JPH05152218A - Surface treatment equipment - Google Patents

Surface treatment equipment

Info

Publication number
JPH05152218A
JPH05152218A JP3339912A JP33991291A JPH05152218A JP H05152218 A JPH05152218 A JP H05152218A JP 3339912 A JP3339912 A JP 3339912A JP 33991291 A JP33991291 A JP 33991291A JP H05152218 A JPH05152218 A JP H05152218A
Authority
JP
Japan
Prior art keywords
gas
chamber
flow
flow control
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3339912A
Other languages
Japanese (ja)
Other versions
JP3194017B2 (en
Inventor
Tomihiro Yonenaga
富廣 米永
Kiyoshi Tanaka
澄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP33991291A priority Critical patent/JP3194017B2/en
Priority to US07/973,915 priority patent/US5332442A/en
Priority to KR1019920021338A priority patent/KR100216740B1/en
Publication of JPH05152218A publication Critical patent/JPH05152218A/en
Application granted granted Critical
Publication of JP3194017B2 publication Critical patent/JP3194017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a film equally by spraying a treating gas against a body to be treated with uniform concentration and a uniform flow. CONSTITUTION:Three parting plates 32, 34, 36 are disposed inside a gas chamber 24 at regular intervals in the vertical direction, and gas-flow control chambers 44, 46, 48 at three stages having approximately the same flow-path area are parted. WF6, N2 gas and H2 gas introduced into a gas introducing chamber 26 from gas supply pipes 2g, 30 are introduced together into the gas-flow control chamber 44 at an uppermost stage, and mixed uniformly in the chamber 44. A mixed treating gas (WF6, N2, H2) is admitted into the gas-flow control chamber 46 at an intermediate stage, the flow of the gas is regulated into a gas flow having equal concentration and an equal flow in the radial direction by the second parting plate 34 as the bottom of the chamber 46, and the gas is passed through the gas-flow control chamber 48 at a lower stage at a comparatively fast flow rate, and sprayed against a semiconductor wafer 12 as a fine gas flow from each vent hole 36a of the third parting plate 36.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被処理体に処理ガスを
吹きつけて所定の表面処理を行う装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for spraying a processing gas onto an object to be processed to perform a predetermined surface treatment.

【0002】[0002]

【従来の技術】CVD(化学気相堆積)は、所定の原料
ガスを被処理体の表面に供給し、その分解または反応生
成物を被処理体表面上に堆積させて成膜する技術であ
る。CVDにおいて均一な成膜を行うには、原料ガスを
被処理体表面の全面にわたって均一に分布させる必要が
ある。
2. Description of the Related Art CVD (Chemical Vapor Deposition) is a technique in which a predetermined source gas is supplied to the surface of an object to be processed and its decomposition or reaction product is deposited on the surface of the object to be processed to form a film. .. In order to form a uniform film in CVD, it is necessary to uniformly distribute the source gas over the entire surface of the object to be processed.

【0003】一般の枚葉式CVD装置は、図5に示すよ
うに、処理容器100内の処理室102の中央下部に被
処理体、たとえば半導体ウエハ104を配置して、この
半導体ウエハ104をヒータ106によって裏側から加
熱しながら、真上から多孔板108を介して原料ガスを
半導体ウエハ104の表面に吹きつけるようにしてい
る。
In a general single-wafer CVD apparatus, as shown in FIG. 5, an object to be processed, for example, a semiconductor wafer 104 is arranged in the lower center of a processing chamber 102 in a processing container 100, and the semiconductor wafer 104 is heated. While heating from the back side by 106, the source gas is blown onto the surface of the semiconductor wafer 104 from directly above through the porous plate 108.

【0004】多孔板108は、半導体ウエハ104の径
よりも幾らか大きな径の円板に多数の通気孔108aを
設けたもので、処理室102から区画されたガス室11
0の下部のガス出口110aに取付されている。このガ
ス室110の上部と連通するガス導入室112には、成
膜の構成元素となるべき原料ガスがガス供給源(図示せ
ず)よりガス供給管114,116を介して供給され
る。
The perforated plate 108 is a disk having a diameter slightly larger than that of the semiconductor wafer 104 and provided with a large number of ventilation holes 108a. The gas chamber 11 is divided from the processing chamber 102.
It is attached to the lower gas outlet 110a of 0. A raw material gas to be a constituent element of film formation is supplied to a gas introduction chamber 112 communicating with the upper part of the gas chamber 110 from a gas supply source (not shown) via gas supply pipes 114 and 116.

【0005】たとえば、タングステン膜を成膜する場
合、一方のガス供給管114からはキャリアガス(たと
えばN2 ガス)で所定濃度に希釈されたWF6 ガスが所
定の流量で供給され、他方のガス供給管116からは所
定濃度のH2 ガスが所定の流量で供給される。
For example, when forming a tungsten film, WF6 gas diluted to a predetermined concentration with a carrier gas (eg, N2 gas) is supplied from one gas supply pipe 114 at a predetermined flow rate, and the other gas supply pipe is supplied. H2 gas having a predetermined concentration is supplied from 116 at a predetermined flow rate.

【0006】ガス供給管114,116から流路面積の
比較的小さなガス導入室112に供給されたWF6,N2
ガスおよびH2 ガスは、そこから流路面積の大きなガス
室110へ導かれ、その室内で互いに混合する。そし
て、ガス室出口110aの多孔板108の各通気孔10
8aより、混合した原料ガス(WF6,N2,H2 )が真下
のウエハ104に向けて吹き出される。
WF6 and N2 supplied from the gas supply pipes 114 and 116 to the gas introduction chamber 112 having a relatively small flow passage area.
The gas and the H2 gas are guided from there to the gas chamber 110 having a large flow passage area, and mixed with each other in the chamber. Then, each vent hole 10 of the perforated plate 108 at the gas chamber outlet 110a
From 8a, the mixed source gas (WF6, N2, H2) is blown out toward the wafer 104 directly below.

【0007】なお、一般の枚葉式のプラズマエッチング
装置においても、上記した枚葉式CVD装置のものと同
様なガス室および多孔板を用いてCF4 等のエッチング
ガスを被処理体へ吹きつけるようにしている。
Even in a general single-wafer type plasma etching apparatus, an etching gas such as CF4 is blown to the object to be processed by using a gas chamber and a perforated plate similar to those in the above-mentioned single-wafer type CVD apparatus. I have to.

【0008】[0008]

【発明が解決しようとする課題】上記のように、従来の
枚葉式CVD装置およびプラズマエッチング装置等にお
いては、処理ガスを被処理体表面の全面にわたって均一
に分布させるように、ガス室110から多孔板108を
介して処理ガスの吹きつけを行っている。
As described above, in the conventional single-wafer CVD apparatus, plasma etching apparatus, etc., the processing gas is distributed from the gas chamber 110 so as to be uniformly distributed over the entire surface of the object to be processed. The processing gas is blown through the perforated plate 108.

【0009】しかしながら、従来装置では、多孔板10
8の各通気孔108aより処理ガスが均一な流れ(層
流)で吹き出されずに、渦を発生するおそれがあった。
また、CVDのように複数の処理ガスを用いる場合、従
来装置では、それら複数の処理ガスがガス室110内で
よく混合しないまま多孔板108の各通気孔108aよ
り不均一な濃度で吹き出されることがあった。
However, in the conventional device, the perforated plate 10 is used.
There was a risk that the processing gas would not be blown out as a uniform flow (laminar flow) from each of the ventilation holes 108a of No. 8 and a vortex would be generated.
Further, in the case of using a plurality of processing gases like CVD, in the conventional apparatus, the plurality of processing gases are blown out from the respective ventilation holes 108a of the perforated plate 108 at a non-uniform concentration without being mixed well in the gas chamber 110. There was something.

【0010】従来装置では、処理ガスが流路面積の比較
的小さなガス導入口112より流路面積の大きなガス室
110へ入ると、そこで処理ガスの流れが水平方向へ拡
散して乱れ、そのまま多孔板108の各通気孔108a
より出るため、渦が発生するものと考えられる。また、
処理ガスはガス供給管より相当の勢いでガス導入室に流
入するが、従来装置では、ガス導入室112に流入した
処理ガスはそのままの勢いで直ちに多孔板108より吹
き出すので、このことも渦の発生の一因になっているも
のと考えられ、さらには、複数の処理ガスがよく混合さ
れない原因になっているものと考えられる。
In the conventional apparatus, when the processing gas enters the gas chamber 110 having a large flow passage area through the gas inlet 112 having a relatively small flow passage area, the flow of the processing gas is diffused and disturbed in the horizontal direction, and the porous gas is left as it is. Each ventilation hole 108a of the plate 108
It is thought that vortices will be generated because they come out more. Also,
Although the processing gas flows into the gas introduction chamber with a considerable force from the gas supply pipe, in the conventional apparatus, the processing gas flowing into the gas introduction chamber 112 immediately blows out from the perforated plate 108 with the same force, which is also a vortex. It is considered to be one of the causes of the generation, and moreover, it is considered to be the cause of the poor mixing of a plurality of process gases.

【0011】このように、従来装置においては、完全に
混合された複数の処理ガスを被処理体表面の全面にわた
って均一に吹き付けるのが難しく、ひいては均一に成膜
するのが困難であった。
As described above, in the conventional apparatus, it is difficult to uniformly blow a plurality of completely mixed processing gases over the entire surface of the object to be processed, and it is difficult to form a uniform film.

【0012】本発明は、かかる問題点に鑑みてなされた
もので、処理ガスを均一な濃度および均一な流れで被処
理体へ吹き付けて均一な成膜を行う処理装置を提供する
ことを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to provide a processing apparatus for spraying a processing gas with a uniform concentration and a uniform flow onto an object to be processed to form a uniform film. To do.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の処理装置は、ガス供給管からの処理ガスを
処理容器内で区画されたガス室に導き、前記ガス室の出
口から前記処理ガスを被処理体へ向けて吹きつけるよう
にした処理装置において、前記ガス室内に、それぞれ多
数の通気孔を設けた複数の仕切り板をガス流方向に所定
の間隔をおいて配設してなる構成とした。
In order to achieve the above object, the processing apparatus of the present invention introduces a processing gas from a gas supply pipe into a gas chamber defined within a processing container, and from an outlet of the gas chamber. In the processing apparatus in which the processing gas is blown toward the object to be processed, a plurality of partition plates each provided with a large number of vent holes are arranged in the gas chamber at predetermined intervals in the gas flow direction. It is configured as follows.

【0014】[0014]

【作用】本発明において、ガス供給管より流入した処理
ガスは、ガス室の第1の仕切板でいったん塞き止められ
るようにしてから第2の仕切り板側へ抜ける。複数の処
理ガスが供給される場合は、第1の仕切板によって画成
される第1の室内でそれらの処理ガスが移動・衝突して
互いに混合される。第2の仕切り板は、たとえばガス室
が円筒状の場合には軸対象で半径方向に均一な密度のパ
ターンの通気孔を有し、第1の仕切り板側からの処理ガ
スを半径方向に均一な流れ(層流)に整流する。これに
より、第2の仕切り板より、処理ガスが均一な濃度およ
び均一な流れで吹き出される。第2の仕切り板の下流側
に、さらに小さな通気孔を高密度に設けた第3の仕切り
板を配設することで、ガス流をきめ細かくして被処理体
へ吹きつけることができる。
In the present invention, the processing gas flowing in from the gas supply pipe is temporarily blocked by the first partition plate of the gas chamber and then flows out to the second partition plate side. When a plurality of processing gases are supplied, the processing gases move and collide in the first chamber defined by the first partition plate and are mixed with each other. For example, when the gas chamber has a cylindrical shape, the second partition plate has ventilation holes having a pattern of uniform density in the radial direction on the axis, and the processing gas from the first partition plate side is uniformly distributed in the radial direction. Rectify the flow (laminar flow). As a result, the processing gas is blown out from the second partition plate with a uniform concentration and a uniform flow. By disposing the third partition plate, in which the smaller vent holes are provided at high density, on the downstream side of the second partition plate, the gas flow can be finely blasted onto the object to be processed.

【0015】[0015]

【実施例】以下、図1〜図4を参照して本発明の実施例
を説明する。図1は本発明の一実施例による枚葉式CV
D装置の構成を示す縦断面図であり、図2〜図4は実施
例のCVD装置における第1、第2および第3の仕切り
板の通気孔パターンをそれぞれ示す平面図である。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a single-wafer CV according to an embodiment of the present invention.
FIG. 2 is a vertical cross-sectional view showing the configuration of the D device, and FIGS. 2 to 4 are plan views showing the vent hole patterns of the first, second, and third partition plates in the CVD device of the embodiment, respectively.

【0016】図1において、この実施例の枚葉式CVD
装置は、たとえばアルミニウムからなる円筒状の処理容
器10を有し、この処理容器10の中央部に被処理体と
してたとえば半導体ウエハ12を配置する。このCVD
装置では、サセプタ(ウエハ載置台)として石英板14
を用いる。この石英板14は下向き有底筒状の支持板1
6の円形開口16aに取付され、この石英板14上に半
導体ウエハ12が載置される。石英板14の裏面は、処
理容器10の底面中央部の円形開口10aに取付された
石英板20を介して処理容器10の外に設置された加熱
用ハロゲンランプ22と対向している。成膜処理時、ハ
ロゲンランプ22からの光は、石英板20を通り、さら
に石英板14を通って半導体ウエハ12の裏面に入射
し、半導体ウエハ12を加熱する。
In FIG. 1, the single-wafer CVD of this embodiment is performed.
The apparatus has a cylindrical processing container 10 made of, for example, aluminum, and a semiconductor wafer 12 as an object to be processed is arranged in the center of the processing container 10. This CVD
In the apparatus, the quartz plate 14 is used as a susceptor (wafer mounting table).
To use. The quartz plate 14 is a support plate 1 having a bottomed cylindrical shape.
The semiconductor wafer 12 is mounted on the quartz plate 14 by being attached to the circular opening 16a of the six. The back surface of the quartz plate 14 faces a heating halogen lamp 22 installed outside the processing container 10 via a quartz plate 20 attached to a circular opening 10a in the center of the bottom surface of the processing container 10. During the film forming process, the light from the halogen lamp 22 passes through the quartz plate 20, further passes through the quartz plate 14, and enters the back surface of the semiconductor wafer 12 to heat the semiconductor wafer 12.

【0017】処理容器10の上面中央部に円形の開口1
0bが設けられ、この開口10bを閉塞するようにして
下向き有底筒状のガス室24が垂直に取付される。この
ガス室24は、熱伝導率の高い材質、たとえば銅合金か
らなり、上端周縁部に環状の取付フランジ24aを有
し、内部に冷却水を流すための環状の水路24bを設け
ており、処理容器10内において処理室11から区画さ
れている。ガス室24の上面中央部にはガス導入用の大
きな通気孔24cが設けられ、この通気孔24cの上に
ガス導入室26が連通して取付され、ガス導入室26内
に2つのガス供給管28,30のガス吐出口が臨んでい
る。
A circular opening 1 is formed in the center of the upper surface of the processing container 10.
0b is provided, and the bottomed cylindrical gas chamber 24 is vertically attached so as to close the opening 10b. The gas chamber 24 is made of a material having a high thermal conductivity, for example, a copper alloy, has an annular mounting flange 24a at the upper end peripheral portion, and is provided with an annular water passage 24b for flowing cooling water therein. It is partitioned from the processing chamber 11 in the container 10. A large vent hole 24c for introducing gas is provided in the central portion of the upper surface of the gas chamber 24, and a gas introduction chamber 26 is connected and mounted on the vent hole 24c. Two gas supply pipes are provided in the gas introduction chamber 26. The gas discharge ports of 28 and 30 are facing.

【0018】たとえば、このCVD装置において半導体
ウエハ12上にタングステン膜を成膜する場合、一方の
ガス供給管28からはN2 ガスで所定の濃度に希釈され
たWF6 ガスが所定の流量で供給され、他方のガス供給
管30からはH2 ガスが所定の流量で供給される。
For example, when a tungsten film is formed on the semiconductor wafer 12 in this CVD apparatus, WF6 gas diluted with N2 gas to a predetermined concentration is supplied from one gas supply pipe 28 at a predetermined flow rate. H2 gas is supplied from the other gas supply pipe 30 at a predetermined flow rate.

【0019】ガス室24の内側には、垂直方向に所定の
間隔をおいて3つの仕切り板32,34,36がそれぞ
れ水平に取付されている。最上段の第1の仕切り板32
は、たとえば20mmの板厚を有し、図2に示すような
パターンで板面に多数たとえば153穴で、円形状たと
えば直径0.5mmの通気孔32aを設けたアルミニウ
ム板で、ガス室24の内側上面からスペーサ38を介し
て、たとえば20mm下方の位置に配設される。中段の
第2の仕切り板34は、たとえば10mmの板厚を有
し、図3に示すようなパターンで板面に多数たとえば2
52穴で、円形状たとえば直径0.7mmの通気孔34
aを設けたアルミニウム板で、第1の仕切り板32の下
面からスペーサ40を介して、たとえば20mm下方の
位置に配設される。最下段の第3の仕切り板36は、た
とえば3mmの板厚を有し、図4に示すようなパターン
で板面に多数たとえば1740穴で、円形状たとえば直
径1.1mmの通気孔36aを設けたアルミニウム板
で、第2の仕切り板34の下面から、たとえば20mm
下方の位置でガス室24の下面に配設される。これら3
段の仕切り板32,34,36およびスペーサ38,4
0により、ガス室24内には各々適当な流路面積を有す
る3段のガス流制御室44,46,48が画成されてい
る。
Inside the gas chamber 24, three partition plates 32, 34, 36 are horizontally mounted at a predetermined interval in the vertical direction. First partition plate 32 at the top
Is, for example, an aluminum plate having a plate thickness of 20 mm and having a large number of holes, for example 153 holes, in the plate surface in a pattern as shown in FIG. It is arranged at a position 20 mm below, for example, from the inner upper surface through the spacer 38. The middle second partition plate 34 has a plate thickness of, for example, 10 mm, and has a large number of, for example, 2 on the plate surface in a pattern as shown in FIG.
52 holes, circular shape, for example, ventilation hole 34 with a diameter of 0.7 mm
It is an aluminum plate provided with a and is arranged at a position, for example, 20 mm below from the lower surface of the first partition plate 32 via the spacer 40. The third partition plate 36 in the lowermost stage has a plate thickness of, for example, 3 mm, and is provided with a large number of 1740 holes on the plate surface in a pattern as shown in FIG. An aluminum plate from the lower surface of the second partition plate 34, for example, 20 mm
It is arranged on the lower surface of the gas chamber 24 at a lower position. These 3
Step partition plates 32, 34, 36 and spacers 38, 4
0, three stages of gas flow control chambers 44, 46, 48 each having an appropriate flow passage area are defined in the gas chamber 24.

【0020】なお、ガス室24の外側において、ガス室
24と処理容器10の上面との間、およびガス室24の
上面とガス導入室26との間には、それぞれ断熱性のス
ペーサ50,54が設けられている。
Outside the gas chamber 24, heat insulating spacers 50 and 54 are provided between the gas chamber 24 and the upper surface of the processing container 10 and between the upper surface of the gas chamber 24 and the gas introduction chamber 26, respectively. Is provided.

【0021】次に、かかる構成のCVD装置の作用を説
明する。成膜処理時、石英サセプタ14上に載置された
半導体ウエハ12に対して、下方のハロゲンランプ22
より光エネルギによってウエハ12を加熱しながら、上
方のガス室24より混合処理ガス(WF6,N2 ,H2 )
をウエハ12に吹き付ける。成膜のプロセスで発生した
ガスや余った処理ガスは、処理容器10の底面に設けら
れた排気口56よりガス排気管を介して除去装置(図示
せず)へ送られる。望ましくは、排気口56を4箇所以
上設け、処理ガスがウエハ12の円周に均一に排気され
るように構成する。
Next, the operation of the CVD apparatus having such a structure will be described. During the film forming process, the halogen lamp 22 below the semiconductor wafer 12 placed on the quartz susceptor 14 is used.
While heating the wafer 12 with more light energy, the mixed process gas (WF6, N2, H2) is supplied from the upper gas chamber 24.
Is sprayed on the wafer 12. Gas generated in the film forming process and excess processing gas are sent to a removing device (not shown) from an exhaust port 56 provided on the bottom surface of the processing container 10 via a gas exhaust pipe. Desirably, four or more exhaust ports 56 are provided so that the processing gas is uniformly exhausted to the circumference of the wafer 12.

【0022】本CVD装置において、ガス供給管28,
30よりガス導入室26内に導入されたWF6,N2 ガス
およびH2 ガスは、いっしょにガス導入室26よりガス
室24の最上段のガス流制御室44へ導かれ、ここで均
一に混合される。つまり、このガス流制御室44の底に
設けられた第1の仕切り板32は、板厚が大きくて、開
口率が小さいため、コンダクタンスが低く、ガス流制御
室46との間に大きな差圧を生じさせる。これにより、
ガス導入室26から勢いよく入ってきたWF6,N2 ガス
およびH2 ガスはガス流制御室44内でいったん塞き止
められるようにして移動・衝突し、互いによく混じり合
う。このように、最上段のガス流制御室44および第1
の仕切り板32は、処理ガスを均一に混合するためのバ
ッファ機能を奏する。なお、第1の仕切り板32の通気
孔32aは図2に示すように格子状に分布しているの
で、各通気孔32aより単位面積当たりの流量および濃
度が一定な混合処理ガス(WF6,N2 ,H2 )が中段の
ガス流制御室46側へ吐き出される。
In the present CVD apparatus, the gas supply pipe 28,
The WF6, N2 gas and H2 gas introduced into the gas introduction chamber 26 from 30 are introduced together from the gas introduction chamber 26 to the uppermost gas flow control chamber 44 of the gas chamber 24, where they are uniformly mixed. .. That is, since the first partition plate 32 provided at the bottom of the gas flow control chamber 44 has a large plate thickness and a small aperture ratio, it has a low conductance and a large differential pressure with the gas flow control chamber 46. Cause This allows
The WF6, N2 gas, and H2 gas that have entered vigorously from the gas introduction chamber 26 move and collide in the gas flow control chamber 44 so that they are once blocked, and mix well with each other. Thus, the uppermost gas flow control chamber 44 and the first gas flow control chamber 44
The partition plate 32 has a buffer function for uniformly mixing the processing gas. Since the ventilation holes 32a of the first partition plate 32 are distributed in a grid pattern as shown in FIG. 2, the mixed processing gas (WF6, N2) having a constant flow rate and concentration per unit area from each ventilation hole 32a is formed. , H2) is discharged to the gas flow control chamber 46 side in the middle stage.

【0023】中段のガス流制御室46に入った混合処理
ガス(WF6,N2 ,H2 )は、この室46の底の第2の
仕切り板34によって半径方向に均一な濃度および均一
な流れのガス流に整流される。つまり、第2の仕切り板
34の通気孔34aは、図3に示すように軸対象で半径
方向に均一な密度で分布しているので、円筒状のガス室
24における混合処理ガス(WF6,N2 ,H2 )の濃度
および流れが軸対象に半径方向に均一化される。このよ
うに、中段のガス流制御室46および第2の仕切り板3
4は、ガス流整流機能を奏する。なお、第2の仕切り板
34の板厚も比較的大きいので、ガス流制御室46でも
ある程度のバッファ効果があり、ここで混合処理ガス
(WF6,N2 ,H2 )の混合度が一層強められる。
The mixed processing gas (WF6, N2, H2) that has entered the middle gas flow control chamber 46 is a gas of uniform concentration and uniform flow in the radial direction by the second partition plate 34 at the bottom of this chamber 46. It is rectified into the flow. That is, since the ventilation holes 34a of the second partition plate 34 are distributed symmetrically in the radial direction on the axis as shown in FIG. 3, the mixed processing gas (WF6, N2) in the cylindrical gas chamber 24 is formed. , H2) concentration and flow are homogenized radially in axial symmetry. In this way, the middle gas flow control chamber 46 and the second partition plate 3 are
4 has a gas flow rectification function. Since the plate thickness of the second partition plate 34 is also relatively large, there is some buffer effect in the gas flow control chamber 46, and the mixing degree of the mixed process gas (WF6, N2, H2) is further strengthened here.

【0024】中段のガス流制御室46より出た混合処理
ガス(WF6,N2 ,H2 )は、下段のガス流制御室48
を比較的早い流速で通り抜け、第3の仕切り板36の各
通気孔36aより一層均一な流れおよび一層均一な濃度
で吐出され、真下の半導体ウエハ12の全表面にわたっ
て均一に降り注ぐ。第3の仕切り板36は薄板で、かつ
開口率が大きいため、コンダクタンスが大きく、そして
通気孔36aが小孔で密度が大きいので、混合処理ガス
(WF6,N2 ,H2 )のガス流がきめ細かくなる。この
ように、下段のガス流制御室48および第3の仕切り板
36は、ガス流細分化機能を奏する。
The mixed process gas (WF6, N2, H2) discharged from the middle gas flow control chamber 46 is the lower gas flow control chamber 48.
Through the vent holes 36a of the third partition plate 36 with a more uniform flow and a more uniform concentration, and the water is poured evenly over the entire surface of the semiconductor wafer 12 immediately below. Since the third partition plate 36 is a thin plate and has a large aperture ratio, it has a large conductance, and since the ventilation holes 36a are small holes and have a high density, the gas flow of the mixed processing gas (WF6, N2, H2) becomes fine. .. In this way, the lower gas flow control chamber 48 and the third partition plate 36 have a gas flow subdivision function.

【0025】もっとも、第2の仕切り板34の通気孔3
6aの径を小さくし密度を大きくすることで、第3の仕
切り板36および下段のガス流制御室48を省略するこ
とも可能である。また、第1の仕切り板32を多孔質の
セラミック板や金属粒子シート等で構成することも可能
であり、第1の仕切り板32の通気孔パターンを第2の
仕切り板34と同様な軸対象のパターンとすることも可
能である。その他、必要に応じて、各仕切り板の通気孔
パターンとして任意なパターンを選択することが可能で
あり、各仕切り板の板厚および取付間隔についても任意
な厚さ、任意の間隔を選択することができる。また、通
気孔の直径および個数も任意に選択することができる。
また、ガス流制御室には、ビーズ球またはガラスウール
等を充填してもよい。
However, the ventilation holes 3 of the second partition plate 34
It is possible to omit the third partition plate 36 and the lower gas flow control chamber 48 by decreasing the diameter of 6a and increasing the density. Further, the first partition plate 32 can also be configured by a porous ceramic plate, a metal particle sheet, or the like, and the ventilation hole pattern of the first partition plate 32 has the same axis symmetry as the second partition plate 34. It is also possible to use a pattern of. In addition, it is possible to select any pattern as the ventilation hole pattern of each partition plate if necessary, and also select the plate thickness and the mounting interval of each partition plate to any thickness and interval. You can Further, the diameter and the number of ventilation holes can be arbitrarily selected.
The gas flow control chamber may be filled with beads, glass wool, or the like.

【0026】また、上述した実施例では2つの処理ガス
を導入するものであったが、1つの処理ガスを導入する
場合でもよく、またCVD装置に限らず、プラズマエッ
チング装置等の他の表面処理装置にも適用可能である。
Further, although two processing gases are introduced in the above-mentioned embodiment, one processing gas may be introduced, and the present invention is not limited to the CVD apparatus and other surface treatments such as a plasma etching apparatus. It is also applicable to devices.

【0027】[0027]

【発明の効果】以上説明したように、本発明の処理装置
によれば、ガス供給管からの処理ガスを受けるガス室内
に、それぞれ多数の通気孔を設けた複数の仕切り板をガ
ス流方向に所定の間隔をおいて配設することにより、処
理ガスを均一な濃度および均一な流れで被処理体へ吹き
つけることが可能であり、ひいては被処理体上に均一に
成膜することができる。
As described above, according to the processing apparatus of the present invention, a plurality of partition plates each having a large number of ventilation holes are provided in the gas flow direction in the gas chamber for receiving the processing gas from the gas supply pipe. By disposing the treatment gas at a predetermined interval, it is possible to blow the processing gas to the object to be processed with a uniform concentration and a uniform flow, and it is possible to form a uniform film on the object to be processed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による枚葉式CVD装置の構
成を示す縦断面図である。
FIG. 1 is a vertical sectional view showing the structure of a single-wafer CVD apparatus according to an embodiment of the present invention.

【図2】実施例のCVD装置における第1の仕切り板の
通気孔パターンを示す平面図である。
FIG. 2 is a plan view showing a vent hole pattern of a first partition plate in the CVD apparatus of the embodiment.

【図3】実施例のCVD装置における第2の仕切り板の
通気孔パターンを示す平面図である。
FIG. 3 is a plan view showing a vent hole pattern of a second partition plate in the CVD apparatus of the embodiment.

【図4】実施例のCVD装置における第3の仕切り板の
通気孔パターンを示す平面図である。
FIG. 4 is a plan view showing a vent hole pattern of a third partition plate in the CVD apparatus of the embodiment.

【図5】従来の典型的な枚葉式CVD装置の構成を示す
縦断面図である。
FIG. 5 is a vertical cross-sectional view showing the configuration of a conventional typical single-wafer CVD apparatus.

【符号の説明】[Explanation of symbols]

10 処理容器 12 被処理体(半導体ウエハ) 24 ガス室 26 ガス導入室 28 ガス供給管 30 ガス供給管 32 第1の仕切り板 34 第2の仕切り板 36 第3の仕切り板 44 第1のガス流制御室 46 第2のガス流制御室 48 第3のガス流制御室 DESCRIPTION OF SYMBOLS 10 Processing container 12 Object to be processed (semiconductor wafer) 24 Gas chamber 26 Gas introduction chamber 28 Gas supply pipe 30 Gas supply pipe 32 First partition plate 34 Second partition plate 36 Third partition plate 44 First gas flow Control room 46 Second gas flow control room 48 Third gas flow control room

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガス供給管からの処理ガスを処理容器内
で区画されたガス室に導き、前記ガス室の出口から前記
処理ガスを被処理体へ向けて吹きつけるようにした表面
処理装置において、 前記ガス室内に、それぞれ多数の通気孔を設けた複数の
仕切り板をガス流方向に所定の間隔をおいて配設してな
ることを特徴とする表面処理装置。
1. A surface treatment apparatus in which a processing gas from a gas supply pipe is introduced into a gas chamber defined in a processing container, and the processing gas is blown toward an object to be processed from an outlet of the gas chamber. A surface treatment apparatus, characterized in that a plurality of partition plates each having a large number of ventilation holes are arranged in the gas chamber at predetermined intervals in the gas flow direction.
JP33991291A 1991-11-15 1991-11-28 Processing equipment Expired - Lifetime JP3194017B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP33991291A JP3194017B2 (en) 1991-11-28 1991-11-28 Processing equipment
US07/973,915 US5332442A (en) 1991-11-15 1992-11-12 Surface processing apparatus
KR1019920021338A KR100216740B1 (en) 1991-11-15 1992-11-13 Surface processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33991291A JP3194017B2 (en) 1991-11-28 1991-11-28 Processing equipment

Publications (2)

Publication Number Publication Date
JPH05152218A true JPH05152218A (en) 1993-06-18
JP3194017B2 JP3194017B2 (en) 2001-07-30

Family

ID=18331950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33991291A Expired - Lifetime JP3194017B2 (en) 1991-11-15 1991-11-28 Processing equipment

Country Status (1)

Country Link
JP (1) JP3194017B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057126A (en) * 2000-08-10 2002-02-22 Fujitsu Ltd Semiconductor device and method of manufacturing the same
JP2002294453A (en) * 2001-03-29 2002-10-09 Anelva Corp Substrate treatment apparatus
WO2008016023A1 (en) * 2006-08-04 2008-02-07 Tokyo Electron Limited Gas supply device and board treatment apparatus
JP2008208404A (en) * 2007-02-23 2008-09-11 Tohcello Co Ltd Thin film and manufacturing method for the thin film
JP2013518989A (en) * 2010-02-08 2013-05-23 ロート ウント ラウ アーゲー Parallel plate reactor for uniform thin film deposition with reduced footprint
JP2016100396A (en) * 2014-11-19 2016-05-30 東京エレクトロン株式会社 Nozzle and substrate processing device arranged by use thereof
WO2017149739A1 (en) * 2016-03-03 2017-09-08 コアテクノロジー株式会社 Plasma treatment device and structure of reaction vessel for plasma treatment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM537531U (en) * 2016-06-16 2017-03-01 Yuan Hong Bicycle Parts Co Ltd Sound-less hub structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057126A (en) * 2000-08-10 2002-02-22 Fujitsu Ltd Semiconductor device and method of manufacturing the same
JP2002294453A (en) * 2001-03-29 2002-10-09 Anelva Corp Substrate treatment apparatus
WO2008016023A1 (en) * 2006-08-04 2008-02-07 Tokyo Electron Limited Gas supply device and board treatment apparatus
JP2008038200A (en) * 2006-08-04 2008-02-21 Tokyo Electron Ltd Gas feeder and substrate treatment device
TWI392762B (en) * 2006-08-04 2013-04-11 Tokyo Electron Ltd A gas supply device and a substrate processing device
JP2008208404A (en) * 2007-02-23 2008-09-11 Tohcello Co Ltd Thin film and manufacturing method for the thin film
JP2013518989A (en) * 2010-02-08 2013-05-23 ロート ウント ラウ アーゲー Parallel plate reactor for uniform thin film deposition with reduced footprint
JP2016100396A (en) * 2014-11-19 2016-05-30 東京エレクトロン株式会社 Nozzle and substrate processing device arranged by use thereof
WO2017149739A1 (en) * 2016-03-03 2017-09-08 コアテクノロジー株式会社 Plasma treatment device and structure of reaction vessel for plasma treatment
JPWO2017149739A1 (en) * 2016-03-03 2019-01-24 コアテクノロジー株式会社 Structure of plasma processing apparatus and reaction container for plasma processing
US11225718B2 (en) 2016-03-03 2022-01-18 Core Technology, Inc. Plasma treatment device and structure of reaction vessel for plasma treatment

Also Published As

Publication number Publication date
JP3194017B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
TWI437639B (en) Film forming device
JP6695884B2 (en) Atomic layer deposition chamber with thermal lid
JP4998864B2 (en) Plasma processing chamber and baffle plate assembly
KR100216740B1 (en) Surface processing apparatus
US20190194810A1 (en) Showerhead design
TWI262556B (en) Reactor assembly and processing method
US6778762B1 (en) Sloped chamber top for substrate processing
JP2003324072A (en) Semiconductor manufacturing equipment
JPS58170536A (en) Plasma treating method and apparatus therefor
JPH1145861A (en) Vented lower liner for heating exhaust gas in single wafer reactor
JP2000260763A (en) Method and device for treating semiconductor wafer
JPH088239A (en) Wafer treatment device
WO2024078175A1 (en) Gas distributor, gas delivery apparatus, and film processing apparatus thereof
JPH05152218A (en) Surface treatment equipment
TW201303973A (en) Process gas diffuser assembly for vapor deposition system
TW202403859A (en) Uniform in situ cleaning and deposition
JPH0737894A (en) Heat treatment apparatus for substrate
KR101939225B1 (en) A baffle assembly and an apparatus for treating a substrate with the baffle
CN117026209A (en) Gas distribution device and atomic deposition apparatus
JPS6257709B2 (en)
JP2669168B2 (en) Microwave plasma processing equipment
CN110249073A (en) Diffuser design for flowable CVD
JPS6383275A (en) Cvd device
JPH05179426A (en) Annular gas blowing mechanism and gas mixer
JP2019075516A (en) Plasma processing apparatus and member in which gas flow path is formed

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11