrated again using an evaporator. The concentrate is purified by silica gel column chromatography (solvent: ethyl acetate 50% by volume / hexane 50% by volume) to obtain 12 mg (0.006 mmol, yield 6.0) of octakis (pentafluorophenyl) octafluorotetrabenzoporphyrin. %) Got.
 オクタキス(ペンタフルオロフェニル)オクタフルオロテトラベンゾポルフィリンのスペクトルデータ
 (1)マススペクトル(装置:アプライド・バイオシステムズ製、型式:Voyager-DETM PRO)
 MS(TOF-MS):m/z=1984.26(M+)(計算分子量:1981.98)
 (2)紫外-可視吸収スペクトル(装置:島津製作所製、型式:uv-1650Pc)
 λmax(CHCl3)=435、451、576、623、632nm
Spectral data of octakis (pentafluorophenyl) octafluorotetrabenzoporphyrin (1) Mass spectrum (apparatus: manufactured by Applied Biosystems, model: Voyager-DE TM PRO)
MS (TOF-MS): m / z = 1984.26 (M + ) (calculated molecular weight: 1981.98)
(2) Ultraviolet-visible absorption spectrum (apparatus: manufactured by Shimadzu Corporation, model: uv-1650Pc)
λ max (CHCl 3 ) = 435, 451, 576, 623, 632 nm
 実施例29:ヘキサデカフルオロテトラベンゾポルフィリン亜鉛錯体(以下「ポルフィリン亜鉛錯体」と略称する。)の製造
 反応容器に、4,5,6,7-テトラフルオロ-2H-イソインドール300mg(1.59mmol)およびヨウ化メチレンジメチルアンモニウム300mg(1.62mmol)を加えて窒素置換した後に、塩化メチレン69.3gを加え、室温で48時間撹拌した。その後、窒素雰囲気下から大気下に開放し、酢酸亜鉛256mg(1.40mmol)を加えて、大気下および室温でさらに48時間撹拌した。ポルフィリノーゲンの酸化は、主に、この大気下の撹拌で行われると推定される。その後、反応液を、分液ロートに移して水洗した後、エバポレーターで濃縮した。この濃縮物を、メタノールおよび酢酸エチルで3回超音波洗浄することにより、ポルフィリン亜鉛錯体92mg(0.107mmol、収率26.9%)を得た。
Example 29: Preparation of hexadecafluorotetrabenzoporphyrin zinc complex (hereinafter abbreviated as "porphyrin zinc complex") In a reaction vessel, 300 mg (1.59 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole ) And 300 mg (1.62 mmol) of methylenedimethyliodide were added, and after purging with nitrogen, 69.3 g of methylene chloride was added, and the mixture was stirred at room temperature for 48 hours. After that, the atmosphere was opened from the nitrogen atmosphere to the atmosphere, 256 mg (1.40 mmol) of zinc acetate was added, and the mixture was stirred at the atmosphere and at room temperature for further 48 hours. Oxidation of porphyrinogen is presumed to be mainly performed by stirring under this atmosphere. Thereafter, the reaction solution was transferred to a separatory funnel, washed with water, and concentrated by an evaporator. The concentrate was ultrasonically washed three times with methanol and ethyl acetate to obtain 92 mg (0.107 mmol, yield 26.9%) of a porphyrin zinc complex.
 ポルフィリン亜鉛錯体のスペクトルデータ
 (1)NMRスペクトル(装置:VARIAN社製、型式:マーキュリー2000)
 1H-NMR(THF):δ10.85(s、1H)
 19F-NMR(THF、基準物質:ヘキサフルオロベンゼン):δ7.20(m、2F)、18.4(m、2F)
 (2)マススペクトル(装置:アプライド・バイオシステムズ製、型式:Voyager-DETM PRO)
 MS(TOF-MS):m/z=860.84(M+)(計算分子量:859.95)
 (3)紫外-可視吸収スペクトル(装置:島津製作所製、型式:uv-1650Pc)
 λmax(THF)=407、432、623nm
Spectral data of porphyrin zinc complex (1) NMR spectrum (Device: manufactured by VARIAN, model: Mercury 2000)
1 H-NMR (THF): δ 10.85 (s, 1 H)
19 F-NMR (THF, standard substance: hexafluorobenzene): δ 7.20 (m, 2F), 18.4 (m, 2F)
(2) Mass spectrum (apparatus: manufactured by Applied Biosystems, model: Voyager-DE TM PRO)
MS (TOF-MS): m / z = 860.84 (M + ) (calculated molecular weight: 859.95)
(3) Ultraviolet-visible absorption spectrum (apparatus: manufactured by Shimadzu Corporation, model: uv-1650Pc)
λ max (THF) = 407, 432, 623 nm
 実施例30:ポルフィリン亜鉛錯体の製造
 反応容器に、4,5,6,7-テトラフルオロ-2H-イソインドール517mg(2.734mmol)およびヨウ化メチレンジメチルアンモニウム528mg(2.85mmol)を加えて窒素置換した後に、アセトニトリル41.27gを加え、室温で48時間撹拌した。その後、酢酸亜鉛700mg(3.81mmol)を加えて、室温でさらに6時間撹拌した後、DDQ 910mg(4.008mmol)を加えて、室温でさらに24時間撹拌した。その後、反応液を飽和重曹水60gへ注ぎ、濾過により濾物を回収し、濾物を、メタノール、次いでイソプロピルアルコールで洗浄した後、ソクスレー抽出によりポルフィリン亜鉛錯体50mg(0.058mmol、収率8.49%)を得た。
Example 30 Preparation of Porphyrin Zinc Complex In a reaction vessel, 517 mg (2.734 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole and 528 mg (2.85 mmol) of methylenedimethylammonium iodide are added and then nitrogen is added. After substitution, 41.27 g of acetonitrile was added and stirred at room temperature for 48 hours. Thereafter, 700 mg (3.81 mmol) of zinc acetate was added, and the mixture was stirred at room temperature for another 6 hours, and then 910 mg (4.008 mmol) of DDQ was added and stirred at room temperature for another 24 hours. Thereafter, the reaction solution is poured into 60 g of saturated aqueous sodium bicarbonate solution, the filtrate is collected by filtration, and the filtrate is washed with methanol and then with isopropyl alcohol, and then 50 mg (0.058 mmol, yield 8. 49%).
 実施例31:ヘキサデカフルオロテトラベンゾポルフィリン銅錯体(以下「ポルフィリン銅錯体」と略称する。)の製造
 反応容器に、4,5,6,7-テトラフルオロ-2H-イソインドール700mg(3.70mmol)およびヨウ化メチレンジメチルアンモニウム700mg(3.78mmol)を加えて窒素置換した後に、アセトニトリル98.3gを加え、室温で48時間撹拌した。その後、窒素雰囲気下から大気下に開放し、酢酸銅一水和物744mg(3.73mmol)を加えて、大気下および室温で48時間撹拌した。ポルフィリノーゲンの酸化は、主に、この大気下の撹拌で行われると推定される。その後、反応液をエバポレーターで濃縮し、濃縮物を、メタノール、酢酸エチル、次いでTHFで超音波洗浄することによりポルフィリン銅錯体250mg(0.291mmol、収率31.4%)を得た。
Example 31: Preparation of hexadecafluorotetrabenzoporphyrin copper complex (hereinafter abbreviated as "porphyrin copper complex") In a reaction vessel, 700 mg (3.70 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole ) And methylenedimethyliodide (700 mg (3.78 mmol)) were added, and after purging with nitrogen, 98.3 g of acetonitrile was added and stirred at room temperature for 48 hours. Then, under nitrogen atmosphere, the atmosphere was opened to the atmosphere, 744 mg (3.73 mmol) of copper acetate monohydrate was added, and the mixture was stirred for 48 hours under the atmosphere and at room temperature. Oxidation of porphyrinogen is presumed to be mainly performed by stirring under this atmosphere. After that, the reaction solution was concentrated by an evaporator, and the concentrate was ultrasonically washed with methanol, ethyl acetate and then THF to obtain 250 mg (0.291 mmol, yield 31.4%) of a porphyrin copper complex.
 ポルフィリン銅錯体のスペクトルデータ
 (1)マススペクトル(装置:アプライド・バイオシステムズ製、型式:Voyager-DETM PRO)
 MS(TOF-MS):m/z=859.78(M+)(計算分子量:858.95)
 (2)紫外-可視吸収スペクトル(装置:島津製作所製、型式:uv-1650Pc)
 λmax(THF)=405、422、620nm
Spectral data of porphyrin copper complex (1) Mass spectrum (apparatus: manufactured by Applied Biosystems, model: Voyager-DE TM PRO)
MS (TOF-MS): m / z = 859.78 (M + ) (calculated molecular weight: 858.95)
(2) Ultraviolet-visible absorption spectrum (apparatus: manufactured by Shimadzu Corporation, model: uv-1650Pc)
λ max (THF) = 405, 422, 620 nm
 実施例32:ヘキサデカフルオロテトラベンゾポルフィリンニッケル錯体(以下「ポルフィリンニッケル錯体」と略称する。)の製造
 反応容器に、4,5,6,7-テトラフルオロ-2H-イソインドール100mg(0.529mmol)およびヨウ化メチレンジメチルアンモニウム100mg(0.54mmol)を加えて窒素置換した後に、アセトニトリル5.53gを加え、室温で24時間撹拌した。その後、酢酸ニッケル四水和物133mg(0.534mmol)を加えて、室温で22時間撹拌した。その後、DDQ 124mg(0.546mmol)を加えて、室温で48時間撹拌した。その後、反応液を撹拌しながら、1Mの重曹水15mlへ注ぎ、濾過し、得られた濾物を、メタノール、次いで希塩酸で洗浄した。さらに濾物を、酢酸エチル、メタノール、クロロホルムの各溶媒で順に超音波洗浄した後、ソクスレー抽出することによりポルフィリンニッケル錯体4mg(0.005mmol、収率3.5%)を得た。
Example 32: Preparation of hexadecafluorotetrabenzoporphyrin nickel complex (hereinafter abbreviated as "porphyrin nickel complex") In a reaction vessel, 100 mg (0.529 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole And after 100 mg (0.54 mmol) of methylenedimethyliodide were added and the atmosphere was replaced with nitrogen, 5.53 g of acetonitrile was added and the mixture was stirred at room temperature for 24 hours. Thereafter, 133 mg (0.534 mmol) of nickel acetate tetrahydrate were added, and the mixture was stirred at room temperature for 22 hours. After that, 124 mg (0.546 mmol) of DDQ was added and stirred at room temperature for 48 hours. Then, while stirring, the reaction solution was poured into 15 ml of 1 M aqueous sodium bicarbonate solution, filtered, and the obtained filtrate was washed with methanol and then with dilute hydrochloric acid. Furthermore, the filtrate was ultrasonically washed sequentially with each solvent of ethyl acetate, methanol and chloroform, and then Soxhlet extraction was performed to obtain 4 mg (0.005 mmol, yield 3.5%) of a porphyrin nickel complex.
 ポルフィリンニッケル錯体のスペクトルデータ
 (1)マススペクトル(装置:アプライド・バイオシステムズ製、型式:Voyager-DETM PRO)
 MS(TOF-MS):m/z=854.69(M+)(計算分子量:853.95)
 (2)紫外-可視吸収スペクトル(装置:島津製作所製、型式:uv-1650Pc)
 λmax(THF)=405、430、617nm
Spectrum data of porphyrin nickel complex (1) Mass spectrum (Apparatus: manufactured by Applied Biosystems, Model: Voyager-DE TM PRO)
MS (TOF-MS): m / z = 854.69 (M + ) (calculated molecular weight: 853.95)
(2) Ultraviolet-visible absorption spectrum (apparatus: manufactured by Shimadzu Corporation, model: uv-1650Pc)
λ max (THF) = 405, 430, 617 nm
 実施例33:ヘキサデカフルオロテトラベンゾポルフィリンコバルト錯体(以下「ポルフィリンコバルト錯体」と略称する。)の製造
 反応容器に、4,5,6,7-テトラフルオロ-2H-イソインドール100mg(0.529mmol)およびヨウ化メチレンジメチルアンモニウム100mg(0.54mmol)を加えて窒素置換した後に、アセトニトリル5.54gを加え、室温で24時間撹拌した。その後、酢酸コバルト四水和物134mg(0.538mmol)を加えて、室温で22時間撹拌した。その後、DDQ 120mg(0.529mmol)を加えて、室温で48時間撹拌した。その後、反応液を撹拌しながら、1Mの重曹水8mlへ注ぎ、濾過した。得られた濾物をベンゾニトリルに溶解させ、メタノールに注いで結晶を析出させた後に再び濾過し、得られた濾物を、酢酸エチル、メタノール、クロロホルムの各溶媒で順に超音波洗浄した後、ソクスレー抽出することによりポルフィリンコバルト錯体3mg(0.004mmol、収率2.7%)を得た。
Example 33: Preparation of hexadecafluorotetrabenzoporphyrin cobalt complex (hereinafter abbreviated as "porphyrin cobalt complex") In a reaction vessel, 100 mg (0.529 mmol) of 4,5,6,7-tetrafluoro-2H-isoindole And 100 mg (0.54 mmol) of methylenedimethyliodide were added, and the atmosphere was purged with nitrogen, and then 5.54 g of acetonitrile was added and stirred at room temperature for 24 hours. Thereafter, 134 mg (0.538 mmol) of cobalt acetate tetrahydrate was added, and the mixture was stirred at room temperature for 22 hours. Thereafter, 120 mg (0.529 mmol) of DDQ was added and stirred at room temperature for 48 hours. Then, while stirring, the reaction solution was poured into 8 ml of 1 M aqueous sodium bicarbonate and filtered. The obtained filtrate is dissolved in benzonitrile, poured into methanol to precipitate crystals, and filtered again, and the obtained filtrate is ultrasonically washed sequentially with each solvent of ethyl acetate, methanol and chloroform, Soxhlet extraction gave 3 mg (0.004 mmol, yield 2.7%) of a porphyrin cobalt complex.
 ポルフィリンコバルト錯体のスペクトルデータ
 (1)マススペクトル(装置:アプライド・バイオシステムズ製、型式:Voyager-DETM PRO)
 MS(TOF-MS):m/z=855.84(M+)(計算分子量:854.95)
 (2)紫外-可視吸収スペクトル(装置:島津製作所製、型式:uv-1650Pc)
 λmax(THF)=421、433、447、614nm
Spectrum data of porphyrin cobalt complex (1) Mass spectrum (Apparatus: manufactured by Applied Biosystems, Model: Voyager-DE TM PRO)
MS (TOF-MS): m / z = 855. 84 (M + ) (calculated molecular weight: 854. 95)
(2) Ultraviolet-visible absorption spectrum (apparatus: manufactured by Shimadzu Corporation, model: uv-1650Pc)
λ max (THF) = 421, 433, 447, 614 nm
 実施例34:オクタキス(ペンタフルオロフェニル)オクタフルオロテトラベンゾポルフィリン亜鉛錯体の製造
 反応容器に、5,6-ビス(ペンタフルオロフェニル)-4,7-ジフルオロ-2H-イソインドール200mg(0.40mmol)およびヨウ化メチレンジメチルアンモニウム76.3mg(0.41mmol)を加えて窒素置換した後に、アセトニトリル17.7gを加え、室温で48時間撹拌した。その後、窒素雰囲気下から大気下に開放し、酢酸亜鉛64.7mg(0.35mmol)を加えて、大気下および室温でさらに48時間撹拌した。ポルフィリノーゲンの酸化は、主に、この大気下の撹拌で行われると推定される。その後、反応液をエバポレーターで濃縮し、続けて濃縮物をクロロホルムに溶解させ、このクロロホルム相を、水および希塩酸で洗浄した後、無水硫酸ナトリウムで脱水して、再度エバポレーターで濃縮した。濃縮物を、シリカゲルクロマトグラフィー(溶媒:酢酸エチル20体積%/ヘキサン80体積%)で精製することにより、オクタキス(ペンタフルオロフェニル)オクタフルオロテトラベンゾポルフィリン亜鉛錯体21mg(0.010mmol、収率10.2%)を得た。
Example 34: Preparation of octakis (pentafluorophenyl) octafluorotetrabenzoporphyrin zinc complex In a reaction vessel, 200 mg (0.40 mmol) of 5,6-bis (pentafluorophenyl) -4,7-difluoro-2H-isoindole After 76.3 mg (0.41 mmol) of methylenedimethylammonium iodide was added and the atmosphere was replaced with nitrogen, 17.7 g of acetonitrile was added and stirred at room temperature for 48 hours. Then, under nitrogen atmosphere, the atmosphere was opened to atmosphere, 64.7 mg (0.35 mmol) of zinc acetate was added, and the mixture was stirred at atmosphere and at room temperature for further 48 hours. Oxidation of porphyrinogen is presumed to be mainly performed by stirring under this atmosphere. Thereafter, the reaction solution is concentrated by an evaporator, the concentrate is dissolved in chloroform, the chloroform phase is washed with water and dilute hydrochloric acid, dried over anhydrous sodium sulfate, and concentrated again by an evaporator. The concentrate is purified by silica gel chromatography (solvent: ethyl acetate 20% by volume / hexane 80% by volume) to obtain 21 mg (0.010 mmol, yield) of octakis (pentafluorophenyl) octafluorotetrabenzoporphyrin zinc complex. 2%).
 オクタキス(ペンタフルオロフェニル)オクタフルオロテトラベンゾポルフィリン亜鉛錯体のスペクトルデータ
 (1)NMRスペクトル(装置:日本電子製、型式:JNM-AL400)
 1H-NMR(C55N):δ11.97(s、1H)
 19F-NMR(C55N):δ-159.49(m、2F)、-149.55(m、1F)、-138.13(m、2F)、-118.73(s、1F)
 (2)マススペクトル(装置:アプライド・バイオシステムズ製、型式:Voyager-DETM PRO)
 MS(TOF-MS):m/z=2047.14(M+)(計算分子量:2043.9)
 (3)紫外-可視吸収スペクトル(装置:島津製作所製、型式:uv-1650Pc)
 λmax(THF)=429、457、595、643nm
Spectral data of octakis (pentafluorophenyl) octafluorotetrabenzoporphyrin zinc complex (1) NMR spectrum (apparatus: JEOL, model: JNM-AL400)
1 H-NMR (C 5 D 5 N): δ 11.97 (s, 1 H)
19 F-NMR (C 5 D 5 N): δ-159.49 (m, 2F), -149.55 (m, 1F), -138.13 (m, 2F), -118.73 (s, 1F)
(2) Mass spectrum (apparatus: manufactured by Applied Biosystems, model: Voyager-DE TM PRO)
MS (TOF-MS): m / z = 2047.14 (M + ) (calculated molecular weight: 2043.9)
(3) Ultraviolet-visible absorption spectrum (apparatus: manufactured by Shimadzu Corporation, model: uv-1650Pc)
λ max (THF) = 429, 457, 595, 643 nm
 実施例35:(4,5,6,7-テトラフルオロ-2H-イソインドール)多量体の製造
 500mlの三つ口フラスコに、活性炭にパラジウムを担持させた触媒(アルドリッチ社より購入、Pd:10質量%)5.12g(Pd量:4.81mmol)、メタノール200ml、3Mの硫酸12.5ml(37.5mmol)を添加した。次いで系内を減圧にしてから水素を供給する操作(水素置換)を3回繰り返した後、水素バルーンで加圧した状態で、室温で10分間撹拌して触媒を活性化させた。その後にテトラフルオロフタロニトリル10.0g(49.98mmol)をトルエン200mlに溶解させた溶液をフラスコに加えて、室温で17時間激しく撹拌した。反応溶液を重曹水で中和した後、セライトろ過によりパラジウム触媒を除去した。ろ液に酢酸エチルを加えて抽出し、蒸留水、次いで飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー(溶媒:酢酸エチル)により精製し、目的物の(4,5,6,7-テトラフルオロ-2H-イソインドール)多量体を、6.19g(換算収率65.5%)得た。得られた多量体の平均分子量(ポリスチレン換算でのGPCにより測定値)は、Mn=1,000、Mw=1,600であった。
Example 35 Preparation of (4,5,6,7-tetrafluoro-2H-isoindole) Multimer A catalyst in which palladium was supported on activated carbon in a 500 ml three-necked flask (purchased from Aldrich, Pd: 10 Mass%) 5.12 g (Pd amount: 4.81 mmol), 200 ml of methanol, 12.5 ml (37.5 mmol) of 3 M sulfuric acid were added. Next, after the system was depressurized and the operation of supplying hydrogen (hydrogen substitution) was repeated three times, the catalyst was activated by stirring at room temperature for 10 minutes while being pressurized with a hydrogen balloon. Thereafter, a solution of 10.0 g (49.98 mmol) of tetrafluorophthalonitrile in 200 ml of toluene was added to the flask and vigorously stirred at room temperature for 17 hours. The reaction solution was neutralized with aqueous sodium bicarbonate solution, and the palladium catalyst was removed by celite filtration. The filtrate was extracted with ethyl acetate, washed with distilled water and then with brine and dried over anhydrous sodium sulfate, and the extract was concentrated by an evaporator. The concentrate is purified by silica gel column chromatography (solvent: ethyl acetate) to obtain 6.19 g (converted yield) of (4,5,6,7-tetrafluoro-2H-isoindole) multimer of interest 65.5%) obtained. The average molecular weight of the obtained multimer (measured by GPC in terms of polystyrene) was Mn = 1,000 and Mw = 1,600.
 実施例36:(4,7-ジフルオロ-5,6-ビス(2,5-ジメチルフェノキシ)-2H-イソインドール)多量体の製造
 100mlの三つ口フラスコに、活性炭にパラジウムを担持させた触媒(アルドリッチ社より購入、Pd:10質量%)1.01g(Pd量:0.94mmol)、メタノール5.1g、3Mの硫酸1.5ml(4.5mmol)を添加した。次いで系内を減圧にしてから水素を供給する操作(水素置換)を3回繰り返した後、水素バルーンで加圧した状態で(約1.1気圧)、室温で10分間撹拌して触媒を活性化させた。その後に3,6-ジフルオロ-4,5-ビス(2,5-ジメチルフェノキシ)フタロニトリル3.00g(7.42mmol)を酢酸エチル15mlに溶解させた溶液をフラスコに加えて、室温で14時間撹拌した。反応溶液を重曹水で中和した後、セライトろ過によりパラジウム触媒を除去した。ろ液にトルエンを加えて抽出し、蒸留水、次いで飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー(溶媒:クロロホルム)により精製し、目的物の(4,7-ジフルオロ-5,6-ビス(2,5-ジメチルフェノキシ)-2H-イソインドール)多量体を、1.01g(換算収率34.9%)得た。得られた多量体の平均分子量(ポリスチレン換算でのGPCにより測定値)は、Mn=1,800、Mw=2,100であった。
Example 36 Preparation of (4,7-difluoro-5,6-bis (2,5-dimethylphenoxy) -2H-isoindole) Multimer A catalyst in which palladium was supported on activated carbon in a 100 ml three-necked flask (Purchase from Aldrich, Pd: 10% by mass) 1.01 g (Pd amount: 0.94 mmol), 5.1 g of methanol, and 1.5 ml (4.5 mmol) of 3 M sulfuric acid were added. Next, after the system is depressurized and the operation of supplying hydrogen (hydrogen substitution) is repeated three times, the catalyst is activated by stirring for 10 minutes at room temperature while pressurized with a hydrogen balloon (about 1.1 atm) It turned Thereafter, a solution of 3.00 g (7.42 mmol) of 3,6-difluoro-4,5-bis (2,5-dimethylphenoxy) phthalonitrile dissolved in 15 ml of ethyl acetate is added to the flask and the reaction is continued for 14 hours at room temperature. It stirred. The reaction solution was neutralized with aqueous sodium bicarbonate solution, and the palladium catalyst was removed by celite filtration. The filtrate was extracted with toluene, washed with distilled water and then with saturated brine, and dried over anhydrous sodium sulfate, and the extract was concentrated by an evaporator. The concentrate is purified by silica gel column chromatography (solvent: chloroform) to obtain the desired (4,7-difluoro-5,6-bis (2,5-dimethylphenoxy) -2H-isoindole) multimer. And 1.01 g (converted yield 34.9%) were obtained. The average molecular weight of the obtained multimer (as measured by GPC in terms of polystyrene) was Mn = 1,800 and Mw = 2,100.
 実施例37:(4,7-ジフルオロ-5,6-ビス(ペンタフルオロフェニル)-2H-イソインドール)多量体の製造
 20mlの二口フラスコに、活性炭にパラジウムを担持させた触媒(アルドリッチ社より購入、Pd:10質量%)0.3g(Pd量:0.28mmol)、メタノール3g、3Mの硫酸0.4ml(1.2mmol)を添加した。次いで系内を減圧にしてから水素を供給する操作(水素置換)を3回繰り返した後、水素バルーンで加圧した状態で(約1.1気圧)、室温で10分間撹拌して触媒を活性化させた。その後に3,6-ジフルオロ-4,5-ビス(ペンタフルオロフェニル)フタロニトリル1.00g(2.02mmol)を酢酸エチル5.1gに溶解させた溶液をフラスコに加えて、室温で14時間撹拌した。反応溶液を重曹水で中和した後、セライトろ過によりパラジウム触媒を除去した。ろ液にトルエンを加えて抽出し、蒸留水、次いで飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー(溶媒:クロロホルム)により精製し、目的物の(4,7-ジフルオロ-5,6-ビス(ペンタフルオロフェニル)-2H-イソインドール)多量体を、0.34g(換算収率43.1%)得た。得られた多量体の平均分子量(ポリスチレン換算でのGPCにより測定値)は、Mn=1,300、Mw=1,500であった。
Example 37 Preparation of (4,7-difluoro-5,6-bis (pentafluorophenyl) -2H-isoindole) Multimer A catalyst in which palladium was supported on activated carbon in a 20 ml two-necked flask (from Aldrich) 0.3 g (Pd: 0.28 mmol), 3 g of methanol, 0.4 ml (1.2 mmol) of 3 M sulfuric acid were added. Next, after the system is depressurized and the operation of supplying hydrogen (hydrogen substitution) is repeated three times, the catalyst is activated by stirring for 10 minutes at room temperature while pressurized with a hydrogen balloon (about 1.1 atm) It turned Thereafter, a solution of 1.00 g (2.02 mmol) of 3,6-difluoro-4,5-bis (pentafluorophenyl) phthalonitrile dissolved in 5.1 g of ethyl acetate is added to the flask and stirred at room temperature for 14 hours did. The reaction solution was neutralized with aqueous sodium bicarbonate solution, and the palladium catalyst was removed by celite filtration. The filtrate was extracted with toluene, washed with distilled water and then with saturated brine, and dried over anhydrous sodium sulfate, and the extract was concentrated by an evaporator. The concentrate is purified by silica gel column chromatography (solvent: chloroform) to obtain the desired (4,7-difluoro-5,6-bis (pentafluorophenyl) -2H-isoindole) multimer, 0. 34 g (converted yield 43.1%) were obtained. The average molecular weight of the obtained multimer (as measured by GPC in terms of polystyrene) was Mn = 1,300 and Mw = 1,500.
 実施例38:(5,6-ジクロロ-2H-イソインドール)多量体の製造
 200mlの三つ口フラスコに、活性炭にパラジウムを担持させた触媒(アルドリッチ社より購入、Pd:10質量%)1.00g(Pd量:0.94mmol)、メタノール5g、3Mの硫酸4.1ml(12.3mmol)を添加した。次いで系内を減圧にしてから水素を供給する操作(水素置換)を3回繰り返した後、水素バルーンで加圧した状態で(約1.1気圧)、室温で10分間撹拌して触媒を活性化させた。その後に4,5-ジクロロフタロニトリル3.00g(15.23mmol)を酢酸エチル90mlに溶解させた溶液をフラスコに加えて、室温で14時間撹拌した。反応溶液を重曹水で中和した後、セライトろ過によりパラジウム触媒を除去しつつ、酢酸エチルをかけて洗浄した。ろ液を、蒸留水、次いで飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、エバポレーターにより濃縮した。この濃縮物にメタノールを加えて激しく撹拌した後、ろ過することで低分子量物を取り除き、目的物の(5,6-ジクロロ-2H-イソインドール)多量体を、0.71g(換算収率25.3%)得た。得られた多量体の平均分子量(ポリスチレン換算でのGPCにより測定値)は、Mn=5,900、Mw=6,900であった。
Example 38 Preparation of (5,6-dichloro-2H-isoindole) Multimer A catalyst in which palladium was supported on activated carbon in a 200 ml three-necked flask (purchased from Aldrich, Pd: 10% by mass). 00 g (Pd amount: 0.94 mmol), 5 g of methanol and 4.1 ml (12.3 mmol) of 3 M sulfuric acid were added. Next, after the system is depressurized and the operation of supplying hydrogen (hydrogen substitution) is repeated three times, the catalyst is activated by stirring for 10 minutes at room temperature while pressurized with a hydrogen balloon (about 1.1 atm) It turned Thereafter, a solution of 3.00 g (15.23 mmol) of 4,5-dichlorophthalonitrile in 90 ml of ethyl acetate was added to the flask and stirred at room temperature for 14 hours. The reaction solution was neutralized with sodium bicarbonate aqueous solution and then washed with ethyl acetate while removing the palladium catalyst by celite filtration. The filtrate was washed with distilled water and then saturated brine, dried over anhydrous sodium sulfate and concentrated by an evaporator. After adding methanol to this concentrate and vigorously stirring, low molecular weight substances are removed by filtration to obtain 0.76 g of a target (5,6-dichloro-2H-isoindole) polymer (conversion yield 25) .3%) obtained. The average molecular weight of the obtained multimer (as measured by GPC in terms of polystyrene) was Mn = 5,900 and Mw = 6,900.
 本発明のイソインドール類の製造方法は、従来の方法と比べて、反応工程が少なく、より安価にイソインドール類を製造することができる。本発明の製造方法は、反応工程が簡便であるため、様々なフタロニトリル類を用いることができ、それにより様々な新規なイソインドール類を製造することができる。これらの新規イソインドール類は、色素原料として、またはポリマー化することで、有機薄膜トランジスタや有機太陽電池等の構成材料として用いること期待される。 The method for producing isoindoles of the present invention has fewer reaction steps and can produce isoindoles more inexpensively than conventional methods. The production method of the present invention can use various phthalonitriles because the reaction process is simple, and thereby various novel isoindoles can be manufactured. These novel isoindoles are expected to be used as constituent materials for organic thin film transistors, organic solar cells and the like as pigment materials or by polymerizing.
 本発明のπ共役環状化合物(7)の製造方法は、イソインドール(2)から、中間体(6)を経て、π共役環状化合物(7)(特にポルフィリン(7a))を製造することを特徴とする。この中間体(6)を経ることにより、特に含ハロゲンテトラベンゾポルフィリンを、選択的に純度良く製造できる。また本発明の製造方法によれば、金属塩を用いずに、含ハロゲンテトラベンゾポルフィリンを製造できる。 The process for producing the π-conjugated cyclic compound (7) of the present invention is characterized in that the π-conjugated cyclic compound (7) (particularly porphyrin (7a)) is produced from isoindole (2) via the intermediate (6). I assume. By passing through this intermediate (6), particularly the halogen-containing tetrabenzoporphyrin can be selectively produced in high purity. Moreover, according to the production method of the present invention, halogen-containing tetrabenzoporphyrin can be produced without using a metal salt.
 本発明のπ共役環状化合物(7)(好ましくはポルフィリン(7a)、コロール(7b)、サフィリン(7b)およびペンタフィリン(7d);より好ましくはポルフィリン(7a))は、様々な用途、例えば有機電子デバイス、特に有機導電性材料、有機半導体材料、n型有機電界効果型トランジスター(OFET)、太陽電池材料、光電導素子、非線形光学材料、光電変換素子ドーパント、光電導キャリヤ発生材料、光記録材料、および触媒などに適用できる。さらに本発明のポルフィリン錯体(8)も同様の用途に適用できる。また上記式(6a)~(6c)で示される化合物は、π共役環状化合物(7)の製造だけでなく、ポリイソインドレニンビニレンのようなポリマー材料の製造に適用できる。 The π-conjugated cyclic compounds (7) of the present invention (preferably porphyrin (7a), corrole (7b), saphyrin (7b) and pentaphyrin (7d); more preferably porphyrin (7a)) have various uses, such as organic Electronic devices, particularly organic conductive materials, organic semiconductor materials, n-type organic field effect transistors (OFETs), solar cell materials, photoconductive elements, non-linear optical materials, photoelectric conversion element dopants, photoconductive carrier generating materials, optical recording materials And catalysts and the like. Furthermore, the porphyrin complex (8) of the present invention can be applied to the same application. The compounds represented by the above formulas (6a) to (6c) can be applied not only to the production of the π-conjugated cyclic compound (7) but also to the production of polymer materials such as polyisoindolenine vinylene.
 本発明のイソインドール多量体の製造方法は、出発原料として、イソインドール類よりも安定で、且つ入手が容易なフタロニトリル類を用いて、イソインドール多量体を製造することができる。本発明の製造方法で得られるイソインドール多量体は、導電性材料として、より詳しくは有機薄膜トランジスタや有機太陽電池等の分野における電極材料、表示材料、電磁波遮蔽材料等として有用である。 The method for producing an isoindole multimer of the present invention can produce an isoindole multimer by using phthalonitriles which are more stable and easier to obtain than isoindoles as a starting material. The isoindole multimer obtained by the production method of the present invention is useful as a conductive material, more specifically, as an electrode material, a display material, an electromagnetic wave shielding material and the like in the field of organic thin film transistors and organic solar cells.

Claims (30)

  1.  下記式(1)で示されるフタロニトリルを還元することを特徴とする、下記式(2)で示されるイソインドールの製造方法。
    Figure JPOXMLDOC01-appb-C000001

    〔式中、Xは、ハロゲン原子を表し、Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立に、アルキル、アリールまたはアルキルアリール基を表す。)を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表す。〕
    A process for producing isoindole represented by the following formula (2), which comprises reducing phthalonitrile represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001

    [Wherein, X represents a halogen atom, Y represents R 1 , OR 2 or SR 3 , wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group] And m represents an integer of 1 to 4 and n represents an integer of 0 to 3, provided that m + n ≦ 4. ]
  2.  上記式(1)で示されるフタロニトリルをヒドリド還元試薬により還元する、請求項1に記載の製造方法。 The process according to claim 1, wherein the phthalonitrile represented by the above formula (1) is reduced by a hydride reducing reagent.
  3.  上記式(1)で示されるフタロニトリル1モルに対し、ヒドリドが2~6モルになるようにヒドリド還元試薬を使用する、請求項2に記載の製造方法。 The production method according to claim 2, wherein the hydride reducing reagent is used such that the amount of hydride is 2 to 6 moles relative to 1 mole of phthalonitrile represented by the above formula (1).
  4.  上記式(1)で示されるフタロニトリルとヒドリド還元試薬とを混合し、還元反応を行った後、反応混合物とプロトン酸とを混合する、請求項2に記載の製造方法。 The production method according to claim 2, wherein the phthalonitrile represented by the above formula (1) and the hydride reducing reagent are mixed, reduction reaction is performed, and then the reaction mixture and the protonic acid are mixed.
  5.  上記式(1)で示されるフタロニトリルとヒドリド還元試薬とを混合し、還元反応を行った後、反応混合物とアルカリとを混合する、請求項2に記載の製造方法。 The production method according to claim 2, wherein the phthalonitrile represented by the above formula (1) and the hydride reducing reagent are mixed, the reduction reaction is carried out, and then the reaction mixture and the alkali are mixed.
  6.  ヒドリド還元試薬が、アルミニウム水素化物若しくはその錯体、またはホウ素水素化物若しくはその錯体である、請求項2に記載の製造方法。 The method according to claim 2, wherein the hydride reducing reagent is aluminum hydride or a complex thereof, or boron hydride or a complex thereof.
  7.  上記式(1)で示されるフタロニトリルを接触水素化法で還元する、請求項1に記載の製造方法。 The production method according to claim 1, wherein the phthalonitrile represented by the above formula (1) is reduced by catalytic hydrogenation.
  8.  下記式(2)で示されるイソインドール(4,5,6,7-テトラフルオロ-2H-イソインドールを除く)。
    Figure JPOXMLDOC01-appb-C000002

    〔式中、Xは、ハロゲン原子を表し、Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立に、アルキル、アリールまたはアルキルアリール基を表す。)を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表す。〕
    Isoindole represented by the following formula (2) (excluding 4,5,6,7-tetrafluoro-2H-isoindole).
    Figure JPOXMLDOC01-appb-C000002

    [Wherein, X represents a halogen atom, Y represents R 1 , OR 2 or SR 3 , wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group] And m represents an integer of 1 to 4 and n represents an integer of 0 to 3, provided that m + n ≦ 4. ]
  9.  下記式(3)で示されるN-置換イソインドール(Xがフッ素原子であり、且つm=4であるものを除く)。
    Figure JPOXMLDOC01-appb-C000003

    〔式中、Xは、ハロゲン原子を表し、Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立に、アルキル、アリールまたはアルキルアリール基を表す。)を表し、R4は、アルキル、アリール、アルキルアリールまたはアシル基を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表す。〕
    N-substituted isoindole represented by the following formula (3) (excluding those in which X is a fluorine atom and m = 4).
    Figure JPOXMLDOC01-appb-C000003

    [Wherein, X represents a halogen atom, Y represents R 1 , OR 2 or SR 3 , wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group] And R 4 represents an alkyl, aryl, alkylaryl or acyl group, and m represents an integer of 1 to 4 and n represents an integer of 0 to 3, provided that m + n ≦ 4. . ]
  10.  下記式(4)で示される繰返し単位を有するポリマー(Xがフッ素原子であり、且つm=4であるものを除く)。
    Figure JPOXMLDOC01-appb-C000004

    〔式中、Xは、ハロゲン原子を表し、Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立に、アルキル、アリールまたはアルキルアリール基を表す。)を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表す。〕
    A polymer having a repeating unit represented by the following formula (4) (excluding those in which X is a fluorine atom and m = 4).
    Figure JPOXMLDOC01-appb-C000004

    [Wherein, X represents a halogen atom, Y represents R 1 , OR 2 or SR 3 , wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group] And m represents an integer of 1 to 4 and n represents an integer of 0 to 3, provided that m + n ≦ 4. ]
  11.  下記式(5)で示される繰返し単位を有するポリマー(Xがフッ素原子であり、且つm=4であるものを除く)。
    Figure JPOXMLDOC01-appb-C000005

    〔式中、Xは、ハロゲン原子を表し、Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立に、アルキル、アリールまたはアルキルアリール基を表す。)を表し、R4は、アルキル、アリール、アルキルアリールまたはアシル基を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表す。〕
    A polymer having a repeating unit represented by the following formula (5) (excluding those in which X is a fluorine atom and m = 4).
    Figure JPOXMLDOC01-appb-C000005

    [Wherein, X represents a halogen atom, Y represents R 1 , OR 2 or SR 3 , wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group] And R 4 represents an alkyl, aryl, alkylaryl or acyl group, and m represents an integer of 1 to 4 and n represents an integer of 0 to 3, provided that m + n ≦ 4. . ]
  12.  下記式(2)で示される含ハロゲンイソインドールから、下記式(6)で示されるイソインドールの1位置換体を経て、下記式(7)で示されるπ共役環状化合物を製造する方法。
    Figure JPOXMLDOC01-appb-C000006

    〔式中、Xは、ハロゲン原子を表す。
     Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立にアルキル、アリールまたはアルキルアリール基を表す。)を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表す。
     Zは、OHまたはNR56(式中、R5およびR6は、それぞれ独立にC1-4アルキル基を表す。)を表す。
     Aは、NまたはNHを表し、jは、1~5の整数を表し、kは、0または1の整数を表し、実線および点線からなる二重線は、単結合または二重結合を表し、式(7)で示される環状化合物は、二重線の部分でπ共役系を形成する。〕
    A method for producing a π-conjugated cyclic compound represented by the following formula (7) from a halogen-containing isoindole represented by the following formula (2) via a 1-position substitution of isoindole represented by the following formula (6).
    Figure JPOXMLDOC01-appb-C000006

    [Wherein, X represents a halogen atom.
    Y represents R 1 , OR 2 or SR 3 (wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), provided that m + n ≦ 4 And m represents an integer of 1 to 4 and n represents an integer of 0 to 3.
    Z represents OH or NR 5 R 6 (wherein, R 5 and R 6 each independently represent a C 1-4 alkyl group).
    A represents N or NH, j represents an integer of 1 to 5, k represents an integer of 0 or 1, and a double line consisting of a solid line and a dotted line represents a single bond or a double bond, The cyclic compound represented by the formula (7) forms a π-conjugated system at the doublet. ]
  13.  下記式(2)で示される含ハロゲンイソインドールから、下記式(6)で示されるイソインドールの1位置換体を経て、下記式(7a)で示される含ハロゲンテトラベンゾポルフィリンを製造する、請求項12に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000007

    〔式中、Xは、ハロゲン原子を表し、Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立にアルキル、アリールまたはアルキルアリール基を表す。)を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表す。
     Zは、OHまたはNR56(式中、R5およびR6は、それぞれ独立にC1-4アルキル基を表す。)を表す。〕
    The halogen-containing tetrabenzoporphyrin represented by the following formula (7a) is produced from the halogen-containing isoindole represented by the following formula (2) through the 1-position substitution of isoindole represented by the following formula (6): The manufacturing method as described in 12.
    Figure JPOXMLDOC01-appb-C000007

    [Wherein, X represents a halogen atom, and Y represents R 1 , OR 2 or SR 3 , wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group. And m is an integer of 1 to 4 and n is an integer of 0 to 3, provided that m + n ≦ 4.
    Z represents OH or NR 5 R 6 (wherein, R 5 and R 6 each independently represent a C 1-4 alkyl group). ]
  14.  上記式(2)で示される含ハロゲンイソインドールをホルミル化することによって、下記式(6b)で示される第1の中間体を形成し、次いでこの中間体(6b)を還元することにより、上記イソインドールの1位置換体として下記式(6c)で示されるヒドロキシメチル化-2H-イソインドールを形成する、請求項13に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000008

    〔式中、Xは、ハロゲン原子を表し、Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立にアルキル、アリールまたはアルキルアリール基を表す。)を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表す。〕
    The first intermediate represented by the following formula (6b) is formed by formylation of the halogen-containing isoindole represented by the above formula (2), and then the above intermediate (6b) is reduced to form the first intermediate The production method according to claim 13, which forms hydroxymethylated-2H-isoindole represented by the following formula (6c) as a 1-position substitution of isoindole.
    Figure JPOXMLDOC01-appb-C000008

    [Wherein, X represents a halogen atom, and Y represents R 1 , OR 2 or SR 3 , wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group. And m is an integer of 1 to 4 and n is an integer of 0 to 3, provided that m + n ≦ 4. ]
  15.  ハロゲン化ホスホリルの存在下で、上記式(2)で示される含ハロゲンイソインドールとジアルキルホルムアミドとを反応させて、上記式(6b)で示される第1の中間体を形成する、請求項14に記載の製造方法。 The halogen-containing isoindole represented by the above formula (2) is reacted with dialkylformamide in the presence of a phosphoryl halide to form a first intermediate represented by the above formula (6b). Manufacturing method described.
  16.  上記式(2)で示される含ハロゲンイソインドールをアミノメチレン化することによって、下記式(6a)で示される第2の中間体を形成し、次いでこの中間体(6a)を加水分解することにより、上記式(6b)で示される第1の中間体を形成する、請求項14に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000009

    〔式中、Xは、ハロゲン原子を表し、Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立にアルキル、アリールまたはアルキルアリール基を表す。)を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表し、R7およびR8は、それぞれ独立にC1-4アルキル基を表す。〕
    By aminomethylenation of the halogen-containing isoindole represented by the above formula (2) to form a second intermediate represented by the following formula (6a), and then hydrolyzing this intermediate (6a) The method according to claim 14, wherein the first intermediate represented by the above formula (6b) is formed.
    Figure JPOXMLDOC01-appb-C000009

    [Wherein, X represents a halogen atom, and Y represents R 1 , OR 2 or SR 3 , wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group. And m represents an integer of 1 to 4, n represents an integer of 0 to 3, and R 7 and R 8 each independently represent a C 1-4 alkyl group, provided that m + n ≦ 4. Represents ]
  17.  ハロゲン化ホスホリルの存在下で、上記式(2)で示される含ハロゲンイソインドールとジアルキルホルムアミドとを反応させて、上記式(6a)で示される第2の中間体を形成する、請求項16に記載の製造方法。 The halogen-containing isoindole represented by the above formula (2) is reacted with a dialkylformamide in the presence of a phosphoryl halide to form a second intermediate represented by the above formula (6a) Manufacturing method described.
  18.  酢酸、プロピオン酸および酪酸から選択される少なくとも1種の脂肪族モノカルボン酸、および/またはZnCl2、BF3およびBF3・O(C252から選択される少なくとも1種のルイス酸の存在下で上記式(6c)で示されるヒドロキシメチル化-2H-イソインドールを脱水環化し、次いで酸化剤を作用させることにより、上記式(7)で示される含ハロゲンテトラベンゾポルフィリンを製造する、請求項14に記載の製造方法。 Acetic acid, at least one aliphatic monocarboxylic acid, and / or ZnCl 2, BF 3 and BF 3 · O (C 2 H 5) at least one Lewis acid selected from 2 selected from propionic acid and butyric acid Is produced by dehydrating the hydroxymethylated-2H-isoindole represented by the above formula (6c) in the presence of (6c) and then reacting with an oxidizing agent to produce the halogen-containing tetrabenzoporphyrin represented by the above formula (7) The manufacturing method according to claim 14.
  19.  上記式(2)で示される含ハロゲンイソインドールをアミノメチル化することによって、上記イソインドールの1位置換体として下記式(6d)で示されるアミノメチル化-2H-イソインドールを形成する、請求項13に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000010

    〔式中、Xは、ハロゲン原子を表し、Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立にアルキル、アリールまたはアルキルアリール基を表す。)を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表し、R5およびR6は、それぞれ独立にC1-4アルキル基を表す。〕
    The aminomethylated -2H-isoindole represented by the following formula (6d) is formed as a 1-substituent of the above isoindole by aminomethylating the halogen-containing isoindole represented by the above formula (2). The manufacturing method as described in 13.
    Figure JPOXMLDOC01-appb-C000010

    [Wherein, X represents a halogen atom, and Y represents R 1 , OR 2 or SR 3 , wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group. And m is an integer of 1 to 4, n is an integer of 0 to 3, and R 5 and R 6 are each independently a C 1-4 alkyl group, provided that m + n ≦ 4. Represents ]
  20.  酸の存在下で、上記式(2)で示される含ハロゲンイソインドールと、ホルムアルデヒドと、ジアルキルアミンとを反応させ、次いで酸化剤を作用させることにより、上記式(7)で示される含ハロゲンテトラベンゾポルフィリンを製造する請求項19に記載の製造方法。 In the presence of an acid, the halogen-containing isoindole represented by the above formula (2), formaldehyde, and a dialkylamine are reacted, and then the oxidizing agent is allowed to act to obtain the halogen-containing tetratetra represented by the above formula (7). The method according to claim 19, wherein benzoporphyrin is produced.
  21.  上記式(2)で示される含ハロゲンイソインドールと、ハロゲン化メチレンジアルキルアンモニウムとを反応させ、次いで酸化剤を作用させることにより、上記式(7)で示される含ハロゲンテトラベンゾポルフィリンを製造する請求項19に記載の製造方法。 A halogen-containing tetrabenzoporphyrin represented by the above formula (7) is produced by reacting a halogen-containing isoindole represented by the above formula (2) with a methylenedialkylammonium halide and then reacting with an oxidizing agent. Item 19. The method according to Item 19.
  22.  下記式(6a)で示されるアミノメチレン化-1H-イソインドール。
    Figure JPOXMLDOC01-appb-C000011

    〔式中、Xは、ハロゲン原子を表し、Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立にアルキル、アリールまたはアルキルアリール基を表す。)を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表し、R7およびR8は、それぞれ独立にC1-4アルキル基を表す。〕
    Aminomethylenated-1H-isoindole represented by the following formula (6a):
    Figure JPOXMLDOC01-appb-C000011

    [Wherein, X represents a halogen atom, and Y represents R 1 , OR 2 or SR 3 , wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group. And m represents an integer of 1 to 4, n represents an integer of 0 to 3, and R 7 and R 8 each independently represent a C 1-4 alkyl group, provided that m + n ≦ 4. Represents ]
  23.  下記式(6b)で示されるホルミル化-2H-イソインドール。

    〔式中、Xは、ハロゲン原子を表し、Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立にアルキル、アリールまたはアルキルアリール基を表す。)を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表す。〕
    Formylated 2H-isoindole represented by the following formula (6b).

    [Wherein, X represents a halogen atom, and Y represents R 1 , OR 2 or SR 3 , wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group. And m is an integer of 1 to 4 and n is an integer of 0 to 3, provided that m + n ≦ 4. ]
  24.  下記式(6c)で示されるヒドロキシメチル化-2H-イソインドール。
    Figure JPOXMLDOC01-appb-C000013

    〔式中、Xは、ハロゲン原子を表し、Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立にアルキル、アリールまたはアルキルアリール基を表す。)を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表す。〕
    Hydroxymethylated-2H-isoindole represented by the following formula (6c):
    Figure JPOXMLDOC01-appb-C000013

    [Wherein, X represents a halogen atom, and Y represents R 1 , OR 2 or SR 3 , wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group. And m is an integer of 1 to 4 and n is an integer of 0 to 3, provided that m + n ≦ 4. ]
  25.  下記式(7)で示されるπ共役環状化合物。
    Figure JPOXMLDOC01-appb-C000014

    〔式中、Xは、ハロゲン原子を表す。
     Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立にアルキル、アリールまたはアルキルアリール基を表す。)を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表す。
     Aは、NまたはNHを表し、jは、1~5の整数を表し、kは、0または1の整数を表し、実線および点線からなる二重線は、単結合または二重結合を表し、式(7)で示される環状化合物は、二重線の部分でπ共役系を形成する。〕
    The pi-conjugated cyclic compound shown by following formula (7).
    Figure JPOXMLDOC01-appb-C000014

    [Wherein, X represents a halogen atom.
    Y represents R 1 , OR 2 or SR 3 (wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), provided that m + n ≦ 4 And m represents an integer of 1 to 4 and n represents an integer of 0 to 3.
    A represents N or NH, j represents an integer of 1 to 5, k represents an integer of 0 or 1, and a double line consisting of a solid line and a dotted line represents a single bond or a double bond, The cyclic compound represented by the formula (7) forms a π-conjugated system at the doublet. ]
  26.  下記式(7a)で示される含ハロゲンテトラベンゾポルフィリンである請求項25に記載のπ共役環状化合物。
    Figure JPOXMLDOC01-appb-C000015

    〔式中、Xは、ハロゲン原子を表し、Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立にアルキル、アリールまたはアルキルアリール基を表す。)を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表す。〕
    The π-conjugated cyclic compound according to claim 25, which is a halogen-containing tetrabenzoporphyrin represented by the following formula (7a).
    Figure JPOXMLDOC01-appb-C000015

    [Wherein, X represents a halogen atom, and Y represents R 1 , OR 2 or SR 3 , wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group. And m is an integer of 1 to 4 and n is an integer of 0 to 3, provided that m + n ≦ 4. ]
  27.  下記式(8)で示される含ハロゲンテトラベンゾポルフィリン錯体。
    Figure JPOXMLDOC01-appb-C000016

    〔式中、Xは、ハロゲン原子を表し、Yは、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立にアルキル、アリールまたはアルキルアリール基を表す。)を表し、m+n≦4であることを条件として、mは1~4の整数を表し、nは0~3の整数を表し、Mは、金属または半金属イオンを表す。〕
    The halogen-containing tetrabenzoporphyrin complex shown by following formula (8).
    Figure JPOXMLDOC01-appb-C000016

    [Wherein, X represents a halogen atom, and Y represents R 1 , OR 2 or SR 3 , wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group. And m represents an integer of 1 to 4, n represents an integer of 0 to 3, and M represents a metal or metalloid ion, provided that m + n ≦ 4. ]
  28.  下記式(9)で示されるフタロニトリルを、酸の存在下で接触水素化することを特徴とする下記式(10)で示される繰返し単位を有する多量体の製造方法。
    Figure JPOXMLDOC01-appb-C000017

    〔式中、Dは、ハロゲン原子、R1、OR2またはSR3(式中、R1、R2およびR3は、それぞれ独立に、アルキル、アリールまたはアルキルアリール基を表す。)を表し、pは0~4の整数を表す。〕
    A process for producing a multimer having a repeating unit represented by the following formula (10), which comprises catalytic hydrogenation of a phthalonitrile represented by the following formula (9) in the presence of an acid.
    Figure JPOXMLDOC01-appb-C000017

    [Wherein, D represents a halogen atom, R 1 , OR 2 or SR 3 (wherein R 1 , R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), and p represents an integer of 0 to 4; ]
  29.  前記酸として、酢酸、トリフルオロ酢酸、リン酸、塩酸、硝酸および硫酸よりなる群から選ばれる少なくとも1種を用いる、請求項28に記載の製造方法。 The method according to claim 28, wherein at least one selected from the group consisting of acetic acid, trifluoroacetic acid, phosphoric acid, hydrochloric acid, nitric acid and sulfuric acid is used as the acid.
  30.  接触水素化のための触媒として、パラジウム触媒、ロジウム触媒、白金触媒およびニッケル触媒よりなる群から選ばれる少なくとも1種を用いる、請求項28に記載の製造方法。 The production method according to claim 28, wherein at least one member selected from the group consisting of a palladium catalyst, a rhodium catalyst, a platinum catalyst and a nickel catalyst is used as a catalyst for catalytic hydrogenation.
PCT/JP2007/065080 2006-08-02 2007-08-01 Isoindoles, compounds prepared from the same, and processes for production of both WO2008016085A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2006211294 2006-08-02
JP2006-211294 2006-08-02
JP2006-303316 2006-11-08
JP2006303316 2006-11-08
JP2007077935 2007-03-23
JP2007-077935 2007-03-23
JP2007-077933 2007-03-23
JP2007077933 2007-03-23
JP2007077931 2007-03-23
JP2007-077931 2007-03-23

Publications (2)

Publication Number Publication Date
WO2008016085A1 WO2008016085A1 (en) 2008-02-07
WO2008016085A9 true WO2008016085A9 (en) 2009-07-16

Family

ID=38997260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065080 WO2008016085A1 (en) 2006-08-02 2007-08-01 Isoindoles, compounds prepared from the same, and processes for production of both

Country Status (1)

Country Link
WO (1) WO2008016085A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2462122B (en) * 2008-07-25 2013-04-03 Cambridge Display Tech Ltd Electroluminescent materials
JP5742422B2 (en) * 2010-04-28 2015-07-01 住友化学株式会社 Polymer compounds, compounds and uses thereof
CN103864645B (en) * 2013-12-30 2016-08-17 常州大学 A kind of two replacement perfluoroalkyl phthalonitrile compound and preparation method thereof
CN111349237A (en) * 2020-03-09 2020-06-30 江西科技师范大学 Polyfluoro functional polybenzazole electrode material applied to supercapacitor and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833231A (en) * 1985-12-06 1989-05-23 Showa Denko Kabushiki Kaisha Polymer having isoindole structure
JPS63139912A (en) * 1986-07-07 1988-06-11 Asahi Chem Ind Co Ltd Conductive polymer
JPS63223031A (en) * 1987-03-11 1988-09-16 Toyobo Co Ltd Polymer having isoindole structure and production thereof
JP2004006750A (en) * 2002-03-27 2004-01-08 Mitsubishi Chemicals Corp Organic semiconductor material and organic electronic device
JP4961660B2 (en) * 2003-08-11 2012-06-27 三菱化学株式会社 Field effect transistor using copper porphyrin compound

Also Published As

Publication number Publication date
WO2008016085A1 (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP6004450B2 (en) Organic compound and photovoltaic device comprising said organic compound
JP2020111751A (en) Solventless photon up-conversion system
US10647732B2 (en) N-annulated perylene diimide dimers with active pyrrolic N—H bonds
JP2013056859A (en) π-CONJUGATED ORGANIC BORON COMPOUND AND METHOD OF PRODUCING THE SAME
TW200540893A (en) Electrode for an energy storage device and method for making same
WO2008016085A9 (en) Isoindoles, compounds prepared from the same, and processes for production of both
Luo et al. Room-temperature discotic liquid crystals based on oligothiophenes—attached and fused triazatruxenes
KR100996257B1 (en) Method for preparing poly(5-aminoquinoxalines)
US20020041976A1 (en) Novel compounds and their manufacture and use
Zhang et al. ‘Click’synthesis of starburst triphenylamine as potential emitting material
JP5317084B2 (en) π-conjugated cyclic compound and process for producing the same
Wu et al. Organometallic polymers based on fluorene-bridged bis-benzimidazolylidene via direct ligand–metal coordination: synthesis, characterization and optical properties
Li et al. B (III)-subporphyrazines, B (III)-subporphyrins and their hybrids
Irgashev et al. A new synthetic approach to fused nine-ring systems of the indolo [3, 2-b] carbazole family through double Pd-catalyzed intramolecular C–H arylation
Anannarukan et al. Soluble polyimides containing trans-diaminotetraphenylporphyrin: Synthesis and photoinduced electron transfer
JP4479879B2 (en) Poly (5-aminoquinoxaline) and use thereof
US20230090784A1 (en) Photoredox Catalysts And Methods Of Using Such Catalysts
JP5656235B2 (en) Isoindoles and polymers thereof
JP2009062356A (en) Halogen-containing benzoporphyrin, its complex and method for producing halogen-containing benzoporphyrin
JP7212220B2 (en) Compound, active material for storage battery, n-type semiconductor material, hydrogen storage material, and method for producing compound
El Berjawi Construction and characterizations of new perylenediimide based molecular assemblies derived from nitro or amino bay-substituted derivatives
Wang et al. Palladium-Catalyzed Arylations towards 3, 6-Diaryl-1, 3a, 6a-triazapentalenes and Evaluation of Their Fluorescence Properties
JP2004224773A (en) New indole derivative, trimer of the same and method for producing the same
Turel Synthesis and Structure-Property Relationships of Rylene Dyes
CN112939813A (en) 9-aryl-10-aryloxy anthracene derivative, preparation method thereof and application thereof as luminescent material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

NENP Non-entry into the national phase in:

Ref country code: RU

122 Ep: pct app. not ent. europ. phase

Ref document number: 07791760

Country of ref document: EP

Kind code of ref document: A1