WO2008015966A1 - Collision information indicator and its method - Google Patents

Collision information indicator and its method Download PDF

Info

Publication number
WO2008015966A1
WO2008015966A1 PCT/JP2007/064738 JP2007064738W WO2008015966A1 WO 2008015966 A1 WO2008015966 A1 WO 2008015966A1 JP 2007064738 W JP2007064738 W JP 2007064738W WO 2008015966 A1 WO2008015966 A1 WO 2008015966A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
collision
intention
action
intention information
Prior art date
Application number
PCT/JP2007/064738
Other languages
French (fr)
Japanese (ja)
Inventor
Mototaka Yoshioka
Jun Ozawa
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2008015966A1 publication Critical patent/WO2008015966A1/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space

Definitions

  • the present invention relates to a collision information notification device that notifies information related to the risk of collision, and is particularly applicable to a mobile terminal device such as a car navigation system (hereinafter referred to as a car navigation system).
  • a car navigation system hereinafter referred to as a car navigation system
  • a destination is detected based on information such as a current position of a moving body and a blinker by inter-vehicle communication that communicates between vehicles using a communication unit, and a dangerous area is determined based on the detected destination.
  • a dangerous area is determined based on the detected destination.
  • Fig. 1 shows an example of the configuration of the system disclosed in Patent Document 1.
  • an information acquisition unit 11 is a means for acquiring the position of a vehicle and the like.
  • the situation identification unit 12 is a means for identifying a dangerous area surrounded by a predetermined area centered on the position of the vehicle, for example.
  • the danger judging unit 13 is a means for judging the possibility of the intersection of the identified dangerous areas.
  • the vehicle control unit 14 is a means for controlling the vehicle on the assumption that there is a risk of collision when it is determined that the vehicles are mixed.
  • FIG. 2 is a diagram illustrating an example of a dangerous area when a conventional vehicle control device performs a risk determination or the like. For example, in Fig.
  • vehicle 1 is located at the location shown in the figure and is going straight ahead.
  • vehicle 2 is about to turn left from the right side of the intersection.
  • a dangerous area is identified for each vehicle, and the possibility of crossing is determined. If it is determined that they will cross each other, control is performed assuming that the vehicle has a risk of collision.
  • Patent Document 1 JP 2005-56372 A
  • Patent Document 2 JP 2002-260192 A
  • Patent Document 1 is calculated around the position of the vehicle as described above. The possibility of collision is judged based on the specified dangerous area. Further, the invention disclosed in Patent Document 2 calculates dangerous areas in all the routes that the vehicle can take, and determines the possibility of collision based on the dangerous areas.
  • the danger of a collision cannot always be avoided by the crossing of dangerous areas identified above!
  • a scene where a collision occurs there is a force S that occurs when there is a difference between the action that one side intends and the action that the other side recognizes.
  • the scene where a collision occurs due to such a difference is not limited to a predetermined location.
  • a specific example will be described.
  • FIG. 3 is a diagram illustrating an example of a scene that creates a risk of collision.
  • vehicle 1 blinks the left turn blinker and displays the intention to turn left.
  • the danger area is identified in the left turn direction based on the blinker information and the like, and the possibility of crossing is judged.
  • a dangerous area is identified along route A.
  • vehicle 2 is going to turn right on route B. Therefore, in the above prior art, a dangerous area is specified along the route B, and it is determined that the dangerous areas of both vehicles do not cross each other, that is, do not collide.
  • the vehicle 1 does not necessarily turn left on the route A and may turn left on the route B.
  • a collision information notification device includes a current position acquisition unit that acquires a current position on a map of a moving object, and an intention display that indicates a future action of the moving object.
  • Intention information detection means for detecting intention information issued for the purpose, the detected intention information, the current position when the intention information is detected, and the intention information within a predetermined range from the current position
  • the movement history accumulating means for accumulating the movement history of the moving object including the selected action, and the intention information, when the intention information is detected, the same intention information within a predetermined range from the current position at that time
  • Duplicate action determination means for determining whether or not a different action has been selected for the same intention information as the ability to select a different action for the same intention information.
  • the intention determination means If different behavior in response to distribution has been determined to be selected, characterized in that it comprises a collision information notifying means for notifying the information about the risk of collision with a person or other moving object.
  • the present invention can be realized as a method in which the processing means constituting the device can be realized as a step, or can be realized as a program for causing a computer to execute the step, or the program can be recorded. It can be realized as a computer-readable recording medium such as a CD ROM, or as information, data or a signal indicating the program. These programs, information, data and signals may be distributed via a communication network such as the Internet.
  • the collision information notification device can avoid the risk of a collision by notifying information on the risk of a collision.
  • FIG. 1 shows an example of the configuration of a system disclosed in Patent Document 1.
  • FIG. 2 is a diagram showing an example of a danger area when a conventional vehicle control device performs danger judgment or the like.
  • FIG. 3 is a diagram showing an example of a scene in which a risk of collision occurs.
  • FIG. 4 is a block diagram showing a configuration of a collision information notification system of the present embodiment.
  • FIG. 5 is a diagram showing an example of position information detected at a predetermined interval.
  • Fig. 6 shows an example of a road network represented by the map information stored in the map information storage unit.
  • Figure 7 shows an example of map information (road network information) stored in the map information storage unit.
  • Fig. 8 is a diagram showing an example in which position information detected based on map information is converted into a node series.
  • Fig. 9 is a diagram showing an example of a mobile object's intention display and future behavior.
  • FIG. 10 is a diagram showing an example of action rules stored in the action rule storage unit.
  • FIG. 11 is a diagram showing an example of the current position of the user and the user's intention information detected at that position.
  • Fig. 12 is a diagram illustrating an area where there is a risk of collision with a third party for the user's future behavior.
  • FIG. 13 shows an example of a display in a collision information display section which is a display screen for car navigation or the like.
  • FIG. 14 is a flowchart showing an example of operations until the user's future behavior is estimated and the collision information is displayed in the collision information notification system of the present embodiment.
  • FIG. 15 is a flowchart showing an example of a specific operation in estimation of future behavior.
  • Fig. 16 is a diagram showing an example of user's intention information and future actions that can be taken in response to intersections with complex branch paths.
  • FIG. 17 shows an example of future actions that can be taken when vehicle 1 makes a right turn as intention information at the same intersection as FIG.
  • FIG. 18 is a diagram showing an example of point information showing information on a plurality of actions corresponding to intention information for each point.
  • FIG. 19 is a diagram showing an example of a display for notifying the vehicle when there is a risk of collision due to overlapping actions.
  • FIG. 20 is a block diagram showing an example of the configuration of a collision information notification device for notifying only other vehicles of the risk of collision, but not only the own vehicle.
  • FIG. 21 is a block diagram showing an example of a hardware configuration that implements the functional configuration shown in FIG.
  • FIG. 22 is a diagram for explaining an example of the estimated behavior estimated for the intention information at the time of stopping.
  • FIG. 23 is a diagram showing an example of the estimated behavior estimated for the intention information at the time of stopping shown in FIG. 22 by a node and a link.
  • Fig. 24 shows the details of the node information accumulated for the area including the current position of the moving object.
  • FIG. 25 is a diagram for explaining a search for a place where the vehicle can be stopped, as in FIG.
  • FIG. 26 is a diagram showing an example of a route to a stop possible point estimated by the behavior estimation unit as a future behavior.
  • Fig. 27 is a diagram showing an example in which overlapping actions are estimated for the same intention information.
  • FIG. 28 is a diagram showing another example in which overlapping actions are estimated for the same intention information.
  • FIG. 29 is a diagram for explaining calculation of a stop point and a left turn point.
  • FIG. 30 is a diagram showing information relating to bus stops accumulated as one of the points where parking is possible.
  • FIG. 31 is a block diagram showing an example of a system configuration of the present invention in PtoP inter-vehicle communication in which position information and the like are communicated with each other.
  • Fig. 32 is a system configuration diagram in the case where a collision information conversion means is provided in order to make the collision area usable by a third party mobile body.
  • FIG. 33 is a diagram showing collision information obtained by converting a collision area from latitude information into latitude and longitude information that can be commonly recognized by any mobile body.
  • FIG. 34 is a diagram showing another example of an area where there is a risk of collision with a third party for the user's future behavior.
  • FIG. 35A is a diagram showing an example of information when collision information is transmitted to the pedestrian 3.
  • FIG. 35B is a diagram showing an example of information when collision information is transmitted to the pedestrian 4.
  • FIG. 36 is a diagram showing an example of informing the user of the risk of a collision by estimating the action in the own vehicle based on the current position sent from the oncoming vehicle and the intention information of the left turn. It is.
  • FIG. 37 is a diagram for explaining an example of behavior estimation in a parking lot.
  • FIG. 38 is a block diagram showing a configuration of a collision information notification system according to the second embodiment.
  • FIG. 39 is a diagram showing the movement path of the user shown in FIG. 5 by the link and node series shown in FIG.
  • FIG. 40 is a diagram showing the movement history stored in the movement history storage unit, which is represented by an ID sequence of nodes and links.
  • FIG. 41 is a diagram showing a situation in which the user is going straight on Hana 1 Kyoto Street and now has a left turn blinker.
  • FIG. 42A is a diagram showing the current travel, which is the travel route of the user to the present time, as a sequence of link IDs and node IDs.
  • FIG. 42B is a diagram showing an example of extracting from the travel history the history of passing the route consistent with the current travel and turning left at Hanamachi 3 intersection.
  • FIG. 42C is a diagram showing an example of extracting from the travel history the history of passing the route that coincides with the current travel and turning left at the back crossing 1 intersection.
  • Figure 42D shows the calculation of the possibility of each future action when there are multiple actions that can be taken as future actions.
  • FIG. 43 is a diagram showing an example of a display screen that displays a notification of collision information accompanied by the movement probability of an oncoming vehicle.
  • FIG. 44 is a flowchart showing the operation of the collision information notification device in the collision information notification system of the second embodiment.
  • FIG. 45 shows the collision information in the destination prediction process shown in step S310 of FIG. It is a flowchart which shows detailed operation
  • FIG. 46 is a diagram showing an example of the behavior of the moving object when the history is accumulated only when the duplicate action occurs.
  • FIG. 47 is a block diagram showing a configuration example of a collision information notification system that implements a modification of the second embodiment.
  • FIG. 48 is a diagram for explaining an example of estimating future actions from intention information based on the accumulated movement history.
  • FIG. 49A is a diagram showing an example of current traveling.
  • FIG. 49B is a diagram showing intention information generated by the moving object.
  • FIG. 49C is a diagram showing the future behavior estimated by the behavior estimation unit.
  • FIG. 49D is a diagram showing an example of the current running when the behavior estimation unit takes a behavior different from the behavior estimated by the behavior estimation unit.
  • FIG. 49E is a diagram showing an example in which the current travel shown in FIG. 49D is accumulated as a movement history.
  • FIG. 50 is a block diagram showing an example of the configuration of a collision information notification system that predicts the destination of another vehicle and determines the danger.
  • FIG. 51 is a diagram for explaining notification control using the destination of another moving object.
  • FIG. 52 is a block diagram showing an example of the configuration of a server when point information is automatically generated using a movement history and collision is avoided using the automatically generated point information.
  • FIG. 53 is a diagram showing an example of a case where a server installed at a specific point generates point information from intention information and movement history of a moving body moving at the point.
  • FIG. 54 is a diagram showing another example of the case where the server installed at a specific point generates point information from the intention information and the movement history of the moving body moving at the point.
  • FIG. 55 is a view showing the appearance of a car navigation device equipped with the collision information notification device of the present invention.
  • FIG. 4 is a block diagram showing the configuration of the collision information notification system of the present embodiment. Hereinafter, each component will be described first, and then the operation flow of the present invention will be described.
  • the moving body 100 of the present embodiment estimates behavior other than the intention of the own vehicle from the viewpoint of other moving bodies, with respect to the intention information related to the movement of the moving body 100.
  • Mobile device equipped with a collision information notification device for notifying the danger of collision in the event that the position information detection unit 101, node sequence conversion unit 102, map information storage unit 103, intention information detection unit 104, behavior estimation Unit 105, overlapping behavior determination unit 106, collision risk determination unit 107, collision information notification unit 108, and behavior rule accumulation unit 111.
  • the moving body 200 includes a collision information receiving unit 109 and a collision information display unit 110.
  • the intention information indicates an intention of a future action of right turn, left turn, and stop
  • the action rule accumulating unit 111 indicates that the action indicated by the intention information and the action are performed.
  • This is an example of an action rule accumulating means for accumulating action rules indicating the range on the movement route that can be broken
  • the action estimation unit 105 and the duplicate action determination unit 106 refer to the accumulated action rules as follows.
  • This is an example of the “duplicate action determination unit” that determines whether or not a plurality of actions corresponding to the detected intention information can be performed within the range on the movement route.
  • the position information detection unit 101 is an example of “a current position acquisition unit that acquires a current position on the map of the mobile object”
  • the map information storage unit 103 is “map information for storing map information”.
  • the behavior estimation unit 105 and the duplicate behavior determination unit 106 refer to the map information and the behavior rules, and start from the current position acquired when the intention information is detected.
  • the “duplicate action determination unit” that determines whether or not a plurality of actions indicated by the action rule can be performed within the range indicated by the action rule.
  • the behavior estimation unit 105 and the duplicate behavior determination unit 106 indicate that "the intention information has been detected. There are multiple right turn points, left turn points, and stop points indicated by the intention information within the range on the movement route indicated in the action rule, starting from the current position acquired from time to time.
  • the overlapping action that determines whether the moving body can take a plurality of actions with respect to the intention information when there are a plurality of any of the points in the range on the movement route. It is an example of “determination means”.
  • the map information storage unit 103 stores "map information and point information indicating a moving route that can be selected as an action corresponding to the intention information for each point on the map.
  • the position information detection unit 101 is an example of “current position acquisition unit for acquiring the current position on the map of the moving object”, and includes an action estimation unit 105 and an overlapping action determination unit 106. Refers to the point information accumulated for the point immediately in front of the current position acquired when the intention information is detected, and there are a plurality of movement routes that can be selected for the detected intention information.
  • the collision information notification unit 108 is an example of the “duplicate action determination means for determining whether or not there is”, and the collision information notification unit 108 determines that “when the duplicate action determination unit determines that there are a plurality of movement paths, Information about the risk of collision It is an example of the said collision information notification means to notify.
  • the position information detection unit 101 in the moving body 100 is a means for detecting the current position of the moving body 100.
  • a GPS for detecting the current position of the user is provided, and latitude and longitude information is detected at a predetermined interval such as an interval of about 1 second.
  • the position information detection unit 101 is configured by GPS or the like, and detects latitude and longitude information as position information along with the movement of the user at a predetermined interval.
  • FIG. 5 is a diagram showing an example of position information detected at a predetermined interval. In Figure 5, the user turns right at Hanamachi 1 intersection and goes straight on Hana 1 Kyoto Street. White circles indicate the detected position information, and are detected at predetermined intervals as the user moves.
  • the map information storage unit 103 is means for storing map information.
  • the map information stored in car navigation systems has road network information that includes, for example, intersections and facilities as one node, and links are structured between the nodes. It is common.
  • FIG. 6 is a diagram illustrating an example of a road network that is map information stored in the map information storage unit 103. Figure 6 shows the first intersection of Hanamachi The corresponding “N (node) 100” and “N101” which is the second intersection of Hanamachi are shown.
  • FIG. 7 is a diagram showing an example of road network information stored in the map information storage unit 103.
  • a map is generally divided into predetermined areas and stores information about the nodes that exist in each area, such as facilities and intersections, and the links that connect them.
  • the area ID “E01” is the area shown in FIG.
  • N100 is the location “Statistics 135 degrees 34 minutes, North latitude 34 degrees 33 minutes", the name “Hanamachi 1 intersection", and the links to connect, such as "L201", “L201” length 300 meters, etc. Is attached.
  • the node series conversion unit 102 is a means for converting latitude and longitude, which is position information detected as a user moves based on map information, into a node or link ID series.
  • map matching is performed on the route based on the latitude and longitude detected by GPS, that is, to the nodes and links indicated by the road network described above. This is because the detected latitude and longitude are matched to the road network, and route search and guidance are performed using this road network.
  • the node series conversion unit 102 in the present embodiment converts the detected position information into an ID series such as a node based on the map information.
  • FIG. 8 is a diagram illustrating an example in which position information detected based on map information is converted into a node series.
  • the user turns right at Hanamachi 1 intersection and goes straight on Hana 1 Kyoto Street. Along with this movement, latitude and longitude indicated by white circles are detected as position information.
  • the node series conversion unit 102 converts the latitude / longitude series into an ID series such as a node with reference to the map information. For example, in the case of FIG. 8, the “L203 ⁇ N100 ⁇ L204” force S movement sequence is obtained.
  • the user's moving direction is automatically calculated by the conversion to the ID series.
  • L204 is traveling in the N100 direction force, the next N101 direction, that is, from left to right (eastward), and the moving direction can be known from the ID series of nodes and links in this way.
  • the moving direction may be calculated from the detected latitude and longitude instead of necessarily calculated from these ID sequences, or may be calculated using a gyro.
  • the method of converting latitude and longitude into a road network is known in conventional map matching techniques such as vertical projection, and is not a problem here.
  • the intention information detection unit 104 is means for detecting intention information indicating a user's intention to act against others.
  • winker information corresponds to intention information.
  • a right turn signal means a right turn
  • a left turn signal means a left turn or a stop on the shoulder.
  • not giving a winker at the intersection also means a straight forward intention display.
  • it may be used to flash the headlamps and give way, or to turn on the hazard lamps and call attention to the stop or the rear vehicle.
  • intention indications that exist as road rules but also intention information that is generally well known to the driver.
  • the behavior estimation unit 105 detects the location information detected by the location information detection unit 101, that is, the current travel route of the user converted by the node sequence conversion unit 102 and the intention information detection unit 104 in this embodiment. It is a means to estimate future behavior based on the information about the user's intention and the map information stored in the map information storage means.
  • the location information detection unit 101 that is, the current travel route of the user converted by the node sequence conversion unit 102 and the intention information detection unit 104 in this embodiment. It is a means to estimate future behavior based on the information about the user's intention and the map information stored in the map information storage means.
  • FIG. 9 is a diagram showing an example of intention display and future behavior of a mobile object.
  • the user goes straight on Hana 1 Kyoto Street (L205) toward the back Hana 1 intersection. And later, let's assume that the left wing force is one.
  • the intention information detection unit 104 detects the blinker information and detects the intention to turn left.
  • the behavior estimation unit 105 estimates the future behavior from the map information where the left is going to turn. In the case of this example, it is thought that there is an Urahana 1 intersection (N102) 10 meters ahead, and turn left to Urahua Street (L210).
  • the behavior estimation unit 105 estimates such a plurality of future behaviors based on the map information from the user's travel! / Route and intention information.
  • the behavior is estimated with reference to the behavior rules accumulated in the behavior rule accumulation unit 111.
  • FIG. 10 shows an example of behavior rules stored in the behavior rule storage unit 111.
  • the action rules it is assumed that rules regarding intention information, actions to be performed in response to the intention information, and the scope of the actions to be performed are accumulated.
  • the action rule “001” stores the intention information “left winker”, the action “left turn”, and the range “within 50 m (metre) in the moving direction”. This means that if you take the left turn signal, you will make a left turn at a point within 50 meters in the direction of movement.
  • setting 50 meters instead of 30 meters may be given in advance depending on the user, and the allowable range is taken into consideration in order to ensure higher safety from the viewpoint of fail-safety.
  • the behavior estimation unit 105 refers to a behavior rule based on the current position detected by the location information detection unit 101 and the intention information detected by the intention information detection unit 104, and responds to the intention. Search for points where action is possible.
  • FIG. 11 is a diagram showing an example of the current position of the user and the intention information of the user detected at that position. In FIG. 11, it is detected that the user has issued a left blinker, which is intention information, at a point of “136 degrees 0 1 minute east longitude, 34 degrees 55 minutes north latitude”. It should be noted that the user's direction and direction of movement are calculated from the node ID system ⁇ IJ, gyroscope and position information differences, etc.
  • the left turn signal is marked as “turn left” within the range “50 meters in the direction of movement”. So within 50 meters from Hana 1kyo Street, turn left Search for possible locations. As shown in Fig. 7, latitude and longitude information of each node such as an intersection is accumulated in the map information. Based on this latitude and longitude information, a search is made for a point where a left turn is possible within 50 meters of the moving direction. Become.
  • Hana 1 Kyoto Street (L205) is located on the east from the Urahana 1 intersection (N102), and further to the east, the Hanamachi 3 intersection (N103). If you refer, the location of Urahana 1 intersection (N102) is “136 degrees 02 minutes east longitude, 34 degrees 55 minutes north latitude”, and the location of Hanamachi 3 intersection (N103) is “136 degrees 04 minutes east longitude 34 degrees 55 minutes north latitude”. It has become.
  • the difference in distance between the current position of 136 degrees 01 minutes east longitude 34 degrees 55 minutes north latitude and the intersection of Urahana 1 intersection 136 degrees 02 minutes east longitude 34 degrees 55 minutes north latitude is 10 meters and The difference in distance to “East 136 degrees 04 minutes, North latitude 34 degrees 55 minutes” is 30 meters, and therefore, they are included in the range of action rules, “within 50 meters in the direction of movement”, so these can act. It is searched as a special point. Furthermore, the left turn for the eastward movement of Hua 1 Kyo Street (L205), which the user is currently traveling, means Ura Hua Street (L210) and Hua 3 Intersection (N103 ) Is Dahua Street (L209), and these are calculated as future actions.
  • the action estimation unit turns the left side of Urahana 1 intersection into the future action “001” and proceeds along Urahana Street, that is, “N102 ⁇ (from) L210”, and the future action “002”, the Hana 3 intersection. Turn left on the road and proceed through Dahua Street, that is, “N102 ⁇ L206 ⁇ N103 ⁇ L209” is estimated as the future action.
  • the duplicate action determination unit 106 is a means for determining whether or not future actions estimated by the action estimation unit 105 are duplicated! /.
  • Duplicate behavior refers to multiple actions that can be performed on the same intention information indicated by the user. In other words, when there is only one action estimated from the intention information indicated by the user, the third party is able to take an avoidance action against that action S. As described above, a collision accident is generally indicated by the intention information indicated by the user. This often occurs when there are multiple actions estimated from the above. Therefore, in order to prevent such a collision, the duplicate action determination unit 106 determines whether or not future actions estimated by the action estimation unit 105 are duplicated! /. For example, when a plurality of actions are estimated by the action estimating unit 105, it is determined that the actions overlap.
  • the collision risk determination unit 107 determines that there is an overlapping action in the overlapping action determination unit 106. In this case, it is a means for determining the risk of collision with a third party. For example, it is assumed here that an area where there is a risk of collision is determined. This will be described below with reference to the drawings.
  • FIG. 12 is a diagram for explaining an area where there is a risk of collision with a third party with respect to the future behavior of the user.
  • the user in this case, vehicle 1 shows his intention to turn left.
  • vehicle 1 is estimated to have two actions: a left turn at the back 1 intersection and a left turn at the Hua 3 intersection!
  • the user of oncoming vehicle 2 thinks that vehicle 1 turns left at Urahana 1 intersection, and he may turn right at Hanamachi 3 intersection and proceed to Dahua Street.
  • the vehicle 1 On the other hand, if the vehicle 1 actually turns left at the Hana 3 intersection instead of the Hana 1 intersection, the two may collide at the Hanamachi 3 intersection (N103).
  • vehicle 1 assumes that it will turn left at the back 1 intersection, so it will be delayed to notice and the risk of a collision may be further increased.
  • the danger of collision is not limited to oncoming vehicles. For example, in the case of pedestrian 4 as well, assuming that vehicle 1 turns left at Urahana 1 intersection, for example, if you try to cross Hana 1 Kyoto Street, it is actually behind car 1 that went straight to turn left at Hanamachi 3 intersection. There may be a collision at L206 between 1 intersection and Hanamachi 3 intersection.
  • the collision risk judgment unit 107 causes duplicate actions. If this is the case, determine the area at risk of collision. For example, when there is an overlap in behavior, a point where both behaviors are different is determined as an area where danger occurs. For example, in the case of Fig. 12, two actions are estimated as future actions. Specifically, “N102 ⁇ L210” is assumed as the future action “001”, and “N102 ⁇ L206 ⁇ N103 ⁇ L209” is assumed as the four derived fi movement “002”.
  • the different areas of the two actions are “L2 10” when turning left at Urahana 1 intersection and “L206 ⁇ N103 ⁇ L209” when going straight ahead and turning left at Hanamachi 3 intersection. Therefore, these are determined as collision areas where there is a possibility of collision.
  • the collision information notification unit 108 is means for notifying information on the risk of collision determined by the collision risk determination unit 107.
  • a technique related to so-called inter-vehicle communication has been disclosed in which communication between vehicles using millimeter waves or microwaves is performed to support safe driving.
  • the vehicle ID, current position, speed, etc. are generally transmitted, and used to prevent encounter collisions at intersections, for example.
  • the communication method is a broadcast type in which the vehicle transmits the ID, position, and speed of the vehicle to an unspecified number of people around the vehicle (for example, several tens of meters). Display or warn accordingly.
  • the collision information notification unit 108 of the moving body 100 notifies information related to the risk of collision within a predetermined range (for example, within several tens of meters).
  • a predetermined range for example, within several tens of meters.
  • the collision information notification unit in this embodiment determines the collision risk.
  • the collision area determined by the unit 107 is notified.
  • the moving body 200 is a receiving-side moving body, which is received by the collision information receiving unit 109 and displays information on the danger of collision by the collision information display unit 110. Specific examples will be described below with reference to the drawings.
  • FIG. 13 shows an example of display on the collision information display unit 110 which is a display screen of, for example, car navigation (car navigation). The situation is similar to that shown in Figure 12.
  • the vehicle 1 is currently traveling straight on Kyoto 1 on Hana 1 Kyoto Street, and further, the vehicle 1 has a left turn intention. Based on this intention, the collision area is determined in the vehicle 1, The notified information is received by the vehicle 2 that is the oncoming vehicle, and the car navigation screen of the vehicle 2 is shown.
  • Vehicle 1 is going straight on Hana 1 Kyoto Street. Note that this is the vehicle ID, position and speed. This is possible with conventional inter-vehicle communication technology that provides notification.
  • the force that vehicle 1 shows the intention to turn left Based on this intention, the collision area is determined in vehicle 1, and the area is indicated by, for example, an arrow based on the notified information. Please indicate ", there is a possibility of a collision. From vehicle 2, which is an oncoming vehicle, it is assumed that a left turn of vehicle 1 alone would make a left turn to Urahana 1 intersection, and if it was going to turn right at Hanamachi 3, there was a risk of collision. As shown in Fig. 5, it is possible to drive safely by displaying the collision area determined from the overlapping behaviors.
  • FIG. 14 is a flowchart showing an example of an operation until the user's future action is estimated and the collision information is displayed in the collision information notification system of the present embodiment.
  • FIG. 15 is a flowchart showing an example of a specific operation in estimating future actions. The operation of the present invention will be described below with reference to the flowcharts of FIGS.
  • the position information detecting unit 101 detects position information (step S 101). Then, the map information stored in the map information storage unit 103 is referred to (step S102), and for example, position information detected in the latitude / longitude information is converted into a node series (step S103). Meanwhile, the intention information is detected by the intention information detection unit 104. For example, it is detected whether or not intention information such as a right / left turn blinker is detected (step S 105) . If it is detected, the process proceeds to step S 105, and if not detected, the process returns to step S 101, and the loop of this operation is performed. repeat. Position information and intention information are detected as the user travels.
  • step S105 When intention information is detected in step S105 (Yes in step S105), the behavior rule stored in the behavior rule accumulation unit 111 is referred to (step S106). Then, the map information stored in the map information storage unit 103 is referred to (step S107), and the behavior estimation unit 105 estimates the future behavior (step S108).
  • FIG. 15 shows an operation flow for estimating future actions.
  • the behavior corresponding to the detected intention information is referred to in the action rule (step S201), and the range of the behavior is referred to (step S202).
  • action rules are accumulated. For example, when a left winker is detected, a left turn action is taken within 50 meters.
  • the current position of the user detected by the position information detection unit 101 is referred to (step S203), and the map information stored in the map information storage unit 103 is referred to (step S203).
  • S204 calculates the point where the action is possible (step S205). Then, it is determined whether or not the corresponding point exists (step S206).
  • step S206 If there is a possible point (Yes in step S206), the process proceeds to step S207. If not (No in step S206), the estimation of the future action is terminated. For example, in the case of Fig. 9, it is estimated that two points, the Urahana intersection (N102) and the Hanamachi 3 intersection (N103), can be turned left.
  • step S207 a flag is set at one point (step S207), and the behavior of the point shift is estimated (step S208). For example, in the case of Fig. 9, the left turn at the Urahana intersection (N102) is first made, and the route forwarded to Urahua Street (L210) is estimated as the future action. Next, in order to estimate the behavior at the remaining points, it is determined whether or not there is a point where the flag is not set (step S209). If there is a point, the process returns to step S207 and the above operation is repeated. In the case of Fig. 9, the route to the other Hanamachi 3 intersection (N103) and the left turn to Dahua Street (L209) are estimated as future actions. When future behavior is estimated for all points (No in step S209), the estimation of future behavior is terminated.
  • Step S 109 it is determined whether or not there are a plurality of future actions in the overlapping action determination unit 106 (step S 109). If there are a plurality (Yes in Step S109), the process proceeds to Step S210. If there is not a plurality (No in Step S109), the process returns to Step S101.
  • the collision risk determination unit 107 determines the risk of collision. For example, an area where there is a risk of collision is determined (step S110). For example, a different point in the estimated future behavior is set as the region. For example, since L206 N103 L210 L209, which is a different area as shown in FIG. 12, may collide with a third party, it is possible to avoid danger by using these areas as collision areas.
  • the collision information notification unit 108 is notified of the collision information (step S 111).
  • the collision information receiving unit 109 receives the collision information (step S112), and the collision information display unit 110 displays the collision information (step S113).
  • Figure 13 shows an example of the collision information display. Since it can be estimated that the oncoming vehicle trying to make a left turn may take multiple actions as indicated by the arrows, the driver should be alerted. Yes. this Thus, it is possible to avoid the risk of collision and to travel more safely.
  • the future behavior estimated based on the intention information is estimated based on the behavior rule stored in the behavior rule storage unit 111. Specifically, as shown in Fig. 10, when a left winker is issued, based on the behavior rule of turning left within a range of 50 meters, the map information ability is calculated by calculating multiple points where left turn is possible and estimating the behavior. I was doing. However, the estimation of future behavior is not limited to this. Hereinafter, explanation will be given using a specific example.
  • FIG. 16 is a diagram showing an example of user intention information at an intersection having a complicated branch route and future actions that can be taken in response thereto.
  • Hanshin 1 Street, Kyoto 2 Street, Nara 3 Street, Urayama 5 Street are five-way intersections that cross at Raku 4 intersection.
  • the route is not necessarily a four-way intersection where the streets intersect at right angles, but there are various road shapes depending on the location.
  • the more complicated the route the more likely the user's intended behavior and the third party's recognition will be, and the more they will collide.
  • vehicle 2 is traveling straight on Hanshin 1 street in the direction of Raku 4 intersection.
  • FIG. 17 is the same route as FIG. 16, and is an example that may occur when the vehicle 1 makes a right turn display.
  • the right turn means a route that goes from the Raku 4 intersection to Kyoto 2 streets.
  • the right turn may be assumed to be a route to Raku 4 intersection to Hanshin 1st Street (L213) and cross 2 Kyoto streets. In such a case, there is a possibility that both will collide. In this way, collisions often occur when there is a difference between the intention information of one side and the actual behavior of the other side and the behavior that the other side thinks. Overlapping behavior also has various patterns. Therefore, not only the action rules shown in Fig.
  • Point information Information on multiple actions that can be taken in response to information (hereinafter referred to as point information) is accumulated, and point information is referenced according to detected intention information and position, and future actions are estimated. Also good.
  • the point information can be accumulated as, for example, a road network that is one of the map information accumulated in the map information accumulation unit 103.
  • FIG. 18 is a diagram showing an example of point information indicating information regarding a plurality of actions corresponding to intention information for each point.
  • the location information corresponds to the “location” information of the user, the “intention information” issued at that location, and the “estimated behavior” information indicating the behavior estimated for the intention information issued at that location. It has been accumulated.
  • the spot information “001” is information relating to the spot shown in FIG.
  • the point information “001” is information when the user is “L216” as the current location and “N106 ⁇ (from) N105” as the direction, that is, when Nara 3 streets in FIG. .
  • a vehicle 1 traveling straight on Nara 3 streets and taking a left turn winker refers to the location information stored in the map information storage unit 103 and the like as “N105 ⁇ L212 ⁇ N104 ⁇ L215 ”and“ N10 5 ⁇ L212 ⁇ N104 ⁇ L211 ”can be estimated.
  • the point information “002” is also the information when the position “L216, direction N106 ⁇ (from) N105”, that is, the direction of Nara 3 street in FIG.
  • N105 the position of Nara 3 street in FIG.
  • two presumed actions “N105 ⁇ L213” and “N 105 ⁇ L214” are described as presumed actions. Therefore, for example, vehicle 1 traveling straight on Nara 3 streets and taking a right turn winker in FIG. 17 estimates “N105 ⁇ L214” and “N105 ⁇ L213” as future actions by referring to this point information. It becomes possible. Based on the estimated future behavior, it is possible to avoid a collision with a third party by determining the dangerous area as shown in this method and notifying the collision information.
  • the estimated future behavior is recorded in the point information, for example, as the point information "003" even in a state where the winker is not taken out as intention information.
  • the point information for example, as the point information "003" even in a state where the winker is not taken out as intention information.
  • two presumed actions “N105 ⁇ L214” and “N105 ⁇ L212 ⁇ N104 ⁇ L215” are described as presumed actions.
  • the intention information indicated by the user and the action actually taken by the user are not necessarily one, and there may be a plurality of actions, and the action varies greatly depending on the shape of the point or the route. And even if you are unfamiliar with or familiar with the point, you may assume that the other person takes a certain action, resulting in a collision. Therefore, as shown in this example, for example, intention information for each point and point information estimated as a user's action in the case of the intention information are accumulated, and by referring to this point information, the future can be appropriately It is also possible to estimate actions and prevent collisions.
  • the collision information in the collision information notification unit 108 is a force that was for a third party. This is not limited to this, and can be displayed by a similar method. is there. Furthermore, notifications may be given not only to third parties but also to the vehicle.
  • FIG. 13 shows collision information of vehicle 1 against vehicle 2 that is an oncoming vehicle. Specifically, vehicle 1 shows the intention to turn left. Ura Hana 1 Indicates that it is possible to turn left at the 1st intersection, and vice versa. It was a warning about the danger of oncoming vehicles. However, such collision information may be for not only the oncoming vehicle but also the own vehicle.
  • FIG. 19 is a diagram showing an example of a display for notifying the own vehicle when there is a risk of collision due to overlapping actions.
  • a user of vehicle 1 is now going straight on Hana 1 Kyoto Street, turning left turn signal and turning left on Dahua Street.
  • a left turn blinker is issued at the current position, as described above, the behavior of turning left at Urahana 1 intersection and the two overlapping actions of turning left at Hanamachi 3 intersection are calculated, resulting in a collision with a third party.
  • the area that causes the risk is calculated.
  • the area causing the risk of collision with a third party is displayed on the display screen of the vehicle to call attention.
  • a collision information display unit or the like may be further provided in the moving body 100, and the information notified by the collision information notification unit 108 may be alerted to the own vehicle! /. Therefore, the moving body 200 is not necessarily an essential component in the present invention! / ⁇ . Further, the notification in the collision information notification unit 108 can be notified by a voice or a warning lamp that is not necessarily limited to the screen display.
  • FIG. 20 is a block diagram showing an example of the configuration of the collision information notification device when notifying other vehicles only of the risk of collision, but notifying only the own vehicle.
  • the minimum configuration for carrying out the present invention includes a position information detection unit 101 that detects current position information of a moving object, and an intention information detection unit 104 that detects action intention information related to the future action intention of the moving object.
  • a map information storage unit 103 that stores map information related to the positional relationship of points, and an action estimation unit that estimates future actions related to a future turn or stop from the position information, the action intention information, and the map information.
  • a duplicate action determination unit 106 for determining whether or not the future action estimated by the action estimation unit 105 is duplicated, and a future action for which the duplicate is calculated calculated by the duplicate action determination unit 106.
  • a collision risk determination unit 107 that determines the risk of a collision with another moving body, and a collision information notification unit 108 that notifies information on the collision risk determined by the collision risk determination unit 107. Constitution Is done.
  • FIG. 21 is a block diagram showing an example of a hardware configuration that implements the functional configuration of the collision information notification device shown in FIG.
  • the mobile unit 100 is a car navigation device, and includes a position information detection unit 101, a CPU 131 that performs calculation processing, a primary memory 132 that stores the calculated information, and a collision information notification unit 108. , An in-vehicle information detection unit 133, an external memory 134, and a program storage unit 135.
  • the in-vehicle information detection unit 133 corresponds to the intention information detection unit 104 in the present invention, and is means for detecting in-vehicle information such as a blinker as intention information.
  • the external memory 134 is realized by a hard disk etc.
  • the map information storage unit 103 is a means for storing map information.
  • the CPU 131 is a means for processing the detected information and the accumulated information through the primary memory 132.
  • the CPU 131 By executing the program stored in the program storage unit 135, the CPU 131 in the present invention.
  • This is means for performing calculations performed by the behavior estimation unit 105, the duplicate behavior determination unit 106, and the collision risk determination unit 107.
  • the program stored in the program storage unit 135 and the data stored in the node disk can be changed, and FIGS. 4, 17, 28, 29, 35, 44, 47 and 49 It is possible to realize a configuration represented by all functional block diagrams.
  • FIG. 22 is a diagram for explaining an example of estimated behavior estimated for intention information at the time of stopping.
  • truck 1 is traveling on Hanshin 7 street.
  • the stop intention information of truck 1 is detected.
  • the intention information detection unit 104 in this example detects the hazard lamp as an intention to stop in this way.
  • a conventional inter-vehicle communication technology not only right / left turn information but also a signal for stopping is prepared in advance, and there is a technology for communicating with each other, and this signal for stopping may be detected.
  • the estimated future behavior is not necessarily one, and there may be a plurality of future actions, and if there is an error in recognition between the vehicle and the third party, I will end up. Therefore, as shown in this embodiment, it is possible to avoid collisions by using this method that estimates future behavior and provides information on the danger of collision when duplicate behavior is determined. Become. The following describes the operation when the vehicle is stopped.
  • FIG. 23 is a diagram showing an example of an estimated action estimated for the intention information at the time of stopping shown in FIG. 22 by a node and a link.
  • FIG. 23 shows the same situation as FIG. 22 and shows an example of a road network stored in the map information storage unit 103.
  • nodes are generally assigned not only to intersections but also to branch points of routes and landmarks such as facilities.
  • a network is constructed by links connecting nodes.
  • the seven Hanne-Sen are represented by “: L221”, “N121”, “: L222”, “N122”, “L223”.
  • Figure 24 shows the details of the node information accumulated for the area including the current location of the mobile object.
  • the area shown in FIG. 23 has area ID “E11”.
  • “N121”, “N122”, “N123”, “N124” and the like are shown as the nodes existing in the area ID “E11”. Further, detailed information of each node is accumulated.
  • N123 is a node assigned to the parking lot of store A, where the location is “136 degrees 04 minutes east longitude, 34 degrees 52 minutes north latitude”, the name “store A parking lot”, the surrounding link “L224 (30 m)”, The node type “parking lot” and the stop information “possible”, which is information indicating whether or not the location can be stopped, are stored.
  • N124 is a node assigned to the parking lot of store B, where the location is “136 degrees 02 minutes east longitude, 34 degrees 57 minutes north latitude”, the name “A store parking lot”, the surrounding link “L225 (20m)”, The node type “parking lot” and stop information “possible” are stored.
  • the behavior estimation unit 105 is based on the current position detected by the location information detection unit 101 and the intention information detected by the intention information detection unit 104.
  • the point where the action corresponding to the intention is possible is searched with reference to the action rule.
  • FIG. 25 shows the same situation as FIG. 23 and the like, and is a diagram for explaining a search for a place where the vehicle can be stopped. In Figure 25 Assume that a hazard, which is intention information for stopping, is detected at a point “136 degrees 01 minutes east longitude, 34 degrees 55 minutes north latitude”.
  • the moving direction of the user is calculated from, for example, the node ID series and the like, and for example, it is assumed that Hanshin 7 Street is heading east.
  • the action rule “010” shown in FIG. 10 in the case of a hazard, it is stated that the vehicle “stops” within “100 meters in the moving direction and 30 meters around”. Therefore, a point within the area where the stop intention information is detected is searched for in the region.
  • the map information stores the latitude and longitude information of the parking lot expressed as a node as shown in FIG. 24. Based on this latitude and longitude information, the map information is searched for points where parking is possible. It will be. In the case of this example, the store A parking lot (N123) and the store B parking lot (N124) are within the calculated areas and are searched for points that can be stopped.
  • FIG. 26 is a diagram illustrating an example of a route to a stop possible point that the behavior estimation unit 105 estimates as a future behavior.
  • the behavior estimation unit 105 searches for a route to a point where the vehicle can be stopped, and estimates it as a future behavior.
  • the route “N121 ⁇ L225 ⁇ N124” from Hanshin 7 Street (L221), which is the current location, to the B store parking lot (N124) as the future action “001”,
  • the route “N121 ⁇ L225 ⁇ N121 ⁇ L222 ⁇ N122 ⁇ L22 4 ⁇ N123” is estimated as a future action.
  • the present invention can be applied not only to stopping and turning left and right, but also to cases where both of these actions can be considered. This will be described below with reference to FIG.
  • FIG. 27 is a diagram showing an example of a case where overlapping actions are estimated for the same intention information.
  • bus 1 takes out the left winker and the intention information detection unit 104 detects this left winker.
  • the rear vehicle 2 thinks that the bus 1 is about to stop at the bus stop, and tries to overtake it, or the oncoming vehicle 3 tries to turn right.
  • the driver of bus 1 leaves the winker to the left for a left turn at an intersection that does not stop at the bus stop, they will collide.
  • FIG. 28 is a diagram showing another example in a case where overlapping actions are estimated for the same intention information.
  • buses as shown in Fig. 28, for example, if an oncoming vehicle is making a right / left turn blinker at an intersection, etc. In many cases, it is likely to collide if you do. In this way, the winker is generally used not only for indicating intention of turning right and left but also for indicating intention to stop in that direction. Thus, it is possible to avoid a collision by estimating a plurality of actions from the intention information shown in the present invention. The following is an explanation using the bus example shown in Fig. 27.
  • the behavior estimation unit 105 calculates a left-turnable point and a stopable point from the map information, and estimates future behavior.
  • FIG. 29 shows the same situation as FIG. 27, and illustrates the calculation of the stop point and the left turn point.
  • the bus currently leaves the left winker at the point of 136 degrees 40 minutes east longitude, 35 degrees 50 minutes north latitude, indicated by a white circle.
  • the left turn signal is "turn left in the direction of travel (50 meters)" (action rule "001”) and "stop” in the direction of travel 100 meters and the left side 30 meters ( It is accumulated as action rule “011”). Therefore, referring to the map information, search for a stopable point and a left-turnable point, and estimate future behavior.
  • the Naramachi intersection (N132) is located at 136 degrees 43 minutes east longitude, 34 degrees 51 minutes north latitude, and this Naramachi intersection is located within 50 meters of travel direction. It is searched as a possible point.
  • a bus stop at the position of 136 degrees 41 minutes east longitude 34 degrees 52 minutes north latitude “Heianji-mae” Is done.
  • Node ID “131” location “Eastern longitude 136.41 north latitude 34.52”, name “Heianji”, node type “bus stop”, information that can be stopped, etc. are stored as map information.
  • the future behavior is estimated using these left turnable points and stopable points.
  • future action “001” it is estimated that “N131 ⁇ L235 ⁇ N131” and the stop to the bus stop.
  • the risk of collision is determined from a plurality of calculated future actions, and notification is made. Collisions can be avoided by estimating multiple actions, such as turning left or stopping.
  • vehicle-to-vehicle communication between mobile unit 100 and mobile unit 200 has been described as a so-called broadcast type, but is not limited to this.
  • the PtoP method may be used in which predetermined vehicles communicate with each other information such as their own vehicle positions to collaborate and urge attention to prevent collisions! /.
  • FIG. 31 is a block diagram showing an example of a collision information notification system configuration of the present invention in PtoP inter-vehicle communication in which position information and the like are communicated with each other.
  • the moving body 100 in FIG. 31 is newly provided with a position information transmission / reception unit 113 and a notification partner identification unit 112.
  • the mobile object 200 is newly provided with a second position information transmitting / receiving unit 114 and a second position information detecting unit 115.
  • the position information transmitting / receiving unit 113 is an example of “position information receiving means for receiving the current position of the moving body from another moving body”
  • the collision risk determining section 107 is the “duplicate action determining means”.
  • a collision risk determination unit that determines an area where there is a risk of collision with another mobile object when it is determined that a plurality of actions can be taken.
  • the collision information notifying unit 108 indicates that, based on the current position received from another moving body, the other moving body may exist in an area where there is a risk of collision in the future.
  • the “collision information notification means” for notifying a mobile object of information on the danger of collision.
  • the position information transmission / reception unit 113 transmits the position information detected by the position information detection unit 101 in the moving body 100.
  • the second position information transmitting / receiving unit 114 in the moving body 200 is a means for receiving position information of other vehicles.
  • the second position information detection unit 115 is configured by, for example, a GPS or the like that detects the position of the moving body in the same manner as the position information detection unit 101, and the second position information transmission / reception unit 114 transmits it to another vehicle.
  • the force S which shows only the moving body 100 and the moving body 200, and other plural moving bodies transmit / receive position information and the like, and predetermined moving bodies construct an ad hoc network. This is a so-called PtoP inter-vehicle communication system.
  • the system element of the present invention shown in FIG. 4 and the like is added to the moving body 100, and the present invention is realized.
  • the notification partner specifying unit 112 is a means for specifying a partner to notify the collision information based on the position information of the other mobile body received by the position information transmitting / receiving unit 113.
  • vehicle 1 is making a intention to turn left, and multiple actions are estimated when turning left at Urahana 1 intersection or turning left at Hanamachi 3 intersection. Dangerous areas have been identified. For example, if you are going to turn left at the Hanamachi 3 intersection, you may collide with an oncoming vehicle 2 or a pedestrian 4 that you are thinking of. Therefore, among the third parties received by the location information transmission / reception unit 113, a user who is located in an area where there is a possibility of a collision or a user who will be located in the future is specified as a notification partner and notified. May be. In vehicle-to-vehicle communication, many mobiles communicate with each other, and it is necessary to use limited communication capacity appropriately, especially at intersections. Therefore, by specifying the notification partner in this way, it is possible to use the minimum communication capacity and appropriately promote safe driving.
  • the information notified in collision information notifying section 108 is described by taking an example of an area with a possibility of collision determined by collision risk determining section 107!
  • I have Specifically, in Fig. 12, of the future actions of vehicle 1, the different actions are ⁇ L210 '' when turning left at Urahana 1 intersection and ⁇ L206 ⁇ N103 ⁇ L209 '' when turning left at Hanamachi 3 intersection. These are determined as collision areas and notified as collision information.
  • the third party who receives the notification knows the other behavior different from the behavior that he / she was aware of. It is possible to avoid collisions.
  • map information is generated independently by each company, and road network structures such as node IDs and link IDs are generally unique to each company.
  • the notification is received by notifying the collision area by the ID series as shown in this embodiment.
  • a third party can display information about the collision area on the vehicle.
  • IDs are not always common. Therefore, in order to make the identified collision area available to a third-party mobile body, a conversion means is provided, and the converted collision information is notified.
  • FIG. 32 is a system configuration diagram in the case where conversion means is provided in order to make collision information available to a third party mobile body.
  • a collision information converting unit 116 is added to the components shown in FIG.
  • the collision information conversion unit 116 uses, for example, the map information stored in the map information storage unit 103 and converts it into latitude and longitude information that can be commonly recognized by any mobile body.
  • map information is stored in correspondence with the ID of each node or link and latitude and longitude information. Therefore, by referring to this map information, the ID of the area specified as the collision area can be converted into latitude and longitude information.
  • FIG. 33 is a diagram showing collision information obtained by converting a collision area from latitude / longitude information that can be commonly recognized by any mobile body from a series of IDs.
  • “L210” identified as the collision area has been converted into a value indicated by latitude and longitude as “135.30 east longitude, 35.18 north latitude”.
  • the ID of each point identified as a collision area such as “L20 6” and “Latitude 135.30, North latitude 35.18”, is converted into latitude and longitude values.
  • the collision information for example, the “vehicle ID”, “behavior”, and “collision area” converted into the latitude / longitude are notified by the collision information notification unit 108.
  • the third party who receives the collision information can grasp where the danger of the collision is by mapping the point indicated by the latitude and longitude values on the map of the own vehicle. .
  • the power of converting the ID of a node or link into latitude and longitude information Furthermore, it may be converted into a series of latitude and longitude information in which nodes and links are complemented at a predetermined interval, and transmitted. Furthermore, taking into account the position of the third party that simply sends the collision area, it is necessary to specify the distance to the information
  • FIG. 34 is a diagram showing another example of a region where there is a risk of collision with a third party with respect to the user's future behavior.
  • FIG. 34 shows the same situation as FIG. Currently, it is estimated that there are several actions: vehicle 1 takes a left turn signal at Hana 1 Kyoto Street, turns left at Urahana 1 intersection, and turns left at Hanamachi 3 intersection. In Fig. 34, there are pedestrians 3 who are going to cross Hana 1 Kyoto Street and pedestrians 4 who are going to cross 3 Hanamachi Streets. For these pedestrians, it may be assumed that the vehicle 1 makes a left turn at an intersection at the back of the front as described above, and there is a risk of a collision.
  • the collision area where there is a risk of collision is calculated and notified to the pedestrian.
  • pedestrian 3 can avoid the danger by notifying vehicle 1 that there is a risk that vehicle 1 will then go straight through Urahana 1 intersection and collide with him. It is not always necessary to go to the left after the intersection and go to Taihua Street.
  • pedestrian 4 needs to be notified that vehicle 1 has a risk of colliding with himself who is going to cross Hwakacho after crossing Hanamachi 3 and going to Taihua Dori.
  • FIG. 35A is a diagram showing an example of information when collision information is transmitted to the pedestrian 3.
  • FIG. 35B is a diagram illustrating an example of information when collision information is transmitted to the pedestrian 4.
  • pedestrian 3 is notified of the collision area as “collision information” with the area up to the current location of pedestrian 3 as “135 degrees and 33 minutes east longitude, 35 degrees 20 minutes north latitude”.
  • the collision area is “135 degrees and 33 minutes east, 35 degrees 20 minutes north ⁇ 135 degrees 34 minutes east, 35 degrees 20 minutes north ⁇ 135 degrees 34 minutes east, 35 degrees 18 minutes north”
  • the area up to the current location of pedestrian 4 is attached and notified as collision information.
  • the amount of information to be transmitted becomes a problem. Therefore, the position information of the third party to be transmitted is detected and transmitted up to the detected position. As a result, the amount of information can be reduced, and information can be transmitted efficiently.
  • the position information and intention information of the own vehicle is detected in the moving body 100 to estimate a plurality of behaviors, and the determination of the risk of collision is performed. It is also possible to detect the position information and intention information of a third party that does not perform these processes, and to determine the risk of these third parties.
  • the position information detection unit 101 detects the position information of a predetermined third party
  • the intention information detection unit 104 detects the third party's intention information. It is.
  • FIG. 36 is a diagram showing an example in which an action is estimated by the own vehicle based on the current position sent from the oncoming vehicle and the intention information of the left turn, and the user is notified of the risk of collision. is there.
  • the car navigation screen shows the location of the vehicle that is about to turn right at the intersection and the position of the oncoming vehicle.
  • the oncoming vehicle has the power to indicate a left turn.
  • it does not necessarily mean that it is going to turn left at the intersection. It may be the power to stop at the parking lot of “Family K”. It is done. Therefore, the dangerous area is identified from the estimated action, and the user is notified of this by an arrow.
  • the plurality of behavior estimations in the present invention are not limited to behaviors on roads and intersections! /. For example, it can be used even in a parking lot.
  • FIG. 37 is a diagram for explaining an example of behavior estimation in a parking lot.
  • vehicle 2 is looking for an empty parking lot.
  • the user of the vehicle 2 thinks that the vehicle 1 is about to come out, and if it proceeds as it is, there is a risk that both will collide. Therefore, a collision can be avoided by using the method shown in the present invention.
  • vehicle 1 stops that is, in the case of parking, and in the case of left turn, that is, in this example
  • the multiple actions that are about to take place are estimated as future actions, and the collision area is determined from the estimated future actions.
  • a collision can be avoided by identifying and notifying the vehicle 2. Furthermore, in the case of this example, for example, the movement history of the vehicle 1 is accumulated, and if it has stayed for a predetermined time until now, it is going to come out. Predict 1 action and notify to that effect. For vehicle 2, if vehicle 1 is about to leave, enter it, while if vehicle 1 is about to park, give up and look for another parking space, avoiding collisions and more efficient parking management. Can also be performed.
  • the detected position information is further accumulated, the user's destination is predicted from the accumulated position information, and a region that may collide is determined using the predicted destination. Will be described.
  • FIG. 38 is a block diagram showing a configuration of the collision information notification system according to the second embodiment.
  • the collision information notification device of the moving body 100 includes a position information detection unit 101, a node sequence conversion unit 102, a map information accumulation unit 103, a movement history accumulation unit 117, an intention information detection unit. It comprises an output unit 104, a behavior estimation unit 105, a destination prediction unit 118, a duplicate behavior determination unit 106, a collision risk determination unit 107, and a collision information notification unit 108.
  • the same components as those in the first embodiment are given the same reference numerals.
  • the position information detection unit 101 is an example of “current position acquisition means for acquiring the current position on the map of the moving body”, and the intention information detection unit 104 This is an example of “intention information detection means for detecting intention information issued for intention display indicating future behavior of the user”, and the movement history accumulation unit 117 detects “the detected intention information and the intention information are detected”.
  • the movement position storage means for storing the movement history of the moving body including the current position at the time of the movement and the action selected with respect to the intention information within the predetermined range of the current position force.
  • the determination unit 106 determines whether or not a different action has been selected for the same intention information within a predetermined range from the current position when the intention information is detected. Are different for the same intention information.
  • the map information accumulating unit 103 “accumulates map information representing a map in advance, and stores the intention information and the intention for each point on the map from the movement history accumulated in the movement history accumulation unit.
  • FIG. 6 is an example of a “map information storage unit that further stores point information indicating a travel route selected as an action corresponding to information”. “From the travel history stored in the travel history storage unit, Is a point information generating unit that generates the point information indicating the intention information and the movement route selected as an action corresponding to the intention information for each point. The movement is performed with respect to the intention information by the duplicate action determination means. When it is determined that the body can take a plurality of actions, it is accumulated in the movement history accumulation means! /, Based on the movement history! /, And a movement destination prediction means for predicting the movement destination ” It is an example.
  • the movement history accumulating unit 117 is means for accumulating position information detected as the user moves as a movement history.
  • the node series conversion unit 102 converts the position information detected as the latitude and longitude values by the GPS into the ID series of nodes and links with reference to the map information, and moves this ID series. It will be accumulated as a history.
  • the node series conversion unit 102 may store values such as latitude and longitude that are not necessarily essential components. However, for example, the latitude and longitude detected by GPS in a car navigation system have an error, and since the latitude and longitude are detected at intervals of about 1 second, the amount of information can be enormous.
  • FIG. 39 is a diagram showing the movement route of the user shown in FIG. 5 by the link and node series shown in FIG.
  • the user turns right at Hanamachi 1 intersection and goes straight on Hana 1 Kyoto Street.
  • position information is detected at predetermined intervals in the position information detection unit 101 and is indicated by white circles.
  • the map information storage unit 103 stores a road network indicated by nodes and links as map information.
  • the node series conversion unit 102 converts the detected position information into an ID series of nodes and links.
  • the route is converted into an ID sequence such as “L203 ⁇ N100 ⁇ L204”.
  • the movement history accumulating unit 117 is means for accumulating the user's movement history converted into the ID series.
  • FIG. 40 is a diagram showing the movement history stored in the movement history storage unit 117, which is represented by an ID sequence of nodes and links.
  • the movement history is, for example, one movement from the starting point where the engine is started to the destination where the engine is stopped, and the ID sequence of the passing route is accumulated. For example, departure from “N201” as history ID “001” (for example, home), passed through “L202”, “N100”, “L204”, etc. and arrived at the destination “N208” (for example, company) The history is accumulated!
  • the behavior estimation unit 105 is a unit that estimates future behavior based on a behavior rule (not shown) based on a user's behavior intention such as a winker detected by the intention information detection unit 104. It is.
  • the duplicate action determination unit 106 also determines whether or not a plurality of future actions are estimated, and the collision risk determination unit 107 determines a region where there is a risk of collision. .
  • the collision information notification unit 108 notifies the collision information. This will be described below with reference to the drawings.
  • FIG. 41 is a diagram showing a situation in which the user is going straight on Hana 1 Kyoto Street and now has a left turn blinker, similar to FIG. 9 and the like shown in the first embodiment.
  • a future action is estimated based on point information that is information related to points stored in the map information storage unit 103.
  • two actions are estimated as future actions: the left turn at Urahana 1 intersection and heading towards Urahua Street, and the left turn at Hanamachi 3 intersection and heading toward Dahua Street.
  • the overlapping action determination unit 106 determines whether or not there are a plurality of future actions
  • the collision risk determination unit 107 determines a region where there is a risk of collision. Become.
  • the movement destination prediction unit 118 is a means for predicting the movement destination of the user based on the movement history accumulated in the movement history accumulation unit 117.
  • the movement history accumulating unit 117 accumulates a movement history detected in accordance with the user's normal behavior, and this movement history is generally information reflecting the user's behavior tendency. Users usually act in a certain pattern, such as commuting from home to the company, moving to a lesson, driving a restaurant, supermarket, etc., and there are generally patterns in their travel routes. By accumulating the movement history, it is possible to extract the daily patterns of these users, and it is possible to predict the future destination by using the extracted patterns. Therefore, in the present embodiment, the movement destination is predicted using the accumulated movement history. This will be described below with reference to the drawings.
  • FIG. 42 is a diagram for explaining the prediction of the movement destination.
  • FIG. 42A is a diagram showing the current travel, which is the travel route up to the present time, of the user as a series of link IDs and node IDs.
  • Figure 42B shows the current run
  • FIG. 5 is a diagram showing an example of extracting from the movement history the history of passing the route that coincides with and turning left at Hanamachi 3 intersection.
  • FIG. 42C is a diagram showing an example of extracting from the movement history a history of passing the route that coincides with the current travel and turning left at the back intersection 1 intersection.
  • Fig. 42D is a diagram that calculates the possibility of each future action when there are multiple actions that can be taken as future actions.
  • FIG. 42A is a diagram showing the current travel, which is the travel route up to the present time, of the user as a series of link IDs and node IDs.
  • Figure 42B shows the current run
  • FIG. 5 is a diagram showing an example of extracting from the movement
  • N 201 for example, home
  • Fig. 41 turns left at Hana 1 intersection (N101), and now travels on Hana 1 Kyoto Street (L2 05)!
  • the history that may have passed the route that matches the current travel is extracted from the travel history.From the travel history shown in Fig. 40, the travel history that matches the current travel is the history ID “ Five of “001”, “003”, “005”, “007”, “009” are extracted.
  • the behavior estimation unit 105 estimates “N102 ⁇ L210” that makes a left turn at Urahana 1 intersection and “N102 ⁇ L206 ⁇ N103 ⁇ L209” that makes a left turn at Hanamachi 3 intersection.
  • the movement history indicates that the history ID “001”, “003”, “005”, “007” has passed through the route “N102 ⁇ L206 ⁇ N103 ⁇ L209” four times in the past.
  • the history ID “009” indicates that the vehicle has traveled the route “N102 ⁇ L210” once in the past.
  • the action of turning left at Urahana 1 intersection there are two possible future actions for the user: the action of turning left at Urahana 1 intersection and the action of turning left at Urahana 1 intersection.
  • the possibility of turning left at Urahana 1 intersection is 20% (1 ⁇ 5), and the possibility of turning left at Hanamachi 3 intersection is 80% (4 + 5), so the future destination can be predicted.
  • the current travel to be referred to is the route from the departure to the present, but the present invention is not limited to this.
  • it is possible to predict the future destination by referring to the past movement history only from the direction toward the current point.
  • the user's behavior may depend on the day of the week. For example, the day of the week or the time of day is added as the movement history, and the destination is predicted with reference to these days.
  • the collision risk determination unit 107 is means for determining an area where there is a risk of collision using the obtained predicted movement destination.
  • different areas of both actions are determined as areas where there is a risk of collision.
  • the risk of collision for example, the user's power and probability in that area, is calculated as the risk.
  • the collision area L210 has a movement probability of 20%.
  • the collision areas L206, N103, and L209 have a movement probability of 80%. Therefore, not only the collision area is notified, but the degree of danger is attached and notified as collision information.
  • FIG. 43 is a diagram showing an example of a display screen that displays a notification of collision information accompanied by the movement probability of the oncoming vehicle.
  • FIG. 43 is an example of a display screen of an oncoming vehicle that has been notified of collision information, as in FIG. 13, but is different in that it is displayed with the oncoming vehicle's movement probability.
  • the oncoming car now leaves the left winker and goes straight through the Hana 1 intersection.However, when turning left at the Hana 1 intersection (movement probability 20%) and turning left at the Hanamachi 3 intersection (movement probability 80%) ) And urges the user to pay attention to this oncoming vehicle.
  • FIG. 44 is a flowchart showing the operation of the collision information notification device in the collision information notification system of the second embodiment.
  • FIG. 45 is a flowchart showing a detailed operation of the collision information notification device in the destination prediction process shown in step S310 of FIG. The operation of the present invention will be described below with reference to the flowcharts of FIGS. 44 and 45.
  • the position information detecting unit 101 detects position information (step S301). Then, the map information stored in the map information storage unit 103 is referred to (step S302), and for example, position information detected in the latitude / longitude information is converted into a node series (step S303). Then, it is accumulated as a movement history in the movement history accumulation unit 117 (step S304). In the meantime, intention information inspection The outgoing information 104 detects intention information (step S305). For example, whether or not intention information such as a right / left turn blinker is detected is detected (step S306) .If it is detected, the process proceeds to step S307, and if not detected, the process returns to step S301, and the loop of this operation is performed. repeat. As the user travels, position information is detected, movement history is accumulated, and intention information is detected.
  • step S306 When intention information is detected in step S306 (Yes in step S306), the point information stored in the map information storage unit 103 is referred to (step S307), and the behavior estimation unit 105 estimates future behavior. (Step S308). Next, it is determined in the overlapping action determination unit 106 whether or not there are a plurality of future actions (step S309). If there are multiple (Yes in step S309), the process proceeds to step S310, and if there are not multiple (No in step S309), the process returns to step S301.
  • the movement destination prediction unit 118 predicts the movement destination (Step S310).
  • the movement of the destination prediction is not limited to the force that is to be performed when future actions overlap.
  • a technique for predicting a destination and providing traffic information related to the destination is known. For example, every time position information is detected (step S101) or converted into a node series (step S303). You can do it every time you cross an intersection!
  • FIG. 45 shows an operation flow of movement destination prediction in the movement destination prediction unit 118.
  • the node sequence is converted in the node sequence conversion unit 102 based on the position information detected as the user moves (step S301 to step S303). Reference (step S401). Then, the movement history stored in the movement history storage unit 117 is referred to (step S402). Then, a history that matches the current travel is extracted (step S403).
  • the behavior estimation unit 105 estimates future behavior (step S308), and refers to this future behavior (step S404). Then, it is determined whether there is a matching future action (step S405). If it exists, the process proceeds to step S406, and if it does not exist, the process ends. If it exists (Yes in step S405), the frequency of the history that matches each future action is calculated (step S406). Then calculate the movement probability of each future action (step S407). In the case of this example, as shown in Fig. 42, the behavior of turning left at Urahana 1 intersection is 20%, and the behavior of turning left at Hanamachi 3 intersection is 80%, and the destination is predicted with the estimated movement probability.
  • the collision risk determination unit 107 determines the risk of collision! For example, different points of the estimated future behavior are determined as collision areas, and the risk (for example, the degree of risk) is determined based on the destination predicted by the destination prediction unit 118 and its movement probability (step S311). ).
  • the collision information notification unit 108 notifies the determined collision information.
  • the behavior estimation unit 105 is an example of “the collision information notification unit that calculates the probability that the vehicle is heading for the destination based on the travel history stored in the travel history storage unit”. is there.
  • FIG. 43 is an example in which notification is performed together with the collision area and its movement probability.
  • the oncoming car leaves the left turn signal and goes straight at the Hana 1 intersection, but when turning left at the Hana 1 intersection (movement probability 20%) or turning left at the Hanamachi 3 intersection (movement probability 80%) Yes, the user is alerted to pay attention to this oncoming vehicle.
  • the collision information notifying unit 108 indicates that “when the duplicate action determining means determines that a plurality of actions can be taken, the risk of collision for each destination predicted by the destination predicting means.
  • the collision information notification means for notifying the risk level indicating the level of danger when heading to each destination. By providing notification along with the degree of danger, the reliability of the notified collision information can be improved, so that a third party can pay attention and increase the effectiveness of collision avoidance.
  • the movement history is a force that has always accumulated the node series detected along with the movement.
  • the movement history may be accumulated only when a duplicate action occurs.
  • FIG. 46 is a diagram showing an example of the operation of the moving body when the history is accumulated only when the duplicate action occurs. This will be described below with reference to FIG.
  • Fig. 46 is a diagram showing the Raku 4 intersection point shown in Fig. 16 and the like.
  • This Raku 4 intersection is a five-way road that crosses Hanshin 1 street, Kyoto 2 street, Nara 3 street, and back 5 street.For example, even if the user makes the same right / left turn indicator, This is an example of a point that is difficult to pass or not.
  • the movement history stores the position information and intention information of the vehicle 1 as a movement history.
  • Vehicle ID “001”, intention information “left turn blinker”, and movement history “L216 ⁇ N105 ⁇ L212 ⁇ N104 ⁇ L211” are detected and stored as the movement history in which the vehicle 1 force is also detected.
  • the vehicle 1 also made a left turn winker at Nara 3 streets in the same way, and exited 5 streets on the other side.
  • the intention information “left turn blinker” and the movement history “L 216 ⁇ N105 ⁇ L212 ⁇ N104 ⁇ L215” are detected and accumulated! /.
  • the history may be accumulated only when duplicate behavior occurs from the history of different behaviors while showing the same intention information from the motion history detected by the mobile body.
  • FIG. 47 is a block diagram showing a configuration example of a collision information notification system that implements the present modification.
  • a duplicate action extraction unit 122 is provided.
  • the duplicate action extraction unit 122 is a means for extracting, from the movement history of each vehicle accumulated in the movement history accumulation unit 117, the same intention information and a history of different movements. Then, the extracted movement history is stored in the movement history storage unit 117. For example, in the case of Fig. 46, vehicle 1 is taking the same left turn winker, and is taking a route different from the direction toward Hanshin 1 route, the route going to Hanshin street, and the route going to the back 5 streets, and this history is extracted. .
  • the movement history accumulated at a predetermined interval such as an interval of 1 second may have a huge amount of information. Therefore, a calculation time for searching for the duplicate action from the accumulated movement history is also required. Therefore, by accumulating only when duplicate actions occur in this way, the calculation speed for searching an important history in which the risk of a collision is increased, and the present invention for notifying information with danger in particular! / Demonstrate its effect.
  • FIG. 48 is a diagram for explaining an example of estimating future actions from intention information based on the accumulated movement history. In Fig. 48, it is assumed that truck 1 is traveling on Hanshin 7 street, and now the hazard is lit and the intention to stop is detected.
  • the behavior estimation unit 105 estimates the parking lot of store B as the stop location. Assume that the future action “N121 ⁇ L225 ⁇ N124” is estimated. On the other hand, suppose that you actually entered Shijo Corporation and stopped. In this case, for example, from the rear of the vehicle 2 as in FIG. 22, the truck 1 thinks that it will enter the parking lot of the SB store, trying to overtake the truck 1, and there is a risk of collision.
  • the user does not necessarily take the same action as the third person thinks, and thus may take a different action from the action that the third person thinks.
  • the behavior that can be considered from the indicated intention information is estimated from the map information and the like, and the collision is notified when a plurality of behaviors are estimated. Accurate estimation is not always possible. For example, in the case of this example, there is a node that can stop at the parking lot of store B 1S. On the other hand, it is assumed that Shijo Co., Ltd., where truck 1 actually stops, does not have that information. Shijo Co., Ltd. shall not be registered as a node in the general map information that is commonly used for truck 1 for its own company. In this case, it cannot be estimated. Therefore, for example, when a behavior different from the behavior estimated by the behavior estimation unit 105 is taken, it is accumulated as a movement history, and this movement history is used for judging the risk of collision.
  • the future behavior “N121 ⁇ L225 ⁇ N124” is estimated in the behavior estimation unit 105 now. It is assumed that truck 1 actually entered Shijo Corporation and stopped. Actions different from those estimated here are accumulated as movement history. In FIG. 48,! /, White circles, and circles are latitude / longitude information detected by the position information detection unit 101, indicating movements that entered Shijo Co., Ltd. and stopped! Then, an action different from the estimated future action is stored as a movement history.
  • FIG. 49 is a diagram showing a history of actions different from the estimated actions.
  • FIG. 49A is a diagram showing an example of current running.
  • FIG. 49B is a diagram showing intention information issued by the moving object.
  • FIG. 49C is a diagram showing the future behavior estimated by the behavior estimation unit 105.
  • Figure 49D FIG. 10 is a diagram showing an example of current running when an action different from the action estimated by the action estimating unit 105 is taken.
  • FIG. 49E is a diagram showing an example in which the current travel shown in FIG. 49D is accumulated as a movement history. Since the current traveling “N141 ⁇ L221” is detected and the intention information “stop” is detected, the behavior estimating unit 105 detects the future behavior “N121 ⁇ L225 ⁇ N124”.
  • the behavior estimation unit 105 estimates the behavior with reference to the movement history as well as the map information.
  • the parking lot of store B (N124) is stored as a stoppable point, and “N121 ⁇ L225 ⁇ N124” is estimated as one of the future actions.
  • the behavior indicated by history ID “020” from the movement history that is, the behavior of stopping at Shijo Corporation indicated by a white circle in FIG. 48 is estimated as a future behavior. Since there are a plurality of estimated behaviors, the collision risk judgment unit 107 determines that both behaviors are different from each other as a collision region, and notifies them. For example, it is possible to know that the vehicle 2 behind may stop not only at the store B but also at Shijo Co., Ltd., thereby avoiding the danger of a collision.
  • this example may be not only a notification to a third party but also a notification to itself.
  • the behavior is a daily behavior, so it is assumed that the surrounding third parties may know their behavior.
  • the behavior is different from the generally considered behavior, and the difference often creates a risk of collision. Therefore, as shown in this example, the movement history when the behavior different from the estimated behavior is accumulated, the collision risk is judged using the accumulated movement history, and notification is made. It is possible to provide safe driving support that takes into account the specific behavior of the vehicle.
  • the intention information is a force that has been described by taking a turn signal for turning right and left as an example.
  • Fig. 48 in a situation where a truck enters a factory or company, there may be a case where the vehicle turns back and parks just after showing a turn signal. Or, a third person often takes actions that cannot always be guessed, such as taking out the right turn signal, swinging it to the right, and then putting it in the back. Therefore, as shown in this example, as the movement history accumulation, for example, the movement history put in the back gear may be accumulated and used. It is an inconvenient force to accumulate the movement history at a predetermined interval, which is inconvenient because the data volume is enormous. Thus, the necessary history can be easily extracted by efficiently accumulating only the history in which the risk of collision occurs It becomes possible.
  • each vehicle especially large vehicles, often takes the same action, as shown in this example.
  • the ability to realize safer driving by determining the risk of collision from actions that cannot be uniquely estimated (actions that cause ambiguity) based on S becomes Kanakura.
  • the destination of the own vehicle is predicted, and the power that has been determined to be dangerous by calculating the probability of movement is used to predict not only the own vehicle but also the destination of other vehicles. It is also possible to judge the risk.
  • FIG. 50 is a block diagram showing an example of the configuration of a collision information notification system that predicts the destination of another vehicle and determines the danger.
  • the moving body 100 is added with the notification partner identification unit 112 and the collision risk degree calculation unit 124 shown in the first embodiment.
  • the notification partner identification unit 112 in the above embodiment identifies, for example, a user in a collision area from the received position information of another moving body, and notifies that there is a danger of collision! /.
  • the other party to be notified is identified using the predicted destination!
  • the mobile body 200 includes a second position information detection unit 115, a second movement history.
  • the storage unit 121, the second movement destination prediction unit 119, and the second movement destination transmission unit 120 are provided. Similar to the method described above, the second position information detection unit 115 detects the position information of the moving body 200 and stores it in the second movement history storage unit 121 as a movement history. Then, the second movement destination prediction unit 119 predicts the movement destination of the moving body 200 and transmits the movement destination predicted by the second movement destination transmission unit 120. This will be described below with reference to the drawings.
  • the position information detection unit 101 is an example of “movement history receiving means for receiving the movement history of the moving body from another moving body”.
  • the destination identification unit 112 is an example of a “destination prediction unit that predicts a destination of the vehicle and the other mobile object based on the movement history received from the vehicle”. Based on the above, it is an example of “the collision information notifying means for preferentially notifying information on the danger of collision to the other moving body having a high risk of collision with the own vehicle”.
  • FIG. 51 is a diagram for explaining notification control using a destination of another moving object. In Fig.
  • the collision risk calculation unit 124 the possibility of collision with each vehicle based on the product of each movement probability is 8% (10% X 80%) for vehicle 2 and 80% (100% X 80 for vehicle 3). %).
  • notification control may be performed using the predicted destination of another vehicle, such as preferentially communicating with the vehicle 3 to avoid a collision.
  • the collision risk determination unit 107 and the collision information notification unit 108 indicate that “the movement stored in the movement history storage unit when it is determined by the overlapping action determination unit that a plurality of actions can be taken. From the history, for each destination predicted by the destination prediction means, the host vehicle calculates the power, the probability of entering the destination as the risk, and from the movement history received from the other moving body, The probability that the other moving object is heading to the destination is calculated as the risk, and the information on the risk of collision is used as the information on the movement. It is an example of the “collision information notification means” for notifying the risk of the host vehicle and the other moving body heading forward.
  • the moving body 100 of the present invention provides a means for confirming whether or not information on the danger of collision has been notified to other moving bodies, and notifies other moving bodies. There may be provided means for displaying what has been reported.
  • the “means for confirming whether or not the notification of the information on the danger of the collision has been performed” is “the collision that confirms whether or not the information on the danger of the collision is notified to the other mobile body”
  • Information notification confirmation means is an example
  • “means for displaying that notification has been given to another mobile body” is "confirmed that the notification has been made by the collision information notification confirmation means”
  • the collision information notification unit 108 is configured to display a message indicating that the notification has not been confirmed by the collision information notification confirmation means.
  • collision information notifying means for notifying the other mobile body of information relating to the risk of the collision again after changing the notification mode”.
  • a notification with a sound or a warning sound may be given.
  • the point information accumulated in advance in the map information or the like is estimated as the behavior estimation from the detected intention information such as the blinker.
  • the behavior that the user performs while displaying the intention differs from the behavior that the third party recognizes, resulting in a situation where there is a collision.
  • the Map the point information which is the information of the intention information detected there and the action actually performed It accumulates as information and refers to this point information to avoid collisions.
  • adding point information to each point can be very costly. Therefore, this point information may be automatically generated using the movement history shown in the present embodiment, and collision may be avoided using the automatically generated point information.
  • FIG. 52 is a block diagram showing an example of the configuration of the server 300 when the point information is automatically generated using the moving history of the moving body and the collision is avoided using the automatically generated point information.
  • This system includes a position information detection unit 101, intention information detection unit 104, behavior estimation unit 105, map information storage unit 103, overlapping behavior determination unit 106, collision risk determination unit 107, collision information notification unit 108, movement history storage unit 117, a duplicate action extraction unit 122, and a point information generation unit 123.
  • the same reference numerals are given to the components shown in the first embodiment.
  • the movement history accumulation unit 117 is an example of “movement history accumulation unit for accumulating the movement history of a moving object”, and the point information generation unit 123 is “stored in the movement history accumulation unit”. For each point on the map, point information indicating the intention information and the movement route selected as the action corresponding to the intention information is generated from the movement history, and the generated point information is stored in the map information storage unit. It is an example of “point information generating means”.
  • the point information generating unit 123 reads: “Furthermore, from the movement history accumulated in the movement history accumulating means, intention information indicating a stop for each point on the map, and the intention information Is an example of the point information generating means for generating point information indicating a parking position outside the road selected as an action corresponding to “.
  • the point information generating unit 123 reads: "Furthermore, from the movement history accumulated in the movement history accumulation means, for each point on the map, intention information indicating retreat, and the intention information Is an example of the point information generating means for generating point information indicating a parking position outside the road selected as an action corresponding to “.
  • the position information detection unit 101 is an example of “movement history receiving means for receiving the movement history of the moving object from a plurality of moving objects”. Further, from the received movement history, for each point on the map, the same intention information is selected! / And a different movement route is selected as an action corresponding to the intention information!
  • the system is provided in a moving body such as a car navigation system, for example, a force that detects position information of the moving body to avoid a collision, and is not limited to this, for example, a server
  • the position information etc. of each moving body may be detected.
  • the position information detection unit 101 and the intention information detection unit 104 in the server 300 which is the present system are means for detecting the position information and intention information of each mobile object. Then, the position information and intention information detected along with the movement of each moving body are accumulated in the movement history accumulating unit 117.
  • FIG. 53 is a diagram showing an example of the case where the server 300 installed at a specific point generates point information from the intention information and the movement history of the moving body moving at the point. It is a figure which shows the easy 4 intersection point shown in FIG. This Raku 4 intersection is a five-way road where Hanshin 1 street, Kyoto 2 street, Nara 3 street, and back 5 street cross each other, for example, which route will actually take in the future even if the user makes a right / left turn signal This is an example of a point that is difficult to grasp.
  • the movement history stores the position information and intention information of the vehicle 1 as a movement history.
  • the vehicle ID “001”, the intention information “left turn blinker”, and the movement history “L216 ⁇ N105 ⁇ L212 ⁇ N104 ⁇ L211” are detected and stored.
  • vehicle 2 has made a left turn winker in Nara 3 streets and exited 5 streets on the other side.
  • the vehicle ID “002”, the intention information “left turn blinker”, and the movement history “L216 ⁇ N105 ⁇ L212 ⁇ N104 ⁇ L215” are detected and stored.
  • FIG. 54 is a diagram showing another example when the server 300 installed at a specific point generates the point information from the intention information and the movement history of the moving body that moves at the point.
  • Fig. 54 is a diagram showing 4 easy intersections. For example, suppose that vehicle 3 makes a right turn turn signal at Nara 3 Street and passes through Hanshin 1 Street. The movement history stores the position information and intention information of the vehicle 1 as a movement history. As the movement history detected from the vehicle 3, the vehicle ID “003”, the intention information “turn right turn signal”, and the movement history “L216 ⁇ N105 ⁇ L214” are detected. On the other hand, suppose that vehicle 4 has made a right turn turn signal at Nara 3 street and exited 5 streets on the other side. As the movement history detected from vehicle 2, vehicle ID “004”, intention information “right turn winker”, movement The history “L216 ⁇ N105 ⁇ L213” is detected.
  • the duplicate action extracting unit 122 is a means for extracting, from the movement history of each vehicle accumulated in the movement history accumulating unit 117, the same intention information and a history of different movements. For example, in the case of Fig. 53, vehicle 1 and vehicle 2 are taking the same left turn blinker, and are taking a route that goes to Hanshin 1 way, a reverse direction to 5 ways, and a different route from the other route.
  • vehicle 1 and vehicle 2 are taking the same left turn blinker, and are taking a route that goes to Hanshin 1 way, a reverse direction to 5 ways, and a different route from the other route.
  • the point information generation unit 123 selects "the intention information and the action corresponding to the intention information for each point on the map from the movement history accumulated in the movement history accumulation means.” This is an example of “point information generating means for generating point information indicating the travel route”, and means for generating information from the history extracted by the duplicate action extracting unit 122.
  • the point information includes “intention information” to be detected, “position” in which the intention information is indicated, and “estimated behavior” to be estimated in that case. In the case of FIG.
  • the location information “001” from the extracted history is the position “L216”, the intention information “left turn winker”, the estimated actions “N105 ⁇ L212 ⁇ N104 ⁇ L211”, “N105 ⁇ L212 ⁇ N104 ⁇ L215” "Ca is generated.
  • the route to Hanshin 1 through the Raku 4 intersection and the route to the back 5 Become! /
  • the position information “002” is the position “L216”
  • the intention information “right turn winker” the estimated actions are “N105 ⁇ L214”, and “N105 ⁇ L213”.
  • the estimated actions are “N105 ⁇ L214”, and “N105 ⁇ L213”.
  • you make a right turn turn signal at Nara 3 (L216) there are two possible future actions: a route to turn right to Hanshin 1 through the Raku 4 intersection and a route to Kyoto 2 It becomes information indicating!
  • a threshold value may be provided to generate information on points where more users take different actions.
  • Fig. 55 is a diagram showing an external appearance of a car navigation device provided with the collision information notification device of the present invention.
  • a car navigation device 81 equipped with the collision information notification device of the present invention is attached to the dashboard of the car 80.
  • the collision information notification device of the present invention can Information is notified to the user.
  • each functional block in the block diagrams is typically an LSI that is an integrated circuit. As realized. These may be individually made into one chip, or may be made into one chip to include some or all of them.
  • the functional blocks other than the memory may be integrated into one chip.
  • IC integrated circuit
  • system LSI system LSI
  • super LSI mono-LSI
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable 'processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
  • the present invention is provided as a device for providing information related to a collision, for example, in a car navigation device or a portable terminal, and estimates future behavior based on detected position information and intention information. When an action overlaps, it can be used as a collision information notification device that can avoid a collision by generating and notifying information about the collision.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

A collision information indicator equipped in a car for indicating a risk of collision with another car or a pedestrian when the another car or the pedestrian may has a misunderstanding that the car having this indicator acts in a way different from that in which the driver of the car intends to act. An intention information detecting section (104) detects intention information on the future action of a mobile object (100). A multiple action judging section (106) judges if the driver may perform multiple actions on the basis of the detected intention information. A collision risk judging section (107) predicts an area where there is a risk of collision if the multiple action judging section (106) judges that the driver may perform multiple actions, and judges if there is a risk of collision with another moving object. A collision information indicating section (108) indicates information on the risk of collision with a person or a moving object with reference to the intention information if the collision risk judging section (107) judges that there is a risk of collision.

Description

明 細 書  Specification
衝突情報通知装置およびその方法  Collision information notification device and method
技術分野  Technical field
[0001] 本発明は、衝突の危険性に関する情報を通知する衝突情報通知装置に関する発 明であり、特にカーナビゲーシヨンシステム(以下、カーナビ)等、移動体端末機器に 適用するものである。  [0001] The present invention relates to a collision information notification device that notifies information related to the risk of collision, and is particularly applicable to a mobile terminal device such as a car navigation system (hereinafter referred to as a car navigation system).
背景技術  Background art
[0002] 従来、車両間で通信ユニットを用いて通信する車々間通信によって、移動体の現 在位置やウィンカーなどの情報に基づいて移動先を検出し、検出された移動先によ つて危険領域を特定し、衝突の危険性を判定する装置がある(特許文献 1、特許文 献 2参照)。図 1は特許文献 1に開示されたシステムの構成の一例を示したものである  Conventionally, a destination is detected based on information such as a current position of a moving body and a blinker by inter-vehicle communication that communicates between vehicles using a communication unit, and a dangerous area is determined based on the detected destination. There are devices that identify and determine the risk of collision (see Patent Document 1 and Patent Document 2). Fig. 1 shows an example of the configuration of the system disclosed in Patent Document 1.
[0003] 図 1において情報取得部 11は車両の位置等を取得する手段である。シチユエーシ ヨン特定部 12は情報取得部 11で取得された位置等をもとに、例えば車両の位置を 中心として所定の領域で囲まれる危険領域を特定する手段である。危険判定部 13 は特定された危険領域の交錯の可能性を判定する手段である。そして車両制御部 1 4は交錯すると判定された場合、衝突の危険性があるとして車両の制御を行う手段で ある。図 2は、従来の車両制御装置が危険判定などを行う場合の危険領域の一例を 示す図である。例えば図 2において車両 1が図に示される場所に位置しており、直進 しょうとしている。一方交差点の右側から車両 2が左折しょうとしている。そして各車両 ごとに危険領域が特定され、交錯の可能性を判定する。交錯すると判定された場合、 車両に衝突の危険性があるとして制御を行うものである。 In FIG. 1, an information acquisition unit 11 is a means for acquiring the position of a vehicle and the like. Based on the position acquired by the information acquisition unit 11 and the like, the situation identification unit 12 is a means for identifying a dangerous area surrounded by a predetermined area centered on the position of the vehicle, for example. The danger judging unit 13 is a means for judging the possibility of the intersection of the identified dangerous areas. The vehicle control unit 14 is a means for controlling the vehicle on the assumption that there is a risk of collision when it is determined that the vehicles are mixed. FIG. 2 is a diagram illustrating an example of a dangerous area when a conventional vehicle control device performs a risk determination or the like. For example, in Fig. 2, vehicle 1 is located at the location shown in the figure and is going straight ahead. On the other hand, vehicle 2 is about to turn left from the right side of the intersection. A dangerous area is identified for each vehicle, and the possibility of crossing is determined. If it is determined that they will cross each other, control is performed assuming that the vehicle has a risk of collision.
特許文献 1 :特開 2005— 56372号公報  Patent Document 1: JP 2005-56372 A
特許文献 2 :特開 2002— 260192号公報  Patent Document 2: JP 2002-260192 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 上記特許文献 1に開示された発明は、前述のように車両の位置を中心として算出さ れた危険領域をもとに衝突可能性を判断している。また、上記特許文献 2に開示され た発明は、車両が取り得る経路の全てにおいて危険領域を算出し、当該危険領域を もとに衝突可能性を判断している。し力もながら、衝突の危険性は必ずしも上記のよう に特定された危険領域の交錯性のみで回避できるとは限らな!/、。特に衝突が生じる シーンとして、一方が意図する行動と、他方が認識している行動との間に差異が生じ た場合に生じること力 Sある。さらにこのような差異によって衝突が生じるシーンは、予 め定められた箇所に限られない。以下、具体例を用いて説明する。 [0004] The invention disclosed in Patent Document 1 is calculated around the position of the vehicle as described above. The possibility of collision is judged based on the specified dangerous area. Further, the invention disclosed in Patent Document 2 calculates dangerous areas in all the routes that the vehicle can take, and determines the possibility of collision based on the dangerous areas. However, the danger of a collision cannot always be avoided by the crossing of dangerous areas identified above! In particular, as a scene where a collision occurs, there is a force S that occurs when there is a difference between the action that one side intends and the action that the other side recognizes. Furthermore, the scene where a collision occurs due to such a difference is not limited to a predetermined location. Hereinafter, a specific example will be described.
[0005] 図 3は、衝突の危険性を生じるシーンの一例を示す図である。図 3において車両 1 は左折ウィンカーを点滅させ、左折の意思表示を行っている。上記従来技術では、こ のウィンカー情報などをもとに左折方向に危険領域を特定し、交錯の可能性を判断 することとなる。例えば経路 Aに沿って危険領域が特定されることとなる。一方、車両 2は経路 Bを右折しょうとしているとする。したがって上記従来技術では、経路 Bに沿 つて危険領域が特定され、両車両の危険領域は交錯せず、つまり衝突しないと判定 されることとなる。し力もながら、必ずしも車両 1は経路 Aへ左折するとは限らず、経路 Bへ左折する可能性もある。例えば右左折する場合、ウィンカーを約 30m手前から出 すのが一般的であるが、例えば交差点間の距離が短い場合などは、ウィンカーを出 していても、どちらの経路を右左折するのか分からないことが多々ある。一方、車両 2 のユーザからすると、対向車である車両 2からみると車両 1は経路 Aへ左折すると思 い込んでしまい、そのまま右折しょうとする。ここで車両 1が、実際は経路 Bを左折する 場合、両者が交錯してしまうこととなる。つまり、衝突事故は、車両の位置関係からそ の周辺領域の交錯可能性によって判断するのではなぐ一方が意図する行動と、他 方が認識してレ、る行動、あるいは思!/、込んで!/、る行動との間に差異が生じた場合に 危険が及ぶことが多い。また、このような衝突は車両に限らず、歩行者にとっても同様 である。例えば図 3において歩行者 3にとつても、車両 1は経路 Aへ左折すると思い込 んでしまい、道路を横断しょうとした際、実際は経路 Bを左折する車両 1と衝突してし まう危険性もある。 [0005] FIG. 3 is a diagram illustrating an example of a scene that creates a risk of collision. In Fig. 3, vehicle 1 blinks the left turn blinker and displays the intention to turn left. In the above prior art, the danger area is identified in the left turn direction based on the blinker information and the like, and the possibility of crossing is judged. For example, a dangerous area is identified along route A. On the other hand, vehicle 2 is going to turn right on route B. Therefore, in the above prior art, a dangerous area is specified along the route B, and it is determined that the dangerous areas of both vehicles do not cross each other, that is, do not collide. However, the vehicle 1 does not necessarily turn left on the route A and may turn left on the route B. For example, when making a right or left turn, it is common to leave the blinker from about 30m before, but if the distance between intersections is short, for example, it is not possible to know which route to turn right or left even if the blinker is taken. There are many things that are not. On the other hand, the user of vehicle 2 thinks that vehicle 1 turns left on route A when viewed from vehicle 2, which is an oncoming vehicle, and tries to turn right as it is. Here, if vehicle 1 actually turns to the left on route B, the two will cross each other. In other words, a collision accident is not judged by the possibility of crossing the surrounding area from the positional relationship of the vehicle, but the behavior that one side intends and the behavior that the other recognizes. There is often a danger if there is a difference between! Moreover, such a collision is not limited to a vehicle, but is the same for a pedestrian. For example, pedestrian 3 in Fig. 3 thinks that vehicle 1 will turn left onto route A, and when trying to cross the road, there is a risk of actually colliding with vehicle 1 turning left on route B. is there.
[0006] そこで本発明では、自車の意図する行動に対して、異なる行動をとるであろうと他車 または歩行者が誤解する可能性がある場合に、他車または歩行者と衝突の危険性 があることを通知することができる衝突情報通知装置を提供することを目的とする。 課題を解決するための手段 [0006] Therefore, in the present invention, there is a risk of collision with another vehicle or pedestrian when there is a possibility that the other vehicle or pedestrian will misunderstand that the behavior intended by the own vehicle will be different. It is an object of the present invention to provide a collision information notification device that can notify that there is a problem. Means for solving the problem
[0007] 上記課題を解決するために、本発明の衝突情報通知装置は、移動体の地図上の 現在位置を取得する現在位置取得手段と、前記移動体の将来の行動を示す意思表 示のために発する意思情報を検出する意思情報検出手段と、検出された前記意思 情報と、前記意思情報が検出されたときの現在位置と、前記現在位置から所定の範 囲内で前記意思情報に対して選択された行動とを含む前記移動体の移動履歴を蓄 積する移動履歴蓄積手段と、前記意思情報が検出されると、そのときの現在位置か ら所定の範囲内で、同一の前記意思情報に対して異なる行動が選択されたことがあ るか否かを、以後も同一の前記意思情報に対して異なる行動が選択されうるか否力、と して判定する重複行動判定手段と、前記重複行動判定手段によって、前記意思情 報に対応して異なる行動が選択されうると判定された場合に、人物又は他の移動体 との衝突の危険性に関する情報を通知する衝突情報通知手段とを備えることを特徴 とする。 [0007] In order to solve the above-described problem, a collision information notification device according to the present invention includes a current position acquisition unit that acquires a current position on a map of a moving object, and an intention display that indicates a future action of the moving object. Intention information detection means for detecting intention information issued for the purpose, the detected intention information, the current position when the intention information is detected, and the intention information within a predetermined range from the current position The movement history accumulating means for accumulating the movement history of the moving object including the selected action, and the intention information, when the intention information is detected, the same intention information within a predetermined range from the current position at that time Duplicate action determination means for determining whether or not a different action has been selected for the same intention information as the ability to select a different action for the same intention information. The intention determination means If different behavior in response to distribution has been determined to be selected, characterized in that it comprises a collision information notifying means for notifying the information about the risk of collision with a person or other moving object.
[0008] なお、本発明は、装置として実現できるだけでなぐその装置を構成する処理手段 をステップとする方法として実現したり、それらステップをコンピュータに実行させるプ ログラムとして実現したり、そのプログラムを記録したコンピュータ読み取り可能な CD ROMなどの記録媒体として実現したり、そのプログラムを示す情報、データ又は 信号として実現したりすることもできる。そして、それらプログラム、情報、データ及び 信号は、インターネット等の通信ネットワークを介して配信してもよレ、。  [0008] It should be noted that the present invention can be realized as a method in which the processing means constituting the device can be realized as a step, or can be realized as a program for causing a computer to execute the step, or the program can be recorded. It can be realized as a computer-readable recording medium such as a CD ROM, or as information, data or a signal indicating the program. These programs, information, data and signals may be distributed via a communication network such as the Internet.
発明の効果  The invention's effect
[0009] 本発明に係る衝突情報通知装置は、衝突の危険性に関する情報を通知することで 、衝突の危険性を回避することが可能となる。  [0009] The collision information notification device according to the present invention can avoid the risk of a collision by notifying information on the risk of a collision.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]図 1は特許文献 1に開示されたシステムの構成の一例を示したものである。  FIG. 1 shows an example of the configuration of a system disclosed in Patent Document 1.
[図 2]図 2は従来の車両制御装置が危険判定などを行う場合の危険領域の一例を示 す図である。  [FIG. 2] FIG. 2 is a diagram showing an example of a danger area when a conventional vehicle control device performs danger judgment or the like.
[図 3]図 3は衝突の危険性を生じるシーンの一例を示す図である。 [図 4]図 4は本実施の形態の衝突情報通知システムの構成を示すブロック図である。 園 5]図 5は所定の間隔で検出される位置情報の一例を示す図である。 [FIG. 3] FIG. 3 is a diagram showing an example of a scene in which a risk of collision occurs. FIG. 4 is a block diagram showing a configuration of a collision information notification system of the present embodiment. 5] FIG. 5 is a diagram showing an example of position information detected at a predetermined interval.
園 6]図 6は地図情報蓄積部に蓄積されている地図情報で表される道路ネットワーク の一例を示す図である。 6] Fig. 6 shows an example of a road network represented by the map information stored in the map information storage unit.
園 7]図 7は地図情報蓄積部に蓄積された地図情報 (道路ネットワーク情報)の一例を 示した図である。 7] Figure 7 shows an example of map information (road network information) stored in the map information storage unit.
園 8]図 8は地図情報をもとに検出された位置情報がノード系列へ変換される一例を 示す図である。 8] Fig. 8 is a diagram showing an example in which position information detected based on map information is converted into a node series.
園 9]図 9は移動体の意思表示と将来行動の一例を示す図である。 9] Fig. 9 is a diagram showing an example of a mobile object's intention display and future behavior.
園 10]図 10は行動規則蓄積部に蓄積された行動規則の一例を示す図である。 10] FIG. 10 is a diagram showing an example of action rules stored in the action rule storage unit.
[図 11]図 11はユーザの現在位置とその位置で検出されたユーザの意思情報の一例 を示す図である。  FIG. 11 is a diagram showing an example of the current position of the user and the user's intention information detected at that position.
園 12]図 12はユーザの将来行動に対して第三者との衝突の危険性がある領域につ いて説明する図である。 12] Fig. 12 is a diagram illustrating an area where there is a risk of collision with a third party for the user's future behavior.
[図 13]図 13はカーナビゲーシヨンなどの表示画面である衝突情報表示部における表 示の一例を示したものである。  [FIG. 13] FIG. 13 shows an example of a display in a collision information display section which is a display screen for car navigation or the like.
園 14]図 14は本実施の形態の衝突情報通知システムでユーザの将来行動を推定し 衝突情報を表示するまでの動作の一例を示すフローチャートである。 14] FIG. 14 is a flowchart showing an example of operations until the user's future behavior is estimated and the collision information is displayed in the collision information notification system of the present embodiment.
[図 15]図 15は将来行動の推定における具体的動作の一例を示すフローチャートで ある。  [FIG. 15] FIG. 15 is a flowchart showing an example of a specific operation in estimation of future behavior.
園 16]図 16は複雑な分岐経路を有する交差点におけるユーザの意思情報とそれに 対して取りうる将来行動の一例を示す図である。 16] Fig. 16 is a diagram showing an example of user's intention information and future actions that can be taken in response to intersections with complex branch paths.
園 17]図 17は図 16と同じ交差点で、車両 1が意思情報として右折表示をした場合に 取りうる将来行動の一例を示す図である。 17] FIG. 17 shows an example of future actions that can be taken when vehicle 1 makes a right turn as intention information at the same intersection as FIG.
園 18]図 18は地点ごとに意思情報に対応する複数の行動に関する情報を示した地 点情報の一例を示した図である。 18] FIG. 18 is a diagram showing an example of point information showing information on a plurality of actions corresponding to intention information for each point.
園 19]図 19は重複行動による衝突の危険性がある場合に自車に対して通知する表 示の一例を示した図である。 [図 20]図 20は衝突の危険性を他車に通知するのではなぐ自車にのみ通知する場 合の衝突情報通知装置の構成の一例を示すブロック図である。 19] FIG. 19 is a diagram showing an example of a display for notifying the vehicle when there is a risk of collision due to overlapping actions. FIG. 20 is a block diagram showing an example of the configuration of a collision information notification device for notifying only other vehicles of the risk of collision, but not only the own vehicle.
園 21]図 21は、図 20に示した機能的構成を実現するハードウェア構成の一例を示 すブロック図である。 FIG. 21 is a block diagram showing an example of a hardware configuration that implements the functional configuration shown in FIG.
園 22]図 22は停車時の意思情報に対して推定される推定行動の一例について説明 する図である。 22] FIG. 22 is a diagram for explaining an example of the estimated behavior estimated for the intention information at the time of stopping.
園 23]図 23は図 22に示した停車時の意思情報に対して推定される推定行動の一例 をノードとリンクで示した図である。 En 23] FIG. 23 is a diagram showing an example of the estimated behavior estimated for the intention information at the time of stopping shown in FIG. 22 by a node and a link.
園 24]図 24は移動体の現在位置を含むエリアに対して蓄積されたノードの情報の詳 細を示した図である。 [24] Fig. 24 shows the details of the node information accumulated for the area including the current position of the moving object.
園 25]図 25は図 23等と同様、停車が可能な地点の検索を説明する図である。 25] FIG. 25 is a diagram for explaining a search for a place where the vehicle can be stopped, as in FIG.
[図 26]図 26は行動推定部が将来行動として推定する停車可能地点までの経路の一 例を示す図である。  [FIG. 26] FIG. 26 is a diagram showing an example of a route to a stop possible point estimated by the behavior estimation unit as a future behavior.
園 27]図 27は同一の意思情報に対して重複する行動が推定される場合の一例を示 す図である。 27] Fig. 27 is a diagram showing an example in which overlapping actions are estimated for the same intention information.
園 28]図 28は同一の意思情報に対して重複する行動が推定される場合の他の例を 示す図である。 28] FIG. 28 is a diagram showing another example in which overlapping actions are estimated for the same intention information.
[図 29]図 29は停車地点と左折地点の算出を説明する図である。  [FIG. 29] FIG. 29 is a diagram for explaining calculation of a stop point and a left turn point.
園 30]図 30は停車可能な地点の一つとして蓄積されたバス停に関する情報を示す 図である。 30] FIG. 30 is a diagram showing information relating to bus stops accumulated as one of the points where parking is possible.
[図 31]図 31は、互いに位置情報等を通信し合う PtoP方式の車々間通信における本 発明のシステム構成の一例を示すブロック図である。  FIG. 31 is a block diagram showing an example of a system configuration of the present invention in PtoP inter-vehicle communication in which position information and the like are communicated with each other.
園 32]図 32は衝突領域を第三者の移動体でも利用可能にするために衝突情報変換 手段を設けた場合のシステム構成図である。 Fig. 32 is a system configuration diagram in the case where a collision information conversion means is provided in order to make the collision area usable by a third party mobile body.
[図 33]図 33は、衝突領域を IDの系列からどの移動体でも共通に認識できる緯度経 度情報へと変換された衝突情報を示す図である。  [FIG. 33] FIG. 33 is a diagram showing collision information obtained by converting a collision area from latitude information into latitude and longitude information that can be commonly recognized by any mobile body.
園 34]図 34は、ユーザの将来行動に対して第三者との衝突の危険性がある領域の 他の例を示す図である。 園 35A]図 35Aは、歩行者 3に対して衝突情報を送信する場合の情報の一例を示す 図である。 34] FIG. 34 is a diagram showing another example of an area where there is a risk of collision with a third party for the user's future behavior. 35A] FIG. 35A is a diagram showing an example of information when collision information is transmitted to the pedestrian 3.
園 35B]図 35Bは、歩行者 4に対して衝突情報を送信する場合の情報の一例を示す 図である。 FIG. 35B is a diagram showing an example of information when collision information is transmitted to the pedestrian 4.
[図 36]図 36は、対向車から送られた現在の位置と、左折の意思情報をもとに自車で 行動を推定してユーザに衝突の危険性について通知を行う一例を示した図である。  [FIG. 36] FIG. 36 is a diagram showing an example of informing the user of the risk of a collision by estimating the action in the own vehicle based on the current position sent from the oncoming vehicle and the intention information of the left turn. It is.
[図 37]図 37は、駐車場での行動推定についての一例を説明する図である。 FIG. 37 is a diagram for explaining an example of behavior estimation in a parking lot.
[図 38]図 38は本実施の形態 2の衝突情報通知システムの構成を示すブロック図であ FIG. 38 is a block diagram showing a configuration of a collision information notification system according to the second embodiment.
[図 39]図 39は図 5に示したユーザの移動経路を図 6に示したリンクとノードの系列で 示す図である。 FIG. 39 is a diagram showing the movement path of the user shown in FIG. 5 by the link and node series shown in FIG.
園 40]図 40はノードとリンクとの ID系列で表され、移動履歴蓄積部に蓄積された移動 履歴を示した図である。 En 40] FIG. 40 is a diagram showing the movement history stored in the movement history storage unit, which is represented by an ID sequence of nodes and links.
[図 41]図 41は、ユーザが華 1京都通りを直進しており、今左折ウィンカーを出した状 況を示した図である。  [FIG. 41] FIG. 41 is a diagram showing a situation in which the user is going straight on Hana 1 Kyoto Street and now has a left turn blinker.
[図 42A]図 42Aはユーザの現在までの移動経路である現在走行をリンク IDとノード I Dとの系列で示す図である。  [FIG. 42A] FIG. 42A is a diagram showing the current travel, which is the travel route of the user to the present time, as a sequence of link IDs and node IDs.
[図 42B]図 42Bは現在走行と一致する経路を通過し、かつ華町 3交差点を左折した 履歴を移動履歴から抽出した一例を示す図である。  [FIG. 42B] FIG. 42B is a diagram showing an example of extracting from the travel history the history of passing the route consistent with the current travel and turning left at Hanamachi 3 intersection.
[図 42C]図 42Cは現在走行と一致する経路を通過し、かつ裏華 1交差点を左折した 履歴を移動履歴から抽出した一例を示す図である。  [FIG. 42C] FIG. 42C is a diagram showing an example of extracting from the travel history the history of passing the route that coincides with the current travel and turning left at the back crossing 1 intersection.
園 42D]図 42Dは将来行動として複数取りうる行動がある場合のそれぞれの将来行 動の可能性を計算した図である。 42D] Figure 42D shows the calculation of the possibility of each future action when there are multiple actions that can be taken as future actions.
[図 43]図 43は、対向車の移動確率を伴った衝突情報の通知を表示する表示画面の 一例を示す図である。  FIG. 43 is a diagram showing an example of a display screen that displays a notification of collision information accompanied by the movement probability of an oncoming vehicle.
[図 44]図 44は本実施の形態 2の衝突情報通知システムにおける衝突情報通知装置 の動作を示すフローチャートである。  FIG. 44 is a flowchart showing the operation of the collision information notification device in the collision information notification system of the second embodiment.
[図 45]図 45は図 44のステップ S310に示した移動先予測処理における衝突情報通 知装置の詳細な動作を示すフローチャートである。 [FIG. 45] FIG. 45 shows the collision information in the destination prediction process shown in step S310 of FIG. It is a flowchart which shows detailed operation | movement of a knowledge apparatus.
園 46]図 46は重複行動が生じた場合にのみ履歴を蓄積しておく場合の移動体の動 作の一例を示す図である。 46] FIG. 46 is a diagram showing an example of the behavior of the moving object when the history is accumulated only when the duplicate action occurs.
園 47]図 47は本実施の形態 2の変形例を実施する衝突情報通知システムの構成例 を示すブロック図である。 47] FIG. 47 is a block diagram showing a configuration example of a collision information notification system that implements a modification of the second embodiment.
園 48]図 48は蓄積した移動履歴に基づいて、意思情報から将来行動を推定する一 例を説明するための図である。 48] FIG. 48 is a diagram for explaining an example of estimating future actions from intention information based on the accumulated movement history.
[図 49A]図 49Aは現在走行の一例を示す図である。  FIG. 49A is a diagram showing an example of current traveling.
園 49B]図 49Bは移動体が発した意思情報を示す図である。 49B] FIG. 49B is a diagram showing intention information generated by the moving object.
園 49C]図 49Cは行動推定部によって推定された将来行動を示す図である。 49C] FIG. 49C is a diagram showing the future behavior estimated by the behavior estimation unit.
園 49D]図 49Dは行動推定部において推定された行動とは異なる行動をとつた場合 の現在走行の一例を示す図である。 49D] FIG. 49D is a diagram showing an example of the current running when the behavior estimation unit takes a behavior different from the behavior estimated by the behavior estimation unit.
[図 49E]図 49Eは図 49Dに示された現在走行が移動履歴として蓄積された例を示す 図である。  FIG. 49E is a diagram showing an example in which the current travel shown in FIG. 49D is accumulated as a movement history.
[図 50]図 50は他車の移動先を予測して危険性を判定する衝突情報通知システムの 構成の一例を示すブロック図である。  FIG. 50 is a block diagram showing an example of the configuration of a collision information notification system that predicts the destination of another vehicle and determines the danger.
園 51]図 51は、他の移動体の移動先を用いた通知制御を説明する図である。 51] FIG. 51 is a diagram for explaining notification control using the destination of another moving object.
[図 52]図 52は移動履歴を用いて地点情報を自動生成し、自動生成された地点情報 を用いて衝突の回避を図る場合のサーバの構成の一例を示すブロック図である。 園 53]図 53は特定の地点に設置されたサーバが当該地点を移動する移動体の意思 情報と移動履歴とから地点情報を生成する場合の一例を示す図である。 [FIG. 52] FIG. 52 is a block diagram showing an example of the configuration of a server when point information is automatically generated using a movement history and collision is avoided using the automatically generated point information. 53] FIG. 53 is a diagram showing an example of a case where a server installed at a specific point generates point information from intention information and movement history of a moving body moving at the point.
園 54]図 54は特定の地点に設置されたサーバが当該地点を移動する移動体の意思 情報と移動履歴とから地点情報を生成する場合の他の例を示す図である。 54] FIG. 54 is a diagram showing another example of the case where the server installed at a specific point generates point information from the intention information and the movement history of the moving body moving at the point.
園 55]図 55は本発明の衝突情報通知装置を備えたカーナビゲーシヨン装置の外観 を示す図である。 55] FIG. 55 is a view showing the appearance of a car navigation device equipped with the collision information notification device of the present invention.
符号の説明 Explanation of symbols
80 車  80 cars
81 カーナビゲーシヨン装置 100、 200 移動体 81 Car navigation system 100, 200 mobile
101 位置情報検出部 101 Location information detector
102 ノード系列変換部102 Node series converter
103 地図情報蓄積部103 Map information storage
104 意思情報検出部104 Intention information detector
105 行動推定部 105 Behavior estimation unit
106 重複行動判定部 106 Duplicate action determination unit
107 衝突危険性判定部107 Collision risk judgment unit
108 衝突情報通知部108 Collision information notification section
109 衝突情報受信部109 Collision information receiver
110 衝突情報表示部110 Collision information display
111 行動規則蓄積部111 Action Rules Accumulation Department
112 通知相手特定部112 Notification partner identification part
113 位置情報送受信部113 Location information transceiver
114 第二位置情報送受信部114 Second location information transmitter / receiver
115 第二位置情報検出部115 Second position information detector
116 衝突情報変換部116 Collision information converter
117 移動履歴蓄積部117 Movement history storage
118 移動先予測部 118 Destination prediction unit
119 第二移動先予測部 119 Second destination prediction unit
120 第二移動先送信部120 Second destination transmitter
121 第二移動履歴蓄積部121 Second movement history storage
122 重複行動抽出部122 Duplicate action extractor
123 地点情報生成部123 point information generator
124 衝突危険度演算部124 Collision risk calculator
131 CPU 131 CPU
132 1次メモリ  132 Primary memory
133 車載情報検出部 134 外部メモリ 133 In-vehicle information detector 134 External memory
300 サーバ  300 servers
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明に係る衝突情報通知装置について図面を参照しながら説明を行う。  Hereinafter, a collision information notification device according to the present invention will be described with reference to the drawings.
[0013] (実施の形態 1)  [0013] (Embodiment 1)
図 4は、本実施の形態の衝突情報通知システムの構成を示すブロック図である。以 下、まず各構成要素について説明し、後に本発明の動作フローを説明する。  FIG. 4 is a block diagram showing the configuration of the collision information notification system of the present embodiment. Hereinafter, each component will be described first, and then the operation flow of the present invention will be described.
[0014] 同図に示すように、本実施の形態の移動体 100は、移動体 100の移動に関する意 思情報に対して、他の移動体からみて自車が意図する以外の行動が推定される場 合に衝突の危険性を通知する衝突情報通知装置を備える移動体であって、位置情 報検出部 101、ノード系列変換部 102、地図情報蓄積部 103、意思情報検出部 104 、行動推定部 105、重複行動判定部 106、衝突危険性判定部 107、衝突情報通知 部 108及び行動規則蓄積部 111を備える。移動体 200は、衝突情報受信部 109及 び衝突情報表示部 110を備える。  [0014] As shown in the figure, the moving body 100 of the present embodiment estimates behavior other than the intention of the own vehicle from the viewpoint of other moving bodies, with respect to the intention information related to the movement of the moving body 100. Mobile device equipped with a collision information notification device for notifying the danger of collision in the event that the position information detection unit 101, node sequence conversion unit 102, map information storage unit 103, intention information detection unit 104, behavior estimation Unit 105, overlapping behavior determination unit 106, collision risk determination unit 107, collision information notification unit 108, and behavior rule accumulation unit 111. The moving body 200 includes a collision information receiving unit 109 and a collision information display unit 110.
[0015] また、移動体 100において、前記意思情報は、右折、左折および停止のいずれか の将来の行動の意思を示し、行動規則蓄積部 111は「前記意思情報が示す行動と 前記行動が行われうる移動経路上の範囲とを示す行動規則を蓄積する行動規則蓄 積手段」の一例であり、行動推定部 105及び重複行動判定部 106は「蓄積されてい る前記行動規則を参照して、検出された前記意思情報に対応する行動が、移動経 路上の前記範囲内で複数通り行われうるか否かを判定する前記重複行動判定手段」 の一例である。  [0015] Further, in the mobile object 100, the intention information indicates an intention of a future action of right turn, left turn, and stop, and the action rule accumulating unit 111 indicates that the action indicated by the intention information and the action are performed. This is an example of an action rule accumulating means for accumulating action rules indicating the range on the movement route that can be broken, and the action estimation unit 105 and the duplicate action determination unit 106 refer to the accumulated action rules as follows. This is an example of the “duplicate action determination unit” that determines whether or not a plurality of actions corresponding to the detected intention information can be performed within the range on the movement route.
[0016] さらに、位置情報検出部 101は、「前記移動体の地図上の現在位置を取得する現 在位置取得手段」の一例であり、地図情報蓄積部 103は「地図情報を蓄積する地図 情報蓄積手段」の一例であり、行動推定部 105及び重複行動判定部 106は「前記地 図情報と前記行動規則とを参照し、前記意思情報が検出されたときに取得された現 在位置を始点として、前記行動規則に示される行動が前記行動規則に示される範囲 内で複数通り行われうるか否かを判定する前記重複行動判定手段」の一例である。  Furthermore, the position information detection unit 101 is an example of “a current position acquisition unit that acquires a current position on the map of the mobile object”, and the map information storage unit 103 is “map information for storing map information”. The behavior estimation unit 105 and the duplicate behavior determination unit 106 refer to the map information and the behavior rules, and start from the current position acquired when the intention information is detected. As an example of the “duplicate action determination unit” that determines whether or not a plurality of actions indicated by the action rule can be performed within the range indicated by the action rule.
[0017] また、行動推定部 105及び重複行動判定部 106は、「前記意思情報が検出された ときに取得された現在位置を始点として、前記行動規則に示された移動経路上の範 囲内に、右折地点、左折地点および停止地点のうちの前記意思情報で示されるいず れかが複数あるか否かを判定し、前記移動経路上の範囲内に前記いずれかの地点 が複数ある場合に、前記意思情報に対して、前記移動体が複数通りの行動をとりうる と判定する前記重複行動判定手段」の一例である。 [0017] Further, the behavior estimation unit 105 and the duplicate behavior determination unit 106 indicate that "the intention information has been detected. There are multiple right turn points, left turn points, and stop points indicated by the intention information within the range on the movement route indicated in the action rule, starting from the current position acquired from time to time. The overlapping action that determines whether the moving body can take a plurality of actions with respect to the intention information when there are a plurality of any of the points in the range on the movement route. It is an example of “determination means”.
[0018] 移動体 100において、地図情報蓄積部 103は、「地図情報と、地図上の地点ごとに 、前記意思情報に対応する行動として選択し得る移動経路を示す地点情報とを蓄積 する地図情報蓄積手段」の一例であり、位置情報検出部 101は、「前記移動体の地 図上の現在位置を取得する現在位置取得手段」の一例であり、行動推定部 105及 び重複行動判定部 106は「前記意思情報が検出されたときに取得された現在位置の 前方直近にある地点について蓄積されている地点情報を参照し、検出された意思情 報に対して選択しうる複数の移動経路があるか否かを判定する前記重複行動判定手 段」の一例であり、衝突情報通知部 108は「前記重複行動判定手段によって複数の 移動経路があると判定された場合に、他の移動体との衝突の危険性に関する情報を 通知する前記衝突情報通知手段」の一例である。  [0018] In the moving body 100, the map information storage unit 103 stores "map information and point information indicating a moving route that can be selected as an action corresponding to the intention information for each point on the map. The position information detection unit 101 is an example of “current position acquisition unit for acquiring the current position on the map of the moving object”, and includes an action estimation unit 105 and an overlapping action determination unit 106. Refers to the point information accumulated for the point immediately in front of the current position acquired when the intention information is detected, and there are a plurality of movement routes that can be selected for the detected intention information. The collision information notification unit 108 is an example of the “duplicate action determination means for determining whether or not there is”, and the collision information notification unit 108 determines that “when the duplicate action determination unit determines that there are a plurality of movement paths, Information about the risk of collision It is an example of the said collision information notification means to notify.
[0019] 移動体 100における位置情報検出部 101は移動体 100の現在位置を検出する手 段である。例えばカーナビの場合、ユーザの現在位置を検出する GPSが備えられ、 約 1秒間隔など所定の間隔で緯度経度情報が検出される。本実施の形態において 位置情報検出部 101は GPS等で構成されるものとし、所定の間隔でユーザの移動と ともに位置情報として緯度経度情報を検出することとする。図 5は所定の間隔で検出 される位置情報の一例を示す図である。図 5においてユーザは華町 1交差点を右折 し、華 1京都通りを直進している。 白い丸印は検出された位置情報を示しており、ュ 一ザの移動に伴って所定の間隔で検出されることとなる。  The position information detection unit 101 in the moving body 100 is a means for detecting the current position of the moving body 100. For example, in the case of a car navigation system, a GPS for detecting the current position of the user is provided, and latitude and longitude information is detected at a predetermined interval such as an interval of about 1 second. In this embodiment, it is assumed that the position information detection unit 101 is configured by GPS or the like, and detects latitude and longitude information as position information along with the movement of the user at a predetermined interval. FIG. 5 is a diagram showing an example of position information detected at a predetermined interval. In Figure 5, the user turns right at Hanamachi 1 intersection and goes straight on Hana 1 Kyoto Street. White circles indicate the detected position information, and are detected at predetermined intervals as the user moves.
[0020] 地図情報蓄積部 103は地図情報を蓄積する手段である。カーナビ等に蓄積された 地図情報は施設やランドマークに関する情報に加え、例えば交差点や施設を一つの ノードとし、さらにそのノードとノードを結ぶリンクで経路を構造化した道路ネットワーク 情報を有しているのが一般的である。図 6は、地図情報蓄積部 103に蓄積されている 地図情報である道路ネットワークの一例を示す図である。図 6には、華町 1交差点に 該当する「N (ノード) 100」、華町 2交差点である「N101」が示されている。また華町 1 交差点と華町 2交差点を結ぶ経路である華 1京都通りは「L (リンク) 204」、また「N10 0」は「L204」の他、「L201」、「L202」、「L203」のリンクと結ばれている等、ノードや リンクの接続情報を有している。さらに「華町 1交差点」と「華町 2交差点」間、つまり「L 204」の距離は 400メートル等、リンクの長さ情報も有している。図 7は地図情報蓄積 部 103に蓄積された道路ネットワーク情報の一例を示した図である。地図は一般的に 所定のエリアに区切られ、エリアごとに存在する施設や交差点等のノードと、それらを 結ぶリンクの情報を蓄積している。図 7においてエリア ID「E01」は図 6に示すエリアと する。エリア ID「E01」に存在するノード情報として「N100」、「N101」、「N102」が蓄 積されている。さらに各ノードの情報とそのノードに接続するリンク情報が蓄積されて いる。「N100」は位置「統計 135度 34分、北緯 34度 33分」、名称「華町 1交差点」、 そして接続するリンクとして「L201」、「L201」の長さ 300メートル等、各リンクの情報 が付帯されている。 [0020] The map information storage unit 103 is means for storing map information. In addition to information about facilities and landmarks, the map information stored in car navigation systems has road network information that includes, for example, intersections and facilities as one node, and links are structured between the nodes. It is common. FIG. 6 is a diagram illustrating an example of a road network that is map information stored in the map information storage unit 103. Figure 6 shows the first intersection of Hanamachi The corresponding “N (node) 100” and “N101” which is the second intersection of Hanamachi are shown. In addition, Hana 1 Kyoto Street, which is the route connecting Hanamachi 1 intersection and Hanamachi 2 intersection, is “L (link) 204”, “N10 0” is “L204”, “L201”, “L202”, “L203” Connection information of nodes and links. Furthermore, it also has link length information such as the distance between “Hanamachi 1 intersection” and “Hanamachi 2 intersection”, that is, the distance of “L 204” is 400 meters. FIG. 7 is a diagram showing an example of road network information stored in the map information storage unit 103. A map is generally divided into predetermined areas and stores information about the nodes that exist in each area, such as facilities and intersections, and the links that connect them. In FIG. 7, the area ID “E01” is the area shown in FIG. As node information existing in the area ID “E01”, “N100”, “N101”, “N102” are stored. In addition, information on each node and link information connected to that node is stored. "N100" is the location "Statistics 135 degrees 34 minutes, North latitude 34 degrees 33 minutes", the name "Hanamachi 1 intersection", and the links to connect, such as "L201", "L201" length 300 meters, etc. Is attached.
[0021] ノード系列変換部 102は、地図情報をもとにユーザの移動に伴って検出された位 置情報である緯度経度を、ノードやリンクの IDの系列へと変換する手段である。一般 的にカーナビでは、 GPSで検出された緯度経度をもとに経路上へと、つまり前述の 道路ネットで示されたノードやリンクへとマップマッチングが行われている。これは検 出された緯度経度を道路ネットワークへマッチングすることで、この道路ネットワークを 用いて経路探索や誘導を行うためである。本実施の形態におけるノード系列変換部 102も同様に、地図情報をもとに、検出された位置情報からノード等の ID系列へと変 換する。  The node series conversion unit 102 is a means for converting latitude and longitude, which is position information detected as a user moves based on map information, into a node or link ID series. In general, in car navigation systems, map matching is performed on the route based on the latitude and longitude detected by GPS, that is, to the nodes and links indicated by the road network described above. This is because the detected latitude and longitude are matched to the road network, and route search and guidance are performed using this road network. Similarly, the node series conversion unit 102 in the present embodiment converts the detected position information into an ID series such as a node based on the map information.
[0022] 図 8は、地図情報をもとに検出された位置情報がノード系列へ変換される一例を示 す図である。図 5と同様に図 8においてユーザは、華町 1交差点を右折して華 1京都 通りを直進している。またこの移動に伴って、白い丸印で示す緯度経度が位置情報と して検出されている。ノード系列変換部 102は、地図情報を参照し、緯度経度の系列 をノード等の ID系列へと変換する。例えば図 8の場合、「L203→N100→L204」力 S 移動系列となる。また、本実施の形態ではこの ID系列への変換によってユーザの移 動方向も自動的に算出されることとなる。例えば図 8において現在 L204を走行して いるユーザは、 N100を通過してきている。従って L204を N100方向力、ら次の N101 方向、つまり左から右(東方向)へ向かって走行していることとなり、このようにノードや リンクの ID系列から移動方向が分かる。なお、移動方向については必ずしもこれら ID 系列から算出するのではなぐ検出された緯度経度から算出したり、ジャイロを用いて 算出したりすることとしてもよい。また緯度経度から道路ネットワークへの変換方法は、 垂直投影等、従来マップマッチング技術で知られており、ここでは問わないものとす FIG. 8 is a diagram illustrating an example in which position information detected based on map information is converted into a node series. Like FIG. 5, in FIG. 8, the user turns right at Hanamachi 1 intersection and goes straight on Hana 1 Kyoto Street. Along with this movement, latitude and longitude indicated by white circles are detected as position information. The node series conversion unit 102 converts the latitude / longitude series into an ID series such as a node with reference to the map information. For example, in the case of FIG. 8, the “L203 → N100 → L204” force S movement sequence is obtained. In this embodiment, the user's moving direction is automatically calculated by the conversion to the ID series. For example, in Fig. 8, The users who are passing through the N100. Therefore, L204 is traveling in the N100 direction force, the next N101 direction, that is, from left to right (eastward), and the moving direction can be known from the ID series of nodes and links in this way. Note that the moving direction may be calculated from the detected latitude and longitude instead of necessarily calculated from these ID sequences, or may be calculated using a gyro. In addition, the method of converting latitude and longitude into a road network is known in conventional map matching techniques such as vertical projection, and is not a problem here.
[0023] 意思情報検出部 104は、ユーザが他者に対して自分の行動意思を示す意思情報 を検出する手段である。例えば車両の場合、ウィンカーの情報などが意思情報に該 当する。例えば右ウィンカーは右折、左ウィンカーは左折や路肩への停車を意味す る。また、交差点においてウィンカーを出さないことも、直進の意思表示を意味する。 さらに、道路規則として存在するものではないが、ヘッドランプを点滅させて道を譲つ たり、ハザードランプを点灯させて停車や後方車へ注意を喚起するために用いられ たりすることもあり、ここでは道路規則として存在する意思表示のみならず、一般的に 運転者によく知られている意思情報を含むものとする。 [0023] The intention information detection unit 104 is means for detecting intention information indicating a user's intention to act against others. For example, in the case of a vehicle, winker information corresponds to intention information. For example, a right turn signal means a right turn, a left turn signal means a left turn or a stop on the shoulder. Moreover, not giving a winker at the intersection also means a straight forward intention display. Furthermore, although it does not exist as a road rule, it may be used to flash the headlamps and give way, or to turn on the hazard lamps and call attention to the stop or the rear vehicle. In addition, not only intention indications that exist as road rules but also intention information that is generally well known to the driver.
[0024] 行動推定部 105は位置情報検出部 101で検出された位置情報、つまり本実施の 形態ではノード系列変換部 102で変換されたユーザの現在の移動経路と、意思情報 検出部 104で検出されたユーザの意思に関する情報、さらに地図情報蓄積手段に 蓄積された地図情報をもとに将来の行動を推定する手段である。以下、具体例を用 いて説明する。  [0024] The behavior estimation unit 105 detects the location information detected by the location information detection unit 101, that is, the current travel route of the user converted by the node sequence conversion unit 102 and the intention information detection unit 104 in this embodiment. It is a means to estimate future behavior based on the information about the user's intention and the map information stored in the map information storage means. Hereinafter, a specific example will be described.
[0025] 図 9は移動体の意思表示と将来行動の一例を示す図である。図 9においてユーザ は華 1京都通り(L205)を裏華 1交差点方向へ直進している。そして後に左ウィン力 一を出したとする。意思情報検出部 104はこのウィンカー情報を検出し、左折する意 思を検出することとなる。一方、行動推定部 105は、地図情報よりどこを左折しようとし ているのか、将来の行動を推定することとなる。本例の場合、まず 10メートル前方に は裏華 1交差点(N102)が存在し、左折して裏華通り (L210)へ向力、うと考えられる。 一方、さらに L206を直進した 20メートル前方には華町 3交差点(N103)が存在し、 華町 3交差点(N103)を左折して大華通り(L209)へ向力、うとも考えられる。一般的 にドライバ一は、右左折する交差点の手前約 30メートルからウィンカーを出すものと されているが、一方で、右左折地点や停車する地点の直前でウィンカーを出す場合 もある。したがって、例えば交差点が近接しているような場合、いずれの交差点を曲 力 ¾のか分からず、複数の行動が考えられる場合もある。例えば本例の場合、 30メー トル手前の原則からすると華町 3交差点を左折ということになるが、一方で一般的に は右左折の手前でウィンカーを出す場合も多ぐ 10メートル前方の裏華 1交差点を左 折するとも考えられることとなる。そしてこのような場合に、ある一方の行動をとると思 い込んだ第三者と、実際は他方の行動をとつたユーザとが衝突してしまい、事故の原 因となること可能性が高い。そこで行動推定部 105は地図情報をもとに、ユーザの走 行して!/、る経路と意思情報とから、このような複数の将来の行動を推定する。 [0025] FIG. 9 is a diagram showing an example of intention display and future behavior of a mobile object. In Fig. 9, the user goes straight on Hana 1 Kyoto Street (L205) toward the back Hana 1 intersection. And later, let's assume that the left wing force is one. The intention information detection unit 104 detects the blinker information and detects the intention to turn left. On the other hand, the behavior estimation unit 105 estimates the future behavior from the map information where the left is going to turn. In the case of this example, it is thought that there is an Urahana 1 intersection (N102) 10 meters ahead, and turn left to Urahua Street (L210). On the other hand, there is the Hanamachi 3 intersection (N103) 20 meters ahead straight ahead on L206, and it is thought that turning left at Hanamachi 3 intersection (N103) toward Dahua Street (L209). general The driver is expected to give a blinker from about 30 meters before the intersection where the vehicle turns right or left. On the other hand, the driver may issue a blinker just before the point where the vehicle turns or stops. Therefore, for example, when intersections are close to each other, a plurality of actions may be considered without knowing which intersection is the curvature. For example, in the case of this example, according to the principle of 30 meters before, it would turn left at the 3rd intersection of Hanamachi. It would be possible to turn left at one intersection. In such a case, there is a high possibility that a third party who thinks to take one action will collide with a user who actually takes the other action, causing an accident. Therefore, the behavior estimation unit 105 estimates such a plurality of future behaviors based on the map information from the user's travel! / Route and intention information.
[0026] 例えば本実施の形態では、行動規則蓄積部 111に蓄積された行動規則を参照し て行動を推定することとする。図 10は行動規則蓄積部 111に蓄積された行動規則の 一例である。行動規則には、意思情報と、その意思情報に対応して行われる行動、さ らにその行動が行われる範囲に関する規則を蓄積しているものとする。例えば行動 規則「001」には意思情報「左ウィンカー」、行動「左折」、範囲「移動方向に 50m (メ 一トル)以内」と規則が蓄積されている。これは左ウィンカーを出した場合、移動方向 に 50メートル以内の地点で左折行動をとる旨を表している。なお、 30メートルとせず に 50メートルとしたのは、ユーザによってはより事前に出す場合もあり、フェールセー フの観点からより高い安全性を確保するため、許容範囲を考慮したものである。  For example, in the present embodiment, the behavior is estimated with reference to the behavior rules accumulated in the behavior rule accumulation unit 111. FIG. 10 shows an example of behavior rules stored in the behavior rule storage unit 111. In the action rules, it is assumed that rules regarding intention information, actions to be performed in response to the intention information, and the scope of the actions to be performed are accumulated. For example, the action rule “001” stores the intention information “left winker”, the action “left turn”, and the range “within 50 m (metre) in the moving direction”. This means that if you take the left turn signal, you will make a left turn at a point within 50 meters in the direction of movement. Note that setting 50 meters instead of 30 meters may be given in advance depending on the user, and the allowable range is taken into consideration in order to ensure higher safety from the viewpoint of fail-safety.
[0027] まず行動推定部 105は、位置情報検出部 101で検出される現在の位置と、意思情 報検出部 104で検出された意思情報をもとに行動規則を参照し、意思に対応する行 動が可能な地点を検索する。図 11はユーザの現在位置とその位置で検出されたュ 一ザの意思情報の一例を示す図である。図 11においてユーザは現在「東経 136度 0 1分、北緯 34度 55分」の地点で、意思情報である左ウィンカーを出したと検出される 。なお、ユーザが向力、う移動方向は前述のようにノードの ID系歹 IJ、あるいはジャイロや 位置情報の差分等から華 1京通り(L205)を東方向に向かっている旨が算出されて いる。行動規則を参照すると左ウィンカーは範囲「移動方向に 50メートル」内におい て「左折」する旨が記されてレ、る。そこで華 1京通りから 50メートル以内であって左折 が可能な地点を検索する。地図情報には図 7に示すように交差点など各ノードの緯 度経度情報が蓄積されており、この緯度経度情報をもとに移動方向の 50メートル内 に左折が可能な地点を検索することとなる。 [0027] First, the behavior estimation unit 105 refers to a behavior rule based on the current position detected by the location information detection unit 101 and the intention information detected by the intention information detection unit 104, and responds to the intention. Search for points where action is possible. FIG. 11 is a diagram showing an example of the current position of the user and the intention information of the user detected at that position. In FIG. 11, it is detected that the user has issued a left blinker, which is intention information, at a point of “136 degrees 0 1 minute east longitude, 34 degrees 55 minutes north latitude”. It should be noted that the user's direction and direction of movement are calculated from the node ID system 歹 IJ, gyroscope and position information differences, etc. as described above to indicate that they are heading east on Hua 1 Kyo Street (L205). Yes. Referring to the rules of action, the left turn signal is marked as “turn left” within the range “50 meters in the direction of movement”. So within 50 meters from Hana 1kyo Street, turn left Search for possible locations. As shown in Fig. 7, latitude and longitude information of each node such as an intersection is accumulated in the map information. Based on this latitude and longitude information, a search is made for a point where a left turn is possible within 50 meters of the moving direction. Become.
[0028] まず、華 1京都通り(L205)上のから東方向には裏華 1交差点(N102)と、さらに東 方向に華町 3交差点(N103)が存在し、これら交差点の緯度経度情報を参照すると 裏華 1交差点(N102)の位置が「東経 136度 02分、北緯 34度 55分」、華町 3交差点 (N103)の位置が「東経 136度 04分、北緯 34度 55分」となっている。現在位置であ る「東経 136度 01分、北緯 34度 55分」と裏華 1交差点の「東経 136度 02分、北緯 34 度 55分」までの距離の差は 10メートル、華 3交差点の「東経 136度 04分、北緯 34度 55分」までの距離の差は 30メートルであり、したがって行動規則の範囲である「移動 方向に 50メートル内」にいずれも含まれるため、これらが行動可能な地点として検索 される。さらにユーザが現在走行する華 1京通り(L205)力、ら東方向への移動に対す る左折とは、裏華 1交差点(N102)の場合は裏華通り (L210)、華 3交差点(N103) の場合は大華通り(L209)であり、これらが将来行動として算出される。そこで行動推 定部では将来行動「001」として裏華 1交差点を左折して裏華通りを進む行動、すな わち「N102→ (から) L210」と、将来行動「002」として華 3交差点を左折して大華通 りを進む行動、すなわち「N102→L206→N103→L209」を将来の行動として推定 する。 [0028] First, Hana 1 Kyoto Street (L205) is located on the east from the Urahana 1 intersection (N102), and further to the east, the Hanamachi 3 intersection (N103). If you refer, the location of Urahana 1 intersection (N102) is “136 degrees 02 minutes east longitude, 34 degrees 55 minutes north latitude”, and the location of Hanamachi 3 intersection (N103) is “136 degrees 04 minutes east longitude 34 degrees 55 minutes north latitude”. It has become. The difference in distance between the current position of 136 degrees 01 minutes east longitude 34 degrees 55 minutes north latitude and the intersection of Urahana 1 intersection 136 degrees 02 minutes east longitude 34 degrees 55 minutes north latitude is 10 meters and The difference in distance to “East 136 degrees 04 minutes, North latitude 34 degrees 55 minutes” is 30 meters, and therefore, they are included in the range of action rules, “within 50 meters in the direction of movement”, so these can act. It is searched as a special point. Furthermore, the left turn for the eastward movement of Hua 1 Kyo Street (L205), which the user is currently traveling, means Ura Hua Street (L210) and Hua 3 Intersection (N103 ) Is Dahua Street (L209), and these are calculated as future actions. Therefore, the action estimation unit turns the left side of Urahana 1 intersection into the future action “001” and proceeds along Urahana Street, that is, “N102 → (from) L210”, and the future action “002”, the Hana 3 intersection. Turn left on the road and proceed through Dahua Street, that is, “N102 → L206 → N103 → L209” is estimated as the future action.
[0029] 重複行動判定部 106は行動推定部 105で推定された将来の行動が重複して!/、る か否力、を判定する手段である。重複行動とは、ユーザの示す同じ意思情報に対して 行い得る複数の行動を指す。すなわち、ユーザの示す意思情報から推定される行動 がーつの場合、第三者はその行動に対する回避行動をとることができる力 S、前述のよ うに一般的に衝突事故は、ユーザの示す意思情報から推定される行動が複数存在 するような場合に生じることも多い。そこで、このような衝突を防ぐために重複行動判 定部 106は、行動推定部 105で推定された将来の行動が重複して!/、るか否かを判 定する。例えば行動推定部 105で複数行動が推定された場合、重複していると判定 することとなる。  [0029] The duplicate action determination unit 106 is a means for determining whether or not future actions estimated by the action estimation unit 105 are duplicated! /. Duplicate behavior refers to multiple actions that can be performed on the same intention information indicated by the user. In other words, when there is only one action estimated from the intention information indicated by the user, the third party is able to take an avoidance action against that action S. As described above, a collision accident is generally indicated by the intention information indicated by the user. This often occurs when there are multiple actions estimated from the above. Therefore, in order to prevent such a collision, the duplicate action determination unit 106 determines whether or not future actions estimated by the action estimation unit 105 are duplicated! /. For example, when a plurality of actions are estimated by the action estimating unit 105, it is determined that the actions overlap.
[0030] 衝突危険性判定部 107は、重複行動判定部 106において重複行動があると判定さ れた場合、さらに第三者との衝突危険性を判定する手段である。例えばここでは衝突 の危険性のある領域を判定するものとする。以下、図を用いて説明する。 [0030] The collision risk determination unit 107 determines that there is an overlapping action in the overlapping action determination unit 106. In this case, it is a means for determining the risk of collision with a third party. For example, it is assumed here that an area where there is a risk of collision is determined. This will be described below with reference to the drawings.
[0031] 図 12は、ユーザの将来行動に対して第三者との衝突の危険性がある領域につい て説明する図である。図 9と同様、ユーザ (ここでは車両 1とする)は左折行動の意思 を示している。一方で前述のように車両 1は、裏 1交差点を左折する行動と、華 3交差 点を左折する行動との二つが推定されて!/、る。このような場合に第三者と衝突する可 能性が生じる。例えば図 12において対向車 2のユーザは、車両 1が裏華 1交差点を 左折すると思レ、込み、自分は華町 3交差点を右折して大華通りへ進んでしまうかもし れない。一方、車両 1が実際は華 1交差点ではなく華 3交差点を左折する場合、華町 3交差点(N103)で両者は衝突してしまう可能性が生じる。さらに車両 2にとつては車 両 1は裏 1交差点を左折するものと思い込んでしまっているため、より気づくのが遅れ 、衝突の危険性はさらに増してしまう可能性がある。また、衝突の危険性は対向車に 限ったものではない。例えば歩行者 4の場合も同様に、車両 1が裏華 1交差点を左折 すると思い込み、例えば華 1京都通りを横断しょうとした場合、実際は華町 3交差点を 左折するため直進してきた車両 1と裏 1交差点と華町 3交差点間の L206で衝突して しまう場合もある。あるいは同様の思い込みから、大華通りを横断し、華町 3交差点を 左折してきた車両 1と L209で衝突してしまう場合もある。一方、逆の場合もある。例え ば歩行者 3からすると、車両 1は裏華 1交差点ではなく華 3交差点を左折すると思い、 裏華通りを横断してしまい、実際は車両 1が裏華 1交差点を左折した場合、 L210で 衝突してしまう可能性が生じる。  FIG. 12 is a diagram for explaining an area where there is a risk of collision with a third party with respect to the future behavior of the user. As in Fig. 9, the user (in this case, vehicle 1) shows his intention to turn left. On the other hand, as described above, vehicle 1 is estimated to have two actions: a left turn at the back 1 intersection and a left turn at the Hua 3 intersection! In such a case, there is a possibility of collision with a third party. For example, in FIG. 12, the user of oncoming vehicle 2 thinks that vehicle 1 turns left at Urahana 1 intersection, and he may turn right at Hanamachi 3 intersection and proceed to Dahua Street. On the other hand, if the vehicle 1 actually turns left at the Hana 3 intersection instead of the Hana 1 intersection, the two may collide at the Hanamachi 3 intersection (N103). In addition, for vehicle 2, vehicle 1 assumes that it will turn left at the back 1 intersection, so it will be delayed to notice and the risk of a collision may be further increased. Also, the danger of collision is not limited to oncoming vehicles. For example, in the case of pedestrian 4 as well, assuming that vehicle 1 turns left at Urahana 1 intersection, for example, if you try to cross Hana 1 Kyoto Street, it is actually behind car 1 that went straight to turn left at Hanamachi 3 intersection. There may be a collision at L206 between 1 intersection and Hanamachi 3 intersection. Or, from the same assumption, there may be a collision with vehicle L1 that crosses Dahua Street and turns left at Hanamachi 3 intersection. On the other hand, there is a reverse case. For example, from the viewpoint of pedestrian 3, if vehicle 1 thinks that it will turn left at Hua 3 intersection instead of Urahana 1 intersection, it will cross Urahana street, and if vehicle 1 actually turns left at Urahana 1 intersection, it will collide at L210 There is a possibility that it will.
[0032] このように衝突事故は、考えられる行動が複数存在するような状況で起きることも多 ぐこのような衝突事故を回避するために衝突危険性判定部 107は、重複行動が生 じた場合、衝突の危険性のある領域を判定する。例えば行動に重複が生じた場合、 両行動の異なる地点を危険性の生じる領域として判定することとする。例えば図 12の 場合、将来行動として 2つの行動が推定されている。具体的には将来行動「001」とし て「N102→L210」、 4導来 fi動「002」として「N102→L206→N103→L209」カ推 定されている。そして両行動のうち異なる領域は裏華 1交差点を左折した場合の「L2 10」と、直進して華町 3交差点を左折した場合の「L206→N103→L209」となり、し たがってこれらが衝突の可能性がある衝突領域として判定する。 [0032] As described above, a collision accident often occurs in a situation where there are a plurality of possible actions. In order to avoid such a collision accident, the collision risk judgment unit 107 causes duplicate actions. If this is the case, determine the area at risk of collision. For example, when there is an overlap in behavior, a point where both behaviors are different is determined as an area where danger occurs. For example, in the case of Fig. 12, two actions are estimated as future actions. Specifically, “N102 → L210” is assumed as the future action “001”, and “N102 → L206 → N103 → L209” is assumed as the four derived fi movement “002”. The different areas of the two actions are “L2 10” when turning left at Urahana 1 intersection and “L206 → N103 → L209” when going straight ahead and turning left at Hanamachi 3 intersection. Therefore, these are determined as collision areas where there is a possibility of collision.
[0033] 衝突情報通知部 108は、衝突危険性判定部 107で判定された衝突の危険性に関 する情報を通知する手段である。従来、ミリ波やマイクロ波などを利用して車両間で 通信を行い安全走行の支援を行う、いわゆる車々間通信に関する技術が開示されて いる。この車々間通信では、一般的に車両の IDや現在位置、速度などを送信し、例 えば交差点での出会い頭衝突などを防止するために利用される。またその通信方式 は、車両が自車の ID、位置、速度を周囲(例えば数十メートル等)の不特定多数に一 方的に送信するブロードキャスト型があり、受信した各車両は、受信内容に応じて表 示を行ったり、警告を行ったりする。一方、所定の車両間で互いに位置や速度などを 通信し合い、協調走行を行う PtoP型の通信方式もある。さらにそれらを状況に応じて 切り替えるハイブリッド式などもある。ここでは、いわゆるブロードキャスト型での実施 の形態で説明を行うこととする。 The collision information notification unit 108 is means for notifying information on the risk of collision determined by the collision risk determination unit 107. Conventionally, a technique related to so-called inter-vehicle communication has been disclosed in which communication between vehicles using millimeter waves or microwaves is performed to support safe driving. In this inter-vehicle communication, the vehicle ID, current position, speed, etc. are generally transmitted, and used to prevent encounter collisions at intersections, for example. In addition, the communication method is a broadcast type in which the vehicle transmits the ID, position, and speed of the vehicle to an unspecified number of people around the vehicle (for example, several tens of meters). Display or warn accordingly. On the other hand, there is also a PtoP type communication method in which predetermined vehicles communicate with each other in terms of position, speed, etc. and perform cooperative driving. There is also a hybrid system that switches them according to the situation. Here, a description will be given with a so-called broadcast type embodiment.
[0034] 例えば図 4のシステム構成図において、移動体 100の衝突情報通知部 108は所定 の範囲(例えば数十メートル内)に衝突の危険性に関する情報を通知する。車々間 通信では、上記にあるように自車の車両の ID、速度、位置などを送信するのが一般 的であるが、本実施の形態における衝突情報通知部は、これらに加え、衝突危険性 判定部 107で判定された衝突領域を通知することとする。一方、移動体 200は受信 する側の移動体であり、衝突情報受信部 109でこれらを受信し、衝突情報表示部 11 0によって衝突の危険性に関する情報を表示する。以下、図を用いて具体例を説明 する。 For example, in the system configuration diagram of FIG. 4, the collision information notification unit 108 of the moving body 100 notifies information related to the risk of collision within a predetermined range (for example, within several tens of meters). In vehicle-to-vehicle communication, it is common to transmit the ID, speed, position, etc. of the vehicle of the host vehicle as described above, but in addition to these, the collision information notification unit in this embodiment determines the collision risk. The collision area determined by the unit 107 is notified. On the other hand, the moving body 200 is a receiving-side moving body, which is received by the collision information receiving unit 109 and displays information on the danger of collision by the collision information display unit 110. Specific examples will be described below with reference to the drawings.
[0035] 図 13は、例えばカーナビゲーシヨン (カーナビ)などの表示画面である衝突情報表 示部 110における表示の一例を示したものである。状況は図 12に示すものと同様と する。  FIG. 13 shows an example of display on the collision information display unit 110 which is a display screen of, for example, car navigation (car navigation). The situation is similar to that shown in Figure 12.
[0036] 具体的には、今、華 1京都通りを車両 1が直進してきており、さらに車両 1が左折意 思を示している力 この意思をもとに車両 1において衝突領域が判定され、通知され たこれらの情報を対向車である車両 2が受信し、その車両 2におけるカーナビの画面 を示したものである。  [0036] Specifically, the vehicle 1 is currently traveling straight on Kyoto 1 on Hana 1 Kyoto Street, and further, the vehicle 1 has a left turn intention. Based on this intention, the collision area is determined in the vehicle 1, The notified information is received by the vehicle 2 that is the oncoming vehicle, and the car navigation screen of the vehicle 2 is shown.
[0037] 今、華 1京都通りを車両 1が直進してきている。なお、これは車両 ID、位置、速度を 通知する従来の車々間通信の技術で可能である。さらに車両 1が左折意思を示して いる力 この意思をもとに車両 1において衝突領域が判定され、通知されたこれらの 情報をもとに例えば矢印でその領域を示し、さらに「対向車に注意してください」と衝 突の可能性がある旨を表示している。対向車である車両 2からすると、車両 1の左折 ウィンカーのみでは裏華 1交差点へ左折するであろうと思い込み、もし華町 3を右折し ようとしていた場合、衝突してしまう恐れがある力 図 13に示すように重複行動より判 定された衝突領域を表示することで注意を促し、安全に走行することが可能となる。 [0037] Now, Vehicle 1 is going straight on Hana 1 Kyoto Street. Note that this is the vehicle ID, position and speed. This is possible with conventional inter-vehicle communication technology that provides notification. In addition, the force that vehicle 1 shows the intention to turn left Based on this intention, the collision area is determined in vehicle 1, and the area is indicated by, for example, an arrow based on the notified information. Please indicate ", there is a possibility of a collision. From vehicle 2, which is an oncoming vehicle, it is assumed that a left turn of vehicle 1 alone would make a left turn to Urahana 1 intersection, and if it was going to turn right at Hanamachi 3, there was a risk of collision. As shown in Fig. 5, it is possible to drive safely by displaying the collision area determined from the overlapping behaviors.
[0038] 図 14は本実施の形態の衝突情報通知システムでユーザの将来行動を推定し衝突 情報を表示するまでの動作の一例を示すフローチャートである。図 15は将来行動の 推定における具体的動作の一例を示すフローチャートである。以下、図 14、図 15の フローチャートを用いて本発明の動作を説明する。  FIG. 14 is a flowchart showing an example of an operation until the user's future action is estimated and the collision information is displayed in the collision information notification system of the present embodiment. FIG. 15 is a flowchart showing an example of a specific operation in estimating future actions. The operation of the present invention will be described below with reference to the flowcharts of FIGS.
[0039] まず位置情報検出部 101で位置情報を検出する (ステップ S 101)。そして地図情 報蓄積部 103に蓄積された地図情報を参照し (ステップ S102)、例えば緯度経度情 報で検出された位置情報をノード系列へと変換する (ステップ S 103)。またその間、 意思情報検出部 104で意思情報を検出する。例えば右左折ウィンカーなど、意思情 報が検出されるか否かを検出し (ステップ S 105)、検出された場合はステップ S105 へと進み、検出されない場合はステップ S101へと戻り、本動作のループを繰り返す。 ユーザの走行に伴って位置情報および意思情報が検出されることとなる。  First, the position information detecting unit 101 detects position information (step S 101). Then, the map information stored in the map information storage unit 103 is referred to (step S102), and for example, position information detected in the latitude / longitude information is converted into a node series (step S103). Meanwhile, the intention information is detected by the intention information detection unit 104. For example, it is detected whether or not intention information such as a right / left turn blinker is detected (step S 105) .If it is detected, the process proceeds to step S 105, and if not detected, the process returns to step S 101, and the loop of this operation is performed. repeat. Position information and intention information are detected as the user travels.
[0040] ステップ S105において意思情報が検出された場合(ステップ S105の Yes)、行動 規則蓄積部 111に蓄積された行動規則を参照する (ステップ S106)。そして地図情 報蓄積部 103に蓄積された地図情報を参照し (ステップ S107)、行動推定部 105に お!/、て将来の行動を推定することとなる(ステップ S 108)。  [0040] When intention information is detected in step S105 (Yes in step S105), the behavior rule stored in the behavior rule accumulation unit 111 is referred to (step S106). Then, the map information stored in the map information storage unit 103 is referred to (step S107), and the behavior estimation unit 105 estimates the future behavior (step S108).
[0041] 図 15は将来行動の推定の動作フローを示したものである。将来行動の推定は、行 動規則のうち、まず検出された意思情報に対応する行動を参照し (ステップ S201)、 行動の範囲を参照する (ステップ S202)。例えば図 10に示すように行動規則が蓄積 されており、例えば左ウィンカーが検出された場合、 50メートル内で左折行動がとら れることとなる。一方、位置情報検出部 101で検出されているユーザの現在位置を参 照し (ステップ S203)、地図情報蓄積部 103に蓄積された地図情報を参照し (ステツ プ S204)、その行動が可能な地点を算出する(ステップ S205)。そして該当する地 点が存在するか否かを判定する (ステップ S 206)。可能な地点が存在する場合 (ステ ップ S206の Yes)は、ステップ S207へ進み、存在しない場合は(ステップ S206の N o)、将来行動の推定を終了する。例えば図 9の場合、裏華交差点(N102)と華町 3 交差点(N103)の 2つの地点が左折可能と推定されることとなる。 FIG. 15 shows an operation flow for estimating future actions. To estimate the future behavior, first, the behavior corresponding to the detected intention information is referred to in the action rule (step S201), and the range of the behavior is referred to (step S202). For example, as shown in Fig. 10, action rules are accumulated. For example, when a left winker is detected, a left turn action is taken within 50 meters. On the other hand, the current position of the user detected by the position information detection unit 101 is referred to (step S203), and the map information stored in the map information storage unit 103 is referred to (step S203). S204), and calculates the point where the action is possible (step S205). Then, it is determined whether or not the corresponding point exists (step S206). If there is a possible point (Yes in step S206), the process proceeds to step S207. If not (No in step S206), the estimation of the future action is terminated. For example, in the case of Fig. 9, it is estimated that two points, the Urahana intersection (N102) and the Hanamachi 3 intersection (N103), can be turned left.
[0042] 該当地点が存在すると判定された場合 (ステップ S206の Yes)、次に各地点移行 の行動を推定することとなる。まず、一方の地点にフラグをセットし (ステップ S207)、 当該地点移行の行動を推定する (ステップ S 208)。例えば図 9の場合、まず裏華交 差点(N102)を左折し、裏華通り(L210) 進む経路が将来行動として推定される。 次に残りの地点での行動を推定するために、フラグがセットされていない地点が存在 するか否かを判定し (ステップ S209)、存在する場合はステップ S207へと戻り、上記 動作を繰り返す。図 9の場合、他方の華町 3交差点(N103)までの経路と、左折した 大華通り(L209)への経路が将来行動として推定される。すべての地点に対して将 来行動の推定が行われた場合(ステップ S209の No)、将来行動の推定を終了する [0042] If it is determined that the corresponding point exists (Yes in step S206), then the behavior of transition to each point is estimated. First, a flag is set at one point (step S207), and the behavior of the point shift is estimated (step S208). For example, in the case of Fig. 9, the left turn at the Urahana intersection (N102) is first made, and the route forwarded to Urahua Street (L210) is estimated as the future action. Next, in order to estimate the behavior at the remaining points, it is determined whether or not there is a point where the flag is not set (step S209). If there is a point, the process returns to step S207 and the above operation is repeated. In the case of Fig. 9, the route to the other Hanamachi 3 intersection (N103) and the left turn to Dahua Street (L209) are estimated as future actions. When future behavior is estimated for all points (No in step S209), the estimation of future behavior is terminated.
[0043] 次に重複行動判定部 106において将来行動が複数あるか否かの判定を行う(ステ ップ S 109)。複数存在する場合は(ステップ S109の Yes)、ステップ S210へ進み、 複数存在しない場合は(ステップ S 109の No)、ステップ S 101へと戻る。 Next, it is determined whether or not there are a plurality of future actions in the overlapping action determination unit 106 (step S 109). If there are a plurality (Yes in Step S109), the process proceeds to Step S210. If there is not a plurality (No in Step S109), the process returns to Step S101.
[0044] 複数存在する場合 (ステップ S 109の Yes)、衝突危険性判定部 107において衝突 の危険性を判定する。例えば衝突の危険性のある領域を判定する (ステップ S 110) 。例えば推定された将来行動のうち、異なる地点をその領域とする。例えば図 12に 示すようにことなる領域である L206 N103 L210 L209では第三者と衝突する可 能性があるため、これらを衝突領域とすることで危険を回避することが可能となる。  [0044] If there are multiple items (Yes in step S109), the collision risk determination unit 107 determines the risk of collision. For example, an area where there is a risk of collision is determined (step S110). For example, a different point in the estimated future behavior is set as the region. For example, since L206 N103 L210 L209, which is a different area as shown in FIG. 12, may collide with a third party, it is possible to avoid danger by using these areas as collision areas.
[0045] 次に衝突情報通知部 108におレ、て衝突情報を通知する(ステップ S 111)。一方、 第三者側では、衝突情報受信部 109において衝突情報を受信し (ステップ S112)、 衝突情報表示部 110において衝突情報表示する (ステップ S 113)。図 13は、衝突情 報の表示の一例であり、左折しょうとしている対向車は、矢印で示すように複数の行 動をとる可能性があると推定できるため、注意するようドライバーに喚起している。これ により、衝突の危険性を回避し、より安全に走行することが可能となる。 Next, the collision information notification unit 108 is notified of the collision information (step S 111). On the other hand, on the third party side, the collision information receiving unit 109 receives the collision information (step S112), and the collision information display unit 110 displays the collision information (step S113). Figure 13 shows an example of the collision information display. Since it can be estimated that the oncoming vehicle trying to make a left turn may take multiple actions as indicated by the arrows, the driver should be alerted. Yes. this Thus, it is possible to avoid the risk of collision and to travel more safely.
[0046] なお、本実施の形態において、意思情報をもとに推定される将来行動は、行動規 則蓄積部 111に蓄積された行動規則をもとに推定を行っていた。具体的には、図 10 に示すように左ウィンカーが出された場合、 50メートルの範囲で左折するという行動 規則をもとに、地図情報力 左折が可能な地点を複数算出して行動の推定を行って いた。しかしながら将来行動の推定はこれに限ったものではない。以下、具体例を用 いて説明を行う。 In the present embodiment, the future behavior estimated based on the intention information is estimated based on the behavior rule stored in the behavior rule storage unit 111. Specifically, as shown in Fig. 10, when a left winker is issued, based on the behavior rule of turning left within a range of 50 meters, the map information ability is calculated by calculating multiple points where left turn is possible and estimating the behavior. I was doing. However, the estimation of future behavior is not limited to this. Hereinafter, explanation will be given using a specific example.
[0047] 図 16は、複雑な分岐経路を有する交差点におけるユーザの意思情報とそれに対し て取りうる将来行動の一例を示した図である。図 16には、阪神 1通り、京都 2通り、奈 良 3通り、裏山 5通りが楽 4交差点で交差する五差路になっている。経路は必ずしも 通りが直角に交差した四方向の交差点とは限らず、場所によってさまざまな道路形状 をしたものが存在する。さらに、このような複雑な経路ほどユーザの意図する行動と、 第三者の認識に誤差が生じ、さらには両者が衝突してしまうこと場合も多い。例えば 図 16において、車両 2は阪神 1通りを楽 4交差点方向へ直進しているものとする。一 方、車両 1は奈良 3通りを楽 4交差点方向へ直進しており、今、左折ウィンカーを出し て左折の意思表示をしているとする。ここで車両 2のユーザは、車両 1が楽 4交差点を 左折して阪神 1通りを直進すると考え、そのまま直進してしまう。一方、車両 1のユー ザにとって左折の意思表示は裏山 5通りへ向かう道を意味しており、裏山 5通りへの 経路を通る力、もしれない。そしてそのような場合、両者は楽 4交差点を裏山 5通りへ向 力、う地点で衝突してしまう可能性が生じる。  [0047] FIG. 16 is a diagram showing an example of user intention information at an intersection having a complicated branch route and future actions that can be taken in response thereto. In Fig. 16, Hanshin 1 Street, Kyoto 2 Street, Nara 3 Street, Urayama 5 Street are five-way intersections that cross at Raku 4 intersection. The route is not necessarily a four-way intersection where the streets intersect at right angles, but there are various road shapes depending on the location. In addition, the more complicated the route, the more likely the user's intended behavior and the third party's recognition will be, and the more they will collide. For example, in Fig. 16, it is assumed that vehicle 2 is traveling straight on Hanshin 1 street in the direction of Raku 4 intersection. On the other hand, suppose that vehicle 1 is going straight on Nara 3 streets in the direction of 4 easy intersections, and is now making a left turn blinker and indicating the intention to turn left. Here, the user of the vehicle 2 thinks that the vehicle 1 turns left at the Raku 4 intersection and goes straight on Hanshin 1 street, and goes straight ahead. On the other hand, the intention to turn left for the user of vehicle 1 means the way to 5 back hills, and may not be the force along the route to 5 back hills. And in such a case, both sides are going to the Raku 4 intersection to Urayama 5 streets, and there is a possibility that they will collide.
[0048] 図 17は図 16と同様の経路であって、車両 1が右折表示をした場合に起こりうる一例 である。例えば車両 1のユーザにとって右折は、楽 4交差点を京都 2通りへ向かう経 路を意味しているとする。一方歩行者 3にとつては、右折は楽 4交差点を阪神 1通り( L213)へ向かう経路と思い込み、京都 2通りを横断してしまうことがある。このような場 合、やはり両者が衝突してしまう可能性が生じる。このように衝突は、一方の意思情報 と実際の行動と、他方が思う行動とに差異がある場合に生じることが多ぐさらに本例 に示すように、経路が複雑であるような場合、その重複する行動も様々なパターンを 有する。そこで、単に図 10に示すような行動規則のみならず、例えば地点ごとに意思 情報に対応して取りうる複数の行動に関する情報 (以下、地点情報とする)を蓄積し、 検出される意思情報と位置に応じて地点情報を参照し、将来の行動を推定することと してもよい。そしてその地点情報は、例えば地図情報蓄積部 103に蓄積された地図 情報の一つである道路ネットワークとして蓄積することが可能である。 FIG. 17 is the same route as FIG. 16, and is an example that may occur when the vehicle 1 makes a right turn display. For example, for the user of vehicle 1, the right turn means a route that goes from the Raku 4 intersection to Kyoto 2 streets. On the other hand, for pedestrian 3, the right turn may be assumed to be a route to Raku 4 intersection to Hanshin 1st Street (L213) and cross 2 Kyoto streets. In such a case, there is a possibility that both will collide. In this way, collisions often occur when there is a difference between the intention information of one side and the actual behavior of the other side and the behavior that the other side thinks. Overlapping behavior also has various patterns. Therefore, not only the action rules shown in Fig. 10, Information on multiple actions that can be taken in response to information (hereinafter referred to as point information) is accumulated, and point information is referenced according to detected intention information and position, and future actions are estimated. Also good. The point information can be accumulated as, for example, a road network that is one of the map information accumulated in the map information accumulation unit 103.
[0049] 図 18は、地点ごとに意思情報に対応する複数の行動に関する情報を示した地点 情報の一例を示した図である。地点情報にはユーザのいる「位置」情報と、その位置 で発せられる「意思情報」と、そしてその位置で発せられた意思情報に対して推定さ れる行動を示す「推定行動」の情報が対応付けて蓄積されている。例えば地点情報「 001」は図 16に示す地点に関する情報である。地点情報「001」はユーザが現在地 点として「L216」、また方向としては「N106→ (から) N105」、すなわち図 16におけ る奈良 3通りを楽 4交差点に向かっている場合の情報である。このとき、意思情報とし て「左ウィンカー」を出した場合、推定される行動の一つは「N105→L212→N104 →L215」、つまり楽 4交差点に向かって裏 5通りを抜ける行動と、もう一つは「N105 →L212→N104→L211」、つまり楽 4交差点から阪神 1通りを抜ける行動と、この二 つが推定できる旨が記されている。したがって例えば図 16において、奈良 3通りを直 進し、左折ウィンカーを出している車両 1は、地図情報蓄積部 103等に蓄積された地 点情報を参照することで、将来行動として「N105→L212→N104→L215」と「N10 5→L212→N104→L211」を推定することが可能となる。  [0049] FIG. 18 is a diagram showing an example of point information indicating information regarding a plurality of actions corresponding to intention information for each point. The location information corresponds to the “location” information of the user, the “intention information” issued at that location, and the “estimated behavior” information indicating the behavior estimated for the intention information issued at that location. It has been accumulated. For example, the spot information “001” is information relating to the spot shown in FIG. The point information “001” is information when the user is “L216” as the current location and “N106 → (from) N105” as the direction, that is, when Nara 3 streets in FIG. . At this time, if “Left winker” is issued as intention information, one of the presumed actions is “N105 → L212 → N104 → L215”, that is, the action of going through the back five ways toward the Raku 4 intersection, One is “N105 → L212 → N104 → L211”, that is, the action of passing through the Hanshin 1 street from the Raku 4 intersection, and the fact that these two can be estimated. Therefore, for example, in FIG. 16, a vehicle 1 traveling straight on Nara 3 streets and taking a left turn winker refers to the location information stored in the map information storage unit 103 and the like as “N105 → L212 → N104 → L215 ”and“ N10 5 → L212 → N104 → L211 ”can be estimated.
[0050] また、地点情報「002」も同様に位置「L216、方向 N106→ (から) N105」、すなわ ち図 16における奈良 3通りを楽 4交差点に向力、つている場合の情報であり、意思情 報として「右ウィンカー」を出した場合、推定される行動として「N105→L213」と、「N 105→L214」の二つが推定行動と記されている。したがって例えば図 17において奈 良 3通りを直進し、右折ウィンカーを出している車両 1は、この地点情報を参照するこ とで、将来行動として「N105→L214」と「N105→L213」を推定することが可能とな る。そして推定された将来行動をもとに、本手法に示すように危険領域を判定し、衝 突情報を通知することで第三者との衝突を回避することが可能となる。  [0050] In addition, the point information “002” is also the information when the position “L216, direction N106 → (from) N105”, that is, the direction of Nara 3 street in FIG. When “right blinker” is issued as intention information, two presumed actions “N105 → L213” and “N 105 → L214” are described as presumed actions. Therefore, for example, vehicle 1 traveling straight on Nara 3 streets and taking a right turn winker in FIG. 17 estimates “N105 → L214” and “N105 → L213” as future actions by referring to this point information. It becomes possible. Based on the estimated future behavior, it is possible to avoid a collision with a third party by determining the dangerous area as shown in this method and notifying the collision information.
[0051] さらに、図示しないが、地点情報には、例えば、地点情報「003」として、意思情報と してウィンカーを出していない状態についても、推定される将来行動が記される。す なわち、意思情報として「ウィンカー」を出さない場合、推定される行動として「N105 →L214」と、「N105→L212→N104→L215」の二つが推定行動と記される。 [0051] Further, although not shown in the drawing, the estimated future behavior is recorded in the point information, for example, as the point information "003" even in a state where the winker is not taken out as intention information. The That is, when “winker” is not given as intention information, two presumed actions “N105 → L214” and “N105 → L212 → N104 → L215” are described as presumed actions.
[0052] このように、ユーザによって示される意思情報と、実際にユーザがとる行動は必ずし も一つとは限らず複数存在する場合があり、さらにその行動は地点や経路の形状に よって大きく異なるそしてその地点に馴染みのない人や、あるいは馴染みのある人で あってもつい、相手がある一つの行動をとると思い込んでしまい、結果衝突につなが つてしまう場合もある。そこで本例で示すように例えば地点ごとに意思情報とその意 思情報の場合にユーザがとる行動として推定される地点情報を蓄積しておき、この地 点情報を参照することで、適切に将来行動を推定し、衝突防止を図ることとしてもよい [0052] As described above, the intention information indicated by the user and the action actually taken by the user are not necessarily one, and there may be a plurality of actions, and the action varies greatly depending on the shape of the point or the route. And even if you are unfamiliar with or familiar with the point, you may assume that the other person takes a certain action, resulting in a collision. Therefore, as shown in this example, for example, intention information for each point and point information estimated as a user's action in the case of the intention information are accumulated, and by referring to this point information, the future can be appropriately It is also possible to estimate actions and prevent collisions.
[0053] なお、本実施の形態において、衝突情報通知部 108における衝突情報は第三者 に対するものであった力 これに限ったものではなぐ歩行者に対しても同様の手法 で表示が可能である。またさらに、第三者のみならず自車に対する通知であってもよ い。例えば図 13は、対向車である車両 2に対して車両 1の衝突情報を示すものであ つた。具体的には車両 1は左折の意思表示をしている力 裏華 1交差点を左折しょう としている場合と、華町 3交差点を左折しょうとしている場合が考えられる旨を示し、車 両 2に対して対向車の危険性について喚起しているものであった。しかしながら、この ような衝突情報は対向車のみならず、自車に対するものであってもよい。 [0053] In the present embodiment, the collision information in the collision information notification unit 108 is a force that was for a third party. This is not limited to this, and can be displayed by a similar method. is there. Furthermore, notifications may be given not only to third parties but also to the vehicle. For example, FIG. 13 shows collision information of vehicle 1 against vehicle 2 that is an oncoming vehicle. Specifically, vehicle 1 shows the intention to turn left. Ura Hana 1 Indicates that it is possible to turn left at the 1st intersection, and vice versa. It was a warning about the danger of oncoming vehicles. However, such collision information may be for not only the oncoming vehicle but also the own vehicle.
[0054] 図 19は重複行動による衝突の危険性がある場合に自車に対して通知する表示の 一例を示した図である。例えば車両 1のユーザは今、華 1京都通りを直進し、左折ウイ ンカーを出して大華通りを左折しょうとしている。一方、現在の位置で左折ウィンカー を出した場合、前述に示すように裏華 1交差点を左折する行動と、華町 3交差点を左 折する 2つの重複行動が算出され、第三者との衝突の危険性を生じる領域が算出さ れることとなる。そして図 19に示すように、この第三者との衝突の危険性を生じる領域 を自車の表示画面に表示し、注意を喚起している。  FIG. 19 is a diagram showing an example of a display for notifying the own vehicle when there is a risk of collision due to overlapping actions. For example, a user of vehicle 1 is now going straight on Hana 1 Kyoto Street, turning left turn signal and turning left on Dahua Street. On the other hand, if a left turn blinker is issued at the current position, as described above, the behavior of turning left at Urahana 1 intersection and the two overlapping actions of turning left at Hanamachi 3 intersection are calculated, resulting in a collision with a third party. The area that causes the risk is calculated. Then, as shown in Fig. 19, the area causing the risk of collision with a third party is displayed on the display screen of the vehicle to call attention.
[0055] 自分は華町 3交差点を左折しょうとしており、左ウィンカーを出しているから大丈夫と 安心しているとする。ところが第三者からは、華町 3交差点ではなぐ手前の裏 1交差 点を左折すると思われている可能性もあり、華町 3交差点を渡ろうとしている歩行者や 、対向車は自車に気づかず進み、自車と衝突してしまうかもしれない。そこでこのよう に自車に衝突情報を通知して危険性を喚起することで、より安全走行を心がけて衝 突を回避するという、格別の効果を生じる。 [0055] Suppose that you are going to turn left at Hanamachi 3 intersection, and that you are relieved that it is okay because you are taking the left turn signal. However, there is a possibility that a third party thinks that he will turn left at the 1st intersection in front of the Hanamachi 3 intersection. The oncoming car may go unnoticed and collide with the car. Thus, by notifying the vehicle of the collision information and raising the danger in this way, an extraordinary effect of avoiding the collision by trying to drive more safely is produced.
[0056] そこで例えば図 4におけるシステム構成図において移動体 100にさらに衝突情報 表示部等を設け、衝突情報通知部 108で通知された情報を自車に喚起することとし てもよ!/、。したがって本発明にお!/、て移動体 200は必ずしも必須構成要素ではな!/ヽ 。また、衝突情報通知部 108における通知は、必ずしも画面の表示に限ったもので はなぐ音声や警告ランプなどで通知することも可能である。  Therefore, for example, in the system configuration diagram of FIG. 4, a collision information display unit or the like may be further provided in the moving body 100, and the information notified by the collision information notification unit 108 may be alerted to the own vehicle! /. Therefore, the moving body 200 is not necessarily an essential component in the present invention! / ヽ. Further, the notification in the collision information notification unit 108 can be notified by a voice or a warning lamp that is not necessarily limited to the screen display.
[0057] したがって本実施の形態に示す発明は、図 20に示す構成要素によって実現可能 である。図 20は衝突の危険性を他車に通知するのではなぐ 自車にのみ通知する場 合の衝突情報通知装置の構成の一例を示すブロック図である。すなわち、本発明を 実施するための最小構成は、移動体の現在の位置情報を検出する位置情報検出部 101と、移動体の将来の行動意思に関する行動意思情報を検出する意思情報検出 部 104と、地点の位置関係に関する地図情報を蓄積した地図情報蓄積部 103と、前 記位置情報、前記行動意思情報および前記地図情報とから、将来の右左折または 停車に関する将来行動を推定する行動推定部 105と、前記行動推定部 105で推定 された将来行動に重複が生じるか否力、を判定する重複行動判定部 106と、前記重複 行動判定部 106で算出された前記重複が生じる将来行動をもとに、他の移動体との 衝突の危険性を判定する衝突危険性判定部 107と、前記衝突危険性判定部 107で 判定された衝突の危険性に関する情報を通知する衝突情報通知部 108とから構成 される。  Therefore, the invention described in this embodiment can be realized by the components shown in FIG. FIG. 20 is a block diagram showing an example of the configuration of the collision information notification device when notifying other vehicles only of the risk of collision, but notifying only the own vehicle. That is, the minimum configuration for carrying out the present invention includes a position information detection unit 101 that detects current position information of a moving object, and an intention information detection unit 104 that detects action intention information related to the future action intention of the moving object. , A map information storage unit 103 that stores map information related to the positional relationship of points, and an action estimation unit that estimates future actions related to a future turn or stop from the position information, the action intention information, and the map information. A duplicate action determination unit 106 for determining whether or not the future action estimated by the action estimation unit 105 is duplicated, and a future action for which the duplicate is calculated calculated by the duplicate action determination unit 106. In addition, a collision risk determination unit 107 that determines the risk of a collision with another moving body, and a collision information notification unit 108 that notifies information on the collision risk determined by the collision risk determination unit 107. Constitution Is done.
[0058] また図 21は、図 20に示した衝突情報通知装置の機能的構成を実現するハードウ エア構成の一例を示すブロック図である。本実施の形態の移動体 100は、カーナビ ゲーシヨン装置であって、位置情報検出部 101、演算処理を行う CPU131、演算処 理された情報を記憶しておく 1次メモリ 132、衝突情報通知部 108、車載情報検出部 133、外部メモリ 134及びプログラム格納部 135とから構成される。車載情報検出部 1 33は本発明における意思情報検出部 104に該当し、ウィンカーなどの車載情報を意 思情報として検出する手段である。外部メモリ 134はハードディスクなどで実現され、 本発明における地図情報蓄積部 103に該当し、地図情報を蓄積する手段である。そ して CPU131は 1次メモリ 132を介しながら、これら検出された情報や蓄積された情 報を処理する手段であり、プログラム格納部 135に格納されているプログラムを実行 することにより、本発明における行動推定部 105、重複行動判定部 106、衝突危険 性判定部 107で行われる演算を行う手段である。なお、同図に示すハード構成により 、プログラム格納部 135に格納されるプログラム及びノヽードディスクに蓄積されるデー タを変更するだけで、図 4、 17、 28、 29、 35、 44、 47及び 49などのすべての機能ブ ロック図で表される構成を実現することができる。 FIG. 21 is a block diagram showing an example of a hardware configuration that implements the functional configuration of the collision information notification device shown in FIG. The mobile unit 100 according to the present embodiment is a car navigation device, and includes a position information detection unit 101, a CPU 131 that performs calculation processing, a primary memory 132 that stores the calculated information, and a collision information notification unit 108. , An in-vehicle information detection unit 133, an external memory 134, and a program storage unit 135. The in-vehicle information detection unit 133 corresponds to the intention information detection unit 104 in the present invention, and is means for detecting in-vehicle information such as a blinker as intention information. The external memory 134 is realized by a hard disk etc. The map information storage unit 103 according to the present invention is a means for storing map information. The CPU 131 is a means for processing the detected information and the accumulated information through the primary memory 132. By executing the program stored in the program storage unit 135, the CPU 131 in the present invention. This is means for performing calculations performed by the behavior estimation unit 105, the duplicate behavior determination unit 106, and the collision risk determination unit 107. In addition, with the hardware configuration shown in the figure, the program stored in the program storage unit 135 and the data stored in the node disk can be changed, and FIGS. 4, 17, 28, 29, 35, 44, 47 and 49 It is possible to realize a configuration represented by all functional block diagrams.
[0059] なお、本実施の形態では、交差点での右左折時における重複行動を例に説明を行 つてきたが、推定行動に重複が生じるのは右左折時に限ったものではなぐ例えば停 車時においても生じる場合がある。例えば図 22は停車時の意思情報に対して推定さ れる推定行動の一例について説明する図である。  [0059] In the present embodiment, an explanation has been given by taking an example of overlapping behavior at the time of a left or right turn at an intersection. However, it is not limited to a right or left turn at the time when the estimated behavior is duplicated. May also occur. For example, FIG. 22 is a diagram for explaining an example of estimated behavior estimated for intention information at the time of stopping.
[0060] 図 22においてトラック 1が阪神 7通りを走行している。今、トラック 1において停車の 意思情報を検出したとする。一般的にハザードランプを点滅させて停車の意思表示 をして路肩に停車したり、あるいは駐車場へ入る場合がある。そこで本例における意 思情報検出部 104では、このようにハザードランプを停車の意思として検出するもの とする。なお、従来の車々間通信技術として右左折情報のみならず、停車用の信号 が予め用意されており、これを通信しあう技術もあり、この停車用の信号を検出するこ ととしてもよい。一方、単に停車の意思のみでは考えられる将来の行動が複数存在し 、やはり第三者と衝突してしまう危険性が生じてしまう。例えば後方にいる車両 2は、 停車意思を示しているトラック 1を見て、 B店の駐車場へ停車するのであろうと推定す る。そしてトラック 1を右側から追い越そうと思いスピードを上げるような場合もある。一 方、トラック 1のユーザは B店ではなぐ A店の駐車場へ停車しょうとしていた場合、両 者は衝突してしまう場合が生じる。特にトラックや営業者の場合、一端右へ大きく自車 を振って左へ停車したり、バックで駐車場へ入れたりと、ユーザが思っていた行動と は異なる行動をとることがあり、両者の思惑に誤差が生じることが多い。また同様に対 向車 3のユーザも、 B店の駐車場へ停車するのであろうと思い込み、もしトラック 1力 SB 店ではなぐ A店の駐車場へ停車しょう行動した場合、やはり衝突してしまうこととなる 。このように停車の意思情報を示しても、推定される将来の行動は必ずしも一つとは 限らず、複数存在する場合があり、自車と第三者との認識に誤差が生じた場合に衝 突してしまうことになる。そこで本実施の形態に示すように、将来の行動を推定し、重 複行動が判定された場合に衝突の危険性に関する情報を提供する本手法を用いる ことで、衝突を回避することが可能となる。以下、停車の場合における動作を説明す In FIG. 22, truck 1 is traveling on Hanshin 7 street. Suppose now that the stop intention information of truck 1 is detected. In general, there are cases where the hazard lamp blinks to indicate the intention of stopping and the vehicle stops on the shoulder or enters the parking lot. Therefore, the intention information detection unit 104 in this example detects the hazard lamp as an intention to stop in this way. In addition, as a conventional inter-vehicle communication technology, not only right / left turn information but also a signal for stopping is prepared in advance, and there is a technology for communicating with each other, and this signal for stopping may be detected. On the other hand, there are multiple future actions that can be considered only by the intention of stopping, and there is a risk of collision with a third party. For example, it is estimated that the vehicle 2 in the rear will stop at the parking lot of the store B by looking at the truck 1 indicating the intention to stop. And sometimes you want to overtake track 1 from the right and speed up. On the other hand, if the user of truck 1 tries to stop at the parking lot of store A, not store B, the two may collide. In particular, trucks and business operators may take actions that are different from the user's thoughts, such as swinging their own vehicle to the right and stopping to the left or entering the parking lot in the back. Errors often occur in speculation. Similarly, the user of opposite car 3 also thinks that it will stop at the parking lot of store B, and if it tries to stop at the parking lot of store A at the SB store, it will still collide. Become . In this way, even if the intention to stop is shown, the estimated future behavior is not necessarily one, and there may be a plurality of future actions, and if there is an error in recognition between the vehicle and the third party, I will end up. Therefore, as shown in this embodiment, it is possible to avoid collisions by using this method that estimates future behavior and provides information on the danger of collision when duplicate behavior is determined. Become. The following describes the operation when the vehicle is stopped.
[0061] 図 23は図 22に示した停車時の意思情報に対して推定される推定行動の一例をノ ードとリンクで示した図である。まず図 23は図 22と同様の状況であり、地図情報蓄積 部 103に蓄積された道路ネットワークの一例を示したものである。道路ネットワークは 交差点のみならず、経路の分岐点や、施設などのランドマークに対してノードが付与 されているのが一般的である。さらにノードとノードを結ぶリンクによってネットワークが 構築されている。図 23の場合、阪ネ申 7通りは「: L221」、「N121」、「: L222」、「N122」 、「L223」によって表されている。また、 B店の駐車場には「N124」、 A店の駐車場に は「N123」が付与され、これらを結ぶリンク「L225」、「L224」で構築されている。図 2 4は移動体の現在位置を含むエリアに対して蓄積されたノードの情報の詳細を示した 図である。例えば図 23に示すエリアはエリア ID「E11」とする。図 24にはエリア ID「E 11」に存在するノードとして「N121」、「N122」、「N123」、「N124」等力示されてい る。さらに各ノードの詳細情報が蓄積されている。例えば「N123」は A店の駐車場に 付与されたノードであり、位置「東経 136度 04分、北緯 34度 52分」、名称「A店駐車 場」、周辺リンク「L224 (30m)」、ノード種類「駐車場」、そしてその場所が停車可能 であるか否かの情報である停車情報「可能」と蓄積されている。あるいは「N124」は B 店の駐車場に付与されたノードであり、位置「東経 136度 02分、北緯 34度 57分」、 名称「A店駐車場」、周辺リンク「L225 (20m)」、ノード種類「駐車場」、停車情報「可 能」と蓄積されている。 FIG. 23 is a diagram showing an example of an estimated action estimated for the intention information at the time of stopping shown in FIG. 22 by a node and a link. First, FIG. 23 shows the same situation as FIG. 22 and shows an example of a road network stored in the map information storage unit 103. In a road network, nodes are generally assigned not only to intersections but also to branch points of routes and landmarks such as facilities. Furthermore, a network is constructed by links connecting nodes. In the case of FIG. 23, the seven Hanne-Sen are represented by “: L221”, “N121”, “: L222”, “N122”, “L223”. In addition, “N124” is assigned to the parking lot of store B, “N123” is assigned to the parking lot of store A, and links “L225” and “L224” are connected. Figure 24 shows the details of the node information accumulated for the area including the current location of the mobile object. For example, the area shown in FIG. 23 has area ID “E11”. In FIG. 24, “N121”, “N122”, “N123”, “N124” and the like are shown as the nodes existing in the area ID “E11”. Further, detailed information of each node is accumulated. For example, “N123” is a node assigned to the parking lot of store A, where the location is “136 degrees 04 minutes east longitude, 34 degrees 52 minutes north latitude”, the name “store A parking lot”, the surrounding link “L224 (30 m)”, The node type “parking lot” and the stop information “possible”, which is information indicating whether or not the location can be stopped, are stored. Or “N124” is a node assigned to the parking lot of store B, where the location is “136 degrees 02 minutes east longitude, 34 degrees 57 minutes north latitude”, the name “A store parking lot”, the surrounding link “L225 (20m)”, The node type “parking lot” and stop information “possible” are stored.
[0062] 行動推定部 105は上記に示す右左折の行動推定と同様に、位置情報検出部 101 で検出される現在の位置と、意思情報検出部 104で検出された意思情報をもとに、 行動規則を参照して意思に対応する行動が可能な地点を検索する。図 25は図 23等 と同様の状況であり、停車が可能な地点の検索を説明する図である。図 25において 現在「東経 136度 01分、北緯 34度 55分」の地点で、停車の意思情報であるハザー ドを検出したとする。なお、ユーザが向かう移動方向は前述のように例えばノードの I D系列等から算出されており、例えば阪神 7通りを東方向に向かっているとする。図 1 0に示す行動規則「010」を参照するとハザードの場合、「移動方向に 100メートル及 び周辺 30メートル」内において「停車」する旨が記されている。そこで停車の意思情 報が検出された地点を基準に前記領域内であって停車が可能な地点を検索する。 [0062] Similar to the left-right turn behavior estimation described above, the behavior estimation unit 105 is based on the current position detected by the location information detection unit 101 and the intention information detected by the intention information detection unit 104. The point where the action corresponding to the intention is possible is searched with reference to the action rule. FIG. 25 shows the same situation as FIG. 23 and the like, and is a diagram for explaining a search for a place where the vehicle can be stopped. In Figure 25 Assume that a hazard, which is intention information for stopping, is detected at a point “136 degrees 01 minutes east longitude, 34 degrees 55 minutes north latitude”. Note that, as described above, the moving direction of the user is calculated from, for example, the node ID series and the like, and for example, it is assumed that Hanshin 7 Street is heading east. Referring to the action rule “010” shown in FIG. 10, in the case of a hazard, it is stated that the vehicle “stops” within “100 meters in the moving direction and 30 meters around”. Therefore, a point within the area where the stop intention information is detected is searched for in the region.
[0063] 停車の意思情報が検出された地点である「東経 136度 01分、北緯 34度 55分」を基 準に移動方向である東方向に 100メートル及びその周辺 30メートルの領域を算出す ると、例えば北緯 34度 52分から北緯 34度 58分、東経 136度 01分から東経 136度 1 1分の斜線で塗りつぶした長方形の領域となる。一方、地図情報には前述の図 24に 示すようにノードとして表された駐車場の緯度経度情報が蓄積されており、この緯度 経度情報をもとに領域内で停車が可能な地点を検索することとなる。本例の場合、 A 店駐車場 (N123)と、 B店駐車場 (N124)が算出された領域内であって停車が可能 な地点として検索させることとなる。 [0063] Calculate an area of 100 meters in the east direction and 30 meters around it based on “136 degrees 01 minutes east longitude, 34 degrees 55 minutes north latitude” where the intention information of the stop was detected For example, it becomes a rectangular area filled with diagonal lines 34 degrees 52 minutes north latitude 34 degrees 58 minutes north latitude 136 degrees 01 minutes east longitude 136 degrees 11 minutes east longitude 11 minutes. On the other hand, the map information stores the latitude and longitude information of the parking lot expressed as a node as shown in FIG. 24. Based on this latitude and longitude information, the map information is searched for points where parking is possible. It will be. In the case of this example, the store A parking lot (N123) and the store B parking lot (N124) are within the calculated areas and are searched for points that can be stopped.
[0064] 図 26は行動推定部 105が将来行動として推定する停車可能地点までの経路の一 例を示す図である。次に行動推定部 105は、停車が可能な地点までの経路を探索し 、将来行動として推定する。まず、将来行動「001」として現在位置である阪神 7通り( L221)から B店駐車場(N124)までの経路「N121→L225→N124」と、将来行動「 002」として A店駐車場までの経路「N121→L225→N121→L222→N122→L22 4→N123」を将来の行動として推定する。そして重複するこれら行動より本発明にし めす手法によって衝突の危険性のある領域を特定して対向車や後方車へ通知し、 衝突を回避することが可能となる。  [0064] FIG. 26 is a diagram illustrating an example of a route to a stop possible point that the behavior estimation unit 105 estimates as a future behavior. Next, the behavior estimation unit 105 searches for a route to a point where the vehicle can be stopped, and estimates it as a future behavior. First, the route “N121 → L225 → N124” from Hanshin 7 Street (L221), which is the current location, to the B store parking lot (N124) as the future action “001”, The route “N121 → L225 → N121 → L222 → N122 → L22 4 → N123” is estimated as a future action. Then, from these overlapping actions, it is possible to identify an area where there is a risk of collision by using the method shown in the present invention, notify the oncoming vehicle or the rear vehicle, and avoid the collision.
[0065] さらに本発明は、単に停車や右左折のみならず、これらの両方の行動が考えられる ような場合にも適用することが可能である。以下、図 27を用いて説明する。  [0065] Furthermore, the present invention can be applied not only to stopping and turning left and right, but also to cases where both of these actions can be considered. This will be described below with reference to FIG.
[0066] 図 27は同一の意思情報に対して重複する行動が推定される場合の一例を示す図 である。今、バス 1が左ウィンカーを出し、意思情報検出部 104はこの左ウィンカーを 検出したとする。一方、後方車両 2や、対向車 3からすると、バス 1はバス停へ停車し ようとしているの力、、それとも交差点を左折しょうとしているのか分からない場合もある 。例えば後方車両 2は、バス 1がバス停へ停車しょうとしていると思い込んでしまい、 追い抜こうとしたり、あるいは対向車 3も右折しょうとしてしまう。一方、バス 1のドライバ 一がバス停への停車ではなぐ交差点の左折のためにウィンカーを左に出していた 場合、両者は衝突してしまうこととなる。 [0066] FIG. 27 is a diagram showing an example of a case where overlapping actions are estimated for the same intention information. Now, it is assumed that bus 1 takes out the left winker and the intention information detection unit 104 detects this left winker. On the other hand, from the rear vehicle 2 and the oncoming vehicle 3, you may not know the power of bus 1 trying to stop at the bus stop or whether you are going to turn left at the intersection. . For example, the rear vehicle 2 thinks that the bus 1 is about to stop at the bus stop, and tries to overtake it, or the oncoming vehicle 3 tries to turn right. On the other hand, if the driver of bus 1 leaves the winker to the left for a left turn at an intersection that does not stop at the bus stop, they will collide.
[0067] 図 28は同一の意思情報に対して重複する行動が推定される場合の他の例を示す 図である。またバスに限らず図 28に示すように、例えば交差点等で対向車が右左折 ウィンカーを出しているので右左折するものと思っていたら、実際はその先の駐車場 へ停車の意味であり、直進してきた場合に衝突しそうになるような場合も多い。このよ うにウィンカーは単に右左折の意思表示のみならず、その方向側に停車する等の意 思を示すものとしても使われるのが一般的である。そこで本発明に示すように示され た意思情報から複数の行動を推定することで、衝突を回避することが可能となる。以 下、図 27に示すバスの事例を用いて説明する。  FIG. 28 is a diagram showing another example in a case where overlapping actions are estimated for the same intention information. In addition to buses, as shown in Fig. 28, for example, if an oncoming vehicle is making a right / left turn blinker at an intersection, etc. In many cases, it is likely to collide if you do. In this way, the winker is generally used not only for indicating intention of turning right and left but also for indicating intention to stop in that direction. Thus, it is possible to avoid a collision by estimating a plurality of actions from the intention information shown in the present invention. The following is an explanation using the bus example shown in Fig. 27.
[0068] 本実施の形態では例えば、図 10に示す行動規則「011」として、左ウィンカーが検 出された場合、領域「移動方向 100メートル及び左側 30メートル」内で「停車」する旨 を蓄積している。そして行動推定部 105は、上記に示す本実施の形態に示す手法と 同様に、地図情報より左折可能な地点と停車可能な地点を算出し、将来行動を推定 する。  In the present embodiment, for example, as the action rule “011” shown in FIG. 10, when the left winker is detected, the fact that the vehicle “stops” within the area “moving direction 100 meters and left 30 meters” is accumulated. is doing. Then, similarly to the method shown in the present embodiment described above, the behavior estimation unit 105 calculates a left-turnable point and a stopable point from the map information, and estimates future behavior.
[0069] 図 29は、図 27と同様の状況であり、停車地点と左折地点の算出を説明する図であ る。バスが現在、白い丸印で示す「東経 136度 40分、北緯 35度 50分」の地点で左ゥ インカ一を出したとする。図 10に示す行動規則より、左ウィンカーは「移動方向 50メ 一トル内」で「左折」(行動規則「001」)と、「移動方向 100メートルおよび左側 30メー トル内」で「停車」(行動規則「011」)として蓄積されている。そこで地図情報を参照し 、停車可能な地点と左折可能な地点を検索し、将来行動を推定する。図 29にはまず 、奈良町交差点(N132)が「東経 136度 43分、北緯 34度 51分」の位置に存在して おり、この奈良町交差点は移動方向 50メートル内に存在するため、左折可能な地点 として検索される。一方、現在地点を基準に算出された停車する可能性のある領域 である、移動方向 100メートル及び左側 30メートル内には「東経 136度 41分、北緯 3 4度 52分」の位置にバス停「平安寺前」が存在しており、停車可能な地点として検索 される。図 30は図 24と同様、停車可能な地点の一つとして蓄積されたバス停に関す る情報を示す図である。ノード ID「131」位置「東経 136. 41北緯 34. 52」、名称「平 安寺」、ノード種類「バス停」、停車可能である情報等が地図情報として蓄積されてい る。そしてこれら左折可能な地点と停車可能な地点を用いて将来の行動を推定する 。将来行動「001」として「N131→L235→N131」とバス停へ停車する移動が推定さ れている。一方、 4導来 fi動「002」として「N131→L232→N132→L234」と交差点、 を左折する移動が推定されている。そして上記に示す手法と同様に、算出された複 数の将来行動から衝突の危険性を判定し、通知を行うこととなる。左折する場合や停 車する場合等、複数の行動を推定することで衝突を回避することができる。 FIG. 29 shows the same situation as FIG. 27, and illustrates the calculation of the stop point and the left turn point. Suppose that the bus currently leaves the left winker at the point of 136 degrees 40 minutes east longitude, 35 degrees 50 minutes north latitude, indicated by a white circle. From the action rules shown in Fig. 10, the left turn signal is "turn left in the direction of travel (50 meters)" (action rule "001") and "stop" in the direction of travel 100 meters and the left side 30 meters ( It is accumulated as action rule “011”). Therefore, referring to the map information, search for a stopable point and a left-turnable point, and estimate future behavior. In Figure 29, first, the Naramachi intersection (N132) is located at 136 degrees 43 minutes east longitude, 34 degrees 51 minutes north latitude, and this Naramachi intersection is located within 50 meters of travel direction. It is searched as a possible point. On the other hand, there is a possibility of stopping based on the current location, within a 100 meter travel direction and 30 meters to the left, a bus stop at the position of 136 degrees 41 minutes east longitude 34 degrees 52 minutes north latitude “Heianji-mae” Is done. FIG. 30, like FIG. 24, shows information about bus stops accumulated as one of the points where parking is possible. Node ID “131” location “Eastern longitude 136.41 north latitude 34.52”, name “Heianji”, node type “bus stop”, information that can be stopped, etc. are stored as map information. The future behavior is estimated using these left turnable points and stopable points. As future action “001”, it is estimated that “N131 → L235 → N131” and the stop to the bus stop. On the other hand, it is estimated that the left turn at the intersection of “N131 → L232 → N132 → L234” as 4 derived fi motion “002”. In the same manner as described above, the risk of collision is determined from a plurality of calculated future actions, and notification is made. Collisions can be avoided by estimating multiple actions, such as turning left or stopping.
[0070] なお、本実施の形態では、移動体 100と移動体 200の車々間通信であって、その 通信方式はいわゆるブロードキャスト型で説明してきたがこれに限ったものではない 。例えば所定の車両同士が自車の位置等の情報を互いに通信し、協調走行したり、 衝突防止の注意を促す PtoP方式であってもよ!/、。  [0070] In the present embodiment, vehicle-to-vehicle communication between mobile unit 100 and mobile unit 200 has been described as a so-called broadcast type, but is not limited to this. For example, the PtoP method may be used in which predetermined vehicles communicate with each other information such as their own vehicle positions to collaborate and urge attention to prevent collisions! /.
[0071] 図 31は、互いに位置情報等を通信し合う PtoP方式の車々間通信における本発明 の衝突情報通知システム構成の一例を示すブロック図である。図 31における移動体 100には、図 4に示した衝突情報通知装置の構成要素に加え、位置情報送受信部 1 13、通知相手特定部 112が新たに備わっている。また、移動体 200には第二位置情 報送受信部 114、第二位置情報検出部 115が新たに備わっている。ここで、位置情 報送受信部 113は、「他の移動体からその移動体の現在位置を受信する位置情報 受信手段」の一例であり、衝突危険性判定部 107は、「前記重複行動判定手段によ つて、複数通りの行動をとりうると判定された場合に、他の移動体と衝突の危険性が ある領域を判定する衝突危険性判定部」の一例であり、通知相手特定部 112及び衝 突情報通知部 108は、「他の移動体から受信された現在位置に基づいて、前記他の 移動体が衝突の危険性がある領域に将来存在する可能性がある場合に、前記他の 移動体に対し、衝突の危険性に関する情報を通知する前記衝突情報通知手段」の 一例である。まず本例の場合、移動体 100における位置情報検出部 101で検出され た位置情報等を位置情報送受信部 113において送信する。一方、移動体 200にお ける第二位置情報送受信部 114は他車の位置情報等を受信する手段である。また 第二位置情報検出部 115は、位置情報検出部 101と同様に移動体の位置を検出す る例えば GPS等で構成され、第二位置情報送受信部 114において他車に送信する 。図 31では、移動体 100と移動体 200のみを示している力 S、他の複数の移動体が各 々位置情報等を送受信しあい、所定の移動体同士がアドホックネットワークを構築す ることで、いわゆる PtoPの車々間通信システムとなる。さらに図 31において移動体 1 00には図 4等で示す本発明のシステム構成要素が加わり、本発明の実現することと なる。 FIG. 31 is a block diagram showing an example of a collision information notification system configuration of the present invention in PtoP inter-vehicle communication in which position information and the like are communicated with each other. In addition to the components of the collision information notification device shown in FIG. 4, the moving body 100 in FIG. 31 is newly provided with a position information transmission / reception unit 113 and a notification partner identification unit 112. Further, the mobile object 200 is newly provided with a second position information transmitting / receiving unit 114 and a second position information detecting unit 115. Here, the position information transmitting / receiving unit 113 is an example of “position information receiving means for receiving the current position of the moving body from another moving body”, and the collision risk determining section 107 is the “duplicate action determining means”. Therefore, it is an example of a “collision risk determination unit that determines an area where there is a risk of collision with another mobile object when it is determined that a plurality of actions can be taken. The collision information notifying unit 108 indicates that, based on the current position received from another moving body, the other moving body may exist in an area where there is a risk of collision in the future. It is an example of the “collision information notification means” for notifying a mobile object of information on the danger of collision. First, in the case of this example, the position information transmission / reception unit 113 transmits the position information detected by the position information detection unit 101 in the moving body 100. On the other hand, the second position information transmitting / receiving unit 114 in the moving body 200 is a means for receiving position information of other vehicles. Also The second position information detection unit 115 is configured by, for example, a GPS or the like that detects the position of the moving body in the same manner as the position information detection unit 101, and the second position information transmission / reception unit 114 transmits it to another vehicle. In FIG. 31, the force S, which shows only the moving body 100 and the moving body 200, and other plural moving bodies transmit / receive position information and the like, and predetermined moving bodies construct an ad hoc network. This is a so-called PtoP inter-vehicle communication system. Further, in FIG. 31, the system element of the present invention shown in FIG. 4 and the like is added to the moving body 100, and the present invention is realized.
[0072] さらに、このように他の移動体と通信し、他の移動体の位置を把握することができる と、周囲に危険情報をブロードキャストするだけではなぐ衝突の危険性がある移動 体を特定し、特定された移動体に通知することも可能となる。通知相手特定部 112は 位置情報送受信部 113で受信された他の移動体の位置情報をもとに衝突情報を通 知する相手を特定する手段である。以下、図 12を例に説明を行う。  [0072] Further, if communication with other mobile objects and the position of other mobile objects can be grasped in this way, a mobile object that is at risk of collision is not just broadcasted to the surroundings. It is also possible to notify the specified moving body. The notification partner specifying unit 112 is a means for specifying a partner to notify the collision information based on the position information of the other mobile body received by the position information transmitting / receiving unit 113. Hereinafter, description will be made with reference to FIG.
[0073] 図 12では、前述にあるように車両 1が左折の意思表示をしており、裏華 1交差点を 左折する場合、または華町 3交差点を左折する場合と、複数の行動が推定され、危 険領域が特定されている。例えば華町 3交差点を左折しょうとしている場合、思い違 いをしている対向車 2、歩行者 4と衝突してしまう可能性がある。そこで位置情報送受 信部 113で受信された第三者のうち、この衝突の可能性のある領域に位置するユー ザ、あるいは将来位置することになるユーザを通知相手として特定し、通知することと してもよい。車々間通信では多くの移動体が互いに通信しあうことになり、特に交差 点等では限られた通信容量を適切に利用する必要がある。そこでこのように通知相 手を特定することで、最小限の通信容量の利用で、かつ、適切に安全走行を促進す ること力 S可倉 となる。  [0073] In FIG. 12, as described above, vehicle 1 is making a intention to turn left, and multiple actions are estimated when turning left at Urahana 1 intersection or turning left at Hanamachi 3 intersection. Dangerous areas have been identified. For example, if you are going to turn left at the Hanamachi 3 intersection, you may collide with an oncoming vehicle 2 or a pedestrian 4 that you are thinking of. Therefore, among the third parties received by the location information transmission / reception unit 113, a user who is located in an area where there is a possibility of a collision or a user who will be located in the future is specified as a notification partner and notified. May be. In vehicle-to-vehicle communication, many mobiles communicate with each other, and it is necessary to use limited communication capacity appropriately, especially at intersections. Therefore, by specifying the notification partner in this way, it is possible to use the minimum communication capacity and appropriately promote safe driving.
[0074] なお本実施の形態では、衝突情報通知部 108において通知する情報は、衝突危 険性判定部 107にお!/、て判定された衝突の可能性のある領域を例に説明を行って きた。具体的には、図 12において車両 1の将来行動のうち、異なる行動は裏華 1交 差点を左折した場合の「L210」と、華町 3交差点を左折した場合の「L206→N103 →L209」であり、これらを衝突領域として判定して衝突情報として通知していた。これ により、通知を受けた第三者は自分が認識していた行動とは異なる他方の行動を知 ること力 Sでき、衝突を回避することが可能となる。現在、地図情報は各社が独自に生 成し、ノード IDやリンク ID等、道路ネットワーク構造も各社独自のものであるのが一般 的である。一方、これらを統一化する技術があり(Kiwiフォーマット)、このように道路 ネットワーク構造が共通の場合、本実施の形態で示すように衝突領域を IDの系列で 通知することで、通知を受けた第三者は自車で衝突領域に関する情報を表示するこ とが可能となる。し力もながら、必ずしも IDは共通とは限らない。そこで特定された衝 突領域を第三者の移動体でも利用可能にするために変換手段を設け、変換された 衝突情報を通知することとしてもょレ、。 In the present embodiment, the information notified in collision information notifying section 108 is described by taking an example of an area with a possibility of collision determined by collision risk determining section 107! I have Specifically, in Fig. 12, of the future actions of vehicle 1, the different actions are `` L210 '' when turning left at Urahana 1 intersection and `` L206 → N103 → L209 '' when turning left at Hanamachi 3 intersection. These are determined as collision areas and notified as collision information. As a result, the third party who receives the notification knows the other behavior different from the behavior that he / she was aware of. It is possible to avoid collisions. Currently, map information is generated independently by each company, and road network structures such as node IDs and link IDs are generally unique to each company. On the other hand, there is a technology to unify these (Kiwi format). When the road network structure is common as described above, the notification is received by notifying the collision area by the ID series as shown in this embodiment. A third party can display information about the collision area on the vehicle. However, IDs are not always common. Therefore, in order to make the identified collision area available to a third-party mobile body, a conversion means is provided, and the converted collision information is notified.
[0075] 図 32は衝突情報を第三者の移動体でも利用可能にするために変換手段を設けた 場合のシステム構成図である。図 32では、図 4に示す構成要素に加え、衝突情報変 換部 116が加わっている。例えば図 12において判定された衝突領域である「L210」 と「L206→N103→L209」を通知しても、第三者である移動体 200では必ずしもこ の領域がどこを示して!/、るか把握できなレ、場合がある。そこで衝突情報変換部 116 は、例えば地図情報蓄積部 103に蓄積された地図情報を用い、どの移動体でも共通 に認識できる緯度経度情報へと変換する。地図情報には各ノードやリンクの IDと、緯 度経度情報が対応して蓄積されてレ、るのが一般的である。そこでこの地図情報を参 照することで衝突領域として特定された領域の IDを、緯度経度情報へと変換すること が可能となる。 FIG. 32 is a system configuration diagram in the case where conversion means is provided in order to make collision information available to a third party mobile body. In FIG. 32, a collision information converting unit 116 is added to the components shown in FIG. For example, even if “L210” and “L206 → N103 → L209”, which are the collision areas determined in FIG. 12, are notified, where the third party mobile body 200 indicates! There are cases where I can't figure out. Therefore, the collision information conversion unit 116 uses, for example, the map information stored in the map information storage unit 103 and converts it into latitude and longitude information that can be commonly recognized by any mobile body. In general, map information is stored in correspondence with the ID of each node or link and latitude and longitude information. Therefore, by referring to this map information, the ID of the area specified as the collision area can be converted into latitude and longitude information.
[0076] 図 33は、衝突領域を IDの系列からどの移動体でも共通に認識できる緯度経度情 報へと変換された衝突情報を示す図である。衝突領域として特定された「L210」が「 東経 135. 30、北緯 35. 18」と緯度経度で示す値へと変換されている。同様に「L20 6」は「東経 135. 30、北緯 35. 18」等、衝突領域として特定された各地点の IDが緯 度経度の値へと変換されている。そして衝突情報として例えば「車両 ID」、「行動」さら にこの緯度経度へと変換された「衝突領域」を衝突情報通知部 108で通知することと なる。一方、衝突情報を受けた第三者側は、緯度経度の値で示された地点を自車の 地図上にマッピングすることで、どこで衝突の危険性があるかを把握することが可能と なる。  FIG. 33 is a diagram showing collision information obtained by converting a collision area from latitude / longitude information that can be commonly recognized by any mobile body from a series of IDs. “L210” identified as the collision area has been converted into a value indicated by latitude and longitude as “135.30 east longitude, 35.18 north latitude”. Similarly, the ID of each point identified as a collision area, such as “L20 6” and “Latitude 135.30, North latitude 35.18”, is converted into latitude and longitude values. As the collision information, for example, the “vehicle ID”, “behavior”, and “collision area” converted into the latitude / longitude are notified by the collision information notification unit 108. On the other hand, the third party who receives the collision information can grasp where the danger of the collision is by mapping the point indicated by the latitude and longitude values on the map of the own vehicle. .
[0077] なお、図 33に示す例ではノードやリンクの IDを緯度経度情報へと変換していた力 さらにノードやリンク間を所定の間隔で補完した緯度経度情報の系列へと変換して送 信することとしてもよい。さらに、単に衝突領域を送るだけでなぐ当該第三者の位置 を考慮してどこまでの系歹 |J、あるレ、はどこまでの領域の情報を送る力、を特定して情報 を通知することとしてもよい。以下、図を用いて説明する。 [0077] In the example shown in Fig. 33, the power of converting the ID of a node or link into latitude and longitude information Furthermore, it may be converted into a series of latitude and longitude information in which nodes and links are complemented at a predetermined interval, and transmitted. Furthermore, taking into account the position of the third party that simply sends the collision area, it is necessary to specify the distance to the information | Also good. This will be described below with reference to the drawings.
図 34は、ユーザの将来行動に対して第三者との衝突の危険性がある領域の他の 例を示す図である。図 34は図 12と同様の状況を示す図である。現在、車両 1が華 1 京都通りで左ウィンカーを出し、裏華 1交差点を左折する行動と、華町 3交差点を左 折する行動の複数の行動が推定されている。また図 34には華 1京都通りを渡ろうとし ている歩行者 3と、華町 3通りを渡ろうとしている歩行者 4が存在している。これら歩行 者にとっては、前述のように車両 1が手前の裏華 1交差点で左折すると思い込んでし まい、衝突の危険性が生じることとなる。そこで本実施の形態では衝突の危険性のあ る衝突領域を算出し、歩行者に対して通知することとなるのだ力 一方で両者には必 ずしも同じ情報を送る必要はない。例えば歩行者 3にとつては車両 1がその後、裏華 1交差点を直進して自分と衝突する危険性がある旨を通知することで危険を回避す ること力 Sでき、その後、華町 3交差点を左折して大華通りへ抜けるまでの系列は必ず しも必要ないこととなる。一方、歩行者 4にとつては車両 1が華町 3交差点を左折して 大華通りへ抜け、大華通りを横断しょうとしている自分と衝突する危険性がある旨の 通知をする必要がある。そこで、単に衝突領域を通知するのではなぐ第三者の現在 の位置、あるいは将来の位置を考慮し、衝突の危険性がある地点までの系列を通知 することとしてもよい。図 35Aは、歩行者 3に対して衝突情報を送信する場合の情報 の一例を示す図である。図 35Bは、歩行者 4に対して衝突情報を送信する場合の情 報の一例を示す図である。図 35において歩行者 3に対しては、衝突領域として「東経 135度 33分、北緯 35度 20分」と、歩行者 3の現在地点までの領域が衝突情報として 付帯されて通知されている。一方、歩行者 4に対しては、衝突領域として「東経 135 度 33分、北緯 35度 20分→東経 135度 34分、北緯 35度 20分→東経 135度 34分、 北緯 35度 18分」と、歩行者 4の現在地点までの領域が衝突情報として付帯されて通 知されている。このような緊急を要する情報の通知は、送信する情報量が問題となる 。そこで送信する第三者の位置情報を検出し、当該検出された位置までを送信する ことで、情報量の削減をすることができ、情報の送信を効率よく行うことが可能となる。 FIG. 34 is a diagram showing another example of a region where there is a risk of collision with a third party with respect to the user's future behavior. FIG. 34 shows the same situation as FIG. Currently, it is estimated that there are several actions: vehicle 1 takes a left turn signal at Hana 1 Kyoto Street, turns left at Urahana 1 intersection, and turns left at Hanamachi 3 intersection. In Fig. 34, there are pedestrians 3 who are going to cross Hana 1 Kyoto Street and pedestrians 4 who are going to cross 3 Hanamachi Streets. For these pedestrians, it may be assumed that the vehicle 1 makes a left turn at an intersection at the back of the front as described above, and there is a risk of a collision. In this embodiment, therefore, the collision area where there is a risk of collision is calculated and notified to the pedestrian. On the other hand, it is not always necessary to send the same information to both. For example, pedestrian 3 can avoid the danger by notifying vehicle 1 that there is a risk that vehicle 1 will then go straight through Urahana 1 intersection and collide with him. It is not always necessary to go to the left after the intersection and go to Taihua Street. On the other hand, pedestrian 4 needs to be notified that vehicle 1 has a risk of colliding with himself who is going to cross Hwakacho after crossing Hanamachi 3 and going to Taihua Dori. Therefore, it is also possible to notify the sequence up to the point where there is a risk of collision in consideration of the current position of the third party or the future position of the third party rather than simply reporting the collision area. FIG. 35A is a diagram showing an example of information when collision information is transmitted to the pedestrian 3. FIG. 35B is a diagram illustrating an example of information when collision information is transmitted to the pedestrian 4. In FIG. 35, pedestrian 3 is notified of the collision area as “collision information” with the area up to the current location of pedestrian 3 as “135 degrees and 33 minutes east longitude, 35 degrees 20 minutes north latitude”. On the other hand, for pedestrian 4, the collision area is “135 degrees and 33 minutes east, 35 degrees 20 minutes north → 135 degrees 34 minutes east, 35 degrees 20 minutes north → 135 degrees 34 minutes east, 35 degrees 18 minutes north” The area up to the current location of pedestrian 4 is attached and notified as collision information. In such notification of urgent information, the amount of information to be transmitted becomes a problem. Therefore, the position information of the third party to be transmitted is detected and transmitted up to the detected position. As a result, the amount of information can be reduced, and information can be transmitted efficiently.
[0079] さらに本実施の形態では、移動体 100において自車の位置情報および意思情報を 検出して複数の行動を推定し、衝突の危険性について判定の処置を行っていたが、 自車側でこれらの処理をするのではなぐ第三者の位置情報と意思情報を検出し、 第三者側でこれらの危険性の判定をすることとしてもよい。例えば図 20に示すシステ ム構成図において、位置情報検出部 101は所定の第三者の位置情報を検出し、意 思情報検出部 104は当該第三者の意思情報を検出することで実現可能である。 Furthermore, in the present embodiment, the position information and intention information of the own vehicle is detected in the moving body 100 to estimate a plurality of behaviors, and the determination of the risk of collision is performed. It is also possible to detect the position information and intention information of a third party that does not perform these processes, and to determine the risk of these third parties. For example, in the system configuration diagram shown in FIG. 20, the position information detection unit 101 detects the position information of a predetermined third party, and the intention information detection unit 104 detects the third party's intention information. It is.
[0080] 近年、車々間通信に関する研究が行われており、この車々間通信では車の ID、速 度、位置、そしてウィンカーなどの意思情報等、統一されたフォーマットで送信するも のとしている。こし力もながら意思情報、例えば左折する旨を受信したとしても、実際 どの経路を左折するのか分からない場合がある。そこで本実施の形態に示すように 危険領域に関する情報を付帯させて通知することで危険を回避することも可能となる 力 一方で、必ずしも他車が衝突領域に関する情報を表示等する機能を有している とは限らない。特に車々間通信では、必ずしも同様の機能スペックを有する通信ュニ ットをすベての車両が有しているとは限らず、例えば位置情報や意思情報等、統一 化された情報のみを送信し、受信側で各々処理する場合もある。そこで位置情報検 出部 101および意思情報検出部 104で検出された第三者の位置情報および意思情 報から、複数の行動を推定し、衝突情報通知部 108において自車に危険を通知する こととしてあよい。 [0080] In recent years, research on inter-vehicle communication has been conducted, and in this inter-vehicle communication, vehicle ID, speed, position, and intention information such as a blinker are transmitted in a unified format. Even if you receive intention information such as turning left, you may not know which route you actually turn left. Therefore, as shown in the present embodiment, it is possible to avoid danger by notifying the information related to the dangerous area, but on the other hand, it has a function to display information related to the collision area. It is not always true. Especially in inter-vehicle communication, not all vehicles have communication units with the same functional specifications. For example, only unified information such as location information and intention information is transmitted. In some cases, each processing is performed on the receiving side. Therefore, a plurality of actions are estimated from the position information and intention information of the third party detected by the position information detection unit 101 and intention information detection unit 104, and the collision information notification unit 108 notifies the vehicle of the danger. Good as.
[0081] 図 36は、対向車から送られた現在の位置と、左折の意思情報をもとに自車で行動 を推定してユーザに衝突の危険性について通知を行う一例を示した図である。カー ナビの画面には交差点で右折しょうとしている自車と、対向車の位置が示されている 。また、対向車は左折の意思を示している力 一方、必ずしも交差点を左折しようとし ているとは限らず、「ファミリー K」の駐車場へ停車しょうとしている力、もしれず、複数の 行動が考えられる。そこで推定された行動から危険領域を特定し、その旨をユーザに 矢印で通知している。特にカーナビでは、単に危険性を通知するのではなぐこのよ うにどこで、どのように危険であるかを通知することで、ドライバーに注意を喚起するこ とができ、より安全を可能とすることができる。また、送信者側である対向車も、統一化 された位置情報と意思情報を送るだけで、自車にはこの推定手段や危険領域に関 する情報を表示する機能を有していなくても、相手が自車の行動を推定してくれ、注 意を払ってくれるため、衝突の危険性を軽減することが可能となる。 [0081] FIG. 36 is a diagram showing an example in which an action is estimated by the own vehicle based on the current position sent from the oncoming vehicle and the intention information of the left turn, and the user is notified of the risk of collision. is there. The car navigation screen shows the location of the vehicle that is about to turn right at the intersection and the position of the oncoming vehicle. On the other hand, the oncoming vehicle has the power to indicate a left turn. On the other hand, it does not necessarily mean that it is going to turn left at the intersection. It may be the power to stop at the parking lot of “Family K”. It is done. Therefore, the dangerous area is identified from the estimated action, and the user is notified of this by an arrow. In particular, in car navigation systems, it is possible to alert the driver and provide more safety by notifying the danger and not just notifying the danger, but notifying where and how dangerous. it can. The oncoming vehicle on the sender side will also be unified. Even if the vehicle does not have a function to display information about the estimation means or the dangerous area, the partner can estimate the behavior of the vehicle. Being careful, it is possible to reduce the risk of collision.
[0082] また、本発明における複数の行動推定は、道路や交差点における行動に限ったも のではな!/、。例えば駐車場におレ、ても利用可能である。  [0082] Further, the plurality of behavior estimations in the present invention are not limited to behaviors on roads and intersections! /. For example, it can be used even in a parking lot.
[0083] 図 37は、駐車場での行動推定についての一例を説明する図である。図 37におい て車両 2は駐車場の空きを探しているとする。このとき、車両 1が駐車をしょうとしてい るの力、、出ようとしているのか分からない場合がよくある。例えば車両 2のユーザは、 車両 1が出ようとしていると思い込み、このまま進んだ場合、やはり両者が衝突してし まう危険性が生じる。そこで本発明に示す手法を用いて衝突を回避することができる 。例えば車両 1が停車、つまり本例の場合駐車しょうとしている場合と、左折、つまり 本例の場合、出ようとしているこれら複数の行動を将来行動として推定し、推定された 将来行動から衝突領域を特定し、車両 2へ通知することで衝突を回避することができ る。さらに本例の場合、例えば車両 1の移動履歴を蓄積しておき、今まで所定の時間 滞在していた場合は出ようとしており、一方、今まで滞在してなければ入ろうとしてい る等、車両 1の行動を予測し、その旨を通知することができる。車両 2とすれば、車両 1が出ようとしているならそこへ入り、一方、車両 1が駐車しょうとしているならあきらめ て他の駐車場を探す等、衝突を回避しつつ、より効率的な駐車管理を行うことも可能 となる。  FIG. 37 is a diagram for explaining an example of behavior estimation in a parking lot. In Fig. 37, suppose that vehicle 2 is looking for an empty parking lot. At this time, it is often difficult to know the power of the vehicle 1 trying to park, or whether it is going out. For example, the user of the vehicle 2 thinks that the vehicle 1 is about to come out, and if it proceeds as it is, there is a risk that both will collide. Therefore, a collision can be avoided by using the method shown in the present invention. For example, when vehicle 1 stops, that is, in the case of parking, and in the case of left turn, that is, in this example, the multiple actions that are about to take place are estimated as future actions, and the collision area is determined from the estimated future actions. A collision can be avoided by identifying and notifying the vehicle 2. Furthermore, in the case of this example, for example, the movement history of the vehicle 1 is accumulated, and if it has stayed for a predetermined time until now, it is going to come out. Predict 1 action and notify to that effect. For vehicle 2, if vehicle 1 is about to leave, enter it, while if vehicle 1 is about to park, give up and look for another parking space, avoiding collisions and more efficient parking management. Can also be performed.
[0084] なお、移動履歴を蓄積し、車両の移動先を予測する手法するについては後に詳細 を説明する。  [0084] It should be noted that the method of accumulating the movement history and predicting the destination of the vehicle will be described in detail later.
[0085] (実施の形態 2) [0085] (Embodiment 2)
本実施の形態ではさらに、検出された位置情報を蓄積し、蓄積された位置情報から ユーザの移動先を予測し、予測された移動先を用いて衝突する可能性のある領域の 判定を行う手法について説明を行う。  In the present embodiment, the detected position information is further accumulated, the user's destination is predicted from the accumulated position information, and a region that may collide is determined using the predicted destination. Will be described.
[0086] 図 38は本実施の形態 2の衝突情報通知システムの構成を示すブロック図である。 FIG. 38 is a block diagram showing a configuration of the collision information notification system according to the second embodiment.
本実施の形態において移動体 100の衝突情報通知装置は、位置情報検出部 101、 ノード系列変換部 102、地図情報蓄積部 103、移動履歴蓄積部 117、意思情報検 出部 104、行動推定部 105、移動先予測部 118、重複行動判定部 106、衝突危険 性判定部 107、衝突情報通知部 108から構成される。なお、前記実施の形態 1と同じ 構成要素には同様の符号を付与する。本実施の形態の移動体 100において、位置 情報検出部 101は、「移動体の地図上の現在位置を取得する現在位置取得手段」 の一例であり、意思情報検出部 104は、「前記移動体の将来の行動を示す意思表示 のために発する意思情報を検出する意思情報検出手段」の一例であり、移動履歴蓄 積部 117は、「検出された前記意思情報と、前記意思情報が検出されたときの現在 位置と、前記現在位置力 所定の範囲内で前記意思情報に対して選択された行動と を含む前記移動体の移動履歴を蓄積する移動履歴蓄積手段」の一例であり、重複 行動判定部 106は、「前記意思情報が検出されると、そのときの現在位置から所定の 範囲内で、同一の前記意思情報に対して異なる行動が選択されたことがあるか否か を、以後も同一の前記意思情報に対して異なる行動が選択されうるか否力、として判定 する重複行動判定手段」及び「前記意思情報が検出されたとき取得された現在位置 から所定の範囲内にある地点について蓄積されている前記地点情報を参照し、検出 された前記意思情報に対して異なる移動経路が選択されうるか否力、を判定する前記 重複行動判定手段」の一例であり、衝突情報通知部 108は、「前記重複行動判定手 段によって、前記意思情報に対応して異なる行動が選択されうると判定された場合に 、人物又は他の移動体との衝突の危険性に関する情報を通知する衝突情報通知手 段」及び「前記重複行動判定手段によって、前記意思情報に対して異なる移動経路 が選択されうると判定された場合に、衝突の危険性に関する前記情報を通知する前 記衝突情報通知手段」の一例である。また、地図情報蓄積部 103は、「地図を表す 地図情報をあらかじめ蓄積し、前記移動履歴蓄積手段に蓄積されている前記移動履 歴から、地図上の地点ごとに、前記意思情報と、前記意思情報に対応する行動とし て選択された移動経路とを示す地点情報をさらに蓄積する地図情報蓄積手段」の一 例であり、「前記移動履歴蓄積手段に蓄積されている前記移動履歴から、地図上の 地点ごとに、前記意思情報と、前記意思情報に対応する行動として選択された移動 経路とを示す地点情報を生成する地点情報生成手段」の一例であり、さらに、移動先 予測部 118は「前記重複行動判定手段によって、前記意思情報に対して、前記移動 体が複数通りの行動をとりうると判定された場合に、前記移動履歴蓄積手段に蓄積さ れて!/、る移動履歴に基づ!/、て、移動先を予測する移動先予測手段」の一例である。 In the present embodiment, the collision information notification device of the moving body 100 includes a position information detection unit 101, a node sequence conversion unit 102, a map information accumulation unit 103, a movement history accumulation unit 117, an intention information detection unit. It comprises an output unit 104, a behavior estimation unit 105, a destination prediction unit 118, a duplicate behavior determination unit 106, a collision risk determination unit 107, and a collision information notification unit 108. The same components as those in the first embodiment are given the same reference numerals. In the moving body 100 of the present embodiment, the position information detection unit 101 is an example of “current position acquisition means for acquiring the current position on the map of the moving body”, and the intention information detection unit 104 This is an example of “intention information detection means for detecting intention information issued for intention display indicating future behavior of the user”, and the movement history accumulation unit 117 detects “the detected intention information and the intention information are detected”. The movement position storage means for storing the movement history of the moving body including the current position at the time of the movement and the action selected with respect to the intention information within the predetermined range of the current position force. The determination unit 106 determines whether or not a different action has been selected for the same intention information within a predetermined range from the current position when the intention information is detected. Are different for the same intention information. “Duplicate action determination means for determining whether or not an action can be selected” and “the point information accumulated for a point within a predetermined range from the current position acquired when the intention information is detected”. Is an example of the duplicate action determining means for determining whether or not a different movement route can be selected for the detected intention information, and the collision information notification unit 108 is “by the duplicate action determining means, When it is determined that a different action can be selected corresponding to the intention information, a collision information notification means for notifying information on the risk of a collision with a person or another moving body and the duplicate action determination means Is an example of the above-mentioned collision information notification means for notifying the information on the risk of collision when it is determined that a different travel route can be selected for the intention information. . Further, the map information accumulating unit 103 “accumulates map information representing a map in advance, and stores the intention information and the intention for each point on the map from the movement history accumulated in the movement history accumulation unit. FIG. 6 is an example of a “map information storage unit that further stores point information indicating a travel route selected as an action corresponding to information”. “From the travel history stored in the travel history storage unit, Is a point information generating unit that generates the point information indicating the intention information and the movement route selected as an action corresponding to the intention information for each point. The movement is performed with respect to the intention information by the duplicate action determination means. When it is determined that the body can take a plurality of actions, it is accumulated in the movement history accumulation means! /, Based on the movement history! /, And a movement destination prediction means for predicting the movement destination ” It is an example.
[0087] 移動履歴蓄積部 117は、ユーザの移動にともなって検出される位置情報を移動履 歴として蓄積する手段である。本実施の形態ではノード系列変換部 102において、 G PSで緯度経度の値として検出される位置情報を、地図情報を参照してノードやリンク の ID系列へと変換し、この IDの系列を移動履歴として蓄積することとする。なお、ノ ード系列変換部 102は必ずしも必須構成要素ではなぐ例えば緯度経度の値を蓄積 するものとしてもよい。し力、しながら例えばカーナビ等における GPSで検出する緯度 経度は誤差を有し、また約 1秒間隔で緯度経度を検出してレ、るため情報量としては 膨大なものとなりうる。一方、ユーザの移動を把握するためにはどの経路を走行して いるか、またどの交差点を通過しているか等でおおよその移動を把握でき、また後に 示すマッチングにおける計算コストを削減するためにもノード系列で蓄積するのが望 ましい。 The movement history accumulating unit 117 is means for accumulating position information detected as the user moves as a movement history. In the present embodiment, the node series conversion unit 102 converts the position information detected as the latitude and longitude values by the GPS into the ID series of nodes and links with reference to the map information, and moves this ID series. It will be accumulated as a history. Note that the node series conversion unit 102 may store values such as latitude and longitude that are not necessarily essential components. However, for example, the latitude and longitude detected by GPS in a car navigation system have an error, and since the latitude and longitude are detected at intervals of about 1 second, the amount of information can be enormous. On the other hand, in order to grasp the movement of the user, it is possible to grasp the approximate movement based on which route it is traveling on and which intersection it is passing through, etc., and in order to reduce the calculation cost in the matching described later, It is desirable to accumulate in series.
[0088] 図 39は図 5に示したユーザの移動経路を図 6に示したリンクとノードの系列で示す 図である。ユーザは華町 1交差点を右折し、華 1京都通りを直進している。またユーザ の移動に伴って、位置情報検出部 101において所定の間隔で位置情報が検出され ており、白い丸印で示す。一方、前記実施の形態 1でも示すように、地図情報蓄積部 103には地図情報としてノードやリンクで示す道路ネットワークが蓄積されている。ノ ード系列変換部 102は検出された位置情報を、ノードやリンクの ID系列へと変換する 。例えば図 39の場合、移動経路「L203→N100→L204」等、 IDの系列へと変換さ れる。  FIG. 39 is a diagram showing the movement route of the user shown in FIG. 5 by the link and node series shown in FIG. The user turns right at Hanamachi 1 intersection and goes straight on Hana 1 Kyoto Street. As the user moves, position information is detected at predetermined intervals in the position information detection unit 101 and is indicated by white circles. On the other hand, as shown in the first embodiment, the map information storage unit 103 stores a road network indicated by nodes and links as map information. The node series conversion unit 102 converts the detected position information into an ID series of nodes and links. For example, in the case of FIG. 39, the route is converted into an ID sequence such as “L203 → N100 → L204”.
[0089] 移動履歴蓄積部 117は、これら IDの系列へと変換されたユーザの移動履歴を蓄積 する手段である。図 40はノードとリンクとの ID系列で表され、移動履歴蓄積部 117に 蓄積された移動履歴を示した図である。移動履歴は例えばエンジンをスタートさせた 出発地からエンジンをストップさせた目的地までを一つの移動とし、また、通過経路の ID系列を蓄積する。例えば履歴 ID「001」として「N201」を出発し (例えば自宅とす る)、「L202」、「N100」、「L204」等を通過して目的地「N208」(例えば会社等)へ 到着した履歴が蓄積されて!/、る。 [0090] 行動推定部 105は、前記実施の形態 1と同様に意思情報検出部 104で検出された ウィンカーなどのユーザの行動意思等から、図示しない行動規則に基づいて将来行 動を推定する手段である。また、重複行動判定部 106も前記実施の形態 1と同様に 将来行動が複数推定されているか否かを判定し、衝突危険性判定部 107において 衝突の危険性のある領域を判定することとなる。そして衝突情報通知部 108におい て衝突情報を通知することとなる。以下、図を用いて説明する。 The movement history accumulating unit 117 is means for accumulating the user's movement history converted into the ID series. FIG. 40 is a diagram showing the movement history stored in the movement history storage unit 117, which is represented by an ID sequence of nodes and links. The movement history is, for example, one movement from the starting point where the engine is started to the destination where the engine is stopped, and the ID sequence of the passing route is accumulated. For example, departure from “N201” as history ID “001” (for example, home), passed through “L202”, “N100”, “L204”, etc. and arrived at the destination “N208” (for example, company) The history is accumulated! [0090] Similar to the first embodiment, the behavior estimation unit 105 is a unit that estimates future behavior based on a behavior rule (not shown) based on a user's behavior intention such as a winker detected by the intention information detection unit 104. It is. Similarly to the first embodiment, the duplicate action determination unit 106 also determines whether or not a plurality of future actions are estimated, and the collision risk determination unit 107 determines a region where there is a risk of collision. . The collision information notification unit 108 notifies the collision information. This will be described below with reference to the drawings.
[0091] 図 41は、前記実施の形態 1で示す図 9等と同様、ユーザが華 1京都通りを直進して おり、今左折ウィンカーを出した状況を示した図である。例えば前記実施の形態で示 すように、地図情報蓄積部 103に蓄積された地点に関する情報である地点情報をも とに将来の行動を推定する。本状況では裏華 1交差点を左折して裏華通りへ向かう 行動と、華町 3交差点を左折して大華通りへ向かう二つの行動が将来行動として推 定されている。このように検出された意思情報力 複数の行動が推定される場合、ュ 一ザの意図する行動と、第三者が認識する行動とに差が生じて衝突してしまう場合が ある。そこで前記実施の形態 1で示すように、重複行動判定部 106において将来行 動が複数あるか否かの判定を行い、衝突危険性判定部 107において衝突の危険性 のある領域を判定することとなる。  [0091] FIG. 41 is a diagram showing a situation in which the user is going straight on Hana 1 Kyoto Street and now has a left turn blinker, similar to FIG. 9 and the like shown in the first embodiment. For example, as shown in the above embodiment, a future action is estimated based on point information that is information related to points stored in the map information storage unit 103. In this situation, two actions are estimated as future actions: the left turn at Urahana 1 intersection and heading towards Urahua Street, and the left turn at Hanamachi 3 intersection and heading toward Dahua Street. In this way, when multiple actions are estimated, there may be a difference between the action intended by the user and the action recognized by the third party, resulting in a collision. Therefore, as shown in the first embodiment, the overlapping action determination unit 106 determines whether or not there are a plurality of future actions, and the collision risk determination unit 107 determines a region where there is a risk of collision. Become.
[0092] 一方、移動先予測部 118は移動履歴蓄積部 117に蓄積された移動履歴をもとにュ 一ザの移動先を予測する手段である。移動履歴蓄積部 117には、ユーザの普段の 行動に伴って検出される移動履歴が蓄積されており、この移動履歴はユーザの行動 傾向を反映させた情報となるのが一般的である。ユーザは普段、自宅から会社への 通勤や、習い事への移動、いきつけのレストランやスーパー等、ある程度決まったパ ターンで行動し、その移動経路にもパターンが存在するのが一般的である。移動履 歴を蓄積しておくことでこれらユーザの日常パターンを抽出することができ、さらに抽 出されたパターンを用いることで将来の移動先を予測することが可能となる。そこで本 実施の形態では蓄積された移動履歴を用いて移動先を予測する。以下、図を用いて 説明する。  On the other hand, the movement destination prediction unit 118 is a means for predicting the movement destination of the user based on the movement history accumulated in the movement history accumulation unit 117. The movement history accumulating unit 117 accumulates a movement history detected in accordance with the user's normal behavior, and this movement history is generally information reflecting the user's behavior tendency. Users usually act in a certain pattern, such as commuting from home to the company, moving to a lesson, driving a restaurant, supermarket, etc., and there are generally patterns in their travel routes. By accumulating the movement history, it is possible to extract the daily patterns of these users, and it is possible to predict the future destination by using the extracted patterns. Therefore, in the present embodiment, the movement destination is predicted using the accumulated movement history. This will be described below with reference to the drawings.
[0093] 図 42は移動先の予測を説明する図である。図 42Aはユーザの現在までの移動経 路である現在走行をリンク IDとノード IDとの系列で示す図である。図 42Bは現在走行 と一致する経路を通過し、かつ華町 3交差点を左折した履歴を移動履歴から抽出し た一例を示す図である。図 42Cは現在走行と一致する経路を通過し、かつ裏華 1交 差点を左折した履歴を移動履歴から抽出した一例を示す図である。図 42Dは将来行 動として複数取りうる行動がある場合のそれぞれの将来行動の可能性を計算した図 である。図 42Aにはまず、ユーザの現在までの移動経路である現在走行「N201→L 202→N100→L204→N101→L205」カ示されてレヽる。これ (ま図 41に示すように N 201 (例えば自宅)を出発し、華 1交差点(N101)を左折して現在、華 1京都通り (L2 05)を走行して!/、る旨を示して!/、る。次にこの現在走行と一致する経路を通過したこ とがある履歴を移動履歴より抽出する。図 40に示す移動履歴より、現在走行と一致 する移動履歴は、履歴 ID「001」、「003」、「005」、「007」、「009」の五つが抽出さ れる。 FIG. 42 is a diagram for explaining the prediction of the movement destination. FIG. 42A is a diagram showing the current travel, which is the travel route up to the present time, of the user as a series of link IDs and node IDs. Figure 42B shows the current run FIG. 5 is a diagram showing an example of extracting from the movement history the history of passing the route that coincides with and turning left at Hanamachi 3 intersection. FIG. 42C is a diagram showing an example of extracting from the movement history a history of passing the route that coincides with the current travel and turning left at the back intersection 1 intersection. Fig. 42D is a diagram that calculates the possibility of each future action when there are multiple actions that can be taken as future actions. In FIG. 42A, the current travel “N201 → L202 → N100 → L204 → N101 → L205”, which is the travel route up to the present time, is displayed and displayed. This (departs from N 201 (for example, home) as shown in Fig. 41, turns left at Hana 1 intersection (N101), and now travels on Hana 1 Kyoto Street (L2 05)! Next, the history that may have passed the route that matches the current travel is extracted from the travel history.From the travel history shown in Fig. 40, the travel history that matches the current travel is the history ID “ Five of “001”, “003”, “005”, “007”, “009” are extracted.
[0094] 一方、行動推定部 105において将来の行動として裏華 1交差点を左折する「N102 →L210」と、華町 3交差点を左折する「N102→L206→N103→L209」が推定され ている。これに対して移動履歴には、履歴 ID「001」、「003」、「005」、「007」として 過去四回「N102→L206→N103→L209」の経路を通過した旨を示している。対し て履歴 ID「009」として過去一回「N102→L210」の経路を走行したことがある旨を 示している。つまり、このような状況の場合、ユーザの将来行動としては裏華 1交差点 を左折する行動と、裏華 1交差点を左折する行動との二つが考えられるが、一方ユー ザの普段の行動からすると裏華 1交差点を左折する可能性は 20% (1 ÷ 5)、華町 3 交差点を左折する可能性は 80% (4 + 5)と、将来の移動先を予測することができる。 なお本実施の形態では、参照する現在走行を出発から現在までの経路としたがこれ に限ったものではない。例えば現在地点と向かっている方向のみから、過去の移動 履歴を参照して将来の移動先を予測することも可能である。また、ユーザの行動は時 間帯ゃ曜日に依存することもあり、例えば移動履歴として曜日や時間帯を付帯させ、 これらを参照して移動先を予測することとしてあよレ、。  On the other hand, the behavior estimation unit 105 estimates “N102 → L210” that makes a left turn at Urahana 1 intersection and “N102 → L206 → N103 → L209” that makes a left turn at Hanamachi 3 intersection. On the other hand, the movement history indicates that the history ID “001”, “003”, “005”, “007” has passed through the route “N102 → L206 → N103 → L209” four times in the past. On the other hand, the history ID “009” indicates that the vehicle has traveled the route “N102 → L210” once in the past. In other words, in this situation, there are two possible future actions for the user: the action of turning left at Urahana 1 intersection and the action of turning left at Urahana 1 intersection. The possibility of turning left at Urahana 1 intersection is 20% (1 ÷ 5), and the possibility of turning left at Hanamachi 3 intersection is 80% (4 + 5), so the future destination can be predicted. In the present embodiment, the current travel to be referred to is the route from the departure to the present, but the present invention is not limited to this. For example, it is possible to predict the future destination by referring to the past movement history only from the direction toward the current point. In addition, the user's behavior may depend on the day of the week. For example, the day of the week or the time of day is added as the movement history, and the destination is predicted with reference to these days.
[0095] 衝突危険性判定部 107は得られた予測移動先を用いて衝突の危険性のある領域 を判定する手段である。前記実施の形態 1では推定された将来行動が重複する場合 、両行動のうち異なる領域を衝突の危険性がある領域として判定していた。例えば図 41の場合、図 12と同様、推定された将来行動のうち異なる領域である L210、 L206 、 N103、 L209力 S衝突領域となり、通知されることとなる。本例ではさらに履歴から予 測された移動先をもとに衝突の危険性、例えばその領域にユーザが向力、う確率を危 険度として算出する。衝突領域である L210は、移動確率としては 20%である。一方 、衝突領域 L206、 N103、 L209は、移動確率として 80%となる。そこで衝突領域を 通知するのみならず、その危険度を付帯させて衝突情報として通知する。 The collision risk determination unit 107 is means for determining an area where there is a risk of collision using the obtained predicted movement destination. In the first embodiment, when the estimated future actions overlap, different areas of both actions are determined as areas where there is a risk of collision. For example In the case of 41, as in FIG. 12, it becomes the L210, L206, N103, L209 force S collision area, which is a different area of the estimated future action, and is notified. In this example, based on the destination predicted from the history, the risk of collision, for example, the user's power and probability in that area, is calculated as the risk. The collision area L210 has a movement probability of 20%. On the other hand, the collision areas L206, N103, and L209 have a movement probability of 80%. Therefore, not only the collision area is notified, but the degree of danger is attached and notified as collision information.
[0096] 図 43は、対向車の移動確率を伴った衝突情報の通知を表示する表示画面の一例 を示す図である。図 43は図 13と同様、衝突情報の通知を受けた対向車の表示画面 の例であるが、対向車の移動確率を伴った表示がなされている点が異なる。今、対向 車が左ウィンカーを出して華 1交差点を直進してきているが、裏華 1交差点を左折す る場合 (移動確率 20%)と、華町 3交差点を左折する場合 (移動確率 80%)があり、こ の対向車に注意するようユーザに喚起している。  FIG. 43 is a diagram showing an example of a display screen that displays a notification of collision information accompanied by the movement probability of the oncoming vehicle. FIG. 43 is an example of a display screen of an oncoming vehicle that has been notified of collision information, as in FIG. 13, but is different in that it is displayed with the oncoming vehicle's movement probability. The oncoming car now leaves the left winker and goes straight through the Hana 1 intersection.However, when turning left at the Hana 1 intersection (movement probability 20%) and turning left at the Hanamachi 3 intersection (movement probability 80%) ) And urges the user to pay attention to this oncoming vehicle.
[0097] フェールセーフの観点からは、将来行動が複数存在する場合、常に通知をして注 意を喚起するのが望ましい。一方、危険でもないのに通知をしたのではユーザの不 信感を招くことにもなりかねない。例えば図 43において対向車が確実に裏華 1交差 点を左折するにもかかわらず、「対向車に注意して下さい」等、注意を喚起するのは 好まし!/、ことではな!/、。そこで本例のように移動履歴を用いて経路の移動先を予測し 、予測された移動先への移動確率より危険度を算出し、その危険度とともに通知を行 うことで通知された衝突情報の信頼性を高め、これにより第三者は注意を払うこととな り、衝突回避の効果を高めることが可能となる。  [0097] From the viewpoint of fail-safety, when there are multiple future actions, it is desirable to always notify and call attention. On the other hand, notifications that are not dangerous can lead to user distrust. For example, it is preferable to call attention, such as `` Be careful with oncoming vehicles '', even though the oncoming vehicle makes a left turn at the Urahana 1 intersection in Figure 43! . Therefore, the collision information notified by predicting the destination of the route using the movement history as shown in this example, calculating the risk from the predicted probability of moving to the destination, and notifying with the risk This will increase the reliability of the third party, which will allow the third party to pay attention and increase the effectiveness of collision avoidance.
[0098] 図 44は本実施の形態 2の衝突情報通知システムにおける衝突情報通知装置の動 作を示すフローチャートである。図 45は図 44のステップ S310に示した移動先予測 処理における衝突情報通知装置の詳細な動作を示すフローチャートである。以下、 図 44、図 45のフローチャートを用いて本発明の動作を説明する。  FIG. 44 is a flowchart showing the operation of the collision information notification device in the collision information notification system of the second embodiment. FIG. 45 is a flowchart showing a detailed operation of the collision information notification device in the destination prediction process shown in step S310 of FIG. The operation of the present invention will be described below with reference to the flowcharts of FIGS. 44 and 45.
[0099] まず位置情報検出部 101で位置情報を検出する (ステップ S301)。そして地図情 報蓄積部 103に蓄積された地図情報を参照し (ステップ S302)、例えば緯度経度情 報で検出された位置情報をノード系列へと変換する (ステップ S303)。そして移動履 歴蓄積部 117へ移動履歴として蓄積する (ステップ S304)。またその間、意思情報検 出部 104で意思情報を検出する(ステップ S305)。例えば右左折ウィンカーなど、意 思情報が検出されるか否かを検出し (ステップ S306)、検出された場合はステップ S3 07へと進み、検出されない場合はステップ S301へと戻り、本動作のループを繰り返 す。ユーザの走行に伴って位置情報が検出され、移動履歴と蓄積され、また意思情 報が検出されることとなる。 First, the position information detecting unit 101 detects position information (step S301). Then, the map information stored in the map information storage unit 103 is referred to (step S302), and for example, position information detected in the latitude / longitude information is converted into a node series (step S303). Then, it is accumulated as a movement history in the movement history accumulation unit 117 (step S304). In the meantime, intention information inspection The outgoing information 104 detects intention information (step S305). For example, whether or not intention information such as a right / left turn blinker is detected is detected (step S306) .If it is detected, the process proceeds to step S307, and if not detected, the process returns to step S301, and the loop of this operation is performed. repeat. As the user travels, position information is detected, movement history is accumulated, and intention information is detected.
[0100] ステップ S306において意思情報が検出された場合(ステップ S306の Yes)、地図 情報蓄積部 103に蓄積された地点情報を参照し (ステップ S307)、行動推定部 105 において将来の行動を推定することとなる(ステップ S308)。次に重複行動判定部 1 06において将来行動が複数あるか否かの判定を行う(ステップ S 309)。複数存在す る場合は(ステップ S309の Yes)、ステップ S310へ進み、複数存在しない場合は(ス テツプ S309の No)、ステップ S301へと戻る。  [0100] When intention information is detected in step S306 (Yes in step S306), the point information stored in the map information storage unit 103 is referred to (step S307), and the behavior estimation unit 105 estimates future behavior. (Step S308). Next, it is determined in the overlapping action determination unit 106 whether or not there are a plurality of future actions (step S309). If there are multiple (Yes in step S309), the process proceeds to step S310, and if there are not multiple (No in step S309), the process returns to step S301.
[0101] 複数存在する場合 (ステップ S309の Yes)、移動先予測部 118で移動先を予測す る(ステップ S310)。なお、本実施の形態において移動先予測の動作は将来行動が 重複する場合に行うこととしている力 これに限ったものではない。例えば移動先を予 測して移動先に関する渋滞情報等を提供する技術が従来知られており、例えば位置 情報を検出するたびに(ステップ S101)、あるいはノード系列へ変換して (ステップ S 303)交差点を通過するたびに行うこととしてもよ!/、。  [0101] When there are a plurality (Yes in Step S309), the movement destination prediction unit 118 predicts the movement destination (Step S310). In the present embodiment, the movement of the destination prediction is not limited to the force that is to be performed when future actions overlap. For example, a technique for predicting a destination and providing traffic information related to the destination is known. For example, every time position information is detected (step S101) or converted into a node series (step S303). You can do it every time you cross an intersection!
[0102] 図 45は移動先予測部 118における移動先予測の動作フローを示したものである。  FIG. 45 shows an operation flow of movement destination prediction in the movement destination prediction unit 118.
本実施の形態では、ユーザの移動に伴って検出される位置情報が、ノード系列変換 部 102においてノード系列が変換されており(ステップ S301からステップ S303)、ま ず、この現在までの現在走行を参照する(ステップ S401)。そして移動履歴蓄積部 1 17に蓄積された移動履歴を参照する (ステップ S402)。そして現在走行と一致する 履歴を抽出する(ステップ S403)。  In this embodiment, the node sequence is converted in the node sequence conversion unit 102 based on the position information detected as the user moves (step S301 to step S303). Reference (step S401). Then, the movement history stored in the movement history storage unit 117 is referred to (step S402). Then, a history that matches the current travel is extracted (step S403).
[0103] 一方、行動推定部 105では将来行動が推定されており(ステップ S308)、この将来 行動を参照する(ステップ S404)。そして一致する将来行動が存在するか否かを判 定する(ステップ S405)。存在する場合はステップ S406へ進み、存在しない場合は 終了する。存在する場合 (ステップ S405の Yes)、各将来行動と一致する履歴の頻 度を算出する(ステップ S406)。そして各将来行動の移動確率を算出する (ステップ S407)。本例の場合、図 42に示すように裏華 1交差点を左折する行動は 20%、華 町 3交差点を左折する行動は 80%と、推定された移動確率とともに移動先が予測さ れる。 On the other hand, the behavior estimation unit 105 estimates future behavior (step S308), and refers to this future behavior (step S404). Then, it is determined whether there is a matching future action (step S405). If it exists, the process proceeds to step S406, and if it does not exist, the process ends. If it exists (Yes in step S405), the frequency of the history that matches each future action is calculated (step S406). Then calculate the movement probability of each future action (step S407). In the case of this example, as shown in Fig. 42, the behavior of turning left at Urahana 1 intersection is 20%, and the behavior of turning left at Hanamachi 3 intersection is 80%, and the destination is predicted with the estimated movement probability.
[0104] 次に衝突危険性判定部 107にお!/、て衝突の危険性を判定する。例えば推定され た将来行動のうち、異なる地点が衝突領域として判定されており、さらに移動先予測 部 118で予測された移動先とその移動確率より危険性 (例えば危険度)を判定する( ステップ S311)。そして判定された衝突情報を、衝突情報通知部 108において通知 する。ここで、行動推定部 105は、「前記移動履歴蓄積手段に蓄積されている移動履 歴から、自車が前記移動先に向かう確率を前記危険度として算出する前記衝突情報 通知手段」の一例である。  [0104] Next, the collision risk determination unit 107 determines the risk of collision! For example, different points of the estimated future behavior are determined as collision areas, and the risk (for example, the degree of risk) is determined based on the destination predicted by the destination prediction unit 118 and its movement probability (step S311). ). The collision information notification unit 108 notifies the determined collision information. Here, the behavior estimation unit 105 is an example of “the collision information notification unit that calculates the probability that the vehicle is heading for the destination based on the travel history stored in the travel history storage unit”. is there.
[0105] 例えば図 43は衝突領域とさらにその移動確率とともに通知を行う一例である。対向 車が左ウィンカーを出して華 1交差点を直進してきているが、裏華 1交差点を左折す る場合 (移動確率 20%)と、華町 3交差点を左折する場合 (移動確率 80%)があり、こ の対向車に注意するようユーザに喚起している。ここで、衝突情報通知部 108は「前 記重複行動判定手段によって、複数通りの行動をとりうると判定された場合に、前記 移動先予測手段によって予測された移動先ごとに、衝突の危険性に関する情報と、 各前記移動先に向かう場合の危険性の度合いを示す危険度とを併せて通知する前 記衝突情報通知手段」の一例である。危険度とともに通知を行うことで通知された衝 突情報の信頼性を高め、これにより第三者は注意を払うこととなり、衝突回避の効果 を高めることが可能となる。  For example, FIG. 43 is an example in which notification is performed together with the collision area and its movement probability. The oncoming car leaves the left turn signal and goes straight at the Hana 1 intersection, but when turning left at the Hana 1 intersection (movement probability 20%) or turning left at the Hanamachi 3 intersection (movement probability 80%) Yes, the user is alerted to pay attention to this oncoming vehicle. Here, the collision information notifying unit 108 indicates that “when the duplicate action determining means determines that a plurality of actions can be taken, the risk of collision for each destination predicted by the destination predicting means. And the collision information notification means for notifying the risk level indicating the level of danger when heading to each destination. By providing notification along with the degree of danger, the reliability of the notified collision information can be improved, so that a third party can pay attention and increase the effectiveness of collision avoidance.
[0106] なお、本実施の形態において移動履歴は、移動に伴って検出されるノード系列を 常に蓄積していた力 例えば重複行動が生じた場合にのみ履歴を蓄積しておくことと してもよい。図 46は重複行動が生じた場合にのみ履歴を蓄積しておく場合の移動体 の動作の一例を示す図である。以下、図 46を用いて説明する。  [0106] In the present embodiment, the movement history is a force that has always accumulated the node series detected along with the movement. For example, the movement history may be accumulated only when a duplicate action occurs. Good. FIG. 46 is a diagram showing an example of the operation of the moving body when the history is accumulated only when the duplicate action occurs. This will be described below with reference to FIG.
[0107] 図 46は図 16等に示す楽 4交差点地点を示す図である。この楽 4交差点は阪神 1通 り、京都 2通り、奈良 3通り、裏 5通りが交錯する五差路となっており、例えばユーザが 同じ右左折のウィンカーを出しても実際に将来どの経路を通るか把握しにくい地点の 一例である。 [0108] 例えば今、車両 1が奈良 3通りで左折ウィンカーを出して阪神 1通りへ移動したとす る。移動履歴はこの車両 1の位置情報と意思情報を移動履歴として蓄積する。車両 1 力も検出された移動履歴として、車両 ID「001」、意思情報「左折ウィンカー」、移動 履歴「L216→N105→L212→N104→L211」が検出され蓄積されている。一方、 後日、車両 1は同様に奈良 3通りで左折ウィンカーを出し、一方裏 5通りへ抜けたとす る。車両 1から検出された移動履歴として、意思情報「左折ウィンカー」、移動履歴「L 216→N105→L212→N104→L215」カ検出され蓄積されて!/、る。 [0107] Fig. 46 is a diagram showing the Raku 4 intersection point shown in Fig. 16 and the like. This Raku 4 intersection is a five-way road that crosses Hanshin 1 street, Kyoto 2 street, Nara 3 street, and back 5 street.For example, even if the user makes the same right / left turn indicator, This is an example of a point that is difficult to pass or not. [0108] For example, suppose that vehicle 1 moves to Hanshin 1st street by taking a left turn winker at Nara 3rd street. The movement history stores the position information and intention information of the vehicle 1 as a movement history. Vehicle ID “001”, intention information “left turn blinker”, and movement history “L216 → N105 → L212 → N104 → L211” are detected and stored as the movement history in which the vehicle 1 force is also detected. On the other hand, suppose that the vehicle 1 also made a left turn winker at Nara 3 streets in the same way, and exited 5 streets on the other side. As the movement history detected from the vehicle 1, the intention information “left turn blinker” and the movement history “L 216 → N105 → L212 → N104 → L215” are detected and accumulated! /.
[0109] このように複雑な地点では、同じ意思情報を示しながら異なる行動をとる場合があり 、さらにこのような地点であるがゆえに、両者の思惑が異なり衝突してしまうことが多い 。そこで本発明では、移動体によって検出される移動履歴から、同じ意思情報を示し ながらも異なる行動をとつた履歴から重複行動が生じた場合にのみ履歴を蓄積する こととしてあよい。  [0109] In such a complex point, different actions may be taken while showing the same intention information. Furthermore, because of such a point, the speculations of the two often collide differently. Therefore, in the present invention, the history may be accumulated only when duplicate behavior occurs from the history of different behaviors while showing the same intention information from the motion history detected by the mobile body.
[0110] 図 47は本変形例を実施する衝突情報通知システムの構成例を示すブロック図であ る。図 38に示すシステム構成要素に加え、重複行動抽出部 122が備わっている。重 複行動抽出部 122は、移動履歴蓄積部 117に蓄積された各車両の移動履歴から、 同じ意思情報であって異なる移動を行った履歴を抽出する手段である。そして抽出さ れた移動履歴を移動履歴蓄積部 117に蓄積することとなる。例えば図 46の場合、車 両 1は、同じ左折ウィンカーを出しつつ、阪神 1通へ向力、う経路と、裏 5通りへ向かう経 路と異なる経路を通っており、この履歴が抽出される。  FIG. 47 is a block diagram showing a configuration example of a collision information notification system that implements the present modification. In addition to the system components shown in FIG. 38, a duplicate action extraction unit 122 is provided. The duplicate action extraction unit 122 is a means for extracting, from the movement history of each vehicle accumulated in the movement history accumulation unit 117, the same intention information and a history of different movements. Then, the extracted movement history is stored in the movement history storage unit 117. For example, in the case of Fig. 46, vehicle 1 is taking the same left turn winker, and is taking a route different from the direction toward Hanshin 1 route, the route going to Hanshin street, and the route going to the back 5 streets, and this history is extracted. .
[0111] 1秒間隔等、所定の間隔で蓄積された移動履歴は膨大な情報量となってしまう可能 性がある。従って蓄積された移動履歴の中から上記重複行動を検索する計算時間も 要してしまうこととなる。そこでこのように重複行動が生じた場合のみ蓄積しておくこと で、衝突の危険性が生じる重要な履歴を検索する計算速度も向上し、特に危険を伴 う情報を通知する本発明にお!/、てはその効果を発揮する。  [0111] The movement history accumulated at a predetermined interval such as an interval of 1 second may have a huge amount of information. Therefore, a calculation time for searching for the duplicate action from the accumulated movement history is also required. Therefore, by accumulating only when duplicate actions occur in this way, the calculation speed for searching an important history in which the risk of a collision is increased, and the present invention for notifying information with danger in particular! / Demonstrate its effect.
[0112] さらに移動履歴を蓄積することで右左折、あるいは停車が可能な地点である地点情 報として地図情報に予め蓄積された地点のみならず、これらの情報が含まれないよう な地点においてもユーザに特有の行動推定することができ、衝突を回避することが可 能となる。以下、具体例を用いて説明する。 [0113] 図 48は蓄積した移動履歴に基づいて、意思情報から将来行動を推定する一例を 説明するための図である。図 48においてトラック 1は阪神 7通りを走行しており、今、 ハザードを点灯させて停車の意思を検出したとする。ここで地図情報を参照すると、 例えばトラックの周囲には駐車可能な地点として B店の駐車場 (N124)のみの情報 があり、行動推定部 105はこの B店の駐車場をその停車場所として推定し、将来行動 「N121→L225→N124」を推定したとする。一方、実際は四条株式会社へ入り停車 したとする。この場合、図 22と同様に例えば後方にいる車両 2からすると、トラック 1力 S B店の駐車場へ入ると考え、トラック 1を追い抜こうとし、衝突の危険性が生じる。 [0112] Further, by accumulating the movement history, not only the points that are pre-stored in the map information as the point information that can be turned left or right or stopped, but also at points that do not include such information. User-specific behavior can be estimated, and collisions can be avoided. Hereinafter, a specific example will be described. FIG. 48 is a diagram for explaining an example of estimating future actions from intention information based on the accumulated movement history. In Fig. 48, it is assumed that truck 1 is traveling on Hanshin 7 street, and now the hazard is lit and the intention to stop is detected. Referring to the map information here, for example, there is information on only the parking lot of store B (N124) as a parking spot around the truck, and the behavior estimation unit 105 estimates the parking lot of store B as the stop location. Assume that the future action “N121 → L225 → N124” is estimated. On the other hand, suppose that you actually entered Shijo Corporation and stopped. In this case, for example, from the rear of the vehicle 2 as in FIG. 22, the truck 1 thinks that it will enter the parking lot of the SB store, trying to overtake the truck 1, and there is a risk of collision.
[0114] ユーザは第三者が思う行動と必ずしも同じ行動をとるとは限らず、このように第三者 が思う行動とは異なる行動をとることがある。前記実施の形態 1では、示された意思情 報から考えられる行動を地図情報等から推定し、複数行動が推定された場合に衝突 の通知を行っていたが、しかしながら地図情報のみでは必ずしも行動が正確に推定 できるとは限らない。例えば本例の場合、 B店の駐車場には停車可能なノードがある 1S 一方、実際にトラック 1が停車した四条株式会社にはその情報がないとする。四 条株式会社はトラック 1にとつては自分の会社である力 共通に利用される一般的な 地図情報にはノードとして登録されていないものとする。この場合、推定することがで きないこととなる。そこで例えば行動推定部 105において推定された行動とは異なる 行動をとつた場合に移動履歴として蓄積しておき、この移動履歴を用いて衝突の危 険性の判断に用いることとしてもょレ、。  [0114] The user does not necessarily take the same action as the third person thinks, and thus may take a different action from the action that the third person thinks. In Embodiment 1 described above, the behavior that can be considered from the indicated intention information is estimated from the map information and the like, and the collision is notified when a plurality of behaviors are estimated. Accurate estimation is not always possible. For example, in the case of this example, there is a node that can stop at the parking lot of store B 1S. On the other hand, it is assumed that Shijo Co., Ltd., where truck 1 actually stops, does not have that information. Shijo Co., Ltd. shall not be registered as a node in the general map information that is commonly used for truck 1 for its own company. In this case, it cannot be estimated. Therefore, for example, when a behavior different from the behavior estimated by the behavior estimation unit 105 is taken, it is accumulated as a movement history, and this movement history is used for judging the risk of collision.
[0115] 例えば今、行動推定部 105において将来行動「N121→L225→N124」が推定さ れている。し力、し実際にはトラック 1は、四条株式会社へ入り停車したとする。ここで推 定された行動とは異なる行動を移動履歴として蓄積する。図 48にお!/、て白レ、丸印は 位置情報検出部 101で検出される緯度経度情報であり、四条株式会社へ入り停車し た移動を示して!/、る。そして推定された将来行動とは異なる行動を移動履歴として蓄 ¾ る。  For example, the future behavior “N121 → L225 → N124” is estimated in the behavior estimation unit 105 now. It is assumed that truck 1 actually entered Shijo Corporation and stopped. Actions different from those estimated here are accumulated as movement history. In FIG. 48,! /, White circles, and circles are latitude / longitude information detected by the position information detection unit 101, indicating movements that entered Shijo Co., Ltd. and stopped! Then, an action different from the estimated future action is stored as a movement history.
[0116] 図 49は推定された行動とは異なる行動をとつた履歴を示す図である。図 49Aは現 在走行の一例を示す図である。図 49Bは移動体が発した意思情報を示す図である。 図 49Cは行動推定部 105によって推定された将来行動を示す図である。図 49Dは 行動推定部 105において推定された行動とは異なる行動をとつた場合の現在走行の 一例を示す図である。図 49Eは図 49Dに示された現在走行が移動履歴として蓄積さ れた例を示す図である。現在走行「N141→L221」と検出され、意思情報「停車」が 検出されたことにより、行動推定部 105において将来行動「N121→L225→N124」 が検出されている。し力もユーザが実際にとつた行動は「E (東経) 135. 10、N (北緯 ) 35. 20」、「E135. 12、 N35. 20」、「E135. 14、 N35. 20」、「E135. 14、 N35. 24」、「E135. 14、N35. 28」、「E135. 14、 N35. 31」、「E135. 14、 N35. 33」と 、四条株式会社への停車であった旨が検出されている。そして検出された移動を履 歴として蓄積する。履歴 ID「020」として蓄積されている。そしてこの蓄積された情報 を用いて衝突危険性の判断をすることとなる。 FIG. 49 is a diagram showing a history of actions different from the estimated actions. FIG. 49A is a diagram showing an example of current running. FIG. 49B is a diagram showing intention information issued by the moving object. FIG. 49C is a diagram showing the future behavior estimated by the behavior estimation unit 105. Figure 49D FIG. 10 is a diagram showing an example of current running when an action different from the action estimated by the action estimating unit 105 is taken. FIG. 49E is a diagram showing an example in which the current travel shown in FIG. 49D is accumulated as a movement history. Since the current traveling “N141 → L221” is detected and the intention information “stop” is detected, the behavior estimating unit 105 detects the future behavior “N121 → L225 → N124”. However, the actions that the user actually took were “E (east longitude) 135.10, N (north latitude) 35.20”, “E135.12, N35.20”, “E135.14, N35.20”, “E135 .14, N35.24 "," E135.14, N35.28 "," E135.14, N35.31 "," E135.14, N35.33 " Has been detected. The detected movement is accumulated as a history. Stored as history ID “020”. Then, the risk of collision is judged using this accumulated information.
[0117] 例えば図 48と同じような状況でトラック 1が再び停車の意思を示すとする。ここで行 動推定部 105は地図情報のみならず、移動履歴を参照して行動を推定する。地図情 報には B店の駐車場 (N124)が停車可能な地点として蓄積されており、将来行動の 一つとして「N121→L225→N124」を推定する。さらに移動履歴から履歴 ID「020」 に示す行動、つまり図 48において白い丸印で示す四条株式会社へ停車する行動を 将来行動として推定する。そして推定された行動が複数存在するため、衝突危険性 判定部 107にお!/、て両行動であって異なる領域を衝突領域として判定し、通知を行 う。例えば後方にいる車両 2は、 B店への停車のみならず、四条株式会社へ停車する 場合もあることを知ることができ、衝突の危険を回避することが可能となる。  [0117] For example, in the same situation as in Fig. 48, suppose that truck 1 again intends to stop. Here, the behavior estimation unit 105 estimates the behavior with reference to the movement history as well as the map information. In the map information, the parking lot of store B (N124) is stored as a stoppable point, and “N121 → L225 → N124” is estimated as one of the future actions. Furthermore, the behavior indicated by history ID “020” from the movement history, that is, the behavior of stopping at Shijo Corporation indicated by a white circle in FIG. 48 is estimated as a future behavior. Since there are a plurality of estimated behaviors, the collision risk judgment unit 107 determines that both behaviors are different from each other as a collision region, and notifies them. For example, it is possible to know that the vehicle 2 behind may stop not only at the store B but also at Shijo Co., Ltd., thereby avoiding the danger of a collision.
[0118] また、前記実施の形態でも示すように、本例は第三者への通知のみならず、自分に 対する通知であってもよい。特に、普段同じような行動をしているドライバーにとって、 その行動は日常的な行動であるため、周囲の第三者も自分の行動を分かっているで あろうと思い込んでしまう。一方、その行動は一般的に考えられる行動とは異なり、さ らにその差異が衝突の危険性を生じさせることが多々ある。そこで本例に示すように 推定された行動と異なる行動をとつた場合の移動履歴を蓄積しておき、蓄積された移 動履歴を用いて衝突危険性の判断を行い通知を行うことで、ユーザに特有の行動も 考慮した安全走行支援を可能とすることができる。例えば自分は毎日四条株式会社 へ入り停車する行動をとっている力 一方、この経路で停車ウィンカーを出す場合、 周囲の第三者にとっては B店へ入るのであろうと認識されてしまい、さらには衝突して しまう危険性がある旨を通知されることで、より安全走行を心がけ、衝突の危険を回避 する効果を生じる。 [0118] Further, as shown in the above embodiment, this example may be not only a notification to a third party but also a notification to itself. In particular, for drivers who usually do the same, the behavior is a daily behavior, so it is assumed that the surrounding third parties may know their behavior. On the other hand, the behavior is different from the generally considered behavior, and the difference often creates a risk of collision. Therefore, as shown in this example, the movement history when the behavior different from the estimated behavior is accumulated, the collision risk is judged using the accumulated movement history, and notification is made. It is possible to provide safe driving support that takes into account the specific behavior of the vehicle. For example, if you take the action to enter Shijo Corporation every day and stop, The effect of avoiding the risk of collision by making it safer to drive by being notified that surrounding third parties will be aware that they will enter store B and that there is a risk of collision. Produce.
[0119] なお、上記例において意思情報は右左折のウィンカーを例に説明を行ってきた力 これに限ったものではない。例えばバックギアに入れ、ノ ックライトをその意思情報と して用いることも可能である。特に図 48に示すようにトラックが工場や会社へ入るよう な状況では、単に右左折ウィンカーを示すだけでなぐその後バックして駐車するよう な場合もある。あるいは右ウィンカーを出して一端右へ振り、その後バックで入れる等 、このような場所では第三者がかならずしも推測できない行動をとることが多い。そこ で本例で示すように、移動履歴の蓄積として、例えばバックギアに入れた移動履歴を 蓄積して用いることとしてもよい。所定の間隔で常に移動履歴を蓄積するのはデータ 量も膨大となり不都合である力、このように衝突の危険性が生じる履歴のみを効率よ く蓄積することにより、必要な履歴を容易に抽出することが可能となる。  [0119] In the above example, the intention information is a force that has been described by taking a turn signal for turning right and left as an example. For example, it is possible to put it in the back gear and use the knock light as its intention information. In particular, as shown in Fig. 48, in a situation where a truck enters a factory or company, there may be a case where the vehicle turns back and parks just after showing a turn signal. Or, a third person often takes actions that cannot always be guessed, such as taking out the right turn signal, swinging it to the right, and then putting it in the back. Therefore, as shown in this example, as the movement history accumulation, for example, the movement history put in the back gear may be accumulated and used. It is an inconvenient force to accumulate the movement history at a predetermined interval, which is inconvenient because the data volume is enormous. Thus, the necessary history can be easily extracted by efficiently accumulating only the history in which the risk of collision occurs It becomes possible.
[0120] 特に工場や工事現場、運送会社、コンビニエンスストアなどでは、各車両、特に大 型車等が同じような行動をとることが多ぐ本例に示すように移動履歴を蓄積し、移動 履歴をもとに第三者にとって意思情報力 一意に推測できない行動(多義性を生じる ような行動)から衝突の危険性を判定して通知を行うことで、より安全な走行を実現す ること力 S可倉 となる。  [0120] Especially in factories, construction sites, transportation companies, convenience stores, etc., each vehicle, especially large vehicles, often takes the same action, as shown in this example. The ability to realize safer driving by determining the risk of collision from actions that cannot be uniquely estimated (actions that cause ambiguity) based on S becomes Kanakura.
[0121] なお、本実施の形態では、自車の移動先を予測し、その移動確率を算出することで 危険性を判定していた力 自車のみならず、他車の移動先を予測して危険性を判定 することも可能である。  [0121] In the present embodiment, the destination of the own vehicle is predicted, and the power that has been determined to be dangerous by calculating the probability of movement is used to predict not only the own vehicle but also the destination of other vehicles. It is also possible to judge the risk.
[0122] 図 50は他車の移動先を予測して危険性を判定する衝突情報通知システムの構成 の一例を示すブロック図である。まず移動体 100には本実施の形態にしめす構成要 素に加え、前記実施の形態 1で示した通知相手特定部 112、衝突危険度演算部 12 4が加わる。前記実施の形態における通知相手特定部 112は、受信した他の移動体 の位置情報から、例えば衝突領域にいるユーザを特定し、衝突の危険性がある旨を 通知して!/、た。本例では他の移動体にお!/、て予測された移動先を用いて通知する 相手を特定する。一方、移動体 200には、第二位置情報検出部 115、第二移動履歴 蓄積部 121、第二移動先予測部 119、第二移動先送信部 120が備わっている。上 記に示す方法と同様に、第二位置情報検出部 115において移動体 200の位置情報 を検出し、第二移動履歴蓄積部 121へ移動履歴として蓄積する。そして第二移動先 予測部 119において移動体 200の移動先を予測し、第二移動先送信部 120で予測 された移動先を送信する。以下、図を用いて説明する。また、移動体 100において、 位置情報検出部 101は、「他の移動体から当該移動体の移動履歴を受信する移動 履歴受信手段」の一例であり、移動先予測部 118は、「前記重複行動判定手段によ つて、前記意思情報に対して、前記移動体が複数通りの行動をとりうると判定された 場合に、前記移動履歴蓄積手段に蓄積されている移動履歴と、前記他の移動体か ら受信した移動履歴に基づいて、自車と前記他の移動体との移動先を予測する移動 先予測手段」の一例であり、通知相手特定部 112は、「前記移動先予測手段による 予測に基づいて、自車と衝突の危険性が高い前記他の移動体に対して、衝突の危 険性に関する情報を優先的に通知する前記衝突情報通知手段」の一例である。 図 51は、他の移動体の移動先を用いた通知制御を説明する図である。図 51にお いて華 1京都通りを直進する車両 1は左折しょうとしており、裏華 1交差点を左折する 確率が 20%、華町 3交差点を左折する確率が 80%と算出されている。またこれら異 なる行動から衝突領域が特定されている。一方、対向車 2は移動先として華町 3交差 点を直進する確率 90%、右折する確率 10%と算出されている。さらに対向車 3は華 町 3交差点を右折する確率 100%が算出されている。ここで例えば衝突危険度演算 部 124において各移動確率の積より各車両との衝突の可能性力 車両 2とは 8% (10 % X 80%)、車両 3とは 80% (100% X 80%)と算出できる。そこで例えば車両 3と優 先的に通信し衝突を回避する等、他車の予測移動先を用いて通知制御を行うことと してもよい。これにおいて衝突危険性判定部 107及び衝突情報通知部 108は、「前 記重複行動判定手段によって、複数通りの行動をとりうると判定された場合に、前記 移動履歴蓄積手段に蓄積されている移動履歴から、前記移動先予測手段によって 予測された移動先ごとに、自車が前記移動先に向力、う確率を危険度として算出する とともに、前記他の移動体から受信された移動履歴から、前記他の移動体が前記移 動先に向かう確率を危険度として算出し、衝突の危険性に関する情報に、前記移動 先に向かう自車及び前記他の移動体の危険度とを併せて通知する前記衝突情報通 知手段」の一例である。 FIG. 50 is a block diagram showing an example of the configuration of a collision information notification system that predicts the destination of another vehicle and determines the danger. First, in addition to the constituent elements shown in the present embodiment, the moving body 100 is added with the notification partner identification unit 112 and the collision risk degree calculation unit 124 shown in the first embodiment. The notification partner identification unit 112 in the above embodiment identifies, for example, a user in a collision area from the received position information of another moving body, and notifies that there is a danger of collision! /. In this example, the other party to be notified is identified using the predicted destination! On the other hand, the mobile body 200 includes a second position information detection unit 115, a second movement history. The storage unit 121, the second movement destination prediction unit 119, and the second movement destination transmission unit 120 are provided. Similar to the method described above, the second position information detection unit 115 detects the position information of the moving body 200 and stores it in the second movement history storage unit 121 as a movement history. Then, the second movement destination prediction unit 119 predicts the movement destination of the moving body 200 and transmits the movement destination predicted by the second movement destination transmission unit 120. This will be described below with reference to the drawings. In the moving body 100, the position information detection unit 101 is an example of “movement history receiving means for receiving the movement history of the moving body from another moving body”. When the determination means determines that the mobile body can take a plurality of actions with respect to the intention information, the movement history stored in the movement history storage means and the other mobile body The destination identification unit 112 is an example of a “destination prediction unit that predicts a destination of the vehicle and the other mobile object based on the movement history received from the vehicle”. Based on the above, it is an example of “the collision information notifying means for preferentially notifying information on the danger of collision to the other moving body having a high risk of collision with the own vehicle”. FIG. 51 is a diagram for explaining notification control using a destination of another moving object. In Fig. 51, Hana 1 vehicle 1 going straight on Kyoto Street is going to turn left, the probability of turning left at Urahana 1 intersection is 20%, and the probability of turning left at Hanamachi 3 intersection is 80%. The collision area is identified from these different actions. On the other hand, the oncoming vehicle 2 is calculated as a 90% probability of going straight at the Hanamachi 3 intersection as a destination and a 10% probability of turning right. Furthermore, the oncoming vehicle 3 has a 100% probability of turning right at the Hanamachi 3 intersection. Here, for example, in the collision risk calculation unit 124, the possibility of collision with each vehicle based on the product of each movement probability is 8% (10% X 80%) for vehicle 2 and 80% (100% X 80 for vehicle 3). %). Therefore, for example, notification control may be performed using the predicted destination of another vehicle, such as preferentially communicating with the vehicle 3 to avoid a collision. In this case, the collision risk determination unit 107 and the collision information notification unit 108 indicate that “the movement stored in the movement history storage unit when it is determined by the overlapping action determination unit that a plurality of actions can be taken. From the history, for each destination predicted by the destination prediction means, the host vehicle calculates the power, the probability of entering the destination as the risk, and from the movement history received from the other moving body, The probability that the other moving object is heading to the destination is calculated as the risk, and the information on the risk of collision is used as the information on the movement. It is an example of the “collision information notification means” for notifying the risk of the host vehicle and the other moving body heading forward.
[0124] 車々間通信において車両と車両が一対一で通信を行う PtoPでの通信では、その 通信コストが問題となる。特に複数の車両が密集する交差点ではどの車両と通信す るかを特定することが重要となる。そこで本例で示すように、行動推定された重複する 行動より衝突領域を特定し、さらに他車の予測移動先からこの衝突領域へ交錯する 危険性を判断して通知相手を特定することで、通信コストを制限しつつ、衝突を回避 すること力 S可倉 となる。  [0124] In PtoP communication, in which vehicle-to-vehicle communication is performed one-to-one in inter-vehicle communication, the communication cost becomes a problem. In particular, it is important to specify which vehicle to communicate with at intersections where multiple vehicles are crowded. Therefore, as shown in this example, by identifying the collision area from the overlapping action estimated action, and further determining the risk of crossing from the predicted destination of the other vehicle to this collision area, The ability to avoid collisions while limiting communication costs is S Kanakura.
[0125] なお、本発明の移動体 100は、他の移動体に対して衝突の危険性に関する情報の 通知が行われたか否かを確認する手段、及び他の移動体に対して通知が行われた ことを表示する手段を備えるとしてもよい。ここで、この「衝突の危険性に関する情報 の通知が行われたか否かを確認する手段」は、「前記他の移動体に、衝突の危険性 に関する情報が通知されたか否かを確認する衝突情報通知確認手段」の一例であり 、「他の移動体に対して通知が行われたことを表示する手段」は、「前記衝突情報通 知確認手段によって前記通知がされたことが確認された場合に、前記通知がされた ことを表示する通知確認表示手段」の一例であり、衝突情報通知部 108は、「前記衝 突情報通知確認手段によって前記通知がされたことが確認されなレ、場合、通知の態 様を変更して、再度、前記他の移動体に対し、前記衝突の危険性に関する情報を通 知する前記衝突情報通知手段」の一例である。具体的には、例えば、他の移動体に 対して衝突の危険性に関する情報がされていない場合には、音声や警告音などを伴 う通知を行うとしてもよい。これにより、衝突の危険性に関する通知を受けていなかつ たために注意をしていない他の移動体に対して、衝突の危険性について、より強く注 意を喚起すること力 Sできるとレ、う効果がある。  [0125] It should be noted that the moving body 100 of the present invention provides a means for confirming whether or not information on the danger of collision has been notified to other moving bodies, and notifies other moving bodies. There may be provided means for displaying what has been reported. Here, the “means for confirming whether or not the notification of the information on the danger of the collision has been performed” is “the collision that confirms whether or not the information on the danger of the collision is notified to the other mobile body” "Information notification confirmation means" is an example, and "means for displaying that notification has been given to another mobile body" is "confirmed that the notification has been made by the collision information notification confirmation means" In this case, it is an example of a notification confirmation display means for displaying that the notification has been made, and the collision information notification unit 108 is configured to display a message indicating that the notification has not been confirmed by the collision information notification confirmation means. In this case, it is an example of the “collision information notifying means for notifying the other mobile body of information relating to the risk of the collision again after changing the notification mode”. Specifically, for example, when information on the danger of collision is not given to other moving objects, a notification with a sound or a warning sound may be given. As a result, it is possible to increase the ability to call attention to the danger of collision to other mobile units that have not been notified of the danger of collision, and therefore can be effective. There is.
[0126] なお記実施の形態では、ウィンカーなど、検出された意思情報からの行動推定とし て、例えば予め地図情報等に蓄積された地点情報を用いて推定を行っていた。交差 点が密集した地点や、経路が複雑に交錯した地点等では、ユーザが意思表示をしな がら行う行動と、第三者が認識する行動が異なり、結果衝突してしまうような状況があ る。そこで検出された意思情報と実際に行われる行動の情報である地点情報を地図 情報として蓄積し、この地点情報を参照して衝突の回避を図っている。しかしながら 各地点に地点情報を付与するのは大変なコストがかかる場合もある。そこで本実施の 形態に示す移動履歴を用いてこの地点情報を自動生成し、自動生成された地点情 報を用いて衝突の回避を図ることとしてもよい。以下、図を用いて説明を行う。 [0126] In the embodiment described above, for example, the point information accumulated in advance in the map information or the like is estimated as the behavior estimation from the detected intention information such as the blinker. At points where intersections are densely populated or where routes are complexly crossed, the behavior that the user performs while displaying the intention differs from the behavior that the third party recognizes, resulting in a situation where there is a collision. The Map the point information which is the information of the intention information detected there and the action actually performed It accumulates as information and refers to this point information to avoid collisions. However, adding point information to each point can be very costly. Therefore, this point information may be automatically generated using the movement history shown in the present embodiment, and collision may be avoided using the automatically generated point information. Hereinafter, description will be made with reference to the drawings.
[0127] 図 52は移動体の移動履歴を用いて地点情報を自動生成し、自動生成された地点 情報を用いて衝突の回避を図る場合のサーバ 300の構成の一例を示すブロック図で ある。本システムは位置情報検出部 101、意思情報検出部 104、行動推定部 105、 地図情報蓄積部 103、重複行動判定部 106、衝突危険性判定部 107、衝突情報通 知部 108、移動履歴蓄積部 117、重複行動抽出部 122、地点情報生成部 123とから なる。前記実施の形態 1等で示す構成要素には同じ符号を付与する。このサーバ 30 0において、移動履歴蓄積部 117は、「移動体の移動履歴を蓄積する移動履歴蓄積 手段」の一例であり、地点情報生成部 123は、「前記移動履歴蓄積手段に蓄積され ている移動履歴から、地図上の地点ごとに、前記意思情報と、前記意思情報に対応 する行動として選択された移動経路とを示す地点情報を生成し、生成した地点情報 を前記地図情報蓄積手段に蓄積する地点情報生成手段」の一例である。  FIG. 52 is a block diagram showing an example of the configuration of the server 300 when the point information is automatically generated using the moving history of the moving body and the collision is avoided using the automatically generated point information. This system includes a position information detection unit 101, intention information detection unit 104, behavior estimation unit 105, map information storage unit 103, overlapping behavior determination unit 106, collision risk determination unit 107, collision information notification unit 108, movement history storage unit 117, a duplicate action extraction unit 122, and a point information generation unit 123. The same reference numerals are given to the components shown in the first embodiment. In this server 300, the movement history accumulation unit 117 is an example of “movement history accumulation unit for accumulating the movement history of a moving object”, and the point information generation unit 123 is “stored in the movement history accumulation unit”. For each point on the map, point information indicating the intention information and the movement route selected as the action corresponding to the intention information is generated from the movement history, and the generated point information is stored in the map information storage unit. It is an example of “point information generating means”.
[0128] また、サーバ 300において、地点情報生成部 123は、「さらに、前記移動履歴蓄積 手段に蓄積されている移動履歴から、地図上の地点ごとに、停車を示す意思情報と 、前記意思情報に対応する行動として選択された道路外の駐車位置とを示す地点情 報を生成する前記地点情報生成手段」の一例である。  In addition, in the server 300, the point information generating unit 123 reads: “Furthermore, from the movement history accumulated in the movement history accumulating means, intention information indicating a stop for each point on the map, and the intention information Is an example of the point information generating means for generating point information indicating a parking position outside the road selected as an action corresponding to “.
[0129] このサーバ 300において、地点情報生成部 123は、「さらに、前記移動履歴蓄積手 段に蓄積されている移動履歴から、地図上の地点ごとに、後退を示す意思情報と、 前記意思情報に対応する行動として選択された道路外の駐車位置とを示す地点情 報を生成する前記地点情報生成手段」の一例である。  [0129] In this server 300, the point information generating unit 123 reads: "Furthermore, from the movement history accumulated in the movement history accumulation means, for each point on the map, intention information indicating retreat, and the intention information Is an example of the point information generating means for generating point information indicating a parking position outside the road selected as an action corresponding to “.
[0130] さらに、サーバ 300において、位置情報検出部 101は、「複数の移動体から当該移 動体の移動履歴を受信する移動履歴受信手段」の一例であり、地点情報生成部 12 3は、「さらに、前記受信した移動履歴から、地図上の地点ごとに、同一の意思情報 につ!/、て、前記意思情報に対応する行動として異なる移動経路が選択されて!、る場 合、前記異なる移動経路を新たな地点情報として追加する前記地点情報生成手段」 の一例である。 Furthermore, in the server 300, the position information detection unit 101 is an example of “movement history receiving means for receiving the movement history of the moving object from a plurality of moving objects”. Further, from the received movement history, for each point on the map, the same intention information is selected! / And a different movement route is selected as an action corresponding to the intention information! The point information generating means for adding a moving route as new point information " It is an example.
[0131] 前記実施の形態等においてシステムは例えばカーナビ等の移動体に備えられ、当 該移動体の位置情報等を検出して衝突回避を図っていた力、これに限ったものでは なぐ例えばサーバ等に備えられ、各移動体の位置情報等を検出する構成であって もよい。本システムであるサーバ 300における位置情報検出部 101および意思情報 検出部 104は、各移動体の位置情報と意思情報を検出する手段である。そして各移 動体の移動に伴って検出される位置情報と意思情報を移動履歴蓄積部 117へと蓄 ¾ ^る。  [0131] In the embodiment and the like, the system is provided in a moving body such as a car navigation system, for example, a force that detects position information of the moving body to avoid a collision, and is not limited to this, for example, a server The position information etc. of each moving body may be detected. The position information detection unit 101 and the intention information detection unit 104 in the server 300 which is the present system are means for detecting the position information and intention information of each mobile object. Then, the position information and intention information detected along with the movement of each moving body are accumulated in the movement history accumulating unit 117.
[0132] 図 53は特定の地点に設置されたサーバ 300が当該地点を移動する移動体の意思 情報と移動履歴とから地点情報を生成する場合の一例を示す図である。図 16等に 示す楽 4交差点地点を示す図である。この楽 4交差点は阪神 1通り、京都 2通り、奈良 3通り、裏 5通りが交錯する五差路となっており、例えばユーザが右左折のウィンカー を出しても実際に将来どの経路を通るか把握しにくい地点の一例である。  FIG. 53 is a diagram showing an example of the case where the server 300 installed at a specific point generates point information from the intention information and the movement history of the moving body moving at the point. It is a figure which shows the easy 4 intersection point shown in FIG. This Raku 4 intersection is a five-way road where Hanshin 1 street, Kyoto 2 street, Nara 3 street, and back 5 street cross each other, for example, which route will actually take in the future even if the user makes a right / left turn signal This is an example of a point that is difficult to grasp.
[0133] 例えば今、車両 1が奈良 3通りで左折ウィンカーを出して阪神 1通りを抜けたとする。  [0133] For example, suppose that vehicle 1 has left turn signal at Nara 3 street and left Hanshin 1 street.
移動履歴はこの車両 1の位置情報と意思情報を移動履歴として蓄積する。車両 1か ら検出された移動履歴として、車両 ID「001」、意思情報「左折ウィンカー」、移動履 歴「L216→N105→L212→N104→L211」が検出され蓄積されている。一方、車 両 2は同様に奈良 3通りで左折ウィンカーを出し、一方裏 5通りへ抜けたとする。車両 2から検出された移動履歴として、車両 ID「002」、意思情報「左折ウィンカー」、移動 履歴「L216→N105→L212→N104→L215」が検出され蓄積されている。  The movement history stores the position information and intention information of the vehicle 1 as a movement history. As the movement history detected from the vehicle 1, the vehicle ID “001”, the intention information “left turn blinker”, and the movement history “L216 → N105 → L212 → N104 → L211” are detected and stored. On the other hand, suppose that vehicle 2 has made a left turn winker in Nara 3 streets and exited 5 streets on the other side. As the movement history detected from the vehicle 2, the vehicle ID “002”, the intention information “left turn blinker”, and the movement history “L216 → N105 → L212 → N104 → L215” are detected and stored.
[0134] 図 54は特定の地点に設置されたサーバ 300が当該地点を移動する移動体の意思 情報と移動履歴とから地点情報を生成する場合の他の例を示す図である。図 54も同 様に楽 4交差点を示す図である。例えば車両 3が奈良 3通りで右折ウィンカーを出し て阪神 1通りを抜けたとする。移動履歴はこの車両 1の位置情報と意思情報を移動履 歴として蓄積する。車両 3から検出された移動履歴として、車両 ID「003」、意思情報 「右折ウィンカー」、移動履歴「L216→N105→L214」が検出されている。一方、車 両 4は同様に奈良 3通りで右折ウィンカーを出し、一方裏 5通りへ抜けたとする。車両 2から検出された移動履歴として、車両 ID「004」、意思情報「右折ウィンカー」、移動 履歴「L216→N105→L213」が検出されている。 FIG. 54 is a diagram showing another example when the server 300 installed at a specific point generates the point information from the intention information and the movement history of the moving body that moves at the point. Similarly, Fig. 54 is a diagram showing 4 easy intersections. For example, suppose that vehicle 3 makes a right turn turn signal at Nara 3 Street and passes through Hanshin 1 Street. The movement history stores the position information and intention information of the vehicle 1 as a movement history. As the movement history detected from the vehicle 3, the vehicle ID “003”, the intention information “turn right turn signal”, and the movement history “L216 → N105 → L214” are detected. On the other hand, suppose that vehicle 4 has made a right turn turn signal at Nara 3 street and exited 5 streets on the other side. As the movement history detected from vehicle 2, vehicle ID “004”, intention information “right turn winker”, movement The history “L216 → N105 → L213” is detected.
[0135] このように複雑な地点では、同じ意思情報を示しながら異なる行動をとる場合があり 、さらにこのような地点であるがゆえに、両者の思惑が異なり衝突してしまうことが多い 。そこで本発明では、これら複数の移動体によって検出される移動履歴から、同じ意 思情報を示しながらも異なる行動をとつた履歴を抽出し、地点情報を生成する。  [0135] In such a complex point, different actions may be taken while showing the same intention information. Furthermore, because of such a point, the speculations of the two often collide differently. Therefore, in the present invention, from the movement histories detected by the plurality of moving bodies, histories with different behaviors while showing the same intention information are extracted to generate point information.
[0136] 重複行動抽出部 122は、移動履歴蓄積部 117に蓄積された各車両の移動履歴か ら、同じ意思情報であって異なる移動を行った履歴を抽出する手段である。例えば図 53の場合、車両 1と車両 2は、同じ左折ウィンカーを出しつつ、阪神 1通へ向かう経路 と、裏 5通りへ向力、う経路と異なる経路を通っており、この履歴が抽出される。  The duplicate action extracting unit 122 is a means for extracting, from the movement history of each vehicle accumulated in the movement history accumulating unit 117, the same intention information and a history of different movements. For example, in the case of Fig. 53, vehicle 1 and vehicle 2 are taking the same left turn blinker, and are taking a route that goes to Hanshin 1 way, a reverse direction to 5 ways, and a different route from the other route. The
[0137] 地点情報生成部 123は、「前記移動履歴蓄積手段に蓄積されている前記移動履 歴から、地図上の地点ごとに、前記意思情報と、前記意思情報に対応する行動とし て選択された移動経路とを示す地点情報を生成する地点情報生成手段」の一例で あり、重複行動抽出部 122によって抽出された履歴から情報を生成する手段である。 例えば地点情報は検出される「意思情報」と、意思情報が示される「位置」、そしてそ の場合の推定される「推定行動」とからなる。図 53の場合、抽出された履歴から地点 情報「001」として位置「L216」、意思情報「左折ウィンカー」、推定行動として「N105 →L212→N104→L211」と、「N105→L212→N104→L215」カ生成されている 。つまり、奈良 3通り(L216)で左折ウィンカーを出した場合、楽 4交差点を経由して 阪神 1通りへ抜ける経路と、裏 5通りへ抜ける経路の二つが将来行動として推定され る旨を示す情報となって!/、る。  [0137] The point information generation unit 123 selects "the intention information and the action corresponding to the intention information for each point on the map from the movement history accumulated in the movement history accumulation means." This is an example of “point information generating means for generating point information indicating the travel route”, and means for generating information from the history extracted by the duplicate action extracting unit 122. For example, the point information includes “intention information” to be detected, “position” in which the intention information is indicated, and “estimated behavior” to be estimated in that case. In the case of FIG. 53, the location information “001” from the extracted history is the position “L216”, the intention information “left turn winker”, the estimated actions “N105 → L212 → N104 → L211”, “N105 → L212 → N104 → L215” "Ca is generated. In other words, if you make a left turn turn signal at Nara 3 Street (L216), information indicating that two routes are assumed as future actions: the route to Hanshin 1 through the Raku 4 intersection and the route to the back 5 Become! /
[0138] 同様に図 54の場合、抽出された移動履歴から、地点情報「002」として位置「L216 」、意思情報「右折ウィンカー」、推定行動として「N105→L214」と、「N105→L213 」が生成されている。つまり、奈良 3通り(L216)で右折ウィンカーを出した場合、楽 4 交差点を経由して阪神 1通りへ右折する経路と、京都 2通りへ抜ける経路の二つが将 来の行動として推定される旨を示す情報となって!/、る。  Similarly, in the case of FIG. 54, from the extracted movement history, the position information “002” is the position “L216”, the intention information “right turn winker”, the estimated actions are “N105 → L214”, and “N105 → L213”. Has been generated. In other words, if you make a right turn turn signal at Nara 3 (L216), there are two possible future actions: a route to turn right to Hanshin 1 through the Raku 4 intersection and a route to Kyoto 2 It becomes information indicating!
[0139] このように複雑な地点では、同じ意思情報を示しながら異なる行動をとる場合があり 、 自分のとる行動と第三者が認識する行動とが異なり衝突してしまうことが多い。さら に複数人が同じようにある意思情報を検出しながらも、異なる行動をとるような地点で 混乱が生じる。そこで本例にしめすように複数の移動体の移動履歴を蓄積し、蓄積さ れた履歴から地点情報を生成することで複数の将来行動を正確に推定することがで き、衝突を回避することが可能となる。 [0139] In such a complicated point, different actions may be taken while showing the same intention information, and the actions taken by the third party are often different from the actions recognized by a third party. In addition, at a point where multiple people detect the same intention information in the same way but take different actions. Confusion arises. Therefore, as shown in this example, the movement histories of multiple moving bodies are accumulated, and by generating point information from the accumulated histories, multiple future actions can be accurately estimated, and collisions can be avoided. Is possible.
[0140] なお、このような地点は単に誤ってウィンカーを出さずに曲がる等のノイズ情報とは 異なり、多くの人がこのような行動をとる地点であることが多い。そこで閾値を設け、よ り多くのユーザがこのように異なる行動をとる地点の情報を生成することとしてもよい。  [0140] Unlike noise information such as turning without turning a blinker by mistake, many such people often take such actions. Therefore, a threshold value may be provided to generate information on points where more users take different actions.
[0141] また、上記実施の形態ではそれぞれの場合に対応した衝突情報通知装置及び衝 突情報通知方法の一例について説明した力 それらは、互いに矛盾しない限り、各 実施の形態を自由に組み合わせて実施するとしてもよ!/、。  [0141] Further, in the above-described embodiments, the power described for an example of the collision information notification device and the collision information notification method corresponding to each case. They are implemented by freely combining the embodiments as long as they do not contradict each other. Anyway!
[0142] 図 55は本発明の衝突情報通知装置を備えたカーナビゲーシヨン装置の外観を示 す図である。本発明の衝突情報通知装置を備えたカーナビゲーシヨン装置 81は、車 80のダッシュボードに取り付けられている。このようなカーナビゲーシヨン装置 81の表 示画面に、例えば、図 13、図 19、図 36及び図 43に示したような画面が表示されるこ とにより、本発明の衝突情報通知装置による衝突情報がユーザに通知される。  [0142] Fig. 55 is a diagram showing an external appearance of a car navigation device provided with the collision information notification device of the present invention. A car navigation device 81 equipped with the collision information notification device of the present invention is attached to the dashboard of the car 80. For example, when the screens shown in FIGS. 13, 19, 36 and 43 are displayed on the display screen of the car navigation device 81, the collision information notification device of the present invention can Information is notified to the user.
[0143] なお、ブロック図(図 4、図 20、図 21、図 31、図 32、図 38、図 47、図 50及び図 52 など)の各機能ブロックは典型的には集積回路である LSIとして実現される。これらは 個別に 1チップ化されても良いし、一部又は全てを含むように 1チップ化されても良い  Note that each functional block in the block diagrams (FIGS. 4, 20, 21, 31, 31, 32, 38, 47, 50, 52, etc.) is typically an LSI that is an integrated circuit. As realized. These may be individually made into one chip, or may be made into one chip to include some or all of them.
[0144] 例えばメモリ以外の機能ブロックが 1チップ化されていても良い。 For example, the functional blocks other than the memory may be integrated into one chip.
[0145] ここでは、 LSIとした力 集積度の違いにより、 IC、システム LSI、スーパー LSI、ゥ ノレトラ LSIと呼称されることもある。  [0145] Here, it may be called IC, system LSI, super LSI, or mono-LSI, depending on the difference in power integration as LSI.
[0146] また、集積回路化の手法は LSIに限るものではなぐ専用回路又は汎用プロセサで 実現してもよい。 LSI製造後に、プログラムすることが可能な FPGA (Field Programma ble Gate Array)や、 LSI内部の回路セルの接続や設定を再構成可能なリコンフィギ ユラブル'プロセッサーを利用しても良い。 [0146] Further, the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable 'processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
[0147] さらには、半導体技術の進歩又は派生する別技術により LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行って もよい。ノ ィォ技術の適応等が可能性としてありえる。 [0148] また、各機能ブロックのうち、符号化または復号化の対象となるデータを格納する手 段だけ 1チップ化せずに別構成としても良い。 [0147] Further, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. There is a possibility of adaptation of nanotechnology. [0148] Further, among the functional blocks, only the means for storing the data to be encoded or decoded may be configured separately instead of being integrated into one chip.
産業上の利用可能性  Industrial applicability
[0149] 本発明は、衝突に関する情報を提供する装置として、例えばカーナビゲーシヨン装 置や携帯端末機に備えられ、検出された位置情報と意思情報に基づいて将来の行 動を推定し、将来行動が重複する場合に、衝突に関する情報を生成して通知するこ とで衝突を回避することが可能となる衝突情報通知装置として利用できる。 [0149] The present invention is provided as a device for providing information related to a collision, for example, in a car navigation device or a portable terminal, and estimates future behavior based on detected position information and intention information. When an action overlaps, it can be used as a collision information notification device that can avoid a collision by generating and notifying information about the collision.

Claims

請求の範囲 The scope of the claims
[1] 移動体の地図上での現在位置を取得する現在位置取得手段と、  [1] Current position acquisition means for acquiring a current position on a map of a moving object;
前記移動体の将来の行動を示す意思表示のために前記移動体が発する意思情報 を検出する意思情報検出手段と、  Intention information detection means for detecting intention information generated by the mobile body for intention display indicating future behavior of the mobile body;
検出された前記意思情報と、前記意思情報が検出されたときの現在位置と、前記 現在位置から所定の範囲内で前記意思情報に対して選択された行動とを含む前記 移動体の移動履歴を蓄積する移動履歴蓄積手段と、  The movement history of the moving body including the detected intention information, a current position when the intention information is detected, and an action selected for the intention information within a predetermined range from the current position. Movement history storage means for storing;
前記意思情報が検出されると、検出されたときの現在位置力 所定の範囲内で、同 一の前記意思情報に対して異なる行動が選択されたことがあるか否かを判断すること によって、以後も同一の前記意思情報に対して異なる行動が選択されうるか否力、とし て判定する重複行動判定手段と、  When the intention information is detected, by determining whether or not a different action has been selected for the same intention information within a predetermined range of the current position force at the time of detection, Thereafter, a duplicate action determination means for determining whether or not different actions can be selected for the same intention information;
前記重複行動判定手段によって、前記意思情報に対応して異なる行動が選択され うると判定された場合に、人物又は他の移動体との衝突の危険性に関する情報を通 知する衝突情報通知手段と  A collision information notifying means for notifying information on the danger of a collision with a person or other moving body when the duplicate action determining means determines that a different action can be selected corresponding to the intention information;
を備えることを特徴とする衝突情報通知装置。  A collision information notification device comprising:
[2] 前記衝突情報通知装置は、さらに、  [2] The collision information notification device further includes:
地図を表す地図情報を、あらかじめ蓄積し、前記移動履歴蓄積手段に蓄積されて いる前記移動履歴から、地図上の地点ごとに、前記意思情報と、前記意思情報に対 応する行動として選択された移動経路とを示す地点情報をさらに蓄積する地図情報 蓄積手段を備え、  Map information representing a map is stored in advance, and the intention information and an action corresponding to the intention information are selected for each point on the map from the movement history stored in the movement history storage unit. A map information storage means for further storing point information indicating the travel route is provided,
前記重複行動判定手段は、前記意思情報が検出されたときに取得された現在位 置から所定の範囲内にある地点について蓄積されている前記地点情報を参照するこ とで、検出された前記意思情報に対して異なる移動経路が選択されうるか否力、を判 定し、  The duplicate action determination means refers to the point information stored for points within a predetermined range from the current position acquired when the intention information is detected, thereby detecting the intention The ability to select different travel routes for information,
前記衝突情報通知手段は、前記重複行動判定手段によって、前記意思情報に対 して異なる移動経路が選択されうると判定された場合に、衝突の危険性に関する前 記情報を通知する  The collision information notification means notifies the information related to the risk of collision when the duplicate action determination means determines that a different movement route can be selected for the intention information.
ことを特徴とする請求項 1記載の衝突情報通知装置。 The collision information notification device according to claim 1, wherein:
[3] 前記意思情報は、右折、左折および停止の!/、ずれかの将来の行動の意思を示し、 前記衝突情報通知装置は、さらに、 [3] The intention information indicates a right turn, a left turn and a stop! /, An intention of a future action, or the collision information notification device further includes:
前記意思情報と、前記意思情報に対応して行われる行動、及び前記行動が行われ る範囲に関する規則を蓄積する行動規則蓄積手段を備え、  A behavior rule accumulating means for accumulating rules concerning the intention information, actions performed in response to the intention information, and a range in which the actions are performed;
前記重複行動判定手段は、蓄積されている前記行動規則を参照して、検出された 前記意思情報に対応する行動が、移動経路上の前記範囲内で複数通り行われうる か否かを判定する  The duplicate behavior determination means determines whether or not a plurality of behaviors corresponding to the detected intention information can be performed within the range on the movement route with reference to the stored behavior rules.
ことを特徴とする請求項 1記載の衝突情報通知装置。  The collision information notification device according to claim 1, wherein:
[4] 前記衝突情報通知装置は、さらに、 [4] The collision information notification device further includes:
前記移動体の地図上の現在位置を取得する現在位置取得手段と、  Current position acquisition means for acquiring a current position on a map of the mobile body;
地図情報を蓄積する地図情報蓄積手段とを備え、  Map information storage means for storing map information,
前記重複行動判定手段は、前記地図情報と前記行動規則とを参照し、前記意思 情報が検出されたときに取得された現在位置を始点として、前記行動規則に示され る行動が前記行動規則に示される範囲内で複数通り行われうるか否かを判定する ことを特徴とする請求項 3記載の衝突情報通知装置。  The duplicate action determining means refers to the map information and the action rule, and the action indicated in the action rule is defined as the action rule, starting from the current position acquired when the intention information is detected. 4. The collision information notification device according to claim 3, wherein it is determined whether or not a plurality of methods can be performed within the range indicated.
[5] 前記重複行動判定手段は、前記意思情報が検出されたときに取得された現在位 置を始点として、前記行動規則に示された移動経路上の範囲内に、右折地点、左折 地点および停止地点のうちの前記意思情報で示されるいずれかが複数あるか否かを 判定し、前記移動経路上の範囲内に前記いずれかの地点が複数ある場合に、前記 意思情報に対して、前記移動体が複数通りの行動をとりうると判定する [5] The duplicate action determination means starts from the current position acquired when the intention information is detected, and includes a right turn point, a left turn point, and a turn point within a range on the movement route indicated in the action rule. It is determined whether or not there are a plurality of stop points indicated by the intention information, and when there are a plurality of any of the points within a range on the movement route, Judge that the moving body can take multiple actions
ことを特徴とする請求項 4記載の衝突情報通知装置。  The collision information notification device according to claim 4, wherein:
[6] 前記衝突情報通知装置は、さらに、 [6] The collision information notification device further includes:
他の移動体からその移動体の現在位置を受信する位置情報受信手段を備え、 前記衝突情報通知手段は、前記重複行動判定手段によって、複数通りの行動をと りうると判定された場合に、他の移動体と衝突の危険性がある領域を判定する衝突危 険性判定部を備え、  A position information receiving means for receiving the current position of the moving object from another moving object, and the collision information notifying means, when it is determined by the duplicate action determining means that a plurality of actions can be taken; It has a collision risk judgment unit that judges areas where there is a risk of collision with other moving objects,
前記衝突情報通知手段は、他の移動体から受信された現在位置に基づいて、前 記他の移動体が衝突の危険性がある領域に将来存在する可能性がある場合に、衝 突の危険性に関する情報を通知する The collision information notifying means is based on the current position received from another mobile unit, and when there is a possibility that the other mobile unit will exist in the area where there is a risk of collision in the future. Notify about the risk of a crash
ことを特徴とする請求項 5記載の衝突情報通知装置。  6. The collision information notification device according to claim 5.
[7] 前記衝突情報通知装置は、さらに、 [7] The collision information notification device further includes:
前記他の移動体に、衝突の危険性に関する情報が通知されたか否かを確認する 衝突情報通知確認手段と、  A collision information notification confirming means for confirming whether or not information related to the risk of collision has been notified to the other moving body;
前記衝突情報通知確認手段によって前記通知がされたことが確認された場合に、 前記通知がされたことを表示する通知確認表示手段とを備え、  A notification confirmation display means for displaying that the notification has been made when the collision information notification confirmation means confirms that the notification has been made,
前記衝突情報通知手段は、前記衝突情報通知確認手段によって前記通知がされ たことが確認されない場合、通知の態様を変更して、再度、前記他の移動体に対し、 前記衝突の危険性に関する情報を通知する  If the collision information notification confirmation unit does not confirm that the notification has been made, the collision information notification unit changes the notification mode and again sends information on the risk of the collision to the other moving body. Notify
ことを特徴とする請求項 6記載の衝突情報通知装置。  The collision information notification device according to claim 6.
[8] 前記衝突情報通知手段は、衝突の危険性がある領域に将来存在する可能性があ る前記他の移動体に対し、前記衝突の危険性に関する情報として、自車の現在位置 と、自車の前記意思情報と、前記衝突危険性判定部によって判定された衝突の危険 性がある領域とを通知する [8] The collision information notification means provides information on the risk of the collision to the other moving body that may exist in an area where there is a risk of collision. Notify the vehicle's intention information and the area of collision risk determined by the collision risk determination unit
ことを特徴とする請求項 6記載の衝突情報通知装置。  The collision information notification device according to claim 6.
[9] 前記衝突情報通知装置は、さらに、 [9] The collision information notification device further includes:
前記移動履歴蓄積手段に蓄積されている移動履歴から、地図上の地点ごとに、停 車を示す意思情報と、前記意思情報に対応する行動として選択された道路外の駐車 位置とを示す地点情報を生成する地点情報生成手段を備える  Point information indicating intention information indicating stopping and a parking position outside the road selected as an action corresponding to the intention information for each point on the map from the movement history stored in the movement history storage means. Point information generating means for generating
ことを特徴とする請求項 1記載の衝突情報通知装置。  The collision information notification device according to claim 1, wherein:
[10] 前記衝突情報通知装置は、さらに、 [10] The collision information notification device further includes:
前記移動履歴蓄積手段に蓄積されている移動履歴から、地図上の地点ごとに、後 退を示す意思情報と、前記意思情報に対応する行動として選択された道路外の駐車 位置とを示す地点情報を生成する地点情報生成手段を備える  Point information indicating intention information indicating withdrawal and a parking position outside the road selected as an action corresponding to the intention information for each point on the map from the movement history stored in the movement history storage means. Point information generating means for generating
ことを特徴とする請求項 1記載の衝突情報通知装置。  The collision information notification device according to claim 1, wherein:
[11] 前記衝突情報通知装置は、さらに、 [11] The collision information notification device further includes:
複数の移動体から当該移動体の移動履歴を受信する移動履歴受信手段と、 前記受信した移動履歴から、地図上の地点ごとに、同一の意思情報について、前 記意思情報に対応する行動として異なる移動経路が選択されてレ、る場合、前記異な る移動経路を新たな地点情報として追加する地点情報生成手段とを備える Movement history receiving means for receiving movement histories of the moving body from a plurality of moving bodies; When a different movement route is selected as an action corresponding to the intention information for the same intention information for each point on the map from the received movement history, the different movement route is changed to a new point. Point information generating means to be added as information
ことを特徴とする請求項 1記載の衝突情報通知装置。  The collision information notification device according to claim 1, wherein:
[12] 前記衝突情報通知装置は、さらに、 [12] The collision information notification device further includes:
前記重複行動判定手段によって、前記意思情報に対して、前記移動体が複数通り の行動をとりうると判定された場合に、前記移動履歴蓄積手段に蓄積されている移動 履歴に基づいて、移動先を予測する移動先予測手段  When it is determined by the duplicate action determination means that the mobile body can take a plurality of actions for the intention information, based on the movement history stored in the movement history storage means, Destination prediction means for predicting
を備えることを特徴とする請求項 1記載の衝突情報通知装置。  The collision information notification device according to claim 1, further comprising:
[13] 前記衝突情報通知手段は、前記重複行動判定手段によって、複数通りの行動をと りうると判定された場合に、前記移動先予測手段によって予測された移動先ごとに、 衝突の危険性に関する情報と、各前記移動先に向力、う場合の危険性の度合いを示 す危険度とを併せて通知する [13] The collision information notification means, when it is determined by the duplicate action determination means that a plurality of actions can be taken, for each destination predicted by the destination prediction means, the risk of collision And information on the above and the risk level indicating the degree of danger in case of force and inadvertentness.
ことを特徴とする請求項 12記載の衝突情報通知装置。  13. The collision information notification device according to claim 12,
[14] 前記衝突情報通知手段は、前記移動履歴蓄積手段に蓄積されている移動履歴か ら、自車が前記移動先に向力、う確率を前記危険度として算出する [14] The collision information notifying means calculates, as the degree of danger, the host vehicle's direction and likelihood of moving to the destination from the movement history stored in the movement history storage means.
ことを特徴とする請求項 13記載の衝突情報通知装置。  The collision information notification device according to claim 13.
[15] 前記衝突情報通知装置は、さらに、 [15] The collision information notification device further includes:
他の移動体から当該移動体の移動履歴を受信する移動履歴受信手段と、 前記重複行動判定手段によって、前記意思情報に対して、前記移動体が複数通り の行動をとりうると判定された場合に、前記移動履歴蓄積手段に蓄積されている移動 履歴と、前記他の移動体から受信した移動履歴に基づいて、自車と前記他の移動体 との移動先を予測する移動先予測手段を備え、  When it is determined by the movement history receiving means that receives the movement history of the mobile body from another mobile body, and the duplicate action determination means that the mobile body can take multiple actions with respect to the intention information A destination prediction means for predicting the destination of the vehicle and the other mobile body based on the movement history stored in the movement history storage means and the movement history received from the other mobile body. Prepared,
前記衝突情報通知手段は、前記移動先予測手段による予測に基づいて、自車と 衝突の危険性が高レヽ前記他の移動体に対して、衝突の危険性に関する情報を優先 的に通知する  The collision information notifying unit preferentially notifies the other mobile body of information on the risk of collision based on the prediction by the destination prediction unit.
ことを特徴とする請求項 1記載の衝突情報通知装置。  The collision information notification device according to claim 1, wherein:
[16] 前記衝突情報通知手段は、前記重複行動判定手段によって、複数通りの行動をと りうると判定された場合に、前記移動履歴蓄積手段に蓄積されている移動履歴から、 前記移動先予測手段によって予測された移動先ごとに、自車が前記移動先に向かう 確率を危険度として算出するとともに、前記他の移動体から受信された移動履歴から 、前記他の移動体が前記移動先に向かう確率を危険度として算出し、衝突の危険性 に関する情報に、前記移動先に向かう自車及び前記他の移動体の危険度とを併せ て通知する [16] The collision information notification means takes a plurality of actions by the duplicate action determination means. If it is determined that it is possible, for each destination predicted by the destination prediction means from the movement history stored in the movement history storage means, the probability that the vehicle will head for the destination is defined as the risk. And calculating the probability that the other mobile body is headed to the destination from the travel history received from the other mobile body as a risk level. Notify the danger level of cars and other moving objects
ことを特徴とする請求項 15記載の衝突情報通知装置。  16. The collision information notification device according to claim 15, wherein
[17] 現在位置取得手段が、移動体の地図上での現在位置を取得する現在位置取得ス 意思情報検出手段が、前記移動体の将来の行動を示す意思表示のために前記移 動体が発する意思情報を検出する意思情報検出ステップと、 [17] The current position acquisition means for acquiring the current position on the map of the moving object is acquired by the moving object for displaying the intention indicating the future action of the moving object. An intention information detection step for detecting intention information;
移動履歴蓄積手段が、検出された前記意思情報と、前記意思情報が検出されたと きの現在位置と、前記現在位置から所定の範囲内で前記意思情報に対して選択さ れた行動とを含む前記移動体の移動履歴を蓄積する移動履歴蓄積ステップと、 重複行動判定手段が、前記意思情報が検出されると、検出されたときの現在位置 から所定の範囲内で、同一の前記意思情報に対して異なる行動が選択されたことが あるか否かを判断することによって、以後も同一の前記意思情報に対して異なる行動 が選択されうるか否力、として判定する重複行動判定ステップと、  The movement history storage means includes the detected intention information, a current position when the intention information is detected, and an action selected for the intention information within a predetermined range from the current position. The movement history accumulating step for accumulating the movement history of the moving body, and when the intention information is detected by the duplicate action determining means, the same intention information is obtained within a predetermined range from the current position at the time of detection. A duplicate action determination step for determining whether or not different actions can be selected for the same intention information by determining whether or not different actions have been selected.
前記重複行動判定ステップによって、前記意思情報に対応して異なる行動が選択 されうると判定された場合に、人物又は他の移動体との衝突の危険性に関する情報 を通知する衝突情報通知ステップと  A collision information notifying step for notifying information on the risk of a collision with a person or another mobile object when it is determined in the duplicate action determining step that a different action can be selected corresponding to the intention information;
を備えることを特徴とする衝突情報通知方法。  A collision information notification method comprising:
[18] 衝突情報通知装置のためのプログラムであって、コンピュータに [18] A program for a collision information notification device,
移動体の地図上での現在位置を取得する現在位置取得ステップと、前記移動体の 将来の行動を示す意思表示のために前記移動体が発する意思情報を検出する意思 情報検出ステップと、検出された前記意思情報と、前記意思情報が検出されたときの 現在位置と、前記現在位置から所定の範囲内で前記意思情報に対して選択された 行動とを含む前記移動体の移動履歴を蓄積する移動履歴蓄積ステップと、前記意思 情報が検出されると、検出されたときの現在位置から所定の範囲内で、同一の前記 意思情報に対して異なる行動が選択されたことがあるか否かを判断することによって 、以後も同一の前記意思情報に対して異なる行動が選択されうるか否力、として判定 する重複行動判定ステップと、前記重複行動判定ステップによって、前記意思情報 に対応して異なる行動が選択されうると判定された場合に、人物又は他の移動体との 衝突の危険性に関する情報を通知する衝突情報通知ステップとを実行させるプログ ラム。 A current position acquisition step for acquiring a current position on a map of the mobile body, an intention information detection step for detecting intention information generated by the mobile body for intention display indicating a future action of the mobile body, And storing the movement history of the mobile body including the intention information, a current position when the intention information is detected, and an action selected for the intention information within a predetermined range from the current position. The movement history accumulation step and the intention Once the information is detected, it is determined whether or not a different action has been selected for the same intention information within a predetermined range from the current position at the time of detection. And determining whether or not different actions can be selected with respect to the intention information, and determining whether different actions corresponding to the intention information can be selected by the overlapping action determining step and the overlapping action determining step A program that executes a collision information notification step for notifying information on the risk of collision with a person or other moving object.
[19] 記憶手段に記憶されたプログラムを実行するプロセッサであって、  [19] A processor for executing a program stored in a storage means,
前記記憶手段には、  In the storage means,
移動体の地図上での現在位置を取得する現在位置取得ステップと、前記移動体の 将来の行動を示す意思表示のために前記移動体が発する意思情報を検出する意思 情報検出ステップと、検出された前記意思情報と、前記意思情報が検出されたときの 現在位置と、前記現在位置から所定の範囲内で前記意思情報に対して選択された 行動とを含む前記移動体の移動履歴を蓄積する移動履歴蓄積ステップと、前記意思 情報が検出されると、検出されたときの現在位置から所定の範囲内で、同一の前記 意思情報に対して異なる行動が選択されたことがあるか否かを判断することによって 、以後も同一の前記意思情報に対して異なる行動が選択されうるか否力、として判定 する重複行動判定ステップと、前記重複行動判定ステップによって、前記意思情報 に対応して異なる行動が選択されうると判定された場合に、人物又は他の移動体との 衝突の危険性に関する情報を通知する衝突情報通知ステップと  A current position acquisition step for acquiring a current position on a map of the mobile body, an intention information detection step for detecting intention information generated by the mobile body for intention display indicating a future action of the mobile body, And storing the movement history of the mobile body including the intention information, a current position when the intention information is detected, and an action selected for the intention information within a predetermined range from the current position. When the movement history accumulation step and the intention information are detected, it is determined whether or not different actions have been selected for the same intention information within a predetermined range from the current position at the time of detection. By the determination, it is determined by the overlapping action determination step that determines whether or not different actions can be selected for the same intention information, and the overlapping action determination step. If different behaviors in response to the information is determined to be selected, and collision information notification step of notifying the information about the risk of collision with persons or other mobile
を実行するためのプログラムが記憶されていることを特徴とするプロセッサ。  A processor storing a program for executing the above.
[20] 移動体の地図上での現在位置を取得する GPSと、 [20] GPS that obtains the current position of the moving object on the map,
検出された前記意思情報と、前記意思情報が検出されたときの現在位置と、前記 現在位置から所定の範囲内で前記意思情報に対して選択された行動とを含む前記 移動体の移動履歴および地図情報を含むデータを蓄積するハードディスクと、 前記移動体の将来の行動を示す意思表示のために前記移動体が発する意思情報 を検出する意思情報検出ステップと、前記意思情報が検出されると、検出されたとき の現在位置から所定の範囲内で、同一の前記意思情報に対して異なる行動が選択 されたことがあるか否かを判断することによって、以後も同一の前記意思情報に対し て異なる行動が選択されうるか否力、として判定する重複行動判定ステップと、前記重 複行動判定ステップによって、前記意思情報に対応して異なる行動が選択されうると 判定された場合に、人物又は他の移動体との衝突の危険性に関する情報を通知す る衝突情報通知ステップとを実行するためのプログラムが記憶されているメモリと、 前記メモリに記憶されて!/、るプログラムを実行するプロセッサと The movement history of the moving body including the detected intention information, a current position when the intention information is detected, and an action selected for the intention information within a predetermined range from the current position, and A hard disk for storing data including map information; a intention information detecting step for detecting intention information issued by the mobile body for an intention display indicating a future action of the mobile body; and the intention information is detected. Different actions are selected for the same intention information within a predetermined range from the current position at the time of detection. By determining whether or not a different action can be selected for the same intention information by determining whether or not it has been performed, the overlapping action determining step and the overlapping action determining step A program for executing a collision information notifying step for notifying information on the danger of a collision with a person or another moving body when it is determined that a different action can be selected in response to the intention information; A stored memory, and a processor for executing a program stored in the memory! /
を備えることを特徴とするカーナビゲーシヨン装置。  A car navigation device comprising:
PCT/JP2007/064738 2006-08-04 2007-07-27 Collision information indicator and its method WO2008015966A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006213807 2006-08-04
JP2006-213807 2006-08-04

Publications (1)

Publication Number Publication Date
WO2008015966A1 true WO2008015966A1 (en) 2008-02-07

Family

ID=38997146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064738 WO2008015966A1 (en) 2006-08-04 2007-07-27 Collision information indicator and its method

Country Status (1)

Country Link
WO (1) WO2008015966A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123454A (en) * 2006-11-15 2008-05-29 Denso Corp Vehicle guiding device
JP2009236725A (en) * 2008-03-27 2009-10-15 Aisin Aw Co Ltd Driving support device, driving support method, and driving support program
JP2010039998A (en) * 2008-08-08 2010-02-18 Toyota Motor Corp Collision risk determination system for vehicle and communication terminal
US8417443B2 (en) 2008-03-27 2013-04-09 Aisin Aw Co., Ltd. Travel pattern information obtaining device, travel pattern information obtaining method, and travel pattern information obtaining program
JPWO2013108406A1 (en) * 2012-01-20 2015-05-11 トヨタ自動車株式会社 Vehicle behavior prediction device, vehicle behavior prediction method, and driving support device
WO2019230683A1 (en) * 2018-05-30 2019-12-05 パナソニックIpマネジメント株式会社 Information processing system, information processing method, and program
CN110663072A (en) * 2017-05-22 2020-01-07 三菱电机株式会社 Position estimation device, position estimation method, and position estimation program
CN113519018A (en) * 2019-03-12 2021-10-19 三菱电机株式会社 Mobile body control device and mobile body control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030982A (en) * 2003-07-09 2005-02-03 Matsushita Electric Ind Co Ltd Voice input method and on-vehicle device
JP2005124014A (en) * 2003-10-20 2005-05-12 Japan Radio Co Ltd Packet flooding relay collision avoidance system
JP2005222325A (en) * 2004-02-05 2005-08-18 Toyota Motor Corp Driving supporting device for vehicle
JP2006195727A (en) * 2005-01-13 2006-07-27 Mitsubishi Electric Corp Inter-vehicle communication information processor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030982A (en) * 2003-07-09 2005-02-03 Matsushita Electric Ind Co Ltd Voice input method and on-vehicle device
JP2005124014A (en) * 2003-10-20 2005-05-12 Japan Radio Co Ltd Packet flooding relay collision avoidance system
JP2005222325A (en) * 2004-02-05 2005-08-18 Toyota Motor Corp Driving supporting device for vehicle
JP2006195727A (en) * 2005-01-13 2006-07-27 Mitsubishi Electric Corp Inter-vehicle communication information processor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123454A (en) * 2006-11-15 2008-05-29 Denso Corp Vehicle guiding device
JP2009236725A (en) * 2008-03-27 2009-10-15 Aisin Aw Co Ltd Driving support device, driving support method, and driving support program
US8417443B2 (en) 2008-03-27 2013-04-09 Aisin Aw Co., Ltd. Travel pattern information obtaining device, travel pattern information obtaining method, and travel pattern information obtaining program
US9076333B2 (en) 2008-03-27 2015-07-07 Aisin Aw Co., Ltd. Driving support device, driving support method, and driving support program
JP2010039998A (en) * 2008-08-08 2010-02-18 Toyota Motor Corp Collision risk determination system for vehicle and communication terminal
JPWO2013108406A1 (en) * 2012-01-20 2015-05-11 トヨタ自動車株式会社 Vehicle behavior prediction device, vehicle behavior prediction method, and driving support device
CN110663072A (en) * 2017-05-22 2020-01-07 三菱电机株式会社 Position estimation device, position estimation method, and position estimation program
CN110663072B (en) * 2017-05-22 2022-03-29 三菱电机株式会社 Position estimation device, position estimation method, and computer-readable storage medium
WO2019230683A1 (en) * 2018-05-30 2019-12-05 パナソニックIpマネジメント株式会社 Information processing system, information processing method, and program
CN113519018A (en) * 2019-03-12 2021-10-19 三菱电机株式会社 Mobile body control device and mobile body control method
CN113519018B (en) * 2019-03-12 2023-01-03 三菱电机株式会社 Mobile body control device and mobile body control method

Similar Documents

Publication Publication Date Title
US10017111B2 (en) Driver assistance system and method for avoiding collisions
JP6149846B2 (en) Warning device
JP4604683B2 (en) Hazardous situation warning device
WO2008015966A1 (en) Collision information indicator and its method
CN107683234B (en) Ambient environment recognition apparatus and computer program product
JP4138868B2 (en) Driving support system and driving support method
WO2018134973A1 (en) Vehicle behavior prediction method and vehicle behavior prediction apparatus
US20170154531A1 (en) Drive support apparatus
KR101399026B1 (en) Method for notification warning when vhicles change lanes system
US9373255B2 (en) Method and system for producing an up-to-date situation depiction
US20150304817A1 (en) Mobile communication device and communication control method
JP4691993B2 (en) Collision risk determination device and method, collision risk determination program, collision risk notification device and method, and collision risk notification program
WO2017217377A1 (en) Traffic light control device, traffic control system, traffic light control method, and recording medium
US11248917B2 (en) Method, apparatus, and computer program product for determining the criticality of an emergency
JP2020102159A (en) Vehicle control device and vehicle control method
KR20180043336A (en) Apparatus, method and computer program product for generating useful information regarding termination of traffic congestion through a vehicle-to-vehicle interface
JP2017142588A (en) Device, method and program for providing congestion place information
JP4147270B1 (en) Pop-out warning system and pop-out warning method
WO2018032632A1 (en) Early warning method and device for vehicle
CN109658716A (en) Information processing unit and Vehicular system
JPWO2011024237A1 (en) Mobile radio communication apparatus and inter-vehicle communication method
JP2009048564A (en) Vehicle position predicting device
JP2015064733A (en) Driving support device and driving support method
KR20070081386A (en) System and method for providing pedestrian safety service
JP4596359B2 (en) Alarm system and mobile terminal

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)