WO2008016085A1 - Isoindoles, compounds prepared from the same, and processes for production of both - Google Patents

Isoindoles, compounds prepared from the same, and processes for production of both Download PDF

Info

Publication number
WO2008016085A1
WO2008016085A1 PCT/JP2007/065080 JP2007065080W WO2008016085A1 WO 2008016085 A1 WO2008016085 A1 WO 2008016085A1 JP 2007065080 W JP2007065080 W JP 2007065080W WO 2008016085 A1 WO2008016085 A1 WO 2008016085A1
Authority
WO
WIPO (PCT)
Prior art keywords
isoindole
acid
represented
integer
formula
Prior art date
Application number
PCT/JP2007/065080
Other languages
French (fr)
Japanese (ja)
Other versions
WO2008016085A9 (en
Inventor
Hidemitsu Uno
Go Masuda
Toshiya Iida
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Publication of WO2008016085A1 publication Critical patent/WO2008016085A1/en
Publication of WO2008016085A9 publication Critical patent/WO2008016085A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring

Definitions

  • the present invention relates to a novel method for producing isoindoles and novel isoindoles. Furthermore, the present invention provides novel compounds obtained from isoindoles, specifically iso indole multimers (including polymers), iso indole derivatives (1-position substitution), ⁇ conjugated cyclic compounds (especially porphyrins) and porphyrin complexes, and the like. It relates to the manufacturing method of
  • Isoindoles are used as pigment materials for porphyrins and the like, and are polymerized to obtain organic thin film transistors, organic solar cells, organic EL, electrophotographic photosensitive members, photorefractive materials, secondary batteries, capacitors, and charging. It is expected to be used for inhibitors, electrochromic materials, etc.
  • porphyrins obtained from pyrroles are relatively easy to obtain despite having a very large ⁇ electron system, nonlinear optical materials, photoelectric conversion element dopants, photoconductivity It has been actively studied as a caustic material, an optical recording material, etc.
  • the tuning of the absorption wavelength and the fluorescence emission wavelength is an important issue that affects the performance as a dye.
  • ⁇ electron system is more preferable than using electron donating group or electron withdrawing group as an auxiliary dye. It is effective to extend the Examples of porphyrins having an expanded ⁇ electron system include tetrabenzoporphyrins described below.
  • a halogen-containing tetrabenzo-porphyrin in particular a fluorine-containing tetrabenzo-porphyrin, it may be useful as an organic electronic device, particularly an ⁇ -type organic field effect transistor (OFE) or a conductive material.
  • OFE organic field effect transistor
  • tetrabenzo porphyrin can not be used as a starting material for halogen-containing tetrabenzo porphyrin synthesis which is low in solubility in organic solvents.
  • acetic acid (iKil) are reacted with each other to give 2 1 , 2 2 , 2 3 , 2 4 , 7 1 , 7 2 , 7 3 , 7 4 , 12 1 , 12 2 , 12 3 , 12 4 , 1 7 1 , 17 2 , 17 3 , 17 4- Hexadecafluoro-capped 21H, 23H-tetrabenzoporphyrin (hereinafter abbreviated as "hexadecaphoric fluorotetrabenzo porphyrin”) zinc (II) complex (B) It is reported that it was synthesized.
  • the complex (B) is not purified and is not isolated as a substance.
  • the complex (B) itself is not sufficiently synthesized under the influence of thermal polymerization and the like, and (II) the complex is not Even if (B) itself is synthesized, its purification may be difficult. This is because tetrabenzoporphyrin and its complexes have high planarity and low solubility, making purification difficult.
  • Multimers in particular, polymers obtained from isoindoles are known to have superior properties as compared to other conductive polymers, and have been extensively studied (eg, JP-A-S62-270621, JP-A-S63-223031, JP-A-S63-307604, JP-A-H02-263824, JP-A-H02-263825, JP-A-H03-166225 etc.).
  • JP-A-S62-270621 describes that polyisoindole is more stable than polyacetylene and is more difficult to dedope than polithiophen. Therefore, isoindole polymers are used in a wide range of applications, such as organic thin film transistors, organic solar cells, organic EL, electrophotographic photosensitive members, photorefractive materials, secondary batteries, capacitors, antistatic agents, electochromic materials, etc. Application is expected!
  • the first object of the present invention is to provide a novel production method by which isoindoles which have hitherto been difficult to produce can be easily obtained.
  • the present invention also provides novel isindoles, isoindole polymers, and methods of making the polymers.
  • the production method of the present invention which has achieved the first object, is characterized by reducing phthalonitrile (hereinafter sometimes referred to as “lid opening”) represented by the following formula (1), It is a method for producing indole (hereinafter referred to as “isoindole (2)” for short) having the following formula (2).
  • X represents a halogen atom
  • Y is OR 2 or SR 3 (wherein R 2 and R 3 each independently represent an alkyl, aryl or alkyl aryl group), and m is 1 to 1 provided that m + n ⁇ 4 Represents an integer of 4; n represents an integer of 0 to 3;
  • a hydride reducing reagent it is preferable to reduce phthalonitrile (1) with a hydride reducing reagent, and it is preferable to use a hydride reducing reagent so as to be 1 to 6 hydrides per mole of phthalonitrile (1). preferable. Furthermore, phthalonitrile (1) and hydride reduction reagent are mixed, It is recommended to mix the reaction mixture with a protonic acid or alkali after the reaction.
  • Preferred hydride reducing agents are aluminum hydrides or complexes thereof, or boron hydrides or complexes thereof.
  • reduction of phthalonitrile (1) by catalytic hydrogenation is also a preferred embodiment.
  • reducing phthalonitrile (1) by catalytic hydrogenation method means reducing phthalonitrile (1) by contact with hydrogen gas in the presence of a catalyst.
  • the present invention provides a novel isoindole represented by the following formula (2) (excluding 4,5,6,7-tetrafluorinated 2H-isoindole) or a novel N represented by the following formula (3) —
  • X, Y, m and ⁇ are as defined above, and R 4 represents an alkyl, aryl, alkylaryl or acyl group).
  • the present invention is further represented by the following formula (4) or (5) by oxidative polymerization of isoindole (2) or ⁇ -substituted isoindole (3) produced by the above production method.
  • oxidative polymerization means chemical oxidative polymerization with an oxidizing agent, or electrolytic oxidative polymerization by electrically oxidizing a monomer in a solvent in the presence of an electrolytic substance.
  • a second object of the present invention is that, unlike the synthesis method of DE Remy et al., Pi-conjugated cyclic compounds (especially halogen-containing tetrabenzoporphyrin) with high purity without using metal salts or metalloid salts.
  • the present invention also provides a method capable of producing a metal porphyrin complex having various metal ions as core nuclei which are made only by zinc ions.
  • the production method of the present invention which has achieved the second object is a compound comprising a 1-substituted form of isoindole represented by the following formula (6) from a halogen-containing isoindole represented by the following formula (2) (hereinafter referred to as The 1-position substitution of isoindole is sometimes abbreviated as "intermediate”, and then the ⁇ -conjugated cyclic compound represented by the following formula (7) (hereinafter abbreviated as " ⁇ conjugated cyclic compound (7)" Are characterized by manufacturing.
  • X represents a halogen atom
  • the wolf is OR 2 or SR 3 (wherein, R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), provided that m + n ⁇ 4, m is 1 Represents an integer of -4, and n represents an integer of 0-3.
  • Z represents OH or NR 5 R 6 (wherein R 5 and R 6 each independently represent a C alkyl group)
  • A represents N or NH
  • j represents an integer of from! To 5
  • k represents an integer of 0 or 1
  • a double line consisting of a solid line and a dotted line represents a single bond or a double bond
  • the cyclic compound represented by the formula (7) forms a 71 conjugated system at the double line part.
  • Conjugated system means a structure in which two or more double bonds are linked to each other via only one single bond
  • k-zero ⁇ -conjugated cyclic compound means a structure in formula (7).
  • porphyrin (7a) halogen-containing tetrabenzene-Zoporphyrin (hereinafter may be abbreviated as “porphyrin (7a)”) represented by the following formula (7a) (hereinafter, sometimes referred to In the following formulae, X, Y, m, n and Z have the same meaning as described above).
  • the above 1-substituted isoindole is a hydroxymethylated 2H isoindole represented by the following formula (6c) or an aminomethylated 2H-isoindonole represented by the following formula (6d) is there.
  • the hydroxymethylated 2H isoindole represented by the above formula (6c) forms a first intermediate represented by the following formula (6b) by formylation of (I) isoindole (2). Then, the intermediate (6b) is reduced or (II) isoindole (2) aminomethylenated to form a second intermediate represented by the following formula (6a).
  • a first intermediate represented by the following formula 1 ⁇ 2 b) is formed: Is preferably prepared by reducing this intermediate (6b) by the following! /, Wherein X, Y, m, n, and Z have the same meaning as described above, R 7 and R 8 are independently C al
  • the hydroxymethylated 2H isoindole represented by the above formula (6c) is reacted with isoindole (2) and a dialkylformamide in the presence of a phosphoryl halide to obtain the above formula (6b) Embedded image or a second intermediate represented by the above-mentioned formula (6a) can be formed from these intermediates.
  • the thus obtained hydroxymethylated 2H isoindole (6c) is selected from acetic acid, propionic acid and butyric acid, at least one aliphatic monocarboxylic acid selected from these, and / or ZnCl, BF.
  • porphyrin (7a) it is preferable to produce porphyrin (7a) by reacting it with an oxidizing agent.
  • Aminomethylated 2H-isoindole represented by the above formula (6d) can be produced by aminomethylating isoindole (2).
  • isoindole (2), formaldehyde and dialkylamine in the presence of (I) acid The reaction may be followed by reaction with an oxidizing agent, or the reaction of (II) isoindole (2) with a halogenated methylene dialkyl ammonium and then with an oxidizing agent.
  • isoindole ( 2) Force S which is preferably a compound represented by the following formula (2a): 4, 5, 6, 7 tetrafluoro-2H isoindole or 4, 5, 6, 7 tetrachloro-mono-2H isoindole Is more preferred.
  • X 1 and X 4 each independently represent F or C 1
  • X and X 3 each independently represent H, F or C 1.
  • the present invention also provides aminomethylenated 1H isoindenoles, forminoleated 2H-isoindoles and hydroxymethylated 2H-isoindoles represented by the following formulas (6a) to (6c). These compounds are useful for producing .zeta. Conjugated cyclic compounds (especially halogen-containing tetrabenzoporphyrins) as described above. Also, these compounds can be used for the production of polymer materials such as polyisoindolenine vinylene which can be made only by the production of porphyrins (wherein X, Y, m, n, R 7 and R 8 are Same meaning as above).
  • the present invention relates to a ⁇ -conjugated cyclic compound (7) (particularly porphyrin (7a)), and a halogen-containing tetrabenzoborophyrin complex represented by the following formula (8) (hereinafter referred to simply as “borophyrin complex (8)” (In the following formulas, X and Y have the same meanings as described above, and M represents a metal or metalloid ion).
  • the borophyrin complex (8) can be produced by mixing the porphyrin (7a) with the metal or metal salt containing the metalloid ion M.
  • Cyclization of the 1-position substitution product (6) of a compound of the formula (11), a halogen-containing tetrabenzophorphylinogen (a reduced form of porphyrin, hereinafter referred to as "borophyrinogen (11)") represented by the following formula (11) S) is considered to form.
  • porphyrinogen (11) an oxidant (such as quinones or oxygen in the air) is allowed to act on this porphyrinogen (11) to obtain porphyrin (7a). Therefore, during the halogen-containing tetrabenzoborophyrin preparation method described above, ie, the step after cyclization and before oxidation of the 1-substituted compound (6) of isoindole (ie, the step considered to be formed by porphyrinogen (11)
  • the porphyrin complex (8) can also be produced by adding a salt containing metal or metalloid metal M and then performing oxidation.
  • porphyrin complex (8) can be produced by mixing porphyrinogen (11) and a salt containing metal or metalloid ion M and then causing an oxidant to act [in the following formula, X , Y, m and ⁇ are as defined above].
  • the method for producing porphyrin complex (8) by reacting an oxidizing agent is preferably
  • isoindole (2) is reacted with a dialkylformamide to form an intermediate represented by the above formula 1 ⁇ 2b), and the intermediate (6b) is reduced by Forming an intermediate represented by the above formula 1 ⁇ 2c), the intermediate 1 ⁇ 2c) is an acid (preferably at least one aliphatic monocarboxylic acid selected from acetic acid, propionic acid and butyric acid, and / or ZnCl, BF And BF-0 (CH 2) power, mixed with at least one selected Lewis acid), and then mixed with a metal or metalloid ion containing salt M, and then the oxidizing agent is allowed to act,
  • an acid preferably at least one aliphatic monocarboxylic acid selected from acetic acid, propionic acid and butyric acid, and / or ZnCl, BF And BF-0 (CH 2) power, mixed with at least one selected Lewis acid
  • isoindole (2) is reacted with dialkyl formamide to form an intermediate represented by the above formula (6a), and this intermediate (6a) is hydrolyzed
  • the intermediate (6b) is reduced to form an intermediate represented by the above formula (c), and the intermediate (c) is converted to an acid (c)
  • At least one aliphatic monocarboxylic acid preferably selected from acetic acid, propionic acid and butyric acid, and / or ZnCl, BF and BF-0 (CH 2) power, at least selected
  • a third object of the present invention is to provide a method for producing isoindole multimers using phthalonitriles, which is easier to handle and obtain than isoindoles, as a starting material.
  • the present invention which has achieved the third object, is a compound represented by the following formula (2) characterized in that a phthalonitrile represented by the following formula (9) is catalytically hydrogenated in the presence of an acid.
  • a repeating unit Is a method of producing multimers.
  • catalytic hydrogenation has the same meaning as described above, and "multimer” means “having two or more repeating units”.
  • D is a halogen atom, R 1 , OIT or SR 3 (wherein, R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group. And p represents an integer of 0 to 4.
  • At least one selected from the group consisting of (I) acetic acid, trifluoroacetic acid, phosphoric acid, hydrochloric acid, nitric acid and sulfuric acid is used as the acid ( II) It is a preferred embodiment to use at least one member selected from the group consisting of a palladium catalyst, a rhodium catalyst, a platinum catalyst and a Nickenore catalyst as a catalyst for catalytic hydrogenation.
  • a phthalonitrile represented by the following formula (1) is used to produce a multimer having a repeating unit represented by the following formula (4) (In the following formulas, X, Y, m and ⁇ have the same meanings as described above).
  • phthalonitrile (9) the phthalonitrile represented by the above formula (9)
  • the body may be abbreviated as “Isoindole multimer (10) hota ha (4))”.
  • isoindole (2) can be produced by a simple reaction step of reducing phthalonitrile (1) (preferably by reduction using a hydride reducing reagent or reduction by catalytic hydrogenation method) It is characterized by Therefore, first, the reduction by the hydride reducing reagent will be described.
  • the hydride reducing reagent is used so that 1 to 2 moles, more preferably 2.5 to 5 moles, and even more preferably 2. 7 to 4.5 moles of hydridoca per mole of phthalonitrile (1). It is recommended to do.
  • the optimum amount of hydride reducing reagent is 1 mol of phthalonitrile (1),
  • hydride reducing reagent After reduction reaction of phthalonitrile (1) with hydride reducing reagent, hydride reducing reagent is tanched with water. At this time, it is preferable to use an acid (preferably a protic acid) or an alkali together with water. I'm sorry. This is because the yield of isoindole (2) is improved.
  • an acid preferably a protic acid
  • the present invention is not limited to this assumption: As shown in the above-mentioned presumed reaction mechanism, after reduction reaction, residue (eg, aluminum or boron) of hydride reducing reagent is added to nitrogen of isoindole (2). It is thought that it is in the state as it is. If this residue remains added, subsequent purification such as silica gel column chromatography may not be successful. Therefore, it is considered that the purification yield can be improved by promoting the elimination of the residue by adding a protonic acid or alkali. It is surprising that the yield of isoindole (2) is improved by mixing a strong base such as NaOH.
  • the amount of proton (H + ) is preferably 4 moles or less, more preferably 3 moles or less, per hydride reducing reagent.
  • the amount of alkali used is preferably 1 mole or more, preferably 2 moles or more, preferably 5 moles or less, preferably 3 moles or less, per 1 mole of hydride reducing reagent. If an excess of alkali is used, it may be neutralized prior to the next purification step, if necessary.
  • isoindole (2) is produced by the reduction reaction of the part of the cyano group as described above, and the halogen X in the above formula is And, the substituent Y is considered not to greatly affect this reduction reaction.
  • phthalonitrile (1) having all kinds of halogen X and substituent Y can be used.
  • the target substance isoindole (2) is considered to be stabilized by the presence of a halogen atom, from the viewpoint of the stability of isoindole (2), the halogen in phthalonitrile (1) is It is recommended that the number of atoms X is 1 or more (ie, m l l), preferably 2 or more, more preferably 3 or more, and still more preferably 4.
  • the phthalonitrile (1) for example, those commercially available from Aldrich, Synquest, Azamax Co., Central Chemical Co., Ltd., etc., or those which can be synthesized by known methods can be used.
  • X in the above formula represents a halogen atom, preferably a fluorine, chlorine or bromine atom, more preferably a fluorine or chlorine atom, still more preferably a fluorine atom.
  • halogen atom preferably a fluorine, chlorine or bromine atom, more preferably a fluorine or chlorine atom, still more preferably a fluorine atom.
  • R 2 and R 3 are each independently preferably a C alkyl group, more preferably a C alkyl group, and still more preferably
  • C alkyl group preferably C aryl group, more preferably C aryl group;
  • 1-5 6-20 6-12 is preferably C alkylaryl group, more preferably C alkylaryl group, further
  • R 1 , R 2 and R 3 are on their carbon skeleton
  • R 1 , OR 2 and SR 3 may be different substituents (eg, an amino group and an amino group)! / ⁇ .
  • a halogen-containing phthalonitrile having only a halogen atom X as a substituent can be mentioned.
  • Halogen-containing phthalonitriles are commercially available from Aldrich ⁇ ⁇ and others.
  • non-commercially available halogen-containing phthalonitriles can be produced from commercially available halogen-containing phthalonitriles by a conventionally known halogen substitution reaction.
  • a fluorine atom of fluorine-containing isophthalonitrile is used as a brominating agent (eg, sodium bromide, potassium bromide and lithium bromide, preferably sodium bromide). It is disclosed that substitution with bromine atom is carried out using lithium and potassium bromide).
  • a brominating agent eg, sodium bromide, potassium bromide and lithium bromide, preferably sodium bromide.
  • halogen-containing phthalonitrile examples include 4 fluorophthalonitrile, tetrafluoro phthalonitrile, 4, 5-dichloro phthalonitrile, tetrachloro phthalonitrile, 4 chloro-3, 5, 6 trifluoro phthalonitrile, etc. Be Among these, tetrafluorophthalonitrile is preferable from the viewpoint of availability and the like.
  • Phthalonitriles (1) having an R 1 group as a substituent Y can be produced by a coupling reaction well known in the synthetic chemistry field using halogen-containing phthalonitriles.
  • phthalonitrile (1) having an R 1 group is specifically subjected to a coupling reaction of a halogen-containing phthalonitrile with a Grignard reagent in the presence of a nickel or palladium catalyst.
  • a coupling reaction is well known in the synthetic chemistry field as Kumada Ichitamao coupling.
  • the phthalonitrile (1) having an R 1 group can also be obtained by conducting a coupling reaction of a halogen-containing phthalonitrile with an organic boron compound in the presence of a palladium catalyst.
  • This coupling reaction is also well known in the synthetic chemistry field as the Suzuki-Miyaura coupling.
  • Phthalonitrile (1) having an OR 2 group or an SR 3 group as a substituent Y is a halogen-containing compound according to a conventionally known method, for example, a method as described in JP-A-2002-302477. It can be produced S by replacing the halogen atom of phthalonitrile with HOR 2 and / or HSR 3 .
  • the halogen-containing phthalonitrile to be used for this aromatic nucleophilic substitution reaction is preferably a fluorine-containing and / or chlorine-containing phthalonitrile, more preferably a fluorine-containing phthalonitrile, still more preferably Tetrafluorophthalonitrile.
  • the nucleophilic substitution reaction of the halogen-containing phthalonitrile preferentially proceeds at the 4- and 5-positions of the phthalonitrile. Therefore, from the viewpoint of availability, O As phthalonitrile (1) having an R 2 group or an SR 3 group, the following formula (la) or (Id), in particular, the following formula (lb) or (lc), there is a following formula (le) or Phthalonitrile represented by (If) is preferred.
  • Y 1 and Y 2 each independently represent OR 2 or SR 3
  • R 2 and R 3 are each independently preferably a C alkyl group, More preferably, C alkyl
  • alkyl group more preferably C alkyl group; preferably C aryl group, more preferably C alkyl group
  • R 2 7-20 7-15 represents a phenyl group, more preferably a C alkylaryl group. Also, R 2 and R 3
  • the carbon skeleton of the above may contain a nitrogen atom or a halogen atom.
  • R 2 and R 3 may be the same or different, but are preferably the same from the viewpoint of ease of production! / ,.
  • metal or metalloid hydrides or their complexes S As a hydride reducing agent, it is possible to use metal or metalloid hydrides or their complexes S. Examples of metal hydrides and the like include the following.
  • Alminium hydrides such as alkylsilanes, dialkylalans, alkoxyalans, dialkoxysilanes and the like.
  • Al hydrides such as Et 2 O-AIH, where R represents an alkyl, aryl or alkoxy group.
  • Boron hydrides such as diborane (BH 2), alkyl boranes, dialkyl boranes, alkoxy boranes, dialkoxy boranes, and the like.
  • R represents an alkyl, aryl or alkoxy group.
  • CI Hydrides such as CI SiH, CI SiH, R SiH, R SiH, ((CH 3) Si) SiH, polymethylhydrosilane (wherein R represents an alkyl, aryl, benzyl or alkoxy group)
  • Tin hydrides such as R SnH, R SnH, Ph SnH, Ph SnH, (n-Bu) SnH, triethyl nodecyl hydride, trimethyl tin hydride (wherein R represents an alkyl, aryl or alkoxy group) ).
  • hydride reducing reagent only one type can be used alone, or two or more types can be used in combination.
  • the hydride reducing reagent may be used in combination with a Lewis acid.
  • a Lewis acid is considered to accelerate the progress of the reduction reaction, especially when using a kehyd hydride or tin hydride.
  • only one Lewis acid can be used alone, or two or more Lewis acids can be used in combination.
  • the Lewis acid is not particularly limited.
  • Periodic table group IIIB IVA, IVB, VA or V such as F, AsF, SbF, etc.
  • Examples thereof include halogen compounds of Group B elements, and complexes or alkoxide compounds thereof.
  • the reduction reaction in the method of the present invention is usually carried out using a solvent.
  • the solvent is not particularly limited, but those which can dissolve phthalonitrile (1) which is a starting material are preferable.
  • a solvent for example, chloroforms such as chloroform, methylene chloride and the like; chlorinated hydrocarbons; benzene, Aromatic hydrocarbons such as noren and xylene; Ethers such as THF, dioxane, cyclopentyl methyl ether, diisopropyl ether and jetyl ether; Amides such as dimethyl formamide and dimethylacetamide; and sulfolane, 3-methylsulfolane Sulfolanes such as 2,4 dimethyl sulfolane can be mentioned.
  • the solvents can be used alone or in combination of two or more.
  • the concentration of phthalonitrile (1) is preferably about 0.01 to 1M, more preferably about 0.05 to 0.5M.
  • the solution of the hydride reducing reagent may be added slowly while cooling the solution of the phthalonitriles, or it may be good even if the solution of phthalonitriles is added slowly while the solution of the hydride reducing reagent is cooled.
  • the temperature of the reduction reaction is also influenced by the solvent used, preferably 0 ° C. or more, more preferably 20 ° C. or more, preferably 150 ° C. or less, more preferably 120 ° C. or less.
  • the time of the reduction reaction is preferably 30 minutes or more, more preferably 1 hour or more, still more preferably 2 hours or more, preferably 48 hours or less, more preferably 24 hours or less.
  • reaction mixture In order to improve the yield of the desired product isoindole (2), it is preferable to mix the reaction mixture with a protic acid or an alkali after the reduction reaction using a hydride reducing reagent.
  • the reaction mixture after reduction reaction and the protonic acid are preferably at a temperature of about -30 ° C to 30 ° C, more preferably at a temperature of about 10 ° C; more preferably at a temperature of about 10 ° C, more preferably under cooling in an ice bath or the like. Mixing at about 0 ° C is recommended.
  • the inorganic protic acid for example, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid; phosphoric acid such as orthophosphoric acid, pyrophosphoric acid; perhalogenated acid such as perchloric acid; phosphomolybdic acid, Examples thereof include heteropolyacids such as keyl molybdic acid, phosphotungstic acid, calybdic tungstic acid, lintan-dust molybdic acid, and livanadomolybdic acid.
  • organic protic acids include arylsulfonic acids such as benzenesulfonic acid, p-toluenesulfonic acid and naphthalenesulfonic acid; methanesulfonic acid, trifluoromethanesulfonic acid, trichloromethanesulfonic acid, ethanesulfonic acid Alkylsulfonic acids such as propanesulfonic acid and t-butynosulfonic acid; formic acid, acetic acid, propionic acid, vicinal acetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, trifluoroacetic acid, pentafluoropropionic acid, n-butyric acid, isobutyric acid Saturated aliphatic carboxylic acids such as, vivalic acid, valeric acid, caproic acid, purilic acid, purilic acid, lauric acid, myristic acid, cyclo
  • the reaction mixture and the alkali be mixed at a temperature of about -30 ° C to about 30 ° C, more preferably about -10 ° C to about 10 ° C.
  • the alkali preferably, hydroxides of alkali metals or alkaline earth metals, carbonates, monocarboxylates (such as acetates), dicarboxylates (such as sulfates), organic amines and the like can be mentioned.
  • alkali metal hydroxides in particular, LiOH, NaOH, KOH
  • NaOH is more preferable.
  • organic amine ethanolamine and methylamine which can form a complex with boron and the like to promote the elimination of the hydride reducing reagent residue are more preferable.
  • One of these alkalis may be used alone, or two or more of these alkalis may be used in combination.
  • the means for purification is not particularly limited, and means generally used in the technical field such as silica gel column chromatography, alumina column chromatography, sublimation purification, recrystallization and the like can be used.
  • isoindole (2) can also be produced by reducing phthalonitrile (1) by catalytic hydrogenation.
  • catalyst used for the catalytic hydrogenation reaction Conventional metal catalysts known in the art can be used.
  • the central metal of the catalyst is preferably such that the central metal of the catalyst is 0.0 to! 30 to 30%, more preferably to 0 to 20 mol%, still more preferably to! 10 mol% relative to the phthalonitrile (1). It is recommended to use metal catalysts in quantities.
  • Examples of the metal catalyst include homogeneous catalysts in which ruthenium, rhodium or the like is coordinated with phosphine or the like.
  • a heterogeneous catalyst in the present invention, in order to increase the surface area and improve the catalytic activity, a catalyst having a fine metal powder supported on a carrier is preferable.
  • heterogeneous catalysts include metals such as nickel, Raney nickel, copper-chromium oxide, ruthenium, palladium, rhodium, platinum or oxides or hydroxides thereof (including those in powder form) such as activated carbon, alumina, diatomaceous earth And those supported on a carrier such as Among these, a catalyst in which palladium is supported on activated carbon is more preferable because it exhibits excellent catalytic activity.
  • a step of activating the catalyst by mixing it with a protonic acid in a hydrogen atmosphere prior to the catalytic hydrogenation reaction may be employed as necessary. It is recommended to use a protonic acid in order to improve the yield of the target isoindole (2) which can be obtained without using a protonic acid.
  • the protonic acid used for activation it is possible to use the above-mentioned protonic acid S. Among these, trifluoroacetic acid, hydrochloric acid, nitric acid and sulfuric acid are preferred. More or less amount of protonic acid relative to phthalonitrile (1) produces many impurities and lowers the yield.
  • the proton (H +) power is preferably 0.6 to 1.6 mono-, more preferably 0.8 to 1.2 mono-, more preferably 0.9 to 1 mol of phthalonitrile (1) as a raw material.
  • protic acid is 1 mole, most preferably 1 mole.
  • the activation temperature is usually from room temperature to about 50 ° C.
  • the activation time is preferably 10 minutes or more, more preferably 30 minutes or more, still more preferably 1 hour or more, preferably 5 hours or less. More preferably, it is 3 hours or less, more preferably 2 hours or less.
  • the solvent is not particularly limited, but those which can dissolve the above-mentioned phthalonitrile (1) which is a starting material are preferable.
  • a solvent for example, aromatic hydrocarbons such as benzene, toluene, xylene, etc .; THF, di- Ethers such as xanthene, cyclopentinolemethinolee tenole, diisopropinolee tenolee, getinoleate tenole; alcohols such as methanol, ethanol, propanol, etc .; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate; Amides such as dimethylformamide and dimethylacetoamide; sulfolanes such as sulfolane, 3-methylsulfolane and 2, 4-dimethyl sulfolane; and carboxylic
  • mixed solvents of amides or acetic acid and water can also be used.
  • the solvents can be used alone or in combination of two or more.
  • the concentration of phthalonitrile (1) is preferably about 0.1 to 1 M, more preferably about 0.05 to 0.5 M.
  • the temperature of the catalytic hydrogenation is also influenced by the solvent used, preferably 0 ° C. or more, more preferably 20 ° C. or more, preferably 150 ° C. or less, more preferably 120 ° C. or less It is.
  • the time of the reduction reaction is preferably 30 minutes or more, more preferably 1 hour or more, still more preferably 2 hours or more, preferably 72 hours or less, more preferably 48 hours or less.
  • the hydrogen pressure is preferably 1.1 atmospheres or more, more preferably 1.5 atmospheres or more, and still more preferably 2 atmospheres or more. However, the hydrogen pressure is preferably 5 atm or less, more preferably 3 atm or less, due to the restriction of equipment and the like.
  • Hydrogen gas can be constantly supplied to the reaction system to carry out a catalytic hydrogenation reaction.
  • the reaction system is sealed to carry out a catalytic hydrogenation reaction, and after the pressure in the system decreases as the reaction proceeds, hydrogen gas can be supplied again. It is desirable to reduce the pressure of the reaction system before supplying hydrogen gas.
  • the pressure reduction and the supply of hydrogen gas are repeated several times.
  • the novel isoindole represented by the above formula (2) other than 4,5,6,7-tetrafluoro-2H-isoindole can be produced.
  • the present invention also provides such a novel isoindole (2).
  • Novel isoindole (2) or N of the present invention The substituted isoindole (3) can be used as a raw material such as polyisoindole or dye.
  • isoindole (2) can be further used as a raw material of porphyrin
  • R 4 in the above formula (3) (and formula (5)) is preferably a C alkyl group, more preferably C
  • 1-alkyl group for example, methyl group, ethyl group, n propyl group, n butyl group, n pliers
  • Group C preferably C-aryl group, more preferably C-aryl group (eg.
  • aryl group such as benzyl group
  • C-acyl more preferably
  • C asyl group eg, acetyl group, benZyl group, t butoxycarbonyl group, etc.
  • N-substituted isoindole (3) from isoindole (2).
  • Various known methods can be used to obtain a substituted amine from phenylalanine. Below are some examples.
  • isoindole (2) By reacting isoindole (2) with a halogenated alkyl or halogenated alkyl aryl (wherein a carbon atom is bonded to a carbon atom of an alkyl moiety! /,) In the presence of a base N-substituted isoindole (3) wherein R 4 is an alkyl group or an alkylaryl group.
  • a strong base eg, n-butyllithium, alkali metal hydride (eg, NaH, KH) and the like) is preferable.
  • This alkylation reaction is carried out, for example, usually at about -100 ° C to about 100 ° C, preferably at about -80 ° C to 70 ° C.
  • the halogenated alkyl one having 1 to about 10 carbon atoms (preferably about 1 to 5 carbon atoms) is preferable, primary alkyl halide is more preferable, and primary alkyl iodide is more preferable.
  • the halogenated alkylaryl is preferably one having about 7 to 15 (preferably 7 to 10) carbon atoms, and more preferably a halogenated iodohalide (such as benzyl iodide).
  • N-substituted isoindole (3) in which R 4 is a aryl group can be produced, for example, by the well-known personal reaction Buchwald-Hartwig cross coupling reaction. Specifically, isoindole (2) and halogenated aryl or aryl in the presence of Pd catalyst and a strong base By reacting with triflate, N-substituted isoindole (3) in which R 4 is a aryl group can be produced.
  • phosphine ligands for example, 2,2′-bis (diphenylphosphino) one-1,1-binaphthyl, 2,2,1-bis (diphenylphosphino) biphenyl etc.
  • phosphine ligands for example, 2,2′-bis (diphenylphosphino) one-1,1-binaphthyl, 2,2,1-bis (diphenylphosphino) biphenyl etc.
  • Those containing dibenzylideneacetone ligands and the like are used.
  • a strong base in general, lithium bis (trimethylsilyl) amide, NaO-t-Bu, K 2 CO, etc.
  • halogenated aryl having about 6 to 20 (preferably about 6 to 12) carbon atoms is preferable, and iodide or aryl bromide (eg, benzene benzene, 4-toluene toluene, etc.) Is more preferred.
  • the reaction may proceed at a temperature as low as room temperature.
  • the reaction temperature is generally about 50 to 150 ° C.
  • the N-substituted isoindole (3) in which R 4 is an acyl group is one having a carbon number of 2 to 10 (preferably about 2 to 5) halogenated acid, acid anhydride, carboxylic acid ester, carbonic acid. It can be produced by asylation reaction using acid amide and carboxylic acid. However, from the viewpoint of reactivity, it is recommended to use oxo-, fluoro-halogenated (preferably chloro-acyl) or acid anhydride.
  • N-substituted isoindole (3) in which R 4 is an asyl group can be produced.
  • reaction partner of isoindole (2) include acetic anhydride, acetyl chloride, benzyl chloride and the like.
  • t-butoxycarbonyl group is well known as a protecting group for the amino group, for example di-t-butyl dicarbonate and isoindole (2) in the presence of a base such as pyridine, triethylamine, n-BuU or NaH. The ability to induce by reacting with the power S.
  • isoindole (2) or N-substituted isoindole (3) of the present invention hereinafter “isoindole”
  • electrode materials, display materials, electromagnetic waves in the fields of organic thin film transistors and organic solar cells It is useful as a shielding material etc.
  • the polymerization can be carried out by known methods such as electrolytic oxidation polymerization and chemical oxidation polymerization. For polyisoindole (4) or (5), if necessary, add a layer.
  • oxidizing agent used in the chemical oxidative polymerization include oxygen, hydrogen peroxide; tetrachloro-1,2-benzoquinone, tetrachloro-1,4-benzoquinone, 2,3-dichloro-5,6-dicyano-1,4 Quinones such as benzoquinone; halogens such as iodine, bromine and chlorine; metal chlorides such as iron chloride (111) and copper (II) chloride; metal oxides such as manganese dioxide, lead dioxide and osmium tetraoxide; nitric acid, Oxo acids such as chloric acid; potassium chlorate, sodium hypochlorite, sodium bromate, potassium bromate, potassium permanganate, potassium dichromate, sodium persulfate, potassium persulfate, ammonium persulfate, etc.
  • oxidizing agents oxygen, hydrogen peroxide, quinones, halogens, metal chlorides are preferred, and oxygen and metal chlorides are preferred.
  • the oxidizing agent may be used alone or in combination of two or more.
  • an acid catalyst for example, an inorganic acid such as hydrochloric acid, nitric acid or sulfuric acid
  • a metal catalyst for example, an oxide such as lead, manganese or silver
  • copper (I) chloride, copper chloride (I) -Aluminum chloride may be used. It is recommended to use a catalyst, especially when using oxygen as an oxidant.
  • the amount of the oxidizing agent excluding oxygen is preferably 1 mol or more, preferably 2 mol or more), preferably 6 mol or less, preferably 5 mol or less, per 1 mol of isoindoles.
  • Chemical oxidative polymerization is usually carried out in a solvent.
  • a solvent for chemical oxidation polymerization for example, chlorohydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, dichloroethane, tetrachloroethane, and benzene, etc .; nitromethane, nitroetane, nitrobenzene, etc.
  • chlorohydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, dichloroethane, tetrachloroethane, and benzene, etc .
  • examples include nitro hydrocarbons, amides such as N-methyl pyrrolidone, and carbon disulfide.
  • the solvents may be used alone or in combination of two or more.
  • the concentration of isoindole (2) or (3) is preferably about 0.01 to 1M, more preferably about 0.05 to 0.5M.
  • Chemical oxidation polymerization is generally carried out at a temperature in the range of about ⁇ 80 ° C. to about 100 ° C. (preferably about ⁇ 20 ° C. to 60 ° C.), generally 0 .; It is carried out for about 100 hours (preferably about 0.5 to 72 hours).
  • electrolytic oxidation polymerization will be described.
  • there is no limitation on the reaction apparatus and it is possible to use the reaction apparatus used in the production of polypyrrole, polythiophen, etc. by electrolytic oxidation polymerization.
  • electrolyte examples include tetraethyl ammonium bromide, tetraethyl ammonium chloride, tetra ethyl ammonium fluoride, tetra n-butyl ammonium ammonium bromide, tetra n-butyl ammonium chloride, tetra n-butyl ammonium ammonium and the like.
  • Ammonium salts such as um fluoride, tetraethylammonium tetrafluoroborate, tetra-n-butyl ammonium hexafluorophosphate, tetra-n-butyl ammonium hexahydrate, and the like; tetraphenylphosphonium; Phosphonium salts such as nimb bromide and tetraphenylphosphonium chloride; lithium salts such as lithium persulfate and lithium hexafluoroborate; sulfonates such as potassium benzenesulfonate and sodium toluenesulfonate; sulfuric acid , Examples include acids such as hydrochloric acid and trifluoroacetic acid. These electrolytes may be used alone or in combination of two or more. The anions of these electrolytes are incorporated into the polymer as a dopant during electrolytic oxidation polymerization.
  • a solvent for electrolytic oxidation polymerization for example, chlorinated hydrocarbons such as methylene chloride; acetates such as acetonitrile, nitriles such as benzonitrile and propiodiitol; cyclic ethers such as cyclohexane, tetrahydrofuran and propylene carbonate Sulfolanes such as sulfolane, 3-methylsulfolane and 2, 4-dimethylsulfolane; and amides such as dimethylformamide and dimethylacetamide.
  • chlorinated hydrocarbons such as methylene chloride
  • acetates such as acetonitrile, nitriles such as benzonitrile and propiodiitol
  • cyclic ethers such as cyclohexane, tetrahydrofuran and propylene carbonate
  • Sulfolanes such as sulfolane, 3-methylsulfolane and 2,
  • the concentration of isoindole (2) or (3) when a solvent is used is preferably about 0.01 to 1M, more preferably about 0.05 to 0.5M.
  • Electrolytic oxidation polymerization is generally carried out at a temperature in the range of about -80 ° C. to about 100 ° C. (preferably about -20 ° C. to 60 ° C.), generally 0.;! To-depending on the solvent used. It is performed for about 100 hours (preferably about 0.5 to 72 hours).
  • the current density at the time of electrolytic oxidation polymerization is generally about 1. 0 to 5. OmA / cm 2 .
  • a polymer By oxidative polymerization as described above, a polymer can be produced by polymerizing isoindole (2) or (3).
  • isoindole (2) or (3) In the method of the present invention, it is possible to form a copolymer by combining two or more of them by using only one of isoindole (2) or (3) to form a homopolymer. It is also possible to copolymerize isoindole (2) and / or (3) with other monomers (eg, pyrrole, thiophen) to form a copolymer. So the book
  • the inventive polyisoindoles (4) or (5) encompass both homopolymers and copolymers.
  • the total content of isoindole (2) and / or (3) in the used monomer is preferably 10% by mass or more.
  • the weight average molecular weight (in straight line according to GPC measurement in terms of styrene) of the polyisoindole (4) or (5) of the present invention is usually about 1,000 to 500,000, preferably 30,000 to 300,000. It is about 300,000, more preferably about 5,000 to about 100,000.
  • the reason why the selectivity and yield are improved by passing through the intermediate is that, when it is attempted to produce a ⁇ -conjugated cyclic compound (especially tetrabenzoporphyrin) directly from isoindole, the isoindole ring is activated, although polymers other than porphyrin are formed, in the intermediate, it is considered that the 1-position substituent, not the isoindole ring, is activated to smoothly form a ⁇ -conjugated cyclic compound.
  • the present invention is not limited to such an estimation mechanism.
  • the method for producing a ⁇ -conjugated cyclic compound (in particular, halogen-containing tetrabenzoborophyrin) of the present invention is characterized in that the 1-position substitution product of halogen-containing isoindole is once formed as an intermediate.
  • the porphyrin (7a) is more preferred.
  • ⁇ -conjugated cyclic compounds represented by the following formulas (7b) to (7d) will be abbreviated as “corrole (7b)”, “saphyrin (7c)” and “pentaphyrin (7d)”, respectively.
  • the present invention also provides the 1-substituted form of halogen-containing isoindole itself.
  • These 1-substituted compounds have the advantage of being useful for the preparation of ⁇ -conjugated cyclic compounds (especially halogen-containing tetrabenzoporphyrins) as described above, and are substituted by unsubstituted halogen-containing isoindoles. It has the advantage of being more stable.
  • these 1-substituted compounds can also be used for the production of compounds other than ⁇ -conjugated cyclic compounds, for example, polymers such as polyisoindolenine vinylene.
  • a trace amount of polymer or other cyclic compound is formed as a by-product.
  • the isoindole (2) used in the method for producing the ⁇ -conjugated cyclic compound (7) of the present invention can be obtained or produced as described above.
  • isoindoles (2) from the viewpoint of stability etc., those represented by the above formula (2a) are preferable, and 4,5,6,7 tetrafluoroiso- 1 2H indole or 4,5 Further preferred is 4,5,6,7 tetrafluorinated 1H isoindole, which is more preferred.
  • the first intermediate formylated 2H-isoindole (6b) or the second intermediate aminomethylenated 1H-isoindole (specifically, depending on the reactivity of the substrate or the difference in reaction temperature). 6a) is formed.
  • the hydrolysis reaction in Vilsmeier reaction is carried out under reflux to obtain a first intermediate (6b)
  • the reaction is carried out at room temperature to obtain the second intermediate (a).
  • the second intermediate (6a) it can be easily converted to the first intermediate (6b) by hydrolysis.
  • phosphoryl halide used for Vilsmeier reaction for example, phosphoryl fluoride, chloride
  • phosphoryl chloride is preferred from the viewpoint of the reactivity S, which includes phosphoryl or phosphoryl bromide.
  • phosphoryl halide or together with phosphoryl halide, p-toluenesulfoxide, methanesulfoxide, trifluoromethanesulfoxide, trifluoromethanesulfoxide, 2, 2, 2-trifluoroethanesulfoyl chloride, etc.
  • Sulfonic acid anhydrides such as sulfonyl chloride, trifluoromethanesulfonic acid anhydride, methanesulfonic acid anhydride, sulfonic acid anhydride, etc., phosgene, thiophosgene, oxalyl chloride, etc.
  • dinolequinolefonolemamide for example, dimethylformamide (DMF), jetylformamide, diisopropylformamide, dibutylformamide and the like.
  • dialkylformamide and phosphoryl halide in an equivalent or more amount with respect to isoindole (2).
  • the amount of diaminol formamide and the amount of phosphoryl halide are each preferably 1 mol or more, more preferably 1.1 mol or more, and still more preferably 1.3 mol or more per 1 mol of isoindole (2). is there. If too much of the amount of dialkylformamide, etc. is used, the cost of raw materials and purification will increase.
  • the amount of the dialkylformamide and the non-phosphorylated phosphoryl is preferably 5 mol or less, more preferably 3 mol or less, still more preferably 2 mol or less, with respect to 1 mol of isoindole (2).
  • the Vilsmeier reaction for producing intermediates (6a) or (6b) is usually carried out in solution.
  • One of the starting materials dialkylformamide, in particular DMF, can be used as a solvent substitute.
  • other solvents for example, chlorohydrocarbons such as chloroform, methylene chloride and the like; halogenated benzenes such as benzene and the like; and alkylbenzenes such as toluene and xylene can be used.
  • the solution concentration of isoindole (2) is preferably (about 0. 0 !! to about 2 M, and more preferably (0 to 0.5 to 1 M).
  • the Vilsmeier reagent may be formed in advance by mixing the phosphoryl halide and the dialkylformamide, or if the Vilsmeier reagent is to be formed in advance, either isostere (2) is added to the Vilsmeier reagent. Good, conversely add Vilsmeier reagent to isoindole (2) It is good. In each addition and mixing process, cooling may be performed as necessary to suppress heat generation.
  • the temperature of the Vilsmeier reaction is also influenced by the solvent used, etc.
  • the temperature is usually 0 ° C. or more, preferably 20 ° C. or more, preferably 140 ° C. or less, more preferably 120 ° C. or less.
  • the time of Vilsmeier reaction is preferably 5 minutes or more, more preferably 10 minutes or more, more preferably 30 minutes or more, preferably 20 hours or less, more preferably 15 hours or less, still more preferably 10 hours or less.
  • This hydrolysis can be carried out simply by mixing aminomethylen-1H-isoindole (6a) with water.
  • an aqueous alkaline solution such as sodium acetate, sodium hydrogencarbonate or sodium hydroxide is used.
  • the temperature of hydrolysis is usually 0 to 100 ° C., preferably 20 to 80 ° C., and the time is usually 0.5 to 5 hours; 10 hours, preferably 5 hours to 5 hours. .
  • 2H-isoindole (6c) can be produced.
  • the reduction to formyl group (aldehyde) power, hydroxymethyl group (alcohol) is easy and can be done in a manner known in the field of synthetic organic chemistry.
  • a reducing agent for example, boros such as NaBH, BH -THF, etc.
  • Aluminum hydrogen such as complex hydride, LiAlH, diisobutylaluminum hydride
  • the reduction reaction may be completed in a short time.
  • intermediates (6a), (6b) or (6c) are produced, without purification of these, the following intermediate or ⁇ conjugated cyclic compound (7) (especially porphyrin (7a) may be used as it is in the reaction mixture. )) Can also be used.
  • one or more of intermediates (6a), (6b) and (6c) may be purified and then used in the next step.
  • a purification method for example, silica gel column chromatography, alumina column chromatography, sublimation purification, recrystallization, crystallization and the like can be used.
  • Hydroxymethylated 2H-isoindole (6c) is a starting material isoindole (2
  • the more stabilized force is more reactive than the pyrroles used to make regular porphyrins. Therefore, when hydroxymethylated 2H-isoindole (6c) is reacted in the presence of crotonic acetic acid or the like usually used to synthesize porphyrin from pyrrole, it is polymerized to form an isoindole oligomer or the like.
  • a ⁇ -conjugated cyclic compound (7) (especially porphyrin (7a)) from hydroxymethylated 2H isoindole (6c) while suppressing the polymerization reaction
  • dehydration is carried out using an acid weaker than croque acetic acid. It is necessary to cyclize.
  • Acids for this purpose for example aliphatic monocarboxylic acids such as acetic acid, propionic acid and dairy acid; aliphatic dicarboxylic acids such as succinic acid, dartalic acid, adipic acid, pimelic acid; and ZnCl, BF and BF-0 (CH And the like.
  • the above-mentioned aliphatic monocarboxylic acids and the above-mentioned Lewis acids are preferred.
  • the aliphatic monocarboxylic acid and / or the Lewis acid can be used alone or in combination of two or more.
  • the above-mentioned dehydrating cyclization may be carried out after isolating hydroxymethylated 2H isoindole (6c), or after reduction of formylated 2H isoindole (6b), the reaction mixture is used as it is. May be When the isolated hydroxymethylated 2H-isoindole (6c) is used for dehydrating cyclization, the amount of acid used relative to 1 mole of hydroxymethylated 2H isoindole (6c) is about 1.5 moles in the Lewis acid.
  • the aliphatic carboxylic acid is about 1.5 moles or more. Also, the aliphatic carboxylic acid can be used in excess as a solvent.
  • reaction mixture When the reaction mixture is used for dehydrating cyclization without isolating the hydroxymethylated-2H-isoindole (6c) obtained using a hydride reducing reagent, said aliphatic carboxylic acid is used for the hydrogenation reducing reagent reagent. Can also be used. In this case, the aliphatic carboxylic acid is preferably used in excess!
  • the reaction temperature of the dehydrating cyclization of the hydroxymethylated 2H isoindole (6c) may be appropriately set according to the reactivity, and is, for example, usually 0 ° C. or higher, preferably 20 ° C. or higher. Preferably it is 140 degrees C or less, More preferably, it is 120 degrees C or less.
  • the reaction time is preferably 0.1 hours or more, more preferably 0.5 hours or more, preferably 96 hours or less, more preferably 72 hours or less.
  • oxygen oxygen-containing gas such as air; and ⁇ chloranil (6,3,5,6-tetrachloro-benzoquinone), DDQ (6,3-dicyano 5,6-dichloro) Quinones such as ⁇ benzoquinone
  • the oxidizing agents can be used alone or in combination of two or more.
  • the oxidation reaction temperature is, for example, usually 10 ° C. or more, preferably 20 ° C. or more, preferably 100 ° C. or less, more preferably 80 ° C. or less.
  • the reaction time is preferably 30 minutes or more, more preferably 1 hour or more, preferably 48 hours or less, more preferably 24 hours or less.
  • the reaction for synthesizing ⁇ -conjugated cyclic compound (7) (particularly porphyrin (7a)) from hydroxymethylated 2H-isoindole (6c) by dehydrating cyclization and oxidation is usually a solution reaction.
  • the aliphatic carboxylic acid can be used as a solvent therefor.
  • chlorohydrocarbons such as chloroform, methylene chloride and the like
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • THF dioxane
  • cyclopentyl methyl ether diisopropyl ether
  • jetyl ether Ethers such as methanol
  • alcohols such as methanol, ethanol and propanol
  • esters such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate
  • amides such as dimethylformamide and dimethylacetoamide.
  • the solvent can be used alone or in combination of two or more.
  • the concentration of the starting material hydroxymethylated 2H-isoindole (6c) is preferably about! M to about 100 mM, more preferably about 5 to 500 mM.
  • the ⁇ -conjugated cyclic compound (7) (particularly porphyrin (7a)) obtained as described above can be purified by sublimation, recrystallization, crystallization or the like.
  • it is a porphyrin (7a) having a substituent such as a phenoxy group, it can also be purified by silica gel column chromatography or alumina column chromatography.
  • silica gel column chromatography or alumina column chromatography a preferred method for producing aminomethylation-2H-isoindole (6d) will be described.
  • Aminomethylated 2H-isoindole (6d) is an isoindole (2), a formaldehyde and a dialkylamine NHR 5 R 6 (wherein R 5 and R 6 are each independently C) in the presence of an acid. It can be produced by the Mannich reaction using an alkyl group.
  • Halogenated methylenedialkyl ammonium ammonium HC NR 5 R 6 X 6 (wherein, R 5 and R 6 each independently represent a C alkyl group, and X 6 represents a halogen atom), and iso.
  • Examples of the acid used for this Mannich reaction include inorganic acids such as hydrohalic acid (hydrochloric acid, hydrofluoric acid, hydrobromic acid, hydroiodic acid), nitric acid, sulfuric acid; and formic acid, trifluoroacetic acid, trichloroacetic acid, etc. And the like.
  • hydrochloric acid, hydrobromic acid, sulfuric acid and trifluoroacetic acid are preferable. It is recommended to use a monobasic acid in an amount of preferably 1 to 2 moles, more preferably 1 ⁇ ! To 1.5 moles per mole of isoindole (2).
  • the recommended amount to be used is the above amount of monobasic acid multiplied by the valence of polybasic acid.
  • quiramine and formaldehyde in an amount of preferably 1 to 2 moles, more preferably 1 ⁇ ! To 1.5 moles per 1 mole of isoindole (2), respectively.
  • halogenated methylene dialkyl ammonium Can be prepared, for example, and can also be obtained from Waldrich, Inc., as a methylated dimethyldimethyl ammonium.
  • Halo and methylene chloride dimethyl ammonium are more preferred as halogenated methylene dialkyl ammoniums!
  • the halogenated methylenedialkyl ammonium is preferably;! To 2.5 mol, more preferably 1 ⁇ 0.5 to 2 mol, still more preferably 1 ⁇ ⁇ ! To 1 ⁇ 5 mol per 1 mol of isoindole (2). It is recommended to use in the amount of [0148]
  • the Mannich reaction is usually performed using a solvent.
  • chlorohydrocarbons such as chloroform, methylene chloride and the like; aromatic hydrocarbons such as benzene, toluene, xylene and the like; ethers such as THF, dioxane, cyclopentyl methyl ether, diisopropyl ether, gethyl ether and the like; methanol And alcohols such as ethanol and propanol; esters such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate; and nitriles such as acetonitrile, propionitrile, benzonitrile and the like.
  • the solvents can be used alone or in combination of two or more.
  • the concentration of the starting material isoindole (2) is preferably about 0.01 to 2 M, more preferably about 05 to 1 M.
  • the temperature of the above Mannich reaction is also influenced by the solvent used, etc.
  • the temperature is usually 0 ° C. or more, preferably 20 ° C. or more, preferably 120 ° C. or less, more preferably 100 ° C. or less is there.
  • the reaction time is preferably 1 hour or more, more preferably 2 hours or more, preferably 72 hours or less, more preferably 48 hours or less.
  • Intermediate (6d) which is a 1-substituted form of isoindole (2), is considered to be more stable than isoindole (2), similarly to intermediates (6a) to (6c).
  • the intermediate (6d) since the intermediate (6d) is active as compared to the intermediate (6c), it is cyclized as soon as it is formed, and the reduced form of the ⁇ conjugated cyclic compound (7) (especially morphylinogen (11)), The ⁇ -conjugated cyclic compound (7) (especially porphyrin (7a)) is then formed. Therefore, in the method of the present invention through the Mannich reaction, the ⁇ ⁇ conjugated cyclic compound (7) can be produced by the action of an oxidizing agent after the above Mannich reaction. The Mannich reaction and the subsequent oxidation reaction after the cyclization reaction are carried out in the same manner as described above.
  • porphyrin (7a) obtained as described above is well known in the field of porphyrin chemistry! /, And is bound to various metal or metalloid ions to form porphyrin complexes (8).
  • Ability to form S Can examples of metal or metalloid ions to be bound to the porphyrin complex (8) include Group 2 elements excluding Be and Ra, rare earth elements, Th, U, Group 4 to 12 elements, and Group 13 elements excluding B. It is possible to list S ions of Group 14 elements excluding C and Group 15 elements excluding N and P. Among these, Co, Zn, Cu, Ni, Pd, Pt, Fe or Mn ion is preferred, of which metal ion is preferred.
  • the porphyrin ligand is a trivalent or higher gold
  • the metal or metalloid ion can be bound, in which case the central metal of the borophyrin complex is bound to a halogen, an alkyl, an alkoxyl group, etc. to charge balance.
  • porphyrin complexes (8) of these metals or metalloids metal salts containing metal or metalloid ions, such as halide salts (especially chloride salts, bromide salts and iodide salts) Or acetate and the like, and porphyrin (7a) may be mixed.
  • metal salts containing metal or metalloid ions such as halide salts (especially chloride salts, bromide salts and iodide salts) Or acetate and the like
  • porphyrin (7a) may be mixed.
  • porphyrin complex (8) can be formed after the metal compound containing metal or metalloid ion is added after the cyclization of intermediate (6c) or (6d) and before the oxidation (ie, the step of porphyrinogen (11)).
  • porphyrin complex (8) can be formed. This complexing reaction is usually carried out in a solvent, and as the solvent therefor, the same one as in the preparation of porphyrin can be used.
  • the temperature for the complexing reaction is preferably 0 ° C. or more, more preferably 10 ° C. or more, preferably 80 ° C. or less, more preferably 60 ° C. or less.
  • the time for the complexation reaction is preferably 1 hour or more, more preferably 2 hours or more, preferably 96 hours or less, more preferably 72 hours or less.
  • porphyrin (7a) and Borufuirin Kisadekafuruo Rotetora base emission zone porphyrins and 2 1 also into the complex (8) of the present invention 2 2, 2 3, 2 4, 7 1, 7 2, 7 3, 7 4 , 12 1 , 12 2 , 12 3 , 12 4 , 17 1 , 17 2 , 17 3 , 17 4- Hexadecachloroone 21 H, 23 H-Tetrabenzo porphyrin and its complexes are preferred. Rotetrabenzo porphyrins and their complexes are preferred.
  • porphyrins containing a large number of them and complexes thereof are expected to be particularly applicable to materials of n-type organic semiconductors or organic field effect transistors. is there.
  • the method for producing an isoindole multimer according to the present invention is characterized in that phthalonitriles are used instead of isoindoles as a starting material.
  • the phthalonitriles are much more stable and easier to handle than isoindoles.
  • phthalonitriles are sold as raw materials for pigments and the like and are easily available.
  • intermediate (a) either acid or hydrogen is added to intermediate (a) to form intermediate (b) or (d), and addition of these forms intermediate (e) (imino A dimer having an isoindoline skeleton having a group and an isoindole skeleton is formed.
  • intermediate (e) hydrogenation to the amino group and elimination of the amino group as described above form the dimer (f) of 2H-isoindoles (still dimer ( f) are also included within the scope of isoindole multimers (10) of the present invention). It is thought that by repeating such a reaction, an isoindole multimer (10) having a repeating number of 2 or more is formed from phthalonitrile (9).
  • the phthalonitrile (9) used in the present invention includes phthalonitrile (unsubstituted phthalonitrile) or substituted phthalonitriles having a substituent such as a halogen atom as described above.
  • the substituted phthalonitriles include those having only one type of substituent (for example, nophorogen atom) or two or more types of substituents (for example, norogen and an alkyl group).
  • the halogen atom of phthalonitrile (9) is preferably a fluorine, chlorine or bromine atom, more preferably a fluorine or chlorine atom, still more preferably a fluorine atom.
  • Plural kinds of halogen atoms may be present simultaneously in phthalonitrile (9).
  • a group more preferably a c-c alkyl group, still more preferably a c-c alkyl group;
  • C is an alkyl aryl group.
  • R 1 , R 2 and R 3 are halogen atoms on their carbon skeleton
  • R 2 and R 3 may be different substituents (eg, an alkyl group and an amino group).
  • phthalonitriles (1) having a halogen atom X are preferable.
  • Isoindole multimers (4) produced from phthalonil (1) having a halogen atom (in particular, a fluorine atom which is a strong electron-withdrawing group) are expected to be applied to new applications such as n-type semiconductors. This is because that.
  • the number m of halogen atoms X is preferably 2 or more, more preferably 3 or more, and still more preferably 4.
  • the halogen atom X, R 1 , R 2 and R 3 in the above formula (1) those mentioned above can be mentioned.
  • the phthalonitriles can be obtained or manufactured as described above.
  • phthalonitriles used in the method for producing an isoindonolene multimer the above-mentioned formula (la) or (Id), in particular, the above-mentioned formula (lb) or (lc), there is! /, The above-mentioned formula (le) or ( Phthalonitrile represented by If) is preferred.
  • an inorganic or organic propionic acid is preferable.
  • the inorganic protonic acid for example, hydrochloric acid, hydrobromic acid, hydrogen iodide Acid, nitric acid, sulfuric acid; phosphoric acid such as orthophosphoric acid, pyrophosphoric acid, etc .; perhalogenated acid such as perchloric acid; phosphomolybdic acid, phosphomolybdic acid, phosphotungstic acid, citric acid tungstic acid, phosphorous acid molybdic acid And heteropolyacids such as nadomolybdic acid.
  • organic protic acids include arylsulfonic acids such as benzenesulfonic acid, p-toluenesulfonic acid and naphthalenesulfonic acid; methanesulfonic acid, trifluoromethanesulfonic acid, trichloromethanesulfonic acid, ethanesulfonic acid Alkylsulfonic acids such as propanesulfonic acid and t-butynosulfonic acid; formic acid, acetic acid, propionic acid, vicinal acetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, trifluoroacetic acid, pentafluoropropionic acid, n-butyric acid, isobutyric acid Saturated aliphatic carboxylic acids such as, vivalic acid, valeric acid, caproic acid, purilic acid, purilic acid, lauric acid, myristic acid, cyclo
  • protic acids acetic acid, trifluoroacetic acid, phosphoric acid, hydrochloric acid, nitric acid and sulfuric acid are preferable.
  • the proton (H + ) strength S be equal to or greater than the molar amount of phthalonitrile (9) as the starting material. It is because polymerization can be promoted by using an equimolar or more proton.
  • the amount of proton is preferably 1! To 10 mono, more preferably 1. 05 to 7 mono, and still more preferably 1 .; to 5 mono, per 1 mol of phthalonitrile (9).
  • any conventional metal catalyst known in the technical field can be used.
  • 0. central metal force of the catalyst preferably the phthalonitrile (9) 0;! ⁇ 30 Monore 0/0, more preferably 0.1;! ⁇ 20 Monore 0/0, more preferably;! ⁇ 10 Monore 0 It is recommended to use a metal catalyst in an amount such that / 0 .
  • Examples of the metal catalyst include homogeneous catalysts in which phosphine or the like is coordinated to ruthenium or rhodium.
  • a heterogeneous catalyst in the present invention in order to increase the surface area and improve the catalytic activity, a catalyst having a fine metal powder supported on a carrier is preferable.
  • Heterogeneous catalysts such as nickel, Raney nickel, copper-black oxide And metals such as ruthenium, palladium, rhodium, platinum and platinum oxide or fine powders of these metals supported on a carrier such as activated carbon, alumina and diatomaceous earth.
  • a catalyst in which palladium is supported on activated carbon is more preferable.
  • a catalyst activation step of mixing the catalyst and the protonic acid in a hydrogen atmosphere before catalytic hydrogenation may be employed as necessary.
  • the activation temperature is usually about room temperature to 50 ° C.
  • the activation time is preferably 10 minutes or more, more preferably 30 minutes or more, still more preferably 1 hour or more, preferably 5 hours.
  • the following time is more preferably 3 hours or less, still more preferably 2 hours or less.
  • the catalytic hydrogenation is usually performed using a solvent.
  • the solvent is not particularly limited, but those which can dissolve phthalonitrile (9) which is a starting material are preferable.
  • a solvent for example, aromatic hydrocarbons such as benzene, toluene, xylene, etc .; Ethers such as THF, dioxane, cyclopentyl methyl ether, diisopropyl ether, jetyl ether; alcohols such as methanol, ethanol, propanol, etc .; acetic acid Esters such as methyl, ethyl acetate, propyl acetate and butyl acetate; Amides such as dimethylformamide, dimethylacetoamide; sulfolanes such as sulfolane, 3-methylsulfolane and 2, 4-dimethylsulfolane; and formic acid, acetic acid It is possible to mention S, carboxylic acids such as propionic acid and trifluor
  • mixed solvents of amides or acetic acids and water can also be used.
  • the solvents can be used alone or in combination of two or more.
  • solvents having high solubility of isoindole multimer such as ethyl acetate, propyl acetate, dimethylformamide, dimethyl formamide, dimethylacetoamide, sulfolane, 3-methyl sulfolane and 2, 4-dimethyl sulfolane are preferable.
  • the concentration of phthalonitrile (9) is preferably about 0.0;! To about 5 M, and more preferably about 0.5 to about 1 M.
  • the temperature of the catalytic hydrogenation is also influenced by the solvent used, preferably 0 ° C or more, more preferably 20 ° C or more, preferably 150 ° C or less, more preferably 120 ° C or less It is.
  • the time of the catalytic hydrogenation reaction is preferably 30 minutes or more, more preferably 1 hour or more. Preferably, it is 2 hours or more, preferably 48 hours or less, more preferably 24 hours or less. It is preferred to use hydrogen under pressure to promote catalytic hydrogenation.
  • the hydrogen pressure is preferably 1.1 atmospheres or more, more preferably 1.5 atmospheres or more, and still more preferably 2 atmospheres or more. However, the hydrogen pressure is preferably 5 atm or less, more preferably 3 atm or less, due to the restriction of equipment and the like.
  • Catalytic hydrogenation can be carried out by constantly supplying hydrogen gas to the reaction system.
  • the reaction system is sealed to carry out catalytic hydrogenation, and after the pressure in the system decreases as the reaction proceeds, hydrogen gas can be supplied again. It is desirable to reduce the pressure of the reaction system before supplying hydrogen gas. Further, in order to adsorb a large amount of hydrogen to the catalyst, it is preferable to repeat the pressure reduction and the supply of hydrogen gas a plurality of times, particularly in the case of carrying out the catalytic hydrogenation in the presence of a solvent.
  • the number of repeating units of the isoindole multimer to be produced is 2 or more, preferably 3 or more, more preferably 5 or more. This is because as the number of repeating units of the isoindole multimer increases and the molecular weight thereof increases, the mechanical properties as a multimer, particularly as a polymer, improve. However, isoindole multimers having too large a molecular weight are difficult to manufacture and the handling / gender of the multimer itself is also reduced.
  • the weight average molecular weight (value by GPC measurement in terms of polystyrene) of the isoindole multimer is preferably about 1,000 to 500,000, more preferably about 30,000 to 300,000, and still more preferably 5,00 to 500; It is about 100,000.
  • doping may be performed by a known method.
  • Examples 1 to 21 are examples of isoindoles (2) and (3) of the present invention, and polyisoindoles (4) and (5).
  • Examples 35 to 38 relate to the isoindole multimer (10) of the present invention.
  • Example 1 Reduction of tetrafluorophthalonitrile with hydrogenated diisobutylaluminum
  • Example 2 Reduction of Tetrafluorophthalonitrile with Diisobutylaluminum Hydride The reaction was carried out under the same conditions as in Example 1, but only 1 OO ml of water was added without using a protonic acid at the time of Taenchi. The reaction solution gelled shortly after the addition of water. The solid matter was removed by filtration through Celite, and purification was carried out in the same manner as in Example 1. As a result, it was found that the objective substance 4,5,6,7-tetrafluoro-2H-isoindole was obtained in a yield of 0.6% (0. Obtained at 017 g, 0.09 mmol).
  • Example 3 Reduction of Tetrafluorophthalonitrile by Diisobutylaluminium Hydrogenation was carried out in the same manner as in Example 1, except that the concentrate was purified by sublimation, and 4,5,6,7-tetraphenol 4 The iso indinol was obtained with astringent 9. 87% (0.28 g, 1. 48 mmol).
  • Tetrafluorophthalonitrile 0 ⁇ 0.2 g (l. 06 mmol) was added to an eggplant flask and nitrogen substitution was carried out Then, 6 ml of dehydrated toluene was added. While cooling in an ice bath, 4.21 ml (4 mmol) of a 0.95 M solution of diisobutylaluminum hydride in toluene was slowly added dropwise, and after returning to room temperature, the mixture was stirred for 23 hours. After that, 15 ml (15 mmol) of 1 M aqueous NaOH solution was slowly added to the reaction mixture.
  • the raw material 4, 5 bis (pentafluorophenoxy) 3, 6 difluorophthalonitrile was prepared as follows: in a 200 ml reaction vessel equipped with a dropping funnel and a thermometer Nole 20. 1 g (100. 45 mmol), potassium hydroxide 13. 99 g (240. 79 mmol), 130 ml of methyl isobutyl ketone were added. After cooling by an ice bath, from the dropping port, During Ms. Pingko's Pentafune gift Lofennore 37. 0g (201. 0
  • the reaction was carried out by slowly adding a solution in which 2 mmol) was dissolved, and then stirring at room temperature for 2 days.
  • the reaction solution was filtered to remove inorganic salts, washed with water using a separatory funnel, and dried over anhydrous sodium sulfate, and then the reaction solution was concentrated by an evaporator.
  • the concentrate is subjected to reprecipitation purification with toluene / hexane solvent to give 4,5-bis (pentafluorophenoxy) 3,6 diphenole open mouth phthalonitrile in a yield of 70. 83% (37.4 g, 37.4 g, 70. 81 mmol) was obtained
  • the crude product is dissolved in methyl isopropyl ketone and washed with water to remove inorganic salts, the aqueous phase and the organic phase are separated, the organic phase is dried over anhydrous sodium sulfate and concentrated by an evaporator.
  • the concentrate was distilled under reduced pressure to obtain 4chloro-3,5,6 trifino reophthalonitrinole in a yield of 40.7% (440. 5 g 2.03 mol).
  • the reaction product was extracted with ethyl acetate, washed with distilled water and then with saturated brine, and dried over anhydrous sodium sulfate, and the extract was concentrated using an evaporator.
  • the concentrate was purified by silica gel column chromatography (solvent: dichloromethane). The objective 4,5,6,7-tetrafluoro-2H-isoindole was obtained in a yield of 37% (1. 05 g, 5.55 mmol).
  • Rh / alumina catalyst purchased from Aldrich, Rh: 5 mass in a 100 ml eggplant flask %) 1. Og (Rh amount: 0.49 mmol) and 20 ml of methanol were added, and the mixture was purged with hydrogen and stirred at room temperature for 45 minutes. Thereafter, 0.28 ml (5 mmol) of acetic acid was added, a solution of 1.0 g (5 mmol) of tetrafluorophthaloyl in 20 ml of methanol was added dropwise, and after replacing with hydrogen again, the mixture was stirred at room temperature for 65 hours.
  • the concentrate is purified by silica gel column chromatography (solvent: ethyl acetate) to give 4,5,6,7 tetrafluoro-2-methylisoindole as a target substance at a yield of 58.2% (0.060 g, 0 (29.95 mmol).
  • the conductivity of the polymer (measured by the two-terminal method) was 4 X 10- 6 S / cm 2 .
  • Example 21 Oxidation weight of 4,5,6,7 tetrafluoro-2 n pentylisoindole
  • 4,5,6 7 tetrafluoro-2-n pentylisoindole 0 ⁇ 248 g (0. 96 mmol) ) was added thereto, and 4 g of croform was added thereto and the mixture was stirred to prepare an isoindo solution.
  • 0.62 g (3.82 mmol) of iron chloride (111) was weighed out, and 3.5 g of water was added to prepare an aqueous iron chloride solution.
  • Example 22 1— (N, N dimethylaminomethylene) 4, 5, 6, 7 tetrafluoro 1 Production of H-isoindole (hereinafter abbreviated as "amino methylene compound”)
  • a 50 ml two-necked eggplant flask equipped with a reflux apparatus is purged with nitrogen, and 0.21 ml (2.75 mmol) of dimethinolefonolemamide is removed while cooling with an ice bath, and 0.26 ml (2. 75 mmol) of sodium phophorinole is added thereto. ) was slowly added dropwise and stirred for 15 minutes. 2 ml of methylene chloride was added and the precipitated solid was dissolved, and a solution of 480 mg (2.54 mmol) of 2,4,5,7-tetra-fluoro-methyl 2-H iso indonolole was dissolved in 2 ml of methylene chloride slowly.
  • Example 25 Preparation of 1-hydroxymethyl mono, 4, 5, 6, 7 tetrafluoro-2H isoindole (hereinafter abbreviated as “hydroxymethyl form”)
  • Formyl compound 108 6 mg (0.5 mmol) is added to a 100 ml eggplant flask and purged with nitrogen, and 20 ml of dry THF is added to this, and 1 M hydrogenated diisobutylammium solution 1 ⁇ 1 ml while stirring at 78 ° C. (l. lmmol) was added and stirred for a further 2 hours. After adding 1 M HC1 at 78 ° C, adding it to room temperature and returning to room temperature, the reaction mixture is extracted with ethyl acetate, washed with aqueous sodium hydrogen carbonate solution and water, dried over anhydrous sodium sulfate and then reduced pressure. The reaction mixture was concentrated with to give 103 mg (0.47 mmol, crude yield 94%) of a hydroxymethyl compound as a reddish purple solid.
  • the reaction mixture was added to a 100 ml eggplant flask and purged with nitrogen, and then 47 ml of ethanol was added for dissolution, and 3 ml (51.8 mmol) of acetic acid was added, followed by stirring at room temperature for 3 days.
  • the reaction mixture is then neutralized by adding 3.18 ml (51. 8 mmol) of trietinoleamine, and then adding DDQ (2,3 disiano-5,6 dichloro-p benzoquinone) 119 ⁇ 3 mg (0.47 mmol). Stir at room temperature. Then, the reaction mixture was filtered by suction to obtain 28 mg (crude yield: 0.035 mmol, crude yield: 29.8%) of hexecafluorotetrabenzoporphyrin as a dark green solid.
  • UV-visible absorption spectrum (Apparatus: manufactured by Hitachi High-Technologies, model: U-2800
  • a reactor vessel was charged with nitrogen by adding 100 mg (0. 529 mmol) of 2,4,5,7-tetra-fluoro-methyl 2H isoindonole and 102 mg (0.553 mmol) of methylenedimethylioamide ammonium iodide. After that, 8.41 g of acetylonitrile was added and stirred at room temperature for 32 hours. After that, 150 mg (661 mmol) of DD Q was added and stirred at room temperature for another 24 hours. Thereafter, 14.2 g of saturated aqueous sodium bicarbonate solution was added to terminate the reaction.
  • the concentrate is purified by silica gel column chromatography (solvent: ethyl acetate 50% by volume / hexane 50% by volume) to give 12 mg of kactakis (pentafluorophenynore) kectafluoro tetrabenzoporphyrin. (0. 006 mmol, yield 6 ⁇ 0%) was obtained.
  • reaction solution was transferred to a separatory funnel, washed with water, and concentrated with an evaporator.
  • the concentrate was sonicated three times with methanol and ethyl acetate to obtain 92 mg (0.107 mmol, yield 26 ⁇ 9%) of a porphyrin-zinc complex.
  • reaction liquid The solution is poured into 60 g of aqueous sodium bicarbonate solution, the filtrate is recovered by filtration, and the filtrate is washed with methanol and then isopropyl alcohol, and then 50 mg (0.508 mmol, yield 8. 49%) of a porphyrin zinc complex is obtained by Soxhlet extraction. Obtained.
  • reaction solution was concentrated by an evaporator, and the concentrate was ultrasonically washed with methanol, ethyl acetate and then THF to obtain 250 mg (0.21 mmol of a porphyrin copper complex, yield 31.4%).
  • Reaction vessel After adding 100 mg (0.55 mmol) of 2,5,7,7-tetrafnourace compound and 0.5 mg (0.53 mmol) of methyl iodide and 100 mg (0.54 mmol) of methylenedimethyliomide iodide after nitrogen substitution, 5.53 g of acetonitrile were added and stirred at room temperature for 24 hours. Thereafter, 133 mg (0.534 mmol) of nickel acetate tetrahydrate were added, and the mixture was stirred at room temperature for 22 hours. After that, 124 mg (0. 546 mmol) of DDQ were added and stirred at room temperature for 48 hours.
  • Reaction vessel After adding 100 mg (0.55 mmol) of 2,5,7,7-tetrafnourace compound and 0.5 mg (0.53 mmol) of methyl iodide and 100 mg (0.54 mmol) of methylenedimethyliomide iodide after nitrogen substitution, 5.54 g of acetonitrile were added and stirred at room temperature for 24 hours. Thereafter, 134 mg (0.538 mmol) of cobalt acetate tetrahydrate were added and stirred at room temperature for 22 hours. After that, 120 mg (0.529 mmol) of DDQ was added and stirred at room temperature for 48 hours.
  • Example 34 Preparation of kactakis (pentafluorophenyl) kactafluorotetrabenzopolzinc phosphorus zinc complex After adding 200 mg (0.40 mmol) of 5, 6 bis (pentafluorophenyl) 4, 7 difluoro-2H iso indonole and 76. 3 mg (0.4 1 Then, 17.7 g of acetonitrile was prepared and stirred at room temperature for 48 hours. Then, under nitrogen atmosphere, the system was opened to the atmosphere, 64. 7 mg (0.35 mmol) of zinc acetate was added, and the mixture was stirred for a further 48 hours under the atmosphere and at room temperature.
  • the concentrate was purified by silica gel chromatography purified by (solvent acetic Echiru 20 vol% / hexane 80 volume 0/0), Okutakisu (pentafluorophenyl We sulfonyl) O Kuta Full O b tetra downy emission zone porphyrin zinc complex 21 mg (0. OlO mmol, yield 10.2%) were obtained.
  • the concentrated product is purified by silica gel column chromatography (solvent: ethyl acetate) to obtain the desired product (4,5,6,7 tetrafluoro-2H-isoindole) multimer 6.19 g (converted yield) 65.5%) obtained.
  • the concentrate was purified by silica gel column chromatography grayed roughy (solvent: Black port Holm) to give the desired product (4, 7-Jifuruoro - 5, 6-bi scan (2, 5-dimethyl-phenoxyethanol) Single 2H- isoindole )
  • the multimer was obtained as 1 ⁇ O lg (converted yield 34.9%).
  • the catalyst is stirred at room temperature for 10 minutes while pressurized with a hydrogen balloon (about 1.1 atm). It was activated.
  • the concentrate is purified by silica gel column chromatography (solvent: croform) to obtain 0.34 g of the objective (4,7-difluoro-5,6-bis (pentafluorophenyl) 2H isoindole) multimer. It was obtained (converted yield 43.1%).
  • the method for producing isoindoles of the present invention can produce isoindoles more inexpensively because the number of reaction steps is smaller than in the conventional method.
  • the production method of the present invention can use various phthalonitriles because the reaction process is simple, and thereby various novel isoindoles can be manufactured. These novel isoindoles are expected to be used as constituent materials of organic thin film transistors, organic solar cells and the like as coloring materials or by polymerizing.
  • the method for producing a conjugated cyclic compound (7) of the present invention is to produce a conjugated cyclic compound (7) (particularly, porphyrin (7a)) from an isoindole (2) via an intermediate (6). It is characterized by In particular, halogen-containing tetrabenzoporphyrin can be selectively produced in high purity through the intermediate (6). Further, according to the production method of the present invention, halogen-containing tetrabenzoporphyrin can be produced without using a metal salt.
  • the ⁇ -conjugated cyclic compound (7) (preferably porphyrin (7a), corrole (7b), saphirin (7b) and pentaphyrin (7d); more preferably porphyrin (7a)) of the present invention is not limited.
  • Applications For example, organic electronic devices, especially organic conductive materials, organic semiconductor materials, n-type organic field effect transistors (OFETs), solar cell materials, photoconductive elements, non-linear optical materials, photoelectric conversion element dopants, photoconductive carriers It can be applied to generating materials, optical recording materials, and catalysts.
  • the porphyrin complex (8) of the present invention can be applied to the same application.
  • the compounds represented by the above formulas (6a) to (6c) can be applied to the production of polymer materials such as polyisoindolenine vinylene which can be obtained only by the production of the ⁇ -conjugated cyclic compound (7).
  • the method for producing an isoindole multimer of the present invention is to produce an isoindole multimer by using phthalonitriles that are more stable than isoindoles and easily available as a starting material. S can.
  • the isoindole multimer obtained by the production method of the present invention is useful as a conductive material, more specifically, as an electrode material, a display material, an electromagnetic wave shielding material and the like in the field of organic thin film transistors and organic solar cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Indole Compounds (AREA)

Abstract

The invention provides a process for the production of isoindoles represented by the general formula (2) by a simple means of reducing phthalonitriles represented by the general formula (1). Isoindole polymers, π-conjugated cyclic compounds (particularly porphyrins) and porphyrin complexes which are useful as organic semiconductors can be prepared from the isoindoles obtained by the process. Further, the invention also provides a process for producing isoindole polymers directly by using not isoindoles but phthalonitriles as the starting compound.

Description

明 細 書  Specification
イソインドール類およびそれから得られる化合物、並びにそれらの製造方 法  Isoindoles, compounds obtained therefrom and process for producing them
技術分野  Technical field
[0001] 本発明は、イソインドール類の新規製造方法および新規イソインドール類に関する ものである。さらに本発明は、イソインドール類から得られる新規化合物、詳しくはイソ インドール多量体 (ポリマーを含む)、イソインドール誘導体(1位置換体)、 π共役環 状化合物 (特にポルフィリン)およびボルフイリン錯体、並びにそれらの製造方法に関 するものである。  The present invention relates to a novel method for producing isoindoles and novel isoindoles. Furthermore, the present invention provides novel compounds obtained from isoindoles, specifically iso indole multimers (including polymers), iso indole derivatives (1-position substitution), π conjugated cyclic compounds (especially porphyrins) and porphyrin complexes, and the like. It relates to the manufacturing method of
背景技術  Background art
[0002] イソインドール類は、ポルフィリン等の色素原料として用いられ、またポリマー化する ことで、有機薄膜トランジスタや有機太陽電池、有機 EL、電子写真感光体、フォトリフ ラタティブ材料、二次電池、キャパシタ、帯電防止剤、エレクト口クロミック材料等に用 いることが期待されている。  [0002] Isoindoles are used as pigment materials for porphyrins and the like, and are polymerized to obtain organic thin film transistors, organic solar cells, organic EL, electrophotographic photosensitive members, photorefractive materials, secondary batteries, capacitors, and charging. It is expected to be used for inhibitors, electrochromic materials, etc.
[0003] ピロール類 (イソインドール類を含む)から得られるポルフィリンは、非常に大きな π 電子系を有するにもかかわらず比較的入手しやすいことから、非線形光学材料、光 電変換素子ドーパント、光電導キヤリャ発生材料、光記録材料などとして盛んに研究 されてきた。これらのポルフィリン等において、吸収波長や蛍光発光波長のチュー二 ングは、色素としての性能を左右する重要な問題である。  Since porphyrins obtained from pyrroles (including isoindoles) are relatively easy to obtain despite having a very large π electron system, nonlinear optical materials, photoelectric conversion element dopants, photoconductivity It has been actively studied as a caustic material, an optical recording material, etc. In these porphyrins and the like, the tuning of the absorption wavelength and the fluorescence emission wavelength is an important issue that affects the performance as a dye.
[0004] 吸収および発光波長の長波長化や高効率化(吸光係数 εの増大化)のためには、 電子供与性基または電子求引性基を助色団として用いるよりも、 π電子系を拡張す ることが効果的である。 π電子系を拡張したポルフィリンとして、以下に記載するテトラ ベンゾボルフィリンが挙げられる。  [0004] For longer wavelength and higher efficiency of absorption and emission wavelengths (increase of absorption coefficient ε), π electron system is more preferable than using electron donating group or electron withdrawing group as an auxiliary dye. It is effective to extend the Examples of porphyrins having an expanded π electron system include tetrabenzoporphyrins described below.
[0005] [化 1]
Figure imgf000004_0001
[Formula 1]
Figure imgf000004_0001
[0006] 上記のように平面性が高く π電子系が拡張されたテトラベンゾボルフィリンまたはそ の銅錯体を、有機電子デバイス、特に有機半導体の材料として使用することが、 日本 国公開特許公報の JP— Α— 2004— 6750または JP— Α— 2005— 93990に記載さ れている。  As described above, it is possible to use tetrabenzoporphyrin or its copper complex with high planarity and expanded π electron system as a material of an organic electronic device, in particular, an organic semiconductor. — Α — 2004 — 6750 or JP — Α — 2005 — 93990.
[0007] ハロゲンを含有するテトラべンゾポルフィリン、特に含フッ素テトラべンゾポルフィリン を合成できれば、有機電子デバイス、特に η型有機電界効果型トランジスター(OFE Τ)や導電性材料として有用と思われる。しカもテトラベンゾボルフィリンは、その平面 性が高いため、有機溶媒への溶解度が低ぐ含ハロゲンテトラベンゾボルフィリン合 成の出発物質として用いることはできない。なお上記の JP— Α— 2004— 6750また は JP— A— 2005— 93990では、含フッ素テトラべンゾポルフィリンまたはその銅錯 体について言及されている力 現に製造されておらず、それらの製造方法は不明で ある。  If it is possible to synthesize a halogen-containing tetrabenzo-porphyrin, in particular a fluorine-containing tetrabenzo-porphyrin, it may be useful as an organic electronic device, particularly an η-type organic field effect transistor (OFE) or a conductive material. . Because of its high planarity, tetrabenzo porphyrin can not be used as a starting material for halogen-containing tetrabenzo porphyrin synthesis which is low in solubility in organic solvents. In JP-A-2004-6750 or JP-A-2005-93990 described above, the fluorine-containing tetrabenzo-porphyrin or its copper complex is not produced to be effective, and methods for producing them are also mentioned. Is unknown.
[0008] D. E. Remyらは、 Tetrahedron Lett, 1983, 24, p. 1451-1454で、下記式で示すよ うに、 4, 5, 6 , 7—テトラフルオロー 2H—イソインドール(A)、ホルムアルデヒドおよ び酢酸亜 iKil)を反応させて、 21, 22, 23, 24, 71, 72, 73, 74, 121, 122, 123, 124, 1 71, 172, 173, 174—へキサデカフルォ口一 21H, 23H—テトラべンゾポルフィリン( 以下「へキサデ力フルォロテトラベンゾボルフィリン」と略称する)の亜鉛(II)錯体(B) を合成したと報告している。 [0008] DE Remy et al., Tetrahedron Lett, 1983, 24, p. 1451-1454, has a formula of 4, 5, 6, 7, 7-tetrafluoro-2H-isoindole (A), formaldehyde, etc. as shown by the following formula. And acetic acid (iKil) are reacted with each other to give 2 1 , 2 2 , 2 3 , 2 4 , 7 1 , 7 2 , 7 3 , 7 4 , 12 1 , 12 2 , 12 3 , 12 4 , 1 7 1 , 17 2 , 17 3 , 17 4- Hexadecafluoro-capped 21H, 23H-tetrabenzoporphyrin (hereinafter abbreviated as "hexadecaphoric fluorotetrabenzo porphyrin") zinc (II) complex (B) It is reported that it was synthesized.
[0009] [化 2]  [Chem. 2]
Figure imgf000004_0002
[0010] D. E. Remyらの論文では、紫外 可視吸収分光法および質量分析の結果のみで 、上記錯体 (B)を合成したと報告しているが、合成したとされる亜鉛 (II)錯体 (B)は、 NMR測定ができず、また物質として単離されていない。 NMRが測定できなかったこ とについて、 D. E. Remyらの論文では、常磁性の不純物が存在しているためと推測 している。しかし出発物質が亜鉛 (II)塩および有機物の出発物質であるにもかかわら ず、 NMR測定を妨げることができるほど安定な常磁性種 (亜鉛 (I)錯体または有機ラ ジカルなど)が形成されるとは考えにくい。 D. E. Remyらは見落としている力 上記錯 体(B)の NMRが測定できなかった理由として、熱重合反応によりイソインドールオリ ゴマーが形成されたことなどが考えられる。また上記錯体 (B)の分子量は 861. 81で あるにもかかわらず、 D. E. Remyらの論文の質量分析では、理論値から大きく外れ た 877という実測値が得られており、 D. E. Remyらの論文において高純度の上記錯 体 (B)が得られて!/、るとは考えられな!/、。
Figure imgf000004_0002
[0010] The article of DE Remy et al. Reports that the above complex (B) is synthesized only by the results of UV-visible absorption spectroscopy and mass spectrometry, but the zinc (II) complex which is supposed to be synthesized (B) ) Can not be measured by NMR and has not been isolated as a substance. According to the paper of DE Remy et al., The fact that NMR could not be measured is presumed to be due to the presence of paramagnetic impurities. However, despite the fact that the starting material is a zinc (II) salt and organic starting material, a paramagnetic species (such as a zinc (I) complex or an organic radical) is formed that is stable enough to prevent NMR measurements. It is hard to think. As the reason why DE Remy et al. Could not measure the NMR of the complex (B), it may be considered that an isoindole oligomer was formed by a thermal polymerization reaction. Moreover, although the molecular weight of the above complex (B) is 861.81, the mass analysis of the article of DE Remy et al. Gives an actual measurement value of 877, which is far from the theoretical value, and the article of DE Remy et al. The above complex (B) of high purity is obtained in / !, is not considered! /.
[0011] さらに D. E. Remyらの論文では、上記錯体 (B)は精製されておらず、物質として単 離されていない。単離されていない理由として、(I) D. E. Remyらの論文の合成法で は熱重合などの影響で錯体 (B)自体が充分に合成されていないこと、および (II)該 合成法で錯体 (B)自体が合成されていたとしても、その精製が困難であることが考え られる。なぜならテトラベンゾボルフィリンおよびその錯体は、平面性が高いため溶解 性が低ぐ精製が困難だ力 である。  Furthermore, in the article of D. E. Remy et al., The complex (B) is not purified and is not isolated as a substance. (I) In the synthesis method of the article of DE Remy et al., The complex (B) itself is not sufficiently synthesized under the influence of thermal polymerization and the like, and (II) the complex is not Even if (B) itself is synthesized, its purification may be difficult. This is because tetrabenzoporphyrin and its complexes have high planarity and low solubility, making purification difficult.
[0012] D. E. Remyらの論文は、金属の不存在下では収率が低ぐ金属イオンが反応に参 加することが重要であると報告している(D. E. Remyらの論文の第 1453頁第 6行〜 第 11行、殊に第 11行参照)。 D. E. Remyらの論文にも記載されているように、一般 にポルフィリン合成では、反応系中に金属イオンが存在すると、その金属イオンが中 心核として作用するため、ポルフィリン環が形成されやすいという説もある。  [0012] The article of DE Remy et al. Reports that it is important that metal ions with a low yield participate in the reaction in the absence of metal (DE Remy et al., P. 1453). Lines 6 to 11, especially line 11). As described in the article of DE Remy et al., It is generally accepted that in the case of porphyrin synthesis, when a metal ion is present in the reaction system, the metal ion acts as a central nucleus, so that a porphyrin ring is likely to be formed. There is also.
[0013] また D. E. Remyらの論文では、酢酸亜鉛(II)に替えて、酢酸ニッケル(II)または 酢酸銅 (II)を用いると、 目的とする生成物が、痕跡量でしか検出されないと報告して いる(D. E. Remyらの論文の第 1453頁第 12行〜第 18行、殊に第 15行〜第 16行 参照)。このように D. E. Remyらの論文の合成反応では、酢酸亜鉛 (II)の存在が必 須である。 [0014] 含ハロゲンテトラベンゾボルフィリンは、有機電子デバイス等への応用が期待されて いる。しかし含ハロゲンテトラべンゾポルフィリンの製造例として、 D. E. Remyらの論 文はへキサデ力フルォロテトラベンゾボルフィリン亜鉛錯体の合成を報告している力 該物質は単離されておらず、且つ NMRも測定できないなど、その製造方法が充分 に確立されて!/、るとは言!/、難!/、。 [0013] Also, in the paper of DE Remy et al., It is reported that when nickel (II) acetate or copper (II) acetate is used in place of zinc (II) acetate, the target product is detected only in trace amounts. (Refer to page 1253 line 12 to line 18, especially line 15 to line 16 of the article of DE Remy et al.). Thus, in the synthesis reaction of DE Remy et al., The presence of zinc (II) acetate is essential. [0014] Halogen-containing tetrabenzoporphyrins are expected to be applied to organic electronic devices and the like. However, as an example of the preparation of halogen-containing tetrabenzoporphyrins, the work of DE Remy et al. Reports the synthesis of hexadefluorotetrabenzoborophyllin zinc complexes The substance has not been isolated, and It is impossible to measure NMR, etc., and its manufacturing method is well established!
[0015] また D. E. Remyらの論文の合成法では、酢酸亜鉛(II)の存在が必須であり、無金 属ポルフィリンではなぐ亜鉛ボルフイリン錯体が生成物として得られると報告されて いる。しカもテトラベンゾボルフィリンおよびその錯体は精製が困難であるため、無金 属ポルフィリンを、高純度で製造できることが望ましい。高純度の無金属ポルフィリン が得られれば、 D. E. Remyらの論文で報告されるような亜鉛以外の金属ボルフイリ ン錯体も高純度で製造でき、且つそのようにして得られる無金属ポルフィリン自体ま たは様々な錯体を、有機デバイス材料として有効に利用できる。  [0015] Further, in the synthesis method of the article of D. E. Remy et al., It is reported that the presence of zinc (II) acetate is essential, and a zinc porphyrin complex which is not metal porphyrin can be obtained as a product. Since tetrabenzoporphyrin and its complex are difficult to purify, it is desirable to be able to produce metal free porphyrins with high purity. If high purity metal-free porphyrins are obtained, metal porphyrin complexes other than zinc as reported in the article of DE Remy et al. Can also be produced with high purity, and the metal-free porphyrins thus obtained or themselves can be obtained. Various complexes can be effectively utilized as organic device materials.
[0016] イソインドール類から得られる多量体(特にポリマー)は、他の導電性ポリマーに比 ベて、優れた特性を有することが知られており、これまで盛んに研究されている(例え ば JP—A— S62— 270621、 JP—A— S63— 223031、 JP—A— S63— 307604、 J P— A— H02— 263824、 JP— A— H02— 263825、 JP— A— H03— 166225など )。  [0016] Multimers (in particular, polymers) obtained from isoindoles are known to have superior properties as compared to other conductive polymers, and have been extensively studied (eg, JP-A-S62-270621, JP-A-S63-223031, JP-A-S63-307604, JP-A-H02-263824, JP-A-H02-263825, JP-A-H03-166225 etc.).
[0017] JP— A— S62— 270621では、ポリイソインドールは、ポリアセチレンよりも安定性が 高ぐまたポリチォフェンよりもデドープしにくいと記載されている。そのためイソインド ール多量体は、有機薄膜トランジスタや有機太陽電池、有機 EL、電子写真感光体、 フォトリフラクティブ材料、二次電池、キャパシタ、帯電防止剤、エレクト口クロミック材 料等の幅広レ、用途への応用が期待されて!/、る。  [0017] JP-A-S62-270621 describes that polyisoindole is more stable than polyacetylene and is more difficult to dedope than polithiophen. Therefore, isoindole polymers are used in a wide range of applications, such as organic thin film transistors, organic solar cells, organic EL, electrophotographic photosensitive members, photorefractive materials, secondary batteries, capacitors, antistatic agents, electochromic materials, etc. Application is expected!
[0018] このイソインドール多量体の製造方法として、これまで、イソインドール類(またはそ の還元体のイソインドリン類)の酸化重合が知られている(例えば JP—A—S62— 27 0621および JP— A— S63— 223031など)。しかしイソインドール多量体の出発原 料であるイソインドール類は不安定であり、取り扱いが面倒である。さらにイソインドー ノレ類自体、これまで容易に入手できな力 た。従来知られているイソインドール類の 製造方法は、多段階の反応工程からなるものであり、イソインドール類を簡単に製造 できなかったからである。 [0018] As a method for producing this isoindole multimer, oxidative polymerization of isoindoles (or isoindolines of a reductant thereof) has hitherto been known (eg, JP-A-S62-270621 and JP — A— S63— 223031, etc.). However, isoindoles, which are starting materials for isoindole multimers, are unstable and difficult to handle. Furthermore, the isoindoles themselves were not readily available. The conventionally known process for producing isoindoles comprises a multistep reaction process, and isoindoles can be easily produced. It was because I could not do it.
[0019] 例えば J. Borstein, D. E. Remy, and J. E. Shields, "SYNTHESIS AND REACTION S OF 4,5,6, 7-TETRAFLUOROISOINDOLE", Tetrahedron Lett., 1974, pp. 4247 - 4250では、下記式で示されるように、まずペンタフルォロベンゼンと n ブチルリチウ ムとの反応などによりテトラフルォロベンザインを形成し、次いでこれと N ベンジルピ 口ールとのディ一ルス アルダー反応により N ベンジル 7—ァザーテトラフルォロ ベンゾノルボルナジェンを形成し、さらに水素添加、熱分解を経て、 4, 5, 6, 7—テト ラフルオロー 2H—イソインドールを製造することが開示されている。  For example, in J. Borstein, DE Remy, and JE Shields, "SYNTHESIS AND REACTION S OF 4, 5, 6, 7-TETRAFLUOROISOINDOLE", Tetrahedron Lett., 1974, pp. 4247-4250, First, tetrafluorobenzene is formed by the reaction of pentafluorobenzene with n-butyllithium and the like, and then this is reacted with N-benzylpyridine to form N-benzyl 7-azatetra. It is disclosed that 4,5,6,7-tetrafluoro-2H-isoindole is produced by forming fluorobenzonorbornagene and further subjecting it to hydrogenation and thermal decomposition.
[0020] [化 3]  [Formula 3]
Figure imgf000007_0001
Figure imgf000007_0001
[0021」 また P. S. Anderson, M. E. Christry, E.し Engelhardt, G. F. Lundell and G. S.  [0021] Also P. S. Anderson, M. E. Christry, E. Engelhardt, G. F. Lundell and G. S.
Ponticello, "Ν-Ί rimethlysilylpyrroles as Diense in the Syntehsis of 1,4-Dihydorona phthalen-l,4-imines and Isoindoles (1)", J. Hetercyclic Chem., 19 ", 14, pp. 213 - 218では、下記式で示されるように、まず上述の方法などで形成したテトラフルォ口べ ンザインと N トリメチルシリルピロールとを反応させた後、水でタエンチして、テトラフ ノレオロー 1 , 4ージヒドロナフタレン 1 , 4ーィミンを形成し、さらにこれと N' α—ク ロロべンジリデン Ν2—フエニルヒドラジンとを反応させて、 4, 5, 6, 7—テトラフルォ 口 2Η—イソインドールを製造することが開示されて!/、る。 Ponticello, "Among ririmethlylylpyrroles as Diense in the Syntehsis of 1,4-Dihydorona phthalen-l, 4-imines and Isoindoles (1)", J. Heterocyclic Chem., 19 ", 14, pp. 213-218, As shown by the following formula, first, tetrafluorene benzene formed by the above-mentioned method and the like are reacted with N-trimethylsilylpyrrole, and then it is entangled with water to give tetraphenyl oleo-l, 4-dihydronaphthalene l, 4-imine. formation and further which the N 'alpha-click Rorobe Njiriden New 2 - by reacting phenylalanine hydrazine, 4, 5, 6, it is disclosed to produce a 7-Tetorafuruo port 2Η- isoindole /! .
[0022] [化 4]
Figure imgf000008_0001
[Formula 4]
Figure imgf000008_0001
CeH5NHN=CC6H5 CeH 5 NHN = CC 6 H 5
Ci  Ci
Figure imgf000008_0002
Figure imgf000008_0002
発明の開示  Disclosure of the invention
[0023] 本発明の第 1の目的は、これまで製造が困難であったイソインドール類を、簡便に 得ることができる新規な製造方法を提供することにある。また本発明は、新規なイソィ ンドール類、イソインドールポリマー、および該ポリマーの製造方法も提供する。  The first object of the present invention is to provide a novel production method by which isoindoles which have hitherto been difficult to produce can be easily obtained. The present invention also provides novel isindoles, isoindole polymers, and methods of making the polymers.
[0024] 第 1の目的を達成し得た本発明の製造方法とは、下記式(1)で示されるフタロニトリ ル(以下「フタ口 略称することがある)を還元することを特徴とする、下記 式(2)で示さ ール(以下「イソインドール(2)」と略称すること力 Sある)の製 造方法である  The production method of the present invention, which has achieved the first object, is characterized by reducing phthalonitrile (hereinafter sometimes referred to as “lid opening”) represented by the following formula (1), It is a method for producing indole (hereinafter referred to as “isoindole (2)” for short) having the following formula (2).
[化 5]
Figure imgf000008_0003
[Chem. 5]
Figure imgf000008_0003
[0026] 上記式(1)および(2)中、 Xは、ハロゲン原子を表し、 Yは、
Figure imgf000008_0004
OR2または SR3 (式 中、 R2および R3は、それぞれ独立に、アルキル、ァリールまたはアルキルァリー ル基を表し、)を表し、 m + n≤4であることを条件として、 mは 1〜4の整数を表し、 n は 0〜3の整数を表す。
In the above formulas (1) and (2), X represents a halogen atom, and Y is
Figure imgf000008_0004
OR 2 or SR 3 (wherein R 2 and R 3 each independently represent an alkyl, aryl or alkyl aryl group), and m is 1 to 1 provided that m + n≤ 4 Represents an integer of 4; n represents an integer of 0 to 3;
[0027] 本発明において、フタロニトリル(1)をヒドリド還元試薬により還元することが好ましく 、フタロニトリル(1) 1モルに対し、ヒドリドカ 〜6モノレになるようにヒドリド還元試薬を 使用すること力 り好ましい。さらにフタロニトリル(1)とヒドリド還元試薬とを混合し、還 元反応を行った後、反応混合物とプロトン酸またはアルカリとを混合することが推奨さ れる。好ましいヒドリド還元試薬は、アルミニウム水素化物若しくはその錯体、またはホ ゥ素水素化物若しくはその錯体である。 [0027] In the present invention, it is preferable to reduce phthalonitrile (1) with a hydride reducing reagent, and it is preferable to use a hydride reducing reagent so as to be 1 to 6 hydrides per mole of phthalonitrile (1). preferable. Furthermore, phthalonitrile (1) and hydride reduction reagent are mixed, It is recommended to mix the reaction mixture with a protonic acid or alkali after the reaction. Preferred hydride reducing agents are aluminum hydrides or complexes thereof, or boron hydrides or complexes thereof.
[0028] また本発明において、フタロニトリル(1)を接触水素化法で還元することも、好まし い実施態様である。ここで「フタロニトリル(1)を接触水素化法で還元する」とは、触媒 存在下にて、フタロニトリル(1)を水素ガスと接触させて還元することを意味する。  In the present invention, reduction of phthalonitrile (1) by catalytic hydrogenation is also a preferred embodiment. Here, "reducing phthalonitrile (1) by catalytic hydrogenation method" means reducing phthalonitrile (1) by contact with hydrogen gas in the presence of a catalyst.
[0029] 本発明は、下記式(2)で示される新規のイソインドール (4, 5, 6, 7—テトラフルォ ロー 2H—イソインドールを除く)、または下記式(3)で示される新規の N—置換イソィ ンドール (Xがフッ素原子であり、且つ m = 4であるものを除く。以下「N—置換イソイン ドール(3)」と略称することがある)を提供する(下記式中、 X、 Y、 mおよび ηは、上記 と同じ意味であり、 R4は、アルキル、ァリール、アルキルァリールまたはァシル基を表 す)。 The present invention provides a novel isoindole represented by the following formula (2) (excluding 4,5,6,7-tetrafluorinated 2H-isoindole) or a novel N represented by the following formula (3) — Provides a substituted isindole (wherein X is a fluorine atom and m = 4 and may be abbreviated as “N-substituted isoindole (3)” hereinafter) (in the following formula, X, Y, m and η are as defined above, and R 4 represents an alkyl, aryl, alkylaryl or acyl group).
[0030] [化 6]  [Formula 6]
Figure imgf000009_0001
Figure imgf000009_0001
[0031] 本発明は、さらに、上記製造方法によって製造されるイソインドール(2)または Ν— 置換イソインドール(3)を酸化重合することによって、下記式 (4)または(5)で示され る繰返し単位を有するポリマーを製造する方法、並びに下記式 (4)または(5)で示さ れる繰返し単位を有するポリマー自体(Xがフッ素原子であり、且つ m=4であるもの を除ぐ以下、それぞれを「ポリイソインドール (4)」、「ポリイソインドール(5)」と略称す ることがある)も提供する(下記式中、 X、 Y、 R4、 mおよび nは、上記と同じ意味である )。なお本発明において「酸化重合」とは、酸化剤による化学的酸化重合、または電 解質の存在下で溶媒中のモノマーを電気的に酸化することによる電解酸化重合を意 味する。 The present invention is further represented by the following formula (4) or (5) by oxidative polymerization of isoindole (2) or 置換 -substituted isoindole (3) produced by the above production method. A method of producing a polymer having a repeating unit, and the polymer itself having a repeating unit represented by the following formula (4) or (5) (except for those in which X is a fluorine atom and m = 4, respectively) Are also provided as “polyisoindole (4)”, “polyisoindole (5)” (wherein X, Y, R 4 , m and n are as defined above). Is). In the present invention, “oxidative polymerization” means chemical oxidative polymerization with an oxidizing agent, or electrolytic oxidative polymerization by electrically oxidizing a monomer in a solvent in the presence of an electrolytic substance.
[0032] [化 7]
Figure imgf000010_0001
[Formula 7]
Figure imgf000010_0001
(4) (5)  (4) (5)
[0033] 本発明の第 2の目的は、 D. E. Remyらの合成法と異なり、金属塩または半金属塩 を用いずに、且つ高純度で π共役環状化合物(特に含ハロゲンテトラベンゾボルフィ リン)を製造する技術を提供することである。また本発明は、亜鉛イオンだけでなぐ様 々な金属イオンを中心核として有する金属ボルフイリン錯体も製造できる方法を提供 することあ目白勺とする。  [0033] A second object of the present invention is that, unlike the synthesis method of DE Remy et al., Pi-conjugated cyclic compounds (especially halogen-containing tetrabenzoporphyrin) with high purity without using metal salts or metalloid salts. To provide the technology to manufacture. The present invention also provides a method capable of producing a metal porphyrin complex having various metal ions as core nuclei which are made only by zinc ions.
[0034] 第 2の目的を達成し得た本発明の製造方法は、下記式(2)で示される含ハロゲンィ ソインドールから、下記式(6)で示されるイソインドールの 1位置換体(以下、イソイン ドールの 1位置換体を「中間体」と略称することがある)を経て、下記式(7)で示される π共役環状化合物 (以下「兀共役環状化合物(7)」と略称すること力 Sある)を製造する ことを特徴とする。  [0034] The production method of the present invention which has achieved the second object is a compound comprising a 1-substituted form of isoindole represented by the following formula (6) from a halogen-containing isoindole represented by the following formula (2) (hereinafter referred to as The 1-position substitution of isoindole is sometimes abbreviated as "intermediate", and then the π-conjugated cyclic compound represented by the following formula (7) (hereinafter abbreviated as "兀 conjugated cyclic compound (7)" Are characterized by manufacturing.
[0035] [化 8]  [Formula 8]
Figure imgf000010_0002
Figure imgf000010_0002
[0036] 上記式中、 Xは、ハロゲン原子を表す。  In the above formulae, X represents a halogen atom.
Υは、
Figure imgf000010_0003
OR2または SR3 (式中、 R2および R3は、それぞれ独立にアルキル、ァ リールまたはアルキルァリール基を表す。)を表し、 m + n≤4であることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表す。
The wolf is
Figure imgf000010_0003
OR 2 or SR 3 (wherein, R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), provided that m + n 条件 4, m is 1 Represents an integer of -4, and n represents an integer of 0-3.
Zは、 OHまたは NR5R6 (式中、 R5および R6は、それぞれ独立に C アルキル基を表 Z represents OH or NR 5 R 6 (wherein R 5 and R 6 each independently represent a C alkyl group)
1-4  1-4
す。)を表す。  The Represents.
Aは、 Nまたは NHを表し、 jは、;!〜 5の整数を表し、 kは、 0または 1の整数を表し、 実線および点線からなる二重線は、単結合または二重結合を表し、式(7)で示される 環状化合物は、二重線の部分で 71共役系を形成する。 A represents N or NH, j represents an integer of from! To 5, k represents an integer of 0 or 1, A double line consisting of a solid line and a dotted line represents a single bond or a double bond, and the cyclic compound represented by the formula (7) forms a 71 conjugated system at the double line part.
[0037] なお本発明にお!/、て、「C 」とは、炭素数が a以上、 b以下であることを意味し、「 π a~b  In the present invention, “/” and “C” mean that the carbon number is a or more and b or less, “π ab
共役系」とは、 2個以上の二重結合が互いにただ 1つの単結合をはさんで連なる構造 を意味し、「k = 0である π共役環状化合物」とは、式(7)中の(C)の両端にあるイソィ  “Conjugated system” means a structure in which two or more double bonds are linked to each other via only one single bond, and “k-zero π-conjugated cyclic compound” means a structure in formula (7). (I) at both ends of (C)
k  k
ンドール環同士が直接結合している化合物を意味する。  It means a compound in which n and dole rings are directly bonded to each other.
[0038] 上記の本発明の製造方法の中でも、下記式(7a)で示される含ハロゲンテトラベン ゾボルフィリン (以下「ポルフィリン(7a)」と略称することがある)を製造することが好ま しい(下記式中、 X、 Y、 m、 n、 Zは、上記と同じ意味である)。 Among the above-mentioned production methods of the present invention, it is preferable to produce a halogen-containing tetrabenzene-Zoporphyrin (hereinafter may be abbreviated as “porphyrin (7a)”) represented by the following formula (7a) (hereinafter, sometimes referred to In the following formulae, X, Y, m, n and Z have the same meaning as described above).
[0039] [化 9] [Chem. 9]
Figure imgf000011_0001
Figure imgf000011_0001
[0040] 本発明において、上記イソインドールの 1位置換体は、下記式(6c)で示されるヒド 口キシメチル化 2H イソインドール、または下記式(6d)で示されるアミノメチル化 2H—イソインドーノレである。  In the present invention, the above 1-substituted isoindole is a hydroxymethylated 2H isoindole represented by the following formula (6c) or an aminomethylated 2H-isoindonole represented by the following formula (6d) is there.
[0041] [化 10]  [Formula 10]
Figure imgf000011_0002
Figure imgf000011_0002
[0042] 上記式(6c)で示されるヒドロキシメチル化 2H イソインドールは、(I)イソインド ール(2)をホルミル化することによって、下記式(6b)で示される第 1の中間体を形成 し、次いでこの中間体(6b)を還元することにより、または(II)イソインドール(2)をアミ ノメチレン化することによって、下記式(6a)で示される第 2の中間体を形成し、この中 間体 ½a)を加水分解することによって、下記式 ½b)で示される第 1の中間体を形成 し、次!/、でこの中間体(6b)を還元することにより製造することが好ましレ、(下記式中、 X、 Y、 m、 n、 Zは、上記と同じ意味であり、 R7および R8は、それぞれ独立に C アル The hydroxymethylated 2H isoindole represented by the above formula (6c) forms a first intermediate represented by the following formula (6b) by formylation of (I) isoindole (2). Then, the intermediate (6b) is reduced or (II) isoindole (2) aminomethylenated to form a second intermediate represented by the following formula (6a). By hydrolyzing the intermediate 1⁄2 a), a first intermediate represented by the following formula 1⁄2 b) is formed: Is preferably prepared by reducing this intermediate (6b) by the following! /, Wherein X, Y, m, n, and Z have the same meaning as described above, R 7 and R 8 are independently C al
1-4 キル基を表す)。  1-4 represents a kill group).
[化 11]  [Formula 11]
Figure imgf000012_0001
Figure imgf000012_0001
[0044] 上記式(6c)で示されるヒドロキシメチル化 2H イソインドールは、より好ましくは 、ハロゲン化ホスホリルの存在下で、イソインドール(2)とジアルキルホルムアミドとを 反応させて、上記式(6b)で示される第 1の中間体または上記式(6a)で示される第 2 の中間体を形成し、これらの中間体から製造することができる。このようにして得られ るヒドロキシメチル化 2H イソインドール(6c)を、酢酸、プロピオン酸および酪酸 力、ら選択される少なくとも 1種の脂肪族モノカルボン酸、および/または ZnCl、 BF  More preferably, the hydroxymethylated 2H isoindole represented by the above formula (6c) is reacted with isoindole (2) and a dialkylformamide in the presence of a phosphoryl halide to obtain the above formula (6b) Embedded image or a second intermediate represented by the above-mentioned formula (6a) can be formed from these intermediates. The thus obtained hydroxymethylated 2H isoindole (6c) is selected from acetic acid, propionic acid and butyric acid, at least one aliphatic monocarboxylic acid selected from these, and / or ZnCl, BF.
2 3 および BF - O (C H )力 選択される少なくとも 1種のルイス酸の存在下で脱水環化  23 and BF-O (C H) power Dehydrative cyclization in the presence of at least one Lewis acid selected
3 2 5 2  3 2 5 2
し、次いで酸化剤を作用させることにより、ポルフィリン(7a)を製造することが好ましい It is preferable to produce porphyrin (7a) by reacting it with an oxidizing agent.
Yes
[0045] イソインドール(2)をァミノメチル化することによって、上記式(6d)で示されるアミノメ チル化 2H—イソインドールを製造することができる。このアミノメチル化 2H—ィ ソインドール(6d)を経て、ポルフィリン(7a)を製造する好ましい方法として、(I)酸の 存在下で、イソインドール(2)と、ホルムアルデヒドと、ジアルキルァミンとを反応させ、 次いで酸化剤を作用させる方法、または(II)イソインドール(2)と、ハロゲン化メチレ ンジアルキルアンモニゥムとを反応させ、次いで酸化剤を作用させる方法が挙げられ  Aminomethylated 2H-isoindole represented by the above formula (6d) can be produced by aminomethylating isoindole (2). As a preferred method of producing porphyrin (7a) via this aminomethylated 2H-isoindole (6d), isoindole (2), formaldehyde and dialkylamine in the presence of (I) acid The reaction may be followed by reaction with an oxidizing agent, or the reaction of (II) isoindole (2) with a halogenated methylene dialkyl ammonium and then with an oxidizing agent.
[0046] 本発明の含ハロゲンテトラべンゾポルフィリンの製造方法において、イソインドール( 2)力 S、下記式(2a)で示されるものであることが好ましぐ 4, 5, 6, 7 テトラフルォロ — 2H イソインドールまたは 4, 5, 6, 7 テトラクロ口一 2H イソインドールであるこ とがより好ましい。 In the method for producing the halogen-containing tetrabenzo-porphyrin of the present invention, isoindole ( 2) Force S, which is preferably a compound represented by the following formula (2a): 4, 5, 6, 7 tetrafluoro-2H isoindole or 4, 5, 6, 7 tetrachloro-mono-2H isoindole Is more preferred.
[化 12]  [Formula 12]
Figure imgf000013_0001
Figure imgf000013_0001
[0048] 上記式中、 X1および X4は、それぞれ独立に Fまたは C1を表し、 Xおよび X3は、それ ぞれ独立に H、 Fまたは C1を表す。 In the above formulae, X 1 and X 4 each independently represent F or C 1, and X and X 3 each independently represent H, F or C 1.
[0049] また本発明は、下記式(6a)〜(6c)で示されるアミノメチレン化 1H イソインドー ノレ、ホルミノレ化 2H—イソインドールおよびヒドロキシメチル化 2H—イソインドー ノレも提供する。これらの化合物は、上記のように兀共役環状化合物(特に含ハロゲン テトラベンゾボルフィリン)を製造するために有用である。またこれらの化合物は、ポル フィリンの製造だけでなぐポリイソインドレニンビニレンのようなポリマー材料の製造 に用いることができる(下記式中、 X、 Y、 m、 n、 R7および R8は、上記と同じ意味であ る)。 The present invention also provides aminomethylenated 1H isoindenoles, forminoleated 2H-isoindoles and hydroxymethylated 2H-isoindoles represented by the following formulas (6a) to (6c). These compounds are useful for producing .zeta. Conjugated cyclic compounds (especially halogen-containing tetrabenzoporphyrins) as described above. Also, these compounds can be used for the production of polymer materials such as polyisoindolenine vinylene which can be made only by the production of porphyrins (wherein X, Y, m, n, R 7 and R 8 are Same meaning as above).
[0050] [化 13]  [Formula 13]
Figure imgf000013_0002
Figure imgf000013_0002
(6a) (6b) (6c)  (6a) (6b) (6c)
[0051] 本発明は、 π共役環状化合物(7) (特にポルフィリン(7a) )、および下記式(8)で示 される含ハロゲンテトラべンゾボルフイリン錯体(以下「ボルフイリン錯体(8)」と略称す ることがある)も提供する(下記式中、 X、 Yは、上記と同じ意味であり、 Mは、金属また は半金属イオンを表す。)。  The present invention relates to a π-conjugated cyclic compound (7) (particularly porphyrin (7a)), and a halogen-containing tetrabenzoborophyrin complex represented by the following formula (8) (hereinafter referred to simply as “borophyrin complex (8)” (In the following formulas, X and Y have the same meanings as described above, and M represents a metal or metalloid ion).
[0052] [化 14] [Formula 14]
Figure imgf000014_0001
Figure imgf000014_0001
[0053] ボルフイリン錯体(8)は、ポルフィリン(7a)と金属または半金属イオン Mを含む塩と を混合すれば、製造できる。  The borophyrin complex (8) can be produced by mixing the porphyrin (7a) with the metal or metal salt containing the metalloid ion M.
[0054] 本発明の含ハロゲンテトラベンゾボルフィリンの製造方法では、上記式(6)で示され るイソインドールの 1位置換体を環化することにより、ポルフィリン(7a)を製造している 1S イソインドールの 1位置換体(6)を環化すると、一旦、下記式(11)で示される含 ハロゲンテトラべンゾボルフイリノーゲン(ポルフィリンの還元体、以下「ボルフイリノー ゲン(11)」と略称すること力 Sある)が形成すると考えられる。そしてこのボルフイリノー ゲン(11)に対して酸化剤(例えばキノン類または空気中の酸素など)を作用させれ ば、ポルフィリン(7a)が得られる。そこで上記の含ハロゲンテトラベンゾボルフィリン製 法の途中で、即ちイソインドールの 1位置換体(6)の環化後かつ酸化前の段階 (即ち ボルフイリノーゲン(11)が形成していると考えられる段階)で、金属または半金属ィォ ン Mを含む塩を添加し、その後に酸化を行うことによつても、ボルフイリン錯体(8)を 製造できる。即ち、ボルフイリノーゲン(11)と、金属または半金属イオン Mを含む塩と を混合した後に、酸化剤を作用させることにより、ボルフイリン錯体(8)を製造すること ができる〔下記式中、 X、 Y、 mおよび ηは、上記と同じ意味である〕。  [0054] In the method for producing halogen-containing tetrabenzoporphyrin of the present invention, 1S isoindole producing porphyrin (7a) by cyclizing the 1-position-substituted isoindole represented by the above formula (6). Cyclization of the 1-position substitution product (6) of a compound of the formula (11), a halogen-containing tetrabenzophorphylinogen (a reduced form of porphyrin, hereinafter referred to as "borophyrinogen (11)") represented by the following formula (11) S) is considered to form. Then, an oxidant (such as quinones or oxygen in the air) is allowed to act on this porphyrinogen (11) to obtain porphyrin (7a). Therefore, during the halogen-containing tetrabenzoborophyrin preparation method described above, ie, the step after cyclization and before oxidation of the 1-substituted compound (6) of isoindole (ie, the step considered to be formed by porphyrinogen (11) The porphyrin complex (8) can also be produced by adding a salt containing metal or metalloid metal M and then performing oxidation. That is, porphyrin complex (8) can be produced by mixing porphyrinogen (11) and a salt containing metal or metalloid ion M and then causing an oxidant to act [in the following formula, X , Y, m and η are as defined above].
[0055] [化 15]  [Formula 15]
Figure imgf000014_0002
Figure imgf000014_0002
[0056] ボルフイリノーゲン(11)と金属または半金属イオン Μを含む塩とを混合した後に、 酸化剤を作用させることによるボルフイリン錯体(8)の製造方法としては、好ましくは、[0056] After mixing borophylinogen (11) with a metal or metalloid ion-containing salt, The method for producing porphyrin complex (8) by reacting an oxidizing agent is preferably
(I)ハロゲン化ホスホリルの存在下で、イソインドール(2)とジアルキルホルムアミドと を反応させて、上記式 ½b)で示される中間体を形成し、この中間体(6b)を還元する ことにより、上記式 ½c)で示される中間体を形成し、この中間体 ½c)を、酸 (好ましく は酢酸、プロピオン酸および酪酸から選択される少なくとも 1種の脂肪族モノカルボン 酸、および/または ZnCl、 BFおよび BF - 0 (C H )力、ら選択される少なくとも 1種 のルイス酸)と混合し、次いで金属または半金属イオン Mを含む塩と混合した後に、 酸化剤を作用させる方法、 (I) In the presence of a phosphoryl halide, isoindole (2) is reacted with a dialkylformamide to form an intermediate represented by the above formula 1⁄2b), and the intermediate (6b) is reduced by Forming an intermediate represented by the above formula 1⁄2c), the intermediate 1⁄2c) is an acid (preferably at least one aliphatic monocarboxylic acid selected from acetic acid, propionic acid and butyric acid, and / or ZnCl, BF And BF-0 (CH 2) power, mixed with at least one selected Lewis acid), and then mixed with a metal or metalloid ion containing salt M, and then the oxidizing agent is allowed to act,
(II)ハロゲン化ホスホリルの存在下で、イソインドール(2)とジアルキルホルムアミド とを反応させて、上記式(6a)で示される中間体を形成し、この中間体(6a)を加水分 解することにより、上記式 ½b)で示される中間体を形成し、この中間体(6b)を還元 することにより、上記式 ½c)で示される中間体を形成し、この中間体 ½c)を、酸 (好ま しくは酢酸、プロピオン酸および酪酸から選択される少なくとも 1種の脂肪族モノカル ボン酸、および/または ZnCl、 BFおよび BF - 0 (C H )力、ら選択される少なくとも (II) In the presence of phosphoryl halide, isoindole (2) is reacted with dialkyl formamide to form an intermediate represented by the above formula (6a), and this intermediate (6a) is hydrolyzed The intermediate (6b) is reduced to form an intermediate represented by the above formula (c), and the intermediate (c) is converted to an acid (c) At least one aliphatic monocarboxylic acid, preferably selected from acetic acid, propionic acid and butyric acid, and / or ZnCl, BF and BF-0 (CH 2) power, at least selected
1種のルイス酸)と混合し、次いで金属または半金属イオン Mを含む塩と混合した後 に、酸化剤を作用させる方法、 (1) mixing with one type of Lewis acid, and then mixing with a metal or metalloid ion containing salt M, and then causing an oxidizing agent to act;
(III)酸の存在下で、イソインドール(2)と、ホルムアルデヒドと、ジアルキルァミンと を反応させ、次いで反応混合物と、金属または半金属イオン Mを含む塩とを混合した 後に、酸化剤を作用させる方法、  After reacting isoindole (2), formaldehyde and dialkylamine in the presence of an acid (III), and then mixing the reaction mixture with the metal or metalloid ion containing salt M, the oxidizing agent is added. How to work,
(IV)イソインドール(2)と、ハロゲン化メチレンジアルキルアンモニゥムとを反応させ 、次いで反応混合物と、金属または半金属イオン Mを含む塩とを混合した後に、酸化 剤を作用させる方法  (IV) A method of reacting isoindole (2) with a methylenedialkylammonium halide, then mixing the reaction mixture with a salt containing metal or metalloid ion M, and then acting an oxidizing agent.
が挙げられる。  Can be mentioned.
[0057] 本発明の第 3の目的は、イソインドール類よりも取扱いおよび入手が容易なフタロニ トリル類を出発原料として用いて、イソインドール多量体を製造する方法を提供するこ とである。  [0057] A third object of the present invention is to provide a method for producing isoindole multimers using phthalonitriles, which is easier to handle and obtain than isoindoles, as a starting material.
[0058] 第 3の目的を達成し得た本発明とは、下記式(9)で示されるフタロニトリルを、酸の 存在下で接触水素化することを特徴とする下記式(2)で示される繰返し単位を有す る多量体の製造方法である。なお本発明において「接触水素化」とは、上述と同様の 意味であり、「多量体」とは、「繰返し単位が 2以上であるもの」を意味する。 The present invention, which has achieved the third object, is a compound represented by the following formula (2) characterized in that a phthalonitrile represented by the following formula (9) is catalytically hydrogenated in the presence of an acid. Have a repeating unit Is a method of producing multimers. In the present invention, "catalytic hydrogenation" has the same meaning as described above, and "multimer" means "having two or more repeating units".
[0059] [化 16] [Formula 16]
Figure imgf000016_0001
Figure imgf000016_0001
[0060] 上記式中、 Dは、ハロゲン原子、 R1, OITまたは SR3 (式中、 、 R2および R3は、そ れぞれ独立に、アルキル、ァリールまたはアルキルァリール基を表す。)を表し、 pは 0 〜4の整数を表す。 In the above formulae, D is a halogen atom, R 1 , OIT or SR 3 (wherein, R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group. And p represents an integer of 0 to 4.
[0061] 本発明のイソインドール多量体の製造方法において、(I)酢酸、トリフルォロ酢酸、リ ン酸、塩酸、硝酸および硫酸よりなる群から選ばれる少なくとも 1種を、前記酸として 用いること、(II)パラジウム触媒、ロジウム触媒、白金触媒およびニッケノレ触媒よりな る群から選ばれる少なくとも 1種を、接触水素化のための触媒として用いることが好ま しい態様である。  In the method for producing an isoindole multimer of the present invention, at least one selected from the group consisting of (I) acetic acid, trifluoroacetic acid, phosphoric acid, hydrochloric acid, nitric acid and sulfuric acid is used as the acid ( II) It is a preferred embodiment to use at least one member selected from the group consisting of a palladium catalyst, a rhodium catalyst, a platinum catalyst and a Nickenore catalyst as a catalyst for catalytic hydrogenation.
[0062] また本発明のイソインドール多量体の製造方法の好ましい一態様として、下記式(1 )で示されるフタロニトリルを用いて、下記式 (4)で示される繰返し単位を有する多量 体を製造する製造方法が挙げられる(下記式中、 X、 Y、 mおよび ηは、上記と同じ意 味である)。  Further, as a preferred embodiment of the method for producing an isoindole multimer of the present invention, a phthalonitrile represented by the following formula (1) is used to produce a multimer having a repeating unit represented by the following formula (4) (In the following formulas, X, Y, m and η have the same meanings as described above).
[0063] [化 17]  [Formula 17]
Figure imgf000016_0002
Figure imgf000016_0002
(1 ) (4)  (14)
[0064] なお以下では、上記式(9)で示されるフタロニトリルを、「フタロニトリル(9)」と、上記 式(10)ほたは (4) )で示される繰返し単位を有するイソインドール多量体を、「イソィ ンドール多量体(10)ほたは (4) )」と略称することがある。  In the following, the phthalonitrile represented by the above formula (9) is referred to as “phthalonitrile (9)” and the isoindole having a repeating unit represented by the above formula (10) or (4) The body may be abbreviated as “Isoindole multimer (10) hota ha (4))”.
発明を実施するための最良の形態 [0065] まずイソインドール類の製造方法に関する本発明から説明する。 BEST MODE FOR CARRYING OUT THE INVENTION First, the method for producing isoindoles will be described from the present invention.
本発明の製造方法は、フタロニトリル(1)を還元するという簡便な反応工程によって (好ましくはヒドリド還元試薬を用いた還元または接触水素化法での還元によって)、 イソインドール(2)を製造できることを特徴とする。よって、まずヒドリド還元試薬による 還元について説明する。  According to the production method of the present invention, isoindole (2) can be produced by a simple reaction step of reducing phthalonitrile (1) (preferably by reduction using a hydride reducing reagent or reduction by catalytic hydrogenation method) It is characterized by Therefore, first, the reduction by the hydride reducing reagent will be described.
[0066] テトラフルオロフタロニトリルを、水素化ジイソブチルアルミニウムで還元することによ つて、 4, 5, 6, 7—テトラフルオロー 2H—イソインドールを製造するという本発明の好 ましい実施態様において、下記式で示すような反応機構が進行すると推定される。な お接触水素化法でも、同様の反応機構が進行すると推定される。但し本発明は、こ のような推定に限定されなレ、:  In a preferred embodiment of the present invention, wherein 4,5,6,7-tetrafluoro-2H-isoindole is produced by reducing tetrafluorophthalonitrile with hydrogenated diisobutylaluminum, It is presumed that the reaction mechanism as shown by the following formula proceeds. It is presumed that the same reaction mechanism proceeds in the catalytic hydrogenation method. However, the present invention is not limited to such estimations:
[0067] [化 18]  [Formula 18]
Figure imgf000017_0001
Figure imgf000017_0001
[0068] ヒドリド還元試薬が少なすぎると、 目的物であるイソインドール(2)の収率が低下す る。一方、ヒドリド還元試薬が多すぎると、フタロニトリル(1)のハロゲン力 Sヒドリドにより 置換される副反応が起こるおそれがある。よってフタロニトリル(1) 1モルに対し、ヒドリ ドカ 好ましくは 2〜6モノレ、より好ましくは 2. 5〜5モノレ、さらに好ましくは 2. 7〜4. 5 モルになるようにヒドリド還元試薬を使用することが推奨される。なお上記の推定反応 機構から分かるように、ヒドリド還元試薬の最適量は、フタロニトリル(1) 1モルに対し、  If the amount of hydride reduction reagent is too small, the yield of the desired product isoindole (2) decreases. On the other hand, when the amount of the hydride reducing reagent is too large, there is a possibility that a side reaction to be substituted by the halogen power S hydride of phthalonitrile (1) may occur. Therefore, the hydride reducing reagent is used so that 1 to 2 moles, more preferably 2.5 to 5 moles, and even more preferably 2. 7 to 4.5 moles of hydridoca per mole of phthalonitrile (1). It is recommended to do. As understood from the above-described presumed reaction mechanism, the optimum amount of hydride reducing reagent is 1 mol of phthalonitrile (1),
[0069] フタロニトリル(1)とヒドリド還元試薬との還元反応後に、ヒドリド還元試薬を水でタエ ンチする。この際、水と共に酸 (好ましくはプロトン酸)またはアルカリを用いることが好 ましい。なぜならイソインドール(2)の収率が向上するからである。 After reduction reaction of phthalonitrile (1) with hydride reducing reagent, hydride reducing reagent is tanched with water. At this time, it is preferable to use an acid (preferably a protic acid) or an alkali together with water. I'm sorry. This is because the yield of isoindole (2) is improved.
[0070] プロトン酸またはアルカリを用いることで収率が向上する理由として、以下のようなこ とが推定される。但し本発明はこの推定に限定されない:上記の推定反応機構で示 したように、還元反応後では、ヒドリド還元試薬の残基 (例えばアルミニウムまたはホウ 素)がイソインドール(2)の窒素に付加したままの状態であると考えられる。この残基 が付加したままだと、その後のシリカゲルカラムクロマトグラフィーなどの精製が上手く いかないことも考えられる。そこでプロトン酸またはアルカリを添加して、残基の脱離を 促進することにより、精製収率が向上すると考えられる。なお NaOH等の強塩基を混 合することによつても、イソインドール(2)の収率が向上することは驚くべきことである。 なぜなら出発原料であるフタロニトリル(1)は、 NaOH等と混合すると、炭素と結合し ているハロゲンが外れるからである。し力も本発明者らが検討した結果、反応混合物 と NaOH等とを混合しても、ハロゲンが外れず、イソインドール(2)の精製収率が向上 することを見出した。 The following can be estimated as the reason why the yield is improved by using a protonic acid or an alkali. However, the present invention is not limited to this assumption: As shown in the above-mentioned presumed reaction mechanism, after reduction reaction, residue (eg, aluminum or boron) of hydride reducing reagent is added to nitrogen of isoindole (2). It is thought that it is in the state as it is. If this residue remains added, subsequent purification such as silica gel column chromatography may not be successful. Therefore, it is considered that the purification yield can be improved by promoting the elimination of the residue by adding a protonic acid or alkali. It is surprising that the yield of isoindole (2) is improved by mixing a strong base such as NaOH. This is because phthalonitrile (1), which is the starting material, is mixed with NaOH or the like to release the halogen bonded to carbon. As a result of investigations by the present inventors, it was found that mixing of the reaction mixture with NaOH or the like did not release the halogen, and the purification yield of isoindole (2) was improved.
[0071] 還元反応後に水でタエンチする際には、酸またはアルカリを用いなくても、またはヒ ドリド還元試薬に対して過少量の酸またはアルカリを用いても良い。しかし収率の観 点から、好ましくは反応系が中性ないし酸性になる量の酸、殊にプロトン酸を用いるこ とが推奨される。具体的にはプロトン酸を、ヒドリド還元試薬 1モルに対してプロトン (H +)が、好ましくは 1モル以上、より好ましくは 1. 5モル以上となるような量で使用するこ とが推奨される。但しプロトン酸も、その後の処理工程、殊に精製工程に悪影響を及 ぼすおそれがあるので、過剰量のプロトン酸を用いた場合、残りのプロトン酸を塩基 で中和することが好ましい。よってその後の処理工程を考慮すると、プロトン(H+)量 は、ヒドリド還元試薬 1モノレに対して、好ましくは 4モル以下、より好ましくは 3モル以下 である。 In the course of reduction reaction with water, it is possible not to use an acid or an alkali, or to use an excessive amount of an acid or an alkali relative to a hydride reducing reagent. However, from the point of view of yield, it is recommended to use an acid, preferably a protonic acid, in an amount that preferably makes the reaction system neutral or acidic. Specifically, it is recommended to use a protonic acid in an amount such that the proton (H +) is preferably 1 mol or more, more preferably 1.5 mol or more, per 1 mol of hydride reduction reagent. Ru. However, since protonic acid may also adversely affect the subsequent processing steps, particularly the purification step, when an excess of protonic acid is used, it is preferable to neutralize the remaining protonic acid with a base. Therefore, in consideration of the subsequent treatment steps, the amount of proton (H + ) is preferably 4 moles or less, more preferably 3 moles or less, per hydride reducing reagent.
[0072] 同様に収率の観点から、還元反応後に、反応混合物とアルカリとを混合することが 推奨される。アルカリの使用量は、ヒドリド還元試薬 1モルに対して、好ましくは 1モル 以上はり好ましくは 2モル以上)、好ましくは 5モル以下はり好ましくは 3モル以下)で ある。過剰量のアルカリを用いた場合、必要に応じて、次の精製工程の前に中和して あよい。 [0073] 本発明の製造方法では、上で示したように、シァノ基の部分が還元反応を受けるこ とにより、イソインドール(2)が製造されていると推定され、上記式中のハロゲン Xおよ び置換基 Yは、この還元反応に大きな影響を及ぼさないと考えられる。そのため本発 明では、あらゆる種類のハロゲン Xおよび置換基 Yを有するフタロニトリル(1)を使用 できると考えられる。但し、 目的物のイソインドール(2)は、ハロゲン原子が存在するこ とによって安定化されると考えられるので、イソインドール(2)の安定性の観点からは 、フタロニトリル(1)中のハロゲン原子 Xの数は、 1以上(即ち m≥l)、好ましくは 2以 上、より好ましくは 3以上、さらに好ましくは 4であることが推奨される。フタロニトリル(1 )として、例えばアルドリッチ社、シンクエスト社、ァズマックス株式会社若しくはセント ラル薬品株式会社などから市販されているもの、または既知の方法で合成できるもの が使用できる。 Similarly, from the viewpoint of yield, it is recommended to mix the reaction mixture and the alkali after the reduction reaction. The amount of alkali used is preferably 1 mole or more, preferably 2 moles or more, preferably 5 moles or less, preferably 3 moles or less, per 1 mole of hydride reducing reagent. If an excess of alkali is used, it may be neutralized prior to the next purification step, if necessary. In the production method of the present invention, it is presumed that isoindole (2) is produced by the reduction reaction of the part of the cyano group as described above, and the halogen X in the above formula is And, the substituent Y is considered not to greatly affect this reduction reaction. Therefore, in the present invention, it is considered that phthalonitrile (1) having all kinds of halogen X and substituent Y can be used. However, since the target substance isoindole (2) is considered to be stabilized by the presence of a halogen atom, from the viewpoint of the stability of isoindole (2), the halogen in phthalonitrile (1) is It is recommended that the number of atoms X is 1 or more (ie, m l l), preferably 2 or more, more preferably 3 or more, and still more preferably 4. As the phthalonitrile (1), for example, those commercially available from Aldrich, Synquest, Azamax Co., Central Chemical Co., Ltd., etc., or those which can be synthesized by known methods can be used.
[0074] 上記式中の Xは、ハロゲン原子を表し、好ましくはフッ素、塩素または臭素原子、よ り好ましくはフッ素または塩素原子、さらに好ましくはフッ素原子である。 Xとして、同 時に複数種のハロゲン原子が存在しても良い。上記式中
Figure imgf000019_0001
R2および R3は、それ ぞれ独立に、好ましくは C アルキル基、より好ましくは C アルキル基、さらに好ま
[0074] X in the above formula represents a halogen atom, preferably a fluorine, chlorine or bromine atom, more preferably a fluorine or chlorine atom, still more preferably a fluorine atom. As X, two or more kinds of halogen atoms may exist simultaneously. In the above formula
Figure imgf000019_0001
R 2 and R 3 are each independently preferably a C alkyl group, more preferably a C alkyl group, and still more preferably
1-20 1-10  1-20 1-20
しくは C アルキル基;好ましくは C ァリール基、より好ましくは C ァリール基;また Or C alkyl group; preferably C aryl group, more preferably C aryl group;
1-5 6-20 6-12 は好ましくは C アルキルァリール基、より好ましくは C アルキルァリール基、さらに 1-5 6-20 6-12 is preferably C alkylaryl group, more preferably C alkylaryl group, further
7-20 7-15  7-20 7-15
好ましくは C アルキルァリール基である。 R1, R2および R3は、その炭素骨格上に、 Preferably it is C alkyl aryl group. R 1 , R 2 and R 3 are on their carbon skeleton
7-10  7-10
ハロゲン原子を含有していても良い。置換基 Yとして、 R1, OR2および SR3のいずれ かが複数存在する場合、
Figure imgf000019_0002
R2および R3は、異なる置換基 (例えばァ ノレキノレ基とァリ一ノレ基)であっても良!/ヽ。
It may contain a halogen atom. When any one of R 1 , OR 2 and SR 3 is present as a substituent Y,
Figure imgf000019_0002
R 2 and R 3 may be different substituents (eg, an amino group and an amino group)! / ァ.
[0075] フタロニトリル(1)として、まず n = 0であるもの、即ち置換基としてハロゲン原子 Xの みを有する含ハロゲンフタロニトリルが挙げられる。含ハロゲンフタロニトリルは、アル ドリツチ社などから販売されている。また市販の含ハロゲンフタロニトリルから、従来既 知のハロゲン置換反応により、市販されていない含ハロゲンフタロニトリルを製造する ことあでさる。  As the phthalonitrile (1), first, one having n = 0, ie, a halogen-containing phthalonitrile having only a halogen atom X as a substituent can be mentioned. Halogen-containing phthalonitriles are commercially available from Aldrich な ど and others. In addition, non-commercially available halogen-containing phthalonitriles can be produced from commercially available halogen-containing phthalonitriles by a conventionally known halogen substitution reaction.
[0076] 例えば JP— A— 2002— 332254には、含フッ素イソフタロニトリルのフッ素原子を、 臭化剤(例えば臭化ナトリウム、臭化カリウムおよび臭化リチウム、好ましくは臭化ナト リウムおよび臭化カリウム)を用いて、臭素原子で置換する技術が開示されている。ま に By J. M. Birchell, R. N. Haszeialne, and J. O. Morley, Polyfluoroarene s . Part XI . Reactions of Tetrafluorophthalronitrile with Nucleophilic Reagents , For example, in JP-A-2002-332254, a fluorine atom of fluorine-containing isophthalonitrile is used as a brominating agent (eg, sodium bromide, potassium bromide and lithium bromide, preferably sodium bromide). It is disclosed that substitution with bromine atom is carried out using lithium and potassium bromide). By JM Birchell, RN Haszeialne, and JO Morley, Polyfluoroarenes s. Part XI.Reactions of Tetrafluorophthalonitrile with Nucleophil Reagents,
J. Chem. Soc. (C), 1970, p. 456 - 462には、テトラフルォロイソフタロニトリルのフッ 素原子を、 LiClを用いて、塩素原子で置換する技術が開示されている。  J. Chem. Soc. (C), 1970, p. 456-462 discloses a technique of substituting fluorine atoms of tetrafluoroisophthalonitrile with chlorine atoms using LiCl.
[0077] 含ハロゲンフタロニトリルの具体例として、 4 フルオロフタロニトリル、テトラフルォロ フタロニトリル、 4, 5—ジクロ口フタロニトリル、テトラクロ口フタロニトリル、 4 クロロー 3 , 5, 6—トリフルオロフタロニトリルなどが挙げられる。これらの中でも、入手容易性な どの観点から、テトラフルオロフタロニトリルが好ましい。  Specific examples of the halogen-containing phthalonitrile include 4 fluorophthalonitrile, tetrafluoro phthalonitrile, 4, 5-dichloro phthalonitrile, tetrachloro phthalonitrile, 4 chloro-3, 5, 6 trifluoro phthalonitrile, etc. Be Among these, tetrafluorophthalonitrile is preferable from the viewpoint of availability and the like.
[0078] 置換基 Yとして、 R1基を有するフタロニトリル(1)は、含ハロゲンフタロニトリルを用い て、合成化学分野で周知であるカップリング反応により製造することができる。例えば R1基を有するフタロニトリル(1)は、ニッケルやパラジウム触媒の存在下で、含ハロゲ ンフタロニトリルとグリニャール試薬とのカップリング反応を行うことにより、詳しくは含 ノヽロゲンフタロニトリルのハロゲン原子を、グリニャール試薬からのアルキル、ァリール またはアルキルァリール基で置換することにより、得ること力 Sできる。このカップリング 反応は、熊田一玉尾カップリングとして、合成化学分野でよく知られている。また R1基 を有するフタロニトリル(1)は、パラジウム触媒の存在下で、含ハロゲンフタロニトリル と有機ホウ素化合物とのカップリング反応を行うことによつても得ることができる。この カップリング反応も、鈴木—宮浦カップリングとして、合成化学分野でよく知られてい Phthalonitriles (1) having an R 1 group as a substituent Y can be produced by a coupling reaction well known in the synthetic chemistry field using halogen-containing phthalonitriles. For example, phthalonitrile (1) having an R 1 group is specifically subjected to a coupling reaction of a halogen-containing phthalonitrile with a Grignard reagent in the presence of a nickel or palladium catalyst. Can be obtained by substitution with an alkyl, aryl or alkylaryl group from a Grignard reagent. This coupling reaction is well known in the synthetic chemistry field as Kumada Ichitamao coupling. The phthalonitrile (1) having an R 1 group can also be obtained by conducting a coupling reaction of a halogen-containing phthalonitrile with an organic boron compound in the presence of a palladium catalyst. This coupling reaction is also well known in the synthetic chemistry field as the Suzuki-Miyaura coupling.
[0079] 置換基 Yとして、 OR2基または SR3基を有するフタロニトリル(1)は、従来既知の方 法、例えば JP—A— 2002— 302477に記載されているような方法により、含ハロゲン フタロニトリルのハロゲン原子を、 HOR2および/または HSR3で置換することによつ て、製造すること力 Sできる。この芳香族求核置換反応に用いる含ハロゲンフタロニトリ ノレは、ハロゲンの置換反応に対する反応性の観点から、好ましくは含フッ素および/ または含塩素フタロニトリル、より好ましくは含フッ素フタロニトリル、さらに好ましくはテ トラフルオロフタロニトリルである。また含ハロゲンフタロニトリルの求核置換反応は、フ タロニトリルの 4位および 5位で優先的に進行する。よって入手容易性の観点から、 O R2基または SR3基を有するフタロニトリル(1)として、下記式(la)または(Id)、殊に下 記式(lb)または(lc)、ある!/、は下記式(le)または(If)で示されるフタロニトリルが 好ましい。 Phthalonitrile (1) having an OR 2 group or an SR 3 group as a substituent Y is a halogen-containing compound according to a conventionally known method, for example, a method as described in JP-A-2002-302477. It can be produced S by replacing the halogen atom of phthalonitrile with HOR 2 and / or HSR 3 . From the viewpoint of the reactivity to the substitution reaction of halogen, the halogen-containing phthalonitrile to be used for this aromatic nucleophilic substitution reaction is preferably a fluorine-containing and / or chlorine-containing phthalonitrile, more preferably a fluorine-containing phthalonitrile, still more preferably Tetrafluorophthalonitrile. The nucleophilic substitution reaction of the halogen-containing phthalonitrile preferentially proceeds at the 4- and 5-positions of the phthalonitrile. Therefore, from the viewpoint of availability, O As phthalonitrile (1) having an R 2 group or an SR 3 group, the following formula (la) or (Id), in particular, the following formula (lb) or (lc), there is a following formula (le) or Phthalonitrile represented by (If) is preferred.
[0080] [化 19]  [Formula 19]
Figure imgf000021_0001
Figure imgf000021_0001
[0081] 上記式(la)〜(; If)中、 Y1および Y2は、それぞれ独立に OR2または SR3を表し、 R2 および R3は、それぞれ独立に、好ましくは C アルキル基、より好ましくは C アルキ In the above formulas (la) to (; If), Y 1 and Y 2 each independently represent OR 2 or SR 3 , and R 2 and R 3 are each independently preferably a C alkyl group, More preferably, C alkyl
1-20 1-10 ル基、さらに好ましくは C アルキル基;好ましくは C ァリール基、より好ましくは C  1-20 alkyl group, more preferably C alkyl group; preferably C aryl group, more preferably C alkyl group
1-5 6-20 6-1 ァリール基;または好ましくは C アルキルァリール基、より好ましくは C アルキル 1-5 6-20 6-1 aryl group; or preferably C alkylaryl group, more preferably C alkyl
2 7-20 7-15 ァリール基、さらに好ましくは C アルキルァリール基を表す。また R2および R3は、そ 2 7-20 7-15 represents a phenyl group, more preferably a C alkylaryl group. Also, R 2 and R 3
7-10  7-10
の炭素骨格上に、ノ、ロゲン原子を含有していても良い。上記式(le)または(If)中の The carbon skeleton of the above may contain a nitrogen atom or a halogen atom. In the above formula (le) or (If)
R2および R3は、同一のものでも、異なるものでも良いが、製造の容易性の観点から、 同一のものであることが好まし!/、。 R 2 and R 3 may be the same or different, but are preferably the same from the viewpoint of ease of production! / ,.
[0082] ヒドリド還元試薬として、金属若しくは半金属の水素化物またはそれらの錯体を用い ること力 Sできる。金属水素化物等として、例えば以下のものを挙げることができる。 [0082] As a hydride reducing agent, it is possible to use metal or metalloid hydrides or their complexes S. Examples of metal hydrides and the like include the following.
[0083] アルキルァラン、ジアルキルァラン、アルコキシァラン、ジアルコキシァラン等のアル ミニゥム水素化物。 [0083] Alminium hydrides such as alkylsilanes, dialkylalans, alkoxyalans, dialkoxysilanes and the like.
[0084] LiAlH、 LiAlH R、 LiAlH R、 LiAlHR、 NaAlH、 NaAlH R、 NaAlH R、 Na LiAlH, LiAlH R, LiAlH R, LiAlHR, NaAlH, NaAlH R, NaAlH R, Na
A1HR、 NaAlH (OCH CH OCH ) 、 Al H (OCH CH OCH ) 、 R N— A1H、A1 HR, NaAlH (OCH 2 CH 2 OCH 2), Al 2 H (OCH 2 CH 2 OCH 2) 3, R N — A1 H,
Et O-AIH等のアルミニウム水素化物の錯体(式中 Rは、アルキル、ァリールまたは アルコキシ基を表す。)。 [0085] ジボラン(B H )、アルキルボラン、ジアルキルボラン、アルコキシボラン、ジアルコキ シボラン等のホウ素水素化物。 Complexes of aluminum hydrides such as Et 2 O-AIH, where R represents an alkyl, aryl or alkoxy group. Boron hydrides such as diborane (BH 2), alkyl boranes, dialkyl boranes, alkoxy boranes, dialkoxy boranes, and the like.
[0086] NaBH、 NaBH R、 NaBH R、 NaBHR、 NaBH CN、 NaBH N (CH ) 、 NaB NaBH, NaBH R, NaBH R, NaBHR, NaBH CN, NaBH N (CH 2) 2, NaB
H (NH (t-Bu) ) NaBH S、 NaBH (SCH CH S)、 LiBH、 LiBH R、 LiBH R H (NH (t-Bu)) NaBH S, NaBH (SCH CH S), LiBH, LiBH R, LiBH R
 ,
、 LiBHR、 H N-BH、 RH N— BH、 R HN— BH、 R N— BH、 THF— BH、ピ リジン— BH、 R HP-BH、 R P— BH、 KBHR等のホウ素水素化物の錯体(式中 , Complex of boron hydride such as LiBHR, HN-BH, RH N-BH, RHN-BH, RN-BH, THF-BH, pyridin-BH, R HP-BH, RP-BH, KBHR During ~
Rは、アルキル、ァリールまたはアルコキシ基を表す。)。 R represents an alkyl, aryl or alkoxy group. ).
[0087] CI SiH、 CI SiH、 R SiH、 R SiH、 ( (CH ) Si) SiH、ポリメチルヒドロシラン等の ケィ素水素化物(式中 Rは、アルキル、ァリール、ベンジルまたはアルコキシ基を表す  CI Hydrides such as CI SiH, CI SiH, R SiH, R SiH, ((CH 3) Si) SiH, polymethylhydrosilane (wherein R represents an alkyl, aryl, benzyl or alkoxy group)
[0088] R SnH、 R SnH、 Ph SnH、 Ph SnH、 (n-Bu) SnH、水素化トリエチノレスズ、 水素化トリメチルスズ等のスズ水素化物(式中 Rは、アルキル、ァリールまたはアルコ キシ基を表す。)。 Tin hydrides such as R SnH, R SnH, Ph SnH, Ph SnH, (n-Bu) SnH, triethyl nodecyl hydride, trimethyl tin hydride (wherein R represents an alkyl, aryl or alkoxy group) ).
[0089] 上記のものの中でも、反応性の観点から、アルミニウム水素化物若しくはその錯体、 またはホウ素水素化物若しくはその錯体が好ましぐ水素化ジイソブチルアルミニウム 、および BH錯体がより好ましい。ヒドリド還元試薬は、 1種のみを単独で用いることが でき、 2種以上を併用することもできる。  Among the above, from the viewpoint of reactivity, aluminum hydride or a complex thereof, or hydrogenated diisobutylaluminum preferred by boron hydride or a complex thereof, and a BH complex are more preferable. As the hydride reducing reagent, only one type can be used alone, or two or more types can be used in combination.
[0090] ヒドリド還元試薬は、ルイス酸と組み合わせて使用してもよい。ルイス酸を添加すると 、殊にケィ素水素化物またはスズ水素化物を使用する場合、還元反応の進行が促進 されると考えられる。本発明において、 1種のみのルイス酸を単独で、または 2種以上 のルイス酸を組み合わせて用いることができる。  [0090] The hydride reducing reagent may be used in combination with a Lewis acid. The addition of a Lewis acid is considered to accelerate the progress of the reduction reaction, especially when using a kehyd hydride or tin hydride. In the present invention, only one Lewis acid can be used alone, or two or more Lewis acids can be used in combination.
[0091] ルイス酸としては、特に限定は無く、例えば A1C1、 AlBr、 TiCl、 SnCl、 SnCl、 The Lewis acid is not particularly limited. For example, A1C1, AlBr, TiCl, SnCl, SnCl,
FeCl、: BF、: BF ' 0 (C H ) 、トリスペンタフルオロフェニルホウ素、 NbF、 TaF、 PFeCl ,: BF ,: BF '0 (C 2 H 5), trispentafluorophenylboron, NbF, TaF, P
F、 AsF、 SbF等の周期律表第 IIIB族、第 IVA族、第 IVB族、第 VA族または第 VPeriodic table group IIIB, IVA, IVB, VA or V such as F, AsF, SbF, etc.
B族元素のハロゲン化合物、その錯体またはアルコキシド化合物が挙げられる。 Examples thereof include halogen compounds of Group B elements, and complexes or alkoxide compounds thereof.
[0092] 本発明の方法における還元反応は、通常、溶媒を用いて行われる。溶媒としては 特に限定は無いが、出発原料であるフタロニトリル(1)を溶解できるものが好ましい。 溶媒として、例えばクロ口ホルム、塩化メチレン等の塩素系炭化水素類;ベンゼン、ト ノレェン、キシレン等の芳香族炭化水素類; THF、ジォキサン、シクロペンチルメチル エーテル、ジイソプロピルエーテル、ジェチルエーテル等のエーテル類;ジメチルホ ルムアミド、ジメチルァセトアミド等のアミド類;およびスルホラン、 3—メチルスルホラン 、 2, 4 ジメチルスルホラン等のスルホラン類などを挙げることができる。溶媒は、単 独で、または 2種以上組み合わせて用いることができる。溶媒を用いる場合、フタロニ トリル(1)の濃度は、好ましくは 0. 01〜; 1M程度、より好ましくは 0. 05-0. 5M程度 である。 The reduction reaction in the method of the present invention is usually carried out using a solvent. The solvent is not particularly limited, but those which can dissolve phthalonitrile (1) which is a starting material are preferable. As a solvent, for example, chloroforms such as chloroform, methylene chloride and the like; chlorinated hydrocarbons; benzene, Aromatic hydrocarbons such as noren and xylene; Ethers such as THF, dioxane, cyclopentyl methyl ether, diisopropyl ether and jetyl ether; Amides such as dimethyl formamide and dimethylacetamide; and sulfolane, 3-methylsulfolane Sulfolanes such as 2,4 dimethyl sulfolane can be mentioned. The solvents can be used alone or in combination of two or more. When a solvent is used, the concentration of phthalonitrile (1) is preferably about 0.01 to 1M, more preferably about 0.05 to 0.5M.
[0093] ヒドリド還元試薬を用いた還元反応では、還元試薬の分解を抑制するために、窒素 またはアルゴンなどの不活性ガス雰囲気下で行うことが好まし!/、。またフタロニトリル 類の溶液を冷却しながら、ヒドリド還元試薬の溶液をゆっくりと添加しても良いし、ヒドリ ド還元試薬の溶液を冷却しながら、フタロニトリル類の溶液をゆっくりと添加しても良 い。還元反応の温度は、用いる溶媒などにも影響される力 好ましくは 0°C以上、より 好ましくは 20°C以上であり、好ましくは 150°C以下、より好ましくは 120°C以下である 。還元反応の時間は、好ましくは 30分以上、より好ましくは 1時間以上、さらに好まし くは 2時間以上であり、好ましくは 48時間以下、より好ましくは 24時間以下である。  [0093] In the reduction reaction using a hydride reducing reagent, in order to suppress decomposition of the reducing reagent, it is preferable to carry out under an inert gas atmosphere such as nitrogen or argon! /. Alternatively, the solution of the hydride reducing reagent may be added slowly while cooling the solution of the phthalonitriles, or it may be good even if the solution of phthalonitriles is added slowly while the solution of the hydride reducing reagent is cooled. Yes. The temperature of the reduction reaction is also influenced by the solvent used, preferably 0 ° C. or more, more preferably 20 ° C. or more, preferably 150 ° C. or less, more preferably 120 ° C. or less. The time of the reduction reaction is preferably 30 minutes or more, more preferably 1 hour or more, still more preferably 2 hours or more, preferably 48 hours or less, more preferably 24 hours or less.
[0094] 目的物であるイソインドール(2)の収率を向上させるために、ヒドリド還元試薬を用 いた還元反応の後に、反応混合物とプロトン酸またはアルカリとを混合することが好ま しい。  In order to improve the yield of the desired product isoindole (2), it is preferable to mix the reaction mixture with a protic acid or an alkali after the reduction reaction using a hydride reducing reagent.
[0095] まずプロトン酸を用いる場合について説明する。プロトン酸には特に限定は無ぐ有 機または無機プロトン酸を使用することができる。本発明において、 1種のみのプロト ン酸を単独で、または 2種以上のプロトン酸を組み合わせて用いることができる。還元 反応後の反応混合物とプロトン酸とは、好ましくは— 30°C〜30°C程度、より好ましく は 10°C〜; 10°C程度の温度で、さらに好ましくは氷浴などでの冷却下(0°C程度)で 混合することが推奨される。  First, the case of using a protonic acid will be described. There is no particular limitation on the protic acid, and organic or inorganic protic acids can be used. In the present invention, only one type of protonic acid can be used alone, or two or more types of protonic acids can be used in combination. The reaction mixture after reduction reaction and the protonic acid are preferably at a temperature of about -30 ° C to 30 ° C, more preferably at a temperature of about 10 ° C; more preferably at a temperature of about 10 ° C, more preferably under cooling in an ice bath or the like. Mixing at about 0 ° C is recommended.
[0096] 無機プロトン酸としては、例えば塩酸、臭化水素酸、ヨウ化水素酸、硝酸、硫酸;ォ ルトリン酸、ピロリン酸等のリン酸;過塩素酸等の過ハロゲン酸;リンモリブデン酸、ケィ モリブデン酸、リンタングステン酸、ケィタングステン酸、リンタンダストモリブデン酸、リ ンバナドモリブデン酸等のへテロポリ酸などが挙げられる。 [0097] 有機プロトン酸としては、例えばベンゼンスルホン酸、 p—トルエンスルホン酸、ナフ タレンスルホン酸等のァリールスルホン酸;メタンスルホン酸、トリフルォロメタンスルホ ン酸、トリクロロメタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、 t—ブチノレ スルホン酸等のアルキルスルホン酸;ギ酸、酢酸、プロピオン酸、クロ口酢酸、ジクロロ 酢酸、トリクロ口酢酸、トリフルォロ酢酸、ペンタフルォロプロピオン酸、 n—酪酸、イソ 酪酸、ビバリン酸、吉草酸、カプロン酸、力プリル酸、力プリン酸、ラウリン酸、ミリスチ ン酸、シクロへキサンカルボン酸等の飽和脂肪族カルボン酸;アクリル酸、メタクリノレ 酸、プロピオール酸、クロトン酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、ォ レイン酸等の不飽和脂肪族カルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタ ル酸等の芳香族カルボン酸などが挙げられる。 As the inorganic protic acid, for example, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid; phosphoric acid such as orthophosphoric acid, pyrophosphoric acid; perhalogenated acid such as perchloric acid; phosphomolybdic acid, Examples thereof include heteropolyacids such as keyl molybdic acid, phosphotungstic acid, calybdic tungstic acid, lintan-dust molybdic acid, and livanadomolybdic acid. Examples of organic protic acids include arylsulfonic acids such as benzenesulfonic acid, p-toluenesulfonic acid and naphthalenesulfonic acid; methanesulfonic acid, trifluoromethanesulfonic acid, trichloromethanesulfonic acid, ethanesulfonic acid Alkylsulfonic acids such as propanesulfonic acid and t-butynosulfonic acid; formic acid, acetic acid, propionic acid, vicinal acetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, trifluoroacetic acid, pentafluoropropionic acid, n-butyric acid, isobutyric acid Saturated aliphatic carboxylic acids such as, vivalic acid, valeric acid, caproic acid, purilic acid, purilic acid, lauric acid, myristic acid, cyclohexanecarboxylic acid, etc .; acrylic acid, methacrylic acid, propiolic acid, crotonic acid, Maleic acid, fumaric acid, citraconic acid, mesaconic acid, oleic acid Unsaturated aliphatic carboxylic acid; benzoic acid, phthalic acid, isophthalic acid, and aromatic carboxylic acids such as terephthalic Le acid.
[0098] 次にアルカリを用いる場合について説明する。還元反応後に反応混合物とアルカリ とを、好ましくは— 30°C〜30°C程度、より好ましくは— 10°C〜; 10°C程度の温度で混 合すること力 S推奨される。アルカリとしては、好ましくはアルカリ金属またはアルカリ土 類金属の水酸化物、炭酸塩、モノカルボン酸塩(酢酸塩など)、ジカルボン酸塩 (シュ ゥ酸塩など);有機ァミンなどが挙げられる。これらの中でも、強塩基であるアルカリ金 属水酸化物(殊に LiOH、 NaOH、 KOH)が好ましい。コストの観点から、 NaOHが より好ましい。また有機ァミンとして、ホウ素などと錯体を形成してヒドリド還元試薬残 基の脱離を促進できるエタノールァミン、メチルァミンがより好ましい。これらアルカリ の 1種を単独で用いてもよぐ 2種以上を併用してもよい。  Next, the case of using an alkali will be described. After the reduction reaction, it is recommended that the reaction mixture and the alkali be mixed at a temperature of about -30 ° C to about 30 ° C, more preferably about -10 ° C to about 10 ° C. As the alkali, preferably, hydroxides of alkali metals or alkaline earth metals, carbonates, monocarboxylates (such as acetates), dicarboxylates (such as sulfates), organic amines and the like can be mentioned. Among these, alkali metal hydroxides (in particular, LiOH, NaOH, KOH) which are strong bases are preferable. From the viewpoint of cost, NaOH is more preferable. Further, as the organic amine, ethanolamine and methylamine which can form a complex with boron and the like to promote the elimination of the hydride reducing reagent residue are more preferable. One of these alkalis may be used alone, or two or more of these alkalis may be used in combination.
[0099] ヒドリド還元試薬による還元反応の後、反応混合物から通常の処理工程により、 目 的物であるイソインドール(2)を精製することが推奨される。例えば過剰のプロトン酸 またはアルカリを用いた場合は、中和工程、水または食塩水などによる洗浄工程、濃 縮工程および精製工程を行うことが推奨される。本発明において精製手段には特に 限定はなぐ該技術分野で通常使用されている手段、例えばシリカゲルカラムクロマト グラフィー、アルミナカラムクロマトグラフィー、昇華精製、再結晶などを使用すること ができる。  After the reduction reaction with a hydride reducing reagent, it is recommended to purify the object isoindole (2) from the reaction mixture by a conventional treatment process. For example, when an excess of protonic acid or alkali is used, it is recommended to carry out a neutralization step, a washing step with water or saline, a concentration step and a purification step. In the present invention, the means for purification is not particularly limited, and means generally used in the technical field such as silica gel column chromatography, alumina column chromatography, sublimation purification, recrystallization and the like can be used.
[0100] 本発明において、フタロニトリル(1)を接触水素化法で還元することによつても、イソ インドール(2)を製造することができる。接触水素化反応に用いる触媒としては、該技 術分野で知られている通常の金属触媒を使用することができる。フタロニトリル(1)に 対して触媒の中心金属が好ましくは 0. 0;!〜 30モノレ%、より好ましくは 0. ;!〜 20モル %、さらに好ましくは;!〜 10モル%となるような量で金属触媒を使用することが推奨さ れる。 In the present invention, isoindole (2) can also be produced by reducing phthalonitrile (1) by catalytic hydrogenation. As the catalyst used for the catalytic hydrogenation reaction, Conventional metal catalysts known in the art can be used. The central metal of the catalyst is preferably such that the central metal of the catalyst is 0.0 to! 30 to 30%, more preferably to 0 to 20 mol%, still more preferably to! 10 mol% relative to the phthalonitrile (1). It is recommended to use metal catalysts in quantities.
[0101] 金属触媒として、ルテニウムやロジウムにホスフィンなどが配位して構成される均一 触媒が挙げられる。但し反応性、反応後の回収および再生処理の容易性を考慮する と、本発明において、不均一触媒を用いることが好ましい。不均一触媒の中でも、表 面積を増大させて触媒活性を向上させるために、金属の微粉末を担体に担持させた 触媒が好ましい。不均一触媒として、例えばニッケル、ラネーニッケル、銅-酸化クロ ム、ルテニウム、パラジウム、ロジウム、白金などの金属またはこれらの酸化物若しくは 水酸化物など (粉末形状のものを含む)を活性炭、アルミナ、珪藻土などの担体に担 持させたものが挙げられる。これらの中でも、活性炭にパラジウムを担持させた触媒 、優れた触媒活性を示すので、より好ましい。  [0101] Examples of the metal catalyst include homogeneous catalysts in which ruthenium, rhodium or the like is coordinated with phosphine or the like. However, in view of reactivity and ease of recovery after reaction and regeneration treatment, it is preferable to use a heterogeneous catalyst in the present invention. Among the heterogeneous catalysts, in order to increase the surface area and improve the catalytic activity, a catalyst having a fine metal powder supported on a carrier is preferable. Examples of heterogeneous catalysts include metals such as nickel, Raney nickel, copper-chromium oxide, ruthenium, palladium, rhodium, platinum or oxides or hydroxides thereof (including those in powder form) such as activated carbon, alumina, diatomaceous earth And those supported on a carrier such as Among these, a catalyst in which palladium is supported on activated carbon is more preferable because it exhibits excellent catalytic activity.
[0102] 不均一触媒を使用する場合、接触水素化反応の前に触媒を、水素雰囲気下にお いてプロトン酸と混合して活性化する工程を、必要に応じて採用しても良い。プロトン 酸を用いなくても目的物のイソインドール(2)は得られる力 収率を向上させるために は、プロトン酸を用いることが推奨される。活性化に用いるプロトン酸としては、上述の プロトン酸を用いること力 Sできる。中でも、トリフルォロ酢酸、塩酸、硝酸、硫酸が好ま しい。プロトン酸の量が、フタロニトリル(1)に対して、多くても、少なくても、不純物が 多く生成し、収率が低下する。よって原料のフタロニトリル(1) 1モルに対し、プロトン( H+)力 好ましくは 0· 6~1. 6モノレ、より好ましくは 0· 8~1. 2モノレ、さらに好ましくは 0. 9〜; ! · 1モル、最も好ましくは 1モルになるようにプロトン酸を使用することが推奨さ れる。活性化の温度は、通常、室温〜 50°C程度であり、活性化の時間は、好ましくは 10分以上、より好ましくは 30分以上、さらに好ましくは 1時間以上であり、好ましくは 5 時間以下、より好ましくは 3時間以下、さらに好ましくは 2時間以下である。  When a heterogeneous catalyst is used, a step of activating the catalyst by mixing it with a protonic acid in a hydrogen atmosphere prior to the catalytic hydrogenation reaction may be employed as necessary. It is recommended to use a protonic acid in order to improve the yield of the target isoindole (2) which can be obtained without using a protonic acid. As the protonic acid used for activation, it is possible to use the above-mentioned protonic acid S. Among these, trifluoroacetic acid, hydrochloric acid, nitric acid and sulfuric acid are preferred. More or less amount of protonic acid relative to phthalonitrile (1) produces many impurities and lowers the yield. Therefore, the proton (H +) power is preferably 0.6 to 1.6 mono-, more preferably 0.8 to 1.2 mono-, more preferably 0.9 to 1 mol of phthalonitrile (1) as a raw material. · It is recommended to use protic acid to be 1 mole, most preferably 1 mole. The activation temperature is usually from room temperature to about 50 ° C., and the activation time is preferably 10 minutes or more, more preferably 30 minutes or more, still more preferably 1 hour or more, preferably 5 hours or less. More preferably, it is 3 hours or less, more preferably 2 hours or less.
[0103] 接触水素化による還元の場合も、通常、溶媒を用いて行われる。溶媒としては特に 限定は無いが、出発原料である上記フタロニトリル(1)を溶解できるものが好ましい。 溶媒として、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類; THF、ジ ォキサン、シクロペンチノレメチノレエーテノレ、ジイソプロピノレエーテノレ、ジェチノレエーテ ノレ等のエーテル類;メタノール、エタノール、プロパノール等のアルコール類;酢酸メ チル、酢酸ェチル、酢酸プロピル、酢酸ブチル等のエステル類;ジメチルホルムアミド 、ジメチルァセトアミド等のアミド類;スルホラン、 3—メチルスルホラン、 2, 4—ジメチ ルスルホラン等のスルホラン類;およびギ酸、酢酸、プロピオン酸、トリフルォロ酢酸等 のカルボン酸類などを挙げることができる。また接触水素化法では、アミド類または酢 酸類と水との混合溶媒も使用できる。溶媒は、単独で、または 2種以上組み合わせて 用いること力 Sできる。溶媒を用いる場合、フタロニトリル(1)の濃度は、好ましくは 0. 0 1〜; 1M程度、より好ましくは 0. 05-0. 5M程度である。 In the case of reduction by catalytic hydrogenation, it is usually carried out using a solvent. The solvent is not particularly limited, but those which can dissolve the above-mentioned phthalonitrile (1) which is a starting material are preferable. As a solvent, for example, aromatic hydrocarbons such as benzene, toluene, xylene, etc .; THF, di- Ethers such as xanthene, cyclopentinolemethinolee tenole, diisopropinolee tenolee, getinoleate tenole; alcohols such as methanol, ethanol, propanol, etc .; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate; Amides such as dimethylformamide and dimethylacetoamide; sulfolanes such as sulfolane, 3-methylsulfolane and 2, 4-dimethyl sulfolane; and carboxylic acids such as formic acid, acetic acid, propionic acid and trifluoroacetic acid . In the catalytic hydrogenation method, mixed solvents of amides or acetic acid and water can also be used. The solvents can be used alone or in combination of two or more. When a solvent is used, the concentration of phthalonitrile (1) is preferably about 0.1 to 1 M, more preferably about 0.05 to 0.5 M.
[0104] 接触水素化の温度は、用いる溶媒などにも影響される力 好ましくは 0°C以上、より 好ましくは 20°C以上であり、好ましくは 150°C以下、より好ましくは 120°C以下である 。還元反応の時間は、好ましくは 30分以上、より好ましくは 1時間以上、さらに好まし くは 2時間以上であり、好ましくは 72時間以下、より好ましくは 48時間以下である。接 触水素化を促進するために、水素を加圧状態で用いることが好ましい。水素圧は、好 ましくは 1. 1気圧以上、より好ましくは 1. 5気圧以上、さらに好ましくは 2気圧以上で ある。但し設備の制約などから水素圧は、好ましくは 5気圧以下、より好ましくは 3気圧 以下である。 The temperature of the catalytic hydrogenation is also influenced by the solvent used, preferably 0 ° C. or more, more preferably 20 ° C. or more, preferably 150 ° C. or less, more preferably 120 ° C. or less It is. The time of the reduction reaction is preferably 30 minutes or more, more preferably 1 hour or more, still more preferably 2 hours or more, preferably 72 hours or less, more preferably 48 hours or less. It is preferred to use hydrogen under pressure to promote catalytic hydrogenation. The hydrogen pressure is preferably 1.1 atmospheres or more, more preferably 1.5 atmospheres or more, and still more preferably 2 atmospheres or more. However, the hydrogen pressure is preferably 5 atm or less, more preferably 3 atm or less, due to the restriction of equipment and the like.
[0105] 反応系に絶えず水素ガスを供給して、接触水素化反応を行うことができる。また一 定圧まで水素ガスを供給した後に、反応系を密閉して接触水素化反応を行い、反応 の進行に伴い系内の圧力が低下してから、再び水素ガスを供給することもできる。水 素ガス供給の前に、反応系を減圧にすることが望ましい。また触媒に多くの水素原子 を吸着させるために、減圧および水素ガスの供給を複数回繰り返して行うことが、好 ましい実施態様である。  Hydrogen gas can be constantly supplied to the reaction system to carry out a catalytic hydrogenation reaction. Alternatively, after hydrogen gas is supplied to a constant pressure, the reaction system is sealed to carry out a catalytic hydrogenation reaction, and after the pressure in the system decreases as the reaction proceeds, hydrogen gas can be supplied again. It is desirable to reduce the pressure of the reaction system before supplying hydrogen gas. In addition, in order to cause a large amount of hydrogen atoms to be adsorbed to the catalyst, it is a preferable embodiment that the pressure reduction and the supply of hydrogen gas are repeated several times.
[0106] 上で説明した本発明の製造方法により、 4, 5, 6, 7—テトラフルオロー 2H—イソィ ンドール以外の、上記式(2)で示される新規イソインドールを製造することができる。 よって本発明は、このような新規イソインドール(2)も提供する。さらに本発明は、イソ インドール(2)から得られる新規の N—置換イソインドール(3) (Xがフッ素原子であり 、且つ m=4であるものを除く)も提供する。本発明の新規イソインドール(2)または N 置換イソインドール(3)はポリイソインドールまたは色素等の原料として用いること 力 Sできる。またイソインドール(2)は、さらにポルフィリンの原料として用いることができ According to the production method of the present invention described above, the novel isoindole represented by the above formula (2) other than 4,5,6,7-tetrafluoro-2H-isoindole can be produced. Thus, the present invention also provides such a novel isoindole (2). Furthermore, the present invention also provides novel N-substituted isoindoles (3) obtained from isoindole (2) (excluding those in which X is a fluorine atom and m = 4). Novel isoindole (2) or N of the present invention The substituted isoindole (3) can be used as a raw material such as polyisoindole or dye. In addition, isoindole (2) can be further used as a raw material of porphyrin
[0107] 上記式(3) (および式(5) )中の R4は、好ましくは C アルキル基、より好ましくは C R 4 in the above formula (3) (and formula (5)) is preferably a C alkyl group, more preferably C
1-10 1- アルキル基(例えばメチル基、ェチル基、 n プロピル基、 n ブチル基、 n ペンチ 1-10 1-alkyl group (for example, methyl group, ethyl group, n propyl group, n butyl group, n pliers
5 Five
ル基など);好ましくは C ァリール基、より好ましくは C ァリール基(例えばフエ二  Group C), preferably C-aryl group, more preferably C-aryl group (eg.
6-20 6-12  6-20 6-12
ル基、トリル基など);好ましくは C アルキルァリール基、より好ましくは C アルキル  Group, tolyl group, etc.); preferably C alkylaryl group, more preferably C alkyl
7-15 7-10 ァリール基(例えばべンジル基など);または好ましくは C ァシル基、より好ましくは  7-15 7-10 aryl group (such as benzyl group); or preferably C-acyl, more preferably
2-10  2-10
C ァシル基(例えばァセチル基、ベンゾィル基、 t ブトキシカルボニル基など)であ C asyl group (eg, acetyl group, benZyl group, t butoxycarbonyl group, etc.)
2-5 2-5
[0108] イソインドール(2)から N 置換イソインドール(3)を得る方法には特に限定は無ぐ ァミンから置換アミンを得るために知られている様々な方法を用いることができる。以 下では、いくつかの例を示す。 There are no particular limitations on the method of obtaining N-substituted isoindole (3) from isoindole (2). Various known methods can be used to obtain a substituted amine from phenylalanine. Below are some examples.
[0109] イソインドール(2)とハロゲン化アルキルまたはハロゲン化アルキルァリール(ノヽロゲ ンがアルキル部分の炭素原子と結合して!/、るもの)とを、塩基の存在下で反応させる ことにより、 R4がアルキル基またはアルキルァリール基である N—置換イソインドール( 3)を製造できる。塩基としては、強塩基 (例えば n ブチルリチウム、水素化アルカリ 金属(例えば NaH、 KH)など)が好ましい。このアルキル化反応は、例えば、通常— 100°C〜; 100°C程度、好ましくは— 80°C〜70°C程度で行われる。ハロゲン化アルキ ルとしては、炭素数が 1〜; 10程度(好ましくは 1〜5程度)のものが好ましぐより好まし くは第 1級ハロゲン化アルキル、さらに好ましくは第 1級ヨウ化アルキル (例えばヨウ化 メチノレ、ヨウ化工チノレ、ヨウ化 n プロピノレ、ヨウ化 n ブチノレ、ヨウ化 n ペン チルなど)である。ハロゲン化アルキルァリールとしては、炭素数が 7〜; 15程度(好ま しくは 7〜; 10程度)のものが好ましく、より好ましくはヨウ化ハロゲン化アルキルァリー ノレ(例えばヨウ化べンジルなど)である。 [0109] By reacting isoindole (2) with a halogenated alkyl or halogenated alkyl aryl (wherein a carbon atom is bonded to a carbon atom of an alkyl moiety! /,) In the presence of a base N-substituted isoindole (3) wherein R 4 is an alkyl group or an alkylaryl group. As the base, a strong base (eg, n-butyllithium, alkali metal hydride (eg, NaH, KH) and the like) is preferable. This alkylation reaction is carried out, for example, usually at about -100 ° C to about 100 ° C, preferably at about -80 ° C to 70 ° C. As the halogenated alkyl, one having 1 to about 10 carbon atoms (preferably about 1 to 5 carbon atoms) is preferable, primary alkyl halide is more preferable, and primary alkyl iodide is more preferable. (For example, methyl iodide, methyl iodide, methyl n propione, methyl n butyl, methyl n pentayl and the like). The halogenated alkylaryl is preferably one having about 7 to 15 (preferably 7 to 10) carbon atoms, and more preferably a halogenated iodohalide (such as benzyl iodide). .
[0110] R4がァリール基である N—置換イソインドール(3)は、例えば有名な人名反応であ る Buchwald— Hartwigクロスカップリング反応により製造できる。具体的には Pd触 媒および強塩基の存在下で、イソインドール(2)とハロゲン化ァリールまたはァリール トリフラートとを反応させることにより、 R4がァリール基である N 置換イソインドール(3 )を製造できる。 Pd触媒としては、一般的に、ホスフィン配位子(例えば 2, 2' ビス( ジフエニルホスフイノ)一 1 , 1—ビナフチル、 2, 2,一ビス(ジフエニルホスフイノ)ビフエ ニルなど)またはジベンジリデンアセトン配位子などを含むものが使用される。強塩基 としては、一般的に、リチウムビス(トリメチルシリル)アミド、 NaO-t-Bu, K COな [0110] The N-substituted isoindole (3) in which R 4 is a aryl group can be produced, for example, by the well-known personal reaction Buchwald-Hartwig cross coupling reaction. Specifically, isoindole (2) and halogenated aryl or aryl in the presence of Pd catalyst and a strong base By reacting with triflate, N-substituted isoindole (3) in which R 4 is a aryl group can be produced. As the Pd catalyst, generally, phosphine ligands (for example, 2,2′-bis (diphenylphosphino) one-1,1-binaphthyl, 2,2,1-bis (diphenylphosphino) biphenyl etc.) or Those containing dibenzylideneacetone ligands and the like are used. As a strong base, in general, lithium bis (trimethylsilyl) amide, NaO-t-Bu, K 2 CO, etc.
2 3 どが用いられる。イソインドール(2)との反応相手として、炭素数が 6〜20程度(好ま しくは 6〜 12程度)のハロゲン化ァリールが好ましく、ヨウ化または臭化ァリール (例え ばョードベンゼン、 4—ョードトルエンなど)がより好ましい。この反応は室温程度の低 い温度で進行することもある力 その反応温度は、一般的に 50〜150°C程度である  2 3 etc. are used. As a reaction partner with isoindole (2), halogenated aryl having about 6 to 20 (preferably about 6 to 12) carbon atoms is preferable, and iodide or aryl bromide (eg, benzene benzene, 4-toluene toluene, etc.) Is more preferred. The reaction may proceed at a temperature as low as room temperature. The reaction temperature is generally about 50 to 150 ° C.
[0111] R4がァシル基である N—置換イソインドール(3)は、炭素数が 2〜; 10程度(好ましく は 2〜5程度)のハロゲン化ァシル、酸無水物、カルボン酸エステル、カルボン酸アミ ド、カルボン酸を用いるァシル化反応によって製造できる。但し反応性の観点から、 ノ、ロゲン化ァシル (好ましくは塩化ァシル)または酸無水物を用いることが推奨される 。具体的には塩基性水溶液 (例えば NaOH水溶液)または塩基性の有機溶液 (例え ばピリジン溶液)中で、イソインドール(2)とハロゲン化ァシルまたは酸無水物とを反 応させることにより(Schotten— Baumann反応)、 R4がァシル基である N 置換イソ インドール(3)を製造できる。イソインドール(2)の反応相手としては、例えば無水酢 酸、塩化ァセチル、塩化ベンゾィルなどが挙げられる。 The N-substituted isoindole (3) in which R 4 is an acyl group is one having a carbon number of 2 to 10 (preferably about 2 to 5) halogenated acid, acid anhydride, carboxylic acid ester, carbonic acid. It can be produced by asylation reaction using acid amide and carboxylic acid. However, from the viewpoint of reactivity, it is recommended to use oxo-, fluoro-halogenated (preferably chloro-acyl) or acid anhydride. Specifically, by reacting isoindole (2) with a halogenated halide or an acid anhydride in a basic aqueous solution (for example, aqueous NaOH solution) or a basic organic solution (for example, a pyridine solution) (Schotten— (Baumann reaction), N-substituted isoindole (3) in which R 4 is an asyl group can be produced. Examples of the reaction partner of isoindole (2) include acetic anhydride, acetyl chloride, benzyl chloride and the like.
[0112] また R4のァシル基の特殊な例として、 t—ブトキシカルボニル基((CH ) CO— C ( = Further, as a specific example of the asyl group of R 4 , t — butoxycarbonyl group ((CH 2) CO— C (=
3  3
o)一)を挙げることができる。 t—ブトキシカルボニル基は、ァミノ基の保護基としてよ く知られており、例えばピリジン、トリェチルァミン、 n— BuUまたは NaHなどの塩基の 存在下で、ジー tーブチルジカルボネートとイソインドール(2)とを反応させることで導 人すること力 Sでさる。  o) One) can be mentioned. The t-butoxycarbonyl group is well known as a protecting group for the amino group, for example di-t-butyl dicarbonate and isoindole (2) in the presence of a base such as pyridine, triethylamine, n-BuU or NaH. The ability to induce by reacting with the power S.
[0113] 本発明のイソインドール(2)または N—置換イソインドール(3) (以下「イソインドール  The isoindole (2) or N-substituted isoindole (3) of the present invention (hereinafter “isoindole”
(2)または(3)」と略称すること力 Sある)を重合することで得られるポリイソインドール (4 )または(5)、特にポリ(含フッ素イソインドール)は、導電性材料として、より詳しくは有 機薄膜トランジスタや有機太陽電池等の分野における電極材料、表示材料、電磁波 遮蔽材料等として有用である。ポリマー化は、電解酸化重合や化学的酸化重合等の 公知の方法で行うことができる。ポリイソインドール (4)または(5)には、必要に応じて ド、ープしてあよレヽ。 Polyisoindole (4) or (5) obtained by polymerizing (2) or (3) “abbreviated by the force S)), particularly poly (fluorinated isoindole), is more preferably used as a conductive material. Specifically, electrode materials, display materials, electromagnetic waves in the fields of organic thin film transistors and organic solar cells It is useful as a shielding material etc. The polymerization can be carried out by known methods such as electrolytic oxidation polymerization and chemical oxidation polymerization. For polyisoindole (4) or (5), if necessary, add a layer.
[0114] 重合法として、まず化学的酸化重合から説明する。化学的酸化重合で用いられる 酸化剤としては、例えば酸素、過酸化水素;テトラクロロー 1 , 2—べンゾキノン、テトラ クロロー 1 , 4一べンゾキノン、 2, 3—ジクロロー 5, 6—ジシァノー 1 , 4一べンゾキノン などのキノン類;ヨウ素、臭素、塩素などのハロゲン;塩化鉄 (111)、塩化銅 (II)などの 金属塩化物;二酸化マンガン、二酸化鉛、四酸化オスミウムなどの金属酸化物;硝酸 、塩素酸などのォキソ酸;塩素酸カリウム、次亜塩素酸ナトリウム、臭素酸ナトリウム、 臭素酸カリウム、過マンガン酸カリウム、ニクロム酸カリウム、過硫酸ナトリウム、過硫酸 カリウム、過硫酸アンモニゥムなどのォキソ酸塩が挙げられる。これら酸化剤の中でも 、酸素、過酸化水素、キノン類、ハロゲン、金属塩化物が好ましぐ酸素、金属塩化物 力はり好ましい。酸化剤は、 1種のみを用いても、 2種以上を併用してもよい。酸化重 合では、必要に応じて酸触媒 (例えば塩酸、硝酸、硫酸などの無機酸)または金属触 媒 (例えば鉛、マンガン、銀などの酸化物、塩化銅 (I)、塩化銅 (I)—塩化アルミユウ ムなど)を用いてもよい。殊に酸素を酸化剤として用いる場合、触媒を使用することが 推奨される。酸素を除く酸化剤の量は、イソインドール類 1モルに対して、好ましくは 1 モル以上はり好ましくは 2モル以上)であり、好ましくは 6モル以下はり好ましくは 5モ ル以下)である。  First, chemical oxidative polymerization will be described as the polymerization method. Examples of the oxidizing agent used in the chemical oxidative polymerization include oxygen, hydrogen peroxide; tetrachloro-1,2-benzoquinone, tetrachloro-1,4-benzoquinone, 2,3-dichloro-5,6-dicyano-1,4 Quinones such as benzoquinone; halogens such as iodine, bromine and chlorine; metal chlorides such as iron chloride (111) and copper (II) chloride; metal oxides such as manganese dioxide, lead dioxide and osmium tetraoxide; nitric acid, Oxo acids such as chloric acid; potassium chlorate, sodium hypochlorite, sodium bromate, potassium bromate, potassium permanganate, potassium dichromate, sodium persulfate, potassium persulfate, ammonium persulfate, etc. Can be mentioned. Among these oxidizing agents, oxygen, hydrogen peroxide, quinones, halogens, metal chlorides are preferred, and oxygen and metal chlorides are preferred. The oxidizing agent may be used alone or in combination of two or more. In the oxidation polymerization, if necessary, an acid catalyst (for example, an inorganic acid such as hydrochloric acid, nitric acid or sulfuric acid) or a metal catalyst (for example, an oxide such as lead, manganese or silver), copper (I) chloride, copper chloride (I) -Aluminum chloride may be used. It is recommended to use a catalyst, especially when using oxygen as an oxidant. The amount of the oxidizing agent excluding oxygen is preferably 1 mol or more, preferably 2 mol or more), preferably 6 mol or less, preferably 5 mol or less, per 1 mol of isoindoles.
[0115] 化学的酸化重合は、通常、溶媒中で行われる。化学的酸化重合のための溶媒とし ては、例えばクロ口ホルム、塩化メチレン、四塩化炭素、ジクロロェタン、テトラクロロェ タン、クロ口ベンゼン等の塩素系炭化水素類;ニトロメタン、ニトロェタン、ニトロべンゼ ン等のニトロ系炭化水素類; N—メチルピロリドン等のアミド類;および二硫化炭素な どを挙げること力 Sできる。溶媒は、単独で使用してもよぐ 2種以上を併用してもよい。 溶媒を用いる場合のイソインドール(2)または(3)の濃度は、好ましくは 0. 01〜; 1M 程度、より好ましくは 0. 05-0. 5M程度である。化学的酸化重合は、使用する溶媒 に応じて、一般に— 80°C〜; 100°C程度(好ましくは— 20°C〜60°C程度)の範囲の温 度で、一般に 0. ;!〜 100時間程度(好ましくは 0. 5〜72時間程度)行われる。 [0116] 次に電解酸化重合について説明する。本発明では、反応装置について限定は無く 、電解酸化重合によるポリピロールやポリチォフェン等の製造で用いられる反応装置 を用いること力 Sできる。電解質としては、例えばテトラエチルアンモニゥムブロミド、テト ラエチルアンモニゥムクロリド、テトラエチルアンモニゥムフルオリド、テトラー n—ブチ ルアンモニゥムブロミド、テトラー n—ブチルアンモニゥムクロリド、テトラー n—ブチル アンモニゥムフルオリド、テトラエチルアンモニゥムテトラフルォロボレート、テトラー n ーブチルアンモニゥムへキサフルォロホスフェート、テトラー n—ブチルアンモニゥム へキサフルォロアンチモン等のアンモニム塩;テトラフェニルホスホニゥムブロミド、テ トラフェニルホスホニゥムクロリド等のホスホニゥム塩;リチウムパーク口レート、リチウム へキサフルォロボレート等のリチウム塩;ベンゼンスルホン酸カリウム、トルエンスルホ ン酸ナトリウム等のスルホン酸塩;硫酸、塩酸、トリフルォロ酢酸等の酸などが挙げら れる。これら電解質は、単独で用いてもよぐ 2種以上を併用してもよい。これら電解 質の陰イオンは、電解酸化重合の際にドーパントとしてポリマー中に取り込まれる。 Chemical oxidative polymerization is usually carried out in a solvent. As a solvent for chemical oxidation polymerization, for example, chlorohydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, dichloroethane, tetrachloroethane, and benzene, etc .; nitromethane, nitroetane, nitrobenzene, etc. Examples include nitro hydrocarbons, amides such as N-methyl pyrrolidone, and carbon disulfide. The solvents may be used alone or in combination of two or more. When a solvent is used, the concentration of isoindole (2) or (3) is preferably about 0.01 to 1M, more preferably about 0.05 to 0.5M. Chemical oxidation polymerization is generally carried out at a temperature in the range of about −80 ° C. to about 100 ° C. (preferably about −20 ° C. to 60 ° C.), generally 0 .; It is carried out for about 100 hours (preferably about 0.5 to 72 hours). Next, electrolytic oxidation polymerization will be described. In the present invention, there is no limitation on the reaction apparatus, and it is possible to use the reaction apparatus used in the production of polypyrrole, polythiophen, etc. by electrolytic oxidation polymerization. Examples of the electrolyte include tetraethyl ammonium bromide, tetraethyl ammonium chloride, tetra ethyl ammonium fluoride, tetra n-butyl ammonium ammonium bromide, tetra n-butyl ammonium chloride, tetra n-butyl ammonium ammonium and the like. Ammonium salts such as um fluoride, tetraethylammonium tetrafluoroborate, tetra-n-butyl ammonium hexafluorophosphate, tetra-n-butyl ammonium hexahydrate, and the like; tetraphenylphosphonium; Phosphonium salts such as nimb bromide and tetraphenylphosphonium chloride; lithium salts such as lithium persulfate and lithium hexafluoroborate; sulfonates such as potassium benzenesulfonate and sodium toluenesulfonate; sulfuric acid , Examples include acids such as hydrochloric acid and trifluoroacetic acid. These electrolytes may be used alone or in combination of two or more. The anions of these electrolytes are incorporated into the polymer as a dopant during electrolytic oxidation polymerization.
[0117] 電解酸化重合の溶媒としては、例えば塩化メチレン等の塩素系炭化水素類;ァセト 二トリル、ベンゾニトリル、プロピオ二トリル等の二トリル類;ジォキサン、テトラヒドロフラ ン、プロピレンカーボネート等の環状エーテル類;スルホラン、 3—メチルスルホラン、 2, 4—ジメチルスルホラン等のスルホラン類;ジメチルホルムアミド、ジメチルァセトァ ミド等のアミド類などが挙げられる。溶媒は、単独で使用してもよぐ 2種以上を併用し てもよい。溶媒を用いる場合のイソインドール(2)または(3)の濃度は、好ましくは 0. 01〜; 1M程度、より好ましくは 0. 05-0. 5M程度である。電解酸化重合は、使用す る溶媒に応じて、一般に— 80°C〜; 100°C程度(好ましくは— 20°C〜60°C程度)の範 囲の温度で、一般に 0.;!〜 100時間程度(好ましくは 0. 5〜72時間程度)行われる 。電解酸化重合の際の電流密度は、一般に 1. 0〜5. OmA/cm2程度である。 As a solvent for electrolytic oxidation polymerization, for example, chlorinated hydrocarbons such as methylene chloride; acetates such as acetonitrile, nitriles such as benzonitrile and propiodiitol; cyclic ethers such as cyclohexane, tetrahydrofuran and propylene carbonate Sulfolanes such as sulfolane, 3-methylsulfolane and 2, 4-dimethylsulfolane; and amides such as dimethylformamide and dimethylacetamide. The solvents may be used alone or in combination of two or more. The concentration of isoindole (2) or (3) when a solvent is used is preferably about 0.01 to 1M, more preferably about 0.05 to 0.5M. Electrolytic oxidation polymerization is generally carried out at a temperature in the range of about -80 ° C. to about 100 ° C. (preferably about -20 ° C. to 60 ° C.), generally 0.;! To-depending on the solvent used. It is performed for about 100 hours (preferably about 0.5 to 72 hours). The current density at the time of electrolytic oxidation polymerization is generally about 1. 0 to 5. OmA / cm 2 .
[0118] 上記のような酸化重合により、イソインドール(2)または(3)を重合してポリマーを製 造できる。本発明の方法では、イソインドール(2)または(3)の 1種のみを用いてホモ ポリマーを形成するだけでなぐこれらの 2種以上を併用してコポリマーを形成するこ ともできる。またイソインドール(2)および/または(3)と、それ以外のモノマー(例え ばピロール、チォフェン)とを共重合してコポリマーを形成することもできる。よって本 発明のポリイソインドール(4)または(5)は、ホモポリマーおよびコポリマーの両方を 包含する。ピロール等の他のモノマーを用いてコポリマーを形成する場合、使用モノ マー中のイソインドール(2)および/または(3)の合計含有量(即ちコポリマー中の 上記式 (4)および/または(5)の合計含有量)は、好ましくは 10質量%以上である。 By oxidative polymerization as described above, a polymer can be produced by polymerizing isoindole (2) or (3). In the method of the present invention, it is possible to form a copolymer by combining two or more of them by using only one of isoindole (2) or (3) to form a homopolymer. It is also possible to copolymerize isoindole (2) and / or (3) with other monomers (eg, pyrrole, thiophen) to form a copolymer. So the book The inventive polyisoindoles (4) or (5) encompass both homopolymers and copolymers. When other monomers such as pyrrole are used to form a copolymer, the total content of isoindole (2) and / or (3) in the used monomer (ie, the above formula (4) and / or (5) in the copolymer The total content of) is preferably 10% by mass or more.
[0119] 本発明のポリイソインドール (4)または(5)の重量平均分子量 (スチレン換算での G PC測定によるィ直)は、通常、 1 , 000〜50万程度、好ましくは 3, 000〜30万程度、よ り好ましくは 5, 000〜; 10万程度である。  [0119] The weight average molecular weight (in straight line according to GPC measurement in terms of styrene) of the polyisoindole (4) or (5) of the present invention is usually about 1,000 to 500,000, preferably 30,000 to 300,000. It is about 300,000, more preferably about 5,000 to about 100,000.
[0120] 次に π共役環状化合物の製造方法に関する本発明を説明する。以下では、 兀共 役環状化合物(7)の中でも、代表的なポルフィリン(7a)の製造方法を中心に説明す る。本発明の製造方法は、イソインドール(2)から、一旦、中間体(6) (イソインドール の 1位置換体)を形成し、それから 71共役環状化合物(7) (特にポルフィリン(7a) )を 製造することを特徴とする。これに対し、ベンゼン環で修飾されていない通常のポル フイリンをピロールから合成する場合、(I)酸の存在下でピロールとホルムアルデヒドと を反応させて、一段階でポルフィリンを製造する方法、または(II)ピロールから、一旦 、中間体として 2位置換体(例えば 2—ヒドロキシメチルピロールまたは 2—ジメチルァ ミノメチルビロール)を形成し、この 2位置換体を環化することによる、多段階でボルフ イリンを製造する方法などが知られている。 Next, the present invention will be described with respect to a method for producing a π- conjugated cyclic compound. In the following, among the co-functional cyclic compounds (7), the method for producing a representative porphyrin (7a) will be mainly described. According to the production method of the present invention, intermediate (6) (1-position substitution of isoindole) is once formed from isoindole (2), and 71 conjugated cyclic compound (7) (especially porphyrin (7a)) is produced therefrom. It is characterized by On the other hand, when normal porphyrins not modified with benzene ring are synthesized from pyrrole, pyrrole is reacted with formaldehyde in the presence of acid (I) to produce porphyrin in one step, or II) From pyrrole, once form a 2-substituted form (for example, 2-hydroxymethylpyrrole or 2-dimethylaminomethylbirole) as an intermediate, and cyclize this 2-position-substituted form to form porphyrin in multiple steps Methods of manufacturing and the like are known.
[0121] しかし本発明者らが検討した結果、ピロールと同様に一段階反応でイソインドール を環化(特にポルフィリン化)しょうとしても、 兀共役環状化合物(特にテトラべンゾポ ルフィリン)が充分に得られないことを見出した。テトラベンゾボルフィリンが充分に得 られない理由として、ピロールと異なりイソインドールは、重合しやすい 1H—イソイン ドール構造をとり、一段階反応では、環化反応だけでなく重合反応も生ずるためであ ると推察される。  However, as a result of investigations by the present inventors, even when isoindole is cyclized (especially, porphyrinated) in a one-step reaction like pyrrole, a 兀 conjugated cyclic compound (especially, tetrabenzopolophylline) is sufficiently obtained. I found it impossible. The reason why tetrabenzoporphyrin is not obtained sufficiently is that, unlike pyrrole, isoindole has a 1H-isoindole structure that is easy to polymerize, and in a one-step reaction, not only a cyclization reaction but also a polymerization reaction occurs. It is guessed.
[0122] [化 20]  [Formula 20]
2H
Figure imgf000031_0001
ンド一ル
2H
Figure imgf000031_0001
The
[0123] そこで本発明者らがさらに検討を続けた結果、含ハロゲンイソインドールから一段階 反応で直接、 兀共役環状化合物を製造するのではなぐ一旦、中間体としてイソイン ドールの 1位置換体 (ヒドロキシメチル体またはアミノメチル体)を形成する多段階反 応により、 π共役環状化合物(特に含ハロゲンテトラベンゾボルフィリン)を良好な選 択率および収率で製造できることを見出した。中間体を経ることで選択率および収率 が向上する理由としては、イソインドールから直接、 π共役環状化合物(特にテトラべ ンゾポルフィリン)を製造しょうとすると、イソインドール環が活性化されて、ボルフイリ ン以外の重合物が形成されるが、中間体では、イソインドール環ではなく 1位置換基 が活性化されて、スムーズに π共役環状化合物が形成されることが考えられる。なお 本発明は、このような推定メカニズムに限定されない。 Therefore, as a result of the present inventors continuing investigation further, one step from halogen-containing isoindole Rather than directly producing a 兀 conjugated cyclic compound by a reaction, the multi-step reaction which forms a 1-substituted form of isoindole (hydroxymethyl form or an aminomethyl form) as an intermediate, It has been found that halogen tetrabenzoporphyrin can be produced with good selectivity and yield. The reason why the selectivity and yield are improved by passing through the intermediate is that, when it is attempted to produce a π-conjugated cyclic compound (especially tetrabenzoporphyrin) directly from isoindole, the isoindole ring is activated, Although polymers other than porphyrin are formed, in the intermediate, it is considered that the 1-position substituent, not the isoindole ring, is activated to smoothly form a π-conjugated cyclic compound. The present invention is not limited to such an estimation mechanism.
[0124] よって本発明の π共役環状化合物(特に含ハロゲンテトラべンゾボルフイリン)の製 造方法は、中間体として含ハロゲンイソインドールの 1位置換体を一旦形成することを 特徴とする。 Therefore, the method for producing a π-conjugated cyclic compound (in particular, halogen-containing tetrabenzoborophyrin) of the present invention is characterized in that the 1-position substitution product of halogen-containing isoindole is once formed as an intermediate.
[0125] 製造する π共役環状化合物として、ポルフィリン(7a);下記式(7b)で示されるコロ ール(上記式(7)中、 j = 1、 k= 0);下記式(7c)で示されるサフィリン(上記式(7)中、 j = 2、 k = 0);および下記式(7d)で示されるペンタフイリン(上記式(7)中、 j = 2、 k= 1)が好ましぐポルフィリン(7a)がより好ましい。以下では下記式(7b)〜(7d)で示さ れる π共役環状化合物を、それぞれ、「コロール(7b)」、「サフィリン(7c)」および「ぺ ンタフイリン(7d)」と略称する。  As the π-conjugated cyclic compound to be produced, porphyrin (7a); a roller represented by the following formula (7b) (in the above formula (7), j = 1, k = 0); Saphilin shown (in the above formula (7), j = 2, k = 0); and pentaphilin shown in the following formula (7d) (in the above formula (7), j = 2, k = 1) are preferred. The porphyrin (7a) is more preferred. Hereinafter, π-conjugated cyclic compounds represented by the following formulas (7b) to (7d) will be abbreviated as “corrole (7b)”, “saphyrin (7c)” and “pentaphyrin (7d)”, respectively.
[0126] [化 21]  [Formula 21]
Figure imgf000032_0001
Figure imgf000032_0001
コ'口一ル(7b) サフィリン {7c) ペン々フィリ:ン {7cn 本発明は、含ハロゲンイソインドールの 1位置換体自体も提供する。これら 1位置換 体は、上記のように兀共役環状化合物(特に含ハロゲンテトラベンゾボルフィリン)の 製造に有用であるという利点を有するだけでなぐ無置換の含ハロゲンイソインドール よりも安定であるという利点を有する。さらにこれら 1位置換体は、 π共役環状化合物 以外の化合物、例えばポリイソインドレニンビニレンのような重合体の製造にも利用で きる。本発明の含ハロゲンテトラベンゾボルフィリンの製造方法でも、副生成物として 、微量の重合体、または他の環状化合物が形成されている。 (7b) Saphyrin {7c) Penylphilin {7cn} The present invention also provides the 1-substituted form of halogen-containing isoindole itself. These 1-substituted compounds have the advantage of being useful for the preparation of な -conjugated cyclic compounds (especially halogen-containing tetrabenzoporphyrins) as described above, and are substituted by unsubstituted halogen-containing isoindoles. It has the advantage of being more stable. Furthermore, these 1-substituted compounds can also be used for the production of compounds other than π-conjugated cyclic compounds, for example, polymers such as polyisoindolenine vinylene. Also in the method for producing halogen-containing tetrabenzoporphyrin of the present invention, a trace amount of polymer or other cyclic compound is formed as a by-product.
[0128] 本発明の π共役環状化合物(7)の製造方法で用いるイソインドール(2)は、上述の ように入手または製造することができる。  The isoindole (2) used in the method for producing the π-conjugated cyclic compound (7) of the present invention can be obtained or produced as described above.
[0129] イソインドール(2)の中でも、安定性などの観点から、上記式(2a)で表されるものが 好ましく、 4, 5, 6, 7 テトラフルォロイソ一 2H インドールまたは 4, 5, 6, 7 テトラ クロ口一 2H イソインドールがより好ましぐ 4, 5, 6, 7 テトラフルォ口一 2H イソ インドールがさらに好ましい。  Among isoindoles (2), from the viewpoint of stability etc., those represented by the above formula (2a) are preferable, and 4,5,6,7 tetrafluoroiso- 1 2H indole or 4,5 Further preferred is 4,5,6,7 tetrafluorinated 1H isoindole, which is more preferred.
[0130] イソインドール(2)から、ヒドロキシメチル化一 2H—イソインドール(6c)またはァミノ メチル化 2H イソインドール(6d)を製造する方法には特に限定は無ぐ有機合成 化学の分野で知られているあらゆる方法を使用することができる。し力も反応の容易 性などの観点から、ヒドロキシメチル化— 2H イソインドール(6c)は、 Vilsmeier反 応でホルミル化した後に還元することにより、アミノメチル化ー 2H イソインドール(6 d)は、 Mannich反応により製造することが好まし!/、。  There is no particular limitation on the method for producing hydroxymethylated 2H-isoindole (6c) or aminomethylated 2H isoindole (6d) from isoindole (2) and known in the field of organic synthesis chemistry. Can be used in any way. In view of the ease of reaction and the like, hydroxymethylated-2H isoindole (6c) is formylated by Vilsmeier reaction and then reduced to give aminomethylated-2H isoindole (6 d) as Mannich. Preferred to manufacture by reaction! /.
[0131] まずヒドロキシメチル化 2H—イソインドール(6c)の好ましい製造方法を説明する 。ハロゲン化ホスホリル POX5 (式中、 X5は、 F、 Cほたは Brを表す。)の存在下で、ィ First, a preferred method for producing hydroxymethylated 2H-isoindole (6c) will be described. In the presence of a halogenated phosphoryl POX 5 (wherein X 5 represents F, C and C represents Br),
3  3
ソインドール(2)とジアルキルホルムアミド HCONR7R8 (式中、 R7および R8は、それぞ れ独立に C アルキル基を表す)とを反応させる Vilsmeier反応では、反応条件の違 In Vilsmeier reaction in which soindole (2) is reacted with dialkylformamide HCONR 7 R 8 (wherein R 7 and R 8 each independently represent a C alkyl group), the reaction conditions are different.
1-4  1-4
いにより、詳しくは基質の反応性または反応温度の違いにより、第 1の中間体である ホルミル化 2H—イソインドール(6b)、または第 2の中間体であるアミノメチレン化 — 1H—イソインドール(6a)が形成される。例えばイソインドール(2)として 4, 5, 6, 7 テトラフルォロ 2H—イソインドールを用レ、た場合、 Vilsmeier反応における加水 分解反応を還流下で行うと第 1の中間体(6b)が得られ、反応を室温下で行うと第 2の 中間体 ½a)が得られる。なお第 2の中間体(6a)が得られた場合、これを加水分解す ることにより、容易に第 1の中間体(6b)に転化することができる。  In particular, the first intermediate formylated 2H-isoindole (6b) or the second intermediate aminomethylenated 1H-isoindole (specifically, depending on the reactivity of the substrate or the difference in reaction temperature). 6a) is formed. For example, when using 4, 5, 6, 7 tetrafluoro-2H-isoindole as isoindole (2), the hydrolysis reaction in Vilsmeier reaction is carried out under reflux to obtain a first intermediate (6b), The reaction is carried out at room temperature to obtain the second intermediate (a). When the second intermediate (6a) is obtained, it can be easily converted to the first intermediate (6b) by hydrolysis.
[0132] Vilsmeier反応に用いるハロゲン化ホスホリルとして、例えばフッ化ホスホリル、塩化 ホスホリルまたは臭化ホスホリルが挙げられる力 S、これらの中でも反応性の観点から、 塩化ホスホリルが好ましい。またハロゲン化ホスホリルの代わりに、またはハロゲン化 ホスホリルと共に、 p—トルエンスルホユルク口リド、メタンスルホユルク口リド、トリフルォ ロメタンスルホユルク口リド、 2, 2, 2—トリフルォロェタンスルホユルクロリド等のスルホ ユルクロリド類、トリフルォロメタンスルホン酸無水物、メタンスルホン酸無水物、スルホ ン酸無水物等のスルホン酸無水物類、ホスゲン、チォホスゲン、ォキサリルクロリドな ども使用できる。ジァノレキノレホノレムアミドとして、例えばジメチルホルムアミド(DMF)、 ジェチルホルムアミド、ジイソプロピルホルムアミドおよびジブチルホルムアミドなどが 挙げられる力 これらの中でも DMF (R7 = R8 = CH )が好ましい。中間体(6a)またはAs the phosphoryl halide used for Vilsmeier reaction, for example, phosphoryl fluoride, chloride Among them, phosphoryl chloride is preferred from the viewpoint of the reactivity S, which includes phosphoryl or phosphoryl bromide. Also, instead of phosphoryl halide, or together with phosphoryl halide, p-toluenesulfoxide, methanesulfoxide, trifluoromethanesulfoxide, trifluoromethanesulfoxide, 2, 2, 2-trifluoroethanesulfoyl chloride, etc. Sulfonic acid anhydrides such as sulfonyl chloride, trifluoromethanesulfonic acid anhydride, methanesulfonic acid anhydride, sulfonic acid anhydride, etc., phosgene, thiophosgene, oxalyl chloride, etc. can be used. As the dinolequinolefonolemamide, for example, dimethylformamide (DMF), jetylformamide, diisopropylformamide, dibutylformamide and the like. Among these, DMF (R 7 = R 8 = CH 2) is preferable. Intermediate (6a) or
(6b)への転化率を高めるため、ジアルキルホルムアミドおよびハロゲン化ホスホリル は、イソインドール(2)に対して当量以上で用いることが好ましい。具体的にはジァノレ キルホルムアミドおよびハロゲン化ホスホリル量は、イソインドール(2) 1モルに対して それぞれ、好ましくは 1モル以上、より好ましくは 1 · 1モル以上、さらに好ましくは 1 · 3 モル以上である。し力、しジアルキルホルムアミド等の量があまりに過剰であると、原料 および精製コストが増大する。そこでジアルキルホルムアミドおよびノヽロゲン化ホスホ リル量は、イソインドール(2) 1モルに対してそれぞれ、好ましくは 5モル以下、より好 ましくは 3モル以下、さらに好ましくは 2モル以下である。 In order to increase the conversion to (6b), it is preferable to use dialkylformamide and phosphoryl halide in an equivalent or more amount with respect to isoindole (2). Specifically, the amount of diaminol formamide and the amount of phosphoryl halide are each preferably 1 mol or more, more preferably 1.1 mol or more, and still more preferably 1.3 mol or more per 1 mol of isoindole (2). is there. If too much of the amount of dialkylformamide, etc. is used, the cost of raw materials and purification will increase. Therefore, the amount of the dialkylformamide and the non-phosphorylated phosphoryl is preferably 5 mol or less, more preferably 3 mol or less, still more preferably 2 mol or less, with respect to 1 mol of isoindole (2).
[0133] 中間体(6a)または(6b)を製造するための Vilsmeier反応は、通常、溶液中で行わ れる。出発物質の 1つであるジアルキルホルムアミド、特に DMFは、溶媒の代わりとし て用いることができる。その他の溶媒として、例えばクロ口ホルム、塩化メチレン等の 塩素系炭化水素類;クロ口ベンゼン等のハロゲン化ベンゼン類;およびトルエン、キシ レン等のアルキルベンゼン類を用いることができる。イソインドール(2)の溶液濃度は 、好ましく (ま 0. 0;!〜 2M程度、より好ましく (ま 0. 05〜; 1M程度である。  [0133] The Vilsmeier reaction for producing intermediates (6a) or (6b) is usually carried out in solution. One of the starting materials, dialkylformamide, in particular DMF, can be used as a solvent substitute. As other solvents, for example, chlorohydrocarbons such as chloroform, methylene chloride and the like; halogenated benzenes such as benzene and the like; and alkylbenzenes such as toluene and xylene can be used. The solution concentration of isoindole (2) is preferably (about 0. 0 !! to about 2 M, and more preferably (0 to 0.5 to 1 M).
[0134] イソインドール(2)、ハロゲン化ホスホリル、およびジアルキルホルムアミドを混合し て反応系中で Vilsmeier試薬( [R7R8N = CHX5](+)X5( を形成させてもよ!/、し、先に ハロゲン化ホスホリルとジアルキルホルムアミドとを混合して、予め Vilsmeier試薬を 形成させてもよい。予め Vilsmeier試薬を形成する場合、 Vilsmeier試薬中にイソィ ンドール(2)を添加しても良いし、逆にイソインドール(2)に Vilsmeier試薬を添加し ても良い。それぞれの添加'混合工程では発熱を抑制するために、必要に応じて冷 却すればよい。 Vilsmeier反応の温度は、用いる溶媒などにも影響される力 通常 0 °C以上、好ましくは 20°C以上であり、好ましくは 140°C以下、より好ましくは 120°C以 下である。 Vilsmeier反応の時間は、好ましくは 5分以上、より好ましくは 10分以上、 より好ましくは 30分以上であり、好ましくは 20時間以下、より好ましくは 15時間以下、 さらに好ましくは 10時間以下である。 [0134] It is also possible to form Vilsmeier reagent ([R 7 R 8 N = CHX 5 ] ( + ) X 5 (in the reaction system by mixing isoindole (2), phosphoryl halide and dialkyl formamide). The Vilsmeier reagent may be formed in advance by mixing the phosphoryl halide and the dialkylformamide, or if the Vilsmeier reagent is to be formed in advance, either isostere (2) is added to the Vilsmeier reagent. Good, conversely add Vilsmeier reagent to isoindole (2) It is good. In each addition and mixing process, cooling may be performed as necessary to suppress heat generation. The temperature of the Vilsmeier reaction is also influenced by the solvent used, etc. The temperature is usually 0 ° C. or more, preferably 20 ° C. or more, preferably 140 ° C. or less, more preferably 120 ° C. or less. The time of Vilsmeier reaction is preferably 5 minutes or more, more preferably 10 minutes or more, more preferably 30 minutes or more, preferably 20 hours or less, more preferably 15 hours or less, still more preferably 10 hours or less.
[0135] アミノメチレン化 1H—イソインドール(6a)は、加水分解により、ホルミル化 2H Aminomethylenated 1H-isoindole (6a) is hydrolyzed to formylated 2H
イソインドール(6b)に容易に転化することができる。この加水分解は、アミノメチレ ン化ー 1H—イソインドール(6a)と水とを混合するだけでも行い得る力 酢酸ナトリウ ム、炭酸水素ナトリウムまたは水酸化ナトリウムなどのようなアルカリ水溶液を用いるこ とが好ましい。アルカリ水溶液を用いる場合、加水分解の温度は、通常 0〜100°C、 好ましくは 20〜80°Cであり、その時間は通常 0. 5〜; 10時間、好ましくは;!〜 5時間で ある。  It can be easily converted to isoindole (6b). This hydrolysis can be carried out simply by mixing aminomethylen-1H-isoindole (6a) with water. Preferably, an aqueous alkaline solution such as sodium acetate, sodium hydrogencarbonate or sodium hydroxide is used. . When an alkaline aqueous solution is used, the temperature of hydrolysis is usually 0 to 100 ° C., preferably 20 to 80 ° C., and the time is usually 0.5 to 5 hours; 10 hours, preferably 5 hours to 5 hours. .
[0136] ホルミル化 2H イソインドール(6b)を還元することにより、ヒドロキシメチル化  Hydroxymethylation by reducing formyl 2H isoindole (6b)
2H—イソインドール(6c)を製造することができる。ホルミル基(アルデヒド)力、らヒドロ キシメチル基(アルコール)への還元は容易であり、有機合成化学の分野において周 知の方法で行うことができる。還元剤としては、例えば NaBH、 BH -THF等のホウ  2H-isoindole (6c) can be produced. The reduction to formyl group (aldehyde) power, hydroxymethyl group (alcohol) is easy and can be done in a manner known in the field of synthetic organic chemistry. As a reducing agent, for example, boros such as NaBH, BH -THF, etc.
4 3  4 3
素水素化物の錯体、 LiAlH、水素化ジイソブチルアルミニウム等のアルミニウム水素  Aluminum hydrogen such as complex hydride, LiAlH, diisobutylaluminum hydride
4  Four
化物の錯体などが挙げられる。なおイソインドール環の還元を抑制して、ホルミル基 だけが条件で還元を行う必要がある。例えば LiAlHのような強い還元剤を用いる場  And the like. In addition, it is necessary to suppress the reduction of the isoindole ring and to carry out the reduction under the conditions of only the formyl group. For example, using a strong reducing agent such as LiAlH
4  Four
合、還元反応を短時間で終了させればよい。  In this case, the reduction reaction may be completed in a short time.
[0137] 中間体(6a)、 (6b)または(6c)を製造した後、これらを精製せずに、反応混合物の まま、次の中間体または兀共役環状化合物(7) (特にポルフィリン(7a) )の製造に用 いることもできる。しかし純度の高い π共役環状化合物(7)を製造するためには、中 間体(6a)、 (6b)および(6c)の 1つ以上を精製してから、次の工程で使用することが 推奨される。精製手段として、例えばシリカゲルカラムクロマトグラフィー、アルミナカラ ムクロマトグラフィー、昇華精製、再結晶、晶析などが利用できる。  After the intermediates (6a), (6b) or (6c) are produced, without purification of these, the following intermediate or 中間 conjugated cyclic compound (7) (especially porphyrin (7a) may be used as it is in the reaction mixture. )) Can also be used. However, in order to produce a high purity π-conjugated cyclic compound (7), one or more of intermediates (6a), (6b) and (6c) may be purified and then used in the next step. Recommended. As a purification method, for example, silica gel column chromatography, alumina column chromatography, sublimation purification, recrystallization, crystallization and the like can be used.
[0138] ヒドロキシメチル化 2H—イソインドール(6c)は、出発物質であるイソインドール(2 )よりも安定化されている力 通常のポルフィリンを製造するために使用されるピロ一 ルと比べて反応性が高い。そのためピロールからポルフィリンを合成するために通常 用いられるクロ口酢酸などの存在下で、ヒドロキシメチル化 2H—イソインドール(6c )を反応させると、重合してイソインドールオリゴマーなどが形成される。重合反応を抑 制しつつ、ヒドロキシメチル化 2H イソインドール(6c)から π共役環状化合物(7) (特にポルフィリン(7a) )を製造するためには、クロ口酢酸よりも弱い酸を用いて脱水 環化することが必要である。このための酸として、例えば酢酸、プロピオン酸および酪 酸などの脂肪族モノカルボン酸;コハク酸、ダルタル酸、アジピン酸、ピメリン酸などの 脂肪族ジカルボン酸;および ZnCl、 BFおよび BF - 0 (C H )などの弱いルイス酸 を使用することができ、これらの中でも前記脂肪族モノカルボン酸および前記ルイス 酸が好ましい。前記脂肪族モノカルボン酸および/または前記ルイス酸は、単独で、 または 2種以上を組み合わせて用いることができる。 Hydroxymethylated 2H-isoindole (6c) is a starting material isoindole (2 The more stabilized force is more reactive than the pyrroles used to make regular porphyrins. Therefore, when hydroxymethylated 2H-isoindole (6c) is reacted in the presence of crotonic acetic acid or the like usually used to synthesize porphyrin from pyrrole, it is polymerized to form an isoindole oligomer or the like. In order to produce a π-conjugated cyclic compound (7) (especially porphyrin (7a)) from hydroxymethylated 2H isoindole (6c) while suppressing the polymerization reaction, dehydration is carried out using an acid weaker than croque acetic acid. It is necessary to cyclize. Acids for this purpose, for example aliphatic monocarboxylic acids such as acetic acid, propionic acid and dairy acid; aliphatic dicarboxylic acids such as succinic acid, dartalic acid, adipic acid, pimelic acid; and ZnCl, BF and BF-0 (CH And the like. Among these, the above-mentioned aliphatic monocarboxylic acids and the above-mentioned Lewis acids are preferred. The aliphatic monocarboxylic acid and / or the Lewis acid can be used alone or in combination of two or more.
[0139] 上述の脱水環化は、ヒドロキシメチル化 2H イソインドール(6c)を単離してから 行ってもよいし、またホルミル化 2H イソインドール(6b)を還元した後、反応混合 物をそのまま用いてもよい。単離したヒドロキシメチル化 2H—イソインドール(6c) を脱水環化に用いる場合、ヒドロキシメチル化 2H イソインドール(6c) 1モルに対 する酸の使用量は、前記ルイス酸では 1. 5モル程度、前記脂肪族カルボン酸では 1 . 5モル程度以上である。また前記脂肪族カルボン酸は、溶媒として、過剰量で使用 できる。ヒドリド還元試薬を用いて得られたヒドロキシメチル化— 2H—イソインドール( 6c)を単離せずに反応混合物を脱水環化に用いる場合、前記脂肪族カルボン酸を、 ヒドリド還元試薬のタエンチのためにも使用することができる。この場合、前記脂肪族 カルボン酸は、過剰量で用いることが好まし!/、。  The above-mentioned dehydrating cyclization may be carried out after isolating hydroxymethylated 2H isoindole (6c), or after reduction of formylated 2H isoindole (6b), the reaction mixture is used as it is. May be When the isolated hydroxymethylated 2H-isoindole (6c) is used for dehydrating cyclization, the amount of acid used relative to 1 mole of hydroxymethylated 2H isoindole (6c) is about 1.5 moles in the Lewis acid. The aliphatic carboxylic acid is about 1.5 moles or more. Also, the aliphatic carboxylic acid can be used in excess as a solvent. When the reaction mixture is used for dehydrating cyclization without isolating the hydroxymethylated-2H-isoindole (6c) obtained using a hydride reducing reagent, said aliphatic carboxylic acid is used for the hydrogenation reducing reagent reagent. Can also be used. In this case, the aliphatic carboxylic acid is preferably used in excess!
[0140] ヒドロキシメチル化 2H イソインドール(6c)の脱水環化の反応温度は、その反 応性に応じて適宜設定すればよぐ例えば、通常 0°C以上、好ましくは 20°C以上であ り、好ましくは 140°C以下、より好ましくは 120°C以下である。この反応時間は、好まし くは 0. 1時間以上、より好ましくは 0. 5時間以上であり、好ましくは 96時間以下、より 好ましくは 72時間以下である。  The reaction temperature of the dehydrating cyclization of the hydroxymethylated 2H isoindole (6c) may be appropriately set according to the reactivity, and is, for example, usually 0 ° C. or higher, preferably 20 ° C. or higher. Preferably it is 140 degrees C or less, More preferably, it is 120 degrees C or less. The reaction time is preferably 0.1 hours or more, more preferably 0.5 hours or more, preferably 96 hours or less, more preferably 72 hours or less.
[0141] 上記の脱水環化により、 π共役環状化合物(7)の還元体(特にボルフイリノーゲン( 11) )が得られ、これを酸化剤で酸化することにより、 兀共役環状化合物(7) (特にポ ルフィリン(7a) )を製造すること力 Sできる。脱水環化で酢酸程度の弱酸を用いた場合 、 π共役環状化合物(7)の還元体(特にボルフイリノーゲン(11) )の酸化前にこの弱 酸を、中和しても、しなくても良いが、好ましくは酸化工程の前に、脱水環化で用いた 酸を中和することが推奨される。 As a result of the above-mentioned dehydration and cyclization, a reduced form of the π-conjugated cyclic compound (7) (especially porphyrinogen ( 11) is obtained, and by oxidizing this with an oxidizing agent, it is possible to produce S a conjugated cyclic compound (7) (especially porphyrin (7a)). When a weak acid of acetic acid or so is used in the cyclodehydration, this weak acid may or may not be neutralized before oxidation of the reduced product of the π-conjugated cyclic compound (7) (especially porphyrinogen (11)). Although it is preferable, it is recommended to neutralize the acid used in the cyclodehydration, preferably before the oxidation step.
[0142] このための酸化剤として、酸素、空気等の酸素含有ガス;および ρ クロラニル(6, 3, 5, 6—テトラクロロー ρ べンゾキノン)、 DDQ (6, 3—ジシァノー 5, 6—ジクロ口 —ρ ベンゾキノン)等のキノン類を使用できる。酸化剤は、単独で、または 2種以上 を組み合わせて用いることができる。酸化反応温度は、例えば、通常 10°C以上、好 ましくは 20°C以上であり、好ましくは 100°C以下、より好ましくは 80°C以下である。こ の反応時間は、好ましくは 30分以上、より好ましくは 1時間以上であり、好ましくは 48 時間以下、より好ましくは 24時間以下である。  As oxidizing agents for this purpose, oxygen, oxygen-containing gas such as air; and ρ chloranil (6,3,5,6-tetrachloro-benzoquinone), DDQ (6,3-dicyano 5,6-dichloro) Quinones such as ρ benzoquinone can be used. The oxidizing agents can be used alone or in combination of two or more. The oxidation reaction temperature is, for example, usually 10 ° C. or more, preferably 20 ° C. or more, preferably 100 ° C. or less, more preferably 80 ° C. or less. The reaction time is preferably 30 minutes or more, more preferably 1 hour or more, preferably 48 hours or less, more preferably 24 hours or less.
[0143] ヒドロキシメチル化 2H—イソインドール(6c)から、脱水環化および酸化により、 π 共役環状化合物(7) (特にポルフィリン(7a) )を合成する反応は、通常、溶液反応で ある。そのための溶媒として、前記脂肪族カルボン酸を使用できる。またこれ以外の 溶媒として、例えばクロ口ホルム、塩化メチレン等の塩素系炭化水素類;ベンゼン、ト ノレェン、キシレン等の芳香族炭化水素類; THF、ジォキサン、シクロペンチルメチル エーテル、ジイソプロピルエーテル、ジェチルエーテル等のエーテル類;メタノール、 エタノール、プロパノール等のアルコール類;酢酸メチル、酢酸ェチル、酢酸プロピル 、酢酸ブチル等のエステル類;およびジメチルホルムアミド、ジメチルァセトアミド等の アミド類などを挙げることができる。溶媒は、単独で、または 2種以上組み合わせて用 いること力 Sできる。溶媒を用いる場合、出発原料であるヒドロキシメチル化 2H—イソ インドール(6c)の濃度は、好ましくは;!〜 lOOOmM程度、より好ましくは 5〜500mM 程度である。  The reaction for synthesizing π-conjugated cyclic compound (7) (particularly porphyrin (7a)) from hydroxymethylated 2H-isoindole (6c) by dehydrating cyclization and oxidation is usually a solution reaction. The aliphatic carboxylic acid can be used as a solvent therefor. Further, as other solvents, for example, chlorohydrocarbons such as chloroform, methylene chloride and the like; aromatic hydrocarbons such as benzene, toluene and xylene; THF, dioxane, cyclopentyl methyl ether, diisopropyl ether, jetyl ether Ethers such as methanol; alcohols such as methanol, ethanol and propanol; esters such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate; and amides such as dimethylformamide and dimethylacetoamide. The solvent can be used alone or in combination of two or more. When a solvent is used, the concentration of the starting material hydroxymethylated 2H-isoindole (6c) is preferably about! M to about 100 mM, more preferably about 5 to 500 mM.
[0144] 上記のようにして得られた π共役環状化合物(7) (特にポルフィリン(7a) )は、昇華 、再結晶、晶析などにより精製することができる。例えばフエノキシ基のような置換基 を有するポルフィリン(7a)であれば、シリカゲルカラムクロマトグラフィー、アルミナカラ ムクロマトグラフィーで精製することもできる。 [0145] 次にアミノメチル化—2H—イソインドール(6d)の好ましい製造方法を説明する。ァ ミノメチル化 2H—イソインドール(6d)は、酸の存在下で、イソインドール(2)と、ホ ルムァノレデヒドと、ジアルキルアミン NHR5R6 (式中、 R5および R6は、それぞれ独立に C アルキル基を表す。)とを用いる Mannich反応により、製造できる。また、予め調The π-conjugated cyclic compound (7) (particularly porphyrin (7a)) obtained as described above can be purified by sublimation, recrystallization, crystallization or the like. For example, if it is a porphyrin (7a) having a substituent such as a phenoxy group, it can also be purified by silica gel column chromatography or alumina column chromatography. Next, a preferred method for producing aminomethylation-2H-isoindole (6d) will be described. Aminomethylated 2H-isoindole (6d) is an isoindole (2), a formaldehyde and a dialkylamine NHR 5 R 6 (wherein R 5 and R 6 are each independently C) in the presence of an acid. It can be produced by the Mannich reaction using an alkyl group. In addition,
1-4 1-4
製したハロゲン化メチレンジアルキルアンモニゥム H C = NR5R6X6 (式中、 R5および R6は、それぞれ独立に C アルキル基を表し、 X6は、ハロゲン原子を表す。 )と、イソ Halogenated methylenedialkyl ammonium ammonium HC = NR 5 R 6 X 6 (wherein, R 5 and R 6 each independently represent a C alkyl group, and X 6 represents a halogen atom), and iso.
1-4  1-4
インドーノレ(2)とを用いて、 Mannich反応を行っても良!/ヽ。  It is good to carry out the Mannich reaction using indonesore (2)! / ヽ.
[0146] まずホルムアルデヒドおよびジアルキルアミンを用いる場合について説明する。この Mannich反応に用いる酸として、例えばハロゲン化水素酸 (塩酸、フッ化水素酸、臭 化水素酸、ヨウ化水素酸)、硝酸、硫酸等の無機酸;およびギ酸、トリフルォロ酢酸、ト リクロロ酢酸等の有機酸を挙げることができ、これらの中でも塩酸、臭化水素酸、硫酸 およびトリフルォロ酢酸が好ましい。一塩基酸を、イソインドール(2) 1モルに対して、 好ましくは 1〜2モル、より好ましくは 1 · ;!〜 1 · 5モルで使用することが推奨される。な お多塩基酸を用いる場合、推奨されるその使用量は、一塩基酸の上記量に、多塩基 酸の価数を掛けた量である。またジアルキルァミンとして、例えばジメチルァミン、ジ ェチルァミン、ジイソプロピルァミンおよびジブチルァミンなどが挙げられる力 これら の中でも反応性などの観点から、ジメチルァミン (R5 = R6 = CH )が好ましい。ジアル First, the case of using formaldehyde and dialkylamine will be described. Examples of the acid used for this Mannich reaction include inorganic acids such as hydrohalic acid (hydrochloric acid, hydrofluoric acid, hydrobromic acid, hydroiodic acid), nitric acid, sulfuric acid; and formic acid, trifluoroacetic acid, trichloroacetic acid, etc. And the like. Among these, hydrochloric acid, hydrobromic acid, sulfuric acid and trifluoroacetic acid are preferable. It is recommended to use a monobasic acid in an amount of preferably 1 to 2 moles, more preferably 1 ·! To 1.5 moles per mole of isoindole (2). When a polybasic acid is used, the recommended amount to be used is the above amount of monobasic acid multiplied by the valence of polybasic acid. Further, as a dialkylamine, for example, a power such as dimethylamine, diethylamine, diisopropylamine and dibutylamine and the like, among them, from the viewpoint of reactivity and the like, dimethylamine (R 5 = R 6 CHCH 2) is preferable. Gial
3  3
キルァミンおよびホルムアルデヒドを、イソインドール(2) 1モルに対してそれぞれ、好 ましくは 1〜2モル、より好ましくは 1 · ;!〜 1 · 5モルの量で使用することが推奨される。  It is recommended to use quiramine and formaldehyde in an amount of preferably 1 to 2 moles, more preferably 1 ·! To 1.5 moles per 1 mole of isoindole (2), respectively.
[0147] 次にハロゲン化メチレンジアルキルアンモニゥムを用いる場合について説明する。 力、ら製造することができ、また例えばノヽロゲン化メチレンジメチルアンモニゥムは、ァ ルドリッチ社から入手できる。ハロゲン化メチレンジアルキルアンモニゥムとして、ハロ および塩化メチレンジメチルアンモニゥムがより好まし!/、。ハロゲン化メチレンジアル キルアンモニゥムは、イソインドール(2) 1モルに対して、好ましくは;!〜 2. 5モル、より 好ましくは 1 · 05〜2モル、さらに好ましくは 1 ·;!〜 1 · 5モルの量で使用することが推 奨される。 [0148] Mannich反応は、通常、溶媒を用いて行われる。溶媒として、クロ口ホルム、塩化メ チレン等の塩素系炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類 ; THF、ジォキサン、シクロペンチルメチルエーテル、ジイソプロピルエーテル、ジェ チルエーテル等のエーテル類;メタノール、エタノール、プロパノール等のアルコール 類;酢酸メチル、酢酸ェチル、酢酸プロピル、酢酸ブチル等のエステル類;およびァ セトニトリル、プロピオ二トリル、ベンゾニトリル等の二トリル類などを挙げることができる 。溶媒は、単独で、または 2種以上組み合わせて用いることができる。溶媒を用いる 場合、出発原料であるイソインドール(2)の濃度は、好ましくは 0. 01〜2M程度、より 好ましくは 0. 05〜; 1M程度である。 Next, the case of using a halogenated methylene dialkyl ammonium will be described. Can be prepared, for example, and can also be obtained from Waldrich, Inc., as a methylated dimethyldimethyl ammonium. Halo and methylene chloride dimethyl ammonium are more preferred as halogenated methylene dialkyl ammoniums! The halogenated methylenedialkyl ammonium is preferably;! To 2.5 mol, more preferably 1 · 0.5 to 2 mol, still more preferably 1 · ·! To 1 · 5 mol per 1 mol of isoindole (2). It is recommended to use in the amount of [0148] The Mannich reaction is usually performed using a solvent. As solvents, chlorohydrocarbons such as chloroform, methylene chloride and the like; aromatic hydrocarbons such as benzene, toluene, xylene and the like; ethers such as THF, dioxane, cyclopentyl methyl ether, diisopropyl ether, gethyl ether and the like; methanol And alcohols such as ethanol and propanol; esters such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate; and nitriles such as acetonitrile, propionitrile, benzonitrile and the like. The solvents can be used alone or in combination of two or more. When a solvent is used, the concentration of the starting material isoindole (2) is preferably about 0.01 to 2 M, more preferably about 05 to 1 M.
[0149] 上記の Mannich反応の温度は、用いる溶媒などにも影響される力 通常 0°C以上 、好ましくは 20°C以上であり、好ましくは 120°C以下、より好ましくは 100°C以下であ る。この反応時間は、好ましくは 1時間以上、より好ましくは 2時間以上であり、好ましく は 72時間以下、より好ましくは 48時間以下である。  The temperature of the above Mannich reaction is also influenced by the solvent used, etc. The temperature is usually 0 ° C. or more, preferably 20 ° C. or more, preferably 120 ° C. or less, more preferably 100 ° C. or less is there. The reaction time is preferably 1 hour or more, more preferably 2 hours or more, preferably 72 hours or less, more preferably 48 hours or less.
[0150] イソインドール(2)の 1位置換体である中間体(6d)は、中間体(6a)〜(6c)と同様 に、イソインドール(2)よりも安定であると考えられる。しかし中間体(6d)は、中間体( 6c)と比べて活性であるため、形成されると直ぐに環化して、 兀共役環状化合物(7) の還元体(特にボルフイリノーゲン(11) )、次いで π共役環状化合物(7) (特にポル フィリン(7a) )が形成される。よって Mannich反応を経る本発明の方法では、上記 M annich反応の後で、酸化剤を作用させることにより、 兀共役環状化合物(7)を製造 すること力 Sできる。 Mannich反応およびそれに続く環化反応後の酸化反応は、上述 と同様にして fiうことカでさる。  [0150] Intermediate (6d), which is a 1-substituted form of isoindole (2), is considered to be more stable than isoindole (2), similarly to intermediates (6a) to (6c). However, since the intermediate (6d) is active as compared to the intermediate (6c), it is cyclized as soon as it is formed, and the reduced form of the 兀 conjugated cyclic compound (7) (especially morphylinogen (11)), The π-conjugated cyclic compound (7) (especially porphyrin (7a)) is then formed. Therefore, in the method of the present invention through the Mannich reaction, the 上 記 conjugated cyclic compound (7) can be produced by the action of an oxidizing agent after the above Mannich reaction. The Mannich reaction and the subsequent oxidation reaction after the cyclization reaction are carried out in the same manner as described above.
[0151] 上記のようにして得られたポルフィリン(7a)は、ポルフィリン化学の分野で良く知ら れて!/、るように、様々な金属または半金属イオンと結合してボルフイリン錯体(8)を形 成すること力 Sできる。ボルフイリン錯体(8)と結合する金属または半金属イオンとして、 例えば Beおよび Raを除く第 2族元素、希土類元素、 Th、 U、第 4族〜第 12族元素、 Bを除く第 13族元素、 Cを除く第 14族元素、並びに Nおよび Pを除く第 15族元素の イオンを挙げること力 Sできる。これらの中でも金属イオンが好ましぐ Co、 Zn、 Cu、 Ni 、 Pd、 Pt、 Feまたは Mnイオンがより好ましい。ポルフィリン配位子は、 3価以上の金 属または半金属イオンと結合することができ、この場合にボルフイリン錯体の中心金 属は、ハロゲン、アルキル、アルコキシル基等と結合して、電荷が釣り合わされる。 [0151] The porphyrin (7a) obtained as described above is well known in the field of porphyrin chemistry! /, And is bound to various metal or metalloid ions to form porphyrin complexes (8). Ability to form S Can. Examples of metal or metalloid ions to be bound to the porphyrin complex (8) include Group 2 elements excluding Be and Ra, rare earth elements, Th, U, Group 4 to 12 elements, and Group 13 elements excluding B. It is possible to list S ions of Group 14 elements excluding C and Group 15 elements excluding N and P. Among these, Co, Zn, Cu, Ni, Pd, Pt, Fe or Mn ion is preferred, of which metal ion is preferred. The porphyrin ligand is a trivalent or higher gold The metal or metalloid ion can be bound, in which case the central metal of the borophyrin complex is bound to a halogen, an alkyl, an alkoxyl group, etc. to charge balance.
[0152] これら金属または半金属のボルフイリン錯体(8)を形成するためには、金属または 半金属イオンを含む金属塩、例えばハロゲン化物塩 (殊に塩化物塩、臭化物塩およ びヨウ化物塩)または酢酸塩等と、ポルフィリン(7a)とを混合すればよい。また中間体 (6c)または(6d)の環化後かつ酸化前(即ち、ボルフイリノーゲン(11)の段階)で、金 属または半金属イオンを含む金属塩を添加した後、酸化することによつても、ポルフィ リン錯体(8)を形成できる。この錯化反応は、通常、溶媒中で行われ、そのための溶 媒としてはポルフィリン製造のものと同じものを使用できる。錯化反応のための温度は 、好ましくは 0°C以上、より好ましくは 10°C以上であり、好ましくは 80°C以下、より好ま しくは 60°C以下である。また錯化反応のための時間は、好ましくは 1時間以上、より好 ましくは 2時間以上であり、好ましくは 96時間以下、より好ましくは 72時間以下である [0152] In order to form porphyrin complexes (8) of these metals or metalloids, metal salts containing metal or metalloid ions, such as halide salts (especially chloride salts, bromide salts and iodide salts) Or acetate and the like, and porphyrin (7a) may be mixed. In addition, after the metal compound containing metal or metalloid ion is added after the cyclization of intermediate (6c) or (6d) and before the oxidation (ie, the step of porphyrinogen (11)), In addition, porphyrin complex (8) can be formed. This complexing reaction is usually carried out in a solvent, and as the solvent therefor, the same one as in the preparation of porphyrin can be used. The temperature for the complexing reaction is preferably 0 ° C. or more, more preferably 10 ° C. or more, preferably 80 ° C. or less, more preferably 60 ° C. or less. The time for the complexation reaction is preferably 1 hour or more, more preferably 2 hours or more, preferably 96 hours or less, more preferably 72 hours or less.
[0153] 本発明のポルフィリン(7a)およびボルフイリン錯体(8)の中でも、へキサデカフルォ ロテトラべンゾポルフィリンおよび 21, 22, 23, 24, 71, 72, 73, 74, 121, 122, 123, 124, 171, 172, 173, 174—へキサデカクロロ一 21H, 23H—テトラべンゾポルフィリンおよ びその錯体が好ましぐへキサデ力フルォロテトラベンゾボルフィリンおよびその錯体 が好ましい。フッ素または塩素、特にフッ素は電子求引性であるので、それらを多数 含有するポルフィリンおよびその錯体は、殊に n型の有機半導体または有機電界効 果型トランジスタの材料への適用が期待できるからである。 [0153] porphyrin (7a) and Borufuirin Kisadekafuruo Rotetora base emission zone porphyrins and 2 1 also into the complex (8) of the present invention, 2 2, 2 3, 2 4, 7 1, 7 2, 7 3, 7 4 , 12 1 , 12 2 , 12 3 , 12 4 , 17 1 , 17 2 , 17 3 , 17 4- Hexadecachloroone 21 H, 23 H-Tetrabenzo porphyrin and its complexes are preferred. Rotetrabenzo porphyrins and their complexes are preferred. Since fluorine or chlorine, in particular fluorine, is electron-withdrawing, porphyrins containing a large number of them and complexes thereof are expected to be particularly applicable to materials of n-type organic semiconductors or organic field effect transistors. is there.
[0154] 次にイソインドール多量体の製造方法に関する本発明を、詳細に説明する。本発 明のイソインドール多量体の製造方法は、出発原料として、イソインドール類ではなく 、フタロニトリル類を用いることを特徴の 1つとする。このフタロニトリル類は、イソインド ール類と比べてはるかに安定であり、取扱いが容易である。またフタロニトリル類は、 顔料などの原料として販売されており、容易に入手できる。  Next, the present invention relating to a method for producing isoindole multimer will be described in detail. The method for producing an isoindole multimer according to the present invention is characterized in that phthalonitriles are used instead of isoindoles as a starting material. The phthalonitriles are much more stable and easier to handle than isoindoles. In addition, phthalonitriles are sold as raw materials for pigments and the like and are easily available.
[0155] 本発明者らが鋭意検討した結果、驚くべきことに、フタロニトリル類を酸の存在下で 接触水素化することにより、イソインドール多量体を製造できることを見出した。この反 応メカニズムとして、以下の化学式で示されるようなものが推定される。但し本発明は 、この推定メカニズムに限定されなレ As a result of intensive studies by the present inventors, it has been surprisingly found that catalytic hydrogenation of phthalonitriles in the presence of an acid can produce an isoindole multimer. As this reaction mechanism, one shown by the following chemical formula is presumed. However, the present invention Not limited to this inference mechanism.
[0156] [化 22] [Chem. 22]
Figure imgf000041_0001
Figure imgf000041_0001
[0157] 上記化学式で示されるように、まずフタロニトリル(9)のシァノ基に水素が付加し、次 いで環化することにより、中間体(a) (1—イミノー 1H—イソインドール類)が形成され る。この中間体(a)の第 3級ァミン窒素に酸(上記化学式ではプロトン)が付加すること により、中間体 (b)が形成される。一方、中間体 (a)の第 3級ァミン部分に水素が付加 することにより、中間体 (c) (1ーィミノイソインドリン類)が形成され、さらに中間体 (c) のィミノ基に水素が付加し、次いでァミノ基がアンモニアとして脱離することにより、中 間体(d) (2H—イソインドール類)が形成される。このように中間体(a)に酸または水 素のいずれかが付加することで、中間体 (b)または(d)が形成され、これらが付加す ることにより、中間体(e) (イミノ基を有するイソインドリン骨格とイソインドール骨格とを 有する二量体)が形成される。この中間体(e)から、先ほどと述べたようなィミノ基への 水素付加およびアミノ基の脱離により、 2H—イソインドール類の二量体 (f)が形成さ れる(なお二量体 (f)も、本発明のイソインドール多量体(10)の範囲に含まれる)。こ のような反応を繰り返すことによって、フタロニトリル(9)から、繰返し数が 2以上である イソインドール多量体(10)が形成されると考えられる。  As shown by the above chemical formula, hydrogen is first added to the cyano group of phthalonitrile (9), and then cyclization is carried out to give intermediate (a) (1-imino-1H-isoindole). It is formed. An acid (proton in the above chemical formula) is added to the tertiary amine nitrogen of this intermediate (a) to form an intermediate (b). On the other hand, hydrogen is added to the tertiary amine moiety of intermediate (a) to form intermediate (c) (1-iminoisoindolines), and hydrogen is added to the imino group of intermediate (c). Is added, and then the amino group is eliminated as ammonia to form an intermediate (d) (2H-isoindoles). Thus, either acid or hydrogen is added to intermediate (a) to form intermediate (b) or (d), and addition of these forms intermediate (e) (imino A dimer having an isoindoline skeleton having a group and an isoindole skeleton is formed. From this intermediate (e), hydrogenation to the amino group and elimination of the amino group as described above form the dimer (f) of 2H-isoindoles (still dimer ( f) are also included within the scope of isoindole multimers (10) of the present invention). It is thought that by repeating such a reaction, an isoindole multimer (10) having a repeating number of 2 or more is formed from phthalonitrile (9).
[0158] 本発明の製造方法では、上記で示すようにシァノ基部分の還元により反応系中で イソインドール類が形成し、次いでこれらが付加することにより、イソインドール多量体 が形成されると推定される。そのためフタロニトリル(9)の置換基 Dは、この反応(特に 還元反応)に大きな影響を及ぼさないと推定される。そのため本発明の製造方法で は、あらゆる種類のフタロニトリル(9)、より詳しくは、無置換のフタロニトリル(式(9)中 で p = 0)、又はあらゆる種類の置換基 Dを有するフタロニトリル類を使用できる。 According to the production method of the present invention, it is presumed that isoindoles are formed in the reaction system by reduction of the cyano group as described above, and then these are added to form an isoindole multimer. Be done. Therefore, it is presumed that the substituent D of phthalonitrile (9) does not greatly affect this reaction (particularly, the reduction reaction). Therefore, in the production method of the present invention, all kinds of phthalonitriles (9), more specifically, unsubstituted phthalonitriles (in formula (9)) It is possible to use phthalonitriles with p = 0) or any kind of substituent D.
[0159] 本発明で用いるフタロニトリル(9)には、上記のようにフタロニトリル(無置換フタロニ トリル)、またはハロゲン原子等の置換基を有する置換フタロニトリル類が含まれる。置 換フタロニトリル類には、 1種の置換基のみ(例えばノヽロゲン原子)、または 2種以上 の置換基(例えばノヽロゲンとアルキル基)を有するものが含まれる。 The phthalonitrile (9) used in the present invention includes phthalonitrile (unsubstituted phthalonitrile) or substituted phthalonitriles having a substituent such as a halogen atom as described above. The substituted phthalonitriles include those having only one type of substituent (for example, nophorogen atom) or two or more types of substituents (for example, norogen and an alkyl group).
[0160] フタロニトリル(9)のハロゲン原子としては、好ましくはフッ素、塩素または臭素原子 、より好ましくはフッ素または塩素原子、さらに好ましくはフッ素原子である。フタロニト リル(9)中には、同時に複数種のハロゲン原子が存在しても良い。 The halogen atom of phthalonitrile (9) is preferably a fluorine, chlorine or bromine atom, more preferably a fluorine or chlorine atom, still more preferably a fluorine atom. Plural kinds of halogen atoms may be present simultaneously in phthalonitrile (9).
[0161] 上記式(9) アルキル
Figure imgf000042_0001
Above Formula (9) Alkyl
Figure imgf000042_0001
基、より好ましくは c 〜c アルキル基、さらに好ましくは c 〜cアルキル基;好ましく  A group, more preferably a c-c alkyl group, still more preferably a c-c alkyl group;
1 10 1 5  1 10 1 5
は c 〜c ァリール基、より好ましくは c 〜c ァリール基;または好ましくは c 〜c ァ Is a c to c aryl group, more preferably c to c aryl group; or preferably c to c
6 20 6 12 7 20 ルキノレアリーノレ基、より好ましくは c 〜C ァノレキノレアリーノレ基、さらに好ましくは C 〜 6 20 6 12 7 20 キ ノ レ ア リ ー よ り よ り, more preferably c C C キ ノ ノ レ ァ さ ら に more preferably C 〜
7 15 7 7 15 7
C アルキルァリール基である。 R1, R2および R3は、その炭素骨格上に、ハロゲン原C is an alkyl aryl group. R 1 , R 2 and R 3 are halogen atoms on their carbon skeleton
10 Ten
子を含有していても良い。置換基 Dとして、 R1, OR2および SR3のいずれかが複数存 在する場合、
Figure imgf000042_0002
R2および R3は、異なる置換基 (例えばアルキル基とァ リーノレ基)であっても良い。
You may contain a child. When any one of R 1 , OR 2 and SR 3 exists as a substituent D,
Figure imgf000042_0002
R 2 and R 3 may be different substituents (eg, an alkyl group and an amino group).
[0162] 上記フタロニトリル(9)の中でも、ハロゲン原子 Xを有するフタロニトリル(1)が好まし い。ハロゲン原子 (殊に、強い電子求引性基であるフッ素原子)を有するフタロニトリ ル(1)から製造されるイソインドール多量体 (4)は、新しい用途、例えば n型半導体へ の適用が期待されるからである。上記式(1)中、ハロゲン原子 Xの数 mは、好ましくは 2以上、より好ましくは 3以上、さらに好ましくは 4である。なお上記式(1)中のハロゲン 原子 X、 R1, R2および R3の例としては、上述のものが挙げられる。 Among the above phthalonitriles (9), phthalonitriles (1) having a halogen atom X are preferable. Isoindole multimers (4) produced from phthalonil (1) having a halogen atom (in particular, a fluorine atom which is a strong electron-withdrawing group) are expected to be applied to new applications such as n-type semiconductors. This is because that. In the above formula (1), the number m of halogen atoms X is preferably 2 or more, more preferably 3 or more, and still more preferably 4. As examples of the halogen atom X, R 1 , R 2 and R 3 in the above formula (1), those mentioned above can be mentioned.
[0163] フタロニトリル類は、上述のように入手または製造することができる。イソインドーノレ 多量体の製造方法に用いるフタロニトリル類として、上記式(la)または(Id)、殊に上 記式(lb)または(lc)、ある!/、は上記式(le)または(If)で示されるフタロニトリルが 好ましい。  [0163] The phthalonitriles can be obtained or manufactured as described above. As phthalonitriles used in the method for producing an isoindonolene multimer, the above-mentioned formula (la) or (Id), in particular, the above-mentioned formula (lb) or (lc), there is! /, The above-mentioned formula (le) or ( Phthalonitrile represented by If) is preferred.
[0164] 本発明のイソインドール多量体の製造方法で用いる酸としては、無機または有機プ 口トン酸が好ましい。無機プロトン酸としては、例えば塩酸、臭化水素酸、ヨウ化水素 酸、硝酸、硫酸;オルトリン酸、ピロリン酸等のリン酸;過塩素酸等の過ハロゲン酸;リ ンモリプ'デン酸、ケィモリプ'デン酸、リンタングステン酸、ケィタングステン酸、リンタン ダストモリブデン酸、リンバナドモリブデン酸等のへテロポリ酸などが挙げられる。 As the acid used in the method for producing an isoindole multimer of the present invention, an inorganic or organic propionic acid is preferable. As the inorganic protonic acid, for example, hydrochloric acid, hydrobromic acid, hydrogen iodide Acid, nitric acid, sulfuric acid; phosphoric acid such as orthophosphoric acid, pyrophosphoric acid, etc .; perhalogenated acid such as perchloric acid; phosphomolybdic acid, phosphomolybdic acid, phosphotungstic acid, citric acid tungstic acid, phosphorous acid molybdic acid And heteropolyacids such as nadomolybdic acid.
[0165] 有機プロトン酸としては、例えばベンゼンスルホン酸、 p—トルエンスルホン酸、ナフ タレンスルホン酸等のァリールスルホン酸;メタンスルホン酸、トリフルォロメタンスルホ ン酸、トリクロロメタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、 t—ブチノレ スルホン酸等のアルキルスルホン酸;ギ酸、酢酸、プロピオン酸、クロ口酢酸、ジクロロ 酢酸、トリクロ口酢酸、トリフルォロ酢酸、ペンタフルォロプロピオン酸、 n—酪酸、イソ 酪酸、ビバリン酸、吉草酸、カプロン酸、力プリル酸、力プリン酸、ラウリン酸、ミリスチ ン酸、シクロへキサンカルボン酸等の飽和脂肪族カルボン酸;アクリル酸、メタクリノレ 酸、プロピオール酸、クロトン酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、ォ レイン酸等の不飽和脂肪族カルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタ ル酸等の芳香族カルボン酸などが挙げられる。  Examples of organic protic acids include arylsulfonic acids such as benzenesulfonic acid, p-toluenesulfonic acid and naphthalenesulfonic acid; methanesulfonic acid, trifluoromethanesulfonic acid, trichloromethanesulfonic acid, ethanesulfonic acid Alkylsulfonic acids such as propanesulfonic acid and t-butynosulfonic acid; formic acid, acetic acid, propionic acid, vicinal acetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, trifluoroacetic acid, pentafluoropropionic acid, n-butyric acid, isobutyric acid Saturated aliphatic carboxylic acids such as, vivalic acid, valeric acid, caproic acid, purilic acid, purilic acid, lauric acid, myristic acid, cyclohexanecarboxylic acid, etc .; acrylic acid, methacrylic acid, propiolic acid, crotonic acid, Maleic acid, fumaric acid, citraconic acid, mesaconic acid, oleic acid Unsaturated aliphatic carboxylic acid; benzoic acid, phthalic acid, isophthalic acid, and aromatic carboxylic acids such as terephthalic Le acid.
[0166] 前記プロトン酸の中でも、酢酸、トリフルォロ酢酸、リン酸、塩酸、硝酸および硫酸が 好ましい。酸としてプロトン酸を用いる場合、プロトン (H+)量力 S、出発原料のフタロニト リル(9)と等モル以上とすることが推奨される。等モル以上のプロトンを用いることによ り、重合を促進できるからである。プロトン量は、フタロニトリル(9) 1モルに対して、好 ましくは;!〜 10モノレ、より好ましくは 1. 05〜7モノレ、さらに好ましくは 1. ;!〜 5モノレで ある。 Among the protic acids, acetic acid, trifluoroacetic acid, phosphoric acid, hydrochloric acid, nitric acid and sulfuric acid are preferable. When a protonic acid is used as the acid, it is recommended that the proton (H + ) strength S be equal to or greater than the molar amount of phthalonitrile (9) as the starting material. It is because polymerization can be promoted by using an equimolar or more proton. The amount of proton is preferably 1! To 10 mono, more preferably 1. 05 to 7 mono, and still more preferably 1 .; to 5 mono, per 1 mol of phthalonitrile (9).
[0167] 接触水素化に用いる触媒としては、該技術分野で知られている通常の金属触媒を 使用すること力できる。フタロニトリル(9)に対して触媒の中心金属力 好ましくは 0. 0 ;!〜 30モノレ0 /0、より好ましくは 0. ;!〜 20モノレ0 /0、さらに好ましくは;!〜 10モノレ0 /0となる ような量で、金属触媒を使用することが推奨される。 [0167] As a catalyst used for catalytic hydrogenation, any conventional metal catalyst known in the technical field can be used. 0. central metal force of the catalyst preferably the phthalonitrile (9) 0;! ~ 30 Monore 0/0, more preferably 0.1;! ~ 20 Monore 0/0, more preferably;! ~ 10 Monore 0 It is recommended to use a metal catalyst in an amount such that / 0 .
[0168] 金属触媒として、ルテニウムやロジウムにホスフィンなどが配位して構成される均一 触媒が挙げられる。但し反応性、反応後の回収および再生処理の容易性を考慮する と、本発明において、不均一触媒を用いることが好ましい。不均一触媒の中でも、表 面積を増大させて触媒活性を向上させるために、金属の微粉末を担体に担持させた 触媒が好ましい。不均一触媒として、例えばニッケル、ラネーニッケル、銅-酸化クロ ム、ルテニウム、パラジウム、ロジウム、白金、酸化白金などの金属、またはこれらの金 属微粉末を活性炭、アルミナ、珪藻土などの担体に担持させたものが挙げられる。こ れら金属触媒の中でも、パラジウム触媒、ロジウム触媒、白金触媒およびニッケル触 媒が好ましぐ触媒活性の観点から、活性炭にパラジウムを担持させた触媒がより好 ましい。 [0168] Examples of the metal catalyst include homogeneous catalysts in which phosphine or the like is coordinated to ruthenium or rhodium. However, in view of reactivity and ease of recovery after reaction and regeneration treatment, it is preferable to use a heterogeneous catalyst in the present invention. Among the heterogeneous catalysts, in order to increase the surface area and improve the catalytic activity, a catalyst having a fine metal powder supported on a carrier is preferable. Heterogeneous catalysts such as nickel, Raney nickel, copper-black oxide And metals such as ruthenium, palladium, rhodium, platinum and platinum oxide or fine powders of these metals supported on a carrier such as activated carbon, alumina and diatomaceous earth. Among these metal catalysts, from the viewpoint of catalyst activity preferred by palladium catalyst, rhodium catalyst, platinum catalyst and nickel catalyst, a catalyst in which palladium is supported on activated carbon is more preferable.
[0169] 不均一触媒を使用する場合、接触水素化の前に、水素雰囲気下で触媒と前記プロ トン酸とを混合する触媒活性化工程を、必要に応じて採用しても良い。活性化の温度 は、通常、室温〜 50°C程度であり、活性化の時間は、好ましくは 10分以上、より好ま しくは 30分以上、さらに好ましくは 1時間以上であり、好ましくは 5時間以下、より好ま しくは 3時間以下、さらに好ましくは 2時間以下である。  When a heterogeneous catalyst is used, a catalyst activation step of mixing the catalyst and the protonic acid in a hydrogen atmosphere before catalytic hydrogenation may be employed as necessary. The activation temperature is usually about room temperature to 50 ° C., and the activation time is preferably 10 minutes or more, more preferably 30 minutes or more, still more preferably 1 hour or more, preferably 5 hours. The following time is more preferably 3 hours or less, still more preferably 2 hours or less.
[0170] 接触水素化は、通常、溶媒を用いて行われる。溶媒としては特に限定は無いが、出 発原料であるフタロニトリル(9)を溶解できるものが好ましい。溶媒として、例えばベン ゼン、トルエン、キシレン等の芳香族炭化水素類; THF、ジォキサン、シクロペンチル メチルエーテル、ジイソプロピルエーテル、ジェチルエーテル等のエーテル類;メタノ 一ノレ、エタノール、プロパノール等のアルコール類;酢酸メチル、酢酸ェチル、酢酸 プロピル、酢酸ブチル等のエステル類;ジメチルホルムアミド、ジメチルァセトアミド等 のアミド類;スルホラン、 3—メチルスルホラン、 2, 4—ジメチルスルホラン等のスルホ ラン類;およびギ酸、酢酸、プロピオン酸、トリフルォロ酢酸等のカルボン酸類などを 挙げること力 Sできる。また接触水素化法では、アミド類または酢酸類と水との混合溶媒 も使用できる。溶媒は、単独で、または 2種以上組み合わせて用いることができる。こ れら溶媒の中でも、イソインドール多量体の溶解性が高い溶媒、例えば酢酸ェチル、 酢酸プロピル、ジメチルホルムアミド、ジメチルァセトアミド、スルホラン、 3—メチルス ルホランおよび 2, 4—ジメチルスルホランが好ましい。溶媒を用いる場合、フタロニト リル(9)の濃度は、好ましくは 0. 0;!〜 5M程度、より好ましくは 0. 05〜; 1M程度であ  [0170] The catalytic hydrogenation is usually performed using a solvent. The solvent is not particularly limited, but those which can dissolve phthalonitrile (9) which is a starting material are preferable. As a solvent, for example, aromatic hydrocarbons such as benzene, toluene, xylene, etc .; Ethers such as THF, dioxane, cyclopentyl methyl ether, diisopropyl ether, jetyl ether; alcohols such as methanol, ethanol, propanol, etc .; acetic acid Esters such as methyl, ethyl acetate, propyl acetate and butyl acetate; Amides such as dimethylformamide, dimethylacetoamide; sulfolanes such as sulfolane, 3-methylsulfolane and 2, 4-dimethylsulfolane; and formic acid, acetic acid It is possible to mention S, carboxylic acids such as propionic acid and trifluoroacetic acid. In the catalytic hydrogenation method, mixed solvents of amides or acetic acids and water can also be used. The solvents can be used alone or in combination of two or more. Among these solvents, solvents having high solubility of isoindole multimer, such as ethyl acetate, propyl acetate, dimethylformamide, dimethyl formamide, dimethylacetoamide, sulfolane, 3-methyl sulfolane and 2, 4-dimethyl sulfolane are preferable. When a solvent is used, the concentration of phthalonitrile (9) is preferably about 0.0;! To about 5 M, and more preferably about 0.5 to about 1 M.
[0171] 接触水素化の温度は、用いる溶媒などにも影響される力 好ましくは 0°C以上、より 好ましくは 20°C以上であり、好ましくは 150°C以下、より好ましくは 120°C以下である 。接触水素化反応の時間は、好ましくは 30分以上、より好ましくは 1時間以上、さらに 好ましくは 2時間以上であり、好ましくは 48時間以下、より好ましくは 24時間以下であ る。接触水素化を促進するために、水素を加圧状態で用いることが好ましい。水素圧 は、好ましくは 1. 1気圧以上、より好ましくは 1. 5気圧以上、さらに好ましくは 2気圧以 上である。但し設備の制約などから水素圧は、好ましくは 5気圧以下、より好ましくは 3 気圧以下である。 [0171] The temperature of the catalytic hydrogenation is also influenced by the solvent used, preferably 0 ° C or more, more preferably 20 ° C or more, preferably 150 ° C or less, more preferably 120 ° C or less It is. The time of the catalytic hydrogenation reaction is preferably 30 minutes or more, more preferably 1 hour or more. Preferably, it is 2 hours or more, preferably 48 hours or less, more preferably 24 hours or less. It is preferred to use hydrogen under pressure to promote catalytic hydrogenation. The hydrogen pressure is preferably 1.1 atmospheres or more, more preferably 1.5 atmospheres or more, and still more preferably 2 atmospheres or more. However, the hydrogen pressure is preferably 5 atm or less, more preferably 3 atm or less, due to the restriction of equipment and the like.
[0172] 接触水素化は、反応系に絶えず水素ガスを供給して行うことができる。また一定圧 まで水素ガスを供給した後に、反応系を密閉して接触水素化を行い、反応の進行に 伴い系内の圧力が低下してから、再び水素ガスを供給することもできる。水素ガス供 給の前に、反応系を減圧にすることが望ましい。また触媒に多くの水素を吸着させる ために、減圧および水素ガスの供給を複数回繰り返して行うことが、殊に溶媒存在下 で接触水素化を行う場合に、好ましレ、実施態様である。  [0172] Catalytic hydrogenation can be carried out by constantly supplying hydrogen gas to the reaction system. Alternatively, after hydrogen gas is supplied to a constant pressure, the reaction system is sealed to carry out catalytic hydrogenation, and after the pressure in the system decreases as the reaction proceeds, hydrogen gas can be supplied again. It is desirable to reduce the pressure of the reaction system before supplying hydrogen gas. Further, in order to adsorb a large amount of hydrogen to the catalyst, it is preferable to repeat the pressure reduction and the supply of hydrogen gas a plurality of times, particularly in the case of carrying out the catalytic hydrogenation in the presence of a solvent.
[0173] 製造するイソインドール多量体の繰返し単位数は、 2以上、好ましくは 3以上、より好 ましくは 5以上である。イソインドール多量体の繰返し単位数が大きくなり、その分子 量が増大するほど、多量体、特にポリマーとしての機械的特性が向上するからである 。しかしあまりに大きな分子量を有するイソインドール多量体は、製造が難しぐまた 多量体自体の取扱!/、性も低下する。よってイソインドール多量体の重量平均分子量 (ポリスチレン換算での GPC測定による値)は、好ましくは 1 , 000〜50万程度、より 好ましくは 3, 000〜30万程度、さらに好ましくは 5, 000〜; 10万程度である。  The number of repeating units of the isoindole multimer to be produced is 2 or more, preferably 3 or more, more preferably 5 or more. This is because as the number of repeating units of the isoindole multimer increases and the molecular weight thereof increases, the mechanical properties as a multimer, particularly as a polymer, improve. However, isoindole multimers having too large a molecular weight are difficult to manufacture and the handling / gender of the multimer itself is also reduced. Therefore, the weight average molecular weight (value by GPC measurement in terms of polystyrene) of the isoindole multimer is preferably about 1,000 to 500,000, more preferably about 30,000 to 300,000, and still more preferably 5,00 to 500; It is about 100,000.
[0174] 本発明の製造方法によりイソインドール多量体を製造した後、多量体の導電性を向 上させるために、既知の方法でドーピングしても良い。  After the isoindole multimer is produced by the production method of the present invention, in order to improve the conductivity of the multimer, doping may be performed by a known method.
[0175] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例 によって制限を受けるものではなく、上記 ·下記の趣旨に適合し得る範囲で適当に変 更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲 に包含される。  Hereinafter, the present invention will be more specifically described by way of examples. However, the present invention is not limited by the following examples, and may be appropriately modified within the scope which can conform to the above-mentioned purpose. It is of course possible to carry out further additions, and all of them are included in the technical scope of the present invention.
実施例  Example
[0176] 以下の実施例 1〜21は、本発明のイソインドール(2)および(3)、並びにポリイソィ ンドール (4)および(5)に関する実施例である。実施例 22〜34は、本発明の中間体 (6) (=「イソインドールの 1位置換体」)、ポルフィリン(7a)およびボルフイリン錯体(8 )に関する実施例である。実施例 35〜38は、本発明のイソインドール多量体(10)に 関する実施例である。 [0176] The following Examples 1 to 21 are examples of isoindoles (2) and (3) of the present invention, and polyisoindoles (4) and (5). Examples 22 to 34 are intermediates (6) of the present invention (= “1-substituted form of isoindole”), porphyrin (7a) and porphyrin complex (8) It is an example regarding. Examples 35 to 38 relate to the isoindole multimer (10) of the present invention.
[0177] 実施例 1:テトラフルオロフタロニトリルの水素化ジイソブチルアルミニウムによる還元  Example 1: Reduction of tetrafluorophthalonitrile with hydrogenated diisobutylaluminum
[0178] [化 23] [Formula 23]
Figure imgf000046_0001
Figure imgf000046_0001
[0179] 還流冷却器、滴下ロートおよび温度計を備えた四つ口反応容器に、テトラフルォロ フタロニトリル (株式会社日本触媒製) 3. 0g (15. Ommol)を加え、窒素置換した後、 シリンジで脱水トルエン 75mlを加えた。氷浴中で冷却しながら、 0. 99Mの水素化ジ イソブチルアルミニウム(関東化学株式会社力も購入)のトノレェン溶液 61ml (60. 3m mol)を、滴下ロートからゆっくりと滴下した。滴下終了後に室温で終夜撹拌した後、 氷浴中で冷却しながら、 2Mの塩酸 45ml (90mmol)を加えてタエンチした。反応物 を酢酸ェチルで抽出し、重曹水で中和し、飽和食塩水で洗浄し、無水硫酸ナトリウム で脱水した後、抽出物をエバポレーターにより濃縮した。この濃縮物を、シリカゲル力 ラムクロマトグラフィー(溶媒:ジクロロメタン)により精製した。 目的物の 4, 5, 6, 7—テ トラフノレ才ロー 2H—イソインドーノレを、収率 22. 6% (0. 64g、 3. 4mmol)で得た。  In a four-necked reaction vessel equipped with a reflux condenser, a dropping funnel, and a thermometer, 3.0 g (15. O mmol) of tetrafluorophthalonitrile (manufactured by Nippon Shokubai Co., Ltd.) was added, and after replacing with nitrogen, using a syringe 75 ml of dehydrated toluene were added. While cooling in an ice bath, 61 ml (60.3 mmol) of a solution of 0.93 M diisobutylaluminum hydride (Kanto Kagaku Co., Ltd. also purchased) Tonlene solution was slowly dropped from the dropping funnel. After completion of the dropwise addition, the mixture was stirred at room temperature overnight, and then 45 ml (90 mmol) of 2 M hydrochloric acid was added while cooling in an ice bath to carry out the addition. The reaction product is extracted with ethyl acetate, neutralized with aqueous sodium bicarbonate solution, washed with saturated brine, dried over anhydrous sodium sulfate, and the extract is concentrated by an evaporator. The concentrate was purified by silica gel chromatography (solvent: dichloromethane). The target compound 4, 5, 6, 7-tetrahydrofuran 2H-isoindonol was obtained in a yield of 22.6% (0.64 g, 3.4 mmol).
[0180] 実施例 2 :テトラフルオロフタロニトリルの水素化ジイソブチルアルミニウムによる還元 実施例 1と同じ条件で反応を行ったが、タエンチの際にプロトン酸を用いずに、水 1 OOmlのみを添加した。水を加え始めて間もなぐ反応溶液はゲル化した。セライトろ 過で固形物を除き、実施例 1と同じ操作で精製を行ったところ、 目的物の 4, 5, 6, 7 —テトラフルオロー 2H—イソインドールを収率 0· 6% (0. 017g、 0. 09mmol)で得 た。  Example 2 Reduction of Tetrafluorophthalonitrile with Diisobutylaluminum Hydride The reaction was carried out under the same conditions as in Example 1, but only 1 OO ml of water was added without using a protonic acid at the time of Taenchi. The reaction solution gelled shortly after the addition of water. The solid matter was removed by filtration through Celite, and purification was carried out in the same manner as in Example 1. As a result, it was found that the objective substance 4,5,6,7-tetrafluoro-2H-isoindole was obtained in a yield of 0.6% (0. Obtained at 017 g, 0.09 mmol).
[0181] 実施例 3 :テトラフルオロフタロニトリルの水素化ジイソブチルアルミニウムによる還元 濃縮物を昇華精製したこと以外は、実施例 1と同様の操作で、 4, 5, 6, 7—テトラフ ノレ才ロー 2H—イソインドーノレを収串 9. 87% (0. 28g、 1. 48mmol)で得た。  Example 3 Reduction of Tetrafluorophthalonitrile by Diisobutylaluminium Hydrogenation was carried out in the same manner as in Example 1, except that the concentrate was purified by sublimation, and 4,5,6,7-tetraphenol 4 The iso indinol was obtained with astringent 9. 87% (0.28 g, 1. 48 mmol).
[0182] 実施例 4 :テトラフルオロフタロニトリルの水素化ジイソブチルアルミニウムによる還元 テトラフルオロフタロニトリル 0· 2g (l . 06mmol)をナスフラスコに加え、窒素置換し た後、脱水トルエン 6mlを加えた。氷浴中で冷却しながら、 0. 95Mの水素化ジイソブ チルアルミニウムのトルエン溶液 4. 21ml (4mmol)をゆっくりと滴下し、室温に戻した 後、 23時間撹拌した。その後、反応混合物に 1Mの NaOH水溶液 15ml (15mmol) をゆっくりと加えた。さらに酢酸ェチルを加えて、ゲル状物をセライトろ過し、反応物を 酢酸ェチルで抽出し、純水で数回洗浄し、無水硫酸ナトリウムで脱水し、減圧下で溶 媒を除去し、濃縮物を、シリカゲルショートカラムでのクロマトグラフィー (溶媒:クロ口 ホルム)により精製した。 目的物の 4, 5, 6, 7 テトラフルォ口一 2H イソインドール (肌色の固体)を、収率 20. 8% (39. 4mg、 0. 21mmol)で得た。 Example 4 Reduction of Tetrafluorophthalonitrile with Diisobutylaluminum Hydride Tetrafluorophthalonitrile 0 · 0.2 g (l. 06 mmol) was added to an eggplant flask and nitrogen substitution was carried out Then, 6 ml of dehydrated toluene was added. While cooling in an ice bath, 4.21 ml (4 mmol) of a 0.95 M solution of diisobutylaluminum hydride in toluene was slowly added dropwise, and after returning to room temperature, the mixture was stirred for 23 hours. After that, 15 ml (15 mmol) of 1 M aqueous NaOH solution was slowly added to the reaction mixture. Further, ethyl acetate is added, the gel is filtered through celite, the reaction product is extracted with ethyl acetate, washed several times with pure water, dried over anhydrous sodium sulfate, the solvent is removed under reduced pressure, and the concentrate is The residue was purified by chromatography on a silica gel short column (solvent: chloroform). The desired 4,5,6,7-tetrafluorinated 2H isoindole (skin-colored solid) was obtained in a yield of 20.8% (39.4 mg, 0.21 mmol).
[0183] 実施例 5 : 4, 5 ビス(ペンタフルオロフエノキシ) 3, 6 ジフルオロフタロニトリノレ の水素化ジイソブチルアルミニウムによる還元  Example 5: Reduction of 4, 5 bis (pentafluorophenoxy) 3, 6 difluorophthalonitrile by hydrogenated diisobutylaluminum
[0184] [化 24]  [Formula 24]
Figure imgf000047_0001
Figure imgf000047_0001
[0185] まず原料の 4, 5 ビス(ペンタフルオロフエノキシ) 3, 6 ジフルオロフタロニトリ ルを以下のようにして製造した:滴下ロートおよび温度計を備えた 200ml反応容器に テトラフノレ才ロフタロニトリノレ 20. lg (100. 45mmol)、フツイ匕カリウム 13. 99g (240. 79mmol)、メチルイソブチルケトン 130mlを加えた。氷浴により冷却した後、滴下口 トから、
Figure imgf000047_0002
中 ίこペンタフノレ才ロフエノーノレ 37. 0g (201. 0
[0185] First, the raw material 4, 5 bis (pentafluorophenoxy) 3, 6 difluorophthalonitrile was prepared as follows: in a 200 ml reaction vessel equipped with a dropping funnel and a thermometer Nole 20. 1 g (100. 45 mmol), potassium hydroxide 13. 99 g (240. 79 mmol), 130 ml of methyl isobutyl ketone were added. After cooling by an ice bath, from the dropping port,
Figure imgf000047_0002
During Ms. Pingko's Pentafune gift Lofennore 37. 0g (201. 0
2mmol)を溶解させた溶液をゆっくりと加え、次いで室温下で 2日間撹拌して反応を 行った。この反応溶液をろ過して無機塩を除き、分液ロートを用いて水洗し、無水硫 酸ナトリウムで脱水した後、反応溶液をエバポレーターで濃縮した。濃縮物を、トルェ ン/へキサン溶媒で再沈精製することにより、 4, 5—ビス(ペンタフルオロフエノキシ) 3, 6 ジフノレ才口フタロニトリノレを、収率 70. 83% (37. 4g、 70. 81mmol)で得た The reaction was carried out by slowly adding a solution in which 2 mmol) was dissolved, and then stirring at room temperature for 2 days. The reaction solution was filtered to remove inorganic salts, washed with water using a separatory funnel, and dried over anhydrous sodium sulfate, and then the reaction solution was concentrated by an evaporator. The concentrate is subjected to reprecipitation purification with toluene / hexane solvent to give 4,5-bis (pentafluorophenoxy) 3,6 diphenole open mouth phthalonitrile in a yield of 70. 83% (37.4 g, 37.4 g, 70. 81 mmol) was obtained
[0186] 次いで還流冷却器、滴下ロートおよび温度計を備えた四つ口反応容器に、 4, 5— ビス(ペンタフルオロフエノキシ) 3, 6 ジフルオロフタロニトリル 1 · 50g (2. 84mm ol)を加え、窒素置換した後、シリンジで脱水トルエン 25. 5mlを加えた。氷浴で冷却 しながら、 0. 99Mの水素化ジイソブチルアルミニウム(関東化学株式会社力 購入) のトルエン溶液 11 · 5ml (11. 4mmol)を、滴下ロートからゆっくりと滴下した。滴下終 了後、 95°Cで 4時間反応させた後、室温まで放冷し、続いて氷浴中で冷却しながら、 2Mの塩酸 10ml (20mmol)を加えてタエンチした。反応物を酢酸ェチルで抽出し、 重曹水で中和し、飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物を エバポレーターにより濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー (溶 媒:ジクロロメタン)により精製した。 目的物の 5, 6—ビス(ペンタフルオロフエノキシ) 4, 7 ジフノレ才ロー 2H イソインドーノレを、収率 34. 04% (0. 50g、 0. 97mmol )で得た。 Then, in a four-necked reaction vessel equipped with a reflux condenser, a dropping funnel and a thermometer, 4, 5-bis (pentafluorophenoxy) 3, 6 difluorophthalonitrile 1.50 g (2.84 mmol) The reaction mixture was purged with nitrogen, and then 25.5 ml of dehydrated toluene was added by a syringe. Cooling in an ice bath While stirring, 0.95 M (1.14 mmol) of a toluene solution of 0.93M diisobutylaluminum hydride (Kanto Chemical Co., Ltd. Power Purchase) was slowly dropped from the dropping funnel. After completion of the dropwise addition, the mixture was reacted at 95 ° C. for 4 hours, allowed to cool to room temperature, and then cooled with an ice bath while adding 10 ml (20 mmol) of 2 M hydrochloric acid to perform quenching. The reaction product was extracted with ethyl acetate, neutralized with aqueous sodium bicarbonate solution, washed with saturated brine, dried over anhydrous sodium sulfate, and the extract was concentrated by an evaporator. The concentrate was purified by silica gel column chromatography (solvent: dichloromethane). The desired product 5, 6-bis (pentafluorophenoxy) 4,7-diphenolic acid 2H isoindonolene was obtained in a yield of 34.04% (0.50 g, 0.97 mmol).
[0187] 5, 6 ビス(ペンタフルオロフエノキシ) 4, 7 ジフルォ口一 2H イソインドーノレ のスぺクトノレデータ  [0187] Spectrum data of 5, 6 bis (pentafluorophenoxy) 4, 7 difluorinated 1 2H iso indonolole
(1) NMRスペクトル(装置:日本電子製、型式: JNM— AL400)  (1) NMR spectrum (Device: JEOL, model: JNM-AL400)
'H-NMRCCDCl ) : 6 7. 31 (m、 2H)、 9. 62 (brs、 1H)  'H-NMR CCDCI): 6 7. 31 (m, 2 H), 9. 62 (brs, 1 H)
19F-NMR(CDC1 ): δ—143. 57 (s 2F) 157. 50 (m、 4F)、 - 162. 50 ( m、 2F)、 - 163. 49 (m、 4F) 19 F-NMR (CDC 1): δ—143. 57 (s 2 F) 157. 50 (m, 4 F),-162. 50 (m, 2 F),-163. 49 (m, 4 F)
(2)マススペクトル(装置:日本電子製、型式: JMS-MS 700v)  (2) Mass spectrum (Device: manufactured by Nippon Denshi, model: JMS-MS 700v)
MS (EI) : m/z = 518 (M+) (計算分子量: 517) MS (EI): m / z = 518 (M + ) (calculated molecular weight: 517)
[0188] 実施例 6 : 4 ペンタフルオロフエノキシー 3, 5, 6 トリフルオロフタロニトリルの水 素化ジイソブチルアルミニウムによる還元  Example 6: Reduction of 4 pentafluorophenoxide 3, 5 6 trifluorophthalonitrile with hydrogenated diisobutylaluminum
[0189] [化 25] [Formula 25]
Figure imgf000048_0001
Figure imgf000048_0001
実施例 5と同様の方法で製造した 4 ペンタフルオロフエノキシー 3, 5, 6—トリフノレ オロフタロニトリル 0· 364g (lmmol)をナスフラスコに加え、窒素置換した後、脱水ト ルェン 7mlを加えた。氷浴中で冷却しながら、 0. 99Mの水素化ジイソブチルアルミ 二ゥムのトルエン溶液 4. 04ml (4mmol)をゆっくりと滴下し、室温に戻した後、 24時 間撹拌した。その後、反応混合物に 1Mの NaOH水溶液 16ml (16mmol)をゆっくり と加えた。さらに酢酸ェチルを加えて、ゲル状物をセライトろ過し、反応物を酢酸ェチ ルで抽出し、純水で数回洗浄し、無水硫酸ナトリウムで脱水し、減圧下で溶媒を除去 し、濃縮物を、シリカゲルショ
Figure imgf000049_0001
(溶媒:ジクロロメタン)に より精製した。 目的物の 5 ペンタフルオロフエノキシ一 4, 6, 7 トリフノレオ 2H —イソインドール(褐色の固体)を、収率 17· 5% (61. 7mg 0. 17mmol)で得た。
Four pentafluorophenoxides 3,5,6-trifnurorophthalonitrile 0 · 364 g (l mmol) prepared in the same manner as in Example 5 were added to an eggplant flask and purged with nitrogen, and then 7 ml of dehydrated toluene was added. . While cooling in an ice bath, 4.04 ml (4 mmol) of a 0.99 M solution of diisobutylaluminum hydride in toluene was slowly added dropwise, and after returning to room temperature, the mixture was stirred for 24 hours. Then, slowly add 16 ml (16 mmol) of 1 M aqueous NaOH solution to the reaction mixture. And added. Further, ethyl acetate is added, the gel is filtered through celite, the reaction product is extracted with ethyl acetate, washed several times with pure water, dried over anhydrous sodium sulfate, the solvent is removed under reduced pressure, and concentrated The silica gel
Figure imgf000049_0001
It was purified by (solvent: dichloromethane). The desired product, 5 pentafluorophenyloxy 4,6,7 trifnoleo 2H — isoindole (brown solid), was obtained in a yield of 17 · 5% (61.7 mg 0.17 mmol).
[0191] 5 ペンタフルォロフエノキシ 4, 6, 7 トリフルォロ一 2H イソインドールの NM Rスペクトル (装置:日本電子製、型式: JNM— AL400)  [0191] NMR spectrum of 5 pentafluorophenoxy 4, 6, 7 trifluorinated 2H isoindole (apparatus: JEOL, model: JNM-AL400)
'H-NMRCCDCl ) : 6 7. 35 (m 2H) 9. 57 (brs 1H)  'H-NMR CCDCI): 6 7. 35 (m 2 H) 9. 57 (brs 1 H)
19F-NMR(CDC1 ) δ—143. 22 (s IF) 151. 45 (m IF) 157. 15 ( m 2F)、 - 162. 22 (m 1F)、 - 163. 02 (m 1F)、 163. 31 (m 2F) 19 F-NMR (CDC1) δ-143. 22 (s IF) 151. 45 (m IF) 157 15. 15 (m 2 F),-162. 22 (m 1 F),-163. 02 (m 1 F), 163 . 31 (m 2 F)
[0192] 実施例 7 : 4, 5—ビス(ペンタフルォロチオフエノキシ) 3, 6—ジフルオロフタロニト リルの水素化ジイソブチルアルミニウムによる還元  Example 7 Reduction of 4, 5-Bis (pentafluorothioffenoxy) 3,6-difluorophthalonitryl with Hydrogenated Diisobutylaluminum
[0193] [化 26]
Figure imgf000049_0002
[Equation 26]
Figure imgf000049_0002
[0194] 実施例 5と同様の方法で製造した 4, 5—ビス(ペンタフルォロチオフエノキシ) 3, [0194] 4,5-Bis (pentafluorothioff enoxy) manufactured by the same method as in Example 5 3,
6 ジフノレオロフタロニトリノレ 0. 560g (lmmol)をナスフラスコに加え、窒素置換した 後、脱水トルエン 30mlを加えた。氷浴中で冷却しながら、 0. 99Mの水素化ジイソブ チルアルミニウムのトルエン溶液 4· 04ml (4mmol)をゆっくりと滴下し、室温に戻した 後、 24時間撹拌した。その後、反応混合物に 1Mの NaOH水溶液 16ml (16mmol) をゆっくりと加えた。さらに酢酸ェチルを加えて、ゲル状物をセライトろ過し、反応物を 酢酸ェチルで抽出し、純水で数回洗浄し、無水硫酸ナトリウムで脱水し、減圧下で溶 媒を除去し、濃縮物を、シリカゲルショートカラムでのクロマトグラフィー (溶媒:ジクロ ロメタン)により精製した。 目的物の 5, 6—ビス(ペンタフルォロチオフエノキシ) 4,6 0.60 g (1 mmol) of difuranoleophthalonitrile was added to an eggplant flask and purged with nitrogen, and then 30 ml of dehydrated toluene was added. While cooling in an ice bath, 0.40 ml (4 mmol) of a 0.99 M solution of diisobutylaluminum hydride in toluene was slowly added dropwise, and after returning to room temperature, the mixture was stirred for 24 hours. After that, 16 ml (16 mmol) of 1 M aqueous NaOH solution was slowly added to the reaction mixture. Further, ethyl acetate is added, the gel is filtered through celite, the reaction product is extracted with ethyl acetate, washed several times with pure water, dried over anhydrous sodium sulfate, the solvent is removed under reduced pressure, and the concentrate is The residue was purified by chromatography on silica gel short column (solvent: dichloromethane). The target 5, 6-bis (pentafluorothioff enoxy) 4,
7 ジフルオロー 2H—イソインドール(緑色の固体)を、収率 20· 2% (110. 7mg 0 • 20mmol)で得た。 7 Difluoro-2H-isoindole (green solid) was obtained in a yield of 20 · 2% (110. 7 mg 0 · 20 mmol).
[0195] 5, 6 ビス(ペンタフルォロチオフエノキシ) 4, 7 ジフルォロ一 2H イソインド 一ノレのスぺクトノレデータ [0195] 5, 6 bis (pentafluorothioff enoxy) 4, 7 difluorinated 2H iso ind One nore's nocturnal data
(1) NMRスペクトル(装置:日本電子製、型式: JNM— AL400)  (1) NMR spectrum (Device: JEOL, model: JNM-AL400)
'H-NMRCCDCl ) : 6 7. 35 (q J= l . 5Hz 2H) 9. 62 (brs 1H) 'H-NMR CCDCI): 6 7. 35 (q J = 1. 5 Hz 2 H) 9. 62 (brs 1 H)
19F-NMR(CDC1 ) δ—109. 65 (s 2F) 134. 32 (m 4F) 153. 89 (t J = 21Hz 2F)、 - 161. 71 (m 4F) 19 F-NMR (CDC 1) δ-109. 65 (s 2 F) 134. 32 (m 4 F) 153. 89 (t J = 21 Hz 2 F),-161. 71 (m 4 F)
(2)マススペクトル(装置 日本電子製、型式: JMS-MS 700v)  (2) Mass spectrum (Device Nippon Electronics, model: JMS-MS 700v)
MS (EI) : m/z = 549 (M+) (計算分子量: 548· 95) MS (EI): m / z = 549 (M + ) (calculated molecular weight: 548 · 95)
[0196] 実施例 8 : 4 クロロー 3, 5, 6 トリフルオロフタロニトリルの水素化ジイソブチルァ ノレミニゥムによる還元  Example 8: Reduction of 4 Chloro-3,5,6 Trifluorophthalonitrile with Hydrogenated Diisobutylanoleum
[0197] [化 27]
Figure imgf000050_0001
[0197] [Formula 27]
Figure imgf000050_0001
[0198] まず原料の 4 クロ 3, 5, 6 トリフルオロフタロニトリルを以下のようにして製造 した:還流冷却器を備えた 5L反応容器にテトラフルオロフタロニトリル lOOOg (5mol) N メチノレー 2 ピロリドン 1004g、 セトニトリノレ 2343gを仕込み、 75°Gまで昇温 した後、塩化リチウム 233g (5. 5mol)を逐次加え、この温度で 7時間反応させた。反 応溶液をエバポレーターにより濃縮し、あらかたのァセトニトリルを除去した後に、濃 縮物を水へ注ぎ、析出物をろ過することで、粗精製物を得た。引き続き粗精製物をメ チルイソプチルケトンに溶解させ、水洗することで無機塩を除去し、水相と有機相とを 分離して、有機相を無水硫酸ナトリウムで脱水し、エバポレーターにより濃縮し、濃縮 物を減圧蒸留することで、 4 クロロー 3, 5, 6 トリフノレオロフタロニトリノレを、収率 40 . 7% (440. 5g 2. 03mol)で得た。  [0198] First, 4 chloro 3, 5, 6 trifluorophthalonitrile as a raw material was produced as follows: 1004 g of tetrafluorophthalonitrile 100 g (5 mol) N methinole 2 pyrrolidone in a 5 L reaction vessel equipped with a reflux condenser. After 2343 g of cetonitrile was charged and the temperature was raised to 75 ° G, 233 g (5.5 mol) of lithium chloride was successively added, and the mixture was reacted at this temperature for 7 hours. The reaction solution was concentrated by an evaporator to remove any acetonitrile, and then the concentrate was poured into water, and the precipitate was filtered to obtain a crudely purified product. Subsequently, the crude product is dissolved in methyl isopropyl ketone and washed with water to remove inorganic salts, the aqueous phase and the organic phase are separated, the organic phase is dried over anhydrous sodium sulfate and concentrated by an evaporator. The concentrate was distilled under reduced pressure to obtain 4chloro-3,5,6 trifino reophthalonitrinole in a yield of 40.7% (440. 5 g 2.03 mol).
[0199] 次いで還流冷却器、滴下ロートおよび温度計を備えた四つ口反応容器に、 4 クロ π - 3, 5, 6—トリフノレ才 πフタ πュトリノレ 1. 50g (6. 93mmol)をカロ免、窒素置換した 後、シリンジで脱水トルエン 7mlを加えた。氷浴で冷却しながら、 0. 99Mの水素化ジ イソブチルアルミニウム(関東化学株式会社力も購入)のトノレェン溶液 28ml (27. 7m mol)を、滴下ロートからゆっくりと滴下した。滴下終了後、 95°Cで 4時間反応させた 後、室温まで放冷し、続いて氷浴中で冷却しながら、 2Mの塩酸 21ml (42mmol)を 加えてタエンチした。反応物を酢酸ェチルで抽出し、重曹水で中和し、飽和食塩水 で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃縮した この濃縮物を、
Figure imgf000051_0001
(溶媒:ジクロロメタン)により精製 した。 目的物の 5—クロ口一 4, 6, 7—トリフルォロ一 2H—イソインドールを、収率 12· 64% (0. 18g、 0. 88mmol)で得た。
Then, in a four-necked reaction vessel equipped with a reflux condenser, a dropping funnel, and a thermometer, 1.5 g (6.93 mmol) of 4-chloro-π-3,5,6-triphenole-π-π-eutrileole was dissolved in After purging with nitrogen, 7 ml of dehydrated toluene was added by a syringe. While cooling with an ice bath, 28 ml (27.7 mmol) of a toluene solution of 0.93 M hydrogenated diisobutylaluminum (Kanto Chemical Co., Ltd. also purchased) was slowly dropped from the dropping funnel. After completion of the addition, the reaction was carried out at 95 ° C for 4 hours After cooling to room temperature, 21 ml (42 mmol) of 2 M hydrochloric acid was added to the mixture while cooling in an ice bath. The reaction product is extracted with ethyl acetate, neutralized with aqueous sodium bicarbonate solution, washed with saturated brine, dried over anhydrous sodium sulfate, and the extract is concentrated by an evaporator.
Figure imgf000051_0001
It was purified by (solvent: dichloromethane). The target 5-chloro-4-, 6, 7-trifluoro-2-H-isoindole was obtained in a yield of 12 · 64% (0.18 g, 0.88 mmol).
[0200] 5—クロ口一 4, 6, 7—トリフルオロー 2H—イソインドールのスぺクトノレデータ [0200] 5-Black mouth 4, 6, 7-Trifluor 2H-Spectrum data of isoindole
(1) NMRスペクトル(装置:日本電子製、型式: JNM— AL400)  (1) NMR spectrum (Device: JEOL, model: JNM-AL400)
'H-NMRCCDCl ) : 6 7. 29 (m、 2H)、 9. 39 (brs、 1H)  'H-NMR CCDCI): 6 7. 29 (m, 2 H), 9. 39 (brs, 1 H)
19F-NMR(CDC1 ) : δ—125. 66 (dt、 J = 20Hz, 2Hz、 IF) ,—150. 76 (dd、 19 F-NMR (CDC1): δ-125. 66 (dt, J = 20 Hz, 2 Hz, IF),-150. 76 (dd,
J= 16Hz, 2Hz、 IF) , - 151. 58 (ddd、 J = 20Hz, 16Hz, 2Hz、 IF) , J = 16 Hz, 2 Hz, IF),-151. 58 (ddd, J = 20 Hz, 16 Hz, 2 Hz, IF),
(2)マススペクトル(装置:日本電子製、型式: JMS-MS 700v)  (2) Mass spectrum (Device: manufactured by Nippon Denshi, model: JMS-MS 700v)
MS (EI) : m/z = 205 (M+) (計算分子量: 204· 99) MS (EI): m / z = 205 (M + ) (calculated molecular weight: 204 · 99)
[0201] 実施例 9 : 4, 5—ジクロロー 3, 6—ジフルオロフタロニトリルの水素化ジイソブチルァ ノレミニゥムによる還元  Example 9: Reduction of 4, 5-Dichloro-3, 6-Difluorophthalonitrile by Hydrogenated Diisobutylanhydride
[0202] [化 28]  [Formula 28]
Figure imgf000051_0002
Figure imgf000051_0002
[0203] 実施例 8と同様の方法で製造した 4, 5—ジクロロー 3, 6—ジフルオロフタロニトリル 0. 233g (lmmol)をナスフラスコに加え、窒素置換した後、脱水トルエン 7mlを加え た。氷浴中で冷却しながら、 0. 99Mの水素化ジイソブチルアルミニウムのトルエン溶 液 4. 04ml (4mmol)をゆっくりと滴下し、室温に戻した後、 24時間撹拌した。その後 、反応混合物に 1Mの NaOH水溶液 16ml (16mmol)をゆっくりと加えた。さらに酢 酸ェチルを加えて、ゲル状物をセライトろ過し、反応物を酢酸ェチルで抽出し、純水 で数回洗浄し、無水硫酸ナトリウムで脱水し、減圧下で溶媒を除去し、濃縮物を、シリ 力ゲルショートカラムでのクロマトグラフィー(溶媒:ジクロロメタン)により精製した。 目 的物の 5, 6—ジクロロー 4, 7—ジフルオロー 2H—イソインドール(淡黄色の固体)を 、収率 27. 1 % (60. 3mg、 0. 27mmol)で得た。 [0203] 0.233 g (1 mmol) of 4,5-dichloro-3,6-difluorophthalonitrile produced in the same manner as in Example 8 was added to an eggplant flask and purged with nitrogen, and then 7 ml of dehydrated toluene was added. While cooling in an ice bath, 4.04 ml (4 mmol) of a 0.99 M solution of diisobutylaluminum hydride in toluene was slowly added dropwise, and after returning to room temperature, the mixture was stirred for 24 hours. Then, 16 ml (16 mmol) of 1 M aqueous NaOH solution was slowly added to the reaction mixture. Further, ethyl acetate is added, the gel is filtered through celite, the reaction product is extracted with ethyl acetate, washed several times with pure water, dried over anhydrous sodium sulfate, the solvent is removed under reduced pressure, and the concentrate is Was purified by chromatography on silica gel gel short column (solvent: dichloromethane). The objective 5, 6-dichloro-4, 7-difluoro-2H- isoindole (a pale yellow solid) , Yield 27.1% (60.3 mg, 0.27 mmol).
[0204] 5, 6 ジクロロー 4, 7 ジフルオロー 2H—イソインドールのスペクトルデータ [0204] Spectral data of 5, 6 dichloro-4, 7 difluoro-2H- isoindole
(1) NMRスペクトル(装置:日本電子製、型式: JNM— AL400)  (1) NMR spectrum (Device: JEOL, model: JNM-AL400)
'H-NMRCCDCl ) : 6 7. 33 (q、J= l . 5Hz、 2H)、 9. 50 (brs、 1H) 'H-NMR CCDCI): 6 7. 33 (q, J = 1.5 Hz, 2 H), 9. 50 (brs, 1 H)
19F-NMR(CDC1 ): δ—122. 01 (s、 2F) 19 F-NMR (CDC 1): δ-122. 01 (s, 2F)
(2)マススペクトル(装置:日本電子製、型式: JMS-MS 700v)  (2) Mass spectrum (Device: manufactured by Nippon Denshi, model: JMS-MS 700v)
MS (EI) : m/z = 221 (M+) (計算分子量: 220· 96) MS (EI): m / z = 221 (M + ) (calculated molecular weight: 220 · 96)
[0205] 実施例 10 : 4, 5 ビス(へキシルチオ) 3, 6 ジフルオロフタロニトリルの水素化 ジイソブチルアルミニウムによる還元  Example 10: Hydrogenation of 4, 5 bis (hexylthio) 3, 6 difluorophthalonitrile: Reduction with diisobutylaluminum
[0206] [化 29]
Figure imgf000052_0001
[Chem. 29]
Figure imgf000052_0001
[0207] 実施例 5と同様の方法で製造した 4, 5 ビス(へキシルチオ) 3, 6 ジフルォロ フタロニトリル 2· 0g (5. 04mmol)をナスフラスコに加え、窒素置換した後、脱水トル ェン 40mlを加えた。氷浴中で冷却しながら、 0. 99Mの水素化ジイソブチルアルミ二 ゥムのトルエン溶液 20. 5ml (20. 30mmol)をゆっくりと滴下し、室温に戻した後、 1 6時間撹拌した。その後、反応混合物に 1Mの NaOH水溶液 20ml (20mmol)をゆ つくりとカロえた。さらに酢酸ェチルを加えて、ゲル状物をセライトろ過し、反応物を酢 酸ェチルで抽出し、純水で数回洗浄し、無水硫酸ナトリウムで脱水し、減圧下で溶媒 を除去し、濃縮物を、シリカゲルショートカラムでのクロマトグラフィー(溶媒:ジクロロメ タン)により精製した。 目的物の 5, 6 ビス(へキシルチオ)ー 4, 7 ジフルオロー 2H —イソインドール(黄色の液体)を、収率 22· 1 % (60. 429g、 1. l lmmol)で得た。  [0207] 4,0 bis (hexylthio) 3,6 difluoro phthalonitrile 2 · 0 g (5.04 mmol) prepared in the same manner as in Example 5 was added to an eggplant flask and purged with nitrogen, and then dehydrated in toluene. Added 40 ml. While cooling in an ice bath, 20.5 ml (20.30 mmol) of a 0.99 M solution of diisobutylaluminum hydride in toluene was slowly added dropwise, and after returning to room temperature, the mixture was stirred for 16 hours. Thereafter, 20 ml (20 mmol) of a 1 M aqueous solution of NaOH was added to the reaction mixture as it was stirred. Further, ethyl acetate is added, the gel is filtered through celite, the reaction product is extracted with ethyl acetate, washed several times with pure water, dried over anhydrous sodium sulfate, the solvent is removed under reduced pressure, and the concentrate is The residue was purified by chromatography on silica gel short column (solvent: dichloromethane). The desired product 5, 6 bis (hexylthio) -4,7 difluoro-2H-isoindole (yellow liquid) was obtained in a yield of 22 · 1% (60. 429 g, 1. 1 mmol).
[0208] 5, 6 ビス(へキシルチオ) 4, 7 ジフルオロー 2H—イソインドールの NMRスぺ タトル(装置:バリアン社製、型式:マーキュリー 2000)  [0208] NMR spectrum of 5, 6 bis (hexylthio) 4, 7 difluoro-2H- isoindole (apparatus: Varian, model: Mercury 2000)
'H-NMRCCDCl ): δ 0. 85 (t、 6H、 J = 6. 4Hz)、 1. 26~1. 66 (m、 16H)、 2 'H-NMR CCDCI): δ 0.85 (t, 6 H, J = 6. 4 Hz), 1. 26 to 1. 66 (m, 16 H), 2
. 89 (t、 4H, J = 7. 3Hz)、 7. 32 (m、 2H)、 9. 6 (brs、 1H) 89 (t, 4H, J = 7. 3 Hz), 7. 32 (m, 2 H), 9. 6 (brs, 1 H)
19F-NMR(CDC1、へキサフルォロベンゼン): δ 50. 08 (s、 2F) [0209] 実施例 11:テトラフルオロフタロニトリルの BHによる還元 19 F-NMR (CDC1, Hexafluorobenzene): δ 50. 08 (s, 2F) [0209] Example 11: Reduction of tetrafluorophthalonitrile with BH
[0210] [化 30]  [Chemical formula 30]
Figure imgf000053_0001
Figure imgf000053_0001
[0211] 還流冷却器、滴下ロートおよび温度計を備えた三つ口反応容器を窒素置換した後 、 0. 99Mの THF— BH錯体(関東化学株式会社より購入)の THF溶液 20ml (19. After replacing the three-necked reaction vessel equipped with a reflux condenser, a dropping funnel and a thermometer with nitrogen, 20 ml of a THF solution of 0.0. 99 M THF-BH complex (purchased from Kanto Chemical Co., Ltd.) (19.
811111101)ぉょび1^1?351111を加ぇた。別途、テトラフルオロフタロニトリル 3· 0g (14. 99mmol)をトルエン 10mlに溶解させた溶液を準備し、この溶液を、室温下で反応 容器にゆっくりと滴下した。滴下終了後、 65°Cまで加熱して 4時間反応させた。その 後、再び反応溶液を室温まで戻し、氷浴中で冷却しながら、 2Mの塩酸 18ml (36m mol)を加えてタエンチした。反応物を酢酸ェチルで抽出し、蒸留水、次いで飽和食 塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃 縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー (溶媒:ジクロロメタン)によ り精製した。 目的物の 4, 5, 6, 7—テトラフルオロー 2H—イソインドールを、収率 37 % (1. 05g、 5. 55mmol)で得た。 8111111101) Add 1 ^ 1? 351111. Separately, a solution in which 3 g (14. 99 mmol) of tetrafluorophthalonitrile was dissolved in 10 ml of toluene was prepared, and this solution was slowly dropped into the reaction vessel at room temperature. After completion of the dropwise addition, the mixture was heated to 65 ° C. and allowed to react for 4 hours. After that, the reaction solution was returned to room temperature again, and while cooling in an ice bath, 18 ml (36 mmol) of 2 M hydrochloric acid was added to carry out heating. The reaction product was extracted with ethyl acetate, washed with distilled water and then with saturated brine, and dried over anhydrous sodium sulfate, and the extract was concentrated using an evaporator. The concentrate was purified by silica gel column chromatography (solvent: dichloromethane). The objective 4,5,6,7-tetrafluoro-2H-isoindole was obtained in a yield of 37% (1. 05 g, 5.55 mmol).
[0212] 実施例 12 :テトラフルオロフタロニトリルの接触水素化法による還元  Example 12 Reduction of Tetrafluorophthalonitrile by Catalytic Hydrogenation Method
[0213] [化 31]
Figure imgf000053_0002
[Formula 31]
Figure imgf000053_0002
100mlの三つ口フラスコに、活性炭にパラジウムを担持させた触媒(アルドリッチ社 より購人、 Pd : 10質量0 /0) 0. 75g (Pd量: 0. 70mmol)、メタノーノレ 30ml、 3Mの石) fL 酸 1. 3ml (3. 9mmol)を添加した。次いで系内を減圧にしてから水素を供給する操 作 (水素置換)を 3回繰り返した後、水素バルーンで加圧(約 1. 1気圧)した状態で、 室温で 10分間撹拌して触媒を活性化させた。その後にテトラフルオロフタロニトリル 1 . 50g (7. 5mmol)をトルエン 20mlに溶解させた溶液をナスフラスコに加えて、室温 で 13時間激しく撹拌した。反応溶液を重曹水で中和した後、セライトろ過により Pd触 媒 (Pd/C)を除去し、クロ口ホルムで抽出し、蒸留水、次いで飽和食塩水で洗浄し、 無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃縮した。この濃縮 物を、シリカゲルカラムクロマトグラフィー(溶媒:クロ口ホルム)により精製した。 目的物 の 4, 5, 6, 7—テトラフノレ才ロー 2H—イソインドーノレを、収率 41. 6% (0. 59g、 3. 1 2mmol)で得た。 Three-necked flask 100 ml, catalyst supported palladium on activated carbon (購人from Aldrich, Pd: 10 mass 0/0) 0. 75g (Pd weight: 0. 70 mmol), Metanonore 30 ml, stone 3M) 1.3 ml (3.9 mmol) of f L acid were added. Next, the system is depressurized and then hydrogen is supplied repeatedly (hydrogen substitution) three times, and then the catalyst is stirred for 10 minutes at room temperature with the hydrogen balloon pressurized (about 1.1 atm). It was activated. Thereafter, a solution of 1.50 g (7.5 mmol) of tetrafluorophthalonitrile dissolved in 20 ml of toluene was added to an eggplant flask and vigorously stirred at room temperature for 13 hours. The reaction solution is neutralized with sodium bicarbonate aqueous solution and filtered through celite to obtain Pd The solvent (Pd / C) was removed, extracted with chloroform, washed with distilled water and then with saturated brine, and dried over anhydrous sodium sulfate, and then the extract was concentrated by an evaporator. The concentrate was purified by silica gel column chromatography (solvent: chloroform). The target compound 4,5,6,7-tetra-fluoro-phenol 2H-isoindonol was obtained in a yield of 41.6% (0. 59 g, 3.12 mmol).
[0215] 実施例 13 :テトラフルオロフタロニトリルの接触水素化法による還元  Example 13 Reduction of Tetrafluorophthalonitrile by Catalytic Hydrogenation Method
[0216] [化 32] [Formula 32]
Figure imgf000054_0001
Figure imgf000054_0001
[0217] 100mlの三つ口フラスコに、活性炭にパラジウムを担持させた触媒(アルドリッチ社 より購人、 Pd : 10質量0 /0) 0. 5g (Pd量: 0. 47mmol)、酢酸ェチノレ 20ml、トリフノレ才 口酢酸 0. 6g (5. 26mmol)を添加した。次いで系内を減圧にしてから水素を供給す る操作 (水素置換)を 3回繰り返した後、水素バルーンで加圧(約 1. 1気圧)した状態 で、室温下で 30分間撹拌して触媒を活性化させた。その後にテトラフルオロフタロニ トリル 1. 00g (5mmol)を酢酸ェチル 20mlに溶解させた溶液をナスフラスコに加えて 、室温で 13時間激しく撹拌した。反応溶液を重曹水で中和した後、セライトろ過によ り Pd触媒(Pd/C)を除去し、クロ口ホルムで抽出し、蒸留水、次いで飽和食塩水で 洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃縮した。 この濃縮物を、シリカゲルカラムクロマトグラフィー(溶媒:クロ口ホルム)により精製した 。 目的物の 4, 5, 6, 7—テトラフルオロー 2H—イソインドールを、収率 33. 4% (0. 3 l og、 1. 67mmol)で得に。 [0217] A three neck flask of 100 ml, (購人from Aldrich, Pd: 10 mass 0/0) catalyst supported palladium on activated carbon 0. 5 g (Pd content: 0. 47 mmol), acetic acid Echinore 20 ml, Trifnorrhea 0.6 g (5.26 mmol) of oral acetic acid was added. Next, the system is depressurized and the hydrogen supply operation (hydrogen substitution) is repeated three times, and then the catalyst is stirred at room temperature for 30 minutes under pressure (about 1.1 atm) with a hydrogen balloon. Was activated. Thereafter, a solution of 1.00 g (5 mmol) of tetrafluorophthalonitrile in 20 ml of ethyl acetate was added to an eggplant flask and vigorously stirred at room temperature for 13 hours. The reaction solution is neutralized with aqueous sodium bicarbonate solution, then the Pd catalyst (Pd / C) is removed by Celite filtration, extraction is carried out with a crocodile form, washed with distilled water and then with saturated brine, and dried over anhydrous sodium sulfate. After extraction, the extract was concentrated by an evaporator. The concentrate was purified by silica gel column chromatography (solvent: chloroform). The desired 4,5,6,7-tetrafluoro-2H-isoindole is obtained in a yield of 33.4% (0.3 l og, 1.67 mmol).
[0218] 実施例 14 :テトラフルオロフタロニトリルの接触水素化法による還元  Example 14 Reduction of Tetrafluorophthalonitrile by Catalytic Hydrogenation Method
[0219] [化 33]
Figure imgf000054_0002
[Formula 33]
Figure imgf000054_0002
[0220] 100mlのナスフラスコに、 Rh/アルミナ触媒(アルドリッチ社より購入、 Rh : 5質量 %) 1. Og (Rh量: 0. 49mmol)およびメタノール 20mlを加えて、水素置換し、室温 下で 45分間撹拌した。その後に酢酸 0. 28ml (5mmol)を加え、テトラフルオロフタロ 二トリル 1. 0g (5mmol)をメタノール 20mlに溶解させた溶液を滴下し、再び水素置 換した後、室温で 65時間撹拌した。その後に飽和炭酸水素ナトリウム水溶液 4. 5ml を加え、セライトろ過し、酢酸ェチル、クロ口ホルムで抽出し、蒸留水で洗浄し、減圧 下で濃縮して黒紫色の固体 0. 96gを得た。これをシリカシリカゲルカラムクロマトダラ フィー(溶媒:クロ口ホルム)により精製して、肌色の固体として、 目的物の 4, 5, 6, 7 ーテトラフノレ才ロー 2H イソインドーノレを、収率 4. 1 % (0. 038g、 0. 20mmol)で 得た。 [0220] Rh / alumina catalyst (purchased from Aldrich, Rh: 5 mass) in a 100 ml eggplant flask %) 1. Og (Rh amount: 0.49 mmol) and 20 ml of methanol were added, and the mixture was purged with hydrogen and stirred at room temperature for 45 minutes. Thereafter, 0.28 ml (5 mmol) of acetic acid was added, a solution of 1.0 g (5 mmol) of tetrafluorophthaloyl in 20 ml of methanol was added dropwise, and after replacing with hydrogen again, the mixture was stirred at room temperature for 65 hours. Thereafter, 4.5 ml of a saturated aqueous solution of sodium hydrogen carbonate was added, followed by filtration through Celite, extraction with ethyl acetate and chloroform, washing with distilled water and concentration under reduced pressure to obtain 0.96 g of a black purple solid. The product is purified by silica gel column chromatography (solvent: croform) to obtain 4,5,6,7-tetra-fluoro-ne-ro-ro 2H iso-indonole as the skin-colored solid in a yield of 4.1%. Obtained with (0. 038 g, 0.20 mmol).
[0221] 実施例 15 :テトラフルオロフタロニトリルの接触水素化法による還元  Example 15 Reduction of Tetrafluorophthalonitrile by Catalytic Hydrogenation Method
[0222] [化 34] [Formula 34]
Figure imgf000055_0001
Figure imgf000055_0001
[0223] 1000mlの三つ口フラスコに、活性炭に水酸化パラジウムを担持させた触媒(アルド リッチ社より購人、 Pd : 20質量0 /0) 3. 77g (Pd量: 7. 09mmol)、メタノーノレ 300ml、 3Mの硫酸 12. 5ml (37. 5mmol)を添加した。次いで系内を減圧にしてから水素を 供給する操作 (水素置換)を 3回繰り返した後、水素バルーンで加圧(約 1. 1気圧)し た状態で、室温で 10分間撹拌して触媒を活性化させた。その後にテトラフルオロフタ ロニトリル 15g (75mmol)をトルエン 200mlおよび酢酸ェチル 200mlの混合溶媒に 溶解させた溶液をナスフラスコに加えて、室温で 14時間撹拌した。反応溶液を重曹 水で中和した後、セライトろ過により Pd触媒を除去し、トルエンで抽出し、蒸留水、次 いで飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレータ 一により濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー (溶媒:クロロホ ルム)により精製した。 目的物の 4, 5, 6, 7 テトラフルオロー 2H—イソインドールを 、収率 28% (3. 976g、 21. 02mmol)で得た。 [0223] A three neck flask of 1000 ml, catalyst supported palladium hydroxide on activated carbon (購人from Aldo rich Inc., Pd: 20 mass 0/0) 3. 77g (Pd weight: 7. 09mmol), Metanonore 300 ml, 12.5 ml (37.5 mmol) of 3 M sulfuric acid were added. Next, after the system is depressurized and the operation of supplying hydrogen (hydrogen substitution) is repeated three times, the catalyst is stirred at room temperature for 10 minutes while being pressurized with a hydrogen balloon (about 1.1 atm). It was activated. Thereafter, a solution of 15 g (75 mmol) of tetrafluorophthalonitrile dissolved in a mixed solvent of 200 ml of toluene and 200 ml of ethyl acetate was added to an eggplant flask and stirred at room temperature for 14 hours. The reaction solution is neutralized with sodium bicarbonate aqueous solution, then the Pd catalyst is removed by Celite filtration, the mixture is extracted with toluene, washed with distilled water and then with saturated brine and dried over anhydrous sodium sulfate, and the extract is evaporated. Concentrated by The concentrate was purified by silica gel column chromatography (solvent: chloroform). The desired 4,5,6,7 tetrafluoro-2H-isoindole was obtained in 28% yield (3.976 g, 21.02 mmol).
[0224] 実施例 16 : 4, 5 ビス(ペンタフルオロフェニル) 3, 6 ジフルオロフタロニトリノレ の接触水素化法による還元 [0225]
Figure imgf000056_0001
Example 16: Reduction of 4, 5 bis (pentafluorophenyl) 3, 6 difluorophthalonitrile by catalytic hydrogenation [0225]
Figure imgf000056_0001
[0226] 100mlの三つ口反応容器に、活性炭にパラジウムを担持させた触媒 (アルドリッチ 社より購人、 Pd:10質量0 /0)0.86g(Pd量: 0.81mmol)、メタノーノレ 30ml 3Mの 硫酸 0.5ml (1.5mmol)を添加した。系内を減圧にしてから窒素を供給する操作( 窒素置換)を 3回繰り返し、次いで減圧にしてから水素を供給する操作 (水素置換)を 3回繰り返した後、水素バルーンで加圧(約 1.1気圧)にした状態で、室温で約 5分 間撹拌して触媒を活性化させた。その後に 4, 5—ビス(ペンタフルオロフェニル) 3 , 6 ジフルオロフタロニトリル 1· 50g(3.02mmol)をトノレェン 15mlおよび酢酸ェチ ル 30mlの混合溶媒に溶解させた溶液を反応溶液に加えて、室温で 15時間激しく撹 拌した。反応溶液を重曹水で中和した後、酢酸ェチルで抽出し、蒸留水、次いで飽 和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターによ り濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー (溶媒:クロ口ホルム)に より精製した。 目的物の 5, 6—ビス(ペンタフルオロフェニル)一4, 7—ジフルォロ一 2H イソインドールを、収率 49. 1%(0.72g 1.48mmol)で得た。 [0226] A three neck reaction vessel 100 ml, catalyst supported palladium on activated carbon (購人from Aldrich, Pd: 10 mass 0/0) 0.86g (Pd amount: 0.81 mmol), sulfuric acid Metanonore 30 ml 3M 0.5 ml (1.5 mmol) was added. After the system is depressurized and nitrogen supply operation (nitrogen substitution) is repeated three times, and then the pressure reduction and hydrogen supply operation (hydrogen substitution) are repeated three times, and then pressure is applied with a hydrogen balloon (approximately 1.1 Under atmospheric pressure, the catalyst was activated by stirring for about 5 minutes at room temperature. After that, a solution of 4,5-bis (pentafluorophenyl) 3, 6 difluorophthalonitrile 1.50 g (3.02 mmol) dissolved in a mixed solvent of 15 ml of toluene and 30 ml of ethyl acetate is added to the reaction solution to obtain a room temperature. The solution was vigorously stirred for 15 hours. The reaction solution was neutralized with aqueous sodium bicarbonate solution, extracted with ethyl acetate, washed with distilled water and then saturated brine, dried over anhydrous sodium sulfate, and the extract was concentrated by an evaporator. The concentrate was purified by silica gel column chromatography (solvent: chloroform). The desired 5,6-bis (pentafluorophenyl) -1,7-difluoro-2-H isoindole was obtained in a yield of 49. 1% (0.72 g 1.48 mmol).
[0227] 5, 6 ビス(ペンタフルオロフェニル) 4, 7 ジフルオロー 2H—イソインドールの  [0227] Of 5, 6 bis (pentafluorophenyl) 4, 7 difluoro-2H- isoindole
(1) NMRスペクトル(装置:日本電子製、型式: JNM— AL400) (1) NMR spectrum (Device: JEOL, model: JNM-AL400)
一 NMR((CD ) CO) δ 7.78 (s 2H) 12.34(brs 1H)  NMR ((CD) CO) δ 7.78 (s 2H) 12.34 (brs 1H)
19F-NMR((CD ) CO) δ -115.2179(s 2F) 133.78(d J = 22Hz 4 19 F-NMR ((CD) CO) δ-115.2179 (s 2 F) 133. 78 (d J = 22 Hz 4
F)、 -147.68(t J = 21Hz 2F) -156.37(t J=18Hz 4F) F), -147.68 (t J = 21 Hz 2 F)-156. 37 (t J = 18 Hz 4 F)
(2)マススペクトル(装置:日本電子製、型式: JMS— MS 700V)  (2) Mass spectrum (apparatus: manufactured by Nippon Denshi, model: JMS-MS 700V)
MS (EI) :m/z = 485(M+) (計算分子量: 485· 01) MS (EI): m / z = 485 (M + ) (calculated molecular weight: 485 · 01)
[0228] 実施例 17:4, 5 ビス(2, 5 ジメチルフエノキシ) 3, 6 ジフルオロフタロニトリ ルの接触水素化法による還元  Example 17: Reduction of bis (2,5 dimethylphenoxy) 3, 6 difluorophthalonitrile by catalytic hydrogenation method
[0229] [化 36]
Figure imgf000057_0001
[Formula 36]
Figure imgf000057_0001
[0230] 100mlの三つ口フラスコに、活性炭にパラジウムを担持させた触媒(アルドリッチ社 より購人、 Pd : 10質量0 /0) 1. 00g (Pd量: 0. 94mmol)、メタノーノレ 5ml、 3Mの石) fL酸 1. 25ml (3. 75mmol)を添加した。系内を減圧にしてから水素を供給する操作(水 素置換)を 3回繰り返した後、水素バルーンで加圧(約 1. 1気圧)にした状態で、室温 で 10分間撹拌して触媒を活性化させた。その後に 4, 5 ビス(2, 5 ジメチルフエノ キシ)ー3, 6 ジフルオロフタロニトリル 3· 00g (7. 42mmol)を酢酸ェチル 20mlに 溶解させた溶液をフラスコに加えて、室温で 14時間激しく撹拌した。反応溶液を重曹 水で中和した後、セライトろ過により Pd触媒を除去し、トルエンで抽出し、蒸留水、次 いで飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をエバポレータ 一により濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー (溶媒:クロロホ ルム)により精製した。 目的物の 5, 6 ビス(2, 5 ジメチルフエノキシ) 4, 7 ジフ ノレ才ロー 2H イソインドーノレを、収串 210/0 (0. 623g、 1. 58mmol)で得た。 [0230] A three neck flask of 100 ml, the catalyst obtained by supporting palladium on activated carbon (購人from Aldrich, Pd: 10 mass 0/0) 1. 00g (Pd weight: 0. 94 mmol), Metanonore 5 ml, 3M Stone) f L acid 1. 25 ml (3. 75 mmol) was added. The system is decompressed and then hydrogen is supplied (hydrogen substitution) three times, and then pressurized with a hydrogen balloon (about 1.1 atm) and stirred for 10 minutes at room temperature to catalyze the catalyst. It was activated. After that, a solution of 4,5 bis (2,5 dimethylphenoxy) -3,6 difluorophthalonitrile 3 · 00 g (7.42 mmol) dissolved in 20 ml of ethyl acetate was added to the flask and vigorously stirred at room temperature for 14 hours. . The reaction solution is neutralized with sodium bicarbonate aqueous solution, then the Pd catalyst is removed by Celite filtration, the mixture is extracted with toluene, washed with distilled water and then with saturated brine and dried over anhydrous sodium sulfate, and the extract is evaporated. Concentrated by The concentrate was purified by silica gel column chromatography (solvent: chloroform). 5, 6-bis (2, 5-dimethyl-phenoxyethanol) 4, 7 Ziff Honoré old row 2H Isoindonore of the object, Osamukushi 21 0/0 (0. 623g, 1. 58mmol) was obtained in.
[0231] 5, 6 ビス(2, 5 ジメチルフエノキシ) 4, 7 ジフルオロー 2H—イソインドーノレ の NMRスぺクトノレ(装置:バリアン社製、型式:マーキュリー 2000)  [0231] NMR spectrum of 5, 6 bis (2, 5 dimethyl phenoxy) 4, 7 difluoro-2H- iso indonole (Device: manufactured by Varian, model: Mercury 2000)
'H-NMRCCDCl ) : δ 1. 83 (s、 3H)、 2. 16 (s、 3H)、 6. 46 (s、 1H)、 6. 67 (d 'H-NMR CCDCI): δ 1. 83 (s, 3 H), 2. 16 (s, 3 H), 6. 46 (s, 1 H), 6. 67 (d
、 1H、J = 7. 30Hz)、 6. 93 (d、 1H、J = 7. 30Hz)、 7. 35 (m、 2H)、 9. 47 (brs、 1H) , 1 H, J = 7. 30 Hz), 6. 93 (d, 1 H, J = 7. 30 Hz), 7. 35 (m, 2 H), 9. 47 (brs, 1 H)
19F-NMR(CDC1、へキサフルォロベンゼン): δ 19. 39 (s、 2F) 19 F-NMR (CDC1, Hexafluorobenzene): δ 19. 39 (s, 2F)
[0232] 実施例 18 : 4, 5, 6, 7 テトラフルオロー 2H イソインドールのヨウ化メチルによる アルキル化  Example 18: Alkylation of 4, 5, 6, 7 Tetrafluoro-2H isoindole with Methyl Iodide
[0233] [化 37] [Formula 37]
Figure imgf000057_0002
[0234] 10mlの二口反応容器に 4, 5, 6 , 7 テトラフルオロー 2H—イソインドール 0. 096 g (0. 507mmol)を加え、窒素置換した後、脱水 THF3. 5mlを加えて— 78°Cまで 冷却した。その中へ、シリンジを用いて 1. 57Mの n ブチルリチウムの n へキサン 溶液 0. 6ml (0. 942mmol)をゆっくりと加えた後、 78°Cで 30分撹拌した。次いで その中へ、シリンジを用いてヨウ化メチル 0. 2g (l . 409mmol)をゆっくりと加えた後 、冷却せずにそのまま 14時間撹拌した。水を加えて反応を終了させ、酢酸ェチルで 反応物を抽出し、その有機相を、順に重曹水、水および飽和食塩水で洗浄してから 、無水硫酸ナトリウムで脱水した。ろ過により無水硫酸ナトリウムを除去した後、有機 相を濃縮した。この濃縮物をシリカゲルカラムクロマトグラフィー (溶媒:酢酸ェチル) で精製して、 目的物の 4, 5, 6, 7 テトラフルオロー 2 メチルイソインドールを、収 率 58. 2% (0. 060g、 0. 295mmol)で得た。
Figure imgf000057_0002
[0234] In a 10 ml two-necked reaction vessel, 0.096 g (0. 507 mmol) of 4,5,6,7 tetrafluoro-2H-isoindole was added, and after nitrogen substitution, 3.5 ml of dehydrated THF was added and It cooled to ° C. Thereto, 0.6 ml (0.42 mmol) of a 1.5 M solution of n-butyllithium in hexane was slowly added using a syringe and stirred at 78 ° C. for 30 minutes. Then, 0.2 g (l. 409 mmol) of methyl iodide was slowly added to it using a syringe and stirred for 14 hours as it was without cooling. Water was added to terminate the reaction, the reaction product was extracted with ethyl acetate, and the organic phase was washed successively with aqueous sodium bicarbonate solution, water and saturated brine, and then dried over anhydrous sodium sulfate. After removing anhydrous sodium sulfate by filtration, the organic phase was concentrated. The concentrate is purified by silica gel column chromatography (solvent: ethyl acetate) to give 4,5,6,7 tetrafluoro-2-methylisoindole as a target substance at a yield of 58.2% (0.060 g, 0 (29.95 mmol).
[0235] 実施例 19 : 4, 5, 6, 7 テトラフルオロー 2H—イソインドールのヨウ化 n—ペンチ ルによるアルキル化  Example 19: Alkylation of 4, 5, 6, 7 Tetrafluoro-2H-isoindole with n-Pentyl Iodide
[0236] [化 38]
Figure imgf000058_0001
[Formula 38]
Figure imgf000058_0001
[0237] 10mlの二口反応容器に 4, 5, 6 , 7 テトラフルオロー 2H—イソインドール 0. 49g  [0237] In a 10 ml two-necked reaction vessel, 4, 5, 6 and 7 tetrafluoro-2H-isoindole 0.49 g
(2. 59mmol)を加え、窒素置換した後、脱水 THF17mlを加えて— 78°Cまで冷却 した。その中へ、シリンジを用いて 1. 57Mの n ブチルリチウムの n へキサン溶液 2ml (3. 14mmol)をゆっくりと加えた後、 78°Cで 30分撹拌した。次いでその中へ 、シリンジを用いてヨウ化 n—ペンチル 0· 67g (3. 38mmol)をゆっくりと加えた後、 冷却せずにそのまま 14時間撹拌した。水を加えて反応を終了させ、酢酸ェチルで反 応物を抽出し、その有機相を、順に重曹水、水および飽和食塩水で洗浄してから、 無水硫酸ナトリウムで脱水した。ろ過により無水硫酸ナトリウムを除去した後、有機相 を濃縮した。この濃縮物をシリカゲルカラムクロマトグラフィー (溶媒:酢酸ェチル)で 精製して、 目的物の 4, 5, 6, 7 テトラフルオロー 2— n—ペンチルイソインドールを 、収率 83. 6% (0. 564g、 2. 176mmol)で得た。 [0238] 4, 5, 6, 7 テトラフルオロー 2 n—ペンチルイソインドールのマススペクトル(装 置:日本電子製、型式: JMS-MS 700v) After adding (2.59 mmol) and purging with nitrogen, 17 ml of dehydrated THF was added and the mixture was cooled to −78 ° C. Thereto, 2 ml (3.14 mmol) of a 1.5 M solution of n-butyllithium in hexane was slowly added using a syringe and stirred at 78 ° C. for 30 minutes. Then, after slowly adding n-pentyl iodide 0.67 g (3.38 mmol) into it using a syringe, it was stirred without cooling for 14 hours. The reaction was terminated by the addition of water, the reaction product was extracted with ethyl acetate, and the organic phase was washed successively with aqueous sodium bicarbonate solution, water and saturated brine, and then dried over anhydrous sodium sulfate. After removing anhydrous sodium sulfate by filtration, the organic phase was concentrated. The concentrate is purified by silica gel column chromatography (solvent: ethyl acetate) to obtain 4,5,6,7 tetrafluoro-2-n-pentylisoindole as a target substance in a yield of 83.6% (0. 564 g, 2. 176 mmol) were obtained. [0238] Mass spectrum of 4, 5, 6, 7 tetrafluoro-2 n-pentyl isoindole (apparatus: manufactured by JEOL, model: JMS-MS 700v)
MS (EI) : m/z = 259 (M+) (計算分子量: 259· 1) MS (EI): m / z = 259 (M + ) (calculated molecular weight: 259 · 1)
[0239] 実施例 20 : 4, 5, 6, 7 テトラフルオロー 2H イソインドールの酸化重合  Example 20: Oxidation polymerization of 4,5,6,7 tetrafluoro-2H isoindole
ナスフラスコに 4, 5, 6, 7 テトラフルォ 2H イソインドール 0· 18g (0. 95m mol)を秤り取り、これにクロ口ホルム 4. 3gを添加'撹拌して、イソインドール溶液を調 製した。別の容器に塩化鉄(111) 0. 63g (3. 88mmol)を秤り取り、水 3. 4gを加えて 塩化鉄水溶液を調製した。この塩化鉄水溶液を、先に調製したイソインドール溶液に ゆっくりと加え、室温下で 48時間撹拌した後、反応溶液を大量の水に注いだ。この溶 液をろ過して得た残渣を、希塩酸、水、次いでクロ口ホルムをかけて洗い流した後、 真空乾燥することで、黒色のポリ(4, 5, 6, 7 テトラフルオロー 2H イソインドール) 0. 109g (換算収率 61. 2%)を得た。  4,5,6 7 Tetrafluro 2H isoindole 0.18g (0. 95m mol) was weighed in an eggplant flask, and 4.3g of cromoform was added to this, and the mixture was stirred to prepare an isoindole solution. . In a separate container, 0.63 g (3. 88 mmol) of iron chloride (111) was weighed out, and 3.4 g of water was added to prepare an aqueous iron chloride solution. The aqueous solution of iron chloride was slowly added to the previously prepared isoindole solution and stirred at room temperature for 48 hours, and then the reaction solution was poured into a large amount of water. The solution obtained by filtration is washed with dilute hydrochloric acid, water and then chloroform, and then dried under vacuum to obtain black poly (4,5,6,7 tetrafluoro-2H isoindole). 0.19 g (converted yield 61.2%) was obtained.
[0240] 得られたポリマーの平均分子量 (ポリスチレン換算での GPCにより測定値)は、 Mn = 23, 400 Mw=41 , 200であった。またポリマーの電導度(2端子法による測定 値)は、 4 X 10— 6S/cm2であった。 The average molecular weight of the obtained polymer (as measured by GPC in terms of polystyrene) was Mn = 23, 400 Mw = 41, 200. The conductivity of the polymer (measured by the two-terminal method) was 4 X 10- 6 S / cm 2 .
[0241] 実施例 21 : 4, 5, 6, 7 テトラフルオロー 2 n ペンチルイソインドールの酸化重 ナスフラスコに 4, 5, 6, 7 テトラフルォ 2— n ペンチルイソインドール 0· 248 g (0. 96mmol)を秤り取り、これにクロ口ホルム 4· 5gを添カロ '撹拌して、イソインドー 溶液を調製した。別の容器に塩化鉄 (111) 0. 62g (3. 82mmol)を秤り取り、水 3. 5gを加えて塩化鉄水溶液を調製した。この塩化鉄水溶液を、先に調製したイソインド ール溶液にゆっくりと加え、室温下で 48時間撹拌した後、反応溶液を大量の水に注 いだ。この溶液をろ過して得た残渣を、希塩酸、水、次いでクロ口ホルムをかけて洗い 流した後、真空乾燥することで、黒色のポリ(4, 5, 6, 7 テトラフルオロー 2— n ぺ ンチルイソインドール) 0· 05g (換算収率 20· 3%)を得た。得られたポリマーの平均 分子量(ポリスチレン換算での GPCにより測定値)は、 Mn = 20, 400 Mw= 29, 5 00であった。  Example 21: Oxidation weight of 4,5,6,7 tetrafluoro-2 n pentylisoindole In an eggplant flask, 4,5,6 7 tetrafluoro-2-n pentylisoindole 0 · 248 g (0. 96 mmol) ) Was added thereto, and 4 g of croform was added thereto and the mixture was stirred to prepare an isoindo solution. In a separate container, 0.62 g (3.82 mmol) of iron chloride (111) was weighed out, and 3.5 g of water was added to prepare an aqueous iron chloride solution. This aqueous solution of iron chloride was slowly added to the previously prepared isoindole solution and stirred at room temperature for 48 hours, and then the reaction solution was poured into a large amount of water. The residue obtained by filtering this solution is washed with dilute hydrochloric acid, water and then chloroform, and then vacuum dried to obtain black poly (4,5,6,7 tetrafluoro-2-n). This obtained penty isoindole 0 · 05 g (converted yield 20 · 3%). The average molecular weight of the obtained polymer (measured by GPC in terms of polystyrene) was Mn = 20,400 Mw = 29,500.
[0242] 実施例 22 : 1— (N, N ジメチルアミノメチレン) 4, 5, 6, 7 テトラフルオロー 1 H イソインドール (以下「アミノメチレン体」と略称する。 )の製造 Example 22: 1— (N, N dimethylaminomethylene) 4, 5, 6, 7 tetrafluoro 1 Production of H-isoindole (hereinafter abbreviated as "amino methylene compound")
[0243] [化 39] [Formula 39]
Figure imgf000060_0001
Figure imgf000060_0001
[0244] 還流装置を備えた 50mlの二口ナスフラスコを窒素置換し、氷浴で冷却しながらジメ チノレホノレム ミド 0.21ml(2.75mmol)をカロ免、そこに塩ィ匕ホスホリノレ 0.26ml(2. 75mmol)をゆっくりと滴下し、 15分間撹拌した。塩化メチレン 2mlを加えて析出した 固体を溶力、し、そこに 4, 5, 6, 7 テトラフノレ才ロー 2H イソインドーノレ 480mg(2. 54mmol)を塩化メチレン 2mlに溶力、した溶液をゆっくりと滴下し、その後氷浴を外し て 55°Cに加熱し、 15分間還流した。次に室温まで冷却して、酢酸ナトリウム 1.25gを イオン交換水 2.5mlに溶力もた溶液をゆっくりと加えた後、反応混合物をジェチルェ 一テルで抽出し、抽出した有機相を炭酸水素ナトリウム水溶液で洗浄し、無水硫酸 ナトリウムで脱水した後、減圧下で濃縮して、褐色の固体を得た。これをシリカゲルク 口マトグラフィー(溶媒:クロ口ホルム)で精製し、アミノメチレン体 350mg(l.43mmol 、収率 58.7%)を得た。  [0244] A 50 ml two-necked eggplant flask equipped with a reflux apparatus is purged with nitrogen, and 0.21 ml (2.75 mmol) of dimethinolefonolemamide is removed while cooling with an ice bath, and 0.26 ml (2. 75 mmol) of sodium phophorinole is added thereto. ) Was slowly added dropwise and stirred for 15 minutes. 2 ml of methylene chloride was added and the precipitated solid was dissolved, and a solution of 480 mg (2.54 mmol) of 2,4,5,7-tetra-fluoro-methyl 2-H iso indonolole was dissolved in 2 ml of methylene chloride slowly. Add dropwise and then remove the ice bath and heat to 55 ° C. and reflux for 15 minutes. The reaction mixture is then cooled to room temperature, and a solution of 1.25 g of sodium acetate dissolved in 2.5 ml of ion-exchanged water is slowly added, and then the reaction mixture is extracted with water, and the extracted organic phase is washed with aqueous sodium hydrogen carbonate solution. Wash, dry over anhydrous sodium sulfate and concentrate under reduced pressure to give a brown solid. This was purified by silica gel chromatography (solvent: croform) to obtain 350 mg (1.43 mmol, yield 58.7%) of an aminomethylene compound.
[0245] アミノメチレン体のスぺクトノレデータ  [Selected data of amino methylene body]
(1) NMRスペクトル(装置:日本電子製、型式: JNM— AL400)  (1) NMR spectrum (Device: JEOL, model: JNM-AL400)
'H-NMRCCDCl ): 63.39(s、 3H)、 3.78(s、 3H)、 7.53(s、 1H)、 8.09 (s 'H-NMR CCDCI): 63. 39 (s, 3 H), 3. 78 (s, 3 H), 7.53 (s, 1 H), 8.09 (s
、 1H) , 1H)
19F-NMR(CDC1 ): δ -166.15(dd、J = 21、 20Hz、 IF), -161.89(dd、J 19 F-NMR (CDC1): δ -166.15 (dd, J = 21, 20 Hz, IF), -161.89 (dd, J
= 21、 20Hz、 1F)、 -151.46(dd、J = 21、 20Hz、 1F)、—148.22(dd、J = 21 、 20Hz、 IF) = 21, 20 Hz, 1 F),-151. 46 (dd, J = 21, 20 Hz, 1 F),-148. 22 (dd, J = 21, 20 Hz, IF)
(2)マススペクトル (装置:日本電子製、型式: JMS-MS 700v型)  (2) Mass spectrum (Device: manufactured by Nippon Denshi, model: JMS-MS 700v type)
MS(EI) :m/z = 244(M+) (計算分子量: 244· 19) MS (EI): m / z = 244 (M + ) (calculated molecular weight: 244 · 19)
[0246] 実施例 23:1 ホルミル 4, 5, 6, 7 テトラフルオロー 2H イソインドール(以下 「ホルミル体」と略称する)の製造 [0247] [化 40] Example 23: 1 Preparation of formyl 4,5,6,7 tetrafluoro-2H isoindole (hereinafter abbreviated as “formyl form”) [Formula 40]
Figure imgf000061_0001
Figure imgf000061_0001
[0248] 還流装置を備えた 50mlの二口ナスフラスコを窒素置換し、氷浴で冷却しながらジメ チノレホノレム ミド 0. 21ml (2. 75mmol)をカロ免、そこに塩ィ匕ホスホリノレ 0. 26ml (2. 75mmol)をゆっくりと滴下し、 15分間撹拌した。析出した固体に塩化メチレン 1. 5m 1を加えて固体を溶かし、そこに 4, 5, 6, 7—テトラフルォ口一 2H—イソインドール 47 0mg (2. 49mmol)を塩化メチレン 6mlに溶かした溶液をゆっくりと滴下し、その後氷 浴を外して 55°Cに加熱し、 15分間還流した。次に室温まで冷却して、酢酸ナトリウム 1. 25gをイオン交換水 2. 5mlに溶力、した溶液をゆっくりと加えた後、 55°Cで 2時間 還流し、室温まで冷却した。次いで反応混合物を、ジェチルエーテルで抽出し、抽出 した有機相を炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで脱水した後、 減圧下で濃縮して、褐色の固体を得た。これをシリカゲルクロマトグラフィー (溶媒:酢 酸ェチル 30体積% /へキサン 70体積%)で精製し、ホノレミノレ体 70mg (0. 322mm ol、収率 13. 0%)を得た。  [0248] A 50 ml two-necked eggplant flask equipped with a reflux apparatus is purged with nitrogen, and while cooling with an ice bath, dimethinolefonolemamide 0.21 ml (2. 75 mmol) is caro-free, and there is 0.26 ml sodium chloride 2. 75 mmol) was slowly added dropwise and stirred for 15 minutes. To the precipitated solid, 1.5 ml of methylene chloride is added to dissolve the solid, and a solution of 47 mg (2. 49 mmol) of 4,5,6,7-tetrafluorinated 2H-isoindole in 6 ml of methylene chloride is dissolved therein. It was slowly dropped, then the ice bath was removed and heated to 55 ° C. and refluxed for 15 minutes. Next, the solution was cooled to room temperature, and a solution of 1.25 g of sodium acetate dissolved in 2.5 ml of ion-exchanged water was slowly added, and then refluxed at 55 ° C. for 2 hours and cooled to room temperature. The reaction mixture was then extracted with jetyl ether, and the extracted organic phase was washed with aqueous sodium hydrogen carbonate solution, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give a brown solid. The resultant was purified by silica gel chromatography (solvent: ethyl acetate 30% by volume / hexane 70% by volume) to obtain 70 mg (0.322 mmol, yield 13.0%) of the monolemino compound.
[0249] ホルミル体のスペクトルデータ  [0249] Spectral data of formyl form
(1) NMRスペクトル(装置:日本電子製、型式: JNM— AL400)  (1) NMR spectrum (Device: JEOL, model: JNM-AL400)
'H-NMRC CCD ) CO): δ 8. 01 (s、 1H)、 9. 81 (s、 1H)  'H-NMRC CCD) CO): δ 8. 01 (s, 1 H), 9. 81 (s, 1 H)
19F-NMR( (CD ) CO) ): δ - 168. 54 (dd、 J= 17、 18Hz、 1F)、 - 162. 64 ( dd、J= 17、 18Hz、 IF) ,—149. 20 (dd、J = 20、 18Hz、 IF) , - 146. 90 (brs、 1 F) 19 F-NMR ((CD) CO)): δ-168. 54 (dd, J = 17, 18 Hz, 1 F),-162. 64 (dd, J = 17, 18 Hz, IF),-149. 20 ( dd, J = 20, 18 Hz, IF),-146. 90 (brs, 1 F)
(2)マススペクトル (装置:日本電子製、型式: JMS-MS 700v型)  (2) Mass spectrum (Device: manufactured by Nippon Denshi, model: JMS-MS 700v type)
MS (EI) : m/z = 217 (M+) (計算分子量: 217· 12) MS (EI): m / z = 217 (M + ) (calculated molecular weight: 217 · 12)
[0250] 実施例 24:アミノメチレン体からのホルミル体の製造  Example 24 Production of Formyl Form from Amino Methylene Form
[0251] [化 41]
Figure imgf000062_0001
[Formula 41]
Figure imgf000062_0001
[0252] 還流装置を備えた 100mlのナスフラスコにアミノメチレン体 326. 7mg (l . 34mmo 1)を加えて窒素置換し、これにエタノール 35mlを加えて溶解させた後、 1Mの NaO H水溶液 2ml (2mmol)を加えて、 60°Cで 1. 5時間加熱し、室温まで冷却した。次い で反応混合物を、酢酸ェチルで抽出し、水によりエタノールを除去し、無水硫酸ナト リウムで脱水した後、減圧下で濃縮することにより、白色固体として、ホルミル体 208. 6mg (0. 96mmol、収率 71. 7%)を得た。  An aminomethylene compound 326.7 mg (l. 34 mmo 1) was added to a 100 ml eggplant flask equipped with a reflux apparatus for nitrogen substitution, and 35 ml of ethanol was added thereto for dissolution, and then 2 ml of a 1 M aqueous solution of NaO H Add (2 mmol) and heat at 60 ° C. for 1.5 h and cool to room temperature. The reaction mixture is then extracted with ethyl acetate, ethanol is removed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the formyl form 208. 6 mg (0.96 mmol) as a white solid. , Yield 71.7%).
[0253] 実施例 25 : 1—ヒドロキシメチル一 4, 5, 6, 7 テトラフルオロー 2H イソインドー ル (以下「ヒドロキシメチル体」と略称する)の製造  Example 25: Preparation of 1-hydroxymethyl mono, 4, 5, 6, 7 tetrafluoro-2H isoindole (hereinafter abbreviated as “hydroxymethyl form”)
[0254] [化 42]  [Formula 42]
Figure imgf000062_0002
Figure imgf000062_0002
[0255] 100mlのナスフラスコにホルミル体 108. 6mg (0. 5mmol)を加えて窒素置換し、 これに乾燥 THF20mlを加え、 78°Cで撹拌しながら 1Mの水素化ジイソブチルァ ルミニゥム溶液 1 · lml (l . lmmol)を加え、さらに 2時間撹拌した。 78°Cのまま 1 Mの HC1を加えてタエンチし、室温に戻してから反応混合物を、酢酸ェチルで抽出し 、炭酸水素ナトリウム水溶液および水で洗浄し、無水硫酸ナトリウムで脱水した後、減 圧下で濃縮することにより、赤紫色の固体として、ヒドロキシメチル体 103mg (0. 47 mmol、粗収率 94%)を得た。  [0255] Formyl compound 108. 6 mg (0.5 mmol) is added to a 100 ml eggplant flask and purged with nitrogen, and 20 ml of dry THF is added to this, and 1 M hydrogenated diisobutylammium solution 1 · 1 ml while stirring at 78 ° C. (l. lmmol) was added and stirred for a further 2 hours. After adding 1 M HC1 at 78 ° C, adding it to room temperature and returning to room temperature, the reaction mixture is extracted with ethyl acetate, washed with aqueous sodium hydrogen carbonate solution and water, dried over anhydrous sodium sulfate and then reduced pressure. The reaction mixture was concentrated with to give 103 mg (0.47 mmol, crude yield 94%) of a hydroxymethyl compound as a reddish purple solid.
[0256] 実施例 26:ヒドロキシメチル体からのへキサデ力フルォロテトラべンゾポルフィリンの 製造  [0256] Example 26: Preparation of Hexade Force Fluorotetrabenzoporphyrin from Hydroxymethyl Form
[0257] [化 43] [Formula 43]
Figure imgf000063_0001
Figure imgf000063_0001
[0258] 実施例 25で得られたヒドロキシメチル体 103mg (粗収量 0. 47mmol)を、そのまま  [0258] 103 mg (crude yield 0.47 mmol) of the hydroxymethyl compound obtained in Example 25 was used as it was.
100mlのナスフラスコに加えて窒素置換した後、エタノール 47mlを加えて溶解させ 、酢酸 3ml (51. 8mmol)を加えた後、室温で 3日間撹拌した。次いで反応混合物に トリエチノレアミン 3. 18ml (51. 8mmol)を加えて中和した後、 DDQ (2, 3 ジシァノ - 5, 6 ジクロロー p べンゾキノン) 119· 3mg (0. 47mmol)を加えて室温でー晚 撹拌した。次いで反応混合物を吸引ろ過することにより、深緑色の固体として、へキ サデカフルォロテトラべンゾポルフィリン 28mg (粗収量 0· 035mmol、粗収率 29. 8 %)を得た。  The reaction mixture was added to a 100 ml eggplant flask and purged with nitrogen, and then 47 ml of ethanol was added for dissolution, and 3 ml (51.8 mmol) of acetic acid was added, followed by stirring at room temperature for 3 days. The reaction mixture is then neutralized by adding 3.18 ml (51. 8 mmol) of trietinoleamine, and then adding DDQ (2,3 disiano-5,6 dichloro-p benzoquinone) 119 · 3 mg (0.47 mmol). Stir at room temperature. Then, the reaction mixture was filtered by suction to obtain 28 mg (crude yield: 0.035 mmol, crude yield: 29.8%) of hexecafluorotetrabenzoporphyrin as a dark green solid.
[0259] へキサデ力フルォロテトラべンゾポルフィリンのスペクトルデータ  [0259] Spectral data of Hexede force fluorotetrabenzo porphyrin
( 1 )マススペクトル(装置:アプライド 'バイオシステムズ製、型式: Voyager - DE™ PRO)  (1) Mass spectrum (apparatus: Applied 'Biosystems, model: Voyager-DETM PRO)
MS (TOF -MS) : m/z = 798. 80 (M+) (計算分子量: 798· 03) MS (TOF-MS): m / z = 798. 80 (M + ) (calculated molecular weight: 798 · 03)
(2)紫外 可視吸収スペクトル (装置:日立ハイテクノロジーズ製、型式: U— 2800 (2) UV-visible absorption spectrum (Apparatus: manufactured by Hitachi High-Technologies, model: U-2800
) )
λ (CHC1 ) =416、 430、 599、 667、 690腹  λ (CHC1) = 416, 430, 599, 667, 690 belly
max 3  max 3
[0260] なお TOF— MS測定から、粗生成物中に、下記式で示されるコロール(実測値: m /z = 785. 87、計算分子量: 786. 03)、サフィリン(実測値: m/z = 985. 95、計 算分子量: 985. 04)およびペンタフイリン(実測値: m/z = 997. 93、計算分子量: 997. 04)が生成していることを確認した。  From TOF-MS measurement, in the crude product, corrole represented by the following formula (measured value: m / z = 785. 87, calculated molecular weight: 786. 03), safilin (measured value: m / z) = 985. 95, calculated molecular weight: 985. 04) and pentaphenyl (found value: m / z = 997. 93, calculated molecular weight: 997. 04) were confirmed to be formed.
[0261] [化 44] [Formula 44]
Figure imgf000064_0001
Figure imgf000064_0001
サフィリン ·ペンタフィ 'リン  Safilin ・ Pentaphy 'Lin
[0262] 実施例 27 : 1— (N, N ジメチルァミノ)メチルー 4, 5, 6, 7 テトラフルオロー 2H  Example 27 1- (N, N-dimethylamino) methyl-4,5,6-7 tetrafluoro-2H
イソインドール(「ァミノメチル体」)を経るへキサデ力フルォロテトラべンゾボルフイリ ンの製造  Preparation of Hexadede Fluorotetrabenzoborofluorine via Isoindole ("Aminomethyl")
[0263] [化 45] [Formula 45]
Figure imgf000064_0002
Figure imgf000064_0002
[0264] 反応容器 ίこ、 4, 5, 6, 7 テトラフノレ才ロー 2H イソインドーノレ 100mg (0. 529m mol)およびヨウ化メチレンジメチルアンモニゥム 102mg (0. 553mmol)を加えて窒 素置換した後に、ァセトニトリル 8. 41gを加え、室温で 32時間撹拌した。その後 DD Q 150mg (661mmol)をカロえて、室温でさらに 24時間撹拌した。その後に飽和重 曹水 14. 2gを加えて反応を終了させた。反応液を濾過して得られた濾物を、さらにメ タノール、次いでクロ口ホルムで超音波洗浄することにより、へキサデ力フルォロテトラ ベンゾポノレフィリン 20mg (0. 025mmol、収率 18. 94%)を得た。 [0265] 実施例 28: 1—(N, N- 5, 6—ビス(ペンタフノレ才ロフエ二 ノレ) 4 , 7 ジフノレオ口 2Η - ノメチル体」)を経る 22, 23, 72,[0264] A reactor vessel was charged with nitrogen by adding 100 mg (0. 529 mmol) of 2,4,5,7-tetra-fluoro-methyl 2H isoindonole and 102 mg (0.553 mmol) of methylenedimethylioamide ammonium iodide. After that, 8.41 g of acetylonitrile was added and stirred at room temperature for 32 hours. After that, 150 mg (661 mmol) of DD Q was added and stirred at room temperature for another 24 hours. Thereafter, 14.2 g of saturated aqueous sodium bicarbonate solution was added to terminate the reaction. The filtrate obtained by filtration of the reaction solution is subjected to ultrasonic cleaning with methanol and then with chloroform to form 20 mg (0.025 mmol, yield 18. 94%) of hexadefluorotetrabenzoponorophylline. I got Example 28: 2 2 , 2 3 , 7 2 , via 1- (N, N- 5, 6-bis (Pentafunole s s s s s if-2 nore) 4, 7
73, 122, 123, 172, 173- ェニノレ) 21, 24, 71, 74, 121
Figure imgf000065_0001
7 3 , 12 2 , 12 3 , 17 2 , 17 3 -Pheninore) 2 1 , 2 4 , 7 1 , 7 4 , 12 1
Figure imgf000065_0001
)の製造  )Manufacturing of
[0266] [化 46]  [Formula 46]
Figure imgf000065_0002
Figure imgf000065_0002
[0267] 反応容器に、 5, 6 ビス(ペンタフルオロフェニル) 4, 7 - -ジフノレオロー 2Η- ゥム 76. 3m g (0. 41mmol)を加えて窒素置換した後に、ァセトニトリル 17. 7gをカロえ、室温で 48 時間撹拌した。反応後、エバポレーターを用いて反応液を濃縮し、続けて濃縮物をク ロロホルムに溶解させて、クロ口ホルム相を水で洗浄した後、無水硫酸ナトリウムで脱 水し、再度エバポレーターにより濃縮した。濃縮物を、シリカゲルカラムクロマトグラフ ィー(溶媒:酢酸ェチル 50体積% /へキサン 50体積%)で精製することにより、ォクタ キス(ペンタフルオロフェニノレ)ォクタフルォロテトラべンゾポルフィリン 12mg (0. 006 mmol、収率 6· 0%)を得た。  [0267] After adding 5,6 bis (pentafluorophenyl) 4,7- difurooleo 2Η-um 76.3 mg (0.41 mmol) to a reaction vessel and carrying out nitrogen substitution, 17.7 g of acetonitrile is removed. The mixture was stirred at room temperature for 48 hours. After the reaction, the reaction solution was concentrated using an evaporator, and subsequently the concentrate was dissolved in chloroform, and the chloroform phase was washed with water, then dehydrated with anhydrous sodium sulfate, and concentrated again using an evaporator. The concentrate is purified by silica gel column chromatography (solvent: ethyl acetate 50% by volume / hexane 50% by volume) to give 12 mg of kactakis (pentafluorophenynore) kectafluoro tetrabenzoporphyrin. (0. 006 mmol, yield 6 · 0%) was obtained.
[0268]  [0268]
タトルデータ  Turtle data
( 1 )マススペクトル(装置:アプライド 'バイオシステムズ製、型式: Voyager - DE PRO)  (1) Mass spectrum (apparatus: Applied 'Biosystems, model: Voyager-DE PRO)
MS (TOF-MS) : m/z = 1984. 26 (M+) (計算分子量: 1981. 98)MS (TOF-MS): m / z = 1984. 26 (M + ) (calculated molecular weight: 1981. 98)
(2)紫外—可視吸収スペクトル (装置:島津製作所製、型式: uv— 1650Pc) λ (CHC1 ) =435、 451、 576、 623、 632腹 (2) UV-visible absorption spectrum (apparatus: manufactured by Shimadzu Corporation, model: uv-1650Pc) λ (CHC1) = 435, 451, 576, 623, 632 belly
max 3  max 3
[0269] 実施例 29 :へキサデ力フルォロテトラべンゾポルフィリン亜鉛錯体(以下「ボルフイリ ン亜鉛錯体」と略称する。)の製造  Example 29 Preparation of Hexade Force Fluorotetrabenzo Porphyrin Zinc Complex (hereinafter abbreviated as “borophyrin zinc complex”)
反応容器 ίこ、 4, 5, 6, 7—テトラフノレ才ロー 2H—イソインドーノレ 300mg (l . 59m mol)およびヨウ化メチレンジメチルアンモニゥム 300mg (l . 62mmol)を加えて窒素 置換した後に、塩化メチレン 69. 3gを加え、室温で 48時間撹拌した。その後、窒素 雰囲気下から大気下に開放し、酢酸亜鉛 256mg (l . 40mmol)を加えて、大気下お よび室温でさらに 48時間撹拌した。ボルフイリノーゲンの酸化は、主に、この大気下 の撹拌で行われると推定される。その後、反応液を、分液ロートに移して水洗した後、 エバポレーターで濃縮した。この濃縮物を、メタノールおよび酢酸ェチルで 3回超音 波洗浄することにより、ポルフィリン亜鉛錯体 92mg (0. 107mmol、収率 26· 9%)を 得た。  After adding 300 mg (l.59 mmol) of 2,5,7,7-tetrafnourose to a reaction vessel and 300 mg (l.59 mmol) of iodochloromethane, and 300 mg (l.62 mmol) of methylenedimethyliomide iodide, the reaction vessel was purged with nitrogen, 69.3 g of methylene chloride was added and stirred at room temperature for 48 hours. Then, under nitrogen atmosphere, the atmosphere was opened to the atmosphere, 256 mg (l. 40 mmol) of zinc acetate was added, and the mixture was stirred for a further 48 hours under the atmosphere and at room temperature. Oxidation of borophylinogen is presumed to be mainly performed by stirring under this atmosphere. Thereafter, the reaction solution was transferred to a separatory funnel, washed with water, and concentrated with an evaporator. The concentrate was sonicated three times with methanol and ethyl acetate to obtain 92 mg (0.107 mmol, yield 26 · 9%) of a porphyrin-zinc complex.
[0270] ポルフィリン亜鉛錯体のスペクトルデータ  Spectral data of porphyrin zinc complex
( 1 ) NMRスペクトル(装置: VARIAN社製、型式:マーキュリー 2000) — NMR (THF) : δ 10. 85 (s、 1H)  (1) NMR spectrum (Device: manufactured by VARIAN, model: Mercury 2000) — NMR (THF): δ 10. 85 (s, 1H)
19F— NMR (THF、基準物質:へキサフルォロベンゼン): δ 7. 20 (m、 2F)、 18. 4 (m、 2F) 19 F—NMR (THF, standard substance: hexafluorobenzene): δ 7. 20 (m, 2F), 18. 4 (m, 2F)
(2)マススペクトル(装置:アプライド 'バイオシステムズ製、型式: Voyager— DE™ PRO)  (2) Mass spectrum (apparatus: Applied 'Biosystems, model: Voyager-DETM PRO)
MS (TOF -MS) : m/z = 860. 84 (M+) (計算分子量: 859· 95) MS (TOF-MS): m / z = 860. 84 (M + ) (calculated molecular weight: 859 · 95)
(3)紫外—可視吸収スペクトル (装置:島津製作所製、型式: uv— 1650Pc) λ (THF) =407、 432、 623應  (3) UV-visible absorption spectrum (apparatus: manufactured by Shimadzu Corporation, model: uv-1650Pc) λ (THF) = 407, 432, 623 應
max  max
[0271] 実施例 30:ポルフィリン亜鉛錯体の製造  Example 30 Preparation of Porphyrin-Zinc Complex
反応容器 ίこ、 4, 5, 6, 7—テトラフノレ才ロー 2H—イソインドーノレ 517mg (2. 734m mol)およびヨウ化メチレンジメチルアンモニゥム 528mg (2. 85mmol)を加えて窒素 置換した後に、ァセトニトリル 41. 27gを加え、室温で 48時間撹拌した。その後、酢 酸亜鉛 700mg (3. 81mmol)を加えて、室温でさらに 6時間撹拌した後、 DDQ 91 0mg (4. 008mmol)を加えて、室温でさらに 24時間撹拌した。その後、反応液を飽 和重曹水 60gへ注ぎ、濾過により濾物を回収し、濾物を、メタノール、次いでイソプロ ピルアルコールで洗浄した後、ソクスレー抽出によりポルフィリン亜鉛錯体 50mg (0. 058mmol、収率 8. 49%)を得た。 After adding 517 mg (2. 734 mmol) of methyl 2,5,7,7-tetrafnolose and 278 mg (2. 734 mmol) of iodochloromethane, and 528 mg (2.85 mmol) of methylenedimethyliomide iodide, the reaction vessel was purged with nitrogen, 41. 27 g of acetonitrile were added and stirred at room temperature for 48 hours. Thereafter, 700 mg (3.81 mmol) of zinc acetate was added and stirred at room temperature for further 6 hours, and then 0 mg (4.008 mmol) of DDQ 91 was added and stirred at room temperature for further 24 hours. After that, the reaction liquid The solution is poured into 60 g of aqueous sodium bicarbonate solution, the filtrate is recovered by filtration, and the filtrate is washed with methanol and then isopropyl alcohol, and then 50 mg (0.508 mmol, yield 8. 49%) of a porphyrin zinc complex is obtained by Soxhlet extraction. Obtained.
[0272] 実施例 31:へキサデ力フルォロテトラベンゾボルフィリン銅錯体(以下「ポルフィリン 銅錯体」と略称する。)の製造  Example 31 Preparation of Hexade-Fluoro Fluorotetrabenzoborophyllin Copper Complex (hereinafter abbreviated as “Porphyrin-Copper Complex”)
反応容器 ίこ、 4, 5, 6, 7—テトラフノレ才ロー 2H—イソインドーノレ 700mg (3. 70m mol)およびヨウ化メチレンジメチルアンモニゥム 700mg (3. 78mmol)を加えて窒素 置換した後に、ァセトニトリル 98. 3gを加え、室温で 48時間撹拌した。その後、窒素 雰囲気下から大気下に開放し、酢酸銅一水和物 744mg (3. 73mmol)を加えて、大 気下および室温で 48時間撹拌した。ボルフイリノーゲンの酸化は、主に、この大気下 の撹拌で行われると推定される。その後、反応液をエバポレーターで濃縮し、濃縮物 を、メタノール、酢酸ェチル、次いで THFで超音波洗浄することによりポルフィリン銅 錯体 250mg (0. 291mmol、収率 31. 4%)を得た。  After adding nitrogen gas to the reaction vessel after adding 700 mg (3.70 mmol) of 4,5,6,7-tetrafnolose and 2 mg of isoindodonole and 700 mg (3.78 mmol) of methylenedimethyliomide iodide, 98.3 g of acetonitrile were added and stirred at room temperature for 48 hours. Then, under nitrogen atmosphere, the system was opened to the atmosphere, 744 mg (3.73 mmol) of copper acetate monohydrate was added, and the mixture was stirred at room temperature and for 48 hours. Oxidation of borophylinogen is presumed to be mainly performed by stirring under this atmosphere. Thereafter, the reaction solution was concentrated by an evaporator, and the concentrate was ultrasonically washed with methanol, ethyl acetate and then THF to obtain 250 mg (0.21 mmol of a porphyrin copper complex, yield 31.4%).
[0273] ボルフイリン銅錯体のスペクトルデータ  [0273] Spectral data of borophyrin copper complex
( 1 )マススペクトル(装置:アプライド 'バイオシステムズ製、型式: Voyager - DE™ PRO)  (1) Mass spectrum (apparatus: Applied 'Biosystems, model: Voyager-DETM PRO)
MS (TOF -MS) : m/z = 859. 78 (M+) (計算分子量: 858. 95) MS (TOF-MS): m / z = 859. 78 (M + ) (calculated molecular weight: 858. 95)
(2)紫外—可視吸収スペクトル (装置:島津製作所製、型式: uv— 1650Pc) λ (THF) =405、 422、 620應  (2) Ultraviolet-visible absorption spectrum (apparatus: manufactured by Shimadzu, model: uv-1650Pc) λ (THF) = 405, 422, 620 應
max  max
[0274] 実施例 32 :へキサデ力フルォロテトラべンゾポルフィリンニッケル錯体(以下「ボルフ ィリンニッケル錯体」と略称する。)の製造  Example 32 Preparation of Hexade Force Fluorotetrabenzo Porphyrin Nickel Complex (hereinafter abbreviated as “borophyrin nickel complex”)
反応容器 ίこ、 4, 5, 6, 7—テトラフノレ才ロー 2H—イソインドーノレ 100mg (0. 529m mol)およびヨウ化メチレンジメチルアンモニゥム 100mg (0. 54mmol)を加えて窒素 置換した後に、ァセトニトリル 5. 53gを加え、室温で 24時間撹拌した。その後、酢酸 ニッケル四水和物 133mg (0. 534mmol)を加えて、室温で 22時間撹拌した。その 後、 DDQ 124mg (0. 546mmol)を加えて、室温で 48時間撹拌した。その後、反 応液を撹拌しながら、 1Mの重曹水 15mlへ注ぎ、濾過し、得られた濾物を、メタノー ル、次いで希塩酸で洗浄した。さらに濾物を、酢酸ェチル、メタノール、クロ口ホルム の各溶媒で順に超音波洗浄した後、ソクスレー抽出することによりポルフィリンニッケ ノレ錯体 4mg (0. 005mmol、収率 3. 5%)を得た。 Reaction vessel After adding 100 mg (0.55 mmol) of 2,5,7,7-tetrafnourace compound and 0.5 mg (0.53 mmol) of methyl iodide and 100 mg (0.54 mmol) of methylenedimethyliomide iodide after nitrogen substitution, 5.53 g of acetonitrile were added and stirred at room temperature for 24 hours. Thereafter, 133 mg (0.534 mmol) of nickel acetate tetrahydrate were added, and the mixture was stirred at room temperature for 22 hours. After that, 124 mg (0. 546 mmol) of DDQ were added and stirred at room temperature for 48 hours. Then, while stirring, the reaction solution was poured into 15 ml of 1 M aqueous sodium bicarbonate solution, and filtered, and the obtained filtrate was washed with methanol and then with dilute hydrochloric acid. In addition, the filtrate is cetyl acetate, methanol, croform. After ultrasonic cleaning in order with each solvent of the above, Soxhlet extraction was carried out to obtain 4 mg (0.0005 mmol, yield 3.5%) of a porphyrin nickele complex.
[0275] ポルフィリンニッケル錯体のスぺクトノレデータ [0275] Spectrum data of porphyrin nickel complex
( 1 )マススペクトル(装置:アプライド 'バイオシステムズ製、型式: Voyager - DE™ PRO)  (1) Mass spectrum (apparatus: Applied 'Biosystems, model: Voyager-DETM PRO)
MS (TOF -MS) : m/z = 854. 69 (M+) (計算分子量: 853· 95) MS (TOF-MS): m / z = 854. 69 (M + ) (calculated molecular weight: 853 · 95)
(2)紫外—可視吸収スペクトル (装置:島津製作所製、型式: uv— 1650Pc) λ (THF) =405、 430、 617應  (2) UV-visible absorption spectrum (apparatus: manufactured by Shimadzu Corporation, model: uv-1650Pc) λ (THF) = 405, 430, 617 應
max  max
[0276] 実施例 33 :へキサデ力フルォロテトラべンゾポルフィリンコバルト錯体(以下「ボルフ ィリンコバルト錯体」と略称する。)の製造  Example 33 Preparation of Hexade Force Fluorotetrabenzo Porphyrin Cobalt Complex (hereinafter abbreviated as “borophyrin cobalt complex”)
反応容器 ίこ、 4, 5, 6, 7—テトラフノレ才ロー 2H—イソインドーノレ 100mg (0. 529m mol)およびヨウ化メチレンジメチルアンモニゥム 100mg (0. 54mmol)を加えて窒素 置換した後に、ァセトニトリル 5. 54gを加え、室温で 24時間撹拌した。その後、酢酸 コバルト四水和物 134mg (0. 538mmol)を加えて、室温で 22時間撹拌した。その 後、 DDQ 120mg (0. 529mmol)を加えて、室温で 48時間撹拌した。その後、反 応液を撹拌しながら、 1Mの重曹水 8mlへ注ぎ、濾過した。得られた濾物をベンゾニト リルに溶解させ、メタノールに注いで結晶を析出させた後に再び濾過し、得られた濾 物を、酢酸ェチル、メタノール、クロ口ホルムの各溶媒で順に超音波洗浄した後、ソク スレー抽出することによりポルフィリンコバルト錯体 3mg (0. 004mmol、収率 2. 7%) を得た。  Reaction vessel After adding 100 mg (0.55 mmol) of 2,5,7,7-tetrafnourace compound and 0.5 mg (0.53 mmol) of methyl iodide and 100 mg (0.54 mmol) of methylenedimethyliomide iodide after nitrogen substitution, 5.54 g of acetonitrile were added and stirred at room temperature for 24 hours. Thereafter, 134 mg (0.538 mmol) of cobalt acetate tetrahydrate were added and stirred at room temperature for 22 hours. After that, 120 mg (0.529 mmol) of DDQ was added and stirred at room temperature for 48 hours. Then, while stirring, the reaction solution was poured into 8 ml of 1 M aqueous sodium bicarbonate and filtered. The obtained filtrate was dissolved in benzonitrile, poured into methanol to precipitate crystals, and filtered again, and the obtained filtrate was ultrasonically washed in order with solvents such as ethyl acetate, methanol and chloroform. After that, Soxhlet extraction was carried out to obtain 3 mg (0.04 mmol, yield 2.7%) of a porphyrin cobalt complex.
[0277] ポルフィリンコバルト錯体のスペクトルデータ  [0277] Spectral data of porphyrin cobalt complex
( 1 )マススペクトル(装置:アプライド 'バイオシステムズ製、型式: Voyager - DE™ PRO)  (1) Mass spectrum (apparatus: Applied 'Biosystems, model: Voyager-DETM PRO)
MS (TOF -MS) : m/z = 855. 84 (M+) (計算分子量: 854· 95) MS (TOF-MS): m / z = 855. 84 (M + ) (calculated molecular weight: 854 · 95)
(2)紫外—可視吸収スペクトル (装置:島津製作所製、型式: uv— 1650Pc) λ (THF) =421、 433、 447、 614應  (2) UV-visible absorption spectrum (apparatus: manufactured by Shimadzu, model: uv-1650Pc) λ (THF) = 421, 433, 447, 614
max  max
[0278] 実施例 34:ォクタキス(ペンタフルオロフェニル)ォクタフルォロテトラべンゾポルフィ リン亜鉛錯体の製造 反応容器に、 5, 6 ビス(ペンタフルオロフェニル) 4, 7 ジフルオロー 2H イソ インドーノレ 200mg (0. 40mmol)およびヨウ化メチレンジメチルアンモニゥム 76. 3m g (0. 41mmol)を加えて窒素置換した後に、ァセトニトリル 17. 7gをカロえ、室温で 48 時間撹拌した。その後、窒素雰囲気下から大気下に開放し、酢酸亜鉛 64. 7mg (0. 35mmol)を加えて、大気下および室温でさらに 48時間撹拌した。ボルフイリノーゲ ンの酸化は、主に、この大気下の撹拌で行われると推定される。その後、反応液をェ バポレーターで濃縮し、続けて濃縮物をクロ口ホルムに溶解させ、このクロ口ホルム相 を、水および希塩酸で洗浄した後、無水硫酸ナトリウムで脱水して、再度エバポレー ターで濃縮した。濃縮物を、シリカゲルクロマトグラフィー (溶媒:酢酸ェチル 20体積 % /へキサン 80体積0 /0)で精製することにより、ォクタキス(ペンタフルオロフヱニル) ォクタフルォロテトラべンゾポルフィリン亜鉛錯体 21mg (0. OlOmmol、収率 10. 2 %)を得た。 [0278] Example 34: Preparation of kactakis (pentafluorophenyl) kactafluorotetrabenzopolzinc phosphorus zinc complex After adding 200 mg (0.40 mmol) of 5, 6 bis (pentafluorophenyl) 4, 7 difluoro-2H iso indonole and 76. 3 mg (0.4 1 Then, 17.7 g of acetonitrile was prepared and stirred at room temperature for 48 hours. Then, under nitrogen atmosphere, the system was opened to the atmosphere, 64. 7 mg (0.35 mmol) of zinc acetate was added, and the mixture was stirred for a further 48 hours under the atmosphere and at room temperature. It is estimated that the oxidation of borophyrinogen is mainly performed by stirring under this atmosphere. Thereafter, the reaction solution is concentrated by an evaporator, and the concentrate is subsequently dissolved in chloroform, and the chloroform phase is washed with water and dilute hydrochloric acid, then dehydrated with anhydrous sodium sulfate, and again concentrated by an evaporator. Concentrated. The concentrate was purified by silica gel chromatography purified by (solvent acetic Echiru 20 vol% / hexane 80 volume 0/0), Okutakisu (pentafluorophenyl We sulfonyl) O Kuta Full O b tetra downy emission zone porphyrin zinc complex 21 mg (0. OlO mmol, yield 10.2%) were obtained.
[0279] ォクタキス(ペンタフルオロフェニル)ォクタフルォロテトラべンゾポルフィリン亜鉛錯 体のスぺクトノレデータ  [0279] Spectrum data of kactakis (pentafluorophenyl) kactafluorotetrabenzo-zinc complex
(1) NMRスペクトル(装置:日本電子製、型式: JNM— AL400)  (1) NMR spectrum (Device: JEOL, model: JNM-AL400)
'H-NMRCC D N): δ 11. 97 (s、 1H)  'H-NMRCC D N): δ 11. 97 (s, 1 H)
19F-NMR(C D N) : δ— 159. 49 (m、 2F)、 一149. 55 (m、 1F)、 一138. 13 ( m、 2F)、 - 118. 73 (s、 IF) 19 F-NMR (CDN): δ— 159. 49 (m, 2F), 1 149. 55 (m, 1 F), 1 138. 13 (m, 2 F),-118. 73 (s, IF)
(2)マススペクトル(装置:アプライド 'バイオシステムズ製、型式: Voyager— DE™ PRO)  (2) Mass spectrum (apparatus: Applied 'Biosystems, model: Voyager-DETM PRO)
MS (TOF-MS) : m/z = 2047. 14 (M+) (計算分子量: 2043· 9) MS (TOF-MS): m / z = 2047. 14 (M + ) (calculated molecular weight: 2043 · 9)
(3)紫外—可視吸収スペクトル (装置:島津製作所製、型式: uv— 1650Pc) λ (THF) =429、 457、 595、 643應  (3) Ultraviolet-visible absorption spectrum (apparatus: manufactured by Shimadzu, model: uv-1650Pc) λ (THF) = 429, 457, 595, 643 應
[0280] 実施例 35 : (4, 5, 6, 7 テトラフルオロー 2H イソインドール)多量体の製造  Example 35: Preparation of (4,5,6,7 tetrafluoro-2H isoindole) multimer
500mlの三つ口フラスコに、活性炭にパラジウムを担持させた触媒(アルドリッチ社 より購人、 Pd : 10質量0 /0) 5. 12g (Pd量: 4. 81mmol)、メタノーノレ 200ml、 3Mの石) fL 酸 12. 5ml (37. 5mmol)を添加した。次いで系内を減圧にしてから水素を供給する 操作 (水素置換)を 3回繰り返した後、水素バルーンで加圧した状態で、室温で 10分 間撹拌して触媒を活性化させた。その後にテトラフルオロフタロニトリル 10. 0g (49. 98mmol)をトルエン 200mlに溶解させた溶液をフラスコに加えて、室温で 17時間激 しく撹拌した。反応溶液を重曹水で中和した後、セライトろ過によりパラジウム触媒を 除去した。ろ液に酢酸ェチルを加えて抽出し、蒸留水、次いで飽和食塩水で洗浄し 、無水硫酸ナトリウムで脱水した後、抽出物をエバポレーターにより濃縮した。この濃 縮物を、シリカゲルカラムクロマトグラフィー(溶媒:酢酸ェチル)により精製し、 目的物 の(4, 5, 6, 7 テトラフルオロー 2H—イソインドール)多量体を、 6. 19g (換算収率 65. 5%)得た。得られた多量体の平均分子量 (ポリスチレン換算での GPCにより測 定値)は、 Mn= l , 000、Mw= l , 600であった。 Three-necked flask 500 ml, catalyst supported palladium on activated carbon (購人from Aldrich, Pd: 10 mass 0/0) 5. 12g (Pd weight: 4. 81 mmol), Metanonore 200 ml, stone 3M) f L acid 12.5 ml (37.5 mmol) was added. Next, the system is depressurized and then hydrogen is supplied. Operation (hydrogen substitution) is repeated three times, and then pressurized with a hydrogen balloon for 10 minutes at room temperature. Stirring was performed to activate the catalyst. Thereafter, a solution of 10.0 g (49.98 mmol) of tetrafluorophthalonitrile dissolved in 200 ml of toluene was added to the flask and stirred vigorously at room temperature for 17 hours. The reaction solution was neutralized with aqueous sodium bicarbonate solution, and the palladium catalyst was removed by celite filtration. The filtrate was extracted with ethyl acetate, washed with distilled water and then with saturated brine, and dried over anhydrous sodium sulfate, and the extract was concentrated by an evaporator. The concentrated product is purified by silica gel column chromatography (solvent: ethyl acetate) to obtain the desired product (4,5,6,7 tetrafluoro-2H-isoindole) multimer 6.19 g (converted yield) 65.5%) obtained. The average molecular weight of the obtained multimer (as determined by GPC in terms of polystyrene) was Mn = 1, 000 and Mw = 1, 600.
[0281] 実施例 36 : (4, 7 ジフルオロー 5, 6 ビス(2, 5 ジメチルフエノキシ) 2H—ィ ソインドール)多量体の製造  Example 36 Preparation of (4,7-Difluoro-5,6-bis (2,5-dimethylphenoxy) 2H-isoindole) Multimer
100mlの三つ口フラスコに、活性炭にパラジウムを担持させた触媒(アルドリッチ社 より購人、 Pd : 10質量0 /0) 1. 01g (Pd量: 0. 94mmol)、メタノーノレ 5. lg、 3Mの石) fL 酸 1. 5ml (4. 5mmol)を添加した。次いで系内を減圧にしてから水素を供給する操 作 (水素置換)を 3回繰り返した後、水素バルーンで加圧した状態で (約 1. 1気圧)、 室温で 10分間撹拌して触媒を活性化させた。その後に 3, 6 ジフルオロー 4, 5— ビス(2, 5 ジメチルフエノキシ)フタロニトリル 3· 00g (7. 42mmol)を酢酸ェチル 15 mlに溶解させた溶液をフラスコに加えて、室温で 14時間撹拌した。反応溶液を重曹 水で中和した後、セライトろ過によりパラジウム触媒を除去した。ろ液にトルエンを加 えて抽出し、蒸留水、次いで飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後 、抽出物をエバポレーターにより濃縮した。この濃縮物を、シリカゲルカラムクロマトグ ラフィー(溶媒:クロ口ホルム)により精製し、 目的物の(4, 7—ジフルォロ— 5, 6—ビ ス(2, 5 ジメチルフエノキシ)一2H—イソインドール)多量体を、 1 · O lg (換算収率 3 4. 9%)得た。得られた多量体の平均分子量 (ポリスチレン換算での GPCにより測定 値)は、 Mn= l , 800、Mw= 2, 100であった。 Three-necked flask 100 ml, (購人from Aldrich, Pd: 10 mass 0/0) catalyst the palladium was supported on activated carbon 1. 01G (Pd weight: 0. 94 mmol), Metanonore 5. lg, of 3M Stone) f L acid 1.5 ml (4.5 mmol) was added. The system is then decompressed and then hydrogen is supplied repeatedly (hydrogen substitution) three times, and then pressurized with a hydrogen balloon (about 1.1 atm) and stirred for 10 minutes at room temperature to catalyze the catalyst. It was activated. Thereafter, a solution of 3,00 difluoro-4,5-bis (2,5 dimethylphenoxy) phthalonitrile 3 · 00 g (7.42 mmol) in 15 ml of ethyl acetate is added to the flask and the solution is allowed to stand at room temperature for 14 hours. It stirred. The reaction solution was neutralized with sodium bicarbonate water, and the palladium catalyst was removed by celite filtration. The filtrate was extracted with toluene, washed with distilled water and then with saturated brine, and dried over anhydrous sodium sulfate, and then the extract was concentrated by an evaporator. The concentrate was purified by silica gel column chromatography grayed roughy (solvent: Black port Holm) to give the desired product (4, 7-Jifuruoro - 5, 6-bi scan (2, 5-dimethyl-phenoxyethanol) Single 2H- isoindole ) The multimer was obtained as 1 · O lg (converted yield 34.9%). The average molecular weight of the obtained multimer (as measured by GPC in terms of polystyrene) was Mn = 1, 800 and Mw = 2, 100.
[0282] 実施例 37 : (4, 7 ジフノレオロー 5, 6 ビス(ペンタフノレオロフェニノレ) 2H イソ インドール)多量体の製造  Example 37 Preparation of (4,7-Difuranoleo 5,6 Bis (pentafuroreorophenole) 2H Isoindole) Multimer
20mlの二口フラスコに、活性炭にパラジウムを担持させた触媒 (アルドリッチ社より 購人、 Pd : 10質量0 /0) 0. 3g (Pd量: 0. 28mmol)、メタノーノレ 3g、 3Mの石) fL酸 0. 4ml (1. 2mmol)を添加した。次いで系内を減圧にしてから水素を供給する操作 (水素置 換)を 3回繰り返した後、水素バルーンで加圧した状態で (約 1. 1気圧)、室温で 10 分間撹拌して触媒を活性化させた。その後に 3, 6—ジフルオロー 4, 5—ビス(ペンタ フルオロフェニル)フタロニトリノレ 1 · 00g (2. 02mmol)を酢酸ェチル 5. lgに溶解さ せた溶液をフラスコに加えて、室温で 14時間撹拌した。反応溶液を重曹水で中和し た後、セライトろ過によりパラジウム触媒を除去した。ろ液にトルエンを加えて抽出し、 蒸留水、次いで飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水した後、抽出物をェ バポレーターにより濃縮した。この濃縮物を、シリカゲルカラムクロマトグラフィー (溶 媒:クロ口ホルム)により精製し、 目的物の(4, 7—ジフルオロー 5, 6—ビス(ペンタフ ルオロフェニル) 2H イソインドール)多量体を、 0. 34g (換算収率 43. 1 %)得た 。得られた多量体の平均分子量 (ポリスチレン換算での GPCにより測定値)は、 Mn = 1 , 300、 Mw= l , 500であった。 Catalyst with palladium supported on activated carbon in a 20 ml two-necked flask (from Aldrich) 購人, Pd: 10 mass 0/0) 0. 3g (Pd weight: 0. 28 mmol), Metanonore 3g, was added 3M stones) f L acid 0. 4ml (1. 2mmol). Next, after the system is depressurized and the operation of supplying hydrogen (hydrogen replacement) is repeated three times, the catalyst is stirred at room temperature for 10 minutes while pressurized with a hydrogen balloon (about 1.1 atm). It was activated. Then, a solution of 1,00 g (2.02 mmol) of 3,6-difluoro-4,5-bis (pentafluorophenyl) phthalonitrile in solution in 5. 5 g of ethyl acetate was added to the flask and stirred at room temperature for 14 hours. . The reaction solution was neutralized with aqueous sodium bicarbonate solution, and the palladium catalyst was removed by celite filtration. The filtrate was extracted with toluene, washed with distilled water and then with saturated brine, and dried over anhydrous sodium sulfate, and then the extract was concentrated by an evaporator. The concentrate is purified by silica gel column chromatography (solvent: croform) to obtain 0.34 g of the objective (4,7-difluoro-5,6-bis (pentafluorophenyl) 2H isoindole) multimer. It was obtained (converted yield 43.1%). The average molecular weight of the obtained multimer (as measured by GPC in terms of polystyrene) was Mn = 1,300 and Mw = 1,500.
実施例 38 : (5, 6 ジクロロー 2H イソインドール)多量体の製造  Example 38: Preparation of (5, 6 dichloro-2H isoindole) multimer
200mlの三つ口フラスコに、活性炭にパラジウムを担持させた触媒(アルドリッチ社 より購入、 Pd : 10質量0 /0) 1. 00g (Pd量: 0. 94mmol)、メタノール 5g、 3Mの硫酸 4 . lml (12. 3mmol)を添加した。次いで系内を減圧にしてから水素を供給する操作 (水素置換)を 3回繰り返した後、水素バルーンで加圧した状態で (約 1. 1気圧)、室 温で 10分間撹拌して触媒を活性化させた。その後に 4, 5 ジクロ口フタロニトリル 3. 00g (15. 23mmol)を酢酸ェチル 90mlに溶解させた溶液をフラスコに加えて、室温 で 14時間撹拌した。反応溶液を重曹水で中和した後、セライトろ過によりパラジウム 触媒を除去しつつ、酢酸ェチルをかけて洗浄した。ろ液を、蒸留水、次いで飽和食 塩水で洗浄し、無水硫酸ナトリウムで脱水した後、エバポレーターにより濃縮した。こ の濃縮物にメタノールを加えて激しく撹拌した後、ろ過することで低分子量物を取り 除き、 目的物の(5, 6 ジクロロー 2H—イソインドール)多量体を、 0. 71g (換算収 率 25. 3%)得た。得られた多量体の平均分子量 (ポリスチレン換算での GPCにより 測定ィ直)は、 Mn = 5, 900、 Mw= 6, 900であった。 Three-necked flask 200 ml, (purchased from Aldrich, Pd: 10 mass 0/0) catalyst supported palladium on activated carbon 1. 200 g (Pd content: 0. 94 mmol), methanol 5g, sulfuric acid 3M 4. lml (12.3 mmol) was added. Next, after the system is depressurized and the hydrogen supply operation (hydrogen substitution) is repeated three times, the catalyst is stirred for 10 minutes at room temperature while pressurized with a hydrogen balloon (about 1.1 atm). It was activated. Thereafter, a solution of 3.00 g (15.23 mmol) of 4,5 dichlorophthalonitrile in 90 ml of ethyl acetate was added to the flask and stirred at room temperature for 14 hours. The reaction solution was neutralized with sodium bicarbonate aqueous solution and then washed with ethyl acetate while removing the palladium catalyst by celite filtration. The filtrate was washed with distilled water and then with saturated brine, dried over anhydrous sodium sulfate and concentrated by an evaporator. After adding methanol to this concentrate and vigorously stirring, low molecular weight substances are removed by filtration, and the target (5, 6 dichloro-2H-isoindole) multimer is obtained as 0.71 g (converted yield 25) . 3%) obtained. The average molecular weight (measured by GPC in terms of polystyrene) of the obtained multimer was Mn = 5,900 and Mw = 6,900.
産業上の利用可能性 [0284] 本発明のイソインドール類の製造方法は、従来の方法と比べて、反応工程が少なく 、より安価にイソインドール類を製造することができる。本発明の製造方法は、反応ェ 程が簡便であるため、様々なフタロニトリル類を用いることができ、それにより様々な 新規なイソインドール類を製造することができる。これらの新規イソインドール類は、色 素原料として、またはポリマー化することで、有機薄膜トランジスタや有機太陽電池等 の構成材料として用いること期待される。 Industrial applicability [0284] The method for producing isoindoles of the present invention can produce isoindoles more inexpensively because the number of reaction steps is smaller than in the conventional method. The production method of the present invention can use various phthalonitriles because the reaction process is simple, and thereby various novel isoindoles can be manufactured. These novel isoindoles are expected to be used as constituent materials of organic thin film transistors, organic solar cells and the like as coloring materials or by polymerizing.
[0285] 本発明の兀共役環状化合物(7)の製造方法は、イソインドール (2)から、中間体(6 )を経て、 兀共役環状化合物(7) (特にポルフィリン(7a) )を製造することを特徴とす る。この中間体(6)を経ることにより、特に含ハロゲンテトラベンゾボルフィリンを、選択 的に純度良く製造できる。また本発明の製造方法によれば、金属塩を用いずに、含 ハロゲンテトラベンゾボルフィリンを製造できる。  The method for producing a conjugated cyclic compound (7) of the present invention is to produce a conjugated cyclic compound (7) (particularly, porphyrin (7a)) from an isoindole (2) via an intermediate (6). It is characterized by In particular, halogen-containing tetrabenzoporphyrin can be selectively produced in high purity through the intermediate (6). Further, according to the production method of the present invention, halogen-containing tetrabenzoporphyrin can be produced without using a metal salt.
[0286] 本発明の π共役環状化合物(7) (好ましくはポルフィリン(7a)、コロール(7b)、サフ ィリン(7b)およびペンタフイリン(7d);より好ましくはポルフィリン(7a) )は、様々な用 途、例えば有機電子デバイス、特に有機導電性材料、有機半導体材料、 n型有機電 界効果型トランジスター(OFET)、太陽電池材料、光電導素子、非線形光学材料、 光電変換素子ドーパント、光電導キヤリャ発生材料、光記録材料、および触媒などに 適用できる。さらに本発明のボルフイリン錯体(8)も同様の用途に適用できる。また上 記式(6a)〜(6c)で示される化合物は、 π共役環状化合物(7)の製造だけでなぐポ リイソインドレニンビニレンのようなポリマー材料の製造に適用できる。  The π-conjugated cyclic compound (7) (preferably porphyrin (7a), corrole (7b), saphirin (7b) and pentaphyrin (7d); more preferably porphyrin (7a)) of the present invention is not limited. Applications: For example, organic electronic devices, especially organic conductive materials, organic semiconductor materials, n-type organic field effect transistors (OFETs), solar cell materials, photoconductive elements, non-linear optical materials, photoelectric conversion element dopants, photoconductive carriers It can be applied to generating materials, optical recording materials, and catalysts. Furthermore, the porphyrin complex (8) of the present invention can be applied to the same application. The compounds represented by the above formulas (6a) to (6c) can be applied to the production of polymer materials such as polyisoindolenine vinylene which can be obtained only by the production of the π-conjugated cyclic compound (7).
[0287] 本発明のイソインドール多量体の製造方法は、出発原料として、イソインドール類よ りも安定で、且つ入手が容易なフタロニトリル類を用いて、イソインドール多量体を製 造すること力 Sできる。本発明の製造方法で得られるイソインドール多量体は、導電性 材料として、より詳しくは有機薄膜トランジスタや有機太陽電池等の分野における電 極材料、表示材料、電磁波遮蔽材料等として有用である。  [0287] The method for producing an isoindole multimer of the present invention is to produce an isoindole multimer by using phthalonitriles that are more stable than isoindoles and easily available as a starting material. S can. The isoindole multimer obtained by the production method of the present invention is useful as a conductive material, more specifically, as an electrode material, a display material, an electromagnetic wave shielding material and the like in the field of organic thin film transistors and organic solar cells.

Claims

請求の範囲  The scope of the claims
下記式( 1 )で示されるフタロニトリルを還元することを特徴とする、下記式(2)で示さ れるイソインドールの製造方法。  A process for producing isoindole represented by the following formula (2), which comprises reducing phthalonitrile represented by the following formula (1).
Figure imgf000073_0001
Figure imgf000073_0001
〔式中、 Xは、ハロゲン原子を表し、 γは、
Figure imgf000073_0002
ΟΙΤまたは SR3 (式中、 R2および R3 は、それぞれ独立に、アルキル、ァリールまたはアルキルァリール基を表す。)を表し
[Wherein, X represents a halogen atom, and γ is
Figure imgf000073_0002
ΟΙΤ or SR 3 (wherein, R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group)
、 m+n≤4であることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表す o ] , M + n≤4, m represents an integer of 1 to 4, n represents an integer of 0 to 3, and o]
[2] 上記式(1 )で示されるフタロニトリルをヒドリド還元試薬により還元する、請求項 1に 記載の製造方法。  [2] The process according to claim 1, wherein the phthalonitrile represented by the above formula (1) is reduced by a hydride reducing reagent.
[3] 上記式(1 )で示されるフタロニトリル 1モルに対し、ヒドリドカ 〜6モノレになるようにヒ ドリド還元試薬を使用する、請求項 2に記載の製造方法。  [3] The process according to claim 2, wherein the hydride reducing reagent is used so as to be 1 to 6 hydrides per 1 mole of phthalonitrile represented by the above formula (1).
[4] 上記式(1 )で示されるフタロニトリルとヒドリド還元試薬とを混合し、還元反応を行つ た後、反応混合物とプロトン酸とを混合する、請求項 2に記載の製造方法。 [4] The production method according to claim 2, wherein the phthalonitrile represented by the above formula (1) is mixed with a hydride reducing reagent, reduction reaction is performed, and then the reaction mixture and protonic acid are mixed.
[5] 上記式(1 )で示されるフタロニトリルとヒドリド還元試薬とを混合し、還元反応を行つ た後、反応混合物とアルカリとを混合する、請求項 2に記載の製造方法。 [5] The production method according to claim 2, wherein the phthalonitrile represented by the above formula (1) and the hydride reducing reagent are mixed, reduction reaction is performed, and then the reaction mixture and alkali are mixed.
[6] ヒドリド還元試薬が、アルミニウム水素化物若しくはその錯体、またはホウ素水素化 物若しくはその錯体である、請求項 2に記載の製造方法。 [6] The production method according to claim 2, wherein the hydride reduction reagent is aluminum hydride or a complex thereof, or boron hydride or a complex thereof.
[7] 上記式(1 )で示されるフタロニトリルを接触水素化法で還元する、請求項 1に記載 の製造方法。 7. The method according to claim 1, wherein the phthalonitrile represented by the above formula (1) is reduced by catalytic hydrogenation.
[8] 下記式(2)で示されるイソインドール(4, 5, 6, 7—テトラフルオロー 2H—イソインド ールを除く)。  [8] Isoindole represented by the following formula (2) (excluding 4,5,6,7-tetrafluoro-2H-isoindole).
[化 2]
Figure imgf000073_0003
〔式中、 Xは、ハロゲン原子を表し、 Yは、
Figure imgf000074_0001
OR2または SR3 (式中、 R2および R3 は、それぞれ独立に、アルキル、ァリールまたはアルキルァリール基を表す。)を表し 、 m+n≤4であることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表す o ]
[Formula 2]
Figure imgf000073_0003
[Wherein, X represents a halogen atom, and Y is
Figure imgf000074_0001
OR 2 or SR 3 (wherein R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), provided that m + n≤4, m is 1 Represents an integer of 4 to 4; n represents an integer of 0 to 3; o
[9] 下記式(3)で示される N—置換イソインドール (Xがフッ素原子であり、且つ m = 4で あるものを除く)。  [9] N-substituted isoindole represented by the following formula (3) (excluding those in which X is a fluorine atom and m = 4).
[化 3コ  [Chemical 3]
X"1ヽ. X " 1ヽ.
I 〕 N-R (3)  I] N-R (3)
〔式中、 Xは、ハロゲン原子を表し、 Yは、
Figure imgf000074_0002
OR2または SR3 (式中、 R2および R3 は、それぞれ独立に、アルキル、ァリールまたはアルキルァリール基を表す。)を表し 、 R4は、アルキル、ァリール、アルキルァリールまたはァシル基を表し、 m + n≤4であ ることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表す。〕
[Wherein, X represents a halogen atom, and Y is
Figure imgf000074_0002
OR 2 or SR 3 (wherein, R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), and R 4 represents an alkyl, aryl, alkylaryl or acyl group And m is an integer of 1 to 4 and n is an integer of 0 to 3, provided that m + n≤4. ]
[10] 下記式 (4)で示される繰返し単位を有するポリマー(Xがフッ素原子であり、且つ m =4であるものを除く)。 [10] A polymer having a repeating unit represented by the following formula (4) (excluding those in which X is a fluorine atom and m = 4).
[化 4]  [Formula 4]
Figure imgf000074_0003
Figure imgf000074_0003
〔式中、 Xは、ハロゲン原子を表し、 Yは、
Figure imgf000074_0004
ΟΙΤまたは SR3 (式中、 R2および R3 は、それぞれ独立に、アルキル、ァリールまたはアルキルァリール基を表す。)を表し 、 m+n≤4であることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表す
[Wherein, X represents a halogen atom, and Y is
Figure imgf000074_0004
And m or SR 3 (wherein, R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), and m is 1 to 1 provided that m + n 、 4 Represents an integer of 4, n represents an integer of 0 to 3
。〕 . ]
下記式(5)で示される繰返し単位を有するポリマー(Xがフッ素原子であり、且つ m =4であるものを除く)。  A polymer having a repeating unit represented by the following formula (5) (excluding those in which X is a fluorine atom and m = 4).
[化 5]
Figure imgf000075_0001
[Chem. 5]
Figure imgf000075_0001
〔式中、 Xは、ハロゲン原子を表し、 Yは、
Figure imgf000075_0002
OR2または SR3 (式中、 R2および R3 は、それぞれ独立に、アルキル、ァリールまたはアルキルァリール基を表す。)を表し 、 R4は、アルキル、ァリール、アルキルァリールまたはァシル基を表し、 m + n≤4であ ることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表す。〕
[Wherein, X represents a halogen atom, and Y is
Figure imgf000075_0002
OR 2 or SR 3 (wherein, R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), and R 4 represents an alkyl, aryl, alkylaryl or acyl group And m is an integer of 1 to 4 and n is an integer of 0 to 3, provided that m + n≤4. ]
下記式(2)で示される含ハロゲンイソインドールから、下記式(6)で示されるイソイン ドールの 1位置換体を経て、下記式(7)で示される π共役環状化合物を製造する方 法。  A method for producing a π-conjugated cyclic compound represented by the following formula (7) from a halogen-containing isoindole represented by the following formula (2) through a 1-position substitution of isoindole shown by the following formula (6).
[化 6] [Chemical 6]
Figure imgf000075_0003
Figure imgf000075_0003
〔式中、 Xは、ハロゲン原子を表す。  [Wherein, X represents a halogen atom.
Υは、
Figure imgf000075_0004
OR2または SR3 (式中、 R2および R3は、それぞれ独立にアルキル、ァ リールまたはアルキルァリール基を表す。)を表し、 m + n≤4であることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表す。
The wolf is
Figure imgf000075_0004
OR 2 or SR 3 (wherein, R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), provided that m + n 条件 4, m is 1 Represents an integer of -4, and n represents an integer of 0-3.
Zは、 OHまたは NR5R6 (式中、 R5および R6は、それぞれ独立に C アルキル基を表 Z represents OH or NR 5 R 6 (wherein R 5 and R 6 each independently represent a C alkyl group)
1-4  1-4
す。)を表す。 The Represents.
Aは、 Nまたは NHを表し、 jは、;!〜 5の整数を表し、 kは、 0または 1の整数を表し、 実線および点線からなる二重線は、単結合または二重結合を表し、式(7)で示される 環状化合物は、二重線の部分で 71共役系を形成する。〕  A represents N or NH, j represents an integer of from! To 5, k represents an integer of 0 or 1, and a double line consisting of a solid line and a dotted line represents a single bond or a double bond. The cyclic compound represented by the formula (7) forms a 71 conjugated system at the doublet. ]
下記式(2)で示される含ハロゲンイソインドールから、下記式(6)で示されるイソイン ドールの 1位置換体を経て、下記式(7a)で示される含ハロゲンテトラべンゾボルフイリ ンを製造する、請求項 12に記載の製造方法。 From halogen-containing isoindole represented by the following formula (2), isoin represented by the following formula (6) The production method according to claim 12, wherein a halogen-containing tetrabenzovolphenyline represented by the following formula (7a) is produced via 1-position substitution of dole.
[化 7] [Chem. 7]
Figure imgf000076_0001
Figure imgf000076_0001
〔式中、 Xは、ハロゲン原子を表し、 γは、
Figure imgf000076_0002
ΟΙΤまたは SR3 (式中、 R2および R3 は、それぞれ独立にアルキル、ァリールまたはアルキルァリール基を表す。)を表し、 m + n≤4であることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表す。
[Wherein, X represents a halogen atom, and γ is
Figure imgf000076_0002
And SR or SR 3 (wherein R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), and m is 1 to 4 provided that m + n≤4; And n represents an integer of 0 to 3.
Zは、 OHまたは NR5R6 (式中、 R5および R6は、それぞれ独立に C アルキル基を表 Z represents OH or NR 5 R 6 (wherein R 5 and R 6 each independently represent a C alkyl group)
1-4  1-4
す。)を表す。〕 The Represents. ]
上記式(2)で示される含ハロゲンイソインドールをホルミル化することによって、下記 式 ½b)で示される第 1の中間体を形成し、次いでこの中間体(6b)を還元することに より、上記イソインドールの 1位置換体として下記式(6c)で示されるヒドロキシメチル 化 2H イソインドールを形成する、請求項 13に記載の製造方法。  By formylation of the halogen-containing isoindole represented by the formula (2), a first intermediate represented by the following formula b) is formed, and then the intermediate (6b) is reduced to form the first intermediate. The production method according to claim 13, wherein the hydroxymethylated 2H isoindole represented by the following formula (6c) is formed as the 1-position substitution of isoindole.
[化 8]
Figure imgf000076_0003
[Formula 8]
Figure imgf000076_0003
〔式中、 Xは、ハロゲン原子を表し、 γは、
Figure imgf000076_0004
ΟΙΤまたは SR3 (式中、 R2および R3 は、それぞれ独立にアルキル、ァリールまたはアルキルァリール基を表す。)を表し、 m + n≤4であることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表す。 ]
[Wherein, X represents a halogen atom, and γ is
Figure imgf000076_0004
And SR or SR 3 (wherein R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), and m is 1 to 4 provided that m + n≤4; And n represents an integer of 0 to 3. ]
ハロゲン化ホスホリルの存在下で、上記式(2)で示される含ハロゲンイソインドール とジアルキルホルムアミドとを反応させて、上記式(6b)で示される第 1の中間体を形 成する、請求項 14に記載の製造方法。 The first intermediate represented by the above formula (6b) is formed by reacting the halogen-containing isoindole represented by the above formula (2) with a dialkylformamide in the presence of a phosphoryl halide. The manufacturing method according to claim 14.
上記式(2)で示される含ハロゲンイソインドールをアミノメチレン化することによって、 下記式(6a)で示される第 2の中間体を形成し、次いでこの中間体(6a)を加水分解 することにより、上記式 ½b)で示される第 1の中間体を形成する、請求項 14に記載 の製造方法。  By aminomethylenation of the halogen-containing isoindole represented by the above formula (2), a second intermediate represented by the following formula (6a) is formed, and then this intermediate (6a) is hydrolyzed. The method according to claim 14, which forms a first intermediate represented by the above formula 1⁄2 b).
[化 9]  [Chem. 9]
Figure imgf000077_0001
Figure imgf000077_0001
〔式中、 Xは、ハロゲン原子を表し、 Yは、
Figure imgf000077_0002
ΟΙΤまたは SR3 (式中、 R2および R3 は、それぞれ独立にアルキル、ァリールまたはアルキルァリール基を表す。)を表し、 m + n≤4であることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表し、 R7および R8は、それぞれ独立に C アルキル基を表す。〕
[Wherein, X represents a halogen atom, and Y is
Figure imgf000077_0002
And SR or SR 3 (wherein R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), and m is 1 to 4 provided that m + n≤4; And n represents an integer of 0 to 3, and R 7 and R 8 each independently represent a C alkyl group. ]
1-4  1-4
[17] ハロゲン化ホスホリルの存在下で、上記式(2)で示される含ハロゲンイソインドール とジアルキルホルムアミドとを反応させて、上記式(6a)で示される第 2の中間体を形 成する、請求項 16に記載の製造方法。  [17] A halogen-containing isoindole represented by the above formula (2) is reacted with a dialkylformamide in the presence of a phosphoryl halide to form a second intermediate represented by the above formula (6a), The manufacturing method according to claim 16.
[18] 酢酸、プロピオン酸および酪酸から選択される少なくとも 1種の脂肪族モノカルボン 酸、および/または ZnCl、 BFおよび BF - 0 (C H )力、ら選択される少なくとも 1種  [18] At least one aliphatic monocarboxylic acid selected from acetic acid, propionic acid and butyric acid, and / or at least one selected from ZnCl, BF and BF-0 (C H) power, etc.
2 3 3 2 5 2  2 3 3 2 5 2
のルイス酸の存在下で上記式(6c)で示されるヒドロキシメチル化 2H イソインドー ルを脱水環化し、次いで酸化剤を作用させることにより、上記式(7)で示される含ハロ ゲンテトラベンゾボルフィリンを製造する、請求項 14に記載の製造方法。  Of the hydroxymethylated 2H isoindole represented by the above formula (6c) in the presence of a Lewis acid of the above, followed by the action of an oxidizing agent to obtain a halogen-containing tetrabenzo porphyrin represented by the above formula (7) The manufacturing method according to claim 14, which is manufactured.
[19] 上記式(2)で示される含ハロゲンイソインドールをァミノメチル化することによって、 上記イソインドールの 1位置換体として下記式(6d)で示されるアミノメチル化 2H— イソインドールを形成する、請求項 13に記載の製造方法。 [19] The aminomethylated 2H-isoindole represented by the following formula (6d) is formed as a 1-substituent of the above isoindole by amino-methylating the halogen-containing isoindole represented by the above formula (2): Item 13. The production method according to Item 13.
[化 10]  [Chemical 10]
Figure imgf000077_0003
〔式中、 Xは、ハロゲン原子を表し、 Yは、
Figure imgf000078_0001
OR2または SR3 (式中、 R2および R3 は、それぞれ独立にアルキル、ァリールまたはアルキルァリール基を表す。)を表し、 m + n≤4であることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表し、 R5および R6は、それぞれ独立に C アルキル基を表す。〕
Figure imgf000077_0003
[Wherein, X represents a halogen atom, and Y is
Figure imgf000078_0001
OR 2 or SR 3 (wherein, R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), and m is 1 to 1 provided that m + n1〜4; N represents an integer of 0 to 3; and R 5 and R 6 each independently represent a C alkyl group. ]
1-4  1-4
[20] 酸の存在下で、上記式(2)で示される含ハロゲンイソインドールと、ホルムアルデヒ ドと、ジアルキルァミンとを反応させ、次いで酸化剤を作用させることにより、上記式(7 )で示される含ハロゲンテトラベンゾボルフィリンを製造する請求項 19に記載の製造 方法。  [20] In the presence of an acid, the halogen-containing isoindole represented by the above formula (2), formaldehyde and dialkylamine are reacted with each other, and then the oxidizing agent is allowed to react with the above formula (7). The production method according to claim 19, wherein the indicated halogen-containing tetrabenzoporphyrin is produced.
[21] 上記式(2)で示される含ハロゲンイソインドールと、ハロゲン化メチレンジアルキルァ ンモニゥムとを反応させ、次いで酸化剤を作用させることにより、上記式(7)で示され る含ハロゲンテトラベンゾボルフィリンを製造する請求項 19に記載の製造方法。  [21] A halogen-containing tetrabenzo compound represented by the above formula (7) is reacted by reacting the halogen-containing isoindole represented by the above formula (2) with a methylene chloride dialkyl halide and then causing an oxidizing agent to act. The method according to claim 19, wherein the porphyrin is produced.
[22] 下記式(6a)で示されるアミノメチレン化 1H—イソインドール。  [22] Aminomethylenated 1H-isoindole represented by the following formula (6a).
[化 11]  [Formula 11]
Figure imgf000078_0002
Figure imgf000078_0002
〔式中、 Xは、ハロゲン原子を表し、 γは、
Figure imgf000078_0003
ΟΙΤまたは SR3 (式中、 R2および は、それぞれ独立にアルキル、ァリールまたはアルキルァリール基を表す。)を表し、 m + n≤4であることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表し、 R7および R8は、それぞれ独立に C アルキル基を表す。〕
[Wherein, X represents a halogen atom, and γ is
Figure imgf000078_0003
And SR or SR 3 (wherein R 2 and each independently represent an alkyl, aryl or alkylaryl group), and m is an integer of 1 to 4 provided that m + n≤4 N represents an integer of 0 to 3, and R 7 and R 8 each independently represent a C alkyl group. ]
1-4  1-4
下記式(6b)で示されるホルミル化 2H イソインドール。  Formylated 2H isoindole represented by the following formula (6b).
[化 12]
Figure imgf000078_0004
[Formula 12]
Figure imgf000078_0004
〔式中、 Xは、ハロゲン原子を表し、 γは、
Figure imgf000078_0005
ΟΙΤまたは SR3 (式中、 R2および R3 は、それぞれ独立にアルキル、ァリールまたはアルキルァリール基を表す。)を表し、 m + n≤4であることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表す。 ]
[Wherein, X represents a halogen atom, and γ is
Figure imgf000078_0005
And SR or SR 3 (wherein R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), and m is 1 to 4 provided that m + n≤4; And n represents an integer of 0 to 3. ]
[24] 下記式(6c)で示されるヒドロキシメチル化 2H イソインドーノレ。  [24] Hydroxymethylated 2H isoindonolene represented by the following formula (6c).
[化 13]
Figure imgf000079_0001
[Chem. 13]
Figure imgf000079_0001
〔式中、 Xは、ハロゲン原子を表し、 Yは、
Figure imgf000079_0002
OR2または SR3 (式中、 R2および R3 は、それぞれ独立にアルキル、ァリールまたはアルキルァリール基を表す。)を表し、 m + n≤4であることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表す。 ]
[Wherein, X represents a halogen atom, and Y is
Figure imgf000079_0002
OR 2 or SR 3 (wherein, R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), and m is 1 to 1 provided that m + n1〜4; N represents an integer of 4; n represents an integer of 0 to 3; ]
下記式(7)で示される π共役環状化合物。 The pi- conjugated cyclic compound shown by following formula (7).
[化 14]  [Formula 14]
Figure imgf000079_0003
Figure imgf000079_0003
〔式中、 Xは、ハロゲン原子を表す。  [Wherein, X represents a halogen atom.
Υは、
Figure imgf000079_0004
OR2または SR3 (式中、 R2および R3は、それぞれ独立にアルキル、ァ リールまたはアルキルァリール基を表す。)を表し、 m + n≤4であることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表す。
The wolf is
Figure imgf000079_0004
OR 2 or SR 3 (wherein, R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), provided that m + n 条件 4, m is 1 Represents an integer of -4, and n represents an integer of 0-3.
Aは、 Nまたは NHを表し、 jは、;!〜 5の整数を表し、 kは、 0または 1の整数を表し、 実線および点線からなる二重線は、単結合または二重結合を表し、式(7)で示される 環状化合物は、二重線の部分で 71共役系を形成する。〕  A represents N or NH, j represents an integer of from! To 5, k represents an integer of 0 or 1, and a double line consisting of a solid line and a dotted line represents a single bond or a double bond. The cyclic compound represented by the formula (7) forms a 71 conjugated system at the doublet. ]
[26] 下記式(7a)で示される含ハロゲンテトラベンゾボルフィリンである請求項 25に記載 の兀共役環状化合物。  [26] The 兀 conjugated cyclic compound according to claim 25, which is a halogen-containing tetrabenzo porphyrin represented by the following formula (7a).
[化 15] [Formula 15]
Figure imgf000080_0001
Figure imgf000080_0001
〔式中、 Xは、ハロゲン原子を表し、 Yは、
Figure imgf000080_0002
OR2または SR3 (式中、 R2および R3 は、それぞれ独立にアルキル、ァリールまたはアルキルァリール基を表す。)を表し、 m + n≤4であることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表す。 ]
[Wherein, X represents a halogen atom, and Y is
Figure imgf000080_0002
OR 2 or SR 3 (wherein, R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), and m is 1 to 1 provided that m + n1〜4; N represents an integer of 4; n represents an integer of 0 to 3; ]
[27] 下記式(8)で示される含ハロゲンテトラべンゾボルフイリン錯体。  [27] A halogen-containing tetrabenzophorphirin complex represented by the following formula (8).
[化 16]  [Chem. 16]
Figure imgf000080_0003
Figure imgf000080_0003
〔式中、 Xは、ハロゲン原子を表し、 Υは、
Figure imgf000080_0004
OR2または SR3 (式中、 R2および R3 は、それぞれ独立にアルキル、ァリールまたはアルキルァリール基を表す。)を表し、 m + n≤4であることを条件として、 mは 1〜4の整数を表し、 nは 0〜3の整数を表し、 Mは、金属または半金属イオンを表す。〕
[Wherein, X represents a halogen atom, Υ is
Figure imgf000080_0004
OR 2 or SR 3 (wherein, R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group), and m is 1 to 1 provided that m + n1〜4; Represents an integer of 4, n represents an integer of 0 to 3, and M represents a metal or metalloid ion. ]
[28] 下記式(9)で示されるフタロニトリルを、酸の存在下で接触水素化することを特徴と する下記式(10)で示される繰返し単位を有する多量体の製造方法。 [28] A process for producing a multimer having a repeating unit represented by the following formula (10), which comprises catalytic hydrogenation of a phthalonitrile represented by the following formula (9) in the presence of an acid.
[化 17]  [Chemical formula 17]
Figure imgf000080_0005
Figure imgf000080_0005
(9) (10) 〔式中、 Dは、ハロゲン原子、 R1, OR2または SR3 (式中、
Figure imgf000081_0001
R2および R3は、それぞれ 独立に、アルキル、ァリールまたはアルキルァリール基を表す。)を表し、 pは 0〜4の 整数を表す。〕
(9) (10) [Wherein, D represents a halogen atom, R 1 , OR 2 or SR 3 (wherein,
Figure imgf000081_0001
R 2 and R 3 each independently represent an alkyl, aryl or alkylaryl group. And p represents an integer of 0-4. ]
[29] 前記酸として、酢酸、トリフルォロ酢酸、リン酸、塩酸、硝酸および硫酸よりなる群か ら選ばれる少なくとも 1種を用いる、請求項 28に記載の製造方法。  [29] The production method according to claim 28, wherein at least one selected from the group consisting of acetic acid, trifluoroacetic acid, phosphoric acid, hydrochloric acid, nitric acid and sulfuric acid is used as the acid.
[30] 接触水素化のための触媒として、ノ ラジウム触媒、ロジウム触媒、白金触媒および ニッケル触媒よりなる群から選ばれる少なくとも 1種を用いる、請求項 28に記載の製 造方法。  [30] The production method according to claim 28, wherein at least one member selected from the group consisting of a nickel catalyst, a rhodium catalyst, a platinum catalyst and a nickel catalyst is used as a catalyst for catalytic hydrogenation.
PCT/JP2007/065080 2006-08-02 2007-08-01 Isoindoles, compounds prepared from the same, and processes for production of both WO2008016085A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2006211294 2006-08-02
JP2006-211294 2006-08-02
JP2006-303316 2006-11-08
JP2006303316 2006-11-08
JP2007-077935 2007-03-23
JP2007-077931 2007-03-23
JP2007077933 2007-03-23
JP2007077935 2007-03-23
JP2007077931 2007-03-23
JP2007-077933 2007-03-23

Publications (2)

Publication Number Publication Date
WO2008016085A1 true WO2008016085A1 (en) 2008-02-07
WO2008016085A9 WO2008016085A9 (en) 2009-07-16

Family

ID=38997260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065080 WO2008016085A1 (en) 2006-08-02 2007-08-01 Isoindoles, compounds prepared from the same, and processes for production of both

Country Status (1)

Country Link
WO (1) WO2008016085A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136311A1 (en) * 2010-04-28 2011-11-03 住友化学株式会社 Polymer compound
JP2011529110A (en) * 2008-07-25 2011-12-01 ケンブリッジ ディスプレイ テクノロジー リミテッド Electroluminescent materials and optical elements
CN103864645A (en) * 2013-12-30 2014-06-18 常州大学 Disubstituted perfluoroalkyl phthalonitrile compound and preparation method thereof
CN111349237A (en) * 2020-03-09 2020-06-30 江西科技师范大学 Polyfluoro functional polybenzazole electrode material applied to supercapacitor and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270621A (en) * 1985-12-06 1987-11-25 Showa Denko Kk Polymer having isoindole structure and its production
JPS63139912A (en) * 1986-07-07 1988-06-11 Asahi Chem Ind Co Ltd Conductive polymer
JPS63223031A (en) * 1987-03-11 1988-09-16 Toyobo Co Ltd Polymer having isoindole structure and production thereof
JP2004006750A (en) * 2002-03-27 2004-01-08 Mitsubishi Chemicals Corp Organic semiconductor material and organic electronic device
JP2005093990A (en) * 2003-08-11 2005-04-07 Mitsubishi Chemicals Corp Organic electronic device using cooper porphyrin compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270621A (en) * 1985-12-06 1987-11-25 Showa Denko Kk Polymer having isoindole structure and its production
JPS63139912A (en) * 1986-07-07 1988-06-11 Asahi Chem Ind Co Ltd Conductive polymer
JPS63223031A (en) * 1987-03-11 1988-09-16 Toyobo Co Ltd Polymer having isoindole structure and production thereof
JP2004006750A (en) * 2002-03-27 2004-01-08 Mitsubishi Chemicals Corp Organic semiconductor material and organic electronic device
JP2005093990A (en) * 2003-08-11 2005-04-07 Mitsubishi Chemicals Corp Organic electronic device using cooper porphyrin compound

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ANDERSON P.S. ET AL.: "N-Trimethylsilylpyrroles as dienes in the synthesis of 1,4-dihydronaphthalen-1,4-imines and isoindoles", JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 14, no. 2, 1977, pages 213 - 218, XP003021011 *
BORNSTEIN J. ET AL.: "Synthesis and reactions of 4,5,6,7-tetrafluoroisoindole", TETRAHEDRON LETTERS, no. 48, 1974, pages 4247 - 4250, XP003021012 *
DIAZ-GARCIA M.A. ET AL.: "Third-Order Nonlinear Optical Properties of Soluble Octasubstituted Metallophthalocyanines", JOURNAL OF PHYSICAL CHEMISTRY, vol. 98, no. 35, 1994, pages 8761 - 8764, XP003021013 *
DONOHOE T.J.: "Product class 14: 1H- and 2H-isoindoles", SCIENCE AND SYNTHESIS, vol. 10, 2001, pages 653 - 692, XP003021006 *
KREHER R. ET AL.: "Chemistry of isoindoles and isoindolenines. 10. Stable di- and tetrabromo-2H- isoindoles", ANGEWANDTE CHEMIE, vol. 86, no. 21, pages 782 - 783, XP003021008 *
KREHER R. ET AL.: "Chemistry of isoindoles and isoindolines. II. Oxidative elimination reactions. 3. 4,5,6,7-Tetrachloro-2H-isoindole", TETRAHEDRON LETTERS, no. 20, 1976, pages 1661 - 1664, XP003021007 *
KREHER R.P. ET AL.: "Studies on the chemistry of isoindoles and isoindolenines. XXXI. 4,5,6,7-Tetrachloro- and 4,5,6,7-tetrabromo-2H-isoindoles", CHEMISCHE BERICHTE, vol. 121, no. 10, 1988, pages 1827 - 1832, XP003021009 *
REMY D.E.: "A versatile synthesis of tetrabenzoporphyrins", TETRAHEDRON LETTERS, vol. 24, no. 14, 1983, pages 1451 - 1454, XP003021010 *
SILING S.A. ET AL.: "Reactions of phthalodinitrile with aromatic diamines in polyphosphoric acid", IZVESTIYA AKADEMII NAUK SSSR, SERIYA KHIMICHESKAYA, no. 8, 1978, pages 1871 - 1877, XP003021014 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529110A (en) * 2008-07-25 2011-12-01 ケンブリッジ ディスプレイ テクノロジー リミテッド Electroluminescent materials and optical elements
WO2011136311A1 (en) * 2010-04-28 2011-11-03 住友化学株式会社 Polymer compound
JP2012107187A (en) * 2010-04-28 2012-06-07 Sumitomo Chemical Co Ltd Polymer compound, compound, and its application
CN105439976A (en) * 2010-04-28 2016-03-30 住友化学株式会社 Polymer compound
US9601695B2 (en) 2010-04-28 2017-03-21 Sumitomo Chemical Company, Limited Polymer compound
CN103864645A (en) * 2013-12-30 2014-06-18 常州大学 Disubstituted perfluoroalkyl phthalonitrile compound and preparation method thereof
CN103864645B (en) * 2013-12-30 2016-08-17 常州大学 A kind of two replacement perfluoroalkyl phthalonitrile compound and preparation method thereof
CN111349237A (en) * 2020-03-09 2020-06-30 江西科技师范大学 Polyfluoro functional polybenzazole electrode material applied to supercapacitor and preparation method thereof

Also Published As

Publication number Publication date
WO2008016085A9 (en) 2009-07-16

Similar Documents

Publication Publication Date Title
CN103548167B (en) Organic compound and comprise its photoelectric device
TW200413365A (en) Charge transport compositions and electronic devices made with such compositions
JP2020111751A (en) Solventless photon up-conversion system
US10829503B2 (en) Dibenzopyrromethene boron chelate compound, near-infrared light absorbing material, thin film and organic electronics device
EP1923385A1 (en) Iridium complex, carbazole derivatives and copolymer having the same
US10647732B2 (en) N-annulated perylene diimide dimers with active pyrrolic N—H bonds
CN108137554A (en) Dicyano pyrazine compound, uses the light-emitting component of the luminescent material and the manufacturing method of 2,5- dicyano -3,6- dihalopyrazines at luminescent material
Barbon et al. Copper-assisted azide–alkyne cycloaddition chemistry as a tool for the production of emissive boron difluoride 3-cyanoformazanates
Barbon et al. Synthesis and characterization of conjugated/cross-conjugated benzene-bridged boron difluoride formazanate dimers
Luo et al. Asymmetric perylene bisimide dyes with strong solvatofluorism
TW201723143A (en) Iridium complex, OLED using the same, and nitrogen-containing tridentate ligand having carbene unit
WO2008016085A1 (en) Isoindoles, compounds prepared from the same, and processes for production of both
JP2006290781A (en) Iridium complex having good solubility
US7803898B2 (en) Aminoquinoxaline compound, polyaminoquinoxaline compound, and use thereof
WO2019114326A1 (en) Taurine-substituted bodipy fluorescent compound, preparation method therefor and use thereof
Zhang et al. ‘Click’synthesis of starburst triphenylamine as potential emitting material
JP5317084B2 (en) π-conjugated cyclic compound and process for producing the same
Wu et al. Organometallic polymers based on fluorene-bridged bis-benzimidazolylidene via direct ligand–metal coordination: synthesis, characterization and optical properties
Wang et al. A facile and highly efficient green synthesis of carbazole derivatives containing a six-membered ring
Anannarukan et al. Soluble polyimides containing trans-diaminotetraphenylporphyrin: Synthesis and photoinduced electron transfer
Liu et al. Benzo [1, 2‐c; 4, 5‐cʹ] bis [1, 2, 5] thiadiazole‐porphyrin‐based near‐infrared dyes
JP4479879B2 (en) Poly (5-aminoquinoxaline) and use thereof
TWI306873B (en) Poly (5-aminoquinoxalines) and use thereof
CN106103406B (en) Anil and its utilization
Lee et al. Tuning the energy level of TAPC: crystal structure and photophysical and electrochemical properties of 4, 4′-(cyclohexane-1, 1-diyl) bis [N, N-bis (4-methoxyphenyl) aniline]

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791760

Country of ref document: EP

Kind code of ref document: A1