JP7212220B2 - Compound, active material for storage battery, n-type semiconductor material, hydrogen storage material, and method for producing compound - Google Patents

Compound, active material for storage battery, n-type semiconductor material, hydrogen storage material, and method for producing compound Download PDF

Info

Publication number
JP7212220B2
JP7212220B2 JP2019028872A JP2019028872A JP7212220B2 JP 7212220 B2 JP7212220 B2 JP 7212220B2 JP 2019028872 A JP2019028872 A JP 2019028872A JP 2019028872 A JP2019028872 A JP 2019028872A JP 7212220 B2 JP7212220 B2 JP 7212220B2
Authority
JP
Japan
Prior art keywords
group
compound
ring structure
ring
following formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019028872A
Other languages
Japanese (ja)
Other versions
JP2020132579A (en
Inventor
圭佑 藤本
雅樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2019028872A priority Critical patent/JP7212220B2/en
Publication of JP2020132579A publication Critical patent/JP2020132579A/en
Application granted granted Critical
Publication of JP7212220B2 publication Critical patent/JP7212220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Fuel Cell (AREA)

Description

本開示は、化合物、蓄電池用活物質、n型半導体材料、水素貯蔵材料、及び化合物の製造方法に関する。 The present disclosure relates to compounds, active materials for storage batteries, n-type semiconductor materials, hydrogen storage materials, and methods of making compounds.

現在、日常生活、産業活動等において広く化合物が使用されている。
化合物は、有機化合物と無機化合物とに大別することができ、それぞれについて多様な種類が知られている。また、化合物はその構造を構成する元素、骨格、置換基等によって、様々な機能を発揮することが知られている。この点から、化合物を構成する元素、骨格、置換基等を制御して所望の機能を有する化合物を製造し、その化合物を目的の用途に用いる試みがなされている。
Currently, compounds are widely used in daily life, industrial activities, and the like.
Compounds can be broadly classified into organic compounds and inorganic compounds, and various types of each are known. Compounds are known to exhibit various functions depending on the elements, skeletons, substituents, etc. that constitute their structures. From this point of view, attempts have been made to control the elements, skeletons, substituents, etc. constituting the compound to produce a compound having a desired function, and to use the compound for the intended use.

上記用途の一例として、例えば、化合物を蓄電池用活物質として用いる例が挙げられる。
特許文献1には、正極を有する正極室と、負極を有する負極室と、前記正極室と前記負極室とを仕切る隔膜と、前記正極室および前記負極室に充填された電解液と、前記正極室、前記負極室、前記隔膜および前記電解液を収容する筐体と、を備え、前記電解液が、光エネルギーによって可逆的に酸化還元反応を起こす活物質を含むことを特徴とするレドックスフロー電池が開示されている。
As an example of the above application, there is an example of using the compound as an active material for a storage battery.
Patent Document 1 discloses a positive electrode chamber having a positive electrode, a negative electrode chamber having a negative electrode, a diaphragm separating the positive electrode chamber and the negative electrode chamber, an electrolytic solution filled in the positive electrode chamber and the negative electrode chamber, and the positive electrode. A redox flow battery comprising: a chamber, the negative electrode chamber, the diaphragm, and a housing that houses the electrolytic solution, wherein the electrolytic solution contains an active material that undergoes a reversible oxidation-reduction reaction by light energy. is disclosed.

特開2017-50201号公報JP 2017-50201 A

上述のように、元素、骨格、置換基等を制御することで、所望の機能を有する新たな化合物を製造することが望まれている。
本開示の解決しようとする課題は、新規な化合物、蓄電池用活物質、n型半導体材料、水素貯蔵材料、及び新規な化合物の製造方法を提供することである。
As described above, it is desired to produce new compounds having desired functions by controlling elements, skeletons, substituents, and the like.
The problem to be solved by the present disclosure is to provide novel compounds, active materials for storage batteries, n-type semiconductor materials, hydrogen storage materials, and methods for producing the novel compounds.

上記課題を解決する手段には、以下の態様が含まれる。
<1> 下記式1で表される化合物であって、下記式1中、環構造A1は窒素原子を含み、炭素数m個の環構造を備え、上記炭素数m個の環構造における環構造A2を構成していない炭素は、水素原子と結合せず、かつ、芳香環を構成し、環構造A2は窒素原子を含み、炭素数n個の環構造を備え、上記炭素数n個の環構造における環構造A1を構成していない炭素は、水素原子と結合せず、かつ、芳香環を構成し、上記mは4~7の整数であり、上記nは5~7の整数である化合物である。

Figure 0007212220000001


<2> 上記環構造A1は、下記式1a~下記式1eのいずれか1つで表される構造を有し、上記環構造A2は、下記式1b~下記式1eのいずれか1つで表される構造を有する<1>に記載の化合物である。
Figure 0007212220000002


式1a~式1e中、*は環構造A1又は環構造A2に含まれる窒素原子との結合部位を表し、**は環構造A1又は環構造A2との結合部位を表し、R~R11は、それぞれ独立に置換基を表し、隣接する置換基同士で環を構成してもよい。また、X1、X4~X6、及びX11はそれぞれ独立に0~4の整数を表し、X2、X3、及び、X7~X10はそれぞれ独立に0~3の整数を表す。
<3> 上記環構造A1及び上記環構造A2は、下記式1bで表される構造を有する<1>又は<2>に記載の化合物である。
Figure 0007212220000003

式1b中、*は環構造A1又は環構造A2に含まれる窒素原子との結合部位を表し、**は環構造A1又は環構造A2との結合部位を表し、R及びRは、それぞれ独立に置換基を表し、隣接する置換基同士で環を構成してもよい。また、X2及びX3はそれぞれ独立に0~3の整数を表す。
<4> 上記環構造A1及び上記環構造A2における芳香環の少なくとも1つは、アルキル基、アルケニル基、アルキニル基、アリール基、ホルミル基、アシル基、カルボキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、シアノ基、アミノ基、アミド基、ニトロ基、ヒドロキシ基、アルコキシ基、アリールオキシ基、メルカプト基、スルファニル基、スルホ基及びハロゲノ基からなる群より選ばれる少なくとも1つの置換基を含む<1>~<3>のいずれか1つに記載の化合物である。
<5> <1>~<4>のいずれか1つに記載の化合物を含む蓄電池用活物質である。
<6> <1>~<4>のいずれか1つに記載の化合物を含むn型半導体材料である。
<7> <1>~<4>のいずれか1つに記載の化合物を含む水素貯蔵材料である。
<8> 炭素数2~5の炭素鎖の一方の末端に脱離基を、他方の末端にアミノ基を、それぞれ有し、上記炭素鎖を構成する炭素は、水素原子と結合せず、かつ、芳香環を構成する化合物Aを準備する工程と、準備した化合物Aの脱離基が結合している部位においてカップリング反応を行って、下記式3で表される化合物を生成する工程と、下記式3で表される化合物について、環化反応を行って<1>~<4>のいずれか1つに記載の化合物を生成する工程と、を有する化合物の製造方法である。
Figure 0007212220000004

式3中、Rはそれぞれ独立に、化合物Aから脱離基を除いた残基を表す。
<9> 上記化合物Aは、下記式2a~下記式2eから選択される少なくとも1つである<8>に記載の化合物の製造方法である。
Figure 0007212220000005


式2a~式2e中、Xは脱離基を表し、R~R11は、それぞれ独立に置換基を表し、隣接する置換基同士で環を構成してもよい。また、X1、X4~X6、及びX11はそれぞれ独立に0~4の整数を表し、X2、X3、及び、X7~X10はそれぞれ独立に0~3の整数を表す。 Means for solving the above problems include the following aspects.
<1> A compound represented by the following formula 1, wherein the ring structure A1 contains a nitrogen atom and has a ring structure with m carbon atoms, and the ring structure in the ring structure with m carbon atoms Carbons not constituting A2 are not bonded to hydrogen atoms and constitute an aromatic ring, ring structure A2 contains a nitrogen atom, has a ring structure having n carbon atoms, and the ring having n carbon atoms A compound in which the carbon atoms not constituting the ring structure A1 in the structure are not bonded to a hydrogen atom and constitute an aromatic ring, wherein m is an integer of 4 to 7 and n is an integer of 5 to 7 is.
Figure 0007212220000001


<2> The ring structure A1 has a structure represented by any one of the following formulas 1a to 1e, and the ring structure A2 is represented by any one of the following formulas 1b to 1e. The compound according to <1> having a structure represented by
Figure 0007212220000002


In formulas 1a to 1e, * represents a bonding site with a nitrogen atom contained in ring structure A1 or ring structure A2, ** represents a bonding site with ring structure A1 or ring structure A2, and R 1 to R 11 each independently represents a substituent, and adjacent substituents may form a ring. X1, X4 to X6 and X11 each independently represent an integer of 0 to 4, and X2, X3 and X7 to X10 each independently represent an integer of 0 to 3.
<3> The ring structure A1 and the ring structure A2 are compounds according to <1> or <2> having a structure represented by the following formula 1b.
Figure 0007212220000003

In formula 1b, * represents a binding site to the nitrogen atom contained in ring structure A1 or ring structure A2, ** represents a binding site to ring structure A1 or ring structure A2, and R 2 and R 3 are each Each substituent may be independently represented, and adjacent substituents may form a ring. Also, X2 and X3 each independently represent an integer of 0 to 3.
<4> At least one of the aromatic rings in the ring structure A1 and the ring structure A2 is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a formyl group, an acyl group, a carboxy group, an alkoxycarbonyl group, and an aryloxycarbonyl group. , a carbamoyl group, a cyano group, an amino group, an amido group, a nitro group, a hydroxy group, an alkoxy group, an aryloxy group, a mercapto group, a sulfanyl group, a sulfo group and a halogeno group. The compound according to any one of <1> to <3>.
<5> A storage battery active material containing the compound according to any one of <1> to <4>.
<6> An n-type semiconductor material containing the compound according to any one of <1> to <4>.
<7> A hydrogen storage material containing the compound according to any one of <1> to <4>.
<8> A carbon chain having 2 to 5 carbon atoms has a leaving group at one end and an amino group at the other end, and the carbon atoms constituting the carbon chain are not bonded to a hydrogen atom, and , a step of preparing a compound A constituting an aromatic ring, and a step of performing a coupling reaction at the site where the leaving group of the prepared compound A is bonded to produce a compound represented by the following formula 3; A method for producing a compound, comprising: subjecting a compound represented by the following formula 3 to a cyclization reaction to produce a compound according to any one of <1> to <4>.
Figure 0007212220000004

In formula 3, each R independently represents a residue obtained by removing a leaving group from compound A.
<9> The method for producing the compound according to <8>, wherein the compound A is at least one selected from the following formulas 2a to 2e.
Figure 0007212220000005


In Formulas 2a to 2e, X represents a leaving group, R 1 to R 11 each independently represent a substituent, and adjacent substituents may form a ring. X1, X4 to X6 and X11 each independently represent an integer of 0 to 4, and X2, X3 and X7 to X10 each independently represent an integer of 0 to 3.

本開示の実施形態によれば、新規な化合物、蓄電池用活物質、n型半導体材料、水素貯蔵材料、及び新規な化合物の製造方法を提供することができる。 According to embodiments of the present disclosure, novel compounds, active materials for storage batteries, n-type semiconductor materials, hydrogen storage materials, and methods for producing novel compounds can be provided.

実施例において測定した還元電位を表すサイクリックボルタモグラムである。1 is a cyclic voltammogram showing reduction potentials measured in Examples. 実施例において合成した化合物の吸光スペクトル及び発光スペクトルを表すグラフである。1 is a graph showing absorption spectra and emission spectra of compounds synthesized in Examples.

本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において、「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
本開示において、好ましい態様の組み合わせは、より好ましい態様である。
In the present disclosure, a numerical range indicated using "to" means a range including the numerical values before and after "to" as lower and upper limits, respectively. In the numerical ranges described step by step in the present disclosure, upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step. In addition, in the numerical ranges described in the present disclosure, upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
In the present disclosure, the term "process" includes not only independent processes, but also processes that cannot be clearly distinguished from other processes, as long as the intended purpose of the process is achieved.
In the present disclosure, combinations of preferred aspects are more preferred aspects.

≪化合物≫
本開示の化合物は、下記式1で表される化合物であって、下記式1中、環構造A1は窒素原子を含み、炭素数m個の環構造を備え、上記炭素数m個の環構造における環構造A2を構成していない炭素は、水素原子と結合せず、かつ、芳香環を構成し、環構造A2は窒素原子を含み、炭素数n個の環構造を備え、上記炭素数n個の環構造における環構造A1を構成していない炭素は、水素原子と結合せず、かつ、芳香環を構成し、上記mは4~7の整数であり、上記nは5~7の整数である。
≪Compound≫
The compound of the present disclosure is a compound represented by the following formula 1, wherein the ring structure A1 contains a nitrogen atom and has a ring structure with m carbon atoms, and the ring structure with m carbon atoms The carbons not constituting the ring structure A2 in are not bonded to a hydrogen atom and constitute an aromatic ring, the ring structure A2 contains a nitrogen atom, has a ring structure having n carbon atoms, and has the above-mentioned carbon number n The carbon atoms that do not constitute the ring structure A1 in each ring structure are not bonded to a hydrogen atom and constitute an aromatic ring, m is an integer of 4 to 7, and n is an integer of 5 to 7. is.

Figure 0007212220000006
Figure 0007212220000006

本開示の化合物は、酸化還元活性を有する。具体的には、本開示の化合物は電子を受け取る還元反応、及び受け取った電子を放出する酸化反応を行うことができるため、酸化還元活性を有する。
下記の反応式で示す通り、本開示の化合物は化合物Iから化合物IIへの反応により分子内に水素分子を吸着し、貯蔵することができる。また、化合物IIから化合物Iへの反応により、分子内に貯蔵された水素分子を放出することができる。
本開示の化合物は、共役二重結合を有するため、光吸収性及び蛍光発光性を示す。
The compounds of the present disclosure have redox activity. Specifically, the compounds of the present disclosure are capable of undergoing a reduction reaction that receives electrons and an oxidation reaction that releases received electrons, and thus have redox activity.
As shown in the reaction scheme below, the compounds of the present disclosure can adsorb and store hydrogen molecules in the molecule through the reaction of compound I to compound II. In addition, the reaction from compound II to compound I can release hydrogen molecules stored in the molecule.
The compounds of the present disclosure have conjugated double bonds and therefore exhibit light absorption and fluorescence.

Figure 0007212220000007
Figure 0007212220000007

また、本開示の化合物は、上述のように上記式1で表される構造を有することで、様々な化学修飾を施すことが可能である。これによって、化合物に種々の機能を付与することができる。
しかし、化合物の酸化還元活性部位及び化学修飾法が非常に限定されているために、目的とする機能を化合物に付加することが困難である場合が多く存在していた。
本開示の化合物は、新規な酸化還元活性部位を有する有機化合物であることに加え、簡便かつ多様な化学修飾を施すことが可能である。これによって、より多様な機能を有し、かつ、酸化還元活性も有する有機化合物を提供することができる。
In addition, since the compound of the present disclosure has the structure represented by Formula 1 as described above, various chemical modifications can be performed. Accordingly, various functions can be imparted to the compound.
However, since redox-active sites and chemical modification methods of compounds are very limited, it has often been difficult to add desired functions to compounds.
The compound of the present disclosure is an organic compound having a novel redox-active site, and can be subjected to simple and diverse chemical modifications. This makes it possible to provide an organic compound having more diverse functions and redox activity.

<式1で表される化合物>
本開示における式1は、環構造A1及び環構造A2を含む。
<Compound Represented by Formula 1>
Formula 1 in the present disclosure includes ring structure A1 and ring structure A2.

Figure 0007212220000008
Figure 0007212220000008

環構造A1は窒素原子を含み、炭素数m個の環構造を備え、上記炭素数m個の環構造における環構造A2を構成していない炭素は、水素原子と結合せず、かつ、芳香環を構成し、上記mは4~7の整数である。
化合物の合成の容易さ及び安定性の観点から、上記炭素数mは、4~6が好ましく、4~5がより好ましい。
上記芳香環としては、ベンゼン、ナフタレン及びビフェニルが挙げられる。上記の中でも、化合物の合成の容易さ及び安定性の観点から、ベンゼン及びナフタレンが好ましい。
The ring structure A1 contains a nitrogen atom and has a ring structure with m carbon atoms, and the carbon atoms not constituting the ring structure A2 in the ring structure with m carbon atoms are not bonded to a hydrogen atom and are aromatic rings and m is an integer from 4 to 7.
The number of carbon atoms m is preferably 4 to 6, more preferably 4 to 5, from the viewpoints of ease of compound synthesis and stability.
The aromatic rings include benzene, naphthalene and biphenyl. Among the above, benzene and naphthalene are preferred from the viewpoint of ease of compound synthesis and stability.

環構造A2は窒素原子を含み、炭素数n個の環構造を備え、上記炭素数n個の環構造における環構造A1を構成していない炭素は、水素原子と結合せず、かつ、芳香環を構成し、上記nは5~7の整数である。
化合物の安定性の観点から、上記炭素数nは、5~6が好ましく、5がより好ましい。
上記芳香環としては、環構造A1と同様のものが挙げられ、好ましい例も同様である。
The ring structure A2 contains a nitrogen atom and has a ring structure with n carbon atoms, and the carbons not constituting the ring structure A1 in the ring structure with n carbon atoms are not bonded to a hydrogen atom and are aromatic rings and n is an integer from 5 to 7.
From the viewpoint of stability of the compound, the number of carbon atoms n is preferably 5 to 6, more preferably 5.
Examples of the aromatic ring include those similar to those of the ring structure A1, and preferred examples are also the same.

本開示の化合物は、上記環構造A1は、下記式1a~下記式1eのいずれか1つで表される構造を有し、上記環構造A2は、下記式1b~下記式1eのいずれか1つで表される構造を有することが好ましい。
化合物の合成の容易さ及び安定性の観点から、環構造A1は、下記式1a~下記式1cのいずれか1つで表される構造を有し、環構造A2は、下記式1b又は下記式1cで表される構造を有することがより好ましく、環構造A1及び環構造A2は、下記式1bで表される構造を有することがさらに好ましい。
In the compound of the present disclosure, the ring structure A1 has a structure represented by any one of the following formulas 1a to 1e, and the ring structure A2 is any one of the following formulas 1b to 1e. It is preferred to have a structure represented by
From the viewpoint of ease of compound synthesis and stability, the ring structure A1 has a structure represented by any one of the following formulas 1a to 1c below, and the ring structure A2 has the following formula 1b or the following formula It is more preferable to have the structure represented by 1c, and it is further preferable that the ring structure A1 and the ring structure A2 have the structure represented by the following formula 1b.

Figure 0007212220000009
Figure 0007212220000009

式1a~式1e中、*は環構造A1又は環構造A2に含まれる窒素原子との結合部位を表し、**は環構造A1又は環構造A2との結合部位を表し、R~R11は、それぞれ独立に置換基を表し、隣接する置換基同士で環を構成してもよい。また、X1、X4~X6、及びX11はそれぞれ独立に0~4の整数を表し、X2、X3、及び、X7~X10はそれぞれ独立に0~3の整数を表す。 In formulas 1a to 1e, * represents a bonding site with a nitrogen atom contained in ring structure A1 or ring structure A2, ** represents a bonding site with ring structure A1 or ring structure A2, and R 1 to R 11 each independently represents a substituent, and adjacent substituents may form a ring. X1, X4 to X6 and X11 each independently represent an integer of 0 to 4, and X2, X3 and X7 to X10 each independently represent an integer of 0 to 3.

本開示において、環構造A1及び環構造A2における芳香環は、置換基を含むことができる。即ち、本開示の化合物は、上記R~R11として、置換基を含むことができる。
本開示の化合物は、環構造A1及び環構造A2における芳香環に導入され得る上記R~R11として導入される置換基の種類等によって、種々の機能を有することができる。
In the present disclosure, the aromatic ring in ring structure A1 and ring structure A2 can contain a substituent. That is, the compounds of the present disclosure can contain substituents as R 1 to R 11 above.
The compounds of the present disclosure can have various functions depending on the types of substituents introduced as the above R 1 to R 11 that can be introduced into the aromatic rings in the ring structures A1 and A2.

上記置換基としては、例えば、アルキル基、アルケニル基、アルキニル基、アリール基、ホルミル基、アシル基、カルボキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、シアノ基、アミノ基、アミド基、ニトロ基、ヒドロキシ基、アルコキシ基、アリールオキシ基、メルカプト基、スルファニル基、スルホ基、ハロゲノ基等が挙げられる。
上記の中でも、環構造A1及び環構造A2における芳香環の少なくとも1つは、アルキル基、アルケニル基、アリール基、アルコキシ基、ハロゲノ基からなる群より選ばれる少なくとも1つの置換基を含むことが好ましい。
Examples of the substituents include alkyl groups, alkenyl groups, alkynyl groups, aryl groups, formyl groups, acyl groups, carboxy groups, alkoxycarbonyl groups, aryloxycarbonyl groups, carbamoyl groups, cyano groups, amino groups, amido groups, nitro group, hydroxy group, alkoxy group, aryloxy group, mercapto group, sulfanyl group, sulfo group, halogeno group and the like.
Among the above, at least one of the aromatic rings in the ring structure A1 and the ring structure A2 preferably contains at least one substituent selected from the group consisting of an alkyl group, an alkenyl group, an aryl group, an alkoxy group, and a halogeno group. .

上記機能としては、例えば、酸化還元活性の向上、酸化還元電位の調節、化合物の安定性向上、有機溶媒への溶解性向上、水溶性の向上等が挙げられる。
化合物の酸化還元活性の向上及び酸化還元電位の調節の観点からは、R~R11はアルケニル基、アルキニル基、アリール基、シアノ基、アミノ基、ニトロ基、アルコキシ基が好ましく、隣接する置換基同士で共役環を形成することが好ましい。
化合物の安定性を向上させる観点からは、R~R11はアルキル基、アリール基、シアノ基、スルファニル基、ハロゲノ基が好ましい。
化合物の有機溶媒への溶解性を向上させる観点からは、R~R11はアルキル基、アリール基、アルコキシ基、アリールオキシ基が好ましい。
化合物の水溶性を向上させる観点からは、R~R11はカルボキシ基、カルバモイル基、アミド基、ヒドロキシ基、アルコキシ基、スルホ基が好ましく、カルボキシ基、ヒドロキシ基、アルコキシ基、スルホ基がより好ましい。
Examples of the above functions include improvement of redox activity, adjustment of redox potential, improvement of compound stability, improvement of solubility in organic solvents, improvement of water solubility, and the like.
From the viewpoint of improving the redox activity of the compound and adjusting the redox potential, R 1 to R 11 are preferably an alkenyl group, an alkynyl group, an aryl group, a cyano group, an amino group, a nitro group or an alkoxy group. It is preferred that the groups form a conjugated ring.
From the viewpoint of improving the stability of the compound, R 1 to R 11 are preferably alkyl groups, aryl groups, cyano groups, sulfanyl groups and halogeno groups.
From the viewpoint of improving the solubility of the compound in organic solvents, R 1 to R 11 are preferably an alkyl group, an aryl group, an alkoxy group, or an aryloxy group.
From the viewpoint of improving the water solubility of the compound, R 1 to R 11 are preferably carboxy, carbamoyl, amido, hydroxy, alkoxy and sulfo groups, more preferably carboxy, hydroxy, alkoxy and sulfo groups. preferable.

~R11において隣接する置換基同士で構成される環としては、例えば、シクロアルカン環、ベンゼン環、シクロペンタジエン環、シクロペンタトリエン環、ピロール環、ピリジン環、フラン環、チオフェン環等が挙げられる。
化合物の安定性の観点から、隣接する置換基同士で構成される環は、上記の中でもベンゼン環、シクロペンタジエン環が好ましく、ベンゼン環がより好ましい。
Examples of the ring composed of adjacent substituents in R 1 to R 11 include a cycloalkane ring, benzene ring, cyclopentadiene ring, cyclopentatriene ring, pyrrole ring, pyridine ring, furan ring, thiophene ring and the like. mentioned.
From the viewpoint of compound stability, the ring composed of adjacent substituents is preferably a benzene ring or a cyclopentadiene ring, more preferably a benzene ring.

本開示の化合物の具体的な構造としては、例えば下記の構造が挙げられる。

Figure 0007212220000010
Specific structures of compounds of the present disclosure include, for example, the structures shown below.
Figure 0007212220000010

~化合物の性質~
(酸化還元活性)
本開示の化合物は、上述の通り可逆的な還元性を示す電子受容性化合物であるため、酸化還元活性を有する。そのため、本開示の化合物は、蓄電池用活物質(特に負極活物質)、n型半導体材料等として用いることができる。
~ Properties of compounds ~
(Redox activity)
Since the compound of the present disclosure is an electron-accepting compound that exhibits reversible reducing properties as described above, it has redox activity. Therefore, the compound of the present disclosure can be used as an active material for storage batteries (particularly a negative electrode active material), an n-type semiconductor material, and the like.

(溶解性)
本開示の化合物は、有機溶媒(例えばTHF)に対し良好な溶解性を示す。
そのため、本開示の化合物は、有機溶媒に対する溶解性が求められる用途に適用することができる。有機溶媒に対する溶解性が求められる用途としては、例えば、上記蓄電池用活物質が挙げられる。
(solubility)
The compounds of the present disclosure exhibit good solubility in organic solvents (eg THF).
Therefore, the compounds of the present disclosure can be applied to applications that require solubility in organic solvents. Applications that require solubility in organic solvents include, for example, the above active materials for storage batteries.

(光吸収性及び蛍光発光性)
本開示の化合物は、光吸収性及び蛍光発光性を有する。
そのため、本開示の化合物は、光機能性材料として用いることができる。
(Light Absorbing and Fluorescent)
The compounds of the present disclosure have light absorption and fluorescence emission properties.
Therefore, the compound of the present disclosure can be used as an optical functional material.

(水素貯蔵性)
本開示の化合物は、上述の通り水素分子の化学的吸着性を示す。
そのため、本開示の化合物は、水素貯蔵材料、還元触媒等として用いることができる。
(Hydrogen storage capacity)
The compounds of the present disclosure exhibit chemisorption of molecular hydrogen as described above.
Therefore, the compounds of the present disclosure can be used as hydrogen storage materials, reduction catalysts, and the like.

<化合物の製造方法>
本開示の化合物の製造方法は、炭素数2~5の炭素鎖の一方の末端に脱離基を、他方の末端にアミノ基を、それぞれ有し、炭素鎖を構成する炭素は、水素原子と結合せず、かつ、芳香環を構成する化合物Aを準備する工程(準備工程)と、準備した化合物Aの脱離基が結合している部位においてカップリング反応を行って、下記式3で表される化合物を生成する工程(カップリング工程)と、下記式3で表される化合物について、環化反応を行って本開示の化合物を生成する工程(環化工程)と、を有する。
<Method for producing compound>
In the method for producing a compound of the present disclosure, a carbon chain having 2 to 5 carbon atoms has a leaving group at one end and an amino group at the other end, and the carbon atoms constituting the carbon chain are hydrogen atoms and A step of preparing compound A that does not bond and constitutes an aromatic ring (preparation step), and performing a coupling reaction at the site where the leaving group of prepared compound A is bonded, represented by the following formula 3 and a step of cyclizing the compound represented by Formula 3 below to produce the compound of the present disclosure (cyclization step).

Figure 0007212220000011

式3中、Rはそれぞれ独立に、化合物Aから脱離基を除いた残基を表す。
Figure 0007212220000011

In formula 3, each R independently represents a residue obtained by removing a leaving group from compound A.

(準備工程)
本開示における準備工程は、炭素数2~5の炭素鎖の一方の末端に脱離基を、他方の末端にアミノ基を、それぞれ有し、炭素鎖を構成する炭素は、水素原子と結合せず、かつ、芳香環を構成する化合物Aを準備する工程である。
(Preparation process)
In the preparation step in the present disclosure, a carbon chain having 2 to 5 carbon atoms has a leaving group at one end and an amino group at the other end, and the carbons constituting the carbon chain are bonded to hydrogen atoms. It is a step of preparing a compound A which does not need to be removed and which constitutes an aromatic ring.

化合物Aを準備する方法は、特に制限はなく、化合物Aは公知の方法から適宜選択して合成することができる。 The method for preparing compound A is not particularly limited, and compound A can be synthesized by appropriately selecting from known methods.

-化合物A-
本開示における化合物Aは、炭素数2~5の炭素鎖の一方の末端に脱離基を、他方の末端にアミノ基を、それぞれ有し、炭素鎖を構成する炭素は、水素原子と結合せず、かつ、芳香環を構成する。
上記脱離基としては、例えば、クロロ基、ブロモ基、ヨード基等が挙げられる。
上記の中でも、ブロモ基及びヨード基が好ましく、ブロモ基が特に好ましい。
-Compound A-
Compound A in the present disclosure has a leaving group at one end of a carbon chain having 2 to 5 carbon atoms and an amino group at the other end, and the carbon atoms constituting the carbon chain are bonded to hydrogen atoms. and constitutes an aromatic ring.
Examples of the leaving group include a chloro group, a bromo group, and an iodo group.
Among the above, a bromo group and an iodo group are preferred, and a bromo group is particularly preferred.

化合物Aは、例えば、下記式2で表される化合物であってもよい。

Figure 0007212220000012
Compound A may be, for example, a compound represented by Formula 2 below.
Figure 0007212220000012

式2中、Xは脱離基を表し、Rは炭素数2~5の炭素鎖を表し、A3は芳香環を表す。また、上記炭素鎖を構成する炭素は、水素原子と結合せず、かつ、芳香環A3を構成する。 In Formula 2, X represents a leaving group, R represents a carbon chain having 2 to 5 carbon atoms, and A3 represents an aromatic ring. Further, the carbons constituting the carbon chain do not bond to hydrogen atoms and constitute the aromatic ring A3.

化合物の合成の容易さ及び安定性の観点から、Rで表される炭素鎖の炭素数は、2~4が好ましく、2~3がより好ましい。 The number of carbon atoms in the carbon chain represented by R is preferably 2 to 4, more preferably 2 to 3, from the viewpoints of ease of compound synthesis and stability.

上記芳香環A3としては、ベンゼン、ナフタレン及びビフェニルが挙げられる。上記の中でも、化合物の合成の容易さ及び安定性の観点から、上記芳香環A3としては、ベンゼン及びナフタレンが好ましい。 Examples of the aromatic ring A3 include benzene, naphthalene and biphenyl. Among the above, benzene and naphthalene are preferable as the aromatic ring A3 from the viewpoint of ease of compound synthesis and stability.

化合物Aは、下記式2a~下記式2eから選択される少なくとも1つであることが好ましい。

Figure 0007212220000013
Compound A is preferably at least one selected from Formulas 2a to 2e below.
Figure 0007212220000013

式2a~式2e中、Xは脱離基を表し、R~R11は、それぞれ独立に置換基を表し、隣接する置換基同士で環を構成してもよい。また、X1、X4~X6、及びX11はそれぞれ独立に0~4の整数を表し、X2、X3、及び、X7~X10はそれぞれ独立に0~3の整数を表す。 In Formulas 2a to 2e, X represents a leaving group, R 1 to R 11 each independently represent a substituent, and adjacent substituents may form a ring. X1, X4 to X6 and X11 each independently represent an integer of 0 to 4, and X2, X3 and X7 to X10 each independently represent an integer of 0 to 3.

式2a~式2eにおいて、置換基の具体例及び好ましい態様は上述の式1a~式1eの場合と同様であり、好ましい態様も同様である。 In Formulas 2a to 2e, specific examples and preferred aspects of the substituents are the same as in Formulas 1a to 1e above, and preferred aspects are also the same.

化合物Aの具体的な合成方法としては、例えば、以下の方法が挙げられる。
化合物Aの合成方法として、下記の反応式に示すように、1,8-ジアミノナフタレンと亜硝酸塩(例えば、亜硝酸イソアミル)とを反応させた後、臭化水素酸を反応させることで化合物A(下記反応式中の化合物III)を得ることができる。
Specific methods for synthesizing compound A include, for example, the following methods.
As a method for synthesizing compound A, as shown in the following reaction formula, 1,8-diaminonaphthalene and a nitrite (e.g., isoamyl nitrite) are reacted, and then hydrobromic acid is reacted to obtain compound A. (Compound III in the following reaction formula) can be obtained.

Figure 0007212220000014
Figure 0007212220000014

(カップリング工程)
本開示におけるカップリング工程は、準備した化合物Aの脱離基が結合している部位においてカップリング反応を行って、下記式3で表される化合物を生成する工程である。
(Coupling process)
The coupling step in the present disclosure is a step of performing a coupling reaction at the site where the leaving group of the prepared compound A is bonded to produce a compound represented by Formula 3 below.

Figure 0007212220000015

式3中、Rはそれぞれ独立に、化合物Aから脱離基を除いた残基を表す。
Figure 0007212220000015

In formula 3, each R independently represents a residue obtained by removing a leaving group from compound A.

カップリング工程は、公知の方法を用いて行うことができるが、薗頭カップリング反応を用いる方法が好ましい。
カップリング工程は、例えば、以下の通りに行うことができる。
下記の反応式に示す通り、上記で得られた化合物IIIに対し、例えばトリメチルシリルアセチレンを反応させて化合物IVを得た後、得られた化合物IVにおけるトリメチルシリル基を脱離させて化合物Vを得る。
次に、上記化合物III、上記化合物V及び塩基(例えばトリエチルアミン)に、銅触媒(例えばヨウ化銅)及びパラジウム触媒(ジクロロビス(トリフェニルホスフィン)パラジウム)を加えてカップリング反応させることで下記化合物VI(上記式3で表される化合物)を得ることができる。
The coupling step can be performed using a known method, but a method using the Sonogashira coupling reaction is preferred.
The coupling step can be performed, for example, as follows.
As shown in the reaction formula below, the compound III obtained above is reacted with, for example, trimethylsilylacetylene to obtain a compound IV, and then the trimethylsilyl group in the obtained compound IV is eliminated to obtain a compound V.
Next, a copper catalyst (e.g., copper iodide) and a palladium catalyst (dichlorobis(triphenylphosphine)palladium) are added to the compound III, the compound V, and a base (e.g., triethylamine) to carry out a coupling reaction to give the following compound VI. (Compound represented by Formula 3 above) can be obtained.

Figure 0007212220000016
Figure 0007212220000016

(環化工程)
本開示における環化工程は、上記式3で表される化合物について、環化反応を行って本開示の化合物を生成する工程である。
上記環化反応は、環化異性化反応、酸化的環化反応等を含むことができる。
(Cyclization step)
The cyclization step in the present disclosure is a step of subjecting the compound represented by Formula 3 above to a cyclization reaction to produce the compound of the present disclosure.
The cyclization reactions can include cycloisomerization reactions, oxidative cyclization reactions, and the like.

環化工程は、本開示の化合物を生成できる方法であれば特に制限はなく、公知の方法を用いてもよい。
環化工程は、例えば以下に示す方法で行うことができる。
下記の反応式に示す通り、触媒として塩化パラジウムを用いて、THF(テトラヒドロフラン)により化合物VIを環化異性化して下記化合物VIIを得る。
次に、下記化合物VIIとビス(トリフルオロアセトキシ)ヨードベンゼンとを用いて、化合物VIIを酸化的に環化して化合物VIIIを得る。
The cyclization step is not particularly limited as long as it is a method capable of producing the compounds of the present disclosure, and known methods may be used.
The cyclization step can be performed, for example, by the method shown below.
As shown in the reaction formula below, palladium chloride is used as a catalyst, and compound VI is cycloisomerized with THF (tetrahydrofuran) to obtain compound VII below.
Compound VII is then oxidatively cyclized to give compound VIII using compound VII below and bis(trifluoroacetoxy)iodobenzene.

Figure 0007212220000017
Figure 0007212220000017

なお、本開示の化合物の製造方法は、具体的な反応式に示した方法に限定されず、例えば、化合物III以外の式2a~式2eで示される化合物を合成して用いてもよい。また、式3で表される化合物を製造する際、トリメチルシリルアセチレンの反応、及びトリメチルシリル基の脱離反応を経由したカップリング反応に限定されず、その他の反応を経由したカップリング反応を行ってもよい。 The method for producing the compound of the present disclosure is not limited to the method shown in the specific reaction scheme, and for example, compounds represented by formulas 2a to 2e other than compound III may be synthesized and used. Further, when producing the compound represented by Formula 3, the reaction of trimethylsilylacetylene and the coupling reaction via the elimination reaction of the trimethylsilyl group are not limited, and a coupling reaction via other reactions may be performed. good.

以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.

(実施例1)
〔化合物の合成〕
-化合物IIIの合成-
まず、化合物III(上述の化合物A)を下記の手順で合成した。
下記化合物I(1,8-ジアミノナフタレン、2.00g、12.7mmol)をエタノール(20mL)及び酢酸(4.0mL)の混合溶液に溶かし、窒素雰囲気下0℃に冷却した。亜硝酸イソアミル(1.7mL、12.7mmol)を加え、室温(25℃)へと昇温し、1時間撹拌した。撹拌後に生じた沈殿を濾過して得られた固体をエタノールで洗浄することにより、下記化合物II(2.02g、11.9mmol、収率94%)を得た。

Figure 0007212220000018
(Example 1)
[Synthesis of compound]
-Synthesis of compound III-
First, compound III (compound A described above) was synthesized by the following procedure.
The following compound I (1,8-diaminonaphthalene, 2.00 g, 12.7 mmol) was dissolved in a mixed solution of ethanol (20 mL) and acetic acid (4.0 mL) and cooled to 0° C. under a nitrogen atmosphere. Isoamyl nitrite (1.7 mL, 12.7 mmol) was added, warmed to room temperature (25° C.) and stirred for 1 hour. The following compound II (2.02 g, 11.9 mmol, yield 94%) was obtained by washing the solid obtained by filtering the precipitate formed after stirring with ethanol.
Figure 0007212220000018

上記で得られた化合物II(507mg、3.0mmol)と削り状銅(38mg,0.60mmol)を含むフラスコに対し、窒素雰囲気下、臭化水素酸(48%,10mL)を加え16時間撹拌した。その後、水50mLを加え、100℃で加熱して1時間撹拌した後、生じた沈殿を濾過し、濾液をアンモニア水で中和した。ろ液を酢酸エチルを用いて抽出した後、抽出物を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムを用いて乾燥させた。アルミナカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/10(体積基準))により化合物III(460mg、2.1mmol、収率69%)を得た。

Figure 0007212220000019
Hydrobromic acid (48%, 10 mL) was added to a flask containing compound II (507 mg, 3.0 mmol) obtained above and copper shavings (38 mg, 0.60 mmol) under a nitrogen atmosphere, and the mixture was stirred for 16 hours. bottom. After that, 50 mL of water was added, and after heating at 100° C. and stirring for 1 hour, the resulting precipitate was filtered, and the filtrate was neutralized with aqueous ammonia. After the filtrate was extracted with ethyl acetate, the extract was washed with saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. Compound III (460 mg, 2.1 mmol, yield 69%) was obtained by alumina column chromatography (ethyl acetate/hexane=1/10 (by volume)).
Figure 0007212220000019

-化合物VIの合成-
次に、化合物VIを下記の手順で合成した。
上記で得られた化合物III(491mg、2.21mmol)、ヨウ化銅(13mg,0.066mmol)及びジクロロビス(トリフェニルホスフィン)パラジウム(14mg、0.020mmol)を含むシュレンク管に対し、窒素雰囲気下、トリエチルアミン6.0mL及びトリメチルシリルアセチレン(0.35mL、2.5mmol)を加え、50℃に加熱して3時間撹拌した。その後反応溶液をジクロロメタンを用いて抽出した後、飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムを用いて乾燥させた。シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/20~1/10(体積基準))で精製し、化合物IV(502mg、2.10mmol、収率95%)を得た。

Figure 0007212220000020
-Synthesis of compound VI-
Next, compound VI was synthesized by the following procedure.
A Schlenk tube containing compound III obtained above (491 mg, 2.21 mmol), copper iodide (13 mg, 0.066 mmol) and dichlorobis(triphenylphosphine) palladium (14 mg, 0.020 mmol) under a nitrogen atmosphere. , triethylamine 6.0 mL and trimethylsilylacetylene (0.35 mL, 2.5 mmol) were added, heated to 50° C. and stirred for 3 hours. After that, the reaction solution was extracted with dichloromethane, washed with a saturated sodium chloride aqueous solution, and dried with anhydrous sodium sulfate. Purification by silica gel column chromatography (ethyl acetate/hexane=1/20 to 1/10 (by volume)) gave compound IV (502 mg, 2.10 mmol, yield 95%).
Figure 0007212220000020

上記で得られた化合物IV(561mg、2.34mmol)及びフッ化カリウム(546mg、9.40mmol)を含むフラスコに対し、窒素雰囲気下、メタノール12mLを加え、40℃に加熱し5時間撹拌した。その後反応溶液に水を加え、酢酸エチルを用いて抽出した後、飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムを用いて乾燥させた。シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/20(体積基準))で精製し、化合物V(386mg、2.31mmol、収率99%)を得た。

Figure 0007212220000021

To a flask containing compound IV (561 mg, 2.34 mmol) obtained above and potassium fluoride (546 mg, 9.40 mmol), 12 mL of methanol was added under a nitrogen atmosphere, heated to 40° C., and stirred for 5 hours. After that, water was added to the reaction solution, and the mixture was extracted with ethyl acetate, washed with a saturated aqueous sodium chloride solution, and dried with anhydrous sodium sulfate. Purification by silica gel column chromatography (ethyl acetate/hexane=1/20 (by volume)) gave compound V (386 mg, 2.31 mmol, yield 99%).
Figure 0007212220000021

上記化合物III(91mg、0.41mmol)、上記化合物V(76.1mg、0.45mmol)、ヨウ化銅(3.0mg、0.016mmol)及びジクロロビス(トリフェニルホスフィン)パラジウム(8.6mg、0.012mmol)を含むシュレンク管に対し、窒素雰囲気下、トリエチルアミン2.0mLを加え、50℃に加熱し5時間撹拌した。その後反応溶液に水を加え、ジクロロメタンで抽出後、飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムを用いて乾燥させた。そして、クロロホルム/ヘキサン混合溶液を用いて再沈殿を行い化合物VI(90mg、0.29mmol、収率72%)を得た。

Figure 0007212220000022
Compound III above (91 mg, 0.41 mmol), Compound V above (76.1 mg, 0.45 mmol), copper iodide (3.0 mg, 0.016 mmol) and dichlorobis(triphenylphosphine)palladium (8.6 mg, 0 012 mmol), 2.0 mL of triethylamine was added in a nitrogen atmosphere, heated to 50° C., and stirred for 5 hours. After that, water was added to the reaction solution, and after extraction with dichloromethane, the extract was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. Then, reprecipitation was performed using a chloroform/hexane mixed solution to obtain compound VI (90 mg, 0.29 mmol, yield 72%).
Figure 0007212220000022

-化合物VIIIの合成-
最後に、化合物VIIIを下記の手順で合成した。
上記化合物VI(97mg、0.31mmol)及び塩化パラジウム(11mg、0.062mmol)を含むシュレンク管に対し、窒素雰囲気下、THF(テトラヒドロフラン、6.4mL)を加え、60℃に加熱し2時間撹拌した。その後反応溶液を濃縮後、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/10(体積基準))で精製し、化合物VII(83 mg, 0.27 mmol、収率86%)を得た。

Figure 0007212220000023
-Synthesis of Compound VIII-
Finally, compound VIII was synthesized by the following procedure.
THF (tetrahydrofuran, 6.4 mL) was added to a Schlenk tube containing the above compound VI (97 mg, 0.31 mmol) and palladium chloride (11 mg, 0.062 mmol) under a nitrogen atmosphere, heated to 60°C and stirred for 2 hours. bottom. After that, the reaction solution was concentrated and purified by silica gel column chromatography (ethyl acetate/hexane=1/10 (by volume)) to obtain compound VII (83 mg, 0.27 mmol, yield 86%).
Figure 0007212220000023

化合物VII(50mg、0.16mmol)のジクロロメタン(22mL)溶液にビス(トリフルオロアセトキシ)ヨードベンゼン(154mg、0.36mmol)を加え、室温下で1時間撹拌した。その後反応溶液に水を加え、ジクロロメタンを用いて抽出した後、飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムを用いて乾燥させた。シリカゲルカラムクロマトグラフィー(トルエン/ヘキサン=2/1(体積基準))で精製後、クロロホルム/ヘキサン混合溶液を用いて再沈殿を行い化合物VIII(19mg、0.061mmol、収率38%)を得た。

Figure 0007212220000024
Bis(trifluoroacetoxy)iodobenzene (154 mg, 0.36 mmol) was added to a solution of compound VII (50 mg, 0.16 mmol) in dichloromethane (22 mL), and the mixture was stirred at room temperature for 1 hour. After that, water was added to the reaction solution, and the mixture was extracted with dichloromethane, washed with a saturated aqueous sodium chloride solution, and dried with anhydrous sodium sulfate. After purification by silica gel column chromatography (toluene/hexane = 2/1 (by volume)), reprecipitation was performed using a chloroform/hexane mixed solution to obtain compound VIII (19 mg, 0.061 mmol, yield 38%). .
Figure 0007212220000024

〔評価〕
(還元電位測定(サイクリックボルタンメトリー))
以下の測定方法により、還元電位を測定した。
電解質として0.1Mのヘキサフルオロリン酸テトラブチルアンモニウムを含むTHFに上記で得られた化合物VIIIを溶かし、アルゴンバブリングを行い測定溶液とした。 参照電極として銀/塩化銀電極を、作用電極及び対極として白金線を、それぞれ用いて、0.1V/sの掃引速度で測定した。フェロセン/フェロセニウムイオンを基準物質として電位を算出した。
測定結果として、図1に示す通り、-1.33V及び-1.83Vに二段階の可逆な還元が観測された。
〔evaluation〕
(Reduction potential measurement (cyclic voltammetry))
The reduction potential was measured by the following measuring method.
The compound VIII obtained above was dissolved in THF containing 0.1 M tetrabutylammonium hexafluorophosphate as an electrolyte, and argon bubbling was performed to obtain a measurement solution. A silver/silver chloride electrode was used as a reference electrode, and a platinum wire was used as a working electrode and a counter electrode, respectively, and measurements were made at a sweep rate of 0.1 V/s. The potential was calculated using ferrocene/ferrocenium ion as a reference material.
As a measurement result, as shown in FIG. 1, a two-step reversible reduction was observed at −1.33 V and −1.83 V.

(吸光スペクトル及び発光スペクトルの測定)
測定装置として、分光光度計V-630及び分光蛍光光度計FP-6200(日本分光株式会社製)を使用し、化合物VIIIのクロロホルム溶液に対し、568nmの励起光を用いて吸光スペクトル及び発光スペクトルを測定した。
測定結果として、図2に示す通りの吸光スペクトル及び発光スペクトルが得られた。
また、568nmの吸収極大波長でのモル吸光係数は30000M-1cm-1、蛍光量子収率は0.123であった。
なお、図2中の1は、吸光スペクトルを表し、2は発光スペクトルを表す。
(Measurement of absorption spectrum and emission spectrum)
Using a spectrophotometer V-630 and a spectrofluorophotometer FP-6200 (manufactured by JASCO Corporation) as measurement devices, the absorption spectrum and emission spectrum of a chloroform solution of compound VIII were measured using excitation light of 568 nm. It was measured.
As a measurement result, an absorption spectrum and an emission spectrum as shown in FIG. 2 were obtained.
Further, the molar extinction coefficient at the maximum absorption wavelength of 568 nm was 30000 M −1 cm −1 and the fluorescence quantum yield was 0.123.
In addition, 1 in FIG. 2 represents an absorption spectrum and 2 represents an emission spectrum.

(溶解度)
以下の方法により、化合物の溶解度を測定した。
化合物VIIIに溶媒(密度d)を加え、飽和溶液(溶け残りのある状態)を調製した。次に、上記飽和溶液を濾過し、ろ液の重さWを測定した。溶媒を完全に留去し、残った化合物VIIIの重さWを測定した。そして、溶解度(mg/mL)=W×d/Wとして算出した。
(solubility)
The solubility of the compound was measured by the following method.
A solvent (density d) was added to compound VIII to prepare a saturated solution (with undissolved residue). Next, the saturated solution was filtered and the weight W1 of the filtrate was measured. The solvent was completely distilled off and the weight W2 of the remaining compound VIII was measured. Then, it was calculated as solubility (mg/mL)=W 2 ×d/W 1 .

測定結果として、溶媒としてTHF(テトラヒドロフラン、d=0.89)を用いた場合には、化合物VIIIの溶解度は2.5mg/mLであった。また、溶媒としてCHCl(クロロホルム、d=1.49)を用いた場合には、化合物VIIIの溶解度は4.1mg/mLであった。 As a measurement result, the solubility of Compound VIII was 2.5 mg/mL when THF (tetrahydrofuran, d=0.89) was used as the solvent. Further, when CHCl 3 (chloroform, d=1.49) was used as a solvent, the solubility of compound VIII was 4.1 mg/mL.

本開示の化合物は、酸化還元活性を有し、種々の化学修飾を施すことで様々な用途に用いることができる。上記用途としては、例えば、蓄電池用活物質、n型半導体材料、水素貯蔵材料等が挙げられる。 The compounds of the present disclosure have oxidation-reduction activity and can be used for various purposes by performing various chemical modifications. Examples of the above applications include active materials for storage batteries, n-type semiconductor materials, hydrogen storage materials, and the like.

Claims (8)

下記式1で表される化合物であって、
環構造A1が下記式1aを有し、環構造A2が下記式1b、下記式1dもしくは下記式1eを有し下記式1bの場合には置換基R もしくは置換基R は隣接する置換基同士で環を構成しない、
又は、環構造A1が下記式1b~下記式1eのいずれか一つを有し、環構造A2が下記式1b~下記式1eのいずれか一つを有する化合物。

Figure 0007212220000025


Figure 0007212220000026


Figure 0007212220000027


Figure 0007212220000028


Figure 0007212220000029


Figure 0007212220000030


式1a~式1e中、*は環構造A1又は環構造A2に含まれる窒素原子との結合部位を表し、**は環構造A1又は環構造A2との結合部位を表し、R~R11は、それぞれ独立に置換基を表し、隣接する置換基同士で環を構成してもよい。また、X1、X4~X6、及びX11はそれぞれ独立に0~4の整数を表し、X2、X3、及び、X7~X10はそれぞれ独立に0~3の整数を表す。
A compound represented by the following formula 1,
When the ring structure A1 has the following formula 1a, the ring structure A2 has the following formula 1b, the following formula 1d or the following formula 1e and the following formula 1b, the substituent R 2 or the substituent R 3 is an adjacent substituent do not form a ring with each other,
Alternatively, a compound in which the ring structure A1 has any one of the following formulas 1b to 1e and the ring structure A2 has any one of the following formulas 1b to 1e .

Figure 0007212220000025


Figure 0007212220000026


Figure 0007212220000027


Figure 0007212220000028


Figure 0007212220000029


Figure 0007212220000030


In formulas 1a to 1e, * represents a bonding site with a nitrogen atom contained in ring structure A1 or ring structure A2, ** represents a bonding site with ring structure A1 or ring structure A2, and R 1 to R 11 each independently represents a substituent, and adjacent substituents may form a ring. X1, X4 to X6 and X11 each independently represent an integer of 0 to 4, and X2, X3 and X7 to X10 each independently represent an integer of 0 to 3.
前記環構造A1及び前記環構造A2は、下記式1bで表される構造を有する請求項1に記載の化合物。
Figure 0007212220000031


式1b中、*は環構造A1又は環構造A2に含まれる窒素原子との結合部位を表し、**は環構造A1又は環構造A2との結合部位を表し、R及びRは、それぞれ独立に置換基を表し、隣接する置換基同士で環を構成してもよい。また、X2及びX3はそれぞれ独立に0~3の整数を表す。
The compound according to claim 1, wherein the ring structure A1 and the ring structure A2 have a structure represented by the following formula 1b.
Figure 0007212220000031


In formula 1b, * represents a binding site to the nitrogen atom contained in ring structure A1 or ring structure A2, ** represents a binding site to ring structure A1 or ring structure A2, and R 2 and R 3 are each Each substituent may be independently represented, and adjacent substituents may form a ring. Also, X2 and X3 each independently represent an integer of 0 to 3.
前記環構造A1及び前記環構造A2における芳香環の少なくとも1つは、アルキル基、アルケニル基、アルキニル基、アリール基、ホルミル基、アシル基、カルボキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、シアノ基、アミノ基、アミド基、ニトロ基、ヒドロキシ基、アルコキシ基、アリールオキシ基、メルカプト基、スルファニル基、スルホ基及びハロゲノ基からなる群より選ばれる少なくとも1つの置換基を含む請求項1又は請求項2に記載の化合物。 At least one of the aromatic rings in the ring structure A1 and the ring structure A2 is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a formyl group, an acyl group, a carboxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, and a carbamoyl group. , cyano group, amino group, amido group, nitro group, hydroxyl group, alkoxy group, aryloxy group, mercapto group, sulfanyl group, sulfo group and halogeno group. Or a compound according to claim 2 . 請求項1~請求項のいずれか1項に記載の化合物を含む蓄電池用活物質。 A storage battery active material comprising the compound according to any one of claims 1 to 3 . 請求項1~請求項のいずれか1項に記載の化合物を含むn型半導体材料。 An n-type semiconductor material comprising the compound according to any one of claims 1 to 3 . 請求項1~請求項のいずれか1項に記載の化合物を含む水素貯蔵材料。 A hydrogen storage material comprising a compound according to any one of claims 1-3 . 炭素数2~5の炭素鎖の一方の末端に脱離基を、他方の末端にアミノ基を、それぞれ有し、前記炭素鎖を構成する炭素は、水素原子と結合せず、かつ、芳香環を構成する化合物Aを準備する工程と、
準備した化合物Aの脱離基が結合している部位においてカップリング反応を行って、下記式3で表される化合物を生成する工程と、
下記式3で表される化合物について、環化反応を行って請求項1~請求項のいずれか1項に記載の化合物を生成する工程と、
を有する化合物の製造方法。
Figure 0007212220000032


式3中、Rはそれぞれ独立に、化合物Aから脱離基を除いた残基を表す。
A carbon chain having 2 to 5 carbon atoms has a leaving group at one end and an amino group at the other end, and the carbon atoms constituting the carbon chain are not bonded to hydrogen atoms and are aromatic rings providing a compound A comprising
a step of performing a coupling reaction at the site where the leaving group of the prepared compound A is bound to produce a compound represented by the following formula 3;
A step of subjecting a compound represented by the following formula 3 to a cyclization reaction to produce the compound according to any one of claims 1 to 3 ;
A method for producing a compound having
Figure 0007212220000032


In formula 3, each R independently represents a residue obtained by removing a leaving group from compound A.
前記化合物Aは、下記式2a~下記式2eから選択される少なくとも1つである請求項に記載の化合物の製造方法。
Figure 0007212220000033


Figure 0007212220000034


Figure 0007212220000035


Figure 0007212220000036


Figure 0007212220000037


式2a~式2e中、Xは脱離基を表し、R~R11は、それぞれ独立に置換基を表し、隣接する置換基同士で環を構成してもよい。また、X1、X4~X6、及びX11はそれぞれ独立に0~4の整数を表し、X2、X3、及び、X7~X10はそれぞれ独立に0~3の整数を表す。
8. The method for producing a compound according to claim 7 , wherein the compound A is at least one selected from the following formulas 2a to 2e.
Figure 0007212220000033


Figure 0007212220000034


Figure 0007212220000035


Figure 0007212220000036


Figure 0007212220000037


In Formulas 2a to 2e, X represents a leaving group, R 1 to R 11 each independently represent a substituent, and adjacent substituents may form a ring. X1, X4 to X6 and X11 each independently represent an integer of 0 to 4, and X2, X3 and X7 to X10 each independently represent an integer of 0 to 3.
JP2019028872A 2019-02-20 2019-02-20 Compound, active material for storage battery, n-type semiconductor material, hydrogen storage material, and method for producing compound Active JP7212220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019028872A JP7212220B2 (en) 2019-02-20 2019-02-20 Compound, active material for storage battery, n-type semiconductor material, hydrogen storage material, and method for producing compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019028872A JP7212220B2 (en) 2019-02-20 2019-02-20 Compound, active material for storage battery, n-type semiconductor material, hydrogen storage material, and method for producing compound

Publications (2)

Publication Number Publication Date
JP2020132579A JP2020132579A (en) 2020-08-31
JP7212220B2 true JP7212220B2 (en) 2023-01-25

Family

ID=72277657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019028872A Active JP7212220B2 (en) 2019-02-20 2019-02-20 Compound, active material for storage battery, n-type semiconductor material, hydrogen storage material, and method for producing compound

Country Status (1)

Country Link
JP (1) JP7212220B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016105054A2 (en) 2014-12-24 2016-06-30 주식회사 두산 Organic light emitting compound and organic electroluminescent element using same
CN105859725A (en) 2016-05-11 2016-08-17 天津大学 5,10-dihydroindolo[3,2-b]indole derivative synthesis method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016105054A2 (en) 2014-12-24 2016-06-30 주식회사 두산 Organic light emitting compound and organic electroluminescent element using same
CN105859725A (en) 2016-05-11 2016-08-17 天津大学 5,10-dihydroindolo[3,2-b]indole derivative synthesis method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REGISTRY(STN)[online], (検索日2022年8月30日)2018年 1月22日CAS登録番号:2170740-90-4, 2017年 9月22日CAS登録番号:2129105-62-8,2017年 6月28日CAS登録番号:2099674-11-8, 2016年 7月22日CAS登録番号:1958047-66-9

Also Published As

Publication number Publication date
JP2020132579A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
Zhang et al. Mechanofluorochromic properties of β-iminoenolate boron complexes tuned by the electronic effects of terminal phenothiazine and phenothiazine-S, S-dioxide
Sugimoto et al. Ethylene analogs of tetrathiafulvalene and tetraselenafulvalene: New donors for organic metals
JP5959171B2 (en) PI-conjugated organoboron compound and method for producing the same
CN110407710B (en) Triphenylamine derivative pure organic room temperature phosphorescent material and preparation method thereof
KR101170995B1 (en) Electrode for energy storage device and process for producing the same
Cárdenas et al. Synthesis, X-ray structure, and electrochemical and excited-state properties of multicomponent complexes made of a [Ru (tpy) 2] 2+ unit covalently linked to a [2]-catenate moiety. Controlling the energy-transfer direction by changing the catenate metal ion
Grandl et al. Electronic and structural properties of N→ B-ladder boranes with high electron affinity
JP5855011B2 (en) Novel compounds capable of complexing at least one metal element and coordination complexes based on these compounds
Andersson et al. Synthesis and characterization of a ferrocene-linked bis-fullerene [60] dumbbell
JP4978005B2 (en) Aminoquinoxaline compound and polyaminoquinoxaline compound and use thereof
JP5187773B2 (en) Compound, photochromic material, electronic material, compound production method, 2,3-bis (N, N-bis (p-anisyl) 4-aminophenylethynyl) dimethyl fumarate production method, 2,3-bis (N, N- Bis (p-anisyl) 4-aminophenylethynyl) dimethyl maleate production process
Gotfredsen et al. Acetylenic scaffolding with subphthalocyanines–synthetic scope and elucidation of electronic interactions in dimeric structures
JP7212220B2 (en) Compound, active material for storage battery, n-type semiconductor material, hydrogen storage material, and method for producing compound
Wong et al. Synthesis, structures and properties of platinum (II) complexes of oligothiophene-functionalized ferrocenylacetylene
JP4543486B2 (en) Thiophene derivatives and polymers thereof
Horwitz et al. Oxidative electropolymerization of iron and ruthenium complexes containing aniline-substituted 2, 2'-bipyridine ligands
US8937175B2 (en) Compounds as ligands for transition metal complexes and materials made thereof, and use therefor
JP2012072228A (en) Acrylic acid-based compound, and dye-sensitized solar cell using the compound
JP4479879B2 (en) Poly (5-aminoquinoxaline) and use thereof
JP5722579B2 (en) Ditetraazaporphyrin-based compound and dye-sensitized solar cell using the compound
Ohba et al. Synthesis of a new terpyridine ligand combined with ruthenium (II) complex and its usage in the stepwise fabrication of complex polymer wires on gold
JP3318604B2 (en) Fullerene-carborane rigid rod hybrid compound and method for synthesizing same
JP4417032B2 (en) photocatalyst
JP6842696B2 (en) Compounds, compound synthesis methods and organic semiconductor materials
林裕貴 Development of Unique Switching Systems Based on Multifunctional Hydrocarbons with Dibenzo-Fused Seven-Membered Rings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221216

R150 Certificate of patent or registration of utility model

Ref document number: 7212220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150