WO2008013438A2 - Colector solar plano al vacío con cabezales tipo recámaras - Google Patents

Colector solar plano al vacío con cabezales tipo recámaras Download PDF

Info

Publication number
WO2008013438A2
WO2008013438A2 PCT/MX2007/000087 MX2007000087W WO2008013438A2 WO 2008013438 A2 WO2008013438 A2 WO 2008013438A2 MX 2007000087 W MX2007000087 W MX 2007000087W WO 2008013438 A2 WO2008013438 A2 WO 2008013438A2
Authority
WO
WIPO (PCT)
Prior art keywords
tubes
solar
high transmittance
flat
solar collector
Prior art date
Application number
PCT/MX2007/000087
Other languages
English (en)
French (fr)
Other versions
WO2008013438A3 (es
Inventor
Noel LEÓN ROVIRA
Alejandro GARZA CÓRDOVA
José Ángel MANRIQUE VALADEZ
Original Assignee
Instituto Tecnológico y de Estudios Superiores de Monterrey
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Tecnológico y de Estudios Superiores de Monterrey filed Critical Instituto Tecnológico y de Estudios Superiores de Monterrey
Priority to US12/293,576 priority Critical patent/US20100224183A1/en
Publication of WO2008013438A2 publication Critical patent/WO2008013438A2/es
Publication of WO2008013438A3 publication Critical patent/WO2008013438A3/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • F24S10/753Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations the conduits being parallel to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • This invention relates to a device that contemplates the improvement in the collection and conservation of solar energy, in solar thermal collectors.
  • the device is formed using conventional components, which ensures better efficiency and reduces its manufacturing cost.
  • This invention is directly related to flat solar collectors, which are used to absorb energy from the Sun and transfer it to a fluid. Even more closely linked is the flat solar collectors that provide a vacuum between the collector plate and the glass lid for better performance.
  • Said device consists of high transmittance tubes in the solar spectrum (TATES) covered at the ends by a pair of heads attached to small vacuum chambers.
  • TATES high transmittance tubes in the solar spectrum
  • the only TATES that are not covered by the vacuum chambers are the inlet and outlet of the working fluid.
  • conductive tubes within these TATES are conductive tubes (TUCS) of some thermal conductive material, attached to collector plates covered with a selective surface in the solar spectrum to absorb as much energy as possible.
  • These TUCS are positioned on supports of low thermal conduction, preferably ceramic so that they lose as little energy as possible by conduction.
  • the first difference is that the flat vacuum solar collectors in the past (US4038965-Lyon, US4281642-Steinberg, US4289113-Whittemore, US5653222-Newman) were designed in such a way that everyone has a base, and a glass plate that covers everything the collector These have a serious technical problem, since the efforts created by the difference in pressure inside the manifold and the atmospheric pressure deform and cause the structure to fail, which causes the loss of the vacuum inside the manifold. Lyon and Whittemore use linear supports that are placed along the collector so that they prevent deformation of the box containing the collector. Steinberg designed a complex support that is placed inside the box.
  • This support is a series of semicircles, which on one side provide support to the glass lid, while on the other side provide support to the box.
  • a glass lid is used for the upper part of the collector but the lower part of the collector is composed of semicircles, the crests of the semicircles support the upper part .
  • the problem of pressure difference is solved using high transmittance tubes in the solar spectrum, which provide a uniformly distributed stress distribution between said tubes.
  • Another important problem that the aforementioned collectors have is that the thermal expansion of the glass and the base is different, which causes vacuum losses. The expansion of a piece depends on both the coefficient of thermal expansion and the size of the piece.
  • Figure 1 is a general view of the flat vacuum solar collector.
  • Figure 2 is the top view of the collector.
  • Figure 3 is the view of section A-A of Figure 2.
  • Figure 4a is the rear view of one of the heads.
  • Figure 4b is the top view of one of the heads.
  • Figure 4c is the front view of one of the heads.
  • the present invention represented in Figures 1 and 3 is a flat vacuum solar collector composed of an array of High Transmittance Tubes in the Solar Spectrum hereinafter "TATES" (2), aligned in parallel and capped at their ends by a pair of heads (1) and attached to small vacuum chambers (3).
  • TATES High Transmittance Tubes in the Solar Spectrum
  • TUCS Conductive Tubes
  • These TUCS are positioned on supports of low thermal conduction, preferably ceramic (10) to minimize energy losses by conduction.
  • the ends of the TATES are covered by a head (1); the heads are preferably rectangular, and have small aligned holes of greater diameter than the TUCS and are crossed by the TUCS, the number of perforations coincides with the number of TUCS, and the side of the head that is attached to the TATES is called the side front and opposite, back side; and it is on this side, where vacuum chambers (3) are attached, which are of an area that covers the diameter of 2 TATES.
  • the only holes that are not covered by the vacuum chambers are the inlet (6) and outlet (7) of the conductive tubes (TUCS) (9) that transport the working fluid.
  • a vacuum generation pump (4) and a pressure level meter (5) are connected to one of the vacuum chambers (3) which allows the vacuum to be generated within the TATES and the empty bedrooms.
  • This level of vacuum in turn allows the TUCS to reach temperatures greater than 200 0 C.
  • the collector is a sealed device composed of a variety of conventional elements but that when integrated they achieve an unconventional thermal performance.
  • these are preferably constructed of borosilicate glass and that due to their high mechanical resistance to compression they can reach a high level of vacuum, which was impossible in other flat solar collectors.
  • the heads (1) are shown in more detail in Figures 4a, 4b and 4c.
  • the head is preferably rectangular and on its front side an amount of holes equivalent to the amount of TATES (2) that make up the solar collector are aligned. Circling these holes, circular grooves (11) of the same diameter as the TATES (2) are located and have a depth approximately equal to the width of the TATES wall (as long as this depth does not excessively weaken the head wall (1).
  • these circular grooves (11) are filled with a material that avoids vacuum leaks, where said material can be grease, silicone or structural glue, preferably the latter.
  • Figure 4a shows the back side of the head where other grooves (12) are appreciated for vacuum chambers (3 ), which group the holes through which the TUCS pass in pairs, if the number of TUCS is odd one of the holes of the banks does not have a groove, while if the number of TATES connected to the heads is even, the ag End holes are always framed by a groove (12).
  • the grooves (12) must be of a dimension similar to that of the vacuum chambers (3), and of a depth approximately equal to the width of the bedroom wall always and when this does not weaken the head wall (1) excessively.
  • these grooves (12) are preferably filled with structural glue, and before the glue dries, the vacuum chambers (3) are inserted into the heads (1), in such a way that a union without vacuum leaks is achieved between the vacuum chambers (3) and the heads (1).
  • TATES High Spectrum Transmittance Tubes in the Solar Spectrum
  • TATES Solar Spectrum
  • these tubes have high optical, thermal and mechanical properties that are beneficial for the operation of the collector. For example, a common borosilicate glass tube will transmit more than 92% of the energy received by the Sun and would reflect a negligible percentage (a common glass cannot reach these properties without being subjected to several extra treatments after its manufacture).
  • Another important property is that its coefficient of thermal expansion is so low that it allows a wide selection of materials for the manufacture of the head (1).
  • These TATES (2) should preferably be of an outer diameter greater than 50mm in order to accommodate the Conductor Tubes (TUCS) with their respective collector plate, as well as the support means.
  • TUCS Conductor Tubes
  • the TATES are the ideal element because their circular transverse surface has a uniform distribution of stresses under vacuum and therefore there is no need to add extra supports.
  • Another element is the vacuum chambers (3); serving as caps of the heads (1), these are preferably constructed of glass tubes with a bottom greater than 5mm, although the cross section of these bedrooms can be circular, elliptical, and polygonal, provided that it fulfills the function of covering with one of its cross-sectional ends two adjacent TUCS. The use of glass is recommended because this way you can take advantage of the collecting surface of the elbows and joints that connect the TUCS to each other.
  • These vacuum chambers (3) can be made of regular glass or borosilicate.
  • the amount of TATES (2) will be determined by the flow and temperature of the working fluid that one wishes to obtain, but there are times when it will be necessary to join several solar collector devices to vacuum chambers in series or in parallel to achieve those objectives. Taking this into account, it must be considered that for an odd number of TATES (2) the inlet (6) and the outlet (7) of the TUCS that transport the working fluid are one in each head (1), while if the The number of TATES (2) is even, the input (6) and the output (7) of the TUCS that transport the working fluid are in the same head (1).
  • FIG 3 the detail of the cross-section at point AA shown in figure 2 is shown; You can see the different elements that make up the inside of each TATE in the solar collector.
  • the collector plate (8) which is welded or glued to the conductive tube (TUCS) (9) that carries the working fluid and the TUCS (9) rest on low thermal transmission supports preferably ceramic (10).
  • TUCS conductive tube
  • the collector plates (8) are made of a thermally conductive material (preferably copper). These collector plates (8) must be of a thickness not greater than 0.2mm and their length must be shorter than each TATES (2) at each end depending on the depth of the circular groove (11). Its width must also be at least 95% of the diameter of the TATES (2), and the maximum dimension of these plates will be determined solely by the thermal expansion of the material from which the collector plates (8) are made, since at no time are they they should touch the TATES (2) because this would cause heat losses by contact. Another important characteristic of the collector plates (8) is that they are covered by a selective surface in the solar spectrum on both sides. Together with these collector plates (8) are the TUCS (9) that transport the working fluid.
  • TUCS 9
  • the union between these components is carried out using some additive that allows the maximum possible heat transmission, such as silver welding.
  • the TUCS (9) are also coated with a selective surface, preferably black chrome. This selective surface must have a high monochromatic absorbency in the solar spectrum and a low monochromatic emittance in the solar spectrum to be a candidate for use in the collector. All angles of the thermal conductive material of this selective surface are covered because in special cases concentrators could be placed next to the collector and that they will point their light beam at the bottom of the collector, which is the bottom of the TATES (2 ) would let the same energy pass through the top (more than 92%).
  • the TUCS assembly and the collector plate rest on support means (10) that are made of a thermal insulating material (eg ceramic) in order to make the largest Possible amount of energy is transferred to the working fluid.
  • These supports (10) may be replaced by designs that have a smaller contact surface with the TUCS (9) or with the TATES (2).
  • At the ends of the vacuum chambers (3) is where the union of the TUCS takes place.
  • the materials that go inside the vacuum chambers (3) generally form 180 ° elbows that are also covered with a selective surface in the solar spectrum, this in order to take advantage of solar energy as much as possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

La invención es un colector solar plano de recámaras individuales al vacío. El cual esta formado por 2 cabezales, entre estos cabezales se encuentra una serie de tubos de alta transmitancia en el espectro solar, alineados en paralelo. En la cara opuesta de los cabezales se encuentran recamaras al vacío, las cuales cubren las uniones de los tubos conductores. Uno de estas recamaras al vacío, se caracteriza por tener la válvula de vacío en uno de sus extremos. Dentro de los tubos alta transmitancia en el espectro solar se encuentran tubos conductores que están a su vez unidos a placas colectoras, todo esto está al vacío, lo que minimiza las pérdidas de energía por convección. Utilizando una configuración en serie de los tubos conductores, el colector es capaz de elevar la temperatura del fluido de trabajo arriba de los 200° C. Todo esto haciéndose de una manera novedosa, fácil y económica.

Description

Colector solar plano al vacío con cabezales tipo recámaras
DESCRIPCIÓN
OBJETO DE LA INVENCIÓN Esta invención se refiere a un dispositivo que contempla la mejora en la captación y conservación de la energía solar, en los colectores solares térmicos. El dispositivo es formado utilizando componentes convencionales, lo que permite garantizar una mejor eficiencia y reducir su costo de fabricación.
ANTECEDENTES
Esta invención está directamente relacionada con los colectores solares planos, los cuáles son utilizados para absorber la energía del Sol y transferirla a un fluido. Más ligada está aún con los colectores solares planos que proveen vacío entre la placa colectora y la tapa de cristal para obtener un mejor desempeño.
Desde hace años se sabe que los colectores solares planos son los más confiables en su tipo, debido a la simpleza de su estructura y a las bajas temperaturas a las que operan. Estas bajas temperaturas que manejan no llegan a dañar los materiales comerciales que se utilizan en su fabricación. Sin embargo, con el paso del tiempo se ha ido necesitando colectores que puedan transferir al fluido una mayor cantidad de energía, y se han desarrollado varias tecnologías que prometen lograrlo.
La razón por la cual los colectores solares planos no alcanzan altas temperaturas se debe principalmente al efecto de la convección. En estos colectores, la principal pérdida de energía se da por la convección que se produce debido a que la placa colectora se encuentra a una temperatura diferente a la de la placa de vidrio (tapa del colector). Con el paso de los años se han ido probando diferentes métodos para evitar este efecto, tales como panales en la placa (superficies con forma de hexágono), colocar doble placa de vidrio, y crear vacío entre la placa colectora y la placa de vidrio. Este último método es el que más se ha utilizado, pero necesita una estructura más robusta que el colector plano cotidiano para soportar los esfuerzos ocasionados por el vacío. Para proveer el soporte estructural necesario para soportar estos esfuerzos se ha ido modificando la estructura del colector, pero todavía no hay un dispositivo que permita alcanzar la temperatura deseada sin requerir materiales especializados, costosos y un proceso de manufactura complicado.
Con el fin de obtener una temperatura de salida del colector mayor a 200° C usando piezas comerciales y procesos de manufactura sencillos, se ha desarrollado el presente dispositivo. Dicho dispositivo se compone de tubos de alta transmitancia en el espectro solar (TATES) tapados en los extremos por un par de cabezales unidos a pequeñas recámaras de vacío. Los únicos TATES que no están tapados por las recámaras de vacío, son el de entrada y salida del fluido de trabajo. Dentro de estos TATES se encuentran tubos conductores (TUCS) de algún material conductor térmico, unidos a placas colectoras cubiertos de una superficie selectiva en el espectro solar para absorber la mayor cantidad de energía posible. Estos TUCS están posicionados sobre soportes de baja conducción térmica, preferentemente cerámicos para que pierdan la menor cantidad de energía posible por conducción. Mediante un acoplamiento para una bomba de vacío, se crea vacío dentro de los tubos de alta transmitancia en el espectro solar y las recamaras de vacío, lo cual permite alcanzar temperaturas mayores a los 200°C. La presente invención se diferencia de los dispositivos diseñados en el pasado debido a varios factores. A continuación se mencionarán los más relevantes. La primer diferencia es que los colectores solares planos al vacío en el pasado (US4038965-Lyon, US4281642-Steinberg, US4289113-Whittemore, US5653222-Newman) fueron diseñados de tal manera que todos tienen una base, y una placa de vidrio que tapa todo el colector. Estos tienen un grave problema técnico, ya que los esfuerzos creados por la diferencia de presión dentro del colector y la presión atmosférica deforman y hacen fallar la estructura, lo que causa la pérdida del vacío dentro del colector. Lyon y Whittemore utilizan soportes lineales que se colocan a lo largo del colector para que así estos eviten la deformación de la caja que contiene el colector. Steinberg diseñó un soporte complejo que se sitúa dentro de la caja. Este soporte es una serie de semicírculos, que de un lado proveen soporte a la tapa de cristal, mientras que por el otro lado proveen soporte a la caja. Finalmente fue Newman quién propuso una solución un poco menos compleja, en la cual se usa una tapa de vidrio para la parte superior del colector pero la parte inferior del colector está compuesta de semicírculos, las crestas de los semicírculos sirven de apoyo a la parte superior. En la presente invención se soluciona el problema de la diferencia de presiones usando tubos de alta transmitancia en el espectro solar, los cuales proveen una distribución de esfuerzos repartida uniformemente entre dichos tubos. Otro problema importante que tienen los colectores anteriormente mencionados es que la expansión térmica del vidrio y de la base es diferente, lo que provoca pérdidas de vacío. La expansión de una pieza depende tanto del coeficiente de dilatación térmica como del tamaño de la pieza. Este no es un problema en la presente invención, debido a que la única expansión que produce diferencias notables es la que ocurre a lo largo en los tubos de alta transmitancia en el espectro solar y de los tubos conductores, pero gracias a la forma en como esta ensamblado el colector, ésta expansión no provoca pérdidas de vacío ya que se dispone de espacio suficiente para la expansión diferencial de los tubos conductores. Newman propone en su diseño, que para la tapa superior se use vidrio templado y después de eso se le de una serie de tratamientos para mejorar las propiedades ópticas del vidrio, mientras que en la presente invención se utilizan tubos comerciales que presentan mejores propiedades ópticas y térmicas sin la necesidad de someterlos a algún tratamiento extra.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La figura 1 es una vista general del colector solar plano al vacío.
La figura 2 es la vista superior del colector.
La figura 3 es la vista del corte A-A de la figura 2.
La figura 4a es la vista trasera de uno de los cabezales. La figura 4b es la vista superior de uno de los cabezales.
La figura 4c es la vista frontal de uno de los cabezales.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención representada en las figuras 1 y 3 es un colector solar plano al vacío compuesto por un arreglo de Tubos de Alta Transmitancia en el Espectro Solar en adelante "TATES" (2), alineados en paralelo y tapados en sus extremos por un par de cabezales (1) y unidos a pequeñas recámaras de vacío (3).
Dentro de estos TATES se encuentran los Tubos Conductores (TUCS) (9) que transportan el fluido de trabajo y son compuestos por algún material conductor térmico y a su vez van unidos a placas colectoras (8) cubiertos de una superficie selectiva en el espectro solar para absorber la mayor cantidad de energía solar posible. Estos TUCS están posicionados sobre soportes de baja conducción térmica, preferentemente cerámicos (10) para minimizar las pérdidas de energía por conducción. Los extremos de los TATES están tapados por un cabezal (1); los cabezales, son preferentemente rectangulares, y tienen pequeñas perforaciones alineadas de mayor diámetro que los TUCS y son atravesadas por los TUCS, el numero de perforaciones coincide con el numero de TUCS, y el lado del cabezal que esta unido a los TATES se denomina lado frontal y el opuesto, lado trasero; y es por este lado, donde están unidas unas recámaras de vacío (3), que son de un área que abarca el diámetro de 2 TATES. Las recámaras de vacío, tapan y agrupan en pares los agujeros del cabezal, por donde TUCS (9) son introducidos y se unen dentro de la recámara de vacío mediante codos de 90° o 180°. Los únicos agujeros que no están tapados por las recamaras al vacío son, el de entrada (6) y de salida (7) de los tubos conductores (TUCS) (9) que transportan el fluido de trabaj o.
Para la generación y control del vacío, se conectan a una de las recámaras de vacio (3) una bomba de generación de vacío (4), y un medidor de nivel de presión (5) lo cual permite generar el vació dentro de los TATES y las recamaras de vacio. Este nivel de vacío a su vez permite que los TUCS alcancen temperaturas mayores a los 2000C. En las figuras 1, 2, 4a, 4b y 4c se puede apreciar que el colector es un dispositivo sellado y compuesto por una variedad de elementos convencionales pero que al ser integrados logran un desempeño térmico no convencional. Para mejorar el desempeño de los TATES (2), estos son preferentemente construidos de vidrio de borosilicato ya que por su alta resistencia mecánica a la compresión pueden alcanzar un alto nivel de vacío, cosa que en otros colectores solares planos al vacío era imposible. Los cabezales (1) son mostrados con más detalle en las figuras 4a, 4b y 4c. En la figura 4c se puede observar que el cabezal es preferentemente rectangular y en su lado frontal están alineados una cantidad de agujeros equivalente a la cantidad de TATES (2) que conforman el colector solar. Circundando estos agujeros, se localizan ranuras circulares (11) del mismo diámetro que los TATES (2) y tienen una profundidad aproximadamente igual al ancho de la pared del TATES (siempre y cuando esta profundidad no debilite excesivamente la pared del cabezal (1). Al ensamblar los TATES(2) en los cabezales (1) estas ranuras circulares (11) son rellenadas con un material que evite las fugas de vacío, donde dicho material puede ser grasa, silicón o pegamento estructural, preferentemente éste último. El ensamble debe realizarse antes de que seque el pegamento para garantizar una unión sin fugas de vacío entre los TATES y los cabezales. En la figura 4a, se observa el lado trasero del cabezal en donde se aprecian otras ranuras (12) para las recamaras al vacío (3) , que agrupan los agujeros por donde pasan los TUCS en pares, si el número de TUCS es impar uno de los agujeros de las orillas no lleva ranura, mientras que si el numero de TATES conectados a los cabezales es par, los agujeros de los extremos siempre están enmarcados por una ranura (12), Las ranuras (12) deben ser de una dimensión similar a la de las recámaras de vacío (3), y de una profundidad aproximadamente igual al ancho de pared de la recamara siempre y cuando esta no debilite excesivamente la pared del cabezal (1). En el proceso de ensamble, estas ranuras (12) son rellenadas preferentemente con pegamento estructural, y antes de que el pegamento seque se insertan las recámaras de vacío (3) en los cabezales (1), de tal manera que se logre una unión sin fugas de vacío entre las recamaras de vacío (3) y los cabezales (1).
Uno de los elementos más importantes de esta invención son los Tubos de Alta Transmitancia en el Espectro Solar (TATES), los cuales preferentemente deben ser de vidrio de borosilicato. Esto debido a que estos tubos presentan altas propiedades ópticas, térmicas y mecánicas benéficas para el funcionamiento del colector. Por ejemplo un tubo de vidrio de borosilicato común transmitirá más del 92% de la energía recibida por el Sol y reflejaría un porcentaje despreciable (un vidrio común no puede alcanzar estas propiedades sin ser sometido a varios tratamientos extras después de su manufactura). Otra propiedad importante es que su coeficiente de dilatación térmica es tan bajo que permite una amplia selección de materiales para la fabricación del cabezal (1). Estos TATES (2) deben, preferentemente, ser de un diámetro exterior mayor a los 50mm para poder acomodar en su interior los Tubos Conductores (TUCS) con su respectiva placa colectora, así como los medios de soporte. Los TATES son el elemento ideal pues su superficie transversal circular presenta una distribución de esfuerzos uniforme al vacío y por lo tanto no existe la necesidad de agregar soportes extras. Otro de los elementos son las recámaras de vacío (3); que sirven como tapas de los cabezales (1), éstas se construyen preferentemente de tubos de vidrio con un fondo mayor a los 5mm, aunque la sección transversal de estas recámaras puede ser circular, elíptica, y poligonal, siempre que cumpla la función de abarcar con uno de sus extremos de sección transversal dos TUCS adyacentes. Se recomienda el uso de vidrio debido a que de esta manera se puede aprovechar la superficie colectora de los codos y uniones que conectan los TUCS entre si. Estas recámaras de vacío (3) pueden ser de vidrio regular o de borosilicato. Cabe mencionar que en alguna de estas recámaras en el extremo opuesto al que esta en contacto con el cabezal lleva un acoplamiento para conectar una bomba de vacío (4) la cual permite generar el vacío inicial, o recuperar vacío en caso de que por alguna eventualidad existiera una pérdida. Es recomendable que en otra de las recámaras de vacío (3) se instale un indicador de presión (5), con el cual se podrá medir el nivel de vacío que existe y si hay algún tipo de fuga. Otro aspecto importante que se puede observar en la figura 1 es la entrada del fluido de trabajo que para la función de estos colectores es generalmente agua. Esta entrada al no estar dentro de un cuarto de vacío lleva un empaque que logra contener el vacío dentro del colector. En la figura 2 se pueden observar las mismas características descritas con anterioridad. La cantidad de TATES (2) estará determinada por el flujo y temperatura de fluido de trabajo que se desea obtener, pero hay ocasiones en las que se necesitará unir varios dispositivos colectores solares de recamaras al vacío en serie o en paralelo para lograr esos objetivos. Tomando esto en cuenta hay que considerar que para un número impar de TATES (2) la entrada (6) y la salida (7) de los TUCS que transportan el fluido de trabajo están uno en cada cabezal (1), mientras que si el número de TATES (2) es par, la entrada (6) y la salida (7) de los TUCS que transportan el fluido de trabajo se encuentran en el mismo cabezal (1).
En la figura 3, se muestra el detalle del corte transversal en el punto A-A representado en la figura 2; se pueden observar los diferentes elementos que componen el interior de cada TATES en el colector solar. Empezando por la parte superior, primero se encuentra la placa colectora (8), la cual va soldada o pegada al tubo conductor (TUCS) (9) que transporta el fluido de trabajo y los TUCS (9) reposan sobre soportes de baja transmisión térmica preferentemente cerámicos (10). Dentro de las recámaras de vacío (3) se encuentran las uniones entre los TUCS (9), que dependen del arreglo que se desee utilizar (en serie o paralelo).
Las placas colectoras (8) están hechas de un material conductor térmico (preferentemente de cobre). Estas placas colectoras (8) deben ser de un espesor no mayor a 0.2mm y su longitud debe ser más corta que cada TATES (2) en cada extremo en dependencia de la profundidad de la ranura circular (11). También su ancho debe ser mínimo un 95% del diámetro del TATES (2), y la dimensión máxima de estas placas estará determinada únicamente por la expansión térmica del material del que estén hechas las placas colectoras (8), ya que en ningún momento estas deben tocar a los TATES (2) porque esto ocasionaría pérdidas de calor por contacto. Otra característica importante de las placas colectoras (8) es que éstas están recubiertas por una superficie selectiva en el espectro solar en ambas caras. Unidas a estas placas colectoras (8) se encuentran los TUCS (9) que transportan el fluido de trabajo. La unión entre estos componentes es realizada usando algún aditivo que permita la máxima transmisión de calor posible, tal como la soldadura de plata. Los TUCS (9) también van recubiertos de una superficie selectiva, preferentemente cromo negro. Esta superficie selectiva debe tener una alta absortancia monocromática en el espectro solar y una baja emitancia monocromática en el espectro solar para que sea candidata a ser usada en el colector. Se cubren todos los ángulos del material conductor térmico de esta superficie selectiva debido a que en casos especiales se podrían colocar concentradores junto al colector y que apuntarán su haz de luz a la parte inferior del colector, que como es la parte inferior del TATES (2) dejaría pasar la misma energía que deja pasar por la parte superior (mas del 92%). El ensamble del TUCS y la placa colectora reposan sobre medios de soporte (10) que son de un material aislante térmico (Ej. cerámica) con el fin de que la mayor cantidad de energía posible sea transferida al fluido de trabajo. Estos soportes (10) podrán ser sustituidos por diseños que presenten una menor superficie de contacto con los TUCS (9) o con los TATES (2). En los extremos de las recámaras de vacío (3) es en donde se realiza la unión de los TUCS. Los materiales que van dentro de las recámaras de vacío (3) forman generalmente codos de 180° que también van recubiertos de una superficie selectiva en el espectro solar, esto con el fin de aprovechar la energía solar lo más posible.
Cumpliendo con todo lo descrito anteriormente es posible hacer funcionar el colector solar plano al vacío con cabezales tipo recámaras, el cual puede elevar la temperatura del fluido de trabajo a temperaturas mayores a los 200° C debido a que el vacío evita que se presente la convección, por lo que solo ocurren pérdidas por conducción. Estas pérdidas son muy pequeñas debido a que el contacto se da con materiales aislantes. Además, podemos aprovechar el 100% de la tubería para la absorción de energía solar ya que todo está encapsulado en contenedores con un alta transmitancia en el espectro solar.

Claims

REIVINDICACIONESHabiendo descrito suficiente nuestra invención, consideramos como una novedad y por lo tanto reclamamos como de nuestra exclusiva propiedad, lo contenido en las siguientes cláusulas:
1. Un Colector Solar Plano de Recámaras al Vacío caracterizado por 2 o más tubos de alta transmitancia en el espectro solar, que a su vez contienen en su interior un arreglo de tubos conductores sobre soportes de baja conducción térmica y conectados a placas colectoras para transportar fluidos preferentemente agua; donde los tubos de alta transmitancia van alineados en paralelo y el arreglo de los tubos conductores están conectados entre ellos en serie o paralelo, y los tubos de alta transmitancia van unidos por sus extremos a un par de cabezales que a su vez, por el lado contrario a la unión con los tubos de alta transmitancia en el especio solar, tienen conectadas 1 o más recámaras de vacío y en donde en 1 o más de estas recámaras tienen medios para generar y recuperar el vacío y medios para medir el nivel de presión.
2. El Colector Solar Plano de Recamaras al Vacío de conformidad con la reivindicación 1 caracterizado porque lo cabezales son preferentemente rectangulares, tienen 2 o mas agujeros alineados; en la lado frontal del cabezal, circundando cada agujero esta una "ranura circular", el numero de "ranuras circulares" es equivalente a la cantidad de tubos de alta transmitancia en el espectro solar utilizados por el colector solar y, en estas ranuras circulares van insertados y pegados con grasa, silicón o preferentemente pegamento estructural cada uno de los tubos de alta transmitancia.
3. El Colector Solar Plano de Recamaras al Vacío de conformidad con la reivindicación 2 caracterizado porque las "ranuras circulares" tienen el mismo diámetro que los tubos de alta transmitancia en el espectro solar y tienen una profundidad aproximadamente igual al ancho de la pared del tubo de alta transmitancia.
4. El Colector Solar Plano de Recamaras al Vacío de conformidad con la reivindicación 1 caracterizado porque lo cabezales en el lado trasero tienen ranuras equivalentes al número de tubos de alta transmitancia en el espectro solar menos 1; en dichas ranuras van insertadas y pegadas con grasa, silicón o preferentemente pegamento estructural las recámaras de vacío agrupando en pares los tubos conductores y dejando sin agrupar los tubos conductores por donde entra y sale el fluido de trabajo. Las recámaras de vacío van colocados en una posición en la que puedan abarcar un conjunto de 2 tubos conductores consecutivos.
5. El Colector Solar Plano de Recamaras al Vacío de conformidad con la reivindicación 4 caracterizado porque si el numero de tubos de alta transmitancia es impar en el lado trasero de ambos cabezales uno de los agujeros de las orillas no lleva ranura, mientras que si el numero de tubos de alta transmitancia conectados a los cabezales es par, los agujeros de los extremos de uno de los cabezales siempre están enmarcados por una ranura mientras que en el otro cabezal, los agujeros de los extremos no están enmarcados por la ranura. Las ranuras deben ser de una dimensión similar a la de las recámaras de vacío, y de una profundidad aproximadamente igual al ancho de pared de la recamara.
6. El Colector Solar Plano de Recamaras al Vacío de conformidad con la reivindicación 1 caracterizado porque los tubos conductores van unidos a placas colectoras y reposan sobre soportes de baja o nula transmisión térmica preferentemente cerámicos, y dichos soportes descansan a su vez sobre los tubos de alta transmitancia en el espectro solar.
7. El dispositivo colector solar plano de recámaras al vacío de conformidad con la reivindicación 6 caracterizado porque las placas colectoras se encuentran en paralelo a la parte superior del cabezal y son recubiertas por una superficie selectiva en ambas caras, además los medios de unión entre los tubos conductores y las placas colectoras pueden ser a base de soldado, prensado, pegado o cualquier medio de unión que transmita eficientemente la energía entre ellos.
8. El Colector Solar Plano de Recamaras al Vacío de conformidad con la reivindicación 1 caracterizado porque los tubos de alta transmitancia tienen un diámetro mayor o igual a los 50mm.
9. El Colector Solar Plano de Recamaras al Vacío de conformidad con la reivindicación 1 caracterizado porque las recámaras de vacío se construyen preferentemente de tubos de vidrio y tienen un fondo mayor a los 5mm, con sección transversal circular, elíptica, o poligonal, preferentemente elíptica.
10. El Colector Solar Plano de Recamaras al Vacío de conformidad con la reivindicación 1 caracterizado porque si el numero de tubos de alta transmitancia es impar la entrada y la salida del tubo conductor que transporta el fluido de trabajo se colocan uno en cada cabezal mientras que si el número de tubos de alta transmitancia es par, la entrada y la salida del tubo conductor que transporta el fluido de trabajo se colocan en el mismo cabezal.
11. El Colector Solar Plano de Recamaras al Vacío de conformidad con la reivindicación 1 caracterizado porque los tubos de alta transmitancia en el espectro solar forman la estructura geométrica que le da cuerpo al dispositivo colector solar.
12. El dispositivo colector solar plano de recámaras al vacío de conformidad con la reivindicación 1 caracterizado porque los tubos conductores y las placas colectoras están recubiertos de una superficie selectiva de alta absortancia monocromática y una baja emitancia monocromática en el espectro solar o están pintados de pintura negra antirreflectiva resistente a altas temperaturas, lo que permite el aprovechamiento de energía solar.
13. El Colector Solar Plano de Recamaras al Vacío de conformidad con la reivindicación 1 caracterizado porque los tubos conductores van unidos entre sí a través de codos, y los codos están recubiertos de una superficie selectiva de alta absortancia monocromática en el espectro solar o están pintados de pintura negra antirreflectiva resistente a altas temperaturas, lo que permite el aprovechamiento de energía solar.
14. El Colector Solar Plano de Recamaras al Vacío de conformidad con la reivindicación 1 caracterizado porque en cada tubo de alta transmitancia en el espectro solar se encuentra un tubo conductor.
15. El Colector Solar Plano de Recamaras al Vacío de conformidad con la reivindicación 1 caracterizado porque los tubos de alta transmitancia en el espectro solar preferentemente son de vidrio de borosilicato pero pueden ser de cualquier otro material que transmita eficazmente la energía solar.
16. El Colector Solar Plano de Recamaras al Vacío de conformidad con la reivindicación 1 caracterizado porque en la recámara de vacío se dispone de suficiente espacio para la dilatación térmica de los tubos conductores.
17. El Colector Solar Plano de Recamaras al Vacío de conformidad con la reivindicación 1 caracterizado porque dentro de la recámara de vacío la unión entre los tubos conductores es realizada mediante codos de 90° o 180°.
18. El Colector Solar Plano de Recamaras al Vacío de conformidad con la reivindicación 1 caracterizado porque la bomba generadora de vacío, al generar el vacío evita la convección, por lo que solo ocurren pérdidas de energía por conducción. Ocasionando pérdidas pequeñas debido a que el contacto se da con materiales aislantes y se aprovecha el 100% de la tubería para la absorción de energía solar ya que los tubos de alta transmitancia y recamaras de vacío tienen una alta transmitancia en el espectro solar.
19. El Colector Solar Plano de Recamaras al Vacío de conformidad con la reivindicaciones 1 a la 18 caracterizado porque el dispositivo colector puede elevar la temperatura del fluido de trabajo a temperaturas mayores a los 200° C.
PCT/MX2007/000087 2006-07-24 2007-07-23 Colector solar plano al vacío con cabezales tipo recámaras WO2008013438A2 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/293,576 US20100224183A1 (en) 2006-07-24 2007-07-23 Flat Vacuum Solar Collector Having Chamber-Type Heads

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXNL06000045A MXNL06000045A (es) 2006-07-24 2006-07-24 Colector solar plano al vacio con cabezales tipo recamaras.
MXNL/A/2006/000045 2006-07-24

Publications (2)

Publication Number Publication Date
WO2008013438A2 true WO2008013438A2 (es) 2008-01-31
WO2008013438A3 WO2008013438A3 (es) 2008-03-13

Family

ID=38981907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2007/000087 WO2008013438A2 (es) 2006-07-24 2007-07-23 Colector solar plano al vacío con cabezales tipo recámaras

Country Status (3)

Country Link
US (1) US20100224183A1 (es)
MX (1) MXNL06000045A (es)
WO (1) WO2008013438A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150855A2 (es) * 2011-05-03 2012-11-08 Alejandro Garza Cordoba Cabezal de vacio mejorado y redundante para colector solar

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1391434B1 (it) * 2008-09-26 2011-12-23 Tvp Solar Sa Pannello solare termico a vuoto con schermo radiativo
US20110253126A1 (en) * 2010-04-15 2011-10-20 Huiming Yin Net Zero Energy Building System

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555878A (en) * 1995-01-30 1996-09-17 Sparkman; Scott Solar energy collector
DE19714774A1 (de) * 1997-04-10 1998-10-15 Peter Stumpf Wärmerohr, insbesondere für einen Röhrenkollektor
WO2002093086A1 (en) * 2001-05-12 2002-11-21 Richard James Boyle Solar heat collector
EP1528335A2 (de) * 2003-10-31 2005-05-04 Lenz Laborglas GmbH & Co. KG Vakuum-Solarröhre

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974822A (en) * 1974-03-13 1976-08-17 Ppg Industries, Inc. Solar heat collector
US4038965A (en) * 1975-07-23 1977-08-02 Halm Instrument Co., Inc. Evacuated solar heat collector
US4133298A (en) * 1975-09-26 1979-01-09 Sanyo Electric Co., Ltd. Solar heat collecting apparatus
US4091798A (en) * 1977-02-03 1978-05-30 Nasa Non-tracking solar energy collector system
US4212293A (en) * 1978-04-07 1980-07-15 Owens-Illinois, Inc. Modular tubular solar energy collector apparatus
US4289113A (en) * 1979-07-27 1981-09-15 Whittemore Peter G Evacuated flat-plate solar collectors
US4235221A (en) * 1979-08-23 1980-11-25 Murphy Gerald G Solar energy system and apparatus
US4281642A (en) * 1979-11-05 1981-08-04 Steinberg Hyman A Solar collector construction
US4299203A (en) * 1979-11-13 1981-11-10 Exxon Research & Engineering Co. Tubular solar collector system
US4319561A (en) * 1980-03-06 1982-03-16 Owens-Illinois, Inc. Solar energy collector assembly
US4423718A (en) * 1982-02-24 1984-01-03 Garrison John D Solar collector panel and energy shield
GB8306016D0 (en) * 1983-03-04 1983-04-07 Mid Glamorgan County Council Solar energy collector
JPS6066057A (ja) * 1983-09-21 1985-04-16 Matsushita Electric Ind Co Ltd 太陽熱集熱器
US4579107A (en) * 1984-03-16 1986-04-01 David Deakin Solar energy collector and method of making same
JPH0650195B2 (ja) * 1985-12-23 1994-06-29 ザ・ユニバ−シティ・オブ・シドニ− 真空太陽熱集熱管
US4911145A (en) * 1986-02-13 1990-03-27 Nippon Denki Garasu Kabushiki Kaisha Vacuum type solar heat collecting apparatus
DE3824759A1 (de) * 1988-07-21 1990-01-25 Fraunhofer Ges Forschung Solarkollektor zur erzeugung hoher temperaturen
US5653222A (en) * 1996-01-25 1997-08-05 Newman; Michael D. Flat plate solar collector
DE10132639C1 (de) * 2001-07-05 2003-03-20 Schuetz Gmbh & Co Kgaa Solarkollektor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555878A (en) * 1995-01-30 1996-09-17 Sparkman; Scott Solar energy collector
DE19714774A1 (de) * 1997-04-10 1998-10-15 Peter Stumpf Wärmerohr, insbesondere für einen Röhrenkollektor
WO2002093086A1 (en) * 2001-05-12 2002-11-21 Richard James Boyle Solar heat collector
EP1528335A2 (de) * 2003-10-31 2005-05-04 Lenz Laborglas GmbH & Co. KG Vakuum-Solarröhre

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150855A2 (es) * 2011-05-03 2012-11-08 Alejandro Garza Cordoba Cabezal de vacio mejorado y redundante para colector solar
WO2012150855A3 (es) * 2011-05-03 2013-06-13 Alejandro Garza Cordoba Cabezal de vacio mejorado y redundante para colector solar

Also Published As

Publication number Publication date
US20100224183A1 (en) 2010-09-09
WO2008013438A3 (es) 2008-03-13
MXNL06000045A (es) 2008-01-23

Similar Documents

Publication Publication Date Title
ES2369013T3 (es) Intercambiador de calor con tubo de vacio.
US8347877B2 (en) Solar energy collecting system and method
ES2344311T3 (es) Sistemas de colector solar parabolico con medios de seguimiento giratorio.
ES2615129T3 (es) Dispositivo para la conexión de un conducto fijo a un tubo absorbedor de una central eléctrica termosolar
WO2010143622A1 (ja) 太陽熱受熱器
ES2425996B1 (es) Receptor solar de placas
ES2711835T3 (es) Módulo para absorbedor térmico de receptor solar, absorbedor que consta de al menos tal módulo y receptor que consta de al menos tal absorbedor
ES2525197B2 (es) Caldera solar
CN104350336A (zh) 太阳能接收器
WO2008013438A2 (es) Colector solar plano al vacío con cabezales tipo recámaras
US4215676A (en) Frame arms for solar collector
AU2010328722B2 (en) Thermal solar panel with integrated chemical heat pump
CN103673332A (zh) 一种平板太阳能集热模块
WO2008013439A1 (es) Colector solar plano de recámaras al vacío
ES2525196A1 (es) Receptor solar de torre tubular aislado a las pérdidas energéticas por radiación
KR100873898B1 (ko) 태양열 집열기용 헤더 유니트
ES2677227T3 (es) Torre solar de concentración con receptor externo
ES2701232T3 (es) Receptor solar central de concentración
CN102788433B (zh) 太阳能集热器与热水器
KR101207952B1 (ko) 대형 집열기 연결장치
KR101180728B1 (ko) 태양열 집열기
WO2012150855A2 (es) Cabezal de vacio mejorado y redundante para colector solar
CN201050897Y (zh) 太阳能集热管
WO2012059605A1 (es) Colector solar con receptor multitubular, plantas termosolares que contienen dicho colector y método de operación de dichas plantas
ES2760327T3 (es) Conductor térmico de múltiples elementos para tubo de vacío de un colector solar térmico

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07793813

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12293576

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07793813

Country of ref document: EP

Kind code of ref document: A2