WO2008016023A1 - Gas supply device and board treatment apparatus - Google Patents

Gas supply device and board treatment apparatus Download PDF

Info

Publication number
WO2008016023A1
WO2008016023A1 PCT/JP2007/064932 JP2007064932W WO2008016023A1 WO 2008016023 A1 WO2008016023 A1 WO 2008016023A1 JP 2007064932 W JP2007064932 W JP 2007064932W WO 2008016023 A1 WO2008016023 A1 WO 2008016023A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas supply
gas
supply holes
concentric circle
concentric
Prior art date
Application number
PCT/JP2007/064932
Other languages
French (fr)
Japanese (ja)
Inventor
Kensaku Narushima
Kunihiro Tada
Satoshi Wakabayashi
Tetsuya Saitou
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to KR1020097002282A priority Critical patent/KR101063105B1/en
Priority to CN2007800290977A priority patent/CN101501244B/en
Publication of WO2008016023A1 publication Critical patent/WO2008016023A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas

Definitions

  • the present invention relates to a gas supply device that supplies a processing gas into a processing container from a plurality of gas supply holes facing the substrate, for example, in order to perform a predetermined film forming process on the substrate, and the gas supply
  • the present invention relates to a substrate processing apparatus.
  • One of the semiconductor manufacturing processes is a film forming process, which is usually activated by, for example, plasma or thermal decomposition of a processing gas in a vacuum atmosphere, and active species or reaction products are formed on the substrate surface. This is done by depositing.
  • a film forming process there is a process for forming a film by reacting multiple types of gases. This process includes metals such as Ti, Cu and Ta, or metal compounds such as TiN, TiSi and WSi, or SiN, Si 02
  • An apparatus for performing such a film forming process includes a mounting table for mounting a substrate in a processing container forming a vacuum chamber and a gas supply device provided in the processing container.
  • a heating device or plasma generation means which is a means to give energy to the gas, is provided in combination!
  • the gas supply device is generally called a gas shower head, and is provided so as to close an opening formed in the ceiling portion of the processing container and to face the mounting table.
  • a gas diffusion space is formed in a flat cylindrical body! /, And a shower plate with a large number of gas supply holes is arranged on the bottom surface, Then, the processing gas flows into the diffusion space and is blown out into the processing space from the gas supply hole force.
  • the shower plate has the same number of gas supply holes per unit area so that gas can be uniformly supplied onto the substrate.
  • a pattern arranged in a matrix form vertically and horizontally as shown in FIG. 10 and a pattern arranged at equal intervals on concentric circles as shown in FIG. 11 are known.
  • Figs. 10 and 11 1 is a shower plate and 11 is a gas supply hole.
  • the diameter of the gas supply holes is small and the number of concentric circles is large.
  • FIG. 13 the force is shown in only one place on this area.
  • this area On the shower plate 1, this area is shifted by 90 degrees from the central portion and extends in four directions, and has a cross shape as a whole. Focusing on the area within this frame, if expressed in macro terms, gas cannot be blown to the part facing the frame on the wafer W side.
  • the flow velocity of the gas flow A in the part is extremely slower than the flow velocity of the gas flow on both sides.
  • turbulence occurs at the boundary, resulting in abnormal deposition of products, in other words, Ti grows abnormally. In this way, the locally abnormally grown part is a collection of particles as seen from other areas.
  • Patent Document 1 and Patent Document 2 the shower plate described in these documents, which does not have such attention at all, was adopted from the viewpoint that the number of gas supply holes per unit area is uniform and the design is easy. Is.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-152218: FIG.
  • Patent Document 2 JP 2004-76023 A: FIG. 22, paragraph 0100
  • the present invention has been made under such circumstances, and an object of the present invention is to provide a directional force from the central portion of the substrate to the outer peripheral portion in a gas supply apparatus that supplies a processing gas into the processing container.
  • the present invention is arranged so as to face the mounting table in order to supply processing gas into a processing container provided with a mounting table on which a substrate is mounted, and has a large number of gas supply holes.
  • a gas supply device with a single plate! / The gas supply holes are arranged on a number of concentric circles.
  • the gas supply hole arrangement pattern is such that, for any concentric circle except the outermost and innermost circumferences, the gas supply holes on the concentric circle, the concentric circles adjacent to the inner side, and the concentric circles adjacent to the outer side are the nearest gas.
  • the supply holes are not arranged on the radius of the concentric circle.
  • the gas supply hole arrangement pattern be aligned with the number of gas supply holes per unit area (for example, a square area of 2 cm ⁇ 2 cm)! /.
  • the gas supply holes are arranged in such a manner that the gas supply holes are arranged in the circumferential direction at equal intervals for each concentric circle, and one gas supply hole in each concentric circle is once arranged on the radius of the concentric circle.
  • the gas supply holes arranged on the radius should be formed by rearranging the arrangement pitches in the circumferential direction at equal intervals so that they are arranged along an algebraic spiral curve extending from the center of the concentric circle. it can.
  • the gas supply hole arrangement pattern includes a concentric circle in which the gas supply holes are arranged at the first pitch, and a concentric circle in which the gas supply holes are located outside the concentric circle and arranged at a second pitch wider than the first pitch.
  • the force S is designed so that there is a concentric circle located outside the concentric circle and having gas supply holes arranged at a third pitch narrower than the second pitch.
  • the present invention can also be used as a substrate processing apparatus, for example, a film forming apparatus.
  • the apparatus is an airtight processing container, a mounting table provided in the processing container for mounting a substrate, and a processing container. And a gas supply device according to the present invention, wherein the substrate on the mounting table is processed with a processing gas supplied from the gas supply device.
  • the gas supply holes of the shower plate are arranged on a number of concentric circles, and the arrangement pattern of the gas supply holes is a concentric circle adjacent to the gas supply holes on the concentric circle and a concentric circle adjacent to the outside.
  • the arrangement pattern of the gas supply holes is set so that each nearest gas supply hole is aligned on a concentric radius! For this reason, there is no band-like dead space that extends in the radial direction of the concentric circles and does not include the gas supply holes.Therefore, the direction of force from the center of the concentric circles to the outer periphery of the shower plate and the flow velocity of the gas flow are extremely low. The formation of a region where the flow velocity becomes slow is suppressed.
  • FIG. 1 is a longitudinal sectional view showing a film forming apparatus incorporating a gas supply apparatus according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing in detail the gas supply apparatus according to the above embodiment.
  • FIG. 3 is a plan view showing an arrangement pattern of gas supply holes of a shower plate in the gas supply device according to the above embodiment.
  • FIG. 4 is an enlarged plan view showing a part of the arrangement pattern of the gas supply holes of the shower plate.
  • FIG. 5 is an explanatory diagram for explaining a method of forming an array pattern of gas supply holes of a shower plate.
  • FIG. 6 is an explanatory diagram showing a method for obtaining a distribution of the number of gas supply holes in 1 degree increments in the circumferential direction of the shower plate.
  • FIG. 7 is an explanatory diagram showing the distribution of the number of gas supply holes in 1 degree increments in the circumferential direction of the shower plate.
  • FIG. 8 is an explanatory diagram showing the simulation result of the flow velocity distribution in 1 degree increments in the circumferential direction of the shower plate.
  • FIG. 9 is an explanatory view showing the simulation result of the distribution of flow velocity in the circumferential direction for the shower plate.
  • FIG. 10 is a plan view showing an arrangement pattern of gas supply holes of a conventional shower plate.
  • FIG. 11 is a plan view showing an arrangement pattern of gas supply holes of a conventional shower plate.
  • FIG. 12 is a plan view showing a particle distribution on a semiconductor wafer when a conventional shower plate is used.
  • FIG. 13 is an explanatory diagram for explaining an estimation factor of particle generation in a conventional shower plate.
  • FIG. 1,! /, 2 is a processing vessel which is a vacuum chamber made of, for example, aluminum.
  • This processing vessel 2 has a cylindrical portion 2a having a large diameter on the upper side and a cylindrical portion 2b having a small diameter on the lower side. It is formed in a mushroom shape and is provided with a heating mechanism (not shown) for heating the inner wall.
  • stage 21 that forms a substrate mounting table for horizontally mounting a substrate, for example, a semiconductor wafer (hereinafter referred to as a wafer) W, and this stage 21 is supported on the bottom of the small diameter portion 2b. Supported by member 22! /
  • stage 21 there are provided a heater (not shown) that forms a temperature control means for the wafer W and a conductive member (not shown) that serves as a lower electrode described later. Further, if necessary, an electrostatic chuck (not shown) for electrostatically adsorbing the wafer W is provided. Further, the stage 21 is provided with, for example, three support pins 23 for holding and lifting the wafer W so as to be able to protrude and retract with respect to the surface of the stage 21, and the support pins 23 are provided via support members 24. It is connected to the lifting mechanism 25 outside the processing container 2.
  • One end side of an exhaust pipe 26 is connected to the bottom of the processing vessel 2, and a vacuum pump 27, which is a vacuum exhaust means, is connected to the other end side of the exhaust pipe 26.
  • a transfer port 29 that is opened and closed by a gate valve 28 is formed on the side wall of the large-diameter portion 2 a of the processing container 2.
  • an opening 31 is formed in the ceiling of the processing container 2, and a gas shower head 4, which is a gas supply device of the present invention, is provided so as to close the opening 31 and face the stage 21. It has been.
  • the gas shower head 4 and the stage 21 also serve as an upper electrode and a lower electrode, respectively.
  • the gas shower head 4 is connected to the high-frequency power source unit 33 through the matching unit 32, and the stage 21 as the lower electrode. Is grounded.
  • the wiring diagram is shown in a simplified manner. Actually, the stage 21 is electrically connected to the processing container 2 and is grounded from above the processing container 2 through a matching box (not shown). The conductive path of the frequency wraps around the processing space.
  • the gas shower head 4 includes a base member 41 made of a flat bottomed cylindrical body that closes the opening at the top of the processing container 1, and a lower side of the bottom surface of the base member 41.
  • Set in A shower plate 5 is provided. Since the base member 41 also has a role of partitioning the vacuum atmosphere in the processing container 1 from the atmospheric atmosphere, the flange portion 42 at the upper peripheral edge and the peripheral portion 43 of the opening of the processing container 1 are ring-shaped resin seal members The O-ring 44 is airtightly joined.
  • two gas supply pipes 61 and 62 are connected to the central portion of the base member 41, and the gas supply holes 7 of the shower plate 5 from which the gases of the gas supply pipes 61 and 62 are separated, respectively.
  • (7a) and 7 (7b) Forces are also configured to be ejected. That is, a diffusion plate 64 in which a space 63 communicating with one gas supply pipe 61 is formed is stacked on the shower plate 5, and the upper side of the diffusion plate 64 is connected to the other gas supply pipe 62. The space 63 is communicated and formed as a partitioned space 65.
  • One gas supply hole 7 (7a) communicates with the space 63, and the other gas supply hole 7 (7b) communicates with the space 65.
  • the shower plate 6 will be described in detail later.
  • the one gas supply pipe 61 includes, for example, a TiC14 gas source 102, an Ar gas source, as shown in FIG.
  • the other gas supply pipe 62 connected to the 103 and the C1F3 gas source 104 is connected to, for example, an H2 gas source 106 and an NH3 gas source 107.
  • the portion indicated by 108 surrounded by a chain line is a group of gas supply devices such as valves and mass flow controllers provided in each gas supply path.
  • the shower plate 5 in this example is used for a 300 mm wafer, and each of them is arranged along 19 concentric circles 51 centering on the center of a circular plate body 50 as shown in FIGS. 3 and 4.
  • Gas supply holes 7 are formed at intervals, and further, gas supply holes 7 are formed at the center of the concentric circle (the center of the shower plate 5).
  • the gas supply holes 7 include gas supply holes 7a and 7b through which different gases blow out, but these gas supply holes 7a and 7b are alternately arranged in the circumferential direction. It will be described as hole 7.
  • the diameter of the gas supply hole 7 is, for example, lmm.
  • the radius of the outermost concentric circle 51 is 163 mm, and the intervals between the concentric circles are set at equal intervals.
  • the gas supply holes 7 of the concentric circles 51 are once arranged so as to be aligned on the radius of the concentric circles 51, and then as shown in FIG.
  • the gas supply holes 7 arranged on these radii are arranged along the algebraic spiral curve S extending from the center of the concentric circle 51. .
  • R and ⁇ are the distance in polar coordinates and the angle from the reference direction with the center of the concentric circle 51 as the zero point, and a is a variable. is there.
  • the arrangement density of the gas supply holes 7 in the minute region extending in the radial direction of the concentric circle 51 is made uniform between the respective directions. To do so. That is, as shown in FIG. 6, a belt-like region (elongated rectangular region) L that does not include the center C of the concentric circle 51 but includes the innermost concentric circle 51 and the outermost concentric circle 51 in the circumferential direction. Rotate and measure the number of gas supply holes 7 in the belt-like region L at each angular position, and obtain the distribution of the number.
  • Figure 7 shows the distribution of the number of gas supply holes obtained by rotating the belt-like region L from 1 to 90 degrees.
  • the width 2d d of the belt-like region L corresponds to the angular resolution, and at least the width 2d is arranged. For example, set it to 4 mm so that it is less than the pitch. As shown in FIG. 7, the number of gas supply holes 7 at each angular position is within 15-20.
  • the gas supply holes 7 are arranged so that the number of the gas supply holes 7 per unit area is uniform.
  • Per unit area means that the area in the outermost concentric circle 51 is divided into square grids of 2cm x 2cm, for example (excluding the area in contact with the outermost concentric circle 51), and the gas supply hole between each divided area In this example, the minimum number of holes in each divided area is 5, and the maximum value is 7.
  • a wafer W which is a substrate
  • a transfer arm (not shown)
  • a mixed gas of TiC14 gas and Ar gas which is the first gas
  • the second gas H2 gas is sent from the gas supply source 106 to the gas shower head 4 through the gas supply pipe 62.
  • the first gas and the second gas are separately supplied to the processing atmosphere from the gas supply holes 7 (7a) and (7b) of the shower plate 5.
  • the inside of the processing container 2 is evacuated by the vacuum pump 27, and a pressure adjusting valve (not shown) provided in the exhaust pipe 26 is adjusted to set the pressure in the processing container 2 to the set pressure, and the high frequency power supply unit High-frequency power is supplied from 33 to the gas showerhead 4 as the upper electrode and the stage 21 as the lower electrode from 33, and the processing gas, that is, the first gas and the second gas are made into plasma, and TiC14 is converted into H2 by H2. Reduce and deposit a Ti film on the surface of wafer W. At this time, HC1, which is a reaction byproduct, is exhausted together with the unreacted gas.
  • a TiN film is formed by nitriding the Ti film following the formation of the Ti film.
  • the TiC14 gas as the first gas and the H2 gas as the second gas are used. Stop supplying and start supplying NH 3 (ammonia) gas. Even at this time, high frequency power is supplied to the processing space, and the surface of the Ti thin film already formed on the wafer W is nitrided by the active species of NH3. After nitriding is completed, the supply of high-frequency power and the supply of NH3 gas are stopped, and then the wafer W is unloaded from the processing container 2 by the reverse operation to the loading operation described above.
  • NH 3 ammonia
  • the effect of the shower plate 5 will be described.
  • the conventional shower plate has only focused on the number of gas supply holes per unit area.
  • the gas flow velocity in each direction is roughly aligned.
  • the number of gas supply holes 7 is arranged on a large number of concentric circles 51, and the gas supply holes 7 are arranged at equal intervals for each concentric circle 51.
  • the reason why the intervals are equal is that the number of the gas supply holes 7 is made uniform per unit area.
  • any concentric circle 51 except the outermost and innermost circumferences is connected to the gas supply hole 7 on the concentric circle 51 and the inner side.
  • the concentric circles 51 adjacent to each other and the gas supply holes 7 immediately adjacent to the concentric circles 51 adjacent to the outside are not aligned on the radius of the concentric circles 51, that is, The concentric circles 51 adjacent to each other should be designed so that the three gas supply holes 7 are on the radius! /.
  • the gas supply holes 7 of the concentric circles 51 are shifted using a spiral curve as described above.
  • FIG. 8 is a diagram illustrating the rotation of the belt-like region L shown in FIG. 6 in the circumferential direction in increments of 1 degree, and the directional force and flow velocity from the center of the concentric circle 51 in the belt-like region L to the outer periphery.
  • the flow velocity distribution in the circumferential direction obtained by this calculation is shown.
  • the shower plate is divided into three concentric circles by four circles with radii of 170 mm, 120 mm, 60 mm, and 40 mm, and a, b, and c indicate the flow velocity distribution in these divided regions, respectively.
  • the flow rate per unit area is obtained from the number of gas supply holes 7 present in each of the three divided regions, and the flow rate and the number of gas supply holes 7 in the band-like region at the corresponding angle are obtained from The flow velocity in each angular region (band region L) was calculated.
  • FIG. 9 shows the in-plane flow velocity distribution on wafer W, which is obtained by color coding and copied as a black and white image.
  • Fig. 9 (a) uses the shower plate 5 of the above embodiment.
  • Figure 9 (b) shows the results when using a shower plate (see Figure 10) with gas supply holes arranged in a matrix.
  • the region where the flow velocity is extremely small is formed in a cross shape, which corresponds to the cross-shaped particle adhesion pattern on the wafer W as described in the background section. is doing. Therefore, the cause of the cross-shaped particle adhesion pattern corresponds to the arrangement pattern of the gas supply holes of the shower plate through the result of the flow velocity distribution.
  • the circumferential flow velocities are generally uniform, and since the region where the flow velocities are extremely slow is not seen, the occurrence of the cross-shaped particle adhesion pattern is eliminated. Is done. For this reason, restrictions on the process conditions are relaxed, so that the degree of freedom in setting process conditions is widened. For example, it is possible to set conditions such as increasing the gas flow rate to improve throughput.
  • the gas shower head 4 described above is a post-mix type that supplies the first gas and the second gas separately into the processing container 2, and mixes both gases in advance before processing. Atmosphere It can also be applied to a premix type that supplies air.
  • the present invention is not limited to Ti film formation.
  • metals such as W, Cu, Ta, Ru, and Hf
  • the substrate processing apparatus to which the gas showerhead of the present invention is applied is not limited to a plasma CVD apparatus, but can be applied to a thermal CVD apparatus, an etching apparatus, an ashing apparatus, a sputtering apparatus, an annealing apparatus, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

In a gas supply device called a gas shower head or the like, the occurrence of dense areas of particles such as cross-like particles is suppressed and the degree of freedom of process conditions is increased by making more uniform the flow velocity distribution of gas flows from the center to the outer peripheral parts of a board along the circumferential direction than before. The arrangement pattern of gas supply holes formed in the shower plate of the gas supply device is so set that these holes are arranged on a large number of concentric circles and that a gas supply hole on a concentric circle and gas supply holes nearest that gas supply hole and on concentric circles respectively inwardly and outwardly adjacent to that concentric circle are not arranged in the radial direction of the concentric circles.

Description

明 細 書  Specification
ガス供給装置及び基板処理装置  Gas supply apparatus and substrate processing apparatus
技術分野  Technical field
[0001] 本発明は、例えば基板に対して所定の成膜処理を行うために、基板に対向する多 数のガス供給孔から処理ガスを処理容器内に供給するガス供給装置、及びこのガス 供給装置を用レ、た基板処理装置に関する。  The present invention relates to a gas supply device that supplies a processing gas into a processing container from a plurality of gas supply holes facing the substrate, for example, in order to perform a predetermined film forming process on the substrate, and the gas supply The present invention relates to a substrate processing apparatus.
背景技術  Background art
[0002] 半導体製造プロセスの一つに成膜処理があり、このプロセスは通常真空雰囲気下 で処理ガスを例えばプラズマ化あるいは熱分解することで活性化し、基板表面上に 活性種あるいは反応生成物を堆積させることにより行われる。そして成膜処理の中に は、複数種類のガスを反応させて成膜するプロセスがあり、このプロセスとしては、 Ti 、 Cu、 Taなどの金属、または TiN、 TiSi、 WSiなどの金属化合物、あるいは SiN、 Si 02  [0002] One of the semiconductor manufacturing processes is a film forming process, which is usually activated by, for example, plasma or thermal decomposition of a processing gas in a vacuum atmosphere, and active species or reaction products are formed on the substrate surface. This is done by depositing. In the film formation process, there is a process for forming a film by reacting multiple types of gases. This process includes metals such as Ti, Cu and Ta, or metal compounds such as TiN, TiSi and WSi, or SiN, Si 02
などの絶縁膜といった薄膜の形成を挙げることができる。  The formation of a thin film such as an insulating film can be given.
[0003] このような成膜処理を行うための装置は、真空チャンバをなす処理容器内に基板を 載置するための載置台が配置されると共に処理容器にガス供給装置が設けられ、更 にガスにエネルギーを与えるための手段である加熱装置やプラズマ発生手段などが 組み合わせて設けられて!/、る。ガス供給装置は一般にガスシャワーヘッドと呼ばれ、 処理容器の天井部に形成された開口部を塞ぐようにかつ前記載置台と対向するよう に設けられている。ガス供給装置のより具体的な構造については、扁平な円柱体内 にガスの拡散空間が形成されて!/、て、多数のガス供給孔が形成されたシャワープレ 一トが下面に配置され、外部から処理ガスが拡散空間に流れ込み、前記ガス供給孔 力、ら処理空間に吹き出されるように構成されている。  [0003] An apparatus for performing such a film forming process includes a mounting table for mounting a substrate in a processing container forming a vacuum chamber and a gas supply device provided in the processing container. A heating device or plasma generation means, which is a means to give energy to the gas, is provided in combination! The gas supply device is generally called a gas shower head, and is provided so as to close an opening formed in the ceiling portion of the processing container and to face the mounting table. For a more specific structure of the gas supply device, a gas diffusion space is formed in a flat cylindrical body! /, And a shower plate with a large number of gas supply holes is arranged on the bottom surface, Then, the processing gas flows into the diffusion space and is blown out into the processing space from the gas supply hole force.
[0004] シャワープレートは、基板上にガスを均一に供給できるように単位面積当たりのガス 供給孔の数が揃えられている。そしてガス供給孔の配列パターンとしては、図 10に 示すように縦横にマトリックス状に配列したパターンや図 11に示すように同心円上に 等間隔に配列したパターンが知られており、これら配列パターンは、夫々特許文献 1 及び特許文献 2に記載されている。図 10、 11中、 1はシャワープレート、 11はガス供 給孔である。なお 300mmウェハで用いられる実際のシャワープレートにおいては、 ガス供給孔の口径はもつと小さぐ孔数、同心円の数はもつと多い。 [0004] The shower plate has the same number of gas supply holes per unit area so that gas can be uniformly supplied onto the substrate. As the arrangement pattern of the gas supply holes, a pattern arranged in a matrix form vertically and horizontally as shown in FIG. 10 and a pattern arranged at equal intervals on concentric circles as shown in FIG. 11 are known. Patent documents 1 And Patent Document 2. In Figs. 10 and 11, 1 is a shower plate and 11 is a gas supply hole. In actual shower plates used for 300mm wafers, the diameter of the gas supply holes is small and the number of concentric circles is large.
[0005] ところで TiC14、 H2及び Arの混合ガスを用いて半導体ウエノ、(以下ウェハという)上 に Tiを成膜するプロセスについて、ウェハ上におけるパーティクルの評価を行ってい たところ、あるプロセス条件において図 12に示すようにウェハ W上にパーティクル 12 が過剰に付着する領域が十文字に形成されることが分かった。この十文字のパーテ イタル付着パターン P (実際にはパーティクルが密集している力、便宜上斜線で示し てある)は、シャワープレート 1から処理雰囲気内に流入するガスの流速を大きくして いったときにある流速以上になると発生し、その発生ポイントは、全体のガス流量が多 い程、流速が大きい方にずれている。言い換えれば、ガス流量を少なくすると、小さ な流速であっても十文字のパーティクル付着パターンが発生するということになる。  [0005] By the way, in the process of forming a Ti film on a semiconductor wafer (hereinafter referred to as a wafer) using a mixed gas of TiC14, H2 and Ar, particles on the wafer were evaluated. As shown in FIG. 12, it was found that a region where particles 12 are excessively adhered on the wafer W is formed in a cross shape. This cross-shaped partical adhesion pattern P (actually, the force with which the particles are dense, indicated by diagonal lines for convenience) is when the flow velocity of the gas flowing from the shower plate 1 into the processing atmosphere is increased. It occurs when the flow velocity exceeds a certain level, and the generation point shifts to the higher flow rate as the overall gas flow rate increases. In other words, if the gas flow rate is reduced, a cross-shaped particle adhesion pattern is generated even at a low flow rate.
[0006] この理由について種々検討をしたところ、ウェハの中心部から外周部に向かうガス 流の周方向の流速分布に関連していることを突き止めた。即ち、この種の成膜装置 は処理容器の下部にて排気しているため、ウェハ表面におけるガスの流れは中心部 から外周部に向かう流れが支配的であり、従来のシャワープレートにおいては、この ガス流の流速が極端に遅!/、領域が存在する。例えばガス供給孔 11がマトリックス状 に配列されたシャワープレート 1については、図 13に枠で囲って示すようにシャワー プレート 1の中心部から外周部に向けてつまり半径方向にガス供給孔 11が平行に直 線的に並ぶ領域が存在する。  [0006] As a result of various studies on this reason, it was found that the gas flow from the central part of the wafer toward the outer peripheral part was related to the flow velocity distribution in the circumferential direction. In other words, since this type of film forming apparatus exhausts at the lower part of the processing vessel, the gas flow on the wafer surface is dominant from the center to the outer periphery. Gas flow velocity is extremely slow! /, There is a region. For example, for the shower plate 1 in which the gas supply holes 11 are arranged in a matrix, as shown in FIG. 13, the gas supply holes 11 are parallel from the center of the shower plate 1 toward the outer periphery, that is, in the radial direction. There is an area lined up in a straight line.
[0007] 図 13では、この領域を 1個所だけ示してある力 シャワープレート 1上にはこの領域 は中心部から 90度ずつずれて 4方向に伸び、全体として十文字状になっている。こ の枠内の領域に着目すると、マクロ的な表現をすると、ウェハ W側においては枠内に 対向する部位にはガスが吹き付けられないので、ウェハ Wの中心部 Cから外周に向 力、う当該部位のガス流 Aの流速は、その両隣のガス流の流速よりも極端に遅くなつて いる。このように速い流速の領域と遅い流速の領域とが隣り合うと、その境界部で乱 流が発生し、その結果生成物の堆積が異常に起こり、言い換えると Tiが異常成長す る。このように局部的に異常成長した部分は、他の領域から見ればパーティクルの集 合領域であり、この部位を含むチップに対して電気的特性に悪影響を及ぼすことに なる。そしてシャワープレート 1から吹き出すガス流の流速が速いほど、境界部での乱 流の発生の程度が大きぐこのため十文字のパーティクル付着パターン Pが発生しや すいことが直感的に理解され、このことは実験結果と整合する。 [0007] In FIG. 13, the force is shown in only one place on this area. On the shower plate 1, this area is shifted by 90 degrees from the central portion and extends in four directions, and has a cross shape as a whole. Focusing on the area within this frame, if expressed in macro terms, gas cannot be blown to the part facing the frame on the wafer W side. The flow velocity of the gas flow A in the part is extremely slower than the flow velocity of the gas flow on both sides. When a region with a high flow rate and a region with a low flow rate are adjacent to each other, turbulence occurs at the boundary, resulting in abnormal deposition of products, in other words, Ti grows abnormally. In this way, the locally abnormally grown part is a collection of particles as seen from other areas. This is a joint region and adversely affects the electrical characteristics of the chip including this part. It is intuitively understood that the faster the flow rate of the gas flow blown from the shower plate 1, the greater the degree of turbulent flow at the boundary, so the cross-shaped particle adhesion pattern P is more likely to occur. Is consistent with the experimental results.
[0008] 上述の現象は、同心円上にガス供給孔を等間隔に配列した場合にも起こることは 容易に想像がつく。即ち、この場合においてもシャワープレート 1の中心部から外周 部に向けてガス供給孔 11が平行に直線的に並ぶ領域が十文字に存在するからであ  [0008] It can be easily imagined that the above phenomenon occurs even when the gas supply holes are arranged at equal intervals on a concentric circle. That is, even in this case, there is a cross-shaped region in which the gas supply holes 11 are arranged in parallel and linearly from the center portion of the shower plate 1 toward the outer peripheral portion.
[0009] このように従来のシャワープレートにおいては、プロセス条件によって十文字のパー ティクル付着パターン Pが発生するため、プロセス条件の設定の自由度が制限される という課題がある。例えばスループットの向上のためにガス流量を大きく設定すること ができな!/、などの不利益がある。 [0009] As described above, in the conventional shower plate, since the cross-shaped particle adhesion pattern P is generated depending on the process condition, there is a problem that the degree of freedom in setting the process condition is limited. For example, there is a disadvantage that the gas flow rate cannot be set large to improve throughput!
なお特許文献 1及び特許文献 2にはこのような着眼は全くなぐこれら文献に記載さ れたシャワープレートは、単位面積当たりのガス供給孔数を揃えかつ設計が容易で あるという観点から採用されたものである。  In addition, in Patent Document 1 and Patent Document 2, the shower plate described in these documents, which does not have such attention at all, was adopted from the viewpoint that the number of gas supply holes per unit area is uniform and the design is easy. Is.
[0010] 特許文献 1 :特開平 5— 152218号公報:図 4 Patent Document 1: Japanese Patent Laid-Open No. 5-152218: FIG.
特許文献 2 :特開 2004— 76023号公報:図 22、段落 0100  Patent Document 2: JP 2004-76023 A: FIG. 22, paragraph 0100
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 本発明はこのような事情の下になされたものであり、その目的は、処理容器内に処 理ガスを供給するガス供給装置において、基板の中心部から外周部に向力、うガス流 について周方向の間の流速分布を従来に比べて揃えることで、パーティクルの発生 を抑え、し力、もプロセス条件の自由度を広げることのできるシャワープレート及びこの シャワープレートを用いた基板処理装置を提供することにある。 The present invention has been made under such circumstances, and an object of the present invention is to provide a directional force from the central portion of the substrate to the outer peripheral portion in a gas supply apparatus that supplies a processing gas into the processing container. By aligning the flow velocity distribution in the circumferential direction with respect to the gas flow compared to the conventional method, it is possible to suppress the generation of particles and to increase the force and freedom of process conditions, and substrate processing using this shower plate To provide an apparatus.
課題を解決するための手段  Means for solving the problem
[0012] 本発明は、基板を載置する載置台が設けられた処理容器内に処理スを供給するた めに前記載置台に対向するように配置され、多数のガス供給孔が穿設されるシャヮ 一プレートを備えたガス供給装置にお!/、て、 前記ガス供給孔は、多数の同心円上に配列され [0012] The present invention is arranged so as to face the mounting table in order to supply processing gas into a processing container provided with a mounting table on which a substrate is mounted, and has a large number of gas supply holes. A gas supply device with a single plate! / The gas supply holes are arranged on a number of concentric circles.
前記ガス供給孔の配列パターンは、最外周及び最内周を除く任意の同心円につ いて、その同心円上のガス供給孔と、内側に隣り合う同心円及び外側に隣り合う同心 円の各直近のガス供給孔と、が同心円の半径上に並ばないことを特徴とする。  The gas supply hole arrangement pattern is such that, for any concentric circle except the outermost and innermost circumferences, the gas supply holes on the concentric circle, the concentric circles adjacent to the inner side, and the concentric circles adjacent to the outer side are the nearest gas. The supply holes are not arranged on the radius of the concentric circle.
またガス供給孔の配列パターンは、単位面積当たり(例えば 2cm X 2cmの正方形 領域)のガス供給孔の数が揃ってレヽることが好まし!/、。  It is also preferable that the gas supply hole arrangement pattern be aligned with the number of gas supply holes per unit area (for example, a square area of 2 cm × 2 cm)! /.
[0013] 前記ガス供給孔の配列パターンは、各同心円毎にガス供給孔を等間隔で周方向 に配列すると共に各同心円の一のガス供給孔同士を同心円の半径上に並ぶように 一旦配列し、これら半径上に並ぶガス供給孔が同心円の中心から伸びる代数スパイ ラル曲線に沿って並ぶように、周方向の配列ピッチが等間隔のまま配列し直すことに より形成されたものとすること力できる。またガス供給孔の配列パターンは、ガス供給 孔が第 1のピッチで並ぶ同心円と、この同心円よりも外側に位置し、ガス供給孔が第 1 のピッチよりも広い第 2のピッチで並ぶ同心円と、この同心円よりも外側に位置し、ガ ス供給孔が第 2のピッチよりも狭い第 3のピッチで並ぶ同心円とが存在するように設計 すること力 Sでさる。 [0013] The gas supply holes are arranged in such a manner that the gas supply holes are arranged in the circumferential direction at equal intervals for each concentric circle, and one gas supply hole in each concentric circle is once arranged on the radius of the concentric circle. The gas supply holes arranged on the radius should be formed by rearranging the arrangement pitches in the circumferential direction at equal intervals so that they are arranged along an algebraic spiral curve extending from the center of the concentric circle. it can. The gas supply hole arrangement pattern includes a concentric circle in which the gas supply holes are arranged at the first pitch, and a concentric circle in which the gas supply holes are located outside the concentric circle and arranged at a second pitch wider than the first pitch. The force S is designed so that there is a concentric circle located outside the concentric circle and having gas supply holes arranged at a third pitch narrower than the second pitch.
[0014] 本発明は、基板処理装置例えば成膜装置としても成り立ち、この装置は、気密な処 理容器と、この処理容器内に設けられ、基板を載置するための載置台と、処理容器 内のガスを排気する排気手段と、本発明のガス供給装置と、を備え、ガス供給装置か ら供給される処理ガスにより載置台上の基板を処理することを特徴とする。  [0014] The present invention can also be used as a substrate processing apparatus, for example, a film forming apparatus. The apparatus is an airtight processing container, a mounting table provided in the processing container for mounting a substrate, and a processing container. And a gas supply device according to the present invention, wherein the substrate on the mounting table is processed with a processing gas supplied from the gas supply device.
[0015] 本発明では、シャワープレートのガス供給孔を多数の同心円上に配列し、ガス供給 孔の配列パターンは、同心円上のガス供給孔と内側に隣り合う同心円及び外側に隣 り合う同心円の各直近のガス供給孔とが同心円の半径上に並ばな!/、ようにガス供給 孔の配列パターンが設定されている。このため同心円の半径方向に伸びる、ガス供 給孔が含まれない帯状のいわばデッドスペースが形成されないため、同心円の中心 部からシャワープレートの外周部に向力、うガス流の流速について、極端に流速が遅く なる領域の形成が抑えられる。この結果、既述の十文字のパーティクル付着パターン のように基板の中心部から見て特定の方向に伸びる領域に異常なプロセスが行われ るとレ、う不具合を防止することができる。そして従来にお!/、てもプロセス条件を調整す ればこうした不具合を回避できる力 S、本発明ではプロセス条件の制限が緩和されるの で、プロセス条件の設定の自由度が広がり、例えばスループットを向上させるために ガス流量を多くするなどの条件設定を行うことができる。 [0015] In the present invention, the gas supply holes of the shower plate are arranged on a number of concentric circles, and the arrangement pattern of the gas supply holes is a concentric circle adjacent to the gas supply holes on the concentric circle and a concentric circle adjacent to the outside. The arrangement pattern of the gas supply holes is set so that each nearest gas supply hole is aligned on a concentric radius! For this reason, there is no band-like dead space that extends in the radial direction of the concentric circles and does not include the gas supply holes.Therefore, the direction of force from the center of the concentric circles to the outer periphery of the shower plate and the flow velocity of the gas flow are extremely low. The formation of a region where the flow velocity becomes slow is suppressed. As a result, if an abnormal process is performed in a region extending in a specific direction when viewed from the center of the substrate as in the above-described cross-shaped particle adhesion pattern, it is possible to prevent defects. And even before! If this is the case, it is possible to avoid such problems S. In the present invention, the restriction of process conditions is relaxed, so the degree of freedom in setting process conditions is widened. For example, setting conditions such as increasing the gas flow rate to improve throughput It can be performed.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の実施の形態に係るガス供給装置を組み込んだ成膜装置を示す縦断 面図である。 FIG. 1 is a longitudinal sectional view showing a film forming apparatus incorporating a gas supply apparatus according to an embodiment of the present invention.
[図 2]上記の実施の形態に係るガス供給装置を詳細に示す縦断面図である。  FIG. 2 is a longitudinal sectional view showing in detail the gas supply apparatus according to the above embodiment.
[図 3]上記の実施の形態に係るガス供給装置におけるシャワープレートのガス供給孔 の配列パターンを示す平面図である。  FIG. 3 is a plan view showing an arrangement pattern of gas supply holes of a shower plate in the gas supply device according to the above embodiment.
[図 4]シャワープレートのガス供給孔の配列パターンの一部を拡大して示す平面図で ある。  FIG. 4 is an enlarged plan view showing a part of the arrangement pattern of the gas supply holes of the shower plate.
[図 5]シャワープレートのガス供給孔の配列パターンの形成方法を説明するための説 明図である。  FIG. 5 is an explanatory diagram for explaining a method of forming an array pattern of gas supply holes of a shower plate.
[図 6]シャワープレートの周方向について、 1度刻みのガス供給孔の数の分布を得る ための手法を示す説明図である。  FIG. 6 is an explanatory diagram showing a method for obtaining a distribution of the number of gas supply holes in 1 degree increments in the circumferential direction of the shower plate.
[図 7]シャワープレートの周方向について、 1度刻みのガス供給孔の数の分布を示す 説明図である。  FIG. 7 is an explanatory diagram showing the distribution of the number of gas supply holes in 1 degree increments in the circumferential direction of the shower plate.
[図 8]シャワープレートの周方向について、 1度刻みの流速の分布のシミュレーション 結果を示す説明図である。  FIG. 8 is an explanatory diagram showing the simulation result of the flow velocity distribution in 1 degree increments in the circumferential direction of the shower plate.
[図 9]シャワープレートについて、周方向の流速の分布のシミュレーション結果を示す 説明図である。  FIG. 9 is an explanatory view showing the simulation result of the distribution of flow velocity in the circumferential direction for the shower plate.
[図 10]従来のシャワープレートのガス供給孔の配列パターンを示す平面図である。  FIG. 10 is a plan view showing an arrangement pattern of gas supply holes of a conventional shower plate.
[図 11]従来のシャワープレートのガス供給孔の配列パターンを示す平面図である。 FIG. 11 is a plan view showing an arrangement pattern of gas supply holes of a conventional shower plate.
[図 12]従来のシャワープレートを使用した場合における半導体ウェハ上のパーテイク ル分布を示す平面図である。 FIG. 12 is a plan view showing a particle distribution on a semiconductor wafer when a conventional shower plate is used.
[図 13]従来のシャワープレートにおけるパーティクル発生の推定要因を説明するため の説明図である。  FIG. 13 is an explanatory diagram for explaining an estimation factor of particle generation in a conventional shower plate.
発明を実施するための最良の形態 [0017] 本発明のガス供給装置をプラズマ CVDにより成膜を行うための成膜装置に組み込 んだ実施の形態について説明する。先ず成膜装置の全体構成について、図 1の概 略図に基づ!/、て構成の概略を説明しておく。図 1にお!/、て 2は例えばアルミニウムか らなる真空チャンバである処理容器であり、この処理容器 2は、上側が大径の円筒部 2aでその下側に小径の円筒部 2bが連設されたいわばキノコ形状に形成され、その 内壁を加熱するための図示しない加熱機構が設けられている。処理容器 2内には、 基板である例えば半導体ウェハ(以下ウェハという) Wを水平に載置するための基板 載置台をなすステージ 21が設けられ、このステージ 21は、小径部 2bの底部に支持 部材 22を介して支持されて!/、る。 BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which the gas supply apparatus of the present invention is incorporated in a film forming apparatus for performing film formation by plasma CVD will be described. First, the overall configuration of the film forming apparatus will be described based on the schematic diagram of FIG. In FIG. 1,! /, 2 is a processing vessel which is a vacuum chamber made of, for example, aluminum. This processing vessel 2 has a cylindrical portion 2a having a large diameter on the upper side and a cylindrical portion 2b having a small diameter on the lower side. It is formed in a mushroom shape and is provided with a heating mechanism (not shown) for heating the inner wall. In the processing container 2, there is provided a stage 21 that forms a substrate mounting table for horizontally mounting a substrate, for example, a semiconductor wafer (hereinafter referred to as a wafer) W, and this stage 21 is supported on the bottom of the small diameter portion 2b. Supported by member 22! /
[0018] ステージ 21内にはウェハ Wの温調手段をなす図示しないヒータ及び後述する下部 電極となる図示しない導電部材が設けられている。また必要に応じてウェハ Wを静電 吸着するための図示しない静電チャックが設けられる。更にステージ 21には、ウェハ Wを保持して昇降させるための例えば 3本の支持ピン 23がステージ 21の表面に対し て突没自在に設けられ、この支持ピン 23は、支持部材 24を介して処理容器 2の外の 昇降機構 25に接続されている。処理容器 2の底部には排気管 26の一端側が接続さ れ、この排気管 26の他端側には真空排気手段である真空ポンプ 27が接続されてい る。また処理容器 2の大径部 2aの側壁には、ゲートバルブ 28により開閉される搬送 口 29が形成されている。  [0018] In the stage 21, there are provided a heater (not shown) that forms a temperature control means for the wafer W and a conductive member (not shown) that serves as a lower electrode described later. Further, if necessary, an electrostatic chuck (not shown) for electrostatically adsorbing the wafer W is provided. Further, the stage 21 is provided with, for example, three support pins 23 for holding and lifting the wafer W so as to be able to protrude and retract with respect to the surface of the stage 21, and the support pins 23 are provided via support members 24. It is connected to the lifting mechanism 25 outside the processing container 2. One end side of an exhaust pipe 26 is connected to the bottom of the processing vessel 2, and a vacuum pump 27, which is a vacuum exhaust means, is connected to the other end side of the exhaust pipe 26. A transfer port 29 that is opened and closed by a gate valve 28 is formed on the side wall of the large-diameter portion 2 a of the processing container 2.
[0019] 更に処理容器 2の天井部には開口部 31が形成され、この開口部 31を塞ぐようにか つステージ 21に対向するように本発明のガス供給装置であるガスシャワーヘッド 4が 設けられている。ここでガスシャワーヘッド 4及びステージ 21は夫々上部電極及び下 部電極を兼用しており、ガスシャワーヘッド 4は整合器 32を介して高周波電源部 33 に接続されると共に、下部電極であるステージ 21は接地されている。なお図 1では配 線図は略解的に記載してある力 実際にはステージ 21は処理容器 2に電気的に接 続され、処理容器 2の上部から図示しないマッチングボックスを介して接地され、高周 波の導電路が処理空間を包み込むようになつている。  Furthermore, an opening 31 is formed in the ceiling of the processing container 2, and a gas shower head 4, which is a gas supply device of the present invention, is provided so as to close the opening 31 and face the stage 21. It has been. Here, the gas shower head 4 and the stage 21 also serve as an upper electrode and a lower electrode, respectively. The gas shower head 4 is connected to the high-frequency power source unit 33 through the matching unit 32, and the stage 21 as the lower electrode. Is grounded. In addition, in FIG. 1, the wiring diagram is shown in a simplified manner. Actually, the stage 21 is electrically connected to the processing container 2 and is grounded from above the processing container 2 through a matching box (not shown). The conductive path of the frequency wraps around the processing space.
[0020] ガスシャワーヘッド 4は、図 2に示すように、処理容器 1の上部の開口部を塞ぐ扁平 な有底筒状体からなるベース部材 41と、このベース部材 41の底面部の下方側に設 けられたシャワープレート 5と、を備えている。ベース部材 41は処理容器 1内の真空 雰囲気と大気雰囲気とを仕切る役割もあることから、上端周縁部のフランジ部 42と処 理容器 1の開口部の周縁部 43とがリング状の樹脂シール部材である Oリング 44によ り気密に接合されている。 As shown in FIG. 2, the gas shower head 4 includes a base member 41 made of a flat bottomed cylindrical body that closes the opening at the top of the processing container 1, and a lower side of the bottom surface of the base member 41. Set in A shower plate 5 is provided. Since the base member 41 also has a role of partitioning the vacuum atmosphere in the processing container 1 from the atmospheric atmosphere, the flange portion 42 at the upper peripheral edge and the peripheral portion 43 of the opening of the processing container 1 are ring-shaped resin seal members The O-ring 44 is airtightly joined.
[0021] またベース部材 41の中央部には、 2本のガス供給管 61及び 62が接続されており、 これらガス供給管 61及び 62のガスが夫々分離されたシャワープレート 5のガス供給 孔 7 (7a)及び 7 (7b)力も噴出するように構成されている。即ち、シャワープレート 5の 上には、一方のガス供給管 61に連通する空間 63が形成された拡散プレート 64が積 層されると共に、この拡散プレート 64の上方は、他方のガス供給管 62に連通しかつ 前記空間 63とは区画された空間 65として形成されている。そして一方のガス供給孔 7 (7a)は前記空間 63に連通し、他方のガス供給孔 7 (7b)は前記空間 65に連通して いる。なおこのシャワープレート 6に関しては後で詳述する。  [0021] In addition, two gas supply pipes 61 and 62 are connected to the central portion of the base member 41, and the gas supply holes 7 of the shower plate 5 from which the gases of the gas supply pipes 61 and 62 are separated, respectively. (7a) and 7 (7b) Forces are also configured to be ejected. That is, a diffusion plate 64 in which a space 63 communicating with one gas supply pipe 61 is formed is stacked on the shower plate 5, and the upper side of the diffusion plate 64 is connected to the other gas supply pipe 62. The space 63 is communicated and formed as a partitioned space 65. One gas supply hole 7 (7a) communicates with the space 63, and the other gas supply hole 7 (7b) communicates with the space 65. The shower plate 6 will be described in detail later.
[0022] 前記一方のガス供給管 61は、図 1に示すように例えば TiC14ガス源 102、 Arガス源  The one gas supply pipe 61 includes, for example, a TiC14 gas source 102, an Ar gas source, as shown in FIG.
103及び C1F3ガス源 104に接続されているまた他方のガス供給管 62は、例えば H2 ガス源 106及び NH3ガス源 107に接続されて!/、る。なお鎖線で囲んだ 108で示す部 分は、各ガス供給路に設けられたバルブやマスフローコントローラなどのガス供給機 器の群である。  The other gas supply pipe 62 connected to the 103 and the C1F3 gas source 104 is connected to, for example, an H2 gas source 106 and an NH3 gas source 107. The portion indicated by 108 surrounded by a chain line is a group of gas supply devices such as valves and mass flow controllers provided in each gas supply path.
[0023] 次ぎにシャワープレート 5について詳述する。この例のシャワープレート 5は、 300m mウェハに対して使用するものであり、図 3及び図 4に示すように円形のプレート本体 50の中心を中心とする 19個の同心円 51に沿って夫々等間隔でガス供給孔 7が穿設 され、更に同心円の中心(シャワープレート 5の中心)にガス供給孔 7が穿設されてい る。ガス供給孔 7は、互いに異なるガスが吹き出すガス供給孔 7a、 7bが含まれるが、 これらガス供給孔 7a、 7bは周方向に交互に配置されており、以下の説明ではこれら をまとめてガス供給孔 7として述べることとする。ガス供給孔 7の口径は例えば lmmで ある。 19個の同心円 51において、最外周の同心円 51の半径は 163mmであり、各 同心円互いの間隔は等間隔に設定されて!/、る。各同心円 51のガス供給孔 7の個数 については、内佃 J力、ら J噴に 8、 12、 18、 24、 30、 36、 42、 48、 54、 60、 66、 72、 78 、 84、 90、 96、 102、 108、 114である。 [0024] このガス供給孔 7の配列パターンの設計手法については、先ず各同心円 51の一の ガス供給孔 7同士を同心円 51の半径上に並ぶように一旦配列し、次いで図 5に示す ようにこれら半径上に並ぶガス供給孔 7が同心円 51の中心から伸びる代数スパイラ ル曲線 Sに沿って並ぶように、周方向の配列ピッチが等間隔のまま配列し直すことに より形成すること力でさる。 Next, the shower plate 5 will be described in detail. The shower plate 5 in this example is used for a 300 mm wafer, and each of them is arranged along 19 concentric circles 51 centering on the center of a circular plate body 50 as shown in FIGS. 3 and 4. Gas supply holes 7 are formed at intervals, and further, gas supply holes 7 are formed at the center of the concentric circle (the center of the shower plate 5). The gas supply holes 7 include gas supply holes 7a and 7b through which different gases blow out, but these gas supply holes 7a and 7b are alternately arranged in the circumferential direction. It will be described as hole 7. The diameter of the gas supply hole 7 is, for example, lmm. In the 19 concentric circles 51, the radius of the outermost concentric circle 51 is 163 mm, and the intervals between the concentric circles are set at equal intervals. For the number of gas supply holes 7 in each concentric circle 51, the inner cylinder J force, et al. J jet 8, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114. With respect to the design method of the arrangement pattern of the gas supply holes 7, first, the gas supply holes 7 of the concentric circles 51 are once arranged so as to be aligned on the radius of the concentric circles 51, and then as shown in FIG. The gas supply holes 7 arranged on these radii are arranged along the algebraic spiral curve S extending from the center of the concentric circle 51. .
代数スパイラル曲線 Sは r = a Θ で表されるアルキメデススパイラル曲線であり、 r、 Θは、同心円 51の中心をゼロ点とする極座標における距離及び基準方向からの角 度であり、 aは変数である。  The algebraic spiral curve S is an Archimedean spiral curve expressed by r = a Θ. R and Θ are the distance in polar coordinates and the angle from the reference direction with the center of the concentric circle 51 as the zero point, and a is a variable. is there.
[0025] 各同心円 51におけるガス供給孔 7の配列ピッチ及びこの代数スパイラル曲線 Sの 設定については、同心円 51の半径方向に伸びる微少領域におけるガス供給孔 7の 配列密度を、各方向の間で揃うようにして行う。即ち、図 6に示すように同心円 51の 中心 Cを含まないが、最内周の同心円 51と最外周の同心円 51とを含む、帯状領域( 細長い長方形領域) Lを周方向に 1度刻みで回転させ、各角度位置における帯状領 域 Lの中のガス供給孔 7の数を計測し、その数の分布を取得する。図 7は帯状領域 L を 1度から 90度に至るまで回転させて取得したガス供給孔数の分布であり、帯状領 域 Lの幅 2dの dは角度分解能に相当し、少なくとも幅 2dが配列ピッチ以下になるよう 例えば 4mmに設定する。図 7に示すように、各角度位置におけるガス供給孔 7の数 は 15個〜 20個に収まっている。  [0025] Regarding the arrangement pitch of the gas supply holes 7 in each concentric circle 51 and the setting of the algebraic spiral curve S, the arrangement density of the gas supply holes 7 in the minute region extending in the radial direction of the concentric circle 51 is made uniform between the respective directions. To do so. That is, as shown in FIG. 6, a belt-like region (elongated rectangular region) L that does not include the center C of the concentric circle 51 but includes the innermost concentric circle 51 and the outermost concentric circle 51 in the circumferential direction. Rotate and measure the number of gas supply holes 7 in the belt-like region L at each angular position, and obtain the distribution of the number. Figure 7 shows the distribution of the number of gas supply holes obtained by rotating the belt-like region L from 1 to 90 degrees. The width 2d d of the belt-like region L corresponds to the angular resolution, and at least the width 2d is arranged. For example, set it to 4 mm so that it is less than the pitch. As shown in FIG. 7, the number of gas supply holes 7 at each angular position is within 15-20.
[0026] またガス供給孔 7は、単位面積当たりのガス供給孔 7の数が揃うように配列されてい る。この単位面積当たりとは、最外周の同心円 51内の領域を例えば 2cmX 2cmの正 方形の升目に分割した場合 (最外周の同心円 51に接する領域は除く)、各分割領域 の間でガス供給孔 7の数が揃っているということであり、この例では、各分割領域内の 孔数の最小値は 5個であり、最大値は 7個である。  The gas supply holes 7 are arranged so that the number of the gas supply holes 7 per unit area is uniform. Per unit area means that the area in the outermost concentric circle 51 is divided into square grids of 2cm x 2cm, for example (excluding the area in contact with the outermost concentric circle 51), and the gas supply hole between each divided area In this example, the minimum number of holes in each divided area is 5, and the maximum value is 7.
[0027] 図 1の成膜装置におけるウェハ Wの処理について述べる。先ず基板であるウェハ Wが図示しない搬送アームによりゲートバルブ 28を開とした搬送口 29を介して処理 容器 2内に搬入され、支持ピン 23との協働作用によりステージ 21上に受け渡される。 ゲートバルブ 28を閉じた後、ガス供給源 102、 103から第 1のガスである TiC14ガス及 び Arガスの混合ガスがガス供給管 61を介してガスシャワーヘッド 4に送られ、またガ ス供給源 106から第 2のガスである H2ガスがガス供給管 62を介してガスシャワーへッ ド 4に送られる。そしてシャワープレート 5のガス供給孔 7 (7a)、(7b)から第 1のガスと 第 2のガスとが別々に処理雰囲気に供給される。 The processing of the wafer W in the film forming apparatus of FIG. 1 will be described. First, a wafer W, which is a substrate, is loaded into the processing container 2 via a transfer port 29 with the gate valve 28 opened by a transfer arm (not shown), and is transferred onto the stage 21 by the cooperative action with the support pins 23. After the gate valve 28 is closed, a mixed gas of TiC14 gas and Ar gas, which is the first gas, is sent from the gas supply sources 102 and 103 to the gas shower head 4 through the gas supply pipe 61, The second gas H2 gas is sent from the gas supply source 106 to the gas shower head 4 through the gas supply pipe 62. Then, the first gas and the second gas are separately supplied to the processing atmosphere from the gas supply holes 7 (7a) and (7b) of the shower plate 5.
[0028] 一方真空ポンプ 27により処理容器 2内を真空排気し、排気管 26に設けられた図示 しない圧力調整バルブを調整して処理容器 2内の圧力を設定圧力にすると共に、高 周波電源部 33から上部電極であるガスシャワーヘッド 4と下部電極であるステージ 2 1との間に高周波電力を供給して、処理ガスつまり第 1のガス及び第 2のガスをプラズ マ化し、 TiC14を H2により還元してウェハ Wの表面に Ti膜を成膜する。このとき反応 副生成物である HC1は未反応ガスとともに排気される。  [0028] On the other hand, the inside of the processing container 2 is evacuated by the vacuum pump 27, and a pressure adjusting valve (not shown) provided in the exhaust pipe 26 is adjusted to set the pressure in the processing container 2 to the set pressure, and the high frequency power supply unit High-frequency power is supplied from 33 to the gas showerhead 4 as the upper electrode and the stage 21 as the lower electrode from 33, and the processing gas, that is, the first gas and the second gas are made into plasma, and TiC14 is converted into H2 by H2. Reduce and deposit a Ti film on the surface of wafer W. At this time, HC1, which is a reaction byproduct, is exhausted together with the unreacted gas.
[0029] なお Ti膜の成膜に続いて Ti膜を窒化し TiN膜を成膜する場合もあり、その場合に は、第 1のガスである TiC14ガスと第 2のガスである H2ガスの供給を停止すると共に N H3 (アンモニア)ガスの供給を開始する。このときにおいても高周波電力が処理空間 に供給され、ウェハ W上に既に形成されて!/、る Ti薄膜の表面が NH3の活性種により 窒化される。窒化終了後、高周波電力の供給と NH3ガスの供給とを停止し、その後 ウェハ Wを既述の搬入動作と逆の動作で処理容器 2から搬出する。  [0029] In some cases, a TiN film is formed by nitriding the Ti film following the formation of the Ti film. In this case, the TiC14 gas as the first gas and the H2 gas as the second gas are used. Stop supplying and start supplying NH 3 (ammonia) gas. Even at this time, high frequency power is supplied to the processing space, and the surface of the Ti thin film already formed on the wafer W is nitrided by the active species of NH3. After nitriding is completed, the supply of high-frequency power and the supply of NH3 gas are stopped, and then the wafer W is unloaded from the processing container 2 by the reverse operation to the loading operation described above.
[0030] 上述のシャワープレート 5の効果について述べる。従来のシャワープレートは単位 面積当たりのガス供給孔の数しか着目されていなかつたが、上述実施の形態のシャ ワープレート 5においては、ウェハ W上では中心部力、ら外周に向力、うガス流が支配的 であり、半径方向(図 10から明らかなように概ね半径方向も含む)のガス流の流速が 極端に遅くなる領域の発生とガス供給孔 7の配列パターンとの関連に着目し、シャヮ 一プレート 5の中心部から見て各方向におけるガス流の流速が概ね揃うように工夫さ れている。  [0030] The effect of the shower plate 5 will be described. The conventional shower plate has only focused on the number of gas supply holes per unit area. However, in the shower plate 5 of the above-described embodiment, the central portion force on the wafer W, the outer peripheral force, and the gas Focusing on the relationship between the occurrence of the region where the flow velocity of the gas flow is extremely slow and the arrangement pattern of the gas supply holes 7 in the radial direction (including the radial direction as is clear from FIG. 10). As seen from the central part of the shaft 5, the gas flow velocity in each direction is roughly aligned.
[0031] 具体的には、多数の同心円 51上にガス供給孔 7の数を配列し、各同心円 51毎に ガス供給孔 7を等間隔で配列する。このように等間隔とするのは、ガス供給孔 7の数を 単位面積当たりで揃えるためである。そして背景技術の欄にて図 12に示した帯状の 空白領域をなくすためには、最外周及び最内周を除く任意の同心円 51について、そ の同心円 51上のガス供給孔 7と、内側に隣り合う同心円 51及び外側に隣り合う同心 円 51の各直近のガス供給孔 7と、が同心円 51の半径上に並ばないように、つまり互 いに隣り合う同心円 51にお!/、て 3つのガス供給孔 7が半径上にならばな!/、ように設計 すればよい。このような配列パターンを得るために、この実施の形態では既述のよう にスパイラル曲線を用いて各同心円 51のガス供給孔 7をずらしている。 Specifically, the number of gas supply holes 7 is arranged on a large number of concentric circles 51, and the gas supply holes 7 are arranged at equal intervals for each concentric circle 51. The reason why the intervals are equal is that the number of the gas supply holes 7 is made uniform per unit area. In order to eliminate the strip-shaped blank area shown in FIG. 12 in the background art column, any concentric circle 51 except the outermost and innermost circumferences is connected to the gas supply hole 7 on the concentric circle 51 and the inner side. The concentric circles 51 adjacent to each other and the gas supply holes 7 immediately adjacent to the concentric circles 51 adjacent to the outside are not aligned on the radius of the concentric circles 51, that is, The concentric circles 51 adjacent to each other should be designed so that the three gas supply holes 7 are on the radius! /. In order to obtain such an arrangement pattern, in this embodiment, the gas supply holes 7 of the concentric circles 51 are shifted using a spiral curve as described above.
[0032] 図 8は、図 6に示した帯状領域 Lを周方向に 1度刻みで回転させ、帯状領域 L中に おける同心円 51の中心部から外周に向力、う流速を各角度位置毎に計算し、これによ り得られた周方向の流速分布を示すものである。具体的にはシャワープレートを半径 170mm, 120mm, 60mm, 40mmの 4つの円によって同心円状に 3つに分割し a、 b、 cは夫々これらの分割領域における流速分布を示している。流速分布については 、前記 3つの分割領域のそれぞれに存在するガス供給孔 7の数から単位面積あたり の流量を求め、各流量と、対応する角度の帯状領域のガス供給孔 7の数と、から各角 度領域 (帯状領域 L)における流速を計算した。  [0032] FIG. 8 is a diagram illustrating the rotation of the belt-like region L shown in FIG. 6 in the circumferential direction in increments of 1 degree, and the directional force and flow velocity from the center of the concentric circle 51 in the belt-like region L to the outer periphery. The flow velocity distribution in the circumferential direction obtained by this calculation is shown. Specifically, the shower plate is divided into three concentric circles by four circles with radii of 170 mm, 120 mm, 60 mm, and 40 mm, and a, b, and c indicate the flow velocity distribution in these divided regions, respectively. Regarding the flow velocity distribution, the flow rate per unit area is obtained from the number of gas supply holes 7 present in each of the three divided regions, and the flow rate and the number of gas supply holes 7 in the band-like region at the corresponding angle are obtained from The flow velocity in each angular region (band region L) was calculated.
[0033] この流速分布は、図 7に示すガス供給孔の数の分布に対応しており、各方向の流 速が揃っていることが分かる。図 9はウェハ W上における面内の流速分布を計算し、 色分けして求めたものを白黒画像でコピーしたものであり、図 9 (a)は上述実施の形 態のシャワープレート 5を用いた場合、図 9 (b)は、ガス供給孔をマトリックス状に配列 したシャワープレート(図 10参照)を用いた場合の結果である。この結果から分かるよ うに従来のシャワープレートにおいては、流速の極端に小さい領域が十文字状に形 成されており、背景技術の欄で述べたようにウェハ W上の十文字のパーティクル付着 ノ ターンに対応している。従って十文字のパーティクル付着パターンの原因は、流速 分布の結果を介してシャワープレートのガス供給孔の配列パターンに対応しているこ と力 S理角早できる。  This flow velocity distribution corresponds to the distribution of the number of gas supply holes shown in FIG. 7, and it can be seen that the flow velocity in each direction is uniform. Fig. 9 shows the in-plane flow velocity distribution on wafer W, which is obtained by color coding and copied as a black and white image. Fig. 9 (a) uses the shower plate 5 of the above embodiment. Figure 9 (b) shows the results when using a shower plate (see Figure 10) with gas supply holes arranged in a matrix. As can be seen from this result, in the conventional shower plate, the region where the flow velocity is extremely small is formed in a cross shape, which corresponds to the cross-shaped particle adhesion pattern on the wafer W as described in the background section. is doing. Therefore, the cause of the cross-shaped particle adhesion pattern corresponds to the arrangement pattern of the gas supply holes of the shower plate through the result of the flow velocity distribution.
[0034] 一方、上述実施の形態のシャワープレート 5においては、周方向の流速は概ね揃つ ており、極端に流速が遅い領域も見られないことから、十文字のパーティクル付着パ ターンの発生は解消される。このためプロセス条件の制限が緩和されるので、プロセ ス条件の設定の自由度が広がり、例えばスループットを向上させるためにガス流量を 多くするなどの条件設定を行うことができる。  [0034] On the other hand, in the shower plate 5 of the above-described embodiment, the circumferential flow velocities are generally uniform, and since the region where the flow velocities are extremely slow is not seen, the occurrence of the cross-shaped particle adhesion pattern is eliminated. Is done. For this reason, restrictions on the process conditions are relaxed, so that the degree of freedom in setting process conditions is widened. For example, it is possible to set conditions such as increasing the gas flow rate to improve throughput.
[0035] なお上述のガスシャワーヘッド 4は、第 1のガスと第 2のガスとを別々に処理容器 2内 に供給するタイプのポストミックスタイプであるカ、予め両ガスを混合してから処理雰 囲気に供給するプリミックスタイプのものにも適用できる。 [0035] The gas shower head 4 described above is a post-mix type that supplies the first gas and the second gas separately into the processing container 2, and mixes both gases in advance before processing. Atmosphere It can also be applied to a premix type that supplies air.
また本発明は、 Tiの成膜に限られるものではなぐ半導体製造プロセスで行われる 高温下の成膜処理などのガス処理を行う場合、例えば W、 Cu、 Ta、 Ru、 Hfなどの金 属、または TiN、 TiSi、 WSiなどの金属化合物、あるいは SiN、 Si〇2などの絶縁膜と いった薄膜の形成などに適用できる。更に本発明のガスシャワーヘッドを適用した基 板処理装置としては、プラズマ CVD装置に限らず熱 CVD装置、エッチング装置、ァ ッシング装置、スパッタ装置、ァニール装置などにも適用することができる。  In addition, the present invention is not limited to Ti film formation. When performing gas processing such as film formation under high temperature performed in a semiconductor manufacturing process, for example, metals such as W, Cu, Ta, Ru, and Hf, Or it can be applied to the formation of thin films such as metal compounds such as TiN, TiSi, and WSi, or insulating films such as SiN and Si02. Furthermore, the substrate processing apparatus to which the gas showerhead of the present invention is applied is not limited to a plasma CVD apparatus, but can be applied to a thermal CVD apparatus, an etching apparatus, an ashing apparatus, a sputtering apparatus, an annealing apparatus, and the like.

Claims

請求の範囲 The scope of the claims
[1] 基板を載置する載置台が設けられた処理容器内に処理ガスを供給するために前 記載置台に対向するように配置され、多数のガス供給孔が穿設されたシャワープレ ートを備えたガス供給装置にお!/、て、  [1] A shower plate that is arranged to face the mounting table in order to supply processing gas into a processing container provided with a mounting table on which a substrate is mounted, and is provided with a number of gas supply holes. A gas supply device equipped with! /,
前記ガス供給孔は、多数の同心円上に配列され、  The gas supply holes are arranged on a number of concentric circles,
前記ガス供給孔の配列パターンは、最外周及び最内周を除く任意の同心円につ いて、その同心円上のガス供給孔と、内側に隣り合う同心円及び外側に隣り合う同心 円の各直近のガス供給孔と、が同心円の半径上に並ばないことを特徴とするガス供 糸'口 。  The gas supply hole arrangement pattern is such that, for any concentric circle except the outermost and innermost circumferences, the gas supply holes on the concentric circle, the concentric circles adjacent to the inner side, and the concentric circles adjacent to the outer side are the nearest gas. Gas supply port, characterized in that the supply holes do not line up on a concentric radius.
[2] 単位面積当たりのガス供給孔の数が揃っていることを特徴とする請求項 1記載のガ ス供給装置。  2. The gas supply device according to claim 1, wherein the number of gas supply holes per unit area is uniform.
[3] 前記ガス供給孔の配列パターンは、  [3] The arrangement pattern of the gas supply holes is:
各同心円毎にガス供給孔を等間隔で周方向に配列すると共に各同心円の一のガ ス供給孔同士を同心円の半径上に並ぶように一旦配列し、これら半径上に並ぶガス 供給孔が同心円の中心から伸びる代数スパイラル曲線に沿って並ぶように、周方向 の配列ピッチが等間隔のまま配列し直すことにより形成されたものであることを特徴と する請求項 1記載のガス供給装置。  For each concentric circle, gas supply holes are arranged at equal intervals in the circumferential direction, and one gas supply hole of each concentric circle is once arranged so as to be aligned on the radius of the concentric circle, and the gas supply holes aligned on the radius are concentric. 2. The gas supply apparatus according to claim 1, wherein the gas supply apparatus is formed by rearranging the arrangement pitches in the circumferential direction at equal intervals so as to be arranged along an algebraic spiral curve extending from the center of the gas.
[4] ガス供給孔が第 1のピッチで並ぶ同心円と、この同心円よりも外側に位置し、ガス供 給孔が第 1のピッチよりも広い第 2のピッチで並ぶ同心円と、この同心円よりも外側に 位置し、ガス供給孔が第 2のピッチよりも狭い第 3のピッチで並ぶ同心円とが存在する ことを特徴とする請求項 1記載のガス供給装置。  [4] A concentric circle in which the gas supply holes are arranged at the first pitch, a concentric circle in which the gas supply holes are positioned outside the concentric circle and arranged in a second pitch wider than the first pitch, and a concentric circle from the concentric circles. 2. The gas supply device according to claim 1, wherein there are concentric circles that are located outside and in which the gas supply holes are arranged at a third pitch that is narrower than the second pitch.
[5] 気密な処理容器と、この処理容器内に設けられ、基板を載置するための載置台と、 処理容器内のガスを排気する排気手段と、請求項 1ないし 4のいずれか一つに記載 のガス供給装置と、を備え、ガス供給装置から供給される処理ガスにより載置台上の 基板を処理することを特徴とする基板処理装置。  [5] The airtight processing container, the mounting table provided in the processing container for mounting the substrate, the exhaust means for exhausting the gas in the processing container, and any one of claims 1 to 4 A substrate processing apparatus comprising: a gas supply device according to claim 1; and a substrate on the mounting table is processed by a processing gas supplied from the gas supply device.
PCT/JP2007/064932 2006-08-04 2007-07-31 Gas supply device and board treatment apparatus WO2008016023A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020097002282A KR101063105B1 (en) 2006-08-04 2007-07-31 Gas Supply and Substrate Processing Unit
CN2007800290977A CN101501244B (en) 2006-08-04 2007-07-31 Gas feeder and substrate treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006213932A JP5157101B2 (en) 2006-08-04 2006-08-04 Gas supply apparatus and substrate processing apparatus
JP2006-213932 2006-08-04

Publications (1)

Publication Number Publication Date
WO2008016023A1 true WO2008016023A1 (en) 2008-02-07

Family

ID=38997199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064932 WO2008016023A1 (en) 2006-08-04 2007-07-31 Gas supply device and board treatment apparatus

Country Status (5)

Country Link
JP (1) JP5157101B2 (en)
KR (1) KR101063105B1 (en)
CN (1) CN101501244B (en)
TW (1) TWI392762B (en)
WO (1) WO2008016023A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10829855B2 (en) 2016-05-20 2020-11-10 Applied Materials, Inc. Gas distribution showerhead for semiconductor processing

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8291857B2 (en) * 2008-07-03 2012-10-23 Applied Materials, Inc. Apparatuses and methods for atomic layer deposition
WO2010006279A2 (en) * 2008-07-11 2010-01-14 Applied Materials, Inc. Chamber components for cvd applications
KR101108879B1 (en) 2009-08-31 2012-01-30 주식회사 원익아이피에스 Gas injecting device and Substrate processing apparatus using the same
KR101625078B1 (en) * 2009-09-02 2016-05-27 주식회사 원익아이피에스 Gas injecting device and Substrate processing apparatus using the same
JP2013048227A (en) * 2011-07-25 2013-03-07 Tokyo Electron Ltd Shower head device and deposition device
WO2013070438A1 (en) * 2011-11-08 2013-05-16 Applied Materials, Inc. Precursor distribution features for improved deposition uniformity
CN113383109A (en) * 2019-02-01 2021-09-10 朗姆研究公司 Showerhead for deposition tool having multiple plenums and gas distribution chamber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152218A (en) * 1991-11-28 1993-06-18 Tokyo Electron Ltd Surface treatment equipment
JPH08186079A (en) * 1994-12-28 1996-07-16 Nissan Motor Co Ltd Surface treatment device for substrate
JP2001358135A (en) * 2000-06-14 2001-12-26 Hitachi Kokusai Electric Inc Semiconductor manufacturing apparatus
JP2002299255A (en) * 2001-03-30 2002-10-11 Hitachi Kokusai Electric Inc Semiconductor manufacturing device
JP2002299256A (en) * 2001-03-30 2002-10-11 Hitachi Kokusai Electric Inc Semiconductor manufacturing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4079212B2 (en) * 2001-04-17 2008-04-23 東京エレクトロン株式会社 Coating film forming apparatus and spin chuck
US6818852B2 (en) * 2001-06-20 2004-11-16 Tadahiro Ohmi Microwave plasma processing device, plasma processing method, and microwave radiating member
JP3913646B2 (en) * 2002-08-30 2007-05-09 東京エレクトロン株式会社 Substrate processing equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152218A (en) * 1991-11-28 1993-06-18 Tokyo Electron Ltd Surface treatment equipment
JPH08186079A (en) * 1994-12-28 1996-07-16 Nissan Motor Co Ltd Surface treatment device for substrate
JP2001358135A (en) * 2000-06-14 2001-12-26 Hitachi Kokusai Electric Inc Semiconductor manufacturing apparatus
JP2002299255A (en) * 2001-03-30 2002-10-11 Hitachi Kokusai Electric Inc Semiconductor manufacturing device
JP2002299256A (en) * 2001-03-30 2002-10-11 Hitachi Kokusai Electric Inc Semiconductor manufacturing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10829855B2 (en) 2016-05-20 2020-11-10 Applied Materials, Inc. Gas distribution showerhead for semiconductor processing

Also Published As

Publication number Publication date
KR101063105B1 (en) 2011-09-07
KR20090028804A (en) 2009-03-19
TWI392762B (en) 2013-04-11
JP2008038200A (en) 2008-02-21
TW200827480A (en) 2008-07-01
CN101501244B (en) 2012-07-18
JP5157101B2 (en) 2013-03-06
CN101501244A (en) 2009-08-05

Similar Documents

Publication Publication Date Title
WO2008016023A1 (en) Gas supply device and board treatment apparatus
KR102236832B1 (en) Upper electrode having varying thickness for plasma processing
TWI794808B (en) Semiconductor reaction chamber and atomic layer plasma etching device
JP5857896B2 (en) Method of operating film forming apparatus and film forming apparatus
KR20230133257A (en) Low volume showerhead with porous baffle
US10867819B2 (en) Vacuum processing apparatus, vacuum processing system and vacuum processing method
TWI550124B (en) Film deposition apparatus
KR20230145013A (en) End effector assembly for clean/dirty substrate handling
TWI651800B (en) Substrate processing method and substrate processing device
KR20230088467A (en) Thermal Uniform Deposition Station
WO2021257318A1 (en) Asymmetric exhaust pumping plate design for a semiconductor processing chamber
JP2024514139A (en) Improved isolator for processing chambers
US20220165567A1 (en) Systems and methods for deposition residue control
TW202245029A (en) Uniform in situ cleaning and deposition
US20210130950A1 (en) Processing method
JP7279605B2 (en) Deposition apparatus and operation method of the deposition apparatus
WO2024053442A1 (en) Plasma processing device
US20230133402A1 (en) Injection module for a process chamber
US20240105470A1 (en) Substrate processing apparatus and semiconductor device manufacturing method using the same
US20230087913A1 (en) Coolant channel with internal fins for substrate processing pedestals
US20230120710A1 (en) Downstream residue management hardware
US20220375746A1 (en) Semiconductor substrate bevel cleaning
KR20240001985A (en) Spindle and lift pin drive assembly with purge mechanisms
WO2024030382A1 (en) Reducing thermal bow shift
WO2024030386A1 (en) Conductive backside layer for bow mitigation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780029097.7

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791617

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097002282

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791617

Country of ref document: EP

Kind code of ref document: A1