WO2008013266A1 - Resin particle with powder united thereto and method of forming the same, particle-containing molded object, particle-containing sheet material, and method of forming these, and functional sheet and process for producing functional sheet - Google Patents

Resin particle with powder united thereto and method of forming the same, particle-containing molded object, particle-containing sheet material, and method of forming these, and functional sheet and process for producing functional sheet Download PDF

Info

Publication number
WO2008013266A1
WO2008013266A1 PCT/JP2007/064769 JP2007064769W WO2008013266A1 WO 2008013266 A1 WO2008013266 A1 WO 2008013266A1 JP 2007064769 W JP2007064769 W JP 2007064769W WO 2008013266 A1 WO2008013266 A1 WO 2008013266A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
integrated
resin particles
granular carrier
particle
Prior art date
Application number
PCT/JP2007/064769
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuya Ogawa
Hitoshi Otomo
Yuriko Morinaka
Minoru Fujita
Kunio Nakatsubo
Midori Fujisaki
Original Assignee
Kyodo Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007193402A external-priority patent/JP2008050592A/en
Priority claimed from JP2007193403A external-priority patent/JP2008080793A/en
Application filed by Kyodo Printing Co., Ltd. filed Critical Kyodo Printing Co., Ltd.
Publication of WO2008013266A1 publication Critical patent/WO2008013266A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/02Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose in the form of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/02Layered products comprising a layer of synthetic resin in the form of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/163Coating, i.e. applying a layer of liquid or solid material on the granule

Definitions

  • the present invention relates to powder-integrated resin particles and a granulating method thereof, and a particle-containing molded body, a particle-containing sheet material, and a molding method thereof.
  • a thermoplastic resin and a powder are preferable.
  • a powder-integrated resin particle integrated with a functional material (including a pigment), a granulation method of the powder-integrated resin particle, a particle-containing molded body comprising the powder-integrated resin particle, and a powder The present invention relates to a particle-containing sheet material molded from body-integrated resin particles and a molding method thereof.
  • the present invention also relates to a functional sheet and a method for producing the same, and more particularly to a functional sheet provided with functionality such as adsorptivity and a method for producing the same.
  • compositions having various resins and powders are widely known.
  • a method of producing such a composition a method of forming a film by mixing a certain amount of resin and powder, a method of uniformly kneading and holding these components, although a method of simply mixing and molding can be mentioned, it is not satisfactory to exert the function of the powder and consequently the functional material.
  • Patent Document 1 and Patent Document 2 disclose a method of molding a resin and powder mixedly. Since these all use a thermosetting resin as the resin part, the steps of hardening and liquefaction are indispensable. In addition, since there is little fluidity and extensibility due to heat, it is difficult to carry a high concentration of powder in the mixing process, and there is a possibility that the performance of the functional material in the molded body may be reduced. Furthermore, when thermoplastic resin and powder are mixed and processed with a mixer such as a Henschel mixer, crosslinking occurs between the molecules due to frictional heat with the rotating blades and the wall of the granulation tank. Curing could occur and the integration process could be difficult. In addition, since thermosetting resins are formed using a curing reaction by heating, the molding method is limited, and post-processing such as biaxial stretching of the molded body is difficult.
  • Patent Document 3 describes a fine microlite powder of zeolite. Disclosed is a technology that uses a mixture of a thermoplastic resin and a thermoplastic resin, and sandwiches it between two nonwoven fabrics for molding.
  • the zeolite powder if a fine powder having an average particle diameter of 1 to 100 m is used as the zeolite powder, the agglomeration effect is likely to occur as compared with a powder made of another substance. There is a tendency to become non-uniform. In addition, the zeolite powder from the gap between the nonwoven fabric fibers In order to escape, there was a problem in practical and functional aspects.
  • thermoplastic resin when a mixture of zeolite powder and a thermoplastic resin is used, the thermoplastic resin is biased and exposed due to uneven mixing due to the action such as aggregation described above, and adhesion between the nonwoven fabrics. There was a problem that defects occurred. However, in order to prevent this, if the proportion of the thermoplastic resin in the entire nonwoven fabric is increased, the amount of zeolite adsorbed and the adsorption speed are reduced, and the nonwoven fabric has poor air permeability.
  • Patent Document 1 JP-A-11 246672
  • Patent Document 2 Japanese Patent Laid-Open No. 09-067155
  • Patent Document 3 Japanese Patent Application Laid-Open No. 09-276897
  • the present invention has been made in view of the above problems, and is a powder integration that is produced by a simple method while exhibiting the function of a powder, preferably a functional material (including a pigment).
  • the object is to provide resin particles.
  • the present invention can easily perform integration processing without requiring resin curing and liquefaction processing, and further post-processing such as film forming by biaxial extrusion, etc. without deteriorating the properties of the functional material.
  • the object is to provide a method for granulating powder-integrated resin particles.
  • Another object of the present invention is to provide a particle-containing molded body comprising such powder-integrated resin particles, a particle-containing sheet material molded from the powder-integrated resin particles, and a molding method thereof.
  • Another object of the present invention is to provide a functional sheet that maintains its shape as a sheet and that exhibits functionality such as adsorptivity uniformly and continuously, and a method for producing the functional sheet.
  • the powder-integrated resin particles according to the present invention include a granular carrier made of a thermoplastic resin, and the particles. And a powder integrated on the surface of the carrier. This makes it possible to fully exhibit the characteristics of the powder.
  • the average particle diameter of the powder integrated resin particles is 10 m or more. As a result, it is advantageous to handle the powder-integrated resin particles such that the particles do not scatter during post-treatment.
  • the weight of the powder is from 50% by weight to 900% by weight with respect to the weight of the thermoplastic resin. This makes it possible to fully exhibit the characteristics of the powder.
  • thermoplastic resin particles In the powder-integrated resin particles according to the present invention, a volume ratio of the thermoplastic resin to the powder is 1:;! To 1:20. As a result, the power S can be fully demonstrated.
  • a particle-containing molded article according to the present invention is characterized by comprising the above-mentioned powder-integrated resin particles and a water-soluble organic resin. As a result, a molded article containing particles having excellent strength while exhibiting the characteristics of the powder can be obtained.
  • the content of the water-soluble organic resin is 2% by weight or more and 50% by weight or less based on the weight of the powder-integrated resin particles. It is characterized by. Thereby, the particle
  • the method for granulating powder-integrated resin particles comprises a granular support made of a thermoplastic resin, and a powder-integrated resin having a powder integrated on the surface of the granular support.
  • the step of applying heat to the granular carrier includes a rotating member that rotates in a sealed space and the granular carrier. It is a process performed by frictional heat generated by contact with. This makes it possible to supply heat to the granular carrier by using frictional heat generated in one step of the granulation method without requiring a further apparatus, thereby reducing the complexity of the process. Can be reduced It becomes ability.
  • the method for molding a particle-containing molded body according to the present invention is characterized by having a step of adding a water-soluble organic resin to the powder-integrated resin particles, kneading, and pressurizing. As a result, the degree of integration of the powder-integrated resin particles can be further improved.
  • the particle-containing sheet material according to the present invention is characterized by comprising powder-integrated resin particles having a granular carrier made of a thermoplastic resin and powder integrated on the surface of the granular carrier. And As a result, even when the content of the powder is high, handling is facilitated while fully exhibiting the characteristics of the powder.
  • the film thickness of the particle-containing sheet material is 10 m or more and 5 mm or less. As a result, handling as a sheet is improved.
  • the particle-containing sheet material further includes a second resin.
  • the second resin is a thermoplastic resin.
  • the method for forming a particle-containing sheet material comprises powder-integrated resin particles having a granular carrier made of a thermoplastic resin and powder integrated on the surface of the granular carrier.
  • a method for forming a particle-containing sheet material the step of applying heat to the granular carrier so that the surface of the granular carrier is at least softened; and a powder on the surface of the softened granular carrier And a step of obtaining powder-integrated resin particles; and a step of forming a composition comprising the powder-integrated resin particles so as to obtain a sheet shape. This makes it possible to obtain a sheet-like product while fully exhibiting the characteristics of the powder.
  • the step of molding the composition comprising the powder-integrated resin particles is a step of performing extrusion molding by adding a second resin.
  • the second resin is heatable. It is a plastic resin. This makes it possible to adjust the heat seal temperature.
  • the functional sheet according to the present invention includes powder-integrated resin particles having a granular carrier made of a thermoplastic resin and powder integrated on the surface of the granular carrier on a base sheet. It is characterized by being held. As a result, the powder, particularly the functional material, can perform its function without dropping off from the sheet.
  • a powder integrated body having a granular carrier made of a thermoplastic resin and a powder integrated on the surface of the granular carrier between a plurality of substrate sheets. Resin particles are supported. This can further prevent the powder-integrated resin particles from falling off.
  • the functional sheet according to the present invention is characterized in that a layer made of a thermoplastic resin is further disposed between the base sheet and the powder-integrated resin particles.
  • the functional sheet according to the present invention is characterized in that the substrate sheet and the powder-integrated resin particles are supported by hot pressing. This facilitates the loading of the powder-integrated resin particles.
  • the weight of the powder is 30 wt% or more and 80 wt% or less with respect to the total weight of the functional sheet.
  • the weight of the powder is 50 wt% or more and 900 wt% or less with respect to the weight of the thermoplastic resin. This facilitates maintenance of the shape of the powder-integrated resin particles in the sheet.
  • the volume ratio of the thermoplastic resin and the powder is:
  • the average particle diameter of the powder-integrated resin particles is 10 111 or more. This facilitates handling of the powder integrated resin particles.
  • the method for producing a functional sheet according to the present invention comprises a thermoplastic resin on a base sheet.
  • the step of applying heat to the granular carrier is the contact between the rotating member that rotates in a sealed space and the granular carrier. It is a process performed by the frictional heat generated by. This makes it possible to supply heat to the granular carrier by using the frictional heat generated during the process without requiring a further device, thereby reducing the complexity of the process. Become.
  • the characteristics of the powder can be sufficiently exhibited.
  • the powder can be handled in an arbitrary shape.
  • such powder-integrated resin particles can be easily obtained without performing treatments such as curing and liquefaction treatment.
  • the powder-integrated resin particles having a powder having certain characteristics can be maintained without falling off the base sheet, and the function derived from the powder can be exhibited. It becomes.
  • FIG. 1 is a schematic view showing powder-integrated resin particles according to the present invention.
  • FIG. 2 is a schematic view showing an example of a functional sheet according to the present invention.
  • 3] It is a schematic diagram showing an example of a functional sheet according to the present invention.
  • FIG. 5 is a schematic view showing an example of a process for producing a functional sheet according to the present invention.
  • the powder-integrated resin particles according to the present invention have a granular carrier made of a thermoplastic resin and a powder integrated on the surface of the granular carrier, and have a particulate form. It is.
  • the form of the powder integrated resin particle according to the present invention is not particularly limited as long as it is particulate.
  • the form of the powder-integrated resin particles is not particularly limited, and as shown in FIG. 1, the powder 4 is integrated on the surface of the granular support 2 with the granular support 2 as the center. It may be in a different form.
  • the state "integrated on the surface of the granular carrier” means that the thermoplastic resin and the powder constituting the granular carrier are solidified from the thermoplastic resin. It refers to a state of continuous bonding at a possible temperature. As such a state, After applying heat to the thermoplastic resin constituting the granular carrier to change from a solid state to at least a molten state, the powder adheres to the surface of the molten thermoplastic resin, and these compositions are used as the thermoplastic resin. The state which is formed when the temperature at which becomes a solid state is used.
  • the thermoplastic resin may be polyethylene.
  • PE low density polyethylene
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • PP polypropylene
  • EVA ethylene acetate butyl
  • EMMA ethylene-methacrylic acid copolymer
  • EMMA Ethylene-methyl methacrylic acid copolymer
  • EMA ethylene methyl acrylic acid copolymer
  • PET polyethylene terephthalate
  • PET polyethylene naphthalate
  • PAN polyacrylonitrile
  • thermoplastic resins are preferably those having a softening property at 200 ° C or lower.
  • the thermoplastic resin of these materials fluidity and extensibility are imparted to the resin part, the dispersibility between the resin part and the powder, preferably the functional material, is increased, and further, a granular material made of a thermoplastic resin is used. It becomes possible to carry a functional material at a high concentration on the carrier.
  • the granular carrier made of the thermoplastic resin is not particularly limited as long as it can form a granular shape, Granules and pebbles are exemplified.
  • any inorganic powder can be used as long as the powder can maintain a solid state upon integration with the following thermoplastic resin.
  • any of organic compounds may be sufficient.
  • the functional material used as the powder is a simple substance or compound, or any of these, as long as it is an inorganic or organic substance having a function desired to be imparted to the powder-integrated resin particles. It may be a mixture.
  • functions desired to be given include odor absorption, hygroscopicity, hydrophobicity, heat resistance, color development, hydrophilicity, adsorptivity, and impact resistance.
  • the functional material that is the above-mentioned inorganic substance Silica, colloidal silica, zeolite, montmorillonite, hectorite, talc, aerosil, my power, bentonite, aluminum compound, magnesium compound, norium compound, calcium carbonate, alumina, silicon nitride, boron nitride, etc.
  • Functional materials iron oxide (valve), mercury sulfide (sandstone), natural mineral pigments such as amber, sienna, kaolin, white mica, cadmium yellow, nickel titanium, viridian, ultramarine, carbon black, lead white, etc. These synthetic inorganic pigments can also be used.
  • examples of the functional material that is an organic substance include synthetic organic pigments such as powdered ink toners, phosphors, phthalocyanine-based, azo-based, and polycyclic compounds used in copying machines and laser printers, lakes, and the like.
  • thermosetting resins such as natural organic pigments such as synthetic dyes, polyimides, urea resins, phenol resins, epoxy resins, urethane resins, melamine resins, unsaturated polyester resins, and alkyd resins.
  • the functional material used as the powder may be treated with a surface modifier such as a coupling agent so as to appropriately modify the properties thereof.
  • a surface modifier such as a coupling agent
  • examples of such surface modifiers include methylating agents and silylating agents.
  • zeolite is used as a powder and is methylated, it is possible to impart hydrophobicity to the powder-integrated resin particles.
  • the average particle size of the powder is usually from 0.;! To 5 OO ⁇ m, particularly from ! to 100 m.
  • the average particle diameter may be measured using a known measuring method such as a wet method! /.
  • the particle size of the powder-integrated resin particles according to the present invention is 0.5 to 70 mm, in particular;! To 40 mm, and the average particle size of the powder-integrated resin particles according to the present invention is It is preferably ⁇ or more, more preferably 1 to 30 mm.
  • the average particle size is less than 10 m, the entire amount cannot be automatically discharged when taken out from a closed space where granulation is performed, such as a granulation tank.
  • the twin screw extruder used in the subsequent process cannot be used for a screw such as a fine film film forming machine.
  • the weight of the powder is not particularly limited, but for example, it is preferably 50 to 900% by weight with respect to the weight of the thermoplastic resin. ⁇ ; More preferably, it is 100% by weight. If it is less than 50% by weight, the thermoplastic resin, which will be described later, has been melted, and the surface of the powder-integrated resin particles has become bullet marks, and the adhesion of the surface has increased. You may not be able to remove it from the space where you perform. If it exceeds 900% by weight, integration of the thermoplastic resin and the powder may not proceed and granulation may not be possible.
  • the volume ratio of the thermoplastic resin to the inorganic or organic functional material powder is preferably 1: 1 to 1:20. Outside these ranges, it may become impossible to remove from the space for granulation, such as a granulation tank, during production.
  • the particle-containing molded article according to the present invention is a particle-containing molded article composed of the above-mentioned powder-integrated resin particles according to the present invention and a water-soluble organic resin such as polyhydric alcohol (PVA).
  • PVA polyhydric alcohol
  • the form of the particle-containing molded body is not particularly limited, and examples thereof include a cylinder and a pyramid.
  • Examples of the water-soluble organic resin in the particle-containing molded body according to the present invention include polybulal alcohol (PVA), acrylic acid, polyester, and the like.
  • the solid content of the water-soluble organic resin is preferably 1% to 25%.
  • the weight of the water-soluble organic resin is preferably 10% by weight or more and 50% by weight or less with respect to the weight of the powder-integrated resin particles. If the amount is less than 10% by weight, the adhesive strength is insufficient. If the amount exceeds 50% by weight, the characteristics of the powder, especially the function of the functional material, will deteriorate.
  • the above-mentioned powder integrated resin particles and a water-soluble organic resin are molded into a certain shape using a molding method known in the art.
  • a molding method known in the art kneading, baking, heating, pressurizing and the like without particular restrictions may be used alone or in an appropriate combination.
  • the heating temperature is not particularly limited as long as it can volatilize the solvent used for molding, for example, about 100 ° C.
  • the pressure range of this pressurization includes lkg / cm 2 or more.
  • the method for granulating powder-integrated resin particles according to the present invention includes a step of applying heat to the granular carrier so as to at least soften the surface of the granular carrier made of the thermoplastic resin, and then the softening. A step of attaching the above-mentioned powder, preferably a functional material, to the surface of the granular carrier.
  • the powder-integrated resin particles having a granular carrier made of a thermoplastic resin and a powder integrated on the surface of the granular carrier can be obtained.
  • the granular carrier used for granulation of the powder-integrated resin particles, and the powder exemplified by the functional material include: During this method, the powder exemplified by the functional material is already introduced into the system when performing the step of applying heat to the granular carrier, which should be appropriately introduced into the granulating system. Alternatively, after this step is performed, a step of introducing the powder into the system and attaching the powder to the surface of the granular carrier may be performed.
  • thermoplastic resin is introduced first for the purpose of suppressing the scattering of the powder exemplified as the functional material or promoting the softening of the thermoplastic resin in the granulating system. It is preferable. Regarding the method of introducing these components into the granulation system, there is no particular restriction. Depending on the method, it is selected as appropriate from the method of direct injection into the system. Further, the form of the granular carrier made of the above-mentioned powder and thermoplastic resin introduced into the sealed space for granulation is appropriately selected according to the desired form of the powder-integrated resin particles. For example, examples of the form of the granular carrier made of thermoplastic resin include pellets and granules.
  • the method of applying a heat to the granular carrier is as follows. There is no particular limitation as long as it softens at least.
  • a method of directly applying heat to the thermoplastic resin constituting the granular carrier may be used.
  • a method of introducing a granular carrier made of a thermoplastic resin into the sealed space and raising the temperature of the sealed space may be used.
  • a mixing granulator such as a Henschel mixer
  • a rotating member such as a rotary blade that rotates in a sealed space of this machine is brought into contact with the granular carrier,
  • the granular carrier may be heated by the frictional heat generated at this time!
  • the temperature of the step of applying heat to the granular carrier is the thermoplastic resin used for granulation and the physical properties of the powder.
  • the glass transition point, the melting temperature, etc. may be selected as appropriate.
  • the temperature when heat is applied to a granular carrier made of polyethylene, polypropylene or the like as a thermoplastic resin, the temperature may be 80 ° C to 200 ° C. If the temperature is less than 80 ° C, it becomes difficult to soften the granular carrier made of thermoplastic resin at least, and integration with the powder to be performed later does not proceed.
  • the temperature of the step of applying heat to the granular carrier is lower than the melting point of the powder. May be. This makes it possible to prevent the granular carrier from being melted and integrated into the thermoplastic resin when heat is applied to the granular carrier.
  • the step of applying heat to the granular carrier is a powder exemplified by a thermoplastic resin and preferably a functional material.
  • a known mixing granulator for mixing and granulating examples include a mixing granulator provided with a granulating tank.
  • a Henschel mixer is preferably used.
  • the size of the granulation tank provided in such a mixing granulator may be appropriately selected according to the amount of components such as the thermoplastic resin and powder to be introduced, the specific gravity of the powder, etc. ⁇ 200cm, height may be 80% to 200% of diameter.
  • the step of applying heat to the granular carrier includes a rotating member that rotates in a sealed space where granulation is performed, and The frictional heat generated by the contact with the granular carrier may be used.
  • a rotating member such as a rotary blade provided at the bottom of the granulation tank and rotating in the tank. It may be performed by heat.
  • the tip of the rotating member be applied so as to give a shearing force to the granular carrier.
  • the rotation speed of the rotating member may be appropriately selected according to the material of the granular carrier, the glass transition point, the melting temperature, etc.
  • the rotating speed of the tip of the rotating member is from 1 Om / sec to You may set it so that it may become 100m / second, especially 30m / second-60m / second. Within such a range, it is preferable in terms of controlling the softening temperature of the thermoplastic resin and increasing the contact probability with the powder exemplified by the functional material or functional pigment derived from inorganic or organic. .
  • the granulation is performed for the purpose of at least softening the surface of the granular carrier made of a thermoplastic resin. It may be performed by applying heat to the tank.
  • the temperature of the granulation tank may be appropriately selected according to the material of the granular carrier, the glass transition point, the melting temperature, etc. For example, when polyethylene, polypropylene or the like is used as the thermoplastic resin, 80 ° C to 200 ° C.
  • the method for controlling the temperature of the granulation tank may be a method of directly heating the granulation tank, or a method of achieving this temperature range by cooling the granulation tank.
  • thermoplastic resin and the powder are transferred in the tank as the rotary blade in the granulation tank rotates.
  • a blade may be provided at a position vertically above the rotating member. This blade lowers the thermoplastic resin and powder below the granulation tank in order to bring the powder exemplified by the thermoplastic resin and functional material into contact with the rotating member provided at the lower part of the granulation tank. It is.
  • one or more choppers may be installed, which may have a crushing action on the side of the granulation tank or from the top. May be.
  • the size of the rotating member is preferably 50% to 95% of the diameter of the granulation tank and has a shape and strength sufficient to cut a softened thermoplastic resin. Used Yes
  • the rotating member and the blade are both installed at a position within a range of 20% to 60% of the height of the tank from the bottom of the granulation tank. From the bottom, the rotary blade and the blade are parallel to each other in this order. Don't touch! /, You can set it up! /.
  • the chopper is installed for the purpose of disturbing the movement of the mixture of the thermoplastic resin in the centrifugal direction generated by the rotary blade and the powder, preferably the functional material. It does not matter, but it is preferable that the tip of the tank is installed so that the tip is directed toward the bottom. Moreover, if the said objective is achieved, the presence or absence of rotation will not be ask
  • the particle-containing sheet material according to the present invention comprises the above-described powder-integrated resin particles according to the present invention, and has various sheet-like shapes.
  • the particle-containing sheet material according to the present invention is formed into a sheet shape using a composition comprising powder-integrated resin particles obtained according to the granulation method of powder-integrated resin particles according to the present invention described above.
  • the composition may be molded by a molding method known in the art. This molding method is not particularly limited, and examples include extrusion molding, cast molding, T-die molding, inflation molding, injection molding, and blow molding.
  • the film thickness is not particularly limited as long as it can exhibit the characteristics of the powder.
  • it is 30 111 or more and 300 111 or less. It is preferable. If it is within this range, the properties of the powder, particularly the effect of the functional material, and the handling as a sheet will be good.
  • the composition comprising the powder-integrated resin particles may have various materials in addition to the powder-integrated resin particles.
  • various inorganic / organic compounds may be added to impart fluidity.
  • a second resin such as a polyethylene resin may be added in addition to the thermoplastic resin constituting the powder-integrated resin particles.
  • a second resin is not particularly limited, and examples thereof include a thermoplastic resin such as polyethylene.
  • the second resin may be a thermoplastic resin that constitutes the powder-integrated resin particles.
  • thermoplastic resin fluidity, heat It is preferable at the point which has the same property, and the point which can maintain the integrity as a sheet
  • the addition amount of the second resin is preferably 10 to 30% by weight with respect to the total amount of the powder-integrated resin particles. If it is within this range, it is determined by the force that imparts fluidity to the second resin during extrusion molding.
  • the functional sheet according to the present invention is characterized by having a sheet-like form in which powder-integrated resin particles are supported on a base sheet. The outline is shown in Figs.
  • the functional sheet 12 according to the present invention may include a base sheet 14 and powder-integrated resin particles 1 supported on the base sheet. Good.
  • the functional sheet 12 according to the present invention further includes a thermoplastic resin layer 16 made of a thermoplastic resin between the base sheet 14 and the powder integrated resin particles 1. It may be arranged.
  • the functional sheet 12 according to the present invention may be one in which powder-integrated resin particles 1 are supported between a plurality of substrate sheets 14.
  • the weight of the powder constituting the powder-integrated resin particles is preferably 30% by weight or more and 80% by weight or less with respect to the total weight of the functional sheet.
  • the weight of the nonwoven fabric to be used may be set as appropriate.
  • a known sheet is not particularly limited and can be used.
  • synthetic fibers such as aramid, cellulose, polyamide, polybutyl alcohol, polyester, polyolefin, rayon, phenol, natural fibers such as cotton, silk, hemp, etc., and carbon fibers of these fibers are spunbonded. Spun lace, needle punch, etc. Physical, resin bond, chemical method such as thermal bond, etc. It is done.
  • Polyethylene terephthalate (PET), polyethylene (PE), poly salt It may be a sheet-like substrate made of a synthetic resin such as plasticized bull (PVC). The type and weight of these components, and the aspect of the substrate sheet such as the number of voids inside the substrate sheet may be appropriately selected depending on the application.
  • Examples thereof include nonwoven fabrics and sheet-like substrates.
  • Examples of the base material sheet include heat resistance at about 100 ° C. or more, thermal stability, weight per unit area, air permeability (porous), thickness, and the like.
  • polyester, cotton, polyamide, aramide, and phenol are preferably used as the material constituting the base sheet.
  • a known roughened surface such as a blast method may be used as the base material sheet.
  • the powder-integrated resin particles carried on the base sheet are integrated with a granular carrier made of a thermoplastic resin and the surface of the granular carrier. And has a particulate form.
  • the form of the powder-integrated resin particle is not particularly limited as long as it is particulate.
  • the form of the powder-integrated resin particles is not particularly limited, as shown in Fig. 1, with the granular support 2 being the center and the powder 4 being integrated on the surface of the granular support 2. It may be.
  • the state of "integrated on the surface of the granular carrier” means that the thermoplastic resin and the powder constituting the granular carrier are thermoplastic.
  • the powder adheres to the surface of the molten thermoplastic resin, The state formed when these compositions are set to a temperature at which the thermoplastic resin is in a solid state.
  • thermoplastic resin polyethylene (PE) as mentioned in the powder-integrated resin particles, Low density polyethylene (LDPE), High density polyethylene (HDPE), Linear low density polyethylene (LLDPE), Polypropylene (PP), Ethylene acetate butyl (EVA), Ethylene monometatalic acid copolymer (EMAA), Ethylene Methyl methacrylic acid copolymer (EMMA), ethylene-methyl acrylic acid copolymer (EMA), butyl chloride, butyl acetate, butyl acetate Examples include a butyl copolymer, acrylic, methacrylic resin, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyacrylonitrile (PAN).
  • the thermoplastic resin may be a combination of these materials as appropriate. Good. Among these, PE, LDPE, LLDPE, PP, EVA, EMAA, EMMA, EMA, and talyl resin are desirable for integration with functional materials. These thermoplastic resins are preferably those having a softening property at 200 ° C or lower. By using thermoplastic resins of these materials, fluidity and extensibility are imparted to the resin part, the dispersibility between the resin part and the powder, preferably the functional material, is increased, and the resin part is made of thermoplastic resin. It becomes possible to carry the functional material at a high concentration on the granular carrier.
  • the granular carrier made of the thermoplastic resin is not particularly limited as long as it can form a granular shape. Shapes, granules, and pebbles.
  • the powder may be any material that can maintain a solid state when integrated with the following thermoplastic resin.
  • Either an inorganic compound or an organic compound may be used.
  • the functional material used as the powder as long as it is an inorganic substance or an organic substance having a function desired to be imparted to the powder-integrated resin particles, there is no particular limitation, a simple substance or a compound, or a mixture thereof. It may be.
  • examples of the function desired to be given include odor absorption, hygroscopicity, hydrophobicity, heat resistance, color development, hydrophilicity, adsorptivity, and impact resistance.
  • the functional material that is the above-mentioned inorganic compound or metal includes silica, colloidal silica, zeolite, montmorillonite, hectorite, talc, and aerosol.
  • the functional material that is an organic substance described above, synthesis of powdered ink toners, phosphors, phthalocyanine-based, azo-based, polycyclic compounds, and the like used in copying machines and laser printers is possible.
  • examples include organic pigments, natural organic pigments such as lakes, synthetic dyes, polyimides, urea resins, phenol resins, epoxy resins, urethane resins, melamine resins, unsaturated polyester resins, alkyd resins, and other thermosetting resins.
  • the functional material used as the powder is treated with a surface modifier such as a coupling agent so as to appropriately modify the properties thereof.
  • a surface modifier such as a coupling agent
  • examples of such surface modifiers include methylating agents and silylating agents.
  • zeolite when used as a powder and is methylated, it is possible to impart hydrophobicity to the powder-integrated resin particles.
  • the average particle diameter of the powder (usually, 0 to 500 mm, and especially 100 to 100 mm).
  • the particle diameter of the powder-integrated resin particles used in the functional sheet according to the present invention is 0.5 to 7 mm, and the average particle diameter of the powder-integrated resin particles used in the functional sheet according to the present invention.
  • the diameter is preferably 10 111 to 5111 111, more preferably 100 111 to 1.5 mm. If the average particle size is less than 10 m, the entire amount cannot be discharged automatically when taken out from a closed space where granulation is performed, such as a granulation tank. On the other hand, if the average particle diameter exceeds 40 mm, the surface unevenness becomes remarkable when the sheet is supported on the sheet, and it becomes impossible to obtain good sheet characteristics.
  • powder-integrated resin particles used in the functional sheet according to the present invention those having an average particle size of !! to 30 mm may be used as they are for the purpose of extrusion. It can be suitably used for processing, and can also be used effectively for film formation.
  • the weight of the powder is not particularly limited, but is, for example, 50% by weight or more with respect to the weight of the thermoplastic resin. It is preferably 80% by weight or less; more preferably 100% by weight. If it is less than 50% by weight, the above-mentioned thermoplastic resin will be melted and the surface of the powder-integrated resin particles will become bullet marks, or the adhesion of the surface will increase. There is a case where it adheres in the space where it is performed and cannot be removed from the granulation tank. If it exceeds 900% by weight, the integration of the thermoplastic resin and the powder may not proceed and granulation may not be possible.
  • the powder-integrated resin particles used in the functional sheet according to the present invention The volume ratio between the resin and the inorganic or organic functional material powder is preferably 1:;! ⁇ 1: 20. Outside these ranges, it may become impossible to remove from the space for granulation, such as a granulation tank, during production.
  • the method for granulating the powder integrated resin particles used in the functional sheet according to the present invention is not particularly limited as long as it is a method capable of obtaining the above-described powder integrated resin particle embodiment! / ,.
  • this granulation method heat is applied to the granular carrier so as to at least soften the surface of the granular carrier made of the thermoplastic resin, and then the surface of the softened granular carrier is
  • the powder described above, preferably a functional material may be attached. That is, as the granulation method for the powder-integrated resin particles used in the functional sheet according to the present invention, the granulation method for the powder-integrated resin particles according to the present invention may be used. As a result, the powder-integrated resin particles having a granular carrier made of a thermoplastic resin and a powder integrated on the surface of the granular carrier are obtained.
  • the functional sheet according to the present invention may have various components as long as the above-described aspect is not affected.
  • a thermoplastic resin layer 16 made of a thermoplastic resin may be provided between the base sheet 14 and the powder-integrated resin particles 1.
  • Any thermoplastic resin may be used as long as it does not hinder the support of the powder integrated resin particles 1 and the base sheet 14, and the thermoplastic resin constituting the powder integrated resin particles 1 is not particularly limited. A resin is preferred.
  • FIG. 5 is a schematic view showing an example of a process for producing a functional sheet according to the present invention.
  • the powder integrated resin particles are fed from the feeder 44 onto the base sheet 14 supplied from the primary unwinding section 41. Distribute evenly. Thereafter, the base sheet 14 having the powder-integrated resin particles uniformly distributed is supported on the base sheet 14 by, for example, the oven 46 in which heat is applied.
  • the whole base sheet may be preheated by passing through the inside, and may be hot pressed or pressed by the hot press roll 48. The obtained sheet Then, it may be wound up by the winding unit 49.
  • thermoplastic resin layer made of a thermoplastic resin may be laminated on the base sheet 14.
  • a material obtained by previously laminating a thermoplastic resin layer on the base sheet 14 may be supplied from the primary unwinding portion 41.
  • the powder-integrated resin particles are uniformly distributed from the feeder 44 onto the base sheet 14, and then conveyed to the oven 46 before the secondary side winding.
  • a base sheet 14 of the same or different type as that of the primary side unwinding part 41 may be placed from above on the spreading surface from the unloading part 42.
  • the substrate sheet wound up by the winding unit 49 is supplied again to the primary-side unwinding unit 41, and each of the above steps is repeated or a feeder is provided.
  • Up to 44 forces and up to the heat and pressure roll 48 may be continuously arranged a plurality of times. This makes it possible to produce a functional sheet having a multilayer structure.
  • winding unit 49 which is the final step, may be omitted, and after pressing the base material sheet obtained up to the hot-pressing roll 48, sheet cutting may be performed using a cutting machine or the like, and then sequentially stacked. .
  • the heating temperature by the oven 46 may be appropriately selected according to the type of base material sheet and powder-integrated resin particles used.
  • the heating temperature is higher than the glass transition point of the powder-integrated resin particles which may be set in consideration of the glass transition point of the base-material sheet or the powder-integrated resin particles. May be set so that the glass transition point of the base sheet is lower than the heating temperature.
  • the clearance distance between the hot press rolls 48 is not particularly limited.
  • the line speed may be set according to the type of base material sheet and powder integrated resin particles used. There is no particular limitation as long as the particles are distributed and hot pressed well.
  • the force S described to be performed by applying heat using the oven 46, the hot press roll 48, etc. As long as it is possible to achieve such a supporting mode, it is not limited to heat, and examples thereof include UV curing, high frequency, ultrasonic waves, and electron beams.
  • powders (average particle size 2 mm) obtained by kneading and pulverizing the following components were supplied to a mixing granulator to obtain powder integrated resin particles having the composition shown in Table 1.
  • Table 2 shows the average particle diameter after processing and the results of microscopic observation.
  • the mixing granulator has a mixing granulation tank having a diameter of 40 cm at the bottom and a height of 40 cm, a rotating blade having a diameter of 30 cm is provided at the center of the bottom, and the rotating blade A blade having a diameter of 20 cm was installed in the upper part in parallel with the rotary blade.
  • the rotation speed of the rotary blade edge was set to 40 m / second
  • the rotation speed of the blade edge was set to 30 m / second
  • one chopper was installed on the top of the tank lid.
  • the temperature was controlled so that the temperature in the tank was 140 ° C.
  • the grinding time was 20 minutes.
  • thermoplastic resin in the formulation shown in Table 1 was pulverized and then dry blended with the powder using a stirrer, and pelletized by a twin screw extruder as a subsequent step.
  • the charged amount was about 4 kg in total of the powder and the thermoplastic resin in both Examples and Comparative Examples.
  • the functional material used as the powder is molecular sieve 4A (Union Showa)
  • thermoplastic resin LDPE (manufactured by Tosoichi Co., Ltd.) and PP (Nippon Polychem BC06C) were used.
  • Example 1 1 1 1 1 1 Molecular sieve 4 A 90 parts LDFE 10 parts
  • Example 1 1 1-3 Molecular sieve 4 A 70 parts LDPE 30 parts
  • Ratio reduction example 1-2-1 Molecular sheep 4 A 90 parts P P 10 parts
  • Example 1 1 3-1 CaO 90 parts LDPE 10 parts
  • Example 1 1 4-1 Alumina 90 parts LDPE 10 parts
  • Example 1 -4 1 2 Alumina 80 parts LDPE 20 parts
  • Example 1 -4 1 3 Alumina 70 parts LDPE 30 parts
  • Example 1-1-3 In all cases, falling evenly Stable production ⁇
  • Comparative Example 1 1-1 1-3 Resin falls faster and clogging occurs
  • Example 1 1 In all cases, falling evenly Stable production ⁇
  • Comparative Example 1-2-1 Resin falls earlier and clogging occurs
  • Example 1-2-3 In all cases, evenly dropped Stable production ⁇
  • Comparative Example 1 1 2-3 Resin falls faster and clogging occurs
  • Example 1-3-3 In all cases, falling evenly Stable production ⁇
  • Comparative Example 1 3-3 Resin falls earlier and clogging occurs
  • Example 1-4-1 In all cases, falling evenly Stable production ⁇
  • Comparative Example 1-4-1 Resin falls faster and clogging occurs
  • the quantitative feeding into the extruder could be easily performed.
  • the thermoplastic resin and the powder were put separately, the ratio of the particles having a large particle size relative to the charging ratio increased, and the fine powder remained in the transport system, which was a good master. The batch could not be made.
  • Example 1 1 1 to 1 4 3 In the same manner as in Examples 1 1 1 to 1 4 3 using the powder and thermoplastic resin shown in Table 4 instead of the powder and thermoplastic resin shown in Table 1. To obtain powder-integrated resin particles. Next, the water-soluble organic resin shown in Table 4 was added to 100 parts of the powder integrated resin particles and kneaded. The obtained kneaded product was filled in a mold and a pressure of 10 kg / cm 2 or more was applied. This was sintered at 200 ° C. for 1 hour to obtain a solidified product.
  • a cylindrical solid product with a diameter of 2 mm and a height of 3 mm and a tablet containing triethylamine (active ingredient content 10%) are placed in a sealed container and left in an environment at a temperature of 25 ° C and a relative humidity of 50% for 2 40 hours. did. Thereafter, the presence or absence of adsorption of the triethylamine component was detected using a GC-MS apparatus (Automass, manufactured by JEOL Ltd.), and the odor absorption property of the solidified product was evaluated. The results are shown in Table 5. In Table 5, ⁇ indicates that the product has sufficient odor absorption, and symbol indicates that evaluation was not possible.
  • a cylindrical solid product with a diameter of 2 mm and a height of 3 mm was prepared, and the hardness of this solid product was measured as a peak value at the time of crushing fracture using a digital force gauge (FGC-50, manufactured by SHIMPO). did.
  • the results are shown in Table 5.
  • Example 1 1 1 to 1 4 3 except that 30 parts of A-type silica gel (manufactured by Tokuma Corporation) and 70 parts of PE were used instead of the powder and thermoplastic resin shown in Table 1. Were carried out in the same manner as in Examples 1 1 1 to 1 4 3 to obtain powder integrated resin particles. 10 parts of PE is further added to the powder-integrated resin particles, and a 100 m thick film is formed by extrusion molding. Molded into rum. When this film was moisture-absorbed at a temperature of 40 ° C and a relative humidity of 90%, it showed a moisture absorption of 9. Og / m 2 .
  • Example 2 For Example 2— ;! to 2-2-2, the components in Table 6 were ground using the Henschel mixer (Mitsui Mining Co., Ltd.) under the following conditions! / ⁇ Forming powder integrated resin particles did.
  • thermoplastic resin polyethylene (PE)
  • E-integrated resin particles thermoplastic resin: polyethylene (PE)
  • zeolite powder and a thermoplastic resin ethylene butyl acetate copolymer
  • composition obtained by dry blending with (EVA) was sandwiched between base sheets in the same manner as in the examples and sheeted and tested in the same manner as in the examples. The results are shown in Table 6.
  • Measurement method Using a tensile tester (manufactured by Toyo Seiki Co., Ltd.), the adhesion between 25 mm wide substrate sheets was measured.
  • Table 6 shows the tensile strength at which the base sheets peeled off.
  • the obtained base material sheet was cut into a 10 cm square and allowed to stand for 48 hours in an oven at a temperature of 40 ° C./90% relative humidity, and the weight increase due to moisture absorption was measured with an electronic balance.
  • Examples 2-3 to 2-5 those obtained by granulating Zeolite molecular sieve 13X (manufactured by Union Showa Co., Ltd.) as a functional material and polyethylene as a thermoplastic resin with a weight ratio of 8: 2 were used. Using. In addition, each of Comparative Examples 2-3 to 2-5 was used alone. Using et Scott Fine CO60NA0 2 as the base sheet (manufactured by Yuyuchika Co.), based on the above hot pressing step, under the following conditions, subjected to hot pressing to obtain a functional sheet. [0146] [Hot press conditions]
  • Hot press temperature 200 ° C
  • Example 2 except that the components shown in Table 8 were used instead of the powder-integrated resin particles of Examples 2-6 to 2-8. — Perform in the same way as 6 to 2-8. I got a job.
  • T-type peeling was performed at 1 N / m 2 or more.
  • the obtained functional sheet or sheet and a tablet containing triethylamine (active ingredient content: 10%) were placed in a sealed container and allowed to stand for 240 hours in an environment of a temperature of 25 ° C. and a relative humidity of 50%. Thereafter, the presence or absence of adsorption of the triethylamine component was detected using a GC-MS apparatus (Automass, manufactured by Nippon Denshi), and the functional sheet or sheet odor absorption was evaluated. The results are shown in Table 8. In Table 8, ⁇ indicates that it has sufficient odor absorption.
  • the functional sheet according to the present invention can be suitably used mainly for filters for air-conditioning machines, medicines, desiccants for electronic and electrical members, and the like.
  • it since it is supported on a non-woven fabric, it can be easily processed into a desired shape and can be applied to a wide range of fields.

Abstract

[PROBLEMS] To provide resin particles having a powder united thereto which are produced by a simple method while maintaining the function of the powder, preferably a functional material (including a pigment). [MEANS FOR SOLVING PROBLEMS] The resin particles having a powder united thereto are characterized by comprising a particulate support comprising a thermoplastic resin and powder particles united to the surface of the particulate support.

Description

明 細 書  Specification
粉体一体化樹脂粒子及びその造粒方法、粒子含有成形体及び粒子含 有シート材並びにこれらの成形方法、並びに機能性シート及び機能性シートの 製造方法  Powder-integrated resin particles and granulating method thereof, particle-containing molded body and particle-containing sheet material, molding method thereof, functional sheet and method for producing functional sheet
技術分野  Technical field
[0001] 本発明は、粉体一体化樹脂粒子及びその造粒方法、並びに粒子含有成形体及び 粒子含有シート材並びにこれらの成形方法に係り、特に、熱可塑性樹脂と、粉体、好 ましくは機能材 (顔料を含む)とが一体化した粉体一体化樹脂粒子及びこの粉体一 体化樹脂粒子の造粒方法、並びにこの粉体一体化樹脂粒子からなる粒子含有成形 体、及び粉体一体化樹脂粒子から成形した粒子含有シート材並びにこれらの成形方 法に関する。  The present invention relates to powder-integrated resin particles and a granulating method thereof, and a particle-containing molded body, a particle-containing sheet material, and a molding method thereof. In particular, a thermoplastic resin and a powder are preferable. Is a powder-integrated resin particle integrated with a functional material (including a pigment), a granulation method of the powder-integrated resin particle, a particle-containing molded body comprising the powder-integrated resin particle, and a powder The present invention relates to a particle-containing sheet material molded from body-integrated resin particles and a molding method thereof.
[0002] また、本発明は、機能性シート及びその製造方法に係り、特に、吸着性などの機能 性が付与された機能性シート及びその製造方法に関する。  [0002] The present invention also relates to a functional sheet and a method for producing the same, and more particularly to a functional sheet provided with functionality such as adsorptivity and a method for producing the same.
背景技術  Background art
[0003] 粉体、好ましくは機能材の特定の機能を発揮させるために、種々の樹脂と粉体とを 有する組成物が広く知られている。このような組成物を製造する方法としては、一定 量の樹脂と粉体とを混合して成膜'成形する方法や、これらの成分を均一に混練、担 持させる方法や、これらの成分を単に混在させて成形する方法が挙げられるが、粉 体、ひいては機能材の機能を発揮させるには、満足のいくものではない。  [0003] In order to exhibit a specific function of a powder, preferably a functional material, compositions having various resins and powders are widely known. As a method of producing such a composition, a method of forming a film by mixing a certain amount of resin and powder, a method of uniformly kneading and holding these components, Although a method of simply mixing and molding can be mentioned, it is not satisfactory to exert the function of the powder and consequently the functional material.
[0004] 例えば、樹脂と粉体とを混合して成膜 '成形する場合、樹脂と粉体との比重の違い から、樹脂と粉体とを均一に混在させることは困難であった。また、樹脂と比重が異な る材料を一体化させようとする場合、一般に混練機によってマスターバッチを作製し ているが、この場合も上記と同様に、両者を均一に混在させることは困難であった。  [0004] For example, when a film is formed by mixing a resin and a powder, it is difficult to mix the resin and the powder uniformly because of the difference in specific gravity between the resin and the powder. In addition, when trying to integrate materials having a specific gravity different from that of a resin, a master batch is generally produced by a kneader. In this case as well, it is difficult to mix the two uniformly. It was.
[0005] 樹脂にゼォライト等の有機、無機物質からなる機能材を均一に混練、担持させる方 法として、二軸押出ペレタイザ一を用いる方法が挙げられる。この場合、投入時の粒 径が近ぐさらに比重が近い物質同士であればよいが、粒径や比重、及び摩擦係数 が異なる場合、投入時と押出機軸内に入る比率がそれぞれ異なってしまい、一様な 比率のものが出来なかった。 [0005] As a method for uniformly kneading and supporting a functional material made of an organic or inorganic substance such as zeolite in a resin, a method using a biaxial extrusion pelletizer can be mentioned. In this case, it is sufficient if the materials are close to each other and have a specific gravity close to each other. Uniform The thing of the ratio was not made.
[0006] これを防ぐ方法としては、ホッパー投入部分を 2系統にするなどの必要があり、たと えば、二軸押出機に原料を投入する際に、超音波等の振動により、別々、かつ直接 投入する方法が挙げられる力 別々にされた各原料中に存在する微細な比重の違 いにより投入時に混合比率等が変化する等の不具合が起こる。この場合、ホッパー 部分を 2系統とすることも考えられるが、この方法では、樹脂、機能材の比率が限定さ れて!/ヽた。 [0006] As a method for preventing this, it is necessary to use two systems for the hopper charging portion. For example, when the raw material is charged into the twin screw extruder, it is separated and directly by vibration such as ultrasonic waves. Forces that can be used as a method of charging. Problems such as a change in the mixing ratio at the time of charging occur due to the minute difference in specific gravity existing in each of the separated raw materials. In this case, it is possible to use two hopper parts, but this method limited the ratio of resin and functional material!
[0007] さらに、これらを熱溶融させて二軸押出工程を利用した場合、熱可塑性のない機能 材を高濃度の状態でスクリューにてペレタイズすると、スクリューに多大な負荷が掛か りモーターを破損させる場合があり、そのため、モーターが許容する程度の比率の機 能材しか使用できない、とレ、う問題があった。  [0007] Further, when these materials are melted by heat and the biaxial extrusion process is used, if a non-thermoplastic functional material is pelletized with a screw in a high concentration state, a large load is applied to the screw and the motor is damaged. Therefore, there was a problem that only functional materials in a ratio that the motor allowed could be used.
[0008] 現在、樹脂と粉体とを混在させて成形する方法が特許文献 1及び特許文献 2に開 示されている。これらは、いずれも樹脂部として熱硬化性樹脂を用いているため、硬 化及び液状化処理の工程が不可欠である。また、熱による流動性及び伸張性が少な いため、混合工程における粉体の高濃度の担持は困難であり、成形体における機能 材の性能を減殺する可能性があった。さらに、ヘンシェルミキサー等の混合機で熱可 塑性樹脂と粉体とを混合加工した場合、回転刃や造粒槽壁面等との摩擦熱により分 子間で架橋が起こるため、造粒槽内で硬化が起こることがあり、一体化工程が困難に なる可能性を有していた。また、熱硬化性樹脂は、加熱による硬化反応を利用して成 形するため、成形法が限られ、成形体に対する二軸延伸等の後工程も困難であった [0008] Currently, Patent Document 1 and Patent Document 2 disclose a method of molding a resin and powder mixedly. Since these all use a thermosetting resin as the resin part, the steps of hardening and liquefaction are indispensable. In addition, since there is little fluidity and extensibility due to heat, it is difficult to carry a high concentration of powder in the mixing process, and there is a possibility that the performance of the functional material in the molded body may be reduced. Furthermore, when thermoplastic resin and powder are mixed and processed with a mixer such as a Henschel mixer, crosslinking occurs between the molecules due to frictional heat with the rotating blades and the wall of the granulation tank. Curing could occur and the integration process could be difficult. In addition, since thermosetting resins are formed using a curing reaction by heating, the molding method is limited, and post-processing such as biaxial stretching of the molded body is difficult.
[0009] 一方、従来、吸着性等の機能性向上を目的として、ゼォライトに代表される機能材 を含有した不織布が多数開発されており、特許文献 3は、マイクロスケールの微細な ゼォライトの粉体と熱可塑性樹脂とを混合したものを用い、これを 2枚の不織布の間 に狭持させて成型する技術を開示する。 [0009] On the other hand, for the purpose of improving functionality such as adsorptivity, many nonwoven fabrics containing a functional material typified by zeolite have been developed. Patent Document 3 describes a fine microlite powder of zeolite. Disclosed is a technology that uses a mixture of a thermoplastic resin and a thermoplastic resin, and sandwiches it between two nonwoven fabrics for molding.
[0010] しかしながら、ゼォライト粉体として平均粒子径が 1〜; 100 m程度の微細なものを 用いると、他物質からなる粉体に比して凝集作用が起こりやすいことから、不織布へ の撒布が不均一になる傾向がある。また、ゼォライト粉体が不織布の繊維の隙間から 漏脱するために、実用的、機能的な面で問題があった。 [0010] However, if a fine powder having an average particle diameter of 1 to 100 m is used as the zeolite powder, the agglomeration effect is likely to occur as compared with a powder made of another substance. There is a tendency to become non-uniform. In addition, the zeolite powder from the gap between the nonwoven fabric fibers In order to escape, there was a problem in practical and functional aspects.
[0011] また、より高い機能を不織布に付与するために、ゼォライトなどの粉体の含有率を 高くする場合、不織布同士、不織布と熱可塑性樹脂、あるいは熱可塑性樹脂と粉体 の一体化工程を同時に行うことや、実用に耐え得る強度でこれを得ることは困難であ つた。 [0011] Further, in order to increase the content of powder such as zeolite in order to impart a higher function to the nonwoven fabric, an integration process of the nonwoven fabric, the nonwoven fabric and the thermoplastic resin, or the thermoplastic resin and the powder is performed. It was difficult to achieve this at the same time or with strength that could withstand practical use.
[0012] また、ゼォライト粉体と熱可塑性樹脂との混合物を用いた場合、前記した凝集等の 作用に起因する混合の不均一により熱可塑性樹脂が偏って露出してしまい、不織布 間での密着不良が生じるという問題があった。しかし、これを防ぐために不織布全体 における熱可塑性樹脂の割合を多くすると、ゼォライトの吸着量や吸着速度が低下し たり、不織布の通気性が悪くなる、という不織布の実用上の問題があった。  [0012] Further, when a mixture of zeolite powder and a thermoplastic resin is used, the thermoplastic resin is biased and exposed due to uneven mixing due to the action such as aggregation described above, and adhesion between the nonwoven fabrics. There was a problem that defects occurred. However, in order to prevent this, if the proportion of the thermoplastic resin in the entire nonwoven fabric is increased, the amount of zeolite adsorbed and the adsorption speed are reduced, and the nonwoven fabric has poor air permeability.
特許文献 1 :特開平 11 246672号公報  Patent Document 1: JP-A-11 246672
特許文献 2 :特開平 09— 067155号公報  Patent Document 2: Japanese Patent Laid-Open No. 09-067155
特許文献 3 :特開平 09— 276897号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 09-276897
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 本発明は、上記の問題に鑑みてなされたものであって、粉体、好ましくは機能材( 顔料を含む)の機能を発揮させつつ、簡便な方法で製造される粉体一体化樹脂粒子 を提供することを目的とする。また、本発明は、一体化加工を樹脂の硬化及び液状化 処理が不要な工程や、さらに二軸押出等によるフィルム成形等の後加工を、機能材 の性質を落とすことなぐかつ容易になし得る粉体一体化樹脂粒子の造粒方法を提 供することを目的とする。さらに、本発明は、このような粉体一体化樹脂粒子からなる 粒子含有成形体、及びこの粉体一体化樹脂粒子から成形された粒子含有シート材、 並びにこれらの成形方法を提供することを目的とする。  [0013] The present invention has been made in view of the above problems, and is a powder integration that is produced by a simple method while exhibiting the function of a powder, preferably a functional material (including a pigment). The object is to provide resin particles. In addition, the present invention can easily perform integration processing without requiring resin curing and liquefaction processing, and further post-processing such as film forming by biaxial extrusion, etc. without deteriorating the properties of the functional material. The object is to provide a method for granulating powder-integrated resin particles. Another object of the present invention is to provide a particle-containing molded body comprising such powder-integrated resin particles, a particle-containing sheet material molded from the powder-integrated resin particles, and a molding method thereof. And
[0014] また、本発明は、シートとしての形状を保持しつつ、吸着性などの機能性を均一且 つ持続的に発揮する機能性シート及びこの機能性シートの製造方法を提供すること を目的とする。  [0014] Another object of the present invention is to provide a functional sheet that maintains its shape as a sheet and that exhibits functionality such as adsorptivity uniformly and continuously, and a method for producing the functional sheet. And
課題を解決するための手段  Means for solving the problem
[0015] 本発明による粉体一体化樹脂粒子は、熱可塑性樹脂からなる粒状担持体と、該粒 状担持体の表面に一体化された粉体とを有することを特徴とする。これにより、粉体 の特性を十分に発揮させることが可能となる。 [0015] The powder-integrated resin particles according to the present invention include a granular carrier made of a thermoplastic resin, and the particles. And a powder integrated on the surface of the carrier. This makes it possible to fully exhibit the characteristics of the powder.
[0016] 本発明による粉体一体化樹脂粒子において、当該粉体一体化樹脂粒子の平均粒 径は、 10 m以上であることを特徴とする。これにより、後処理でこの粒子が飛散しな いなど、粉体一体化樹脂粒子の取扱が有利となる。 [0016] In the powder integrated resin particles according to the present invention, the average particle diameter of the powder integrated resin particles is 10 m or more. As a result, it is advantageous to handle the powder-integrated resin particles such that the particles do not scatter during post-treatment.
[0017] 本発明による粉体一体化樹脂粒子において、前記粉体の重量は、前記熱可塑性 樹脂の重量に対して、 50重量%以上 900重量%以下であることを特徴とする。これ により、粉体の特性を十分発揮することが可能となる。 [0017] In the powder-integrated resin particles according to the present invention, the weight of the powder is from 50% by weight to 900% by weight with respect to the weight of the thermoplastic resin. This makes it possible to fully exhibit the characteristics of the powder.
[0018] 本発明による粉体一体化樹脂粒子において、前記熱可塑性樹脂と前記粉体との 体積比は、 1:;!〜 1: 20であることを特徴とする。これにより、粉体の特性を十分発揮 すること力 S可倉 となる。 [0018] In the powder-integrated resin particles according to the present invention, a volume ratio of the thermoplastic resin to the powder is 1:;! To 1:20. As a result, the power S can be fully demonstrated.
[0019] 本発明による粒子含有成形体は、上記の粉体一体化樹脂粒子と、水溶性有機樹 脂とからなることを特徴とする。これにより、粉体の特性を発揮しつつ、より強度の優れ た粒子含有成形体が得られる。  [0019] A particle-containing molded article according to the present invention is characterized by comprising the above-mentioned powder-integrated resin particles and a water-soluble organic resin. As a result, a molded article containing particles having excellent strength while exhibiting the characteristics of the powder can be obtained.
[0020] 本発明による粒子含有成形体にお!/、て、前記水溶性有機樹脂の含量は、前記粉 体一体化樹脂粒子の重量に対して、 2重量%以上 50重量%以下であることを特徴と する。これにより、強度がより一層優れた粒子含有成形体が得られる。  [0020] In the particle-containing molded product according to the present invention, the content of the water-soluble organic resin is 2% by weight or more and 50% by weight or less based on the weight of the powder-integrated resin particles. It is characterized by. Thereby, the particle | grain containing molded object which was further excellent in intensity | strength is obtained.
[0021] 本発明による粉体一体化樹脂粒子の造粒方法は、熱可塑性樹脂からなる粒状担 持体と、該粒状担持体の表面に一体化された粉体とを有する粉体一体化樹脂粒子 の造粒方法であって、前記粒状担持体の表面が少なくとも軟化するように、該粒状担 持体に熱を負荷する工程と;前記の軟化した粒状担持体の表面に、粉体を付着する 工程と;を有することを特徴とする。これにより、粉体の特性を十分に発揮し得る粉体 一体化樹脂粒子を得ることが可能となる。  [0021] The method for granulating powder-integrated resin particles according to the present invention comprises a granular support made of a thermoplastic resin, and a powder-integrated resin having a powder integrated on the surface of the granular support. A method of granulating particles, the step of applying heat to the granular support so that the surface of the granular support is at least softened; and attaching the powder to the surface of the softened granular support And a step of performing. This makes it possible to obtain powder-integrated resin particles that can sufficiently exhibit the characteristics of the powder.
[0022] 本発明による粉体一体化樹脂粒子の造粒方法にお!/、て、前記の粒状担持体に熱 を負荷する工程は、密閉空間内で軸回転する回転部材と前記粒状担持体との接触 により発生する摩擦熱により行われる工程であることを特徴とする。これにより、さらな る装置を必要とすることなぐ造粒方法の一工程の際に発生する摩擦熱を利用するこ とで粒状担持体に熱を供給することが可能となり、工程の煩雑さを軽減することが可 能となる。 [0022] In the method for granulating powder-integrated resin particles according to the present invention, the step of applying heat to the granular carrier includes a rotating member that rotates in a sealed space and the granular carrier. It is a process performed by frictional heat generated by contact with. This makes it possible to supply heat to the granular carrier by using frictional heat generated in one step of the granulation method without requiring a further apparatus, thereby reducing the complexity of the process. Can be reduced It becomes ability.
[0023] 本発明による粒子含有成形体の成形方法は、上記の粉体一体化樹脂粒子に、水 溶性有機樹脂を添加して混練し、加圧する工程を有することを特徴とする。これによ り、粉体一体化樹脂粒子の一体化の程度をさらに向上させることが可能となる。  [0023] The method for molding a particle-containing molded body according to the present invention is characterized by having a step of adding a water-soluble organic resin to the powder-integrated resin particles, kneading, and pressurizing. As a result, the degree of integration of the powder-integrated resin particles can be further improved.
[0024] 本発明による粒子含有シート材は、熱可塑性樹脂からなる粒状担持体と、該粒状 担持体の表面に一体化された粉体とを有する粉体一体化樹脂粒子からなることを特 徴とする。これにより、粉体の含量が高い場合であっても、粉体の特性を十分に発揮 させつつ、取扱が容易となる。  [0024] The particle-containing sheet material according to the present invention is characterized by comprising powder-integrated resin particles having a granular carrier made of a thermoplastic resin and powder integrated on the surface of the granular carrier. And As a result, even when the content of the powder is high, handling is facilitated while fully exhibiting the characteristics of the powder.
[0025] 本発明による粒子含有シート材において、当該粒子含有シート材の膜厚は、 10 m以上 5mm以下であることを特徴とする。これにより、シートとしての取扱が良好とな  [0025] In the particle-containing sheet material according to the present invention, the film thickness of the particle-containing sheet material is 10 m or more and 5 mm or less. As a result, handling as a sheet is improved.
[0026] 本発明による粒子含有シート材において、当該粒子含有シート材は、第 2の樹脂を さらに有することを特徴とする。これにより、可塑性、もろさなどの不具合を解消し、所 望の形態の粒子含有シート材を得ることが可能となる。 [0026] In the particle-containing sheet material according to the present invention, the particle-containing sheet material further includes a second resin. As a result, problems such as plasticity and brittleness can be solved, and a desired particle-containing sheet material can be obtained.
[0027] 本発明による粒子含有シート材にお!/、て、前記の第 2の樹脂は、熱可塑性樹脂で あることを特徴とする。これにより、シートとしての一体性が向上する。  [0027] In the particle-containing sheet material according to the present invention, the second resin is a thermoplastic resin. Thereby, the integrity as a sheet improves.
[0028] 本発明による粒子含有シート材の成形方法は、熱可塑性樹脂からなる粒状担持体 と、該粒状担持体の表面に一体化された粉体とを有する粉体一体化樹脂粒子からな る粒子含有シート材の成形方法であって、前記粒状担持体の表面が少なくとも軟化 するように、該粒状担持体に熱を負荷する工程と;前記の軟化した粒状担持体の表 面に、粉体を付着して、粉体一体化樹脂粒子を得る工程と;シートの形状とするように 、粉体一体化樹脂粒子からなる組成物を成形する工程と;を有することを特徴とする 。これにより、粉体の特性を十分に発揮しつつ、シート状の製品を得ることが可能とな  [0028] The method for forming a particle-containing sheet material according to the present invention comprises powder-integrated resin particles having a granular carrier made of a thermoplastic resin and powder integrated on the surface of the granular carrier. A method for forming a particle-containing sheet material, the step of applying heat to the granular carrier so that the surface of the granular carrier is at least softened; and a powder on the surface of the softened granular carrier And a step of obtaining powder-integrated resin particles; and a step of forming a composition comprising the powder-integrated resin particles so as to obtain a sheet shape. This makes it possible to obtain a sheet-like product while fully exhibiting the characteristics of the powder.
[0029] 本発明による粒子含有シート材の成形方法において、前記の粉体一体化樹脂粒 子からなる組成物を成形する工程は、第 2の樹脂を添加して、押出し成形を行う工程 であるこれにより、所望の形態の粒子含有シート材を得ることが可能となる。 [0029] In the method for molding a particle-containing sheet material according to the present invention, the step of molding the composition comprising the powder-integrated resin particles is a step of performing extrusion molding by adding a second resin. Thereby, it becomes possible to obtain the particle-containing sheet material of a desired form.
[0030] 本発明による粒子含有シート材の成形方法にお!/、て、前記の第 2の樹脂は、熱可 塑性樹脂であることを特徴とする。これにより、ヒートシール温度の調節が可能となる。 [0030] In the method for forming a particle-containing sheet material according to the present invention, the second resin is heatable. It is a plastic resin. This makes it possible to adjust the heat seal temperature.
[0031] 本発明による機能性シートは、基材シート上に、熱可塑性樹脂からなる粒状担持体 と、該粒状担持体の表面に一体化された粉体とを有する粉体一体化樹脂粒子が担 持されたことを特徴とする。これにより、粉体、特に機能材がシートから脱落することな ぐその機能を発揮することが可能となる。 [0031] The functional sheet according to the present invention includes powder-integrated resin particles having a granular carrier made of a thermoplastic resin and powder integrated on the surface of the granular carrier on a base sheet. It is characterized by being held. As a result, the powder, particularly the functional material, can perform its function without dropping off from the sheet.
[0032] 本発明による機能性シートにおいて、複数の基材シートの間に、熱可塑性樹脂から なる粒状担持体と、該粒状担持体の表面に一体化された粉体とを有する粉体一体化 樹脂粒子が担持されたことを特徴とする。これにより、粉体一体化樹脂粒子の脱落を さらに防ぐことが可能となる。 [0032] In the functional sheet according to the present invention, a powder integrated body having a granular carrier made of a thermoplastic resin and a powder integrated on the surface of the granular carrier between a plurality of substrate sheets. Resin particles are supported. This can further prevent the powder-integrated resin particles from falling off.
[0033] 本発明による機能性シートにおいて、前記基材シートと前記粉体一体化樹脂粒子 との間に、さらに熱可塑性樹脂からなる層が配置されたことを特徴とする。これにより[0033] The functional sheet according to the present invention is characterized in that a layer made of a thermoplastic resin is further disposed between the base sheet and the powder-integrated resin particles. This
、粉体一体化樹脂粒子との担持がさらに促進される。 Further, the loading with the powder integrated resin particles is further promoted.
[0034] 本発明による機能性シートにお!/、て、前記の基材シートと粉体一体化樹脂粒子との 担持は、ホットプレスによりなされたものであることを特徴とする。これにより、粉体一体 化樹脂粒子の担持が促進される。  [0034] The functional sheet according to the present invention is characterized in that the substrate sheet and the powder-integrated resin particles are supported by hot pressing. This facilitates the loading of the powder-integrated resin particles.
[0035] 本発明による機能性シートにお!/、て、前記粉体の重量は、当該機能性シートの総 重量に対して、 30重量%以上 80重量%以下であることを特徴とする。これにより、粉 体、特に機能材の機能性と、担持の程度とが過不足無く発揮され得る。 [0035] In the functional sheet according to the present invention, the weight of the powder is 30 wt% or more and 80 wt% or less with respect to the total weight of the functional sheet. As a result, the functionality of the powder, particularly the functional material, and the degree of loading can be exhibited without excess or deficiency.
[0036] 本発明による機能性シートにお!/、て、前記粉体の重量は、前記熱可塑性樹脂の重 量に対して、 50重量%以上 900重量%以下であることを特徴とする。これにより、シ ート中での粉体一体化樹脂粒子の形態の維持が容易となる。 [0036] In the functional sheet according to the present invention, the weight of the powder is 50 wt% or more and 900 wt% or less with respect to the weight of the thermoplastic resin. This facilitates maintenance of the shape of the powder-integrated resin particles in the sheet.
[0037] 本発明による機能性シートにお!/、て、前記熱可塑性樹脂と前記粉体との体積比は[0037] In the functional sheet according to the present invention, the volume ratio of the thermoplastic resin and the powder is:
、 1: 1〜; 1: 20であることを特徴とする。これにより、粉体の特性を十分発揮することが 可能となる。 1: 1 to; 1:20. This makes it possible to fully exhibit the characteristics of the powder.
[0038] 本発明による機能性シートにおいて、当該粉体一体化樹脂粒子の平均粒径は、 1 0 111以上であることを特徴とする。これにより、粉体一体化樹脂粒子の取扱が容易と なる。  [0038] In the functional sheet according to the present invention, the average particle diameter of the powder-integrated resin particles is 10 111 or more. This facilitates handling of the powder integrated resin particles.
[0039] 本発明による機能性シートの製造方法は、基材シート上に、熱可塑性樹脂からなる 粒状担持体と、該粒状担持体の表面に一体化された粉体とを有する粉体一体化樹 脂粒子が担持された機能性シートの製造方法であって、前記粒状担持体の表面が 少なくとも軟化するように、該粒状担持体に熱を負荷する工程と;前記の軟化した粒 状担持体の表面に、粉体を付着して、粉体一体化樹脂粒子を得る工程と;得た粉体 一体化樹脂粒子を基材シート上に担持する工程と;を有することを特徴とする。これ により、粉体一体化樹脂粒子の有する機能を発揮しつつ、シート形状の機能性シー トを簡便な方法で得ることが可能となる。 [0039] The method for producing a functional sheet according to the present invention comprises a thermoplastic resin on a base sheet. A method for producing a functional sheet on which powder-integrated resin particles having a granular carrier and powder integrated on the surface of the granular carrier are supported, wherein the surface of the granular carrier is at least A step of applying heat to the granular carrier so as to soften; a step of attaching powder to the surface of the softened granular carrier to obtain powder-integrated resin particles; And a step of supporting the body-integrated resin particles on the base sheet. This makes it possible to obtain a sheet-shaped functional sheet by a simple method while exhibiting the functions of the powder-integrated resin particles.
[0040] 本発明による機能性シートの製造方法にお!/、て、前記の粒状担持体に熱を負荷す る工程は、密閉空間内で軸回転する回転部材と前記粒状担持体との接触により発生 する摩擦熱により行われる工程であることを特徴とする。これにより、さらなる装置を必 要とすることなぐ工程中に発生する摩擦熱を利用することで、粒状担持体に熱を供 給することが可能となり、工程の煩雑さを軽減することが可能となる。 [0040] In the method for producing a functional sheet according to the present invention, the step of applying heat to the granular carrier is the contact between the rotating member that rotates in a sealed space and the granular carrier. It is a process performed by the frictional heat generated by. This makes it possible to supply heat to the granular carrier by using the frictional heat generated during the process without requiring a further device, thereby reducing the complexity of the process. Become.
発明の効果  The invention's effect
[0041] 本発明によれば、粉体の特性、特に機能材の性能を十分に発揮させることが可能 となる。  [0041] According to the present invention, the characteristics of the powder, particularly the performance of the functional material, can be sufficiently exhibited.
[0042] 本発明によれば、粉体を任意の形状で取り扱うことが可能となる。  [0042] According to the present invention, the powder can be handled in an arbitrary shape.
[0043] 本発明によれば、このような粉体一体化樹脂粒子を、硬化及び液状化処理などの 処理を行うことなぐ簡便に得ることが可能となる。  [0043] According to the present invention, such powder-integrated resin particles can be easily obtained without performing treatments such as curing and liquefaction treatment.
[0044] 本発明によれば、押出加工、マスターバッチ加工等の公知の後処理を安価かつ容 易に行うことが可能となる。 [0044] According to the present invention, known post-treatments such as extrusion and masterbatch processing can be easily performed at low cost.
[0045] 本発明によれば、一定の特性を有する粉体を有する粉体一体化樹脂粒子が基材 シートから脱落することなく維持されつつ、粉体に由来する機能を発揮させることが可 能となる。 [0045] According to the present invention, the powder-integrated resin particles having a powder having certain characteristics can be maintained without falling off the base sheet, and the function derived from the powder can be exhibited. It becomes.
[0046] また、現在まで困難とされてきた基材シート同士、基材シートと熱可塑性樹脂、及び 熱可塑性樹脂と粉体の一体化工程を同時に完了させることが可能となる。  [0046] In addition, it is possible to simultaneously complete the process of integrating the base sheet, the base sheet and the thermoplastic resin, and the thermoplastic resin and the powder, which has been considered difficult until now.
図面の簡単な説明  Brief Description of Drawings
[0047] [図 1]本発明による粉体一体化樹脂粒子を示す概略図である。  [0047] FIG. 1 is a schematic view showing powder-integrated resin particles according to the present invention.
[図 2]本発明による機能性シートの一例を示す概略図である。 園 3]本発明による機能性シートの一例を示す概略図である。 FIG. 2 is a schematic view showing an example of a functional sheet according to the present invention. 3] It is a schematic diagram showing an example of a functional sheet according to the present invention.
園 4]本発明による機能性シートの一例を示す概略図である。  4] A schematic view showing an example of a functional sheet according to the present invention.
園 5]本発明による機能性シートの製造工程の一例を示す概略図である。  FIG. 5 is a schematic view showing an example of a process for producing a functional sheet according to the present invention.
符号の説明  Explanation of symbols
1 粉体一体化樹脂粒子  1 Powder-integrated resin particles
2 粒状担持体  2 Granular support
4 粉体  4 Powder
12 機能性シート  12 Functional sheet
14 基材シート  14 Base sheet
16 熱可塑性樹脂層  16 Thermoplastic resin layer
41 一次側巻き出し部  41 Primary side unwinding section
42 二次側巻き出し部  42 Secondary side unwinding section
44 フィーダ一  44 Feeder
46 オーブン  46 Oven
48 熱加圧ロール  48 Hot press roll
49 巻き取り部  49 Winding part
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0049] 以下、本発明につき更に詳しく説明する。  [0049] Hereinafter, the present invention will be described in more detail.
[0050] <本発明による粉体一体化樹脂粒子〉  [0050] <Powder-integrated resin particles according to the present invention>
本発明による粉体一体化樹脂粒子は、熱可塑性樹脂からなる粒状担持体と、この 粒状担持体の表面に一体化された粉体とを有するものであって、粒子状の形態を有 するものである。本発明による粉体一体化樹脂粒子の形態としては、粒子状であれ ば、特に制約はない。例えば、粉体一体化樹脂粒子の形態としては、特に制約はな く、図 1に示すように、粒状担持体 2を中心に、この粒状担持体 2の表面上に粉体 4が 一体化された形態であってもよレ、。  The powder-integrated resin particles according to the present invention have a granular carrier made of a thermoplastic resin and a powder integrated on the surface of the granular carrier, and have a particulate form. It is. The form of the powder integrated resin particle according to the present invention is not particularly limited as long as it is particulate. For example, the form of the powder-integrated resin particles is not particularly limited, and as shown in FIG. 1, the powder 4 is integrated on the surface of the granular support 2 with the granular support 2 as the center. It may be in a different form.
[0051] 本発明による粉体一体化樹脂粒子において、「粒状担持体の表面に一体化された 」状態とは、粒状担持体を構成する熱可塑性樹脂と粉体とが、熱可塑性樹脂を固形 状態とし得る温度において、持続的に結合する状態をいう。このような状態としては、 粒状担持体を構成する熱可塑性樹脂に熱を負荷して固形状態から少なくとも溶融状 態となつた後、溶融状態の熱可塑性樹脂の表面に粉体が付着し、これらの組成物を 熱可塑性樹脂が固形状態となる温度とした際に形成される状態が挙げられる。 [0051] In the powder-integrated resin particles according to the present invention, the state "integrated on the surface of the granular carrier" means that the thermoplastic resin and the powder constituting the granular carrier are solidified from the thermoplastic resin. It refers to a state of continuous bonding at a possible temperature. As such a state, After applying heat to the thermoplastic resin constituting the granular carrier to change from a solid state to at least a molten state, the powder adheres to the surface of the molten thermoplastic resin, and these compositions are used as the thermoplastic resin. The state which is formed when the temperature at which becomes a solid state is used.
[0052] 本発明による粉体一体化樹脂粒子において、熱可塑性樹脂としては、ポリエチレン [0052] In the powder-integrated resin particles according to the present invention, the thermoplastic resin may be polyethylene.
(PE)、低密度ポリエチレン (LDPE)、高密度ポリエチレン (HDPE)、鎖状低密度ポ リエチレン(LLDPE)、ポリプロピレン(PP)、エチレン酢酸ビュル(EVA)、エチレン ーメタクリル酸共重合体(EMAA)、エチレンーメチルメタクリル酸共重合体(EMMA )、エチレン メチルアクリル酸共重合体(EMA)、塩化ビュル、酢酸ビュル、塩化ビ ニル酢酸ビュル共重合体、アクリル、メタクリル樹脂、ポリエチレンテレフタレート(PE T)、ポリエチレンナフタレート(PEN)、ポリアクリロニトリル(PAN)が挙げられ、熱可 塑性樹脂は、これらの材料を適宜組み合わせたものであってもよい。なかでも、機能 材との一体化のためには、 PE、 LDPE, LLDPE, PP、 EVA, EMAA, EMMA, E MA、アクリル樹脂が望ましい。これら熱可塑性樹脂は、 200°C以下で軟化性を有す るものが望ましい。これらの材料の熱可塑性樹脂を用いることにより、樹脂部に流動 性と伸張性とを付与し、樹脂部と、粉体、好ましくは機能材との分散性を高め、さらに 熱可塑性樹脂からなる粒状担持体に機能材を高濃度で担持させることが可能となる (PE), low density polyethylene (LDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), polypropylene (PP), ethylene acetate butyl (EVA), ethylene-methacrylic acid copolymer (EMAA), Ethylene-methyl methacrylic acid copolymer (EMMA), ethylene methyl acrylic acid copolymer (EMA), butyl chloride, butyl acetate, vinyl chloride butyl acetate copolymer, acrylic, methacrylic resin, polyethylene terephthalate (PET), Examples thereof include polyethylene naphthalate (PEN) and polyacrylonitrile (PAN), and the thermoplastic resin may be an appropriate combination of these materials. Among these, PE, LDPE, LLDPE, PP, EVA, EMAA, EMMA, EMA, and acrylic resin are desirable for integration with functional materials. These thermoplastic resins are preferably those having a softening property at 200 ° C or lower. By using the thermoplastic resin of these materials, fluidity and extensibility are imparted to the resin part, the dispersibility between the resin part and the powder, preferably the functional material, is increased, and further, a granular material made of a thermoplastic resin is used. It becomes possible to carry a functional material at a high concentration on the carrier.
Yes
[0053] 本発明による粉体一体化樹脂粒子にお!/、て、上記の熱可塑性樹脂からなる粒状 担持体としては、粒状の形状を形成し得るものであれば特に制約はなぐペレット状、 顆粒状、小石状が例示される。  [0053] In the powder-integrated resin particles according to the present invention, the granular carrier made of the thermoplastic resin is not particularly limited as long as it can form a granular shape, Granules and pebbles are exemplified.
[0054] 本発明による粉体一体化樹脂粒子にお!/、て、粉体としては、下記の熱可塑性樹脂 との一体化の際、固形の状態を保持し得るものであれば、無機化合物又は有機化合 物のいずれであってもよい。なかでも、本発明において、粉体として用いられる機能 材としては、粉体一体化樹脂粒子に付与を所望する機能を有する無機物又は有機 物であれば、特に制約はなぐ単体若しくは化合物、又はこれらの混合物であっても よい。ここで、付与を所望する機能としては、例えば、吸臭性、吸湿性、疎水性、耐熱 性、発色性、親水性、吸着性、耐衝撃性が挙げられる。  [0054] In the powder-integrated resin particles according to the present invention, any inorganic powder can be used as long as the powder can maintain a solid state upon integration with the following thermoplastic resin. Or any of organic compounds may be sufficient. In particular, in the present invention, the functional material used as the powder is a simple substance or compound, or any of these, as long as it is an inorganic or organic substance having a function desired to be imparted to the powder-integrated resin particles. It may be a mixture. Here, examples of functions desired to be given include odor absorption, hygroscopicity, hydrophobicity, heat resistance, color development, hydrophilicity, adsorptivity, and impact resistance.
[0055] 本発明による粉体一体化樹脂粒子において、上記の無機物である機能材としては 、シリカ、コロイダルシリカ、ゼォライト、モンモリロナイト、ヘクトライト、タルク、ァエロジ ノレ、マイ力、ベントナイト、アルミニウム化合物、マグネシウム化合物、ノ リウム化合物、 炭酸カルシウム、アルミナ、窒化ケィ素、窒化ホウ素、等公知の無機系機能材ゃ、酸 化鉄(弁柄)、硫化水銀 (辰砂)、アンバー、シエンナ、カオリン、白色雲母等の天然鉱 物顔料、カドミウムイェロー、ニッケルチタン、ヴイリジアン、ウルトラマリン、カーボンブ ラック、鉛白等の合成無機顔料を用いることもできる。 [0055] In the powder-integrated resin particles according to the present invention, as the functional material that is the above-mentioned inorganic substance, , Silica, colloidal silica, zeolite, montmorillonite, hectorite, talc, aerosil, my power, bentonite, aluminum compound, magnesium compound, norium compound, calcium carbonate, alumina, silicon nitride, boron nitride, etc. Functional materials, iron oxide (valve), mercury sulfide (sandstone), natural mineral pigments such as amber, sienna, kaolin, white mica, cadmium yellow, nickel titanium, viridian, ultramarine, carbon black, lead white, etc. These synthetic inorganic pigments can also be used.
[0056] また、上記の有機物である機能材としては、コピー機やレーザープリンタに用いられ る粉末状インクトナー、蛍燐光体、フタロシアニン系、ァゾ系、多環化合物等の合成 有機顔料、レーキ等の天然有機顔料、合成色素、ポリイミド、尿素樹脂、フエノール樹 脂、エポキシ樹脂、ウレタン樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹 脂等の熱硬化性樹脂が挙げられる。  [0056] In addition, examples of the functional material that is an organic substance include synthetic organic pigments such as powdered ink toners, phosphors, phthalocyanine-based, azo-based, and polycyclic compounds used in copying machines and laser printers, lakes, and the like. And thermosetting resins such as natural organic pigments such as synthetic dyes, polyimides, urea resins, phenol resins, epoxy resins, urethane resins, melamine resins, unsaturated polyester resins, and alkyd resins.
[0057] 本発明による粉体一体化樹脂粒子において、粉体として用いられる機能材は、そ の特性を適宜改変するように、カップリング剤などの表面改質剤で処理されてもよい。 このような表面改質剤としては、メチル化剤、シリル化剤が挙げられる。例えば、粉体 としてゼォライトを用い、これをメチル化すると、粉体一体化樹脂粒子に疎水性を付 与することが可能である。  [0057] In the powder-integrated resin particles according to the present invention, the functional material used as the powder may be treated with a surface modifier such as a coupling agent so as to appropriately modify the properties thereof. Examples of such surface modifiers include methylating agents and silylating agents. For example, if zeolite is used as a powder and is methylated, it is possible to impart hydrophobicity to the powder-integrated resin particles.
[0058] 本発明による粉体一体化樹脂粒子において、粉体の平均粒径は、通常、 0. ;!〜 5 OO ^ mであり、特に;!〜 100 mである。なお、本発明において、平均粒径の測定は 、湿式法等公知の測定方法を用いればよ!/、。  [0058] In the powder-integrated resin particles according to the present invention, the average particle size of the powder is usually from 0.;! To 5 OO ^ m, particularly from !! to 100 m. In the present invention, the average particle diameter may be measured using a known measuring method such as a wet method! /.
[0059] 本発明による粉体一体化樹脂粒子の粒径は、 0. 5〜70mm、特に;!〜 40mmであ り、また、本発明による粉体一体化樹脂粒子の平均粒径は、 ΙΟ πι以上であることが 好ましぐ特に l〜30mmであることがより好ましい。平均粒径が 10 m未満であると 、造粒槽等の造粒を行う密閉空間からの取り出し時に全量を自動排出することができ ない。また、平均粒径が 40mmを超えると、後工程に用いられる二軸押出機ゃフィノレ ム成膜機等のスクリューに対応できなくなる。  [0059] The particle size of the powder-integrated resin particles according to the present invention is 0.5 to 70 mm, in particular;! To 40 mm, and the average particle size of the powder-integrated resin particles according to the present invention is It is preferably πι or more, more preferably 1 to 30 mm. When the average particle size is less than 10 m, the entire amount cannot be automatically discharged when taken out from a closed space where granulation is performed, such as a granulation tank. On the other hand, if the average particle diameter exceeds 40 mm, the twin screw extruder used in the subsequent process cannot be used for a screw such as a fine film film forming machine.
[0060] また、本発明による粉体一体化樹脂粒子のうち、上記の平均粒径が;!〜 30mmのも のは、そのまま所望の用途に使用してもよぐ特に押出加工用に好適に使用できるも のであり、フィルム化などにも有効に使用できる。 [0061] 本発明による粉体一体化樹脂粒子において、粉体の重量は、特に制約はないが、 例えば、熱可塑性樹脂の重量に対して、 50〜900重量%であることが好ましぐ 80 〜; 100重量%であることがより好ましい。 50重量%未満であると、後述する熱可塑性 樹脂の溶融化が進み粉体一体化樹脂粒子の表面が弾痕化したり、表面の付着性が 増加し、製造時に、造粒槽などの造粒を行う空間から取り出せなくなる場合がある。ま た、 900重量%を超えると、熱可塑性樹脂と粉体との一体化が進まず造粒できなくな る場合がある。 [0060] Of the powder-integrated resin particles according to the present invention, those having an average particle size of !! to 30 mm may be used as they are as they are, and are particularly suitable for extrusion. It can be used, and can be used effectively for film production. [0061] In the powder-integrated resin particles according to the present invention, the weight of the powder is not particularly limited, but for example, it is preferably 50 to 900% by weight with respect to the weight of the thermoplastic resin. ~; More preferably, it is 100% by weight. If it is less than 50% by weight, the thermoplastic resin, which will be described later, has been melted, and the surface of the powder-integrated resin particles has become bullet marks, and the adhesion of the surface has increased. You may not be able to remove it from the space where you perform. If it exceeds 900% by weight, integration of the thermoplastic resin and the powder may not proceed and granulation may not be possible.
[0062] 本発明による粉体一体化樹脂粒子において、熱可塑性樹脂と、無機、有機機能材 などの粉体との体積比は、 1 : 1〜; 1 : 20であることが好ましい。これらの範囲外では、 製造時に、造粒槽などの造粒を行う空間から取り出せなくなる場合がある。  [0062] In the powder-integrated resin particles according to the present invention, the volume ratio of the thermoplastic resin to the inorganic or organic functional material powder is preferably 1: 1 to 1:20. Outside these ranges, it may become impossible to remove from the space for granulation, such as a granulation tank, during production.
[0063] <本発明による粒子含有成形体、及びその成形方法〉  [0063] <Particle-containing molded product and molding method thereof according to the present invention>
本発明による粒子含有成形体は、上記の本発明による粉体一体化樹脂粒子と、ポ リビュルアルコール (PVA)などの水溶性有機樹脂からなる粒子含有成形体である。 この粒子含有成形体の形態としては、特に限定されず、例えば、円柱、角錐等が例 示される。  The particle-containing molded article according to the present invention is a particle-containing molded article composed of the above-mentioned powder-integrated resin particles according to the present invention and a water-soluble organic resin such as polyhydric alcohol (PVA). The form of the particle-containing molded body is not particularly limited, and examples thereof include a cylinder and a pyramid.
[0064] 本発明による粒子含有成形体にお!/、て、水溶性有機樹脂としては、ポリビュルアル コール (PVA)、アクリル酸、ポリエステル等が挙げられる。この水溶性有機樹脂の固 形分としては、 1 %〜25%であることが好ましい。また、本発明による粒子含有成形 体において、水溶性有機樹脂の重量は、粉体一体化樹脂粒子の重量に対して、 10 重量%以上 50重量%以下であることが好ましい。 10重量%未満であると、接着力が 十分でなぐ 50重量%を越えると、粉体の特性、特に、機能材の機能が低下してしま [0064] Examples of the water-soluble organic resin in the particle-containing molded body according to the present invention include polybulal alcohol (PVA), acrylic acid, polyester, and the like. The solid content of the water-soluble organic resin is preferably 1% to 25%. In the particle-containing molded product according to the present invention, the weight of the water-soluble organic resin is preferably 10% by weight or more and 50% by weight or less with respect to the weight of the powder-integrated resin particles. If the amount is less than 10% by weight, the adhesive strength is insufficient. If the amount exceeds 50% by weight, the characteristics of the powder, especially the function of the functional material, will deteriorate.
5。 Five.
[0065] 本発明による粒子含有成形体の成形方法としては、上記の粉体一体化樹脂粒子と 水溶性有機樹脂とを、本技術分野公知の成形方法を用いて、一定の形状を有する 成形体とするものであれば、特に制約はなぐ混練、焼成、加熱、加圧等を単独又は 適当に組み合わせたものが挙げられる。この加熱の温度としては、成形に用いる溶 媒を揮発させ得る温度であれば、特に制約はなぐ例えば、 100°C前後が挙げられる 。また、この加圧の圧力の範囲としては、 lkg/cm2以上が挙げられる。 [0066] <本発明による粉体一体化樹脂粒子の造粒方法〉 [0065] As a molding method of the particle-containing molded body according to the present invention, the above-mentioned powder integrated resin particles and a water-soluble organic resin are molded into a certain shape using a molding method known in the art. In particular, kneading, baking, heating, pressurizing and the like without particular restrictions may be used alone or in an appropriate combination. The heating temperature is not particularly limited as long as it can volatilize the solvent used for molding, for example, about 100 ° C. In addition, the pressure range of this pressurization includes lkg / cm 2 or more. <Granulation method of powder-integrated resin particles according to the present invention>
本発明による粉体一体化樹脂粒子の造粒方法は、上記の熱可塑性樹脂からなる 粒状担持体の表面を少なくとも軟化するように、この粒状担持体に熱を負荷する工程 と、その後、この軟化した粒状担持体の表面に、上記の粉体、好ましくは機能材を付 着する工程とを有する。これにより、熱可塑性樹脂からなる粒状担持体と、この粒状 担持体の表面に一体化された粉体とを有する、上記の粉体一体化樹脂粒子が得ら れる。  The method for granulating powder-integrated resin particles according to the present invention includes a step of applying heat to the granular carrier so as to at least soften the surface of the granular carrier made of the thermoplastic resin, and then the softening. A step of attaching the above-mentioned powder, preferably a functional material, to the surface of the granular carrier. As a result, the powder-integrated resin particles having a granular carrier made of a thermoplastic resin and a powder integrated on the surface of the granular carrier can be obtained.
[0067] 本発明による粉体一体化樹脂粒子の造粒方法において、粉体一体化樹脂粒子の 造粒に用いる、熱可塑性樹脂からなる粒状担持体、及び機能材で例示される粉体は 、この方法の間、造粒を行う系内に、適宜導入されればよぐ上記の粒状担持体に熱 を負荷する工程を行う際に、機能材で例示される粉体を既に系内に導入しておいて もよく、或いはこの工程を行った後に、粉体を系内に導入して、上記の粒状担持体の 表面に粉体を付着する工程を行ってもよい。なかでも、造粒を行う系内で、機能材で 例示される粉体が飛散するのを抑制したり、熱可塑性樹脂の軟化を促進するなどの 目的で、熱可塑性樹脂が先に投入されることが好ましい。造粒を行う系内にこれらの 成分を導入する方法については、特に制約されるものではなぐ造粒を行う系の上部 に投入用ホッパーを設置してホッパーから系内に導入する方法や、手動によって直 接系内に投入する方法等から適宜選択される。また、造粒を行う密閉空間内に導入 する、上記の粉体、及び熱可塑性樹脂からなる粒状担持体の形態としては、所望す る粉体一体化樹脂粒子の形態に応じて、適宜選択すればよぐ例えば、熱可塑性樹 脂からなる粒状担持体の形態としては、ペレット状、顆粒状が挙げられる。  [0067] In the granulation method for powder-integrated resin particles according to the present invention, the granular carrier used for granulation of the powder-integrated resin particles, and the powder exemplified by the functional material include: During this method, the powder exemplified by the functional material is already introduced into the system when performing the step of applying heat to the granular carrier, which should be appropriately introduced into the granulating system. Alternatively, after this step is performed, a step of introducing the powder into the system and attaching the powder to the surface of the granular carrier may be performed. In particular, the thermoplastic resin is introduced first for the purpose of suppressing the scattering of the powder exemplified as the functional material or promoting the softening of the thermoplastic resin in the granulating system. It is preferable. Regarding the method of introducing these components into the granulation system, there is no particular restriction. Depending on the method, it is selected as appropriate from the method of direct injection into the system. Further, the form of the granular carrier made of the above-mentioned powder and thermoplastic resin introduced into the sealed space for granulation is appropriately selected according to the desired form of the powder-integrated resin particles. For example, examples of the form of the granular carrier made of thermoplastic resin include pellets and granules.
[0068] 本発明による粉体一体化樹脂粒子の造粒方法にお!/、て、上記の粒状担持体に熱 を負荷する工程を行う方法としては、熱可塑性樹脂からなる粒状担持体の表面を少 なくとも軟化するものであれば、特に制約はない。例えば、粒状担持体を構成する熱 可塑性樹脂に、直接熱を負荷する方法であってもよい。この場合、例えば、密閉空間 内に熱可塑性樹脂からなる粒状担持体を導入して、この密閉空間の温度を上昇させ る方法であってもよい。また、ヘンシェルミキサーなどの混合造粒機に導入し、この機 械の密閉空間内で軸回転する回転刃などの回転部材と粒状担持体とを接触させて、 この際発生する摩擦熱によって、粒状担持体に熱を負荷してもよ!/、。 [0068] In the method for granulating powder-integrated resin particles according to the present invention, the method of applying a heat to the granular carrier is as follows. There is no particular limitation as long as it softens at least. For example, a method of directly applying heat to the thermoplastic resin constituting the granular carrier may be used. In this case, for example, a method of introducing a granular carrier made of a thermoplastic resin into the sealed space and raising the temperature of the sealed space may be used. In addition, it is introduced into a mixing granulator such as a Henschel mixer, and a rotating member such as a rotary blade that rotates in a sealed space of this machine is brought into contact with the granular carrier, The granular carrier may be heated by the frictional heat generated at this time!
[0069] 本発明による粉体一体化樹脂粒子の造粒方法にお!/、て、この粒状担持体に熱を 負荷する工程の温度としては、造粒に用いる熱可塑性樹脂及び粉体の物性、ガラス 転移点、溶融温度等に応じて、適宜選択すればよい。例えば、熱可塑性樹脂として ポリエチレン、ポリプロピレン等からなる粒状担持体に熱を負荷する場合、 80°C〜20 0°Cであってもよい。 80°C未満であると、熱可塑性樹脂からなる粒状担持体を少なく とも軟化させることが困難となり、後に行う粉体との一体化が進まない。一方、 200°C を超えると、粒状担持体の粘度が下がり過ぎ、粒状担持体に熱を負荷する工程の後 に行う粉体を付着させる工程で、粉体との摩擦が起こりにくぐ接触しにくくなつてしま う。そのため、粉体と熱可塑性樹脂との一体化が困難となり、また、この粉体を付着さ せる工程により得られる組成物の粒径等の大きさが大きくなり、この工程の後に行う種 々の後工程に持ち込むことが出来なくなるおそれがある。なお、この温度範囲で用い られる熱可塑性樹脂としては、上記の他、ポリエチレンテレフタレート、ポリカーボネ ート、アクリル樹脂が挙げられる。  [0069] In the method for granulating powder-integrated resin particles according to the present invention, the temperature of the step of applying heat to the granular carrier is the thermoplastic resin used for granulation and the physical properties of the powder. The glass transition point, the melting temperature, etc. may be selected as appropriate. For example, when heat is applied to a granular carrier made of polyethylene, polypropylene or the like as a thermoplastic resin, the temperature may be 80 ° C to 200 ° C. If the temperature is less than 80 ° C, it becomes difficult to soften the granular carrier made of thermoplastic resin at least, and integration with the powder to be performed later does not proceed. On the other hand, when the temperature exceeds 200 ° C, the viscosity of the granular carrier is too low, and in the step of attaching the powder after the step of applying heat to the granular carrier, it is difficult to cause friction with the powder. It will be difficult. For this reason, it becomes difficult to integrate the powder and the thermoplastic resin, and the particle size and the like of the composition obtained by the process of adhering the powder become large. There is a risk that it will not be possible to bring it into a later process. Examples of the thermoplastic resin used in this temperature range include polyethylene terephthalate, polycarbonate, and acrylic resin in addition to the above.
[0070] また、本発明による粉体一体化樹脂粒子の造粒方法にお!/、て、この粒状担持体に 熱を負荷する工程の温度としては、粉体の融点よりも低い温度であってもよい。これ により、粒状担持体に熱を負荷する際に、熱可塑性樹脂に溶融一体化してしまうこと を防止することが可能となる。  [0070] Further, in the method for granulating powder-integrated resin particles according to the present invention, the temperature of the step of applying heat to the granular carrier is lower than the melting point of the powder. May be. This makes it possible to prevent the granular carrier from being melted and integrated into the thermoplastic resin when heat is applied to the granular carrier.
[0071] 本発明による粉体一体化樹脂粒子の造粒方法にお!/、て、この粒状担持体に熱を 負荷する工程は、熱可塑性樹脂と、好ましくは機能材で例示される粉体とを、混合- 造粒する、公知の混合造粒機を用いて、行ってもよい。この混合造粒機としては、造 粒槽を設けた混合造粒機が挙げられ、例えばヘンシェルミキサーが好適に用いられ る。このような混合造粒機に設ける造粒槽の大きさとしては、導入する熱可塑性樹脂 及び粉体等の成分の量、粉体の比重等に応じて適宜選択すればよぐ例えば、直径 30cm〜200cm、高さは直径の 80%〜200%のものであってもよい。  [0071] In the method of granulating powder-integrated resin particles according to the present invention, the step of applying heat to the granular carrier is a powder exemplified by a thermoplastic resin and preferably a functional material. May be carried out using a known mixing granulator for mixing and granulating. Examples of the mixing granulator include a mixing granulator provided with a granulating tank. For example, a Henschel mixer is preferably used. The size of the granulation tank provided in such a mixing granulator may be appropriately selected according to the amount of components such as the thermoplastic resin and powder to be introduced, the specific gravity of the powder, etc. ~ 200cm, height may be 80% to 200% of diameter.
[0072] 本発明による粉体一体化樹脂粒子の造粒方法にお!/、て、上記の粒状担持体に熱 を負荷する工程は、造粒を行う密閉空間内で軸回転する回転部材と、この粒状担持 体との接触により発生する摩擦熱により、行われてもよい。特に、ヘンシェルミキサー を用いて粒状担持体に熱を負荷する工程を行う場合、造粒槽の底部に設けた、この 槽内で軸回転する回転刃などの回転部材によって、粒状担持体との接触により発生 する摩擦熱により行われてもよい。このように、ヘンシェルミキサーを用いて造粒を行 う場合、回転部材の先端が、粒状担持体にせん断力を与えるように行われることが好 ましい。ここで、この回転部材の回転速度は、粒状担持体の材料、ガラス転移点、溶 融温度等に応じて、適宜選択すればよぐ例えば、回転部材の先端の回転速度が 1 Om/秒〜 100m/秒、特に 30m/秒〜 60m/秒となるように、設定してもよい。こ のような範囲であれば、熱可塑性樹脂の軟化温度の管理、及び無機や有機に由来 する機能材又は機能性顔料で例示される粉体との接触確率を高め得る点で、好まし い。 [0072] In the method of granulating powder-integrated resin particles according to the present invention, the step of applying heat to the granular carrier includes a rotating member that rotates in a sealed space where granulation is performed, and The frictional heat generated by the contact with the granular carrier may be used. Especially Henschel mixer When the process of applying heat to the granular carrier is performed using, the friction generated by contact with the granular carrier by a rotating member such as a rotary blade provided at the bottom of the granulation tank and rotating in the tank. It may be performed by heat. As described above, when granulation is performed using a Henschel mixer, it is preferable that the tip of the rotating member be applied so as to give a shearing force to the granular carrier. Here, the rotation speed of the rotating member may be appropriately selected according to the material of the granular carrier, the glass transition point, the melting temperature, etc. For example, the rotating speed of the tip of the rotating member is from 1 Om / sec to You may set it so that it may become 100m / second, especially 30m / second-60m / second. Within such a range, it is preferable in terms of controlling the softening temperature of the thermoplastic resin and increasing the contact probability with the powder exemplified by the functional material or functional pigment derived from inorganic or organic. .
[0073] また、ヘンシェルミキサーを用いて上記の粒状担持体に熱を負荷する工程を行う場 合、熱可塑性樹脂からなる粒状担持体の表面を少なくとも軟化させることを目的とし て、上記の造粒槽に熱を負荷させて、行われてもよい。この場合、造粒槽の温度とし ては、粒状担持体の材料、ガラス転移点、溶融温度等に応じて、適宜選択すればよ ぐ例えば、熱可塑性樹脂としてポリエチレン、ポリプロピレン等を用いる場合、 80°C 〜200°Cが挙げられる。この造粒槽の温度を制御する方法としては、直接造粒槽を 加熱する方法であってもよぐまた、この造粒槽を冷却することにより、この温度範囲 を達成する方法であってもよレ、。  [0073] In addition, when performing the step of applying heat to the granular carrier using a Henschel mixer, the granulation is performed for the purpose of at least softening the surface of the granular carrier made of a thermoplastic resin. It may be performed by applying heat to the tank. In this case, the temperature of the granulation tank may be appropriately selected according to the material of the granular carrier, the glass transition point, the melting temperature, etc. For example, when polyethylene, polypropylene or the like is used as the thermoplastic resin, 80 ° C to 200 ° C. The method for controlling the temperature of the granulation tank may be a method of directly heating the granulation tank, or a method of achieving this temperature range by cooling the granulation tank. Yo!
[0074] また、回転刃等の回転部材の他に、熱可塑性樹脂と粉体との接触確率を高め、造 粒槽内の回転刃の回転に伴って熱可塑性樹脂及び粉体が槽内で上昇することを防 止するため、回転部材の鉛直上方の位置に、羽根を設けてもよい。この羽根は、熱 可塑性樹脂、機能材で例示される粉体を、造粒槽の下部に設けられる回転部材に接 触させるため、熱可塑性樹脂、粉体を造粒槽の下方に降下させるものである。また、 粉体と熱可塑性樹脂との接触確率を向上させるため、造粒槽側面、又は上部から粒 子粉砕作用を有するチョッパーを設置してもよぐこのチョッパーは、一本又は複数設 置されてもよい。  [0074] In addition to a rotating member such as a rotary blade, the contact probability between the thermoplastic resin and the powder is increased, and the thermoplastic resin and the powder are transferred in the tank as the rotary blade in the granulation tank rotates. In order to prevent ascending, a blade may be provided at a position vertically above the rotating member. This blade lowers the thermoplastic resin and powder below the granulation tank in order to bring the powder exemplified by the thermoplastic resin and functional material into contact with the rotating member provided at the lower part of the granulation tank. It is. In addition, in order to improve the contact probability between the powder and the thermoplastic resin, one or more choppers may be installed, which may have a crushing action on the side of the granulation tank or from the top. May be.
[0075] また、上記の回転部材の大きさは、造粒槽の直径の 50%〜95%であってもよぐ軟 化した熱可塑性樹脂を切断するに足る形状と強度を有するものが好ましく用いられる 〇 [0075] The size of the rotating member is preferably 50% to 95% of the diameter of the granulation tank and has a shape and strength sufficient to cut a softened thermoplastic resin. Used Yes
[0076] これら回転部材及び羽根は、両者が造粒槽底部より槽の高さの 20%〜60%の範 囲内の位置に設置されており、底部から、回転刃、羽根の順に互いに平行且つ接触 しな!/、ように設置されてもよ!/、。  [0076] The rotating member and the blade are both installed at a position within a range of 20% to 60% of the height of the tank from the bottom of the granulation tank. From the bottom, the rotary blade and the blade are parallel to each other in this order. Don't touch! /, You can set it up! /.
[0077] チョッパーは回転刃により生じた遠心方向の熱可塑性樹脂と、粉体、好ましくは機 能材との混合物の動きを乱すことを目的として設置され、この目的が達成されれば設 置方法は問わないが、槽の上蓋から、先端が底部方向に向力、うように設置されること が好ましい。また、上記目的が達成されれば回転の有無は問わない。  [0077] The chopper is installed for the purpose of disturbing the movement of the mixture of the thermoplastic resin in the centrifugal direction generated by the rotary blade and the powder, preferably the functional material. It does not matter, but it is preferable that the tip of the tank is installed so that the tip is directed toward the bottom. Moreover, if the said objective is achieved, the presence or absence of rotation will not be ask | required.
[0078] <本発明による粒子含有シート材、及びその成形方法〉  <Particle-containing sheet material according to the present invention and molding method thereof>
本発明による粒子含有シート材は、上記の本発明による粉体一体化樹脂粒子から なり、種々のシート状の形状を有するものであることを特徴とする。  The particle-containing sheet material according to the present invention comprises the above-described powder-integrated resin particles according to the present invention, and has various sheet-like shapes.
[0079] 本発明による粒子含有シート材は、上記の本発明による粉体一体化樹脂粒子の造 粒方法に従って得た粉体一体化樹脂粒子からなる組成物を用い、シートの形状とす るように、この組成物を、本技術分野公知の成形方法により、成形されればよい。この 成形方法としては、特に制約はなぐ例えば、押出し成形、キャスト成形、 Tダイ成形 、インフレーション成形、射出成形、ブロー成形が挙げられる。  [0079] The particle-containing sheet material according to the present invention is formed into a sheet shape using a composition comprising powder-integrated resin particles obtained according to the granulation method of powder-integrated resin particles according to the present invention described above. In addition, the composition may be molded by a molding method known in the art. This molding method is not particularly limited, and examples include extrusion molding, cast molding, T-die molding, inflation molding, injection molding, and blow molding.
[0080] 本発明による粒子含有シート材にお!/、て、その膜厚は、粉体の特性を発揮し得るも のであれば、特に制約はないが、例えば、 30 111以上 300 111以下であることが好 ましい。この範囲であると、粉体の特性、特に機能材の効果を有しつつ、シートとして の取扱が良好となる。  [0080] In the particle-containing sheet material according to the present invention, the film thickness is not particularly limited as long as it can exhibit the characteristics of the powder. For example, it is 30 111 or more and 300 111 or less. It is preferable. If it is within this range, the properties of the powder, particularly the effect of the functional material, and the handling as a sheet will be good.
[0081] 本発明による粒子含有シート材の成形方法において、上記の粉体一体化樹脂粒 子からなる組成物としては、この粉体一体化樹脂粒子の他、種々の材料を有してもよ い。例えば、流動性を付与するために、種々の無機/有機化合物を添加してもよい。 特に、押出し成形により成形する場合、粉体一体化樹脂粒子を構成する熱可塑性樹 脂の他に、ポリエチレン樹脂などの第 2の樹脂を添加してもよい。このような第 2の樹 脂としては、特に制約されず、例えば、ポリエチレンなどの熱可塑性樹脂が挙げられ る。特に、この第 2の樹脂としては、上記の粉体一体化樹脂粒子を構成する熱可塑性 樹脂であってもよい。第 2の樹脂として熱可塑性樹脂を採用すると、流動性、ヒートシ 一ル性を有する点、及びシートとしての一体性を維持し得る点で、好ましい。この第 2 の樹脂の添加量としては、粉体一体化樹脂粒子の総量に対して、 10〜30重量%で あることが好ましい。この範囲内であると、押出成形時に、この第 2の樹脂に流動性を 付与すること力でさる。 [0081] In the method for forming a particle-containing sheet material according to the present invention, the composition comprising the powder-integrated resin particles may have various materials in addition to the powder-integrated resin particles. Yes. For example, various inorganic / organic compounds may be added to impart fluidity. In particular, when molding by extrusion molding, a second resin such as a polyethylene resin may be added in addition to the thermoplastic resin constituting the powder-integrated resin particles. Such a second resin is not particularly limited, and examples thereof include a thermoplastic resin such as polyethylene. In particular, the second resin may be a thermoplastic resin that constitutes the powder-integrated resin particles. If a thermoplastic resin is used as the second resin, fluidity, heat It is preferable at the point which has the same property, and the point which can maintain the integrity as a sheet | seat. The addition amount of the second resin is preferably 10 to 30% by weight with respect to the total amount of the powder-integrated resin particles. If it is within this range, it is determined by the force that imparts fluidity to the second resin during extrusion molding.
[0082] <本発明による機能性シート〉 <Functional sheet according to the present invention>
本発明による機能性シートは、基材シート上に、粉体一体化樹脂粒子を担持した、 シート状の形態を有することを特徴とする。その概略を示したのが、図 2乃至 4である The functional sheet according to the present invention is characterized by having a sheet-like form in which powder-integrated resin particles are supported on a base sheet. The outline is shown in Figs.
Yes
[0083] 本発明による機能性シート 12は、図 2に示すように、基材シート 14と、この基材シー ト上に担持された粉体一体化樹脂粒子 1とを有するものであってもよい。また、本発 明による機能性シート 12は、図 3に示すように、基材シート 14と、粉体一体化樹脂粒 子 1との間に、さらに熱可塑性樹脂からなる熱可塑性樹脂層 16が配置されてもよい。 また、本発明による機能性シート 12は、図 4に示すように、複数の基材シート 14の間 に、粉体一体化樹脂粒子 1が担持されたものであってもよい。  [0083] As shown in Fig. 2, the functional sheet 12 according to the present invention may include a base sheet 14 and powder-integrated resin particles 1 supported on the base sheet. Good. In addition, as shown in FIG. 3, the functional sheet 12 according to the present invention further includes a thermoplastic resin layer 16 made of a thermoplastic resin between the base sheet 14 and the powder integrated resin particles 1. It may be arranged. Further, as shown in FIG. 4, the functional sheet 12 according to the present invention may be one in which powder-integrated resin particles 1 are supported between a plurality of substrate sheets 14.
[0084] 本発明による機能性シートにおいて、粉体一体化樹脂粒子を構成する粉体の重量 は、当該機能性シートの総重量に対して、 30重量%以上 80重量%以下であることを 好ましい。特に、粉体としてゼォライトを用いた場合、ゼォライト含有率が 30重量%未 満であると、所望の吸着効果が得られない。一方、 80重量%を超えると、熱可塑性 樹脂がゼォライトを基材シート中に担持させることが困難となる。前記した条件を満た すためには、使用する不織布の重量を適宜設定してもよい。  [0084] In the functional sheet according to the present invention, the weight of the powder constituting the powder-integrated resin particles is preferably 30% by weight or more and 80% by weight or less with respect to the total weight of the functional sheet. . In particular, when zeolite is used as the powder, if the zeolite content is less than 30% by weight, the desired adsorption effect cannot be obtained. On the other hand, if it exceeds 80% by weight, it becomes difficult for the thermoplastic resin to support the zeolite in the base sheet. In order to satisfy the above-described conditions, the weight of the nonwoven fabric to be used may be set as appropriate.
[0085] (基材シート)  [0085] (Substrate sheet)
本発明による機能性シートにおいて、基材シートとしては、公知のものが特に制限さ れず用い得る。例えば、ァラミド、セルロース、ポリアミド、ポリビュルアルコール、ポリ エステル、ポリオレフイン、レーヨン、フエノール等の合成繊維や、綿、絹、麻等の天然 繊維や、これらの繊維を炭素繊維化したものを、スパンボンド、スパンレース、ニード ノレパンチ等の物理的、レジンボンド、サーマルボンド等の化学的な方法もしくはこれ らの組み合わせにより、互いに絡みあわせ、又は接着し、布面状に形成されたものな ど力 S挙げられる。また、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリ塩 化ビュル (PVC)等の合成樹脂からなるシート状の基材であってもよい。これらの成分 の種類及び重量、基材シートの内部の空隙の多寡などの基材シートの態様は、用途 に応じて、適宜選択すればよぐ例えば、不織布、シート状の基材が挙げられる。基 材シートの態様としては、約 100°C以上における耐熱性、熱安定性、単位面積当たり の重量、通気(ポーラス)性、厚みなどが挙げられる。基材シートを構成する材料とし ては、上記のうち、特にポリエステル、綿、ポリアミド、ァラミド、フエノールが好ましく用 いられる。なお、基材シートとして、合成樹脂からなるシート状の基材の場合、ブラスト 法などの公知の粗面化処理されたものを用いてもょレ、。 In the functional sheet according to the present invention, a known sheet is not particularly limited and can be used. For example, synthetic fibers such as aramid, cellulose, polyamide, polybutyl alcohol, polyester, polyolefin, rayon, phenol, natural fibers such as cotton, silk, hemp, etc., and carbon fibers of these fibers are spunbonded. Spun lace, needle punch, etc. Physical, resin bond, chemical method such as thermal bond, etc. It is done. Polyethylene terephthalate (PET), polyethylene (PE), poly salt It may be a sheet-like substrate made of a synthetic resin such as plasticized bull (PVC). The type and weight of these components, and the aspect of the substrate sheet such as the number of voids inside the substrate sheet may be appropriately selected depending on the application. Examples thereof include nonwoven fabrics and sheet-like substrates. Examples of the base material sheet include heat resistance at about 100 ° C. or more, thermal stability, weight per unit area, air permeability (porous), thickness, and the like. Of the above, polyester, cotton, polyamide, aramide, and phenol are preferably used as the material constituting the base sheet. In the case of a sheet-like base material made of a synthetic resin, a known roughened surface such as a blast method may be used as the base material sheet.
[0086] (粉体一体化樹脂粒子)  [0086] (Powder integrated resin particles)
本発明による機能性シートにお!/、て、基材シート上に担持される粉体一体化樹脂 粒子としては、熱可塑性樹脂からなる粒状担持体と、この粒状担持体の表面に一体 化された粉体とを有するものであって、粒子状の形態を有するものである。本発明に おいて、粉体一体化樹脂粒子の形態としては、粒子状であれば、特に制約はない。 例えば、粉体一体化樹脂粒子の形態としては、特に制約はなぐ図 1に示すように、 粒状担持体 2を中心に、この粒状担持体 2の表面上に粉体 4が一体化された形態で あってもよい。  In the functional sheet according to the present invention, the powder-integrated resin particles carried on the base sheet are integrated with a granular carrier made of a thermoplastic resin and the surface of the granular carrier. And has a particulate form. In the present invention, the form of the powder-integrated resin particle is not particularly limited as long as it is particulate. For example, the form of the powder-integrated resin particles is not particularly limited, as shown in Fig. 1, with the granular support 2 being the center and the powder 4 being integrated on the surface of the granular support 2. It may be.
[0087] この粉体一体化樹脂粒子にお!/、て、「粒状担持体の表面に一体化された」状態と は、粒状担持体を構成する熱可塑性樹脂と粉体とが、熱可塑性樹脂を固形状態とし 得る温度において、持続的に結合する状態をいう。このような状態としては、粒状担 持体を構成する熱可塑性樹脂に熱を負荷して固形状態から少なくとも溶融状態とな つた後、この溶融状態の熱可塑性樹脂の表面に粉体が付着し、これらの組成物を熱 可塑性樹脂が固形状態となる温度とした際に形成される状態が挙げられる。  [0087] In this powder-integrated resin particle, the state of "integrated on the surface of the granular carrier" means that the thermoplastic resin and the powder constituting the granular carrier are thermoplastic. A state in which the resin is continuously bonded at a temperature at which the resin can be in a solid state. In such a state, after heat is applied to the thermoplastic resin constituting the granular support member to change from the solid state to at least the molten state, the powder adheres to the surface of the molten thermoplastic resin, The state formed when these compositions are set to a temperature at which the thermoplastic resin is in a solid state.
[0088] 本発明による機能性シートに用いられる粉体一体化樹脂粒子にお!/、て、熱可塑性 樹脂としては、上記の粉体一体化樹脂粒子で言及した通りの、ポリエチレン (PE)、 低密度ポリエチレン (LDPE)、高密度ポリエチレン (HDPE)、鎖状低密度ポリエチレ ン(LLDPE)、ポリプロピレン(PP)、エチレン酢酸ビュル(EVA)、エチレン一メタタリ ル酸共重合体(EMAA)、エチレンーメチルメタクリル酸共重合体(EMMA)、ェチレ ンーメチルアクリル酸共重合体(EMA)、塩化ビュル、酢酸ビュル、塩化ビュル酢酸 ビュル共重合体、アクリル、メタクリル樹脂、ポリエチレンテレフタレート(PET)、ポリエ チレンナフタレート(PEN)、ポリアクリロニトリル(PAN)が挙げられ、熱可塑性樹脂は 、これらの材料を適宜組み合わせたものであってもよい。なかでも、機能材との一体 化のためには、 PE、 LDPE、 LLDPE、 PP、 EVA, EMAA、 EMMA, EMA、アタリ ル樹脂が望ましい。これら熱可塑性樹脂は、 200°C以下で軟化性を有するものが望 ましい。これらの材料の熱可塑性樹脂を用いることにより、樹脂部に流動性と伸張性 とを付与し、樹脂部と、粉体、好ましくは機能材との分散性を高め、さらに熱可塑性樹 脂からなる粒状担持体に機能材を高濃度で担持させることが可能となる。 [0088] In the powder-integrated resin particles used in the functional sheet according to the present invention, as the thermoplastic resin, polyethylene (PE) as mentioned in the powder-integrated resin particles, Low density polyethylene (LDPE), High density polyethylene (HDPE), Linear low density polyethylene (LLDPE), Polypropylene (PP), Ethylene acetate butyl (EVA), Ethylene monometatalic acid copolymer (EMAA), Ethylene Methyl methacrylic acid copolymer (EMMA), ethylene-methyl acrylic acid copolymer (EMA), butyl chloride, butyl acetate, butyl acetate Examples include a butyl copolymer, acrylic, methacrylic resin, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyacrylonitrile (PAN). The thermoplastic resin may be a combination of these materials as appropriate. Good. Among these, PE, LDPE, LLDPE, PP, EVA, EMAA, EMMA, EMA, and talyl resin are desirable for integration with functional materials. These thermoplastic resins are preferably those having a softening property at 200 ° C or lower. By using thermoplastic resins of these materials, fluidity and extensibility are imparted to the resin part, the dispersibility between the resin part and the powder, preferably the functional material, is increased, and the resin part is made of thermoplastic resin. It becomes possible to carry the functional material at a high concentration on the granular carrier.
[0089] 本発明による機能性シートに用いられる粉体一体化樹脂粒子において、上記の熱 可塑性樹脂からなる粒状担持体としては、粒状の形状を形成し得るものであれば特 に制約はなぐペレット状、顆粒状、小石状が例示される。  [0089] In the powder-integrated resin particles used in the functional sheet according to the present invention, the granular carrier made of the thermoplastic resin is not particularly limited as long as it can form a granular shape. Shapes, granules, and pebbles.
[0090] 本発明による機能性シートに用いられる粉体一体化樹脂粒子において、粉体とし ては、下記の熱可塑性樹脂との一体化の際、固形の状態を保持し得るものであれば 、無機化合物又は有機化合物のいずれであってもよい。なかでも、本発明において、 粉体として用いられる機能材としては、粉体一体化樹脂粒子に付与を所望する機能 を有する無機物又は有機物であれば、特に制約はなぐ単体若しくは化合物、又は これらの混合物であってもよい。ここで、付与を所望する機能としては、例えば、吸臭 性、吸湿性、疎水性、耐熱性、発色性、親水性、吸着性、耐衝撃性が挙げられる。  [0090] In the powder-integrated resin particles used in the functional sheet according to the present invention, the powder may be any material that can maintain a solid state when integrated with the following thermoplastic resin. Either an inorganic compound or an organic compound may be used. In particular, in the present invention, as the functional material used as the powder, as long as it is an inorganic substance or an organic substance having a function desired to be imparted to the powder-integrated resin particles, there is no particular limitation, a simple substance or a compound, or a mixture thereof. It may be. Here, examples of the function desired to be given include odor absorption, hygroscopicity, hydrophobicity, heat resistance, color development, hydrophilicity, adsorptivity, and impact resistance.
[0091] 本発明による機能性シートに用いられる粉体一体化樹脂粒子において、上記の無 機化合物又は金属である機能材としては、シリカ、コロイダルシリカ、ゼォライト、モン モリロナイト、ヘクトライト、タルク、ァエロジル、マイ力、ベントナイト、アルミニウム化合 物、マグネシウム化合物、ノ リウム化合物、炭酸カルシウム、アルミナ、窒化ケィ素、 窒化ホウ素、等公知の無機系機能材ゃ、酸化鉄(弁柄)、硫化水銀 (辰砂)、アンバ 一、シエンナ、カオリン、白色雲母等の天然鉱物顔料、カドミウムイェロー、ニッケルチ タン、ヴイリジアン、ウルトラマリン、カーボンブラック、鉛白等の合成無機顔料を用い ることあでさる。  [0091] In the powder-integrated resin particles used in the functional sheet according to the present invention, the functional material that is the above-mentioned inorganic compound or metal includes silica, colloidal silica, zeolite, montmorillonite, hectorite, talc, and aerosol. , My strength, bentonite, aluminum compounds, magnesium compounds, norlium compounds, calcium carbonate, alumina, silicon nitride, boron nitride, and other known inorganic functional materials such as iron oxide (valve), mercury sulfide (sand) Natural mineral pigments such as ambassador, sienna, kaolin and white mica, and synthetic inorganic pigments such as cadmium yellow, nickel titanium, viridian, ultramarine, carbon black and lead white.
[0092] また、上記の有機物である機能材としては、コピー機やレーザープリンタに用いられ る粉末状インクトナー、蛍燐光体、フタロシアニン系、ァゾ系、多環化合物等の合成 有機顔料、レーキ等の天然有機顔料、合成色素、ポリイミド、尿素樹脂、フエノール樹 脂、エポキシ樹脂、ウレタン樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹 脂等の熱硬化性樹脂が挙げられる。 [0092] In addition, as the functional material that is an organic substance described above, synthesis of powdered ink toners, phosphors, phthalocyanine-based, azo-based, polycyclic compounds, and the like used in copying machines and laser printers is possible. Examples include organic pigments, natural organic pigments such as lakes, synthetic dyes, polyimides, urea resins, phenol resins, epoxy resins, urethane resins, melamine resins, unsaturated polyester resins, alkyd resins, and other thermosetting resins.
[0093] 本発明による機能性シートに用いられる粉体一体化樹脂粒子において、粉体とし て用いられる機能材は、その特性を適宜改変するように、カップリング剤などの表面 改質剤で処理されてもよい。このような表面改質剤としては、メチル化剤、シリル化剤 が挙げられる。例えば、粉体としてゼォライトを用い、これをメチル化すると、粉体一体 化樹脂粒子に疎水性を付与することが可能である。  [0093] In the powder-integrated resin particles used in the functional sheet according to the present invention, the functional material used as the powder is treated with a surface modifier such as a coupling agent so as to appropriately modify the properties thereof. May be. Examples of such surface modifiers include methylating agents and silylating agents. For example, when zeolite is used as a powder and is methylated, it is possible to impart hydrophobicity to the powder-integrated resin particles.
[0094] 本発明による機能性シートに用いられる粉体一体化樹脂粒子において、粉体の平 均粒径 (ま、通常、 0. 〜 500〃 mであり、特 ίこ 〜 100〃 mである。  [0094] In the powder-integrated resin particles used in the functional sheet according to the present invention, the average particle diameter of the powder (usually, 0 to 500 mm, and especially 100 to 100 mm). .
[0095] 本発明による機能性シートに用いられる粉体一体化樹脂粒子の粒径は、 0. 5〜7 mm、また、本発明による機能性シートに用いられる粉体一体化樹脂粒子の平均粒 径は、 10 111〜5111111でぁることが好ましく、特に100 111〜1. 5mmであることがより 好ましい。平均粒径が 10 m未満であると、造粒槽等の造粒を行う密閉空間からの 取り出し時に全量を自動排出することができない。また、平均粒径が 40mmを超える と、シートに担持させた場合、表面の凹凸が顕著となり、シートの特性として、良好な ものが得られなくなってしまう。  [0095] The particle diameter of the powder-integrated resin particles used in the functional sheet according to the present invention is 0.5 to 7 mm, and the average particle diameter of the powder-integrated resin particles used in the functional sheet according to the present invention. The diameter is preferably 10 111 to 5111 111, more preferably 100 111 to 1.5 mm. If the average particle size is less than 10 m, the entire amount cannot be discharged automatically when taken out from a closed space where granulation is performed, such as a granulation tank. On the other hand, if the average particle diameter exceeds 40 mm, the surface unevenness becomes remarkable when the sheet is supported on the sheet, and it becomes impossible to obtain good sheet characteristics.
[0096] また、本発明による機能性シートに用いられる粉体一体化樹脂粒子のうち、上記の 平均粒径が;!〜 30mmのものは、そのまま所望の用途に使用してもよぐ特に押出加 ェ用に好適に使用できるものであり、フィルム化などにも有効に使用できる。  [0096] Among the powder-integrated resin particles used in the functional sheet according to the present invention, those having an average particle size of !! to 30 mm may be used as they are for the purpose of extrusion. It can be suitably used for processing, and can also be used effectively for film formation.
[0097] 本発明による機能性シートに用いられる粉体一体化樹脂粒子において、粉体の重 量は、特に制約はないが、例えば、熱可塑性樹脂の重量に対して、 50重量%以上 9 00重量%以下であることが好ましぐ 80〜; 100重量%であることがより好ましい。 50 重量%未満であると、上述の熱可塑性樹脂の溶融化が進み粉体一体化樹脂粒子の 表面が弾痕化したり、表面の付着性が増加し、製造時に、造粒槽などの造粒を行う 空間で癒着してしまい、造粒槽から取り出せなくなる場合がある。また、 900重量%を 超えると、熱可塑性樹脂と粉体との一体化が進まず造粒できなくなる場合がある。  [0097] In the powder-integrated resin particles used in the functional sheet according to the present invention, the weight of the powder is not particularly limited, but is, for example, 50% by weight or more with respect to the weight of the thermoplastic resin. It is preferably 80% by weight or less; more preferably 100% by weight. If it is less than 50% by weight, the above-mentioned thermoplastic resin will be melted and the surface of the powder-integrated resin particles will become bullet marks, or the adhesion of the surface will increase. There is a case where it adheres in the space where it is performed and cannot be removed from the granulation tank. If it exceeds 900% by weight, the integration of the thermoplastic resin and the powder may not proceed and granulation may not be possible.
[0098] 本発明による機能性シートに用いられる粉体一体化樹脂粒子にお!/、て、熱可塑性 樹脂と、無機、有機機能材などの粉体との体積比は、 1:;!〜 1: 20であることが好まし い。これらの範囲外では、製造時に、造粒槽などの造粒を行う空間から取り出せなく なる場合がある。 [0098] The powder-integrated resin particles used in the functional sheet according to the present invention! The volume ratio between the resin and the inorganic or organic functional material powder is preferably 1:;! ~ 1: 20. Outside these ranges, it may become impossible to remove from the space for granulation, such as a granulation tank, during production.
[0099] 本発明による機能性シートに用いられる粉体一体化樹脂粒子の造粒方法としては 、上記の粉体一体化樹脂粒子の態様を得られ得る方法であれば、特に制約はな!/、。 例えば、この造粒方法としては、上記の熱可塑性樹脂からなる粒状担持体の表面を 少なくとも軟化するように、この粒状担持体に熱を負荷し、その後、この軟化した粒状 担持体の表面に、上記の粉体、好ましくは機能材を付着するものであってもよい。即 ち、本発明による機能性シートに用いられる粉体一体化樹脂粒子の造粒方法として は、上記の本発明による粉体一体化樹脂粒子の造粒方法を用いればよい。これによ り、熱可塑性樹脂からなる粒状担持体と、この粒状担持体の表面に一体化された粉 体とを有する、上記の粉体一体化樹脂粒子が得られる。  [0099] The method for granulating the powder integrated resin particles used in the functional sheet according to the present invention is not particularly limited as long as it is a method capable of obtaining the above-described powder integrated resin particle embodiment! / ,. For example, in this granulation method, heat is applied to the granular carrier so as to at least soften the surface of the granular carrier made of the thermoplastic resin, and then the surface of the softened granular carrier is The powder described above, preferably a functional material, may be attached. That is, as the granulation method for the powder-integrated resin particles used in the functional sheet according to the present invention, the granulation method for the powder-integrated resin particles according to the present invention may be used. As a result, the powder-integrated resin particles having a granular carrier made of a thermoplastic resin and a powder integrated on the surface of the granular carrier are obtained.
[0100] (その他の成分)  [0100] (Other ingredients)
本発明による機能性シートにおいて、上記の態様に影響を与えない範囲で、種々 の成分を有してもよい。なかでも、図 3に示したように、基材シート 14と粉体一体化樹 脂粒子 1との間に、熱可塑性樹脂からなる熱可塑性樹脂層 16を有してもよい。この熱 可塑性樹脂としては、粉体一体化樹脂粒子 1と基材シート 14との担持を阻害しない ものであれば、特に制約はなぐなかでも、粉体一体化樹脂粒子 1を構成する熱可塑 性樹脂であることが好ましい。  The functional sheet according to the present invention may have various components as long as the above-described aspect is not affected. In particular, as shown in FIG. 3, a thermoplastic resin layer 16 made of a thermoplastic resin may be provided between the base sheet 14 and the powder-integrated resin particles 1. Any thermoplastic resin may be used as long as it does not hinder the support of the powder integrated resin particles 1 and the base sheet 14, and the thermoplastic resin constituting the powder integrated resin particles 1 is not particularly limited. A resin is preferred.
[0101] (本発明による機能性シートを製造する工程)  [0101] (Process for producing a functional sheet according to the present invention)
次に、本発明による機能性シートの製造工程について、図 5を参照して、説明する 。図 5は、本発明による機能性シートの製造工程の一例を示す概略図である。  Next, the manufacturing process of the functional sheet according to the present invention will be described with reference to FIG. FIG. 5 is a schematic view showing an example of a process for producing a functional sheet according to the present invention.
[0102] 本発明による機能性シートの製造工程において、図 5に示すように、まず、一次側 巻き出し部 41から供給された基材シート 14上に、フィーダ一 44より粉体一体化樹脂 粒子を均一に撒布する。その後、均一に撒布された粉体一体化樹脂粒子を有する 基材シート 14は、基材シート 14上にこの粉体一体化樹脂粒子を担持するように、例 えば、熱を負荷するオーブン 46の内部を通過させることにより、基材シート全体を予 備加熱し、熱加圧ロール 48によりホットプレス又はプレスされてもよい。得たシートは 、その後、巻き取り部 49により巻き取られてもよい。 [0102] In the process for producing the functional sheet according to the present invention, as shown in FIG. 5, first, the powder integrated resin particles are fed from the feeder 44 onto the base sheet 14 supplied from the primary unwinding section 41. Distribute evenly. Thereafter, the base sheet 14 having the powder-integrated resin particles uniformly distributed is supported on the base sheet 14 by, for example, the oven 46 in which heat is applied. The whole base sheet may be preheated by passing through the inside, and may be hot pressed or pressed by the hot press roll 48. The obtained sheet Then, it may be wound up by the winding unit 49.
[0103] 本発明による機能性シートの製造工程において、図 2及び 3に示すように、粉体一 体化樹脂粒子が周囲に露出している態様のものを製造する場合、フィーダ一 44から 粉体一体化樹脂粒子を均一撒布して得たものにその後の処理を施してもよい。 [0103] In the production process of the functional sheet according to the present invention, as shown in Figs. 2 and 3, in the case of producing an embodiment in which the powder-integrated resin particles are exposed to the periphery, Subsequent treatment may be applied to the product obtained by uniformly dispersing the body-integrated resin particles.
[0104] 本発明による機能性シートの製造工程において、一次側巻き出し部 41から供給さ れた基材シート 14上にフィーダ一 44から粉体一体化樹脂粒子を均一に撒布する間 に、所望により、熱可塑性樹脂からなる熱可塑性樹脂層を基材シート 14上に積層し てもよい。また、予め基材シート 14上に熱可塑性樹脂層を積層したものを、一次側巻 き出し部 41力、ら供給してもよい。  [0104] In the production process of the functional sheet according to the present invention, it is desired that the powder integrated resin particles be uniformly distributed from the feeder 44 onto the base sheet 14 supplied from the primary unwinding section 41. Thus, a thermoplastic resin layer made of a thermoplastic resin may be laminated on the base sheet 14. Alternatively, a material obtained by previously laminating a thermoplastic resin layer on the base sheet 14 may be supplied from the primary unwinding portion 41.
[0105] 本発明による機能性シートの製造工程において、基材シート 14上にフィーダ一 44 から粉体一体化樹脂粒子を均一に撒布した後、オーブン 46に搬送される前に、二次 側巻き出し部 42より、一次側巻き出し部 41のものと同種又は異種の基材シート 14を 、撒布面に対して上方より載置してもよい。  [0105] In the production process of the functional sheet according to the present invention, the powder-integrated resin particles are uniformly distributed from the feeder 44 onto the base sheet 14, and then conveyed to the oven 46 before the secondary side winding. A base sheet 14 of the same or different type as that of the primary side unwinding part 41 may be placed from above on the spreading surface from the unloading part 42.
[0106] 本発明による機能性シートの製造工程において、巻き取り部 49により巻き取られた 基材シートを一次側巻き出し部 41に再度供給し、上記の各工程を繰り返したり、或い はフィーダ一 44力、ら熱加圧ロール 48までを複数回連続的に配置してもよい。これに より、多層構成を有する機能性シートを作製することも可能である。  [0106] In the functional sheet manufacturing process according to the present invention, the substrate sheet wound up by the winding unit 49 is supplied again to the primary-side unwinding unit 41, and each of the above steps is repeated or a feeder is provided. Up to 44 forces and up to the heat and pressure roll 48 may be continuously arranged a plurality of times. This makes it possible to produce a functional sheet having a multilayer structure.
[0107] なお、最終工程である巻き取り部 49を省略し、熱加圧ロール 48までで得られた基 材シートをプレスした後、断裁機等によりシートカットを行い、順次積層してもよい。  [0107] Note that the winding unit 49, which is the final step, may be omitted, and after pressing the base material sheet obtained up to the hot-pressing roll 48, sheet cutting may be performed using a cutting machine or the like, and then sequentially stacked. .
[0108] オーブン 46による加熱温度は、用いられる基材シートや粉体一体化樹脂粒子の種 類に応じて適宜選定すればよい。例えば、合成繊維よりなる基材シートの場合、基材 シートや粉体一体化樹脂粒子のガラス転移点を考慮して設定してもよぐ粉体一体 化樹脂粒子のガラス転移点よりも加熱温度が低ぐ且つこの加熱温度よりも、基材シ ートのガラス転移点が低い温度とするように、設定されてもよい。この範囲の加熱温度 を採用することにより、基材に障害を与えにくくなる。  [0108] The heating temperature by the oven 46 may be appropriately selected according to the type of base material sheet and powder-integrated resin particles used. For example, in the case of a base sheet made of synthetic fibers, the heating temperature is higher than the glass transition point of the powder-integrated resin particles which may be set in consideration of the glass transition point of the base-material sheet or the powder-integrated resin particles. May be set so that the glass transition point of the base sheet is lower than the heating temperature. By adopting a heating temperature in this range, it becomes difficult to damage the substrate.
[0109] また、熱加圧ロール 48間のクリアランス距離は、特に制約はない。  [0109] The clearance distance between the hot press rolls 48 is not particularly limited.
[0110] 本発明による機能性シートの製造工程において、そのライン速度は、用いられる基 材シートや粉体一体化樹脂粒子の種類に応じて設定すればよぐ粉体一体化樹脂 粒子の撒布及びホットプレスが良好になされれば特に限定されない。 [0110] In the production process of the functional sheet according to the present invention, the line speed may be set according to the type of base material sheet and powder integrated resin particles used. There is no particular limitation as long as the particles are distributed and hot pressed well.
[0111] なお、基材シート上に粉体一体化樹脂粒子を担持する態様について、上記では、 オーブン 46、熱加圧ロール 48などを用いて熱を負荷して行うように記載した力 S、この ように担持する態様を達成し得るものでれば、熱に限定されず、例えば、 UV硬化、 高周波、超音波、電子ビームが挙げられる。 [0111] Regarding the aspect of supporting the powder-integrated resin particles on the base sheet, in the above, the force S described to be performed by applying heat using the oven 46, the hot press roll 48, etc., As long as it is possible to achieve such a supporting mode, it is not limited to heat, and examples thereof include UV curing, high frequency, ultrasonic waves, and electron beams.
実施例  Example
[0112] 以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実 施例に制限されるものではない。実施例中、「部」は重量部を示す。  [0112] Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. However, the present invention is not limited to the following Examples. In the examples, “parts” represents parts by weight.
[0113] (実施例 1 1一;!〜 1 4 3、比較例 1 1一;!〜 1 4 3)  [0113] (Example 1 1 1;! To 1 4 3; Comparative Example 1 1 1;! To 1 4 3)
実施例では、下記成分を混練、粉砕して得た粉体(平均粒径 2mm)を混合造粒機 に供給し、表 1に示す組成の粉体一体化樹脂粒子を得た。加工後の平均粒径及び 顕微鏡観察の結果を表 2に示す。  In Examples, powders (average particle size 2 mm) obtained by kneading and pulverizing the following components were supplied to a mixing granulator to obtain powder integrated resin particles having the composition shown in Table 1. Table 2 shows the average particle diameter after processing and the results of microscopic observation.
[0114] この場合、混合造粒機は、底部の直径 40cm,高さ 40cmの大きさの混合造粒槽を 有し、底部中央部に直径 30cmの回転刃が設けられていると共に、回転刃上部に直 径 20cmの羽根を該回転刃に対して平行に設置した。また、回転刃刃先の回転速度 を 40m/秒として、羽根刃先の回転速度を 30m/秒と設定し、チョッパーを槽蓋上 部に一本設置した。温度は槽内が 140°Cになるように温度を制御した。粉砕時間は 2 0分とした。  [0114] In this case, the mixing granulator has a mixing granulation tank having a diameter of 40 cm at the bottom and a height of 40 cm, a rotating blade having a diameter of 30 cm is provided at the center of the bottom, and the rotating blade A blade having a diameter of 20 cm was installed in the upper part in parallel with the rotary blade. In addition, the rotation speed of the rotary blade edge was set to 40 m / second, the rotation speed of the blade edge was set to 30 m / second, and one chopper was installed on the top of the tank lid. The temperature was controlled so that the temperature in the tank was 140 ° C. The grinding time was 20 minutes.
[0115] 比較例では、表 1の配合のうち熱可塑性樹脂のみを粉砕後、撹拌機により粉体とド ライブレンドして、後工程として二軸押出機によるペレット化を行った。  [0115] In the comparative example, only the thermoplastic resin in the formulation shown in Table 1 was pulverized and then dry blended with the powder using a stirrer, and pelletized by a twin screw extruder as a subsequent step.
[0116] なお、仕込量は、実施例、比較例共、粉体と熱可塑性樹脂の合計で約 4kgとした。  [0116] The charged amount was about 4 kg in total of the powder and the thermoplastic resin in both Examples and Comparative Examples.
[0117] 粉体として用いた機能材は、ゼォライトとしてモレキュラーシーブ 4A (ユニオン昭和  [0117] The functional material used as the powder is molecular sieve 4A (Union Showa)
(株)製)、並びに CaO及びアルミナ(レ、ずれも高純度化学 (株)製)の各試薬を用い た。熱可塑性樹脂は、 LDPE (東ソ一(株)製)、及び PP (日本ポリケム (株) BC06C) を各々用いた。  ), And CaO and Alumina (L, manufactured by High Purity Chemical Co., Ltd.). As the thermoplastic resin, LDPE (manufactured by Tosoichi Co., Ltd.) and PP (Nippon Polychem BC06C) were used.
[0118] [表 1] 粉体 熱可塑性樹脂等 [0118] [Table 1] Powder Thermoplastic resin, etc.
実施例 1一 1一 1 モレキュラーシーブ 4 A 90部 LDFE 10部  Example 1 1 1 1 1 Molecular sieve 4 A 90 parts LDFE 10 parts
実施例 1 ― 1 -2 モレキュラーシープ 4 A 80部 LDPE 20部  Example 1 ― 1 -2 Molecular sheep 4 A 80 parts LDPE 20 parts
実施例 1一 1 - 3 モレキュラーシ一ブ 4 A 70部 LDPE 30部  Example 1 1 1-3 Molecular sieve 4 A 70 parts LDPE 30 parts
比較例 1 - 1一 1 モレキュラーシーブ 4 A 90部 LD PE 10部  Comparative Example 1-1 1 1 Molecular sieve 4 A 90 parts LD PE 10 parts
比較例 1一 1 - 3 モレキュラーシーブ 4 A 70部 LDPE 30部  Comparative Example 1 1 1-3 Molecular sieve 4 A 70 parts LDPE 30 parts
実施例 1一 2一 1 モレキュラーシ一ブ 4 A 90部 P P 10部  Example 1 1 2 1 1 Molecular sieve 4 A 90 parts P P 10 parts
実施例 1一 2 -2 モレキュラーシーブ 4 A 80部 P P 20部  Example 1 1 2 -2 Molecular sieve 4 A 80 parts P P 20 parts
実施例 1一 2 -3 モレキュラーシ一ブ 4 A 70部 P P 30部  Example 1 1 2 -3 Molecular sieve 4 A 70 parts P P 30 parts
比絞例 1 - 2 - 1. モレキユラ一シープ 4 A 90部 P P 10部  Ratio reduction example 1-2-1. Molecular sheep 4 A 90 parts P P 10 parts
比較例 1一 2一 3 モレキュラーシーブ 4 A 70部 P P 30部  Comparative example 1 1 2 1 3 Molecular sieve 4 A 70 parts P P 30 parts
実施例 1一 3 - 1 C a O 90部 LDPE 10部  Example 1 1 3-1 CaO 90 parts LDPE 10 parts
実施例 1 ― 3 -2 C a O 80部 LDPE 20部  Example 1 ― 3 -2 CaO 80 parts LDPE 20 parts
実施例 1 ― 3一 3 C a O 70部 LDPE 30部  Example 1 ― 3 1 3 C a O 70 parts LDPE 30 parts
比較例 1 3 ― 1 C a O 90部 LDPE 10部  Comparative Example 1 3 ― 1 C a O 90 parts LDPE 10 parts
比較例 1一 3 - 3 C a O 70部 LDPE 30部  Comparative Example 1 1 3-3 CaO 70 parts LDPE 30 parts
実施例 1一 4 - 1 アルミナ 90部 LDPE 10部  Example 1 1 4-1 Alumina 90 parts LDPE 10 parts
実施例 1 -4一 2 アルミナ 80部 LDPE 20部  Example 1 -4 1 2 Alumina 80 parts LDPE 20 parts
実施例 1 -4一 3 アルミナ 70部 LDPE 30部  Example 1 -4 1 3 Alumina 70 parts LDPE 30 parts
比較例 1一 4 1 アルミナ 90部 LDPE 10部  Comparative Example 1 1 4 1 Alumina 90 parts LDPE 10 parts
比較例 1 -4一 3 アルミナ 70部 LDPE 30部  Comparative Example 1 -4 1 3 Alumina 70 parts LDPE 30 parts
[0119] [表 2] [0119] [Table 2]
Figure imgf000024_0001
Figure imgf000024_0001
[0120] 表 3では、後工程として用いる二軸押出機に設置された、傾斜面を有するステンレ ス製の振動投入機の状態を観察した。上記投入機におけるステンレス面を表 3の傾 斜角に設定し、実施例 1一 1一 1〜1一 4一 3で得た粉体一体化樹脂粒子、及び比較 例で得たペレット化したものを置き、振動を加えた際の流動性を確認した。さらに、 2 軸押出機ホッパー部に投入し作業性を確認した。結果を表 3に示す。 [0120] In Table 3, the state of a stainless steel vibration feeder having an inclined surface installed in a twin-screw extruder used as a post-process was observed. The stainless steel surface of the above charging machine was set to the inclination angle shown in Table 3, and the powder integrated resin particles obtained in Examples 1 1 1 1 1 to 1 4 1 3 and the pellets obtained in the comparative example were used. The fluidity when applying vibration was confirmed. In addition, 2 The workability was confirmed by putting it into the hopper of the shaft extruder. The results are shown in Table 3.
[0121] [表 3] 傾斜角 1 0 ° 1 傾斜角 2 0 ° ホッパー部 [0121] [Table 3] Tilt angle 10 ° 1 Tilt angle 2 0 ° Hopper
実施例 1 1 1 いずれにおいても、 均等に落下 安定生産〇  Example 1 1 1 All fall evenly Stable production ○
比較例 1 1 1 樹脂の方が早く落下 粉詰まり発生  Comparative Example 1 1 1 Resin falls faster and clogging occurs
実施例 1 - 1 - 3 いずれにおいても、 均等に落下 安定生産〇  Example 1-1-3 In all cases, falling evenly Stable production ○
比较例 1一 1— 3 樹脂の方が早く落下 粉詰まり発生  Comparative Example 1 1-1 1-3 Resin falls faster and clogging occurs
実施例 1 1 いずれにおいても、 均等に落下 安定生産〇  Example 1 1 In all cases, falling evenly Stable production ○
比較例 1 - 2 - 1 樹脂の方が早く落下 粉詰まり発生  Comparative Example 1-2-1 Resin falls earlier and clogging occurs
実施例 1 - 2 - 3 いずれにおいても、 均等に落下 安定生産〇  Example 1-2-3 In all cases, evenly dropped Stable production ○
比較例 1一 2— 3 樹脂の方が早く落下 粉詰まり発生  Comparative Example 1 1 2-3 Resin falls faster and clogging occurs
実施例 1 — 3— 1 いずれにおいても、 均等に落下 安定生産〇  Example 1 — 3— 1 In all cases, falling evenly Stable production ○
比較例 1 - 3 - 1 樹脂の方が早く落下 粉詰まり ¾生  Comparative Example 1-3-1 Resin falls faster Clogging
実施例 1 - 3 - 3 いずれにおいても、 均等に落下 安定生産〇  Example 1-3-3 In all cases, falling evenly Stable production ○
比較例 1 3— 3 樹脂の方が早く落下 粉詰まり発生  Comparative Example 1 3-3 Resin falls earlier and clogging occurs
実施例 1 - 4 - 1 いずれにおいても、 均等に落下 安定生産〇  Example 1-4-1 In all cases, falling evenly Stable production ○
比較例 1 - 4 - 1 樹脂の方が早く落下 粉詰まり発生  Comparative Example 1-4-1 Resin falls faster and clogging occurs
実施例 1一 4— 3 いずれにおいても、 均等に落下 安定生産〇  Example 1 1 4-3 In all cases, falling evenly Stable production ○
比較例 1一 4 3 樹脂の方が早く落下 粉詰まり発生  Comparative Example 1 1 4 3 Resin falls faster Clogging
[0122] 実施例では、押出機への定量投入が容易に行えた。しかし、比較例では、熱可塑 性樹脂と粉体とを別々に入れたため、投入比率に対して粒径が大きいものの比率が 多くなつたり、搬送系に微粉体が留まってしまうことで良好なマスターバッチが作製で きなかった。 [0122] In the examples, the quantitative feeding into the extruder could be easily performed. However, in the comparative example, since the thermoplastic resin and the powder were put separately, the ratio of the particles having a large particle size relative to the charging ratio increased, and the fine powder remained in the transport system, which was a good master. The batch could not be made.
[0123] (実施例 1 5— ;!〜 1 5— 2、比較例 1 5— ;!〜 1 5— 2)  [0123] (Example 1 5—;! To 1 5—2, Comparative Example 1 5—;! To 1 5— 2)
実施例 1 1 1〜1 4 3において、表 1に示す粉体及び熱可塑性樹脂に代え て、表 4に示す粉体及び熱可塑性樹脂を用いて、実施例 1 1 1〜1 4 3と同様 に行い、粉体一体化樹脂粒子を得た。次に、 100部の粉体一体化樹脂粒子に対し て、表 4に示す水溶性有機樹脂を添加し、混練りした。得た混練品を成形型に充填し 、 10kg/cm2以上の圧力を加えた。これを、 200°Cで 1時間、焼結して、固形化物を 得た。 Example 1 1 1 to 1 4 3 In the same manner as in Examples 1 1 1 to 1 4 3 using the powder and thermoplastic resin shown in Table 4 instead of the powder and thermoplastic resin shown in Table 1. To obtain powder-integrated resin particles. Next, the water-soluble organic resin shown in Table 4 was added to 100 parts of the powder integrated resin particles and kneaded. The obtained kneaded product was filled in a mold and a pressure of 10 kg / cm 2 or more was applied. This was sintered at 200 ° C. for 1 hour to obtain a solidified product.
[0124] [表 4] 粉体 熱可塑性樹脂 水溶性有機樹脂等 実施例 1— 5— 1 キュラーシ一ブ 4 A 8 0部 P E 2 0部 P V A ( 5重量%) 5 0部 実施例 1一 5— 2 キュラ一シ一ブ 4 A 8 0部 P E 2 0部 P V A ( 1 0重量%) 5 '0部 比較例 1 5— 1 キユラ一シ一ブ 4 A 1 0 0部 P V A ( 1 0重量%) 5 0部 比較例 1— 5—2 モレキュラーシ一ブ 4 A 8 0部 P E 2 0部 水 5 0部 [0125] 得た固形化物について、下記の吸臭性、作業性及び硬度を検討した。 [0124] [Table 4] Powder Thermoplastic Resin Water-soluble Organic Resin, etc. Example 1—5— 1 Curing sieve 4 A 8 0 parts PE 2 0 parts PVA (5 wt%) 5 0 parts Example 1 1 5 — 2 Cylinders 4 A 8 0 parts PE 2 0 parts PVA (10% by weight) 5 '0 parts Comparative Example 1 5— 1 Cylinders 4 A 1 0 0 parts PVA (10% by weight) ) 5 0 parts Comparative Example 1— 5-2 Molecular sieve 4 A 8 0 parts PE 2 0 parts Water 5 0 parts [0125] The obtained solidified product was examined for the following odor absorption, workability and hardness.
[0126] (吸臭性) [0126] (Odor absorption)
直径 2mm X高さ 3mmの円柱形の固形化物と、トリェチルァミンを含有する錠剤( 有効成分含量 10%)とを密閉容器に入れ、温度 25°C/相対湿度 50%の環境下に 2 40時間放置した。その後、トリェチルァミン成分の吸着の有無を GC— MS装置 (Aut omass, 日本電子製)を用いて検出し、固形化物の吸臭性を評価した。結果を表 5に 示す。なお、表 5中、〇印は、十分な吸臭性を有することを示し、 印は、評価できな かったことを示す。  A cylindrical solid product with a diameter of 2 mm and a height of 3 mm and a tablet containing triethylamine (active ingredient content 10%) are placed in a sealed container and left in an environment at a temperature of 25 ° C and a relative humidity of 50% for 2 40 hours. did. Thereafter, the presence or absence of adsorption of the triethylamine component was detected using a GC-MS apparatus (Automass, manufactured by JEOL Ltd.), and the odor absorption property of the solidified product was evaluated. The results are shown in Table 5. In Table 5, ○ indicates that the product has sufficient odor absorption, and symbol indicates that evaluation was not possible.
[0127] (固形化の有無)  [0127] (With or without solidification)
得た固形化物の固形化の有無について、官能的に評価した。結果を表 5に示す。 なお、表 5中、〇印は、十分に固形化したことを示し、 X印は、固形化しなかったこと を示す。  The presence or absence of solidification of the obtained solidified product was evaluated sensorily. The results are shown in Table 5. In Table 5, “O” indicates that the solidified sufficiently, and “X” indicates that it did not solidify.
[0128] (硬度)  [0128] (Hardness)
直径 2mm X高さ 3mmの円柱形の固形化物を作製し、この固形化物の硬度を、デ ジタルフォースゲージ(FGC— 50、 SHIMPO社製)を用いて、押し潰し破壊時での ピーク値として測定した。測定値は測定回数 N= 7の平均値である。結果を表 5に示 す。  A cylindrical solid product with a diameter of 2 mm and a height of 3 mm was prepared, and the hardness of this solid product was measured as a peak value at the time of crushing fracture using a digital force gauge (FGC-50, manufactured by SHIMPO). did. The measured value is the average value of the number of measurements N = 7. The results are shown in Table 5.
[0129] [表 5]  [0129] [Table 5]
Figure imgf000026_0001
Figure imgf000026_0001
(実施例 1 6) (Example 1 6)
実施例 1 1 1〜1 4 3において、表 1に示す粉体及び熱可塑性樹脂に代え て、粉体として A型シリカゲル((株)トクャマ社製) 30部と、 PE70部とを用いた以外は 、実施例 1 1 1〜1 4 3と同様に行い、粉体一体化樹脂粒子を得た。この粉体 一体化樹脂粒子に 10部の PEをさらに添加し、押出成型により、膜厚 100 mのフィ ルムに成形した。このフィルムを、温度 40°C、相対湿度 90%の条件で吸湿させたとこ ろ、 9. Og/m2の吸湿量を示した。 Example 1 1 1 to 1 4 3 except that 30 parts of A-type silica gel (manufactured by Tokuma Corporation) and 70 parts of PE were used instead of the powder and thermoplastic resin shown in Table 1. Were carried out in the same manner as in Examples 1 1 1 to 1 4 3 to obtain powder integrated resin particles. 10 parts of PE is further added to the powder-integrated resin particles, and a 100 m thick film is formed by extrusion molding. Molded into rum. When this film was moisture-absorbed at a temperature of 40 ° C and a relative humidity of 90%, it showed a moisture absorption of 9. Og / m 2 .
[0131] (実施例 2— ;!〜 2— 2、比較例 2— ;!〜 2— 2) [0131] (Example 2—;! To 2-2, Comparative Example 2—;! To 2-2)
実施例 2—;!〜 2— 2については、表 6の各成分をヘンシェルミキサー(三井鉱山( 株)製)を用いて下記条件で粉砕加工を行!/ \粉体一体化樹脂粒子を形成した。  For Example 2— ;! to 2-2-2, the components in Table 6 were ground using the Henschel mixer (Mitsui Mining Co., Ltd.) under the following conditions! / \ Forming powder integrated resin particles did.
[0132] 回転刃の刃先の回転速度 40m/秒 [0132] Rotating speed of rotating blade edge 40m / sec
粉砕槽温度 140°C  Crushing tank temperature 140 ° C
粉砕時間 20分  Grinding time 20 minutes
平均粒径 2mm  Average particle size 2mm
[0133] 比較例 2— ;!〜 2— 2については、表 6の各成分のうち熱可塑性樹脂のみを粉砕後 、機能材としてゼォライトのモレキュラーシーブ 13X (ユニオン昭和(株)製)とドライブ レンドした。 [0133] For Comparative Example 2—;! To 2-2, after crushing only the thermoplastic resin among the components of Table 6, Zeolite molecular sieve 13X (made by Union Showa Co., Ltd.) and drive render as functional material did.
[0134] 実施例として粉体一体化樹脂粒子 (熱可塑性樹脂:ポリエチレン (PE) )を下記のホ ットプレス条件で基材シートに挟みシート化し、そのときの撒布作業性と、基材シート の密着性と、吸湿性とについて、それぞれ試験した。基材シートとしては、エスコットフ ァイン CO60NA02 (ュニチカ(株)製)を用いた。結果を表 6に示す。  [0134] As an example, powder-integrated resin particles (thermoplastic resin: polyethylene (PE)) are sandwiched between base sheets under the following hot press conditions to form a sheet, and the workability at that time and the adhesion of the base sheets are as follows. The test was conducted on the property and the hygroscopicity. As the base sheet, Escot Fine CO60NA02 (manufactured by Unitica) was used. The results are shown in Table 6.
[0135] また、比較例としてゼォライト粉体と熱可塑性樹脂(エチレン '酢酸ビュル共重合体 [0135] As a comparative example, zeolite powder and a thermoplastic resin (ethylene butyl acetate copolymer)
(EVA) )とのドライブレンドで得た組成物を、実施例と同様に基材シートに挟みシー ト化し、実施例と同様に試験した。結果を表 6に示す。  The composition obtained by dry blending with (EVA)) was sandwiched between base sheets in the same manner as in the examples and sheeted and tested in the same manner as in the examples. The results are shown in Table 6.
[0136] <評価〉 [0136] <Evaluation>
[ホットプレス条件]  [Hot press conditions]
オーブン温度: 185°C  Oven temperature: 185 ° C
クリアランス: L2/L1 = 0. 30  Clearance: L2 / L1 = 0. 30
ライン速度:毎分 5m  Line speed: 5m per minute
[0137] [撒布作業性] [0137] [Distribution workability]
撒布及び測定方法:口金に金網を設置したフィーダ一の上部より、機能材粉体と熱 可塑性樹脂とのドライブレンド、又は粉体一体化樹脂粒子を投入し、撒布工程を行つ た。 [0138] 評価基準 〇· · ·基材シート上に均一に撒布された Dispersion and measurement method: From the upper part of the feeder with a metal mesh installed in the base, a dry blend of functional material powder and thermoplastic resin or powder-integrated resin particles was added and the dispersal process was performed. [0138] Evaluation Criteria 〇 · · · Uniformly distributed on base sheet
X…基材シート上に偏って撒布された  X ... distributed unevenly on the base sheet
[0139] [基材シートの密着性] [0139] [Adhesiveness of substrate sheet]
測定方法:引っ張り試験機 (東洋精機 (株)製)使用により、 25mm幅の基材シート 同士の密着力を測定した。  Measurement method: Using a tensile tester (manufactured by Toyo Seiki Co., Ltd.), the adhesion between 25 mm wide substrate sheets was measured.
[0140] 評価基準 〇' 10N/25mm超で剥離 [0140] Evaluation criteria ○ 'Peeled at over 10N / 25mm
△… 5〜 10N/25mmで剥離  △ ... Stripped at 5-10N / 25mm
X · · · 5N/25mm未満で剥離  X ··· Peel at less than 5N / 25mm
[0141] なお、表 6には、基材シート同士が剥離した引っ張り強度を示す。 [0141] Table 6 shows the tensile strength at which the base sheets peeled off.
[0142] [吸湿性] [0142] [Hygroscopic]
得られた基材シートを 10cm四方に裁断したのち、温度 40°C/相対湿度 90%のォ ーブン中で 48時間静置し、吸湿による重量増加分を電子天秤により測定した。  The obtained base material sheet was cut into a 10 cm square and allowed to stand for 48 hours in an oven at a temperature of 40 ° C./90% relative humidity, and the weight increase due to moisture absorption was measured with an electronic balance.
[0143] 評価基準 〇· · ·増加量が 20g以上[0143] Evaluation Criteria ○ · · Increased by 20g or more
- 増加量2(^未満  -Increase 2 (less than ^
[0144] [表 6]  [0144] [Table 6]
Figure imgf000028_0001
Figure imgf000028_0001
(実施例 2— 3〜2— 5、比較例 2— 3〜2— 5) (Examples 2-3-3-5, Comparative Examples 2-3-3-5)
実施例 2— 3〜2— 5について、機能材としてゼォライトのモレキュラーシーブ 13X ( ユニオン昭和(株)製)を、熱可塑性樹脂としてポリエチレンをそれぞれ使用し、重量 比 8 : 2として造粒したものを用いた。また、比較例 2— 3〜2— 5については、各々を 単独で用いた。基材シートとしてエスコットファイン CO60NA02 (ュュチカ(株)製)を 用いて、上記のホットプレス工程に基づき、下記の条件で、ホットプレスを行い、機能 性シートを得た。 [0146] [ホットプレス条件] For Examples 2-3 to 2-5, those obtained by granulating Zeolite molecular sieve 13X (manufactured by Union Showa Co., Ltd.) as a functional material and polyethylene as a thermoplastic resin with a weight ratio of 8: 2 were used. Using. In addition, each of Comparative Examples 2-3 to 2-5 was used alone. Using et Scott Fine CO60NA0 2 as the base sheet (manufactured by Yuyuchika Co.), based on the above hot pressing step, under the following conditions, subjected to hot pressing to obtain a functional sheet. [0146] [Hot press conditions]
オーブン温度: 130°C  Oven temperature: 130 ° C
ホットプレス温度: 200°C  Hot press temperature: 200 ° C
ライン速度:毎分 5m  Line speed: 5m per minute
クリアランス: L2/L1 = 0. 30  Clearance: L2 / L1 = 0. 30
[0147] 得た機能性シートについて、 目視により、この基材シート中のゼォライトの保持性、 及び基材シートの外観について評価を行なった。結果を表 7に示す。 [0147] The obtained functional sheet was visually evaluated for the retention of zeolite in the base sheet and the appearance of the base sheet. The results are shown in Table 7.
[0148] [表 7] [0148] [Table 7]
Figure imgf000029_0001
Figure imgf000029_0001
[0149] (実施例 2— 6〜2— 8、及び比較例 2— 6〜2— 8) [0149] (Examples 2-6 to 2-8 and Comparative Examples 2-6 to 2-8)
実施例 2— 6〜2— 8につ!/、ては、表 3の各成分をヘンシェルミキサー(三井鉱山( 株)製)を用いて下記条件で粉砕加工を行!/ \粉体一体化樹脂粒子を形成した。  Example 2—6 to 2-8! /, And the components in Table 3 were ground using the Henschel mixer (Mitsui Mine Co., Ltd.) under the following conditions! Resin particles were formed.
[0150] 回転刃の刃先の回転速度 40m/秒 [0150] Rotating speed of rotating blade edge 40m / sec
粉砕槽温度 140°C  Crushing tank temperature 140 ° C
粉砕時間 20分  Grinding time 20 minutes
平均粒径 2mm  Average particle size 2mm
[0151] 得た粉体一体化樹脂粒子を、表 8に記載の基材 (PET/PEについては、各層をド ライラミネーシヨンで成形したもの)上に、表 8に記載の降りかけ面上に降りかけ、ホッ トプレスして機能性シートを得た。 [0151] The obtained powder-integrated resin particles were placed on the substrate shown in Table 8 (for PET / PE, each layer was molded with dry lamination) on the landing surface shown in Table 8. I got down and hot-pressed to obtain a functional sheet.
[0152] 比較例 2— 6〜2— 8については、実施例 2— 6〜2— 8の粉体一体化樹脂粒子に 代えて、表 8に記載の成分を用いた以外は、実施例 2— 6〜2— 8と同様に行い、シ ートを得た。 [0152] For Comparative Examples 2-6 to 2-8, Example 2 except that the components shown in Table 8 were used instead of the powder-integrated resin particles of Examples 2-6 to 2-8. — Perform in the same way as 6 to 2-8. I got a job.
[0153] このようにして得た機能性シート及びシートについて、降りかけ作業性、密着性、並 びに吸臭性及び吸湿性をそれぞれ評価した。  [0153] The functional sheet and the sheet thus obtained were evaluated for workability, adhesion, odor absorption and moisture absorption, respectively.
[0154] [降りかけ作業性] [0154] [Working down]
上記の [撒布作業性]と同様に評価した。  Evaluation was performed in the same manner as the above [Distribution workability].
[0155] 評価基準 〇:基材シート上に均一に撒布された [0155] Evaluation Criteria O: Evenly distributed on the base material sheet
△:部分的に不均一に撒布された部分があった力 実用上、問題のない レべノレ  △: Force with some unevenly distributed parts No problem for practical use
X:基材シート上に偏って撒布された  X: Unevenly distributed on the base sheet
[0156] [密着性 (耐摩耗試験) ] [0156] [Adhesion (Abrasion Resistance Test)]
1 N/m2以上で T型剥離を行った。 T-type peeling was performed at 1 N / m 2 or more.
[0157] 評価基準 〇:機能材の剥がれなし [0157] Evaluation criteria 〇: No peeling of functional material
△:僅かに機能材の剥がれがある力 実用上、問題のないレベル  △: Slightly peeling off the functional material Practically no problem level
X:機能材の剥がれ有り  X: There is peeling of the functional material
X X:殆ど密着しない  X X: Little contact
[0158] [吸臭性]  [0158] [Odor absorption]
得た機能性シート又はシートと、トリェチルァミンを含有する錠剤(有効成分含量 10 %)とを密閉容器に入れ、温度 25°C/相対湿度 50%の環境下に 240時間放置した 。その後、トリェチルァミン成分の吸着の有無を GC— MS装置 (Automass、 日本電 子製)を用いて検出し、機能性シート又はシートの吸臭性を評価した。結果を表 8に 示す。なお、表 8中、〇印は、十分な吸臭性を有することを示す。  The obtained functional sheet or sheet and a tablet containing triethylamine (active ingredient content: 10%) were placed in a sealed container and allowed to stand for 240 hours in an environment of a temperature of 25 ° C. and a relative humidity of 50%. Thereafter, the presence or absence of adsorption of the triethylamine component was detected using a GC-MS apparatus (Automass, manufactured by Nippon Denshi), and the functional sheet or sheet odor absorption was evaluated. The results are shown in Table 8. In Table 8, ○ indicates that it has sufficient odor absorption.
[0159] [吸湿性] [0159] [Hygroscopic]
実施例 2— 1に記載の [吸湿性]の評価方法に準じて、測定した。  The measurement was carried out according to the [Hygroscopicity] evaluation method described in Example 2-1.
[0160] [表 8]
Figure imgf000031_0001
[0160] [Table 8]
Figure imgf000031_0001
産業上の利用可能性 Industrial applicability
本発明による機能性シートは、主に空調機械のフィルターや、医薬、電子電気部材 の乾燥剤等に好適に使用できるものである。また、不織布に担持されているため所望 の形状への加工が容易であり、広汎な分野への応用が可能である。  The functional sheet according to the present invention can be suitably used mainly for filters for air-conditioning machines, medicines, desiccants for electronic and electrical members, and the like. In addition, since it is supported on a non-woven fabric, it can be easily processed into a desired shape and can be applied to a wide range of fields.

Claims

請求の範囲 The scope of the claims
[I] 熱可塑性樹脂からなる粒状担持体と、該粒状担持体の表面に一体化された粉体と を有することを特徴とする粉体一体化樹脂粒子。  [I] A powder-integrated resin particle comprising: a granular carrier made of a thermoplastic resin; and a powder integrated on the surface of the granular carrier.
[2] 当該粉体一体化樹脂粒子の平均粒径は、 10 μ m以上であることを特徴とする請求 項 1に記載の粉体一体化樹脂粒子。  [2] The powder-integrated resin particles according to [1], wherein the average particle diameter of the powder-integrated resin particles is 10 μm or more.
[3] 前記粉体の重量は、前記熱可塑性樹脂の重量に対して、 50重量%以上 900重量[3] The weight of the powder is 50% by weight or more and 900% by weight with respect to the weight of the thermoplastic resin.
%以下であることを特徴とする請求項 1又は 2に記載の粉体一体化樹脂粒子。 The powder-integrated resin particles according to claim 1 or 2, wherein the powder-integrated resin particles are% or less.
[4] 前記熱可塑性樹脂と前記粉体との体積比は、 1:;!〜 1: 20であることを特徴とする 請求項 1乃至 3のいずれか一項に記載の粉体一体化樹脂粒子。 [4] The powder integrated resin according to any one of claims 1 to 3, wherein a volume ratio of the thermoplastic resin to the powder is 1:;! To 1:20. particle.
[5] 請求項 1乃至 4のいずれか一項に記載の粉体一体化樹脂粒子と、水溶性有機樹 脂とからなることを特徴とする粒子含有成形体。 [5] A particle-containing molded article comprising the powder-integrated resin particles according to any one of claims 1 to 4 and a water-soluble organic resin.
[6] 前記水溶性有機樹脂の含量は、前記粉体一体化樹脂粒子の重量に対して、 2重 量%以上 50重量%以下であることを特徴とする請求項 5に記載の粒子含有成形体。 6. The particle-containing molding according to claim 5, wherein the content of the water-soluble organic resin is 2% by weight or more and 50% by weight or less with respect to the weight of the powder-integrated resin particles. body.
[7] 熱可塑性樹脂からなる粒状担持体と、該粒状担持体の表面に一体化された粉体と を有する粉体一体化樹脂粒子の造粒方法であって、 [7] A method for granulating powder-integrated resin particles comprising a granular carrier made of a thermoplastic resin and powder integrated on the surface of the granular carrier,
前記粒状担持体の表面が少なくとも軟化するように、該粒状担持体に熱を負荷す る工程と;  Applying heat to the granular carrier so that the surface of the granular carrier is at least softened;
前記の軟化した粒状担持体の表面に、粉体を付着する工程と;  Attaching powder to the surface of the softened granular carrier;
を有することを特徴とする粉体一体化樹脂粒子の造粒方法。  A method for granulating powder-integrated resin particles, comprising:
[8] 前記の粒状担持体に熱を負荷する工程は、密閉空間内で軸回転する回転部材と 前記粒状担持体との接触により発生する摩擦熱により行われる工程であることを特徴 とする請求項 7に記載の粉体一体化樹脂粒子の造粒方法。 [8] The step of applying heat to the granular carrier is a step performed by frictional heat generated by contact between a rotating member that rotates in a sealed space and the granular carrier. Item 8. A method for granulating powder-integrated resin particles according to Item 7.
[9] 請求項 1乃至 4のいずれか一項に記載の粉体一体化樹脂粒子に、水溶性有機樹 脂を添加して混練し、加圧する工程を有することを特徴とする粒子含有成形体の成 形方法。 [9] A particle-containing molded article comprising a step of adding a water-soluble organic resin to the powder-integrated resin particles according to any one of claims 1 to 4, kneading, and pressing. How to form
[10] 熱可塑性樹脂からなる粒状担持体と、該粒状担持体の表面に一体化された粉体と を有する粉体一体化樹脂粒子からなることを特徴とする粒子含有シート材。  [10] A particle-containing sheet material comprising powder-integrated resin particles having a granular carrier made of a thermoplastic resin and powder integrated on the surface of the granular carrier.
[I I] 当該粒子含有シート材の膜厚は、 10 in以上 5mm以下であることを特徴とする請 求項 10に記載の粒子含有シート材。 [II] The particle-containing sheet material has a thickness of 10 in to 5 mm. The particle-containing sheet material according to claim 10.
[12] 当該粒子含有シート材は、第 2の樹脂をさらに有することを特徴とする請求項 10又 は 11に記載の粒子含有シート材。 [12] The particle-containing sheet material according to [10] or [11], wherein the particle-containing sheet material further comprises a second resin.
[13] 前記の第 2の樹脂は、熱可塑性樹脂であることを特徴とする請求項 12に記載の粒 子含有シート材。 [13] The particle-containing sheet material according to [12], wherein the second resin is a thermoplastic resin.
[14] 熱可塑性樹脂からなる粒状担持体と、該粒状担持体の表面に一体化された粉体と を有する粉体一体化樹脂粒子からなる粒子含有シート材の成形方法であって、 前記粒状担持体の表面が少なくとも軟化するように、該粒状担持体に熱を負荷す る工程と;  [14] A method for forming a particle-containing sheet material comprising powder-integrated resin particles, comprising: a granular carrier made of a thermoplastic resin; and a powder integrated on the surface of the granular carrier. Applying heat to the granular carrier so that the surface of the carrier is at least softened;
前記の軟化した粒状担持体の表面に、粉体を付着して、粉体一体化樹脂粒子を得 る工程と;  Attaching powder to the surface of the softened granular carrier to obtain powder-integrated resin particles;
シートの形状とするように、粉体一体化樹脂粒子からなる組成物を成形する工程と; を有することを特徴とする粒子含有シート材の成形方法。  Forming a composition comprising powder-integrated resin particles so as to obtain a sheet shape; and a method for forming a particle-containing sheet material.
[15] 前記の粉体一体化樹脂粒子からなる組成物を成形する工程は、第 2の樹脂を添カロ して、押出し成形を行う工程であることを特徴とする請求項 14に記載の粒子含有シ ート材の成形方法。 [15] The particle according to [14], wherein the step of molding the composition comprising the powder-integrated resin particles is a step of adding the second resin and performing extrusion molding. Molding method of contained sheet material.
[16] 前記の第 2の樹脂は、熱可塑性樹脂であることを特徴とする請求項 14又は 15に記 載の粒子含有シート材の成形方法。  [16] The method for molding a particle-containing sheet material according to [14] or [15], wherein the second resin is a thermoplastic resin.
[17] 基材シート上に、熱可塑性樹脂からなる粒状担持体と、該粒状担持体の表面に一 体化された粉体とを有する粉体一体化樹脂粒子が担持されたことを特徴とする機能 性シート。 [17] The present invention is characterized in that powder-integrated resin particles having a granular carrier made of a thermoplastic resin and powder integrated on the surface of the granular carrier are supported on a base sheet. Functional sheet.
[18] 複数の基材シートの間に、熱可塑性樹脂からなる粒状担持体と、該粒状担持体の 表面に一体化された粉体とを有する粉体一体化樹脂粒子が担持されたことを特徴と する請求項 17に記載の機能性シート。  [18] Powder-integrated resin particles having a granular carrier made of a thermoplastic resin and a powder integrated on the surface of the granular carrier are supported between a plurality of substrate sheets. The functional sheet according to claim 17, which is a feature.
[19] 前記基材シートと前記粉体一体化樹脂粒子との間に、さらに熱可塑性樹脂からな る層が配置されたことを特徴とする請求項 17又は 18に記載の機能性シート。 19. The functional sheet according to claim 17 or 18, wherein a layer made of a thermoplastic resin is further disposed between the base sheet and the powder-integrated resin particles.
[20] 前記の基材シートと粉体一体化樹脂粒子との担持は、ホットプレスによりなされたも のであることを特徴とする請求項 17乃至 19のいずれか一項に記載の機能性シート。 [20] The functional sheet according to any one of [17] to [19], wherein the support of the base sheet and the powder integrated resin particles is performed by hot pressing.
[21] 前記粉体の重量は、当該機能性シートの総重量に対して、 30重量%以上 80重量 %以下であることを特徴とする請求項 17乃至 20の!/、ずれか一項に記載の機能性シ ート。 [21] The weight of the powder is 30% to 80% by weight with respect to the total weight of the functional sheet. The described functionality sheet.
[22] 前記粉体の重量は、前記熱可塑性樹脂の重量に対して、 50重量%以上 900重量 %以下であることを特徴とする請求項 17乃至 21のいずれか一項に記載の機能性シ ート。  [22] The functionality according to any one of [17] to [21], wherein the weight of the powder is not less than 50 wt% and not more than 900 wt% with respect to the weight of the thermoplastic resin. Sheet.
[23] 前記熱可塑性樹脂と前記粉体との体積比は、 1:;!〜 1: 20であることを特徴とする 請求項 17乃至 22のいずれか一項に記載の機能性シート。  [23] The functional sheet according to any one of Claims 17 to 22, wherein the volume ratio of the thermoplastic resin to the powder is 1:;! To 1:20.
[24] 当該粉体一体化樹脂粒子の平均粒径は、 10 μ m以上であることを特徴とする請求 項 17乃至 23のいずれか一項に記載の機能性シート。 24. The functional sheet according to any one of claims 17 to 23, wherein an average particle diameter of the powder-integrated resin particles is 10 μm or more.
[25] 基材シート上に、熱可塑性樹脂からなる粒状担持体と、該粒状担持体の表面に一 体化された粉体とを有する粉体一体化樹脂粒子が担持された機能性シートの製造 方法であって、 [25] A functional sheet in which powder-integrated resin particles having a granular carrier made of a thermoplastic resin and a powder integrated on the surface of the granular carrier are supported on a base sheet. A manufacturing method comprising:
前記粒状担持体の表面が少なくとも軟化するように、該粒状担持体に熱を負荷す る工程と;  Applying heat to the granular carrier so that the surface of the granular carrier is at least softened;
前記の軟化した粒状担持体の表面に、粉体を付着して、粉体一体化樹脂粒子を得 る工程と;  Attaching powder to the surface of the softened granular carrier to obtain powder-integrated resin particles;
得た粉体一体化樹脂粒子を基材シート上に担持する工程と;  Supporting the obtained powder-integrated resin particles on a substrate sheet;
を有することを特徴とする機能性シートの製造方法。  A method for producing a functional sheet, comprising:
[26] 前記の粒状担持体に熱を負荷する工程は、密閉空間内で軸回転する回転部材と 前記粒状担持体との接触により発生する摩擦熱により行われる工程であることを特徴 とする請求項 25に記載の機能性シートの製造方法。 26. The step of applying heat to the granular carrier is a step performed by frictional heat generated by contact between a rotary member that rotates in a sealed space and the granular carrier. Item 26. A method for producing a functional sheet according to Item 25.
PCT/JP2007/064769 2006-07-28 2007-07-27 Resin particle with powder united thereto and method of forming the same, particle-containing molded object, particle-containing sheet material, and method of forming these, and functional sheet and process for producing functional sheet WO2008013266A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006206016 2006-07-28
JP2006-206016 2006-07-28
JP2006-235640 2006-08-31
JP2006235640 2006-08-31
JP2007-193402 2007-07-25
JP2007193402A JP2008050592A (en) 2006-07-28 2007-07-25 Resin particle with powder united thereto and method for granulating the same, particle-containing molded article, particle-containing sheet material, and method of forming these
JP2007-193403 2007-07-25
JP2007193403A JP2008080793A (en) 2006-08-31 2007-07-25 Functioning sheet and method for production of functioning sheet

Publications (1)

Publication Number Publication Date
WO2008013266A1 true WO2008013266A1 (en) 2008-01-31

Family

ID=38981576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064769 WO2008013266A1 (en) 2006-07-28 2007-07-27 Resin particle with powder united thereto and method of forming the same, particle-containing molded object, particle-containing sheet material, and method of forming these, and functional sheet and process for producing functional sheet

Country Status (1)

Country Link
WO (1) WO2008013266A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146820A1 (en) * 2009-06-19 2010-12-23 三井・デュポンポリケミカル株式会社 Resin pellet and method for producing the same
WO2019055304A1 (en) * 2017-09-18 2019-03-21 Dow Global Technologies Llc Compositions containing coated polymer particles and tpo compositions formed from the same
EP4015181A1 (en) * 2020-12-17 2022-06-22 Schlenk Metallic Pigments GmbH Method for in situ generation of pigments in plastic

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164326A (en) * 1984-09-06 1986-04-02 Japan Synthetic Rubber Co Ltd Preparation of composite particle
JPS62149727A (en) * 1985-12-24 1987-07-03 Nikko Rika Kk Composite plastic particle and its production
JPS62298443A (en) * 1986-06-17 1987-12-25 Nara Kikai Seisakusho:Kk Method for reforming surface of solid particle
JPH0224130A (en) * 1988-07-13 1990-01-26 Dentaru Kagaku Kk Molding method of resin body
JPH0241210A (en) * 1988-08-01 1990-02-09 Calp Corp High function composite material and molded piece thereof
JPH11323034A (en) * 1998-03-10 1999-11-26 Sumitomo Chem Co Ltd Thermoplastic elastomer composition powder, powder molding and molded product using the powder
JP2002265618A (en) * 2001-03-07 2002-09-18 Osada Giken Kk Granule and method for producing the same
JP2003026933A (en) * 2001-07-16 2003-01-29 Shingo Hishida Particulate additive for synthetic resin and its production method
JP2003507513A (en) * 1999-08-17 2003-02-25 ザ ダウ ケミカル カンパニー Free-flowing polymer composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164326A (en) * 1984-09-06 1986-04-02 Japan Synthetic Rubber Co Ltd Preparation of composite particle
JPS62149727A (en) * 1985-12-24 1987-07-03 Nikko Rika Kk Composite plastic particle and its production
JPS62298443A (en) * 1986-06-17 1987-12-25 Nara Kikai Seisakusho:Kk Method for reforming surface of solid particle
JPH0224130A (en) * 1988-07-13 1990-01-26 Dentaru Kagaku Kk Molding method of resin body
JPH0241210A (en) * 1988-08-01 1990-02-09 Calp Corp High function composite material and molded piece thereof
JPH11323034A (en) * 1998-03-10 1999-11-26 Sumitomo Chem Co Ltd Thermoplastic elastomer composition powder, powder molding and molded product using the powder
JP2003507513A (en) * 1999-08-17 2003-02-25 ザ ダウ ケミカル カンパニー Free-flowing polymer composition
JP2002265618A (en) * 2001-03-07 2002-09-18 Osada Giken Kk Granule and method for producing the same
JP2003026933A (en) * 2001-07-16 2003-01-29 Shingo Hishida Particulate additive for synthetic resin and its production method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146820A1 (en) * 2009-06-19 2010-12-23 三井・デュポンポリケミカル株式会社 Resin pellet and method for producing the same
JP4801221B2 (en) * 2009-06-19 2011-10-26 三井・デュポンポリケミカル株式会社 Resin pellets and method for producing the same
KR101138928B1 (en) 2009-06-19 2012-04-30 듀폰-미츠이 폴리케미칼 가부시키가이샤 Resin pellet and method for producing the same
CN102803353A (en) * 2009-06-19 2012-11-28 三井-杜邦聚合化学株式会社 Resin Pellet And Method For Producing The Same
CN102803353B (en) * 2009-06-19 2013-10-09 三井-杜邦聚合化学株式会社 Resin pellet and method for producing the same
US9353230B2 (en) 2009-06-19 2016-05-31 Du Pont-Mitsui Polychemicals Co., Ltd. Resin pellet and method for producing the same
WO2019055304A1 (en) * 2017-09-18 2019-03-21 Dow Global Technologies Llc Compositions containing coated polymer particles and tpo compositions formed from the same
US11236241B2 (en) 2017-09-18 2022-02-01 Dow Global Technologies Llc Compositions containing coated polymer particles and TPO compositions formed from the same
EP4015181A1 (en) * 2020-12-17 2022-06-22 Schlenk Metallic Pigments GmbH Method for in situ generation of pigments in plastic
WO2022128261A1 (en) * 2020-12-17 2022-06-23 Schlenk Metallic Pigments Gmbh Method for producing a plastic granulate containing pigments

Similar Documents

Publication Publication Date Title
TW445202B (en) Molded lump and its production method thereof
JP5635685B2 (en) Method and apparatus for producing polyacrylic acid (salt) water-absorbing resin
JP6210582B2 (en) Cellulose fiber-dispersed polyethylene resin composite, molded body and pellets using the same, and method for recycling cellulose fiber-attached polyethylene thin film pieces
CN1440306A (en) Particulate carbonates and their preparation and use in breathable film
CN101715473B (en) Composite counterweight and method of making same
CN1056503A (en) The continuous prilling process and the device thereof of super absorbent resin powder
CN108715656A (en) A kind of PE/CaCO3Ventilative film master batch and preparation method thereof
CN1057901C (en) Oxygen absorber
CN1576319A (en) Organopolysiloxane granulate
JP2017155248A (en) Manufacturing method of a cellulose fiber dispersed polyethylene resin composite and recycling method of cellulose fiber adhered polyethylene thin film piece
JP2008050592A (en) Resin particle with powder united thereto and method for granulating the same, particle-containing molded article, particle-containing sheet material, and method of forming these
WO2008013266A1 (en) Resin particle with powder united thereto and method of forming the same, particle-containing molded object, particle-containing sheet material, and method of forming these, and functional sheet and process for producing functional sheet
JPS61133267A (en) Rigidified material and its production
JP2007039492A (en) Method for producing frictional material granule and frictional material produced from the frictional material granule
JP5907863B2 (en) Thermoplastic reinforcement material
US20120009426A1 (en) Loaded Polymer
JP2008080793A (en) Functioning sheet and method for production of functioning sheet
JPH02295720A (en) Production of composite material including thermo-plastic polymer and residue from production process of plastic laminate and its composite material
JP2000189794A (en) Production of water absorbing material
US5215695A (en) Process for reclaiming the residuals of the manufacture of high pressure laminates
JPH10138241A (en) Resin pellet containing paper
KR101740656B1 (en) Preparation method of thermoplastic resin composition and thermoplastic resin composition prepared thereby
JP4169989B2 (en) Different plastic mixing molding method
JPH11172112A (en) Photocatalytic ligneous synthetic material composition and its production, photocatalytic ligneous synthetic foam and its production, photocatalytic ligneous synthetic molded product using the same material composition and molded product using the same foam
JP7190684B1 (en) Method for manufacturing molding containing wallpaper as raw material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791463

Country of ref document: EP

Kind code of ref document: A1