WO2008013205A1 - Chip mounting type integration processing apparatus, chip-shaped container and chip mounting type integration processing method - Google Patents

Chip mounting type integration processing apparatus, chip-shaped container and chip mounting type integration processing method Download PDF

Info

Publication number
WO2008013205A1
WO2008013205A1 PCT/JP2007/064596 JP2007064596W WO2008013205A1 WO 2008013205 A1 WO2008013205 A1 WO 2008013205A1 JP 2007064596 W JP2007064596 W JP 2007064596W WO 2008013205 A1 WO2008013205 A1 WO 2008013205A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
chip
outer peripheral
wall surface
container
Prior art date
Application number
PCT/JP2007/064596
Other languages
French (fr)
Japanese (ja)
Inventor
Hideji Tajima
Tsutomu Asano
Original Assignee
Universal Bio Research Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Bio Research Co., Ltd. filed Critical Universal Bio Research Co., Ltd.
Priority to JP2008526792A priority Critical patent/JP4944888B2/en
Publication of WO2008013205A1 publication Critical patent/WO2008013205A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1065Multiple transfer devices
    • G01N35/1074Multiple transfer devices arranged in a two-dimensional array

Definitions

  • Chip-mounted integrated processing apparatus chip-shaped container, and chip-mounted integrated processing method
  • the present invention relates to a chip mounting type integrated processing apparatus, a chip-shaped container, and a chip mounting type integrated processing method.
  • a cylinder for driving a plunger is used as a suction / discharge mechanism, but the mechanism such as a plunger is a high-precision machined part such as a syringe, and particularly in a cylinder.
  • the volume change is basically integral with the volume change in the dispensing tip, and needs to be transmitted so that there is no looseness in the joint between the plunger and the drive device of the plunger.
  • Patent Document 1 Japanese Patent No. 3115501
  • Patent Document 2 Japanese Patent No. 3739953
  • Patent Document 3 Japanese Patent No. 3630497
  • Patent Document 4 Japanese Patent No. 3682302
  • a first object of the present invention is to provide a chip mounting type integrated processing apparatus and chip that can smoothly perform simultaneous fitting and simultaneous mounting operations of a plurality of chip containers to a plurality of nozzles. It is to provide a container and a chip mounting type integrated processing method.
  • the second purpose is to provide high water-tightness and air-tightness, so that the reliability is high, the life of the equipment is long, and the burden of quality control is small! /, Chip-mounted integrated processing equipment, chip-shaped container and chip-mounted It is to provide a formula accumulation processing method.
  • a third object is to provide a chip-mounted integrated processing apparatus, a chip-shaped container, and a chip-mounted integrated processing method capable of integrating a plurality of processes and performing a highly efficient and quick process. Is to provide.
  • the first invention includes 1 or two or more nozzles having one or more outer peripheral protrusions projecting outward along two or more closed outer peripheral bands spaced apart from each other in the axial direction of the nozzle, and two or more A nozzle head in which the nozzles are arranged in a predetermined arrangement pattern, a suction / discharge mechanism that sucks and discharges gas through the nozzle, a mounting opening that can be attached to or attached to the nozzle, and a tip.
  • Two or more substantially cylindrical chip containers having a mouth portion through which fluid can be introduced and discharged by suction and discharge of the gas provided, and the chip containers are accommodated in a state that can be mounted on the nozzle in the predetermined arrangement pattern.
  • nozzle head each having a tip-like container accommodating portion that can be accommodated, and a moving means that relatively moves between the nozzle head and the tip-like container accommodating portion.
  • the nozzle is the tip
  • the outer peripheral protrusions provided on the nozzles are in close contact with or in contact with the inner peripheral wall surface of the mounting opening, and the distance from the predetermined reference horizontal plane to at least one of the outer peripheral protrusions is different from each other.
  • This is a chip mounting type integrated processing apparatus composed of a plurality of types of nozzle groups.
  • the “predetermined arrangement pattern” is, for example, a matrix shape, a single row shape, an annular shape, or the like.
  • the “matrix” refers to a structure in which elements, for example, nozzles and the like are arranged in a predetermined number of rows and a number of columns at predetermined row intervals and column intervals along two directions of the column direction and the row direction.
  • the column direction and the row direction are usually orthogonal, but not necessarily limited thereto. It may be crossed.
  • the “nozzle” is a portion where fluid is sucked and discharged, and the fluid includes gas and liquid.
  • the nozzle is a flow path communicating with a “suction / discharge mechanism” such as a cylinder having a plunger. “Suction / discharge” means suction or / and discharge.
  • the "peripheral protrusion” is formed along a belt-like outer peripheral band closed on the outer peripheral side surface of the nozzle so as to surround the nozzle axis, and to protrude outward, radially or normal from the outer peripheral side surface.
  • the outer circumferential band is preferably formed so as to be sandwiched between planes perpendicular to the nozzle axis.
  • the outward force and height of the outer peripheral projection be constant around the nozzle.
  • the band width along the axial direction of the outer edge portion that is in close contact with or in contact with the inner peripheral wall surface is, for example, compared with the width portion of the outer peripheral band on the outer surface, such as a linear or wall thickness of the chip-shaped container. It is preferable for insertion to be formed small.
  • the outer edge of the outer peripheral protrusion may be provided with an o-ring along the outer periphery, or a groove may be provided to embed the o-ring to ensure watertightness and airtightness.
  • “Closely” means that two objects are in contact with each other with substantially no gap, and in this case, the state in which the outer peripheral protrusion is in contact with the inner peripheral wall surface in the entire circumferential length.
  • “Contact” means that two objects come into contact with each other in a state that allows the presence of a gap, and in this case, a part of the entire circumferential length of the outer peripheral protrusion is in contact with the inner peripheral wall surface. Therefore, in the case of “close”, compared to the case of “contact”, the gap between the outer peripheral protrusion and the inner peripheral wall surface is small. Or very small.
  • a “chip-shaped container” is a container having an opening for mounting on a nozzle and a mouth for flowing in and out of a fluid at the tip.
  • the mounting opening and the mouth are preferably provided along the axial direction of the container.
  • the material of the chip-shaped container include resins such as polyethylene, polypropylene, polyester, polystyrene, polyvinyl, and acrylic, and elastic bodies such as rubber.
  • the chip-like container is preferably transparent or translucent. Since it is “substantially cylindrical”, it is substantially cylindrical or substantially rectangular.
  • the size of the chip-like container is, for example, from its mouth
  • the length along the mounting opening or in the axial direction is several centimeters to several tens of centimeters, and the volume is, for example, several microliters to several tens of milliliters depending on the length.
  • the amount of suction and discharge varies depending on the volume, for example, from several microliters to several
  • the chip-shaped container includes, for example, a thick tube portion provided with the mounting opening, a thin tube portion having the mouth portion, and a transition portion formed between the thick tube portion and the thin tube portion. It is not limited to a typical dispensing tip having a tube shape, but may be a tube shape having the same cross-sectional shape along the axial direction as a whole. Moreover, as the shape of the transition portion, for example, a truncated cone shape, a funnel shape, or a step shape is formed.
  • the thick tube and the thin tube are not necessarily limited to a cylindrical shape, and may be a prismatic shape, a polygonal shape, a conical shape, a pyramid shape, or a polygonal pyramid shape.
  • a prepack-type reagent storage container in which a solution containing a reagent, a specimen, or the like is previously stored and the opening is covered with a film is provided.
  • the solution contained in the container can be sucked through the thin tube by piercing the film with the thin tube.
  • Magnetic means capable of applying and removing a magnetic field in the tip-shaped container may be provided in the nozzle head so as to be outside the respective chip-shaped containers.
  • a suspension in which a large number of magnetic substances holding biological compounds such as proteins, peptides, amino acids, DNA, RNA, oligonucleotides, sugar chains, etc. are suspended is placed in the deformable dispensing tip.
  • a magnetic field can be applied to the inside and adsorbed on the inner wall of the chip to separate the magnetic substance, and thus the biological compound.
  • the magnetic force means has, for example, two or more magnets provided so as to be able to come into contact with and separate from two or more of the tip-shaped containers at the same time.
  • the “inner peripheral wall surface of the mounting opening” is formed so as to be in close contact with or in contact with the outer peripheral protrusion. Therefore, for example, a cylindrical surface, a cylindrical surface, a cylindrical surface with a step, a cylindrical surface, a tapered surface, a truncated cone surface, a combination of a cylindrical shape and a truncated cone surface, and the like.
  • the "predetermined reference horizontal plane” is a horizontal plane that serves as a measurement reference set in order to define the distance between the outer peripheral protrusions provided on the nozzle attached to the nozzle head.
  • the surface from which multiple nozzles protrude, the horizontal plane that cuts multiple nozzles It is a horizontal plane set on the top of the page. Usually, it is a plane perpendicular to the axial direction of the nozzle. This is because even if the nozzles have the same shape, the relationship between the mounted chip-like container and the outer peripheral projection differs depending on the state of being attached to the nozzle head.
  • the total length along the axial direction of the nozzles arranged in the nozzle head, or the distance from the nozzle arrangement surface to the tip of the nozzle is preferably the same.
  • the “distance to the outer peripheral protrusion” is, for example, the distance from the predetermined reference water surface to the center of gravity, upper end, lower end, or predetermined position of the outer peripheral protrusion.
  • a nozzle having two or more outer peripheral protrusions projecting outward along two or more closed outer peripheral bands spaced apart from each other in the axial direction of the nozzle one outer periphery between each nozzle It is preferable that not only the protrusions but also other outer peripheral protrusions are formed of nozzle groups having different distances from the predetermined reference horizontal plane to the outer peripheral protrusions that can be in close contact with or in contact with each other. As a result, it is possible to prevent a situation in which a resistance force due to a static frictional force or the like between each outer peripheral protrusion and each inner peripheral wall surface is generated simultaneously for each nozzle.
  • the inner peripheral wall surface of the opening for mounting the chip-like container also has an axis of the container according to each outer peripheral protrusion.
  • Two or more inner peripheral cylindrical wall surfaces spaced apart from each other in the direction (the cross section perpendicular to the axial direction is constant) may be provided, and the gap between them may be a flat surface or a stepped surface.
  • the outer peripheral protrusions of the nozzle and the inner portions of the chip-like containers that are in close contact with or in contact with the outer peripheral protrusions. It is preferable to vary the temporal positional relationship associated with the movement between the peripheral wall surfaces. As a result, it is possible to prevent a situation in which a resistance force due to a static frictional force or the like between the outer peripheral protrusions and the inner peripheral wall surface of the same nozzle is generated at the same time.
  • the arrangement of the nozzles belonging to a plurality of types of nozzle groups is uniform without any spatial deviation in distance or length between at least one outer peripheral protrusion of the nozzle and a predetermined reference horizontal plane. It is preferable to arrange as follows. As a result, when mounting, the entire nozzle head receives the resistance force received by the entire tip of the tip-shaped container and the entire tip of the dispensing tip as much as possible. For example, the distance or length of each nozzle group is set to be longer or shorter for each adjacent column or row, and elements belonging to each column (row) are assigned to the same nozzle group. Arrange the nozzles to which they belong.
  • the nozzle groups are changed and arranged regularly so that the distances or lengths of the adjacent elements in the matrix or in other arrangements become longer or shorter.
  • Each nozzle group has at least one nozzle, and preferably the number of nozzles belonging to each nozzle group is the same or substantially the same. This allows the resistance S to be distributed evenly.
  • the first resistance force received by each of the outer peripheral protrusions from each of the inner peripheral wall surfaces is the static friction coefficient, the outer peripheral protrusion,
  • the size is proportional to the product of the drag in the normal direction between the inner peripheral wall surfaces.
  • the subsequent second resistance force is proportional to the product of the dynamic friction coefficient and the drag in the normal direction between the outer peripheral projection and the inner wall surface, and the dynamic friction coefficient is greater than the static friction coefficient. Generally small! /.
  • the two or more nozzles provided in the nozzle head are formed from a plurality of types of nozzle groups having different distances from the predetermined reference horizontal plane to the outer peripheral protrusion. Then, as the nozzles are simultaneously moved in the insertion direction of the nozzles with respect to the mounting openings of the chip-like containers arranged corresponding to the nozzle arrangement pattern, for example, the distance from the reference horizontal plane set in the nozzle head is the largest.
  • the outer peripheral protrusions of the nozzles belonging to the large first nozzle group first reach a state where they are in close contact with or in contact with the inner peripheral wall surface of the chip-like container. Until this state is reached, the resistance force received by the nozzle from the tip-shaped container is 0 or very small. However, when this state is reached, the outer peripheral projection is caused by a collision with the inner peripheral wall surface or a static frictional force. Suspension or insertion speed is drastically reduced due to resistance. When this resistance force is overcome and the insertion into the nozzle proceeds, the insertion operation continues while receiving a resistance force due to a dynamic friction force smaller than the resistance force.
  • the initial resistance force received by the nozzle is proportional to the product of the number of nozzles, the coefficient of static friction, and the drag in the normal direction acting between the outer peripheral protrusion and the inner peripheral wall surface.
  • the movement of the nozzle head in the insertion direction is continued, it relates to a resistance force having a magnitude using a dynamic friction coefficient instead of the static friction coefficient.
  • the dynamic friction coefficient is smaller than the static friction coefficient
  • the resistance force based on the dynamic friction coefficient is smaller than the resistance force based on the static friction coefficient / J.
  • the outer peripheral protrusion is brought into close contact with or in contact with the inner peripheral wall surface of the tip-shaped container. Buy until. Then, as described above, the number of nozzles belonging to the second nozzle group, the collision between the outer peripheral protrusion and the inner peripheral wall surface, or the coefficient of static friction and the normal line between the outer peripheral protrusion and the inner peripheral wall surface.
  • the resistance force proportional to the product of the directional force is added to the resistance force corresponding to the dynamic friction coefficient of the first nozzle group, and the nozzle head receives the resistance force.
  • liquid storage section group that can store or store various liquids on the stage on which the chip-shaped container storage section is installed.
  • Various liquids include liquids containing various reagents, specimens, chemical substances, or magnetic substances.
  • the two or more outer peripheral protrusions provided on the nozzle are formed such that the outer peripheral length of the outer peripheral protrusion on the front end side is shorter than the outer peripheral length of the outer peripheral protrusion on the rear end side.
  • the chip mounting type integrated processing device is provided with an inner peripheral wall surface in close contact with or in contact with the outer peripheral protrusion corresponding to the outer peripheral protrusion.
  • the two or more outer peripheral protrusions are provided apart from each other, and the inner peripheral wall surface that is in close contact with or in contact with the outer peripheral protrusions is provided, for example, in the axial direction of the container. It has a peripheral cylindrical wall surface (the cross-sectional shape perpendicular to the axial direction is the same), and a taper surface or a step surface is formed between the inner peripheral cylindrical wall surfaces, or in close contact with two or more outer peripheral protrusions Or there is a tapered surface that comes into contact.
  • the inner peripheral wall surface includes a plurality of inner peripheral cylindrical wall surfaces provided to be spaced apart from each other corresponding to the outer peripheral protrusion, and each inner peripheral cylindrical wall surface is
  • the chip mounting type integrated processing apparatus is provided in close contact with or in contact with the outer peripheral protrusion and provided with a tapered taper surface connected to the inner peripheral cylindrical wall surface on the rear end side of the inner peripheral cylindrical wall surface.
  • a taper surface that expands outward is formed at the rear end of the mounting opening. It is preferable that the edge on the front end side of the tapered surface is continuously connected to the edge on the rear end side of the inner peripheral cylindrical wall surface! [0030] Similarly, with respect to the tapered surface provided between the adjacent inner peripheral cylindrical wall surface on the front end side and the inner peripheral cylindrical wall surface on the rear end side, the front end edge of the tapered surface is the front end side. It is preferable to continuously connect the rear end edge of the inner peripheral cylindrical wall surface and continuously connect the rear end edge of the tapered surface to the front end edge of the inner peripheral cylindrical wall surface on the rear end side.
  • the nozzle is provided with two outer peripheral protrusions spaced apart from each other in the axial direction, and the outer peripheral length of the outer peripheral protrusion on the front end side is shorter than the outer peripheral length of the outer peripheral protrusion on the rear end side.
  • the mounting opening of the chip-shaped container is in close contact with or in contact with the inner peripheral cylindrical wall surface in contact with the outer peripheral protrusion on the front end and the outer peripheral protrusion on the rear end.
  • the rear end side inner peripheral cylindrical wall surface is spaced from the front end side inner peripheral cylindrical wall surface and between the rear end side inner peripheral cylindrical wall surface and the rear end side inner peripheral cylindrical wall surface. It is preferable that a tapered surface be formed on the end side.
  • the moving means belongs to at least the nozzle group after each nozzle of the nozzle head has reached a position where it can be inserted into the mounting opening of the chip-like container.
  • Tip mounting that relatively moves between the nozzle head and the tip-shaped container housing portion so that each nozzle is inserted into the mounting opening based on the nozzle structure and the number of nozzles belonging to each nozzle group This is an integrated processing apparatus.
  • Such movement of the moving means is controlled by the control unit.
  • the control unit further controls the movement between the nozzle head and the chip-shaped container housing unit, further the number or structure of the chip-shaped container, the liquid to be sucked and discharged, the substance contained therein, the amount thereof, It can be controlled based on its storage position, its temperature or its concentration, processing details, or instructions.
  • Substances include various chemical substances including not only biological substances such as nucleic acids, proteins, sugar chains and amino acids but also metals.
  • the fifth aspect of the present invention has a detaching part that detaches the chip-like containers attached to the nozzles all at once, and the detaching part is larger than the maximum outer diameter or maximum width of the horizontal cross section of the nozzle.
  • a desorption plate in which holes or gaps having a diameter or width smaller than the maximum outer diameter or maximum width of the horizontal cross section of the chip-shaped container are formed in accordance with the predetermined arrangement pattern, So
  • the plate surface of the nozzle is provided in parallel to the predetermined reference horizontal plane, and is movable relative to the nozzle along the axial direction of the nozzle so that the axis of the nozzle passes through the hole or the gap. It is the provided chip-shaped container.
  • the “maximum outer diameter or maximum width” is the largest of the outer diameters or widths of the horizontal cross section perpendicular to the axial direction existing in the nozzle or the tip-like container.
  • the “hole” is a closed gap that is formed so as to surround the normal direction of the desorption plate provided for each nozzle, and the nozzle can be inserted into the hole from the normal direction of the desorption plate.
  • the “gap” is a gap provided in the desorption plate and opened in the lateral direction of the desorption plate, and the nozzle can be inserted into the gap from the normal direction of the desorption plate and from the portion opened in the lateral direction.
  • Diameter corresponds to a circumferential shape
  • Width corresponds to something other than a circumferential shape.
  • the nozzle is stopped and the desorption plate is moved downward from the upper side of the chip-like container.
  • the desorption plate is fixed and the nozzle is fixed.
  • the desorption plate may be supported by the nozzle head and provided so as to be movable along the axial direction of the nozzle with respect to the nozzle head.
  • the detachable plate is fixedly provided on the stage provided with the chip-shaped container housing portion, and a gap is formed in the detachable plate, and the nozzle is located on the side of the gap of the detachable plate.
  • the tip container may be detached from the nozzle by raising the nozzle head by the moving means.
  • holes are formed so as to have the same arrangement pattern as the predetermined arrangement pattern, for example, the same number of rows, the same number of columns and the same row spacing, column spacing,
  • An array pattern corresponding to the array pattern for example, a plurality of rows (or rows) of long holes along the column direction (or row direction), and the nozzles of the number of rows or the number of columns) In some cases, it is formed so that it can be inserted.
  • a sixth invention is a substantially cylindrical cylindrical container capable of containing a liquid therein, and protrudes outward along one or two or more closed outer peripheral bands spaced apart from each other in the axial direction.
  • a mounting opening that can be attached to a nozzle having one or more outer peripheral projections, and a mouth that is provided at the tip of the container and allows the fluid to enter and exit by suction and discharge of gas through the nozzle.
  • the opening for mounting is mounted in front of the nozzle by mounting to the nozzle.
  • It is a chip-like container having an inner peripheral wall surface that is in close contact with or in contact with the outer peripheral protrusion, and a tapered tapered surface that is provided on the rear end side of the inner peripheral wall surface and is connected to the inner peripheral wall surface.
  • the inner peripheral wall surface corresponds to one or more outer peripheral protrusions projecting outward along two or more closed outer peripheral bands spaced apart from each other in the axial direction of the nozzle.
  • the inner peripheral length of the inner peripheral cylindrical wall surface is shorter than the inner peripheral length of the inner peripheral cylindrical wall surface on the rear end side, and a tapered taper surface is formed on the rear end side of the inner peripheral cylindrical wall surface.
  • the outer peripheral length of the outer peripheral protrusion on the front end side is formed shorter than the outer peripheral length of the outer peripheral protrusion on the rear end side, and the inner peripheral cylindrical shape This corresponds to the inner circumference of the wall.
  • the two outer peripheral protrusions provided in the nozzle and spaced apart from each other in the axial direction have an outer peripheral length of the outer peripheral protrusion on the front end side and an outer peripheral protrusion on the rear end side.
  • the opening for mounting of the chip-like container can be in close contact with or in contact with each of the outer peripheral projections, and is provided spaced apart in the axial direction of the container.
  • the inner circumferential length of the inner circumferential cylindrical wall surface of the tip end side is shorter than the inner circumferential length of the rear inner circumferential cylindrical wall surface.
  • a tapered taper surface is formed between the end side and rear end side inner peripheral cylindrical wall surface and the front end side inner peripheral cylindrical wall surface.
  • the tip end side of the nozzle is in close contact with the outer peripheral protruding portion, and the rear end side inner peripheral cylindrical wall surface is a tip-shaped container that comes into contact with the outer end protruding portion on the rear end side.
  • one or more nozzles having one or more outer peripheral protrusions projecting outward along two or more closed outer peripheral bands spaced apart from each other in the axial direction;
  • Nozzle head in which nozzles are arranged in a predetermined arrangement pattern, suction / discharge mechanism that performs suction / discharge of gas through the nozzle, mounting opening that can be attached to the nozzle, and suction / discharge of the gas provided at the tip
  • Two or more substantially chip-shaped containers having a mouth portion through which fluid can be entered and exited, and a chip-shaped container in which the chip-shaped containers are arranged in the predetermined arrangement pattern and can be attached to the nozzles
  • An accommodating portion and a moving means for moving the nozzle head relative to the tip-shaped container accommodating portion, provided on the nozzle head.
  • the outer peripheral protrusions of the nozzles are in close contact with or in contact with the inner peripheral wall surface of the mounting opening by mounting the tip-shaped container, and the outer peripheral protrusions are in a predetermined reference horizontal plane.
  • a plurality of types of nozzle groups having different distances from the outer peripheral projection to each other, and each nozzle of the nozzle head is placed in the mounting opening of the tip-like container accommodated in the tip-like container accommodation portion.
  • the tip mounting type integrated processing method includes a step of moving the nozzle head to a position where it can be inserted, lowering the nozzle head, and mounting the tip-shaped container on each nozzle of the nozzle head.
  • the lowering of the nozzle head is preferably performed based on at least the structure of the nozzles belonging to each nozzle group and the number of nozzles belonging to each nozzle group. As a result, it can be mounted with an optimum force.
  • a tenth aspect of the invention has a detaching part for detaching the chip-like containers attached to the nozzles all at once, and the detaching part is larger than the maximum outer diameter or the maximum width of the horizontal cross section of the nozzle.
  • a desorption plate provided with holes or gaps having a diameter or width smaller than the maximum outer diameter or maximum width of the chip-like container according to the predetermined arrangement pattern, the plate surface of the desorption plate having the predetermined surface
  • the nozzle is mounted in parallel with a reference horizontal plane and is moved relative to the nozzle along the axial direction of the nozzle so that the axis of each nozzle passes through the hole or the gap.
  • a chip mounting type integration processing method including a step of detaching the chip container.
  • the sixth invention two or more nozzles belonging to a plurality of nozzle groups are provided in the nozzle head, thereby providing a space between all the nozzles and all the chip-like containers.
  • a large force corresponding to the sum of the resistance forces based on the static friction force is dispersed to the number of times corresponding to the number of groups of the nozzle group, whereby the nozzle Reduce the maximum force applied to the head, reduce the force applied to each outer protrusion, prevent wear of each outer protrusion, and reduce operating costs
  • the life of the apparatus can be extended, and thereby product management can be facilitated.
  • the outer peripheral lengths of the plurality of outer peripheral protrusions are shortened toward the tip.
  • an inner peripheral wall surface that is in close contact with or in contact with the outer peripheral protrusion of the nozzle is provided.
  • a tapered surface By forming a tapered surface on the rear end side, insertion of the nozzle into the mounting opening of the tip-shaped container can be facilitated. Further, it is preferable that the tip of the nozzle is also tapered.
  • the force to be applied to the nozzle head in advance is obtained based on the structure of the nozzles belonging to the nozzle group and the number of nozzles belonging to each nozzle group. Can apply an appropriate amount of force and polish the outer peripheral protrusion more than necessary. Wear can be prevented and the life of the apparatus can be extended.
  • the fifth invention or the tenth invention by providing a predetermined hole or gap in the detachable plate as the detachable portion, and providing the movably between the nozzle and the detachable plate, With a simple configuration, it is possible to remove and install the nozzle tips attached to the nozzles in a batch and reliably. Further, since the desorption plate is provided in parallel to the predetermined reference horizontal plane, a large force corresponding to the sum of the resistance forces based on the static friction force is applied when the chip-like container is attached to or detached from the nozzle.
  • FIG. 1 schematically shows a chip-mounted integrated processing apparatus 10 according to an embodiment of the present invention.
  • the chip-mounted integrated processing apparatus 10 includes a total of 96 substantially cylindrical nozzles 14a, 14b, 14c, 14d, and a nodule 14a, 14b, 14c, 14d arranged in a matrix of 12 rows by 8 columns.
  • the nozzle heads 12 arranged so as to protrude downward from the nozzle array plate 20 having the predetermined reference horizontal surface on the lower surface, and suction / discharge mechanisms (16, 18, 18) for sucking and discharging gas through the nozzles 22, 24, 26, 28, 30) and a moving means (34, 36, 38, 40) for moving the nozzle head 12 relative to the chip housing portion.
  • a dispensing chip as a chip-shaped container mounted on the nozzles 14a, 14b, 14c, 14d, and the dispensing chip are arranged in the array. It has a chip accommodating part as a chip-like container accommodating part to be described later, which is arranged according to the pattern and accommodates the nozzles 14a, 14b, 14c, 14d in a state where it can be mounted.
  • the suction / discharge mechanism (16, 18, 22, 24, 26, 28, 30) (The above-mentioned nose and nore head 12 ⁇ are arranged in a matrix of 12 rows by 8 columns of the array pattern.
  • 96 cylinders 16 arranged in a pattern and communicating with the above-mentioned Noznoles 14a, 14b, 14c, 14d, respectively, and the cylinders 16 96 rods 18 for driving a plunger (not shown) slidably inserted therein, a rod driving plate 22 for connecting the 96 rods, and the rod driving plate 22
  • the rod driving plate 22 is connected to the two columnar actuators 24 for driving the rods in the vertical direction (Z-axis direction) at the same time, and the actuators 24, and the actuators 24 are moved in the vertical direction.
  • the nozzle head support 32 supports the suction / discharge motor 30 and the nozzle array plate 20 and supports the actuator 24 so as to be movable up and down.
  • the moving means (34, 36, 38, 40) includes a ball screw that rotationally drives the nozzle head 12 in the X-axis direction (row direction of the array pattern) by an X-axis motor (not shown).
  • a Y-axis drive mechanism having a ball screw that is rotationally driven by an X-axis drive mechanism (not shown) and a Y-axis motor (not shown), and driving in the Y-axis direction (column direction of the array pattern) (Not shown), a frame 33 that is movable in the X-axis direction and the Y-axis direction, and a ball screw 34 that is rotatably supported by the frame 33 and extends in the vertical direction (Z-axis direction); A nut that engages with the ball screw 34 and is connected to the nozzle head support 32 and translates the nozzle head support 32 and thus the nozzle head 12 upward and downward by rotation of the ball screw 34.
  • the apparatus includes a control unit for controlling the moving means, the suction / discharge mechanism, and the like.
  • the control unit includes, for example, an information processing device including a CPU and a memory, a data input device such as a mouse and a keyboard, a display device such as a liquid crystal panel, a data output device such as a printer, a communication means, or a CD, DVD, flexible disk, etc.
  • the external memory drive device includes, for example, an information processing device including a CPU and a memory, a data input device such as a mouse and a keyboard, a display device such as a liquid crystal panel, a data output device such as a printer, a communication means, or a CD, DVD, flexible disk, etc.
  • the external memory drive device includes, for example, an information processing device including a CPU and a memory, a data input device such as a mouse and a keyboard, a display device such as a liquid crystal panel, a data output device such as a printer, a communication means, or a
  • FIG. 2 is a plan view of the nozzle array plate 20 provided in the nozzle head 12 as viewed from below.
  • the lower surface of the nozzle array plate 20 corresponds to the predetermined reference horizontal plane.
  • Each of the 96 nozzles 14a, 14b, 14c, and 14d employs 24 nozzles each belonging to four types of nozzle groups, which will be described later, and has an array pattern of 12 rows x 8 columns.
  • the first nozzle group has an order determined according to the distance or length between the outer peripheral protrusion on the tip side, which will be described later, and the predetermined reference horizontal plane, that is, the length is alternately increased or decreased.
  • the number of nozzles belonging to each nozzle group is 24.
  • the resistance force that the entire nozzle head 12 receives from the entire dispensing tip 46 is dispersed as much as possible.
  • the nozzles 14b belonging to the second nozzle group are arranged in the third row and the seventh row, twelve in the third row and in the third row.
  • No. 14 nozzles belonging to No. 4 are arranged in 12 rows in the 2nd row and 6th row, and 24 nozzles 14d belonging to the No. 4 nozzle group are arranged in 12 rows in the 4th row and 8th row. There is a case.
  • FIG. 3 schematically shows the nozzle head 12 and 96 dispensing tips 46 of the same shape that can be attached to the nozzles 14a, 14b, 14c, and 14d of the nozzle head 12. That is, the chip accommodating portion 42 that is horizontally arranged in a matrix of 12 rows ⁇ 8 columns and accommodated in the state where it can be attached to the nozzles 14a, 14b, 14c, 14d is shown.
  • the tip accommodating portion 42 includes an upper plate 44 having 96 through holes arranged in an array pattern of 12 rows x 8 columns for inserting and supporting the dispensing tips 46, and
  • the four columns 48 having a height capable of supporting the upper plate 44 horizontally at the four corners of the upper plate 44 and supporting the dispensing tips 46 through the through holes of the upper plate 44, and the columns In its four corners, it has a lower plate 50 for supporting it upright.
  • the size of the through hole is such that the main body of the dispensing tip 46 (a thick tube portion 62, a thin tube portion 66 and a transition portion 68 described later) can be inserted, but a plurality of protrusions provided at the upper end are formed.
  • the formed ridge forming portion 47 is formed in a size that cannot be inserted.
  • a microplate (not shown) in which various liquids are accommodated or wells that can be accommodated are arranged in the arrangement pattern! / FIG. 4 shows a state in which the nozzle head 12 and the chip accommodating portion 42 are looked up from below.
  • Each of 96 noses and nores 14a, 14b, 14c, and 14d is passed through 96 nozzle support members 51 having the same shape from the reference horizontal plane that is the lower surface of the nozzle arrangement plate 20 of the nose and nore head 12. It is provided so as to protrude vertically downward.
  • FIG. 5 shows a state in which the dispensing tip 46 is attached to the nozzles 14 a, 14 b, 14 c, 14 d provided on the nozzle head 12.
  • FIG. 6 shows a state where the dispensing tip 46 is attached to one kind of nozzle 14 a provided in the nozzle head 12.
  • the nozzle 14a protrudes from the lower surface of the nozzle array plate 20 of the nozzle head 12, and the lower side of the nozzle support member 51 in which a cylindrical channel 51a communicating with the nozzle 14a is provided in the center. It is provided in connection with.
  • the nozzle 14a protrudes at a certain height outwardly with respect to the main body 56a along a cylindrical main body 56a and an annular outer peripheral band that is closed so as to surround the axis of the nozzle, and mutually in the axial direction. It has a rear end side outer peripheral protrusion 52a and a front end side outer peripheral protrusion 54a which are provided apart from each other.
  • the width of the outermost edge of the outer peripheral projection is narrower than the width of the outer peripheral band on the outer peripheral surface.
  • the front end side outer peripheral protrusion 54a is formed to have a shorter outer peripheral length than the rear end side outer peripheral protrusion 52a.
  • the tip 58a of the nozzle 14a has a taper surface tapered toward the tip 58a of the nozzle 14a on the lower side of the outer peripheral protrusion 54a.
  • the dispensing tip 46 attached to the nozzle 14a is formed in a substantially cylindrical shape as a whole, is provided at the rear end thereof, and is attached to or attachable to the nozzle 14a (or 14b, 14c, 14d).
  • An opening for mounting 60, a port 64 provided at the tip, and capable of entering and exiting fluid by suction and discharge of the gas by the nozzle 14a (or 14b, 14c, 14d), and the opening 60 for mounting A thick tube portion 62 provided on the upper side, the mouth portion 64 is provided at the lower end, and is formed to be narrower than the thick tube portion 62, and has a substantially tapered thin tube portion 66, and the thick tube portion 62 and the thin tube portion. 66 and a funnel-shaped transition portion 68 provided between them.
  • the mounting opening 60 is provided at a distal end inner circumferential cylindrical wall surface 72 that is in close contact with the distal end outer circumferential projection 54a, and spaced from the distal end inner circumferential cylindrical wall surface 72.
  • a tapered surface 76 that is tapered downward is formed between the cylindrical wall surface 70 and a tapered surface 74 that is tapered downward is also formed on the rear end side of the inner peripheral cylindrical wall surface 70 of the rear end side.
  • there is a ridge forming portion 47 provided with a plurality of ridges along the axial direction.
  • FIG. 7 shows a case where the same type of dispensing tip 46 is attached to each of the nozzles 14 &, 1413, 14 and 14 (1) belonging to the four types of nozzles of the nozzle head 12.
  • FIG. 7 shows a nozzle 14a belonging to the first nozzle group to which the dispensing tip 46 is attached, a nozzle 14b belonging to the second nozzle group, a nozzle 14c belonging to the third nozzle group, and a fourth nozzle. Belong to a group
  • the distances from the lower surface of the nozzle array plate 20 to the rear end side outer peripheral projections 52a, 52b, 52c, 52d as the predetermined reference horizontal plane are U, U, U, U, respectively, and from the lower surface to the tip side. If the distances to the outer protrusions 54a, 54b, 54c, 54d are L, L, L, and L, respectively, abed
  • front end side outer peripheral protrusions 54a, 54b, 54c, 54d are not only the front end side inner peripheral cylindrical wall surface 72, but the rear end side outer peripheral protrusions 52a, 52b, 52c, 52d are the rear end side.
  • FIG. 1, FIG. 2, FIG. 3, and FIG. It is moved upward using an X-axis drive mechanism (not shown) and a Y-axis drive mechanism (not shown) of the moving means.
  • the Z-axis motor 40 and the ball screw 43 are driven to lower the nozzle head support 32 and the nozzle head 12 all at once toward the chip housing portion 42.
  • the outer peripheral protrusions of any one of the nozzles 14a, 14b, 14c, 14d come into contact with any one of the inner peripheral cylindrical wall surfaces of the dispensing tip 46, these nozzles, and therefore the nozzle head 12 is
  • the resistance force received from the dispensing tip 46 is 0 or very small.
  • the nozzles provided in the nozzle head 12 are formed of four types of nozzle groups having different distances from the reference horizontal plane to the outer peripheral protrusion, and therefore, among the nozzles 14a, 14b, 14c, and 14d,
  • the outer peripheral protrusion 54a on the tip side of the nozzle 14a belonging to the first nozzle group having the largest distance L from the reference horizontal plane first comes into contact with the inner cylindrical wall surface 72 on the tip side of the dispensing tip 46. Descent to position. Resistance based on the generation of collision and drag due to the narrowing of the distal inner cylindrical wall 72 and the static frictional force between the objects in close contact between the distal outer circumferential protrusion 54a and the distal inner cylindrical wall 72 Nozzle 14a receives force ⁇ .
  • the rear end side inner peripheral cylindrical wall surface 70 belongs to the fourth nozzle group having the largest U and the distance U from the reference horizontal plane among the nozzles 14a, 14b, 14c, 14d.
  • the resistance force due to friction is small because, for example, the state between the rear end side outer peripheral projection and the rear end side inner peripheral cylindrical shape is not a close state but a contact state, and the drag is smaller than that of the latter. Because of its small size, the friction coefficient is a combination of materials that come into contact with the presence of lubricant. It may be smaller than the latter depending on the absence or quality, surface smoothness, cleanliness, material, etc.
  • the nozzle head 12 receives a resistance force R due to a dynamic friction force smaller than the resistance force with respect to the nozzle 14b.
  • This resistance force R is related to the product 24 mN of the dynamic friction coefficient m and the normal resistance N acting between the outer peripheral projection and the inner peripheral cylindrical wall surface. Therefore, as described above, the resistance force based on the dynamic friction coefficient is smaller than the resistance force based on the static friction coefficient.
  • p is the resistance force that one nozzle 14d receives based on the collision or static friction coefficient) d d
  • the nozzle head 12 receives the force.
  • 96 dispensing tips 46 are attached to the respective nozzles 14a, 14b, 14c, 14d of the nozzle head 12.
  • the force p received by one nozzle is related to the resistance force based on the collision or static friction coefficient, that is, mN, and
  • FIGS. 9 to 11 schematically show chip-mounted integrated processing apparatuses 100 and 110 according to the second and third embodiments of the present invention.
  • the attachment / detachment portion 11 of the chip mounting integrated processing apparatus 100 according to the second embodiment shown in FIG. 9 is supported by the nozzle head 12 and a total of 96 front parts provided on the nozzle head 12 are provided.
  • the detaching plate 15 provided so as to be relatively movable with respect to the nozzles 14a, 14b, 14c, 14d is a plate surface fi with respect to the nozzle array plate 20 corresponding to a predetermined reference horizontal plane of the nozzle head 12. In the lower part J of the IJ plate 20 to each noss, nore 14a, 14b, 14c, 14d It is located above the dispensing tip 46 to be installed. Therefore, the detaching plate 15 is moved to this position before the dispensing tip 46 is attached.
  • the detaching plate 15 of the detachable portion 11 is more than the rear end side outer peripheral protrusions 52a, 52b, 52c, 52d corresponding to the maximum outer diameter of the horizontal cross section of the nozzles 14a, 14b, 14c, 14d. Is it larger than the ridge formation of the opening 60 for mounting corresponding to the maximum width of the dispensing tip 46 as the tip-shaped container? L13 force Noss, Noles 14a, 14b, 14c, 14d are arranged in the nozzle arrangement plate 20, that is, a matrix of 12 rows x 8 columns, and formed in the nozzle arrangement plate 20. It is formed with the same row spacing and column spacing.
  • the detaching plate 15 is provided in parallel to the nozzle array plate 20 corresponding to the predetermined reference horizontal plane, and the axes of the nozzles 14a, 14b, 14c, 14d pass through the holes 13 by a moving mechanism (not shown). Thus, it is provided so as to be movable with respect to the nozzle along the axial direction of the nozzle.
  • the detachable portion 111 of the chip mounting type integrated processing apparatus 110 according to the third embodiment shown in FIGS. 10 and 11 is fixedly provided on the stage on which the chip accommodating portion 42 is provided.
  • a desorption plate 19 formed in a comb shape and a support plate 21 for supporting the desorption plate 19 on a stage are provided.
  • the plate surface of the detachable plate 19 is provided parallel to the nozzle array plate 20 corresponding to a predetermined reference horizontal surface of the nozzle head 12.
  • Reference numeral 17 denotes an opening of a tip accommodating portion that is embedded in the stage and accommodates the dispensing tip 46.
  • the detaching plate 19 of the detachable portion 111 is more than the rear end side outer peripheral protrusions 52a, 52b, 52c, 52d corresponding to the maximum outer diameter of the horizontal section of the nozzles 14a, 14b, 14c, 14d.
  • a plurality of gaps (12 in this example) having a width smaller than that of the protrusion forming portion 47 of the mounting opening 60 corresponding to the maximum width of the dispensing tip 46 as the tip-shaped container is large.
  • a plurality of comb-tooth members 23 (11 in this example) sandwiched between one side and the other of the detachable plate 19 are arranged in the nozzle array plate 20, that is, 12 rows.
  • the detaching plate 15 is provided in parallel to the nozzle array plate 20 corresponding to the predetermined reference horizontal plane.
  • the nozzles 14a, 14b, 14c and 14d pass through the holes 13 by a moving mechanism (not shown).
  • the nozzle head 12 is moved by the moving means, and the nozzle nose is moved. 14a, 14b, 14c, and 14d forces are inserted by moving in the row direction into the gaps of the detachable plate 19 above the mounted dispensing tips 46.
  • the moving means applies a force along the direction in which the dispensing tip 46 is detached from the nozzle, that is, the nozzle head 12 is directed upward, along the axial direction of the nozzle or dispensing tip. In addition, it is configured to chop off.
  • the nozzle mainly has two outer peripheral protrusions, and is in contact between the upper outer peripheral protrusion and the upper inner peripheral wall surface, and the lower outer peripheral protrusion and the lower outer peripheral protrusion are in contact with each other.
  • the case of close contact with the inner peripheral wall surface has been described.
  • the present invention is not limited to this case. For example, when one or three outer peripheral protrusions are provided in one nozzle, or the upper outer peripheral protrusion is provided. It may be a case where it is in close contact with the upper inner wall surface.
  • the tip-shaped container is not limited to the above-described one, and may have a step at the transition part or a step other than the transition part. Further, instead of a dispensing tip, a particulate, block, elongated, or wound carrier may be enclosed in a tip-like container.
  • the arrangement pattern is not limited to the case of 12 rows ⁇ 8 columns.
  • a short tube having a smaller diameter such as stainless steel may be further fitted into the mouth portion of the thin tube of the chip-shaped container to increase the dispensing accuracy.
  • the chip-mounted integrated processing apparatus, chip-shaped container, and chip-mounted processing method according to the present invention include fields requiring processing of various solutions, such as industrial fields, foods, agricultural products, and fishery processing. In the fields of agriculture, pharmaceuticals, hygiene, insurance, immunity, disease, genetics, etc., and chemical and biology fields.
  • the present invention is particularly effective when a series of processes using a large number of reagents and substances are continuously performed in a predetermined order.
  • FIG. 1 is a perspective view showing a chip mounting type integrated processing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a surface view showing a nozzle arrangement pattern of the nozzle head according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view schematically showing a nozzle head and a chip accommodating portion according to the first embodiment of the present invention.
  • FIG. 4 is a perspective view schematically showing a nozzle head and a chip accommodating portion according to the first embodiment of the present invention.
  • FIG. 5 is a perspective view showing a chip mounting type integrated processing apparatus in which a dispensing chip according to the first embodiment of the present invention is mounted on a nozzle.
  • FIG. 6 is a partially cutaway view showing a dispensing tip according to the first embodiment of the present invention.
  • FIG. 7 is a partially cutaway view when a dispensing tip is attached to four types of nozzles belonging to each nozzle group according to the first embodiment of the present invention.
  • FIG. 8 shows the amount of insertion and resistance of the nozzle into the dispensing tip according to the first embodiment of the present invention.
  • FIG. 9 shows the chip-mounted integrated processing device according to the second embodiment of the present invention.
  • Nozzle head It is a perspective view which shows typically the provided removal
  • FIG. 10 is a perspective view schematically showing an attaching / detaching portion provided on a stage of a chip mounting type integrated processing apparatus according to a third embodiment of the present invention.
  • FIG. 11 is a perspective view schematically showing an attaching / detaching portion provided on a stage of a chip mounting integrated processing apparatus according to a third embodiment of the present invention.
  • Chip container (chip-shaped container container)

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Provided is a chip mounting type integration processing apparatus which smoothly performs batch mounting operation for mounting a plurality of chips on a plurality of nozzles at one time. A chip-shaped container and a chip mounting type integration processing method are also provided. The chip mounting type integration processing apparatus is provided with the nozzles each of which has one or more outer circumference protruding sections which protrude outward; a nozzle head wherein two or more nozzles are arranged in a prescribed arrangement pattern; a sucking/discharging mechanism; two or more substantially tube-like chip-shaped containers having a mounting opening section and a port arranged at the leading end for permitting a fluid to flow in and out; a chip-shaped container storing section wherein the chip-shaped containers are stored or to be stored in a state where the chip-shaped containers can be mounted on the nozzles in the prescribed arrangement pattern; and a shifting means for relatively shifting the containers between the nozzle heads and the chip-shaped container storing section. The two or more nozzles arranged on the nozzle head are so configured that the outer circumference protruding section arranged on each nozzle by mounting the chip-shaped container is brought into contact or close contact with the inner circumference wall surface of the mounting opening section and that distances from the prescribed reference horizontal surface to at least one outer circumference protruding section are different from each other.

Description

明 細 書  Specification
チップ装着式集積処理装置、チップ状容器、およびチップ装着式集積処 理方法  Chip-mounted integrated processing apparatus, chip-shaped container, and chip-mounted integrated processing method
技術分野  Technical field
[0001] 本発明は、チップ装着式集積処理装置、チップ状容器、およびチップ装着式集積 処理方法に関するものである。  The present invention relates to a chip mounting type integrated processing apparatus, a chip-shaped container, and a chip mounting type integrated processing method.
背景技術  Background art
[0002] 従来、本出願の発明者の一人により発明され特許となった分注装置があった。該分 注装置は、分注チップを装着用開口部においてノズルの下端に嵌合により装着し、 該ノズルと連通するシリンダ内のプランジャを摺動させることによって、前記分注チッ プ内にその下端を通って液体を吸引または吐出させることによって行っていた(特許 文献 1乃至特許文献 4)。  Conventionally, there has been a dispensing device that was invented and patented by one of the inventors of the present application. In the dispensing device, the dispensing tip is fitted to the lower end of the nozzle in the mounting opening by fitting, and the lower end of the dispensing tip is moved into the dispensing chip by sliding the plunger in the cylinder communicating with the nozzle. This is done by sucking or discharging the liquid through (Patent Document 1 to Patent Document 4).
[0003] これらの分注装置には、吸引吐出機構としてプランジャを駆動させるシリンダを用い ているが、プランジャ等の機構は、注射器のような高精度の加工部品であり、特に、シ リンダ内の容積変化は、基本的に分注チップ内の容積変化と一体であり、プランジャ と、そのプランジャの駆動装置との接合部に緩みがないように伝達する必要がある。 さらに、それらの吸引吐出機構のノズルと、分注チップ等を、気体や液体の漏れがな いように嵌合させる必要があり、製造や品質管理に水密および気密のための精度や 構造が要求される。特に、複数本の分注チップを集積化して用いる場合に、複数本 のノズルを一斉に複数本の分注チップに揷入嵌合させて装着するために大きな力、 例えば、 1本のノズルに分注チップを装着するのに約 1キログラムの力が必要なので、 96本の場合には、約 100キログラムに近い力を必要とし、水密および気密用の Oリン グの磨耗が激しく高度の品質管理が必要となるおそれがあるという問題点を有してい た。  [0003] In these dispensing devices, a cylinder for driving a plunger is used as a suction / discharge mechanism, but the mechanism such as a plunger is a high-precision machined part such as a syringe, and particularly in a cylinder. The volume change is basically integral with the volume change in the dispensing tip, and needs to be transmitted so that there is no looseness in the joint between the plunger and the drive device of the plunger. In addition, it is necessary to fit the nozzles of these suction and discharge mechanisms and dispensing tips so that there is no leakage of gas or liquid. Manufacturing and quality control require precision and structure for watertightness and airtightness. Is done. In particular, when a plurality of dispensing tips are used in an integrated manner, a large force is required to insert and fit a plurality of nozzles into a plurality of dispensing tips all together, for example, one nozzle. Since approximately 1 kilogram of force is required to install a dispensing tip, 96 devices require a force close to approximately 100 kilograms, and the O-ring for watertightness and airtightness is severely worn and high quality control is required. However, there was a problem that there was a risk that it would be necessary.
[0004] 特許文献 1 :特許第 3115501号公報  [0004] Patent Document 1: Japanese Patent No. 3115501
特許文献 2:特許第 3739953号公報  Patent Document 2: Japanese Patent No. 3739953
特許文献 3:特許第 3630497号公報 特許文献 4:特許第 3682302号公報 Patent Document 3: Japanese Patent No. 3630497 Patent Document 4: Japanese Patent No. 3682302
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] そこで、本発明の第 1の目的は、複数本のチップ状容器の複数本のノズルへの一 斉嵌合、一斉装着動作を円滑に行うことができるチップ装着式集積処理装置、チッ プ状容器およびチップ装着式集積処理方法を提供することである。第 2の目的は、高 ぃ水密性、気密性をもたせることで信頼性が高ぐまた装置寿命が長く品質管理の負 担が小さ!/、チップ装着式集積処理装置、チップ状容器およびチップ装着式集積処 理方法を提供することである。第 3の目的は、複数の処理を集積化することを可能に して、効率が高ぐ迅速な処理を行うことができるチップ装着式集積処理装置、チップ 状容器およびチップ装着式集積処理方法を提供することである。 [0005] Therefore, a first object of the present invention is to provide a chip mounting type integrated processing apparatus and chip that can smoothly perform simultaneous fitting and simultaneous mounting operations of a plurality of chip containers to a plurality of nozzles. It is to provide a container and a chip mounting type integrated processing method. The second purpose is to provide high water-tightness and air-tightness, so that the reliability is high, the life of the equipment is long, and the burden of quality control is small! /, Chip-mounted integrated processing equipment, chip-shaped container and chip-mounted It is to provide a formula accumulation processing method. A third object is to provide a chip-mounted integrated processing apparatus, a chip-shaped container, and a chip-mounted integrated processing method capable of integrating a plurality of processes and performing a highly efficient and quick process. Is to provide.
課題を解決するための手段  Means for solving the problem
[0006] 第 1の発明は、 1またはノズルの軸方向に相互に離間した 2以上の閉じた外周帯に 沿って外向きに突出した 1または 2以上の外周突部を有するノズルと、 2以上の該ノズ ルを所定配列パターンで配列したノズルヘッドと、該ノズルを介して気体の吸引吐出 を行う吸引吐出機構と、前記ノズルに装着しまたは装着可能な装着用開口部、およ び先端に設けた前記気体の吸引吐出によって流体の入出が可能な口部を有する略 筒状の 2以上のチップ状容器と、該チップ状容器を前記所定配列パターンで前記ノ ズルに装着可能な状態で収容しまたは収容可能としたチップ状容器収容部と、前記 ノズルヘッドと前記チップ状容器収容部との間を相対的に移動させる移動手段とを有 し、前記ノズルヘッドに設けられた 2以上の前記ノズルは、前記チップ状容器の装着 によって該各ノズルに設けられた前記外周突部が前記装着用開口部の内周壁面と 密接または接触し、所定基準水平面から少なくとも 1の前記外周突部までの距離が 相互に異なる複数種類のノズル群からなるチップ装着式集積処理装置である。 [0006] The first invention includes 1 or two or more nozzles having one or more outer peripheral protrusions projecting outward along two or more closed outer peripheral bands spaced apart from each other in the axial direction of the nozzle, and two or more A nozzle head in which the nozzles are arranged in a predetermined arrangement pattern, a suction / discharge mechanism that sucks and discharges gas through the nozzle, a mounting opening that can be attached to or attached to the nozzle, and a tip. Two or more substantially cylindrical chip containers having a mouth portion through which fluid can be introduced and discharged by suction and discharge of the gas provided, and the chip containers are accommodated in a state that can be mounted on the nozzle in the predetermined arrangement pattern. Or two or more of the two or more provided in the nozzle head, each having a tip-like container accommodating portion that can be accommodated, and a moving means that relatively moves between the nozzle head and the tip-like container accommodating portion. The nozzle is the tip When the cylindrical container is mounted, the outer peripheral protrusions provided on the nozzles are in close contact with or in contact with the inner peripheral wall surface of the mounting opening, and the distance from the predetermined reference horizontal plane to at least one of the outer peripheral protrusions is different from each other. This is a chip mounting type integrated processing apparatus composed of a plurality of types of nozzle groups.
[0007] ここで、「所定配列パターン」とは、例えば、マトリクス状、一列状、円環状等である。 Here, the “predetermined arrangement pattern” is, for example, a matrix shape, a single row shape, an annular shape, or the like.
「マトリクス状」は、列方向および行方向の 2方向に沿って要素、例えば、ノズル等が 所定の行間隔および列間隔で各々所定の行数個および列数個配列された構造をい う。なお、前記列方向および行方向は、通常、直交しているが必ずしもこれに限定さ れず斜交していても良い。「ノズル」とは、流体の吸引吐出がなされる部分であって、 流体には、気体および液体を含む。ノズルは、例えば、プランジャを有するシリンダ等 の「吸引吐出機構」と連通した流路である。なお、「吸引吐出」とは、吸引または/お よび吐出を意味する。 The “matrix” refers to a structure in which elements, for example, nozzles and the like are arranged in a predetermined number of rows and a number of columns at predetermined row intervals and column intervals along two directions of the column direction and the row direction. The column direction and the row direction are usually orthogonal, but not necessarily limited thereto. It may be crossed. The “nozzle” is a portion where fluid is sucked and discharged, and the fluid includes gas and liquid. The nozzle is a flow path communicating with a “suction / discharge mechanism” such as a cylinder having a plunger. “Suction / discharge” means suction or / and discharge.
[0008] 「外周突部」は、ノズル軸線を囲むようにノズルの外周側面上で閉じた帯状の外周 帯に沿いかつ外周側面から外方向、半径方向または法線方向に突出するように形 成された環状の部分である。外周帯は前記ノズル軸線に垂直となる平面に挟まれる ように形成されるのが好ましい。また、外周突部の外方向に向力、う高さはノズル周囲 に一定であるように形成するのが好ましい。前記内周壁面と密接しまたは接触する外 縁部分の軸方向に沿った帯幅は、例えば、線状または前記チップ状容器の肉厚幅 等、外側面上の外周帯の幅部分に比較して小さく形成されるのが揷入上好ましい。 外周突部の外縁には、外周に沿って oリングを設け、または溝を設けて oリングを埋 設することによって、水密性、気密性を確実にするようにしても良い。  [0008] The "peripheral protrusion" is formed along a belt-like outer peripheral band closed on the outer peripheral side surface of the nozzle so as to surround the nozzle axis, and to protrude outward, radially or normal from the outer peripheral side surface. An annular portion. The outer circumferential band is preferably formed so as to be sandwiched between planes perpendicular to the nozzle axis. In addition, it is preferable that the outward force and height of the outer peripheral projection be constant around the nozzle. The band width along the axial direction of the outer edge portion that is in close contact with or in contact with the inner peripheral wall surface is, for example, compared with the width portion of the outer peripheral band on the outer surface, such as a linear or wall thickness of the chip-shaped container. It is preferable for insertion to be formed small. The outer edge of the outer peripheral protrusion may be provided with an o-ring along the outer periphery, or a groove may be provided to embed the o-ring to ensure watertightness and airtightness.
[0009] 該外周突部と内周壁面とが密接または接触することによって、前記チップ状容器内 、特に装着用開口部の空間を軸方向に仕切ることで、前記ノズルの軸線方向に沿つ た流体の通過を阻止可能とするものである。  [0009] When the outer peripheral protrusion and the inner peripheral wall surface are in close contact or in contact with each other, the space inside the tip-shaped container, in particular, the opening for mounting, is partitioned in the axial direction, thereby being aligned along the axial direction of the nozzle. The passage of fluid can be blocked.
[0010] 「密接」とは、 2つの物体が実質上隙間の無レ、状態で接することであって、この場合 には、外周突部の周全長において、内周壁面と接する状態をいい、「接触」とは、 2つ の物体が隙間の存在を許容する状態で接することであって、この場合には、外周突 部の周全長の一部において、内周壁面と接する状態をいう。したがって、「密接」の場 合は、「接触」の場合に比較して、外周突部と内周壁面との間の隙間が小さぐ揷入 の際の抵抗力が大きぐ流体の漏れがないかまたは非常に小さい。  [0010] "Closely" means that two objects are in contact with each other with substantially no gap, and in this case, the state in which the outer peripheral protrusion is in contact with the inner peripheral wall surface in the entire circumferential length. “Contact” means that two objects come into contact with each other in a state that allows the presence of a gap, and in this case, a part of the entire circumferential length of the outer peripheral protrusion is in contact with the inner peripheral wall surface. Therefore, in the case of “close”, compared to the case of “contact”, the gap between the outer peripheral protrusion and the inner peripheral wall surface is small. Or very small.
[0011] 「チップ状容器」とは、ノズルへの装着用開口部と、流体の流出入用の口部を先端 に持つ容器である。装着用開口部と口部とは、該容器の軸方向に沿って設けられる のが好ましい。該チップ状容器の材料は、例えば、ポリエチレン、ポリプロピレン、ポリ エステル、ポリスチレン、ポリビニール、アクリル等の樹脂、ゴム等の弾性体等である。 チップ状容器は透明または半透明であることが好ましい。「略筒状」であるので、略円 筒状、または略角筒状である。前記チップ状容器の大きさは、例えば、その口部から 装着用開口部に沿ったまたは軸方向の長さが数センチメートルから 10数センチメー トルで、その容積は、その長さに応じて、例えば、数マイクロリットルから数 10ミリリット ル程度である。吸引吐出量は、その容積に応じて、例えば、数マイクロリットルから数A “chip-shaped container” is a container having an opening for mounting on a nozzle and a mouth for flowing in and out of a fluid at the tip. The mounting opening and the mouth are preferably provided along the axial direction of the container. Examples of the material of the chip-shaped container include resins such as polyethylene, polypropylene, polyester, polystyrene, polyvinyl, and acrylic, and elastic bodies such as rubber. The chip-like container is preferably transparent or translucent. Since it is “substantially cylindrical”, it is substantially cylindrical or substantially rectangular. The size of the chip-like container is, for example, from its mouth The length along the mounting opening or in the axial direction is several centimeters to several tens of centimeters, and the volume is, for example, several microliters to several tens of milliliters depending on the length. The amount of suction and discharge varies depending on the volume, for example, from several microliters to several
10ミリリットル程度である。 It is about 10ml.
[0012] 前記チップ状容器は、例えば、前記装着用開口部が設けられた太管部、前記口部 を有する細管部および前記太管部と前記細管部との間に形成された移行部とを有す る典型的な分注チップに限られず、全体として、軸方向に沿って断面形状が同じチュ ーブ状であっても良い。また、前記移行部の形状として、例えば、円錐台状、漏斗状 、または段差状に形成される。また、太管および細管は、必ずしも円筒状に限られず 、角柱状、多角形状、また、円錐状、角錐状、多角錐状であっても良い。  [0012] The chip-shaped container includes, for example, a thick tube portion provided with the mounting opening, a thin tube portion having the mouth portion, and a transition portion formed between the thick tube portion and the thin tube portion. It is not limited to a typical dispensing tip having a tube shape, but may be a tube shape having the same cross-sectional shape along the axial direction as a whole. Moreover, as the shape of the transition portion, for example, a truncated cone shape, a funnel shape, or a step shape is formed. The thick tube and the thin tube are not necessarily limited to a cylindrical shape, and may be a prismatic shape, a polygonal shape, a conical shape, a pyramid shape, or a polygonal pyramid shape.
[0013] また、前記細管の先端を先細りまたは鋭利に形成することによって、試薬、検体等 を含有した溶液を予め収容してその開口部をフィルムで被覆したプレパック式の試薬 等収容容器に対して、前記細管でフィルムを突き刺すことで容器内に収容した溶液 を細管を通して吸引することができる。  [0013] In addition, by forming the tip of the capillary tube to be tapered or sharp, a prepack-type reagent storage container in which a solution containing a reagent, a specimen, or the like is previously stored and the opening is covered with a film is provided. The solution contained in the container can be sucked through the thin tube by piercing the film with the thin tube.
[0014] 該チップ状容器内に磁場を及ぼしかつ除去することが可能な磁力手段を、各チッ プ状容器の外側にくるようにノズルヘッドに設けても良い。これによつて、例えば、タン パク質、ペプチド、アミノ酸、 DNA、 RNA、オリゴヌクレオチド、糖鎖等の生体化合物 を保持した磁性体が多数懸濁する懸濁液を該変形式分注チップ内に吸引または吐 出する際に、若しくは貯留の際に磁場を内部に及ぼして該チップの内壁に吸着させ て磁性体を、従って、前記生体化合物を分離することができる。磁力手段は、例えば 、 2以上の前記チップ状容器に対して一斉に接離可能に設けた 2以上の磁石を有す るものである。  [0014] Magnetic means capable of applying and removing a magnetic field in the tip-shaped container may be provided in the nozzle head so as to be outside the respective chip-shaped containers. Thus, for example, a suspension in which a large number of magnetic substances holding biological compounds such as proteins, peptides, amino acids, DNA, RNA, oligonucleotides, sugar chains, etc. are suspended is placed in the deformable dispensing tip. When sucking or discharging, or when storing, a magnetic field can be applied to the inside and adsorbed on the inner wall of the chip to separate the magnetic substance, and thus the biological compound. The magnetic force means has, for example, two or more magnets provided so as to be able to come into contact with and separate from two or more of the tip-shaped containers at the same time.
[0015] 「装着用開口部の内周壁面」は、前記外周突部に密接または接触するように形成さ れている。したがって、例えば、筒面、円筒面、段差をもった筒面、円筒面、テーパ面 、円錐台状面、円筒状と円錐台状面との組合せ等である。  The “inner peripheral wall surface of the mounting opening” is formed so as to be in close contact with or in contact with the outer peripheral protrusion. Therefore, for example, a cylindrical surface, a cylindrical surface, a cylindrical surface with a step, a cylindrical surface, a tapered surface, a truncated cone surface, a combination of a cylindrical shape and a truncated cone surface, and the like.
[0016] 「所定基準水平面」とは、ノズルヘッドに取り付けられたノズルに設けた外周突部の 距離を定義するために設定した測定の基準となる水平面であって、例えば、前記ノズ ルヘッド内、複数のノズルが突出する面、複数のノズルを切断するような水平面、ステ ージ上等に設定された水平面である。通常、前記ノズルの軸方向に垂直な平面であ る。たとえ、同一形状のノズルであっても、ノズルヘッドに取り付けられた状態によって は、装着されたチップ状容器と外周突部の関係が異なるからである。なお、ノズルへ ッドに配列されたノズルの軸方向に沿った全長、またはノズル配列面からノズルの先 端までの距離は同一にするのが好ましい。「外周突部までの距離」は、例えば、前記 所定基準水面から該外周突部の重心、上端、下端、または所定の位置等までの距 離である。 [0016] The "predetermined reference horizontal plane" is a horizontal plane that serves as a measurement reference set in order to define the distance between the outer peripheral protrusions provided on the nozzle attached to the nozzle head. For example, in the nozzle head, The surface from which multiple nozzles protrude, the horizontal plane that cuts multiple nozzles, It is a horizontal plane set on the top of the page. Usually, it is a plane perpendicular to the axial direction of the nozzle. This is because even if the nozzles have the same shape, the relationship between the mounted chip-like container and the outer peripheral projection differs depending on the state of being attached to the nozzle head. The total length along the axial direction of the nozzles arranged in the nozzle head, or the distance from the nozzle arrangement surface to the tip of the nozzle is preferably the same. The “distance to the outer peripheral protrusion” is, for example, the distance from the predetermined reference water surface to the center of gravity, upper end, lower end, or predetermined position of the outer peripheral protrusion.
[0017] 「ノズルの軸方向に相互に離間した 2以上の閉じた外周帯に沿って外向きに突出し た 2以上の外周突部を有するノズル」の場合には、各ノズル間の 1の外周突部同士の みならず、他の外周突部についても、所定基準水平面から密接または接触可能な該 外周突部までの距離が相互に異なるノズル群からなるようにするのが好ましい。これ によって、各ノズルごとの、各外周突部と各内周壁面との間の静止摩擦力等による抵 抗力が同時に生じる事態を防止することができる。  [0017] In the case of "a nozzle having two or more outer peripheral protrusions projecting outward along two or more closed outer peripheral bands spaced apart from each other in the axial direction of the nozzle", one outer periphery between each nozzle It is preferable that not only the protrusions but also other outer peripheral protrusions are formed of nozzle groups having different distances from the predetermined reference horizontal plane to the outer peripheral protrusions that can be in close contact with or in contact with each other. As a result, it is possible to prevent a situation in which a resistance force due to a static frictional force or the like between each outer peripheral protrusion and each inner peripheral wall surface is generated simultaneously for each nozzle.
[0018] また、 1のノズルに 2以上の外周突部を有する場合には、チップ状容器の装着用開 口部の内周壁面についても、前記各外周突部に応じて、該容器の軸方向に相互に 離間した 2以上の内周筒状壁面(軸方向に垂直な断面が一定)を設け、その間をテ 一パ面ゃ段差をもった面で接続するようにしても良い。  [0018] In addition, when one nozzle has two or more outer peripheral protrusions, the inner peripheral wall surface of the opening for mounting the chip-like container also has an axis of the container according to each outer peripheral protrusion. Two or more inner peripheral cylindrical wall surfaces spaced apart from each other in the direction (the cross section perpendicular to the axial direction is constant) may be provided, and the gap between them may be a flat surface or a stepped surface.
[0019] さらに、 1のノズルに 2以上の外周突部を有する場合には、同一のノズルにおいても 、該ノズルの各外周突部とそれに対応して、密着または接触するチップ状容器の各 内周壁面との間の移動に伴う時間的位置的関係を、異ならせることが好ましい。これ によって、同一ノズルについての、各外周突部と内周壁面との間の静止摩擦力等に よる抵抗力が同時に生じる事態を防止することができる。  [0019] Further, in the case where one nozzle has two or more outer peripheral protrusions, even in the same nozzle, the outer peripheral protrusions of the nozzle and the inner portions of the chip-like containers that are in close contact with or in contact with the outer peripheral protrusions. It is preferable to vary the temporal positional relationship associated with the movement between the peripheral wall surfaces. As a result, it is possible to prevent a situation in which a resistance force due to a static frictional force or the like between the outer peripheral protrusions and the inner peripheral wall surface of the same nozzle is generated at the same time.
[0020] 複数種類のノズル群に属するノズルの配列は、前記ノズルの少なくとも 1の外周突 部と所定基準水平面との間の距離又は長さの長短が空間的に偏ることなく一様とな るように配列するのが好ましい。これによつて、装着の際に、ノズルヘッド全体がチッ プ状容器全体分注チップ全体力 受ける抵抗力をできるだけ分散した状態で受ける こと力 Sでさる。例えば、ノズル群を隣接する列ほたは行)ごとに前記距離または長さ が相互に長短となるようにし、各列(行)に属する要素については同一のノズル群に 属するノズルを配列する。さらには、行列のまたはその他の配列の隣接する要素ごと に前記距離または長さが相互に長短となるようにノズル群を変更して規則的に配列 するのが好ましい。なお、各ノズル群は少なくとも 1のノズルを有し、好ましくは各ノズ ル群に属するノズル数は同一または略同一である。これによつて、抵抗力を均等に分 散させること力 Sでさる。 [0020] The arrangement of the nozzles belonging to a plurality of types of nozzle groups is uniform without any spatial deviation in distance or length between at least one outer peripheral protrusion of the nozzle and a predetermined reference horizontal plane. It is preferable to arrange as follows. As a result, when mounting, the entire nozzle head receives the resistance force received by the entire tip of the tip-shaped container and the entire tip of the dispensing tip as much as possible. For example, the distance or length of each nozzle group is set to be longer or shorter for each adjacent column or row, and elements belonging to each column (row) are assigned to the same nozzle group. Arrange the nozzles to which they belong. Furthermore, it is preferable that the nozzle groups are changed and arranged regularly so that the distances or lengths of the adjacent elements in the matrix or in other arrangements become longer or shorter. Each nozzle group has at least one nozzle, and preferably the number of nozzles belonging to each nozzle group is the same or substantially the same. This allows the resistance S to be distributed evenly.
[0021] ここで、 1のノズルを装着用開口部内へ揷入する際に、前記各外周突部が前記各 内周壁面から受ける第 1の抵抗力は、静止摩擦係数と、外周突部と前記内周壁面の 間の法線方向の抗力との積に比例した大きさである。その後に続く第 2の抵抗力は、 動摩擦係数と、外周突部と前記内周壁面の間の法線方向の抗力との積に比例した 大きさであって、動摩擦係数は静止摩擦係数よりも一般には小さ!/、。  [0021] Here, when the one nozzle is inserted into the mounting opening, the first resistance force received by each of the outer peripheral protrusions from each of the inner peripheral wall surfaces is the static friction coefficient, the outer peripheral protrusion, The size is proportional to the product of the drag in the normal direction between the inner peripheral wall surfaces. The subsequent second resistance force is proportional to the product of the dynamic friction coefficient and the drag in the normal direction between the outer peripheral projection and the inner wall surface, and the dynamic friction coefficient is greater than the static friction coefficient. Generally small! /.
[0022] したがって、ノズルヘッドの全ノズルに一斉に前記チップ状容器を装着する場合に は次のように作動する。ノズルヘッドに設けられた 2以上の前記ノズルは、前記所定 基準水平面から前記外周突部までの距離が相互に異なる複数種類のノズル群から 形成されている。すると、前記ノズルの配列パターンに対応して配列されたチップ状 容器の装着用開口部に対しノズルの揷入方向に一斉に移動させるにつれ、例えば、 ノズルヘッドに設定した基準水平面からの距離が最も大きい第 1のノズル群に属する ノズルの外周突部が、最初に前記チップ状容器の内周壁面と密接または接触する状 態に達する。この状態に達するまでは、ノズルが前記チップ状容器から受ける抵抗力 は 0かまたは非常に小さいが、この状態に達すると、前記外周突部は、該内周壁面と の衝突または静止摩擦力による抵抗力を受けて一旦停止または揷入速度が激減す る。やがてこの抵抗力に打ち勝って、前記ノズルへの揷入が進むと、前記抵抗力より も小さい動摩擦力による抵抗力を受けながら揷入動作が継続する。ここで、前記ノズ ルが受ける最初の抵抗力は、前記ノズル数と、静止摩擦係数と、前記外周突部と前 記内周壁面の間に働く法線方向の抗力との積に比例した大きさの抵抗力に関係し、 ノズルヘッドの揷入方向への移動を続行の際には、前記静止摩擦係数に代わり動摩 擦係数を用いた大きさの抵抗力に関係する。一般には、動摩擦係数は、静止摩擦係 数よりも小さいので、動摩擦係数に基づく抵抗力は、静止摩擦係数に基づく抵抗力 より/ J、さいことになる。 [0023] やがて、前記基準水平面からの距離が次に大きい外周突部をもつ第 2のノズル群 に属するノズルについて、その外周突部が前記チップ状容器の内周壁面と密接又は 接触する状態にまで揷入する。すると、前述したように、第 2のノズル群に属する前記 ノズル数と前記外周突部と前記内周壁面との間の衝突または静止摩擦係数および 外周突部が内周壁面との間の法線方向の力との積に比例した大きさの抵抗力が、前 記第 1のノズル群の動摩擦係数に相当する抵抗力に追加された抵抗力をノズルへッ ドが受けることになる。 [0022] Therefore, when the chip-like container is attached to all the nozzles of the nozzle head all at once, the following operation is performed. The two or more nozzles provided in the nozzle head are formed from a plurality of types of nozzle groups having different distances from the predetermined reference horizontal plane to the outer peripheral protrusion. Then, as the nozzles are simultaneously moved in the insertion direction of the nozzles with respect to the mounting openings of the chip-like containers arranged corresponding to the nozzle arrangement pattern, for example, the distance from the reference horizontal plane set in the nozzle head is the largest. The outer peripheral protrusions of the nozzles belonging to the large first nozzle group first reach a state where they are in close contact with or in contact with the inner peripheral wall surface of the chip-like container. Until this state is reached, the resistance force received by the nozzle from the tip-shaped container is 0 or very small. However, when this state is reached, the outer peripheral projection is caused by a collision with the inner peripheral wall surface or a static frictional force. Suspension or insertion speed is drastically reduced due to resistance. When this resistance force is overcome and the insertion into the nozzle proceeds, the insertion operation continues while receiving a resistance force due to a dynamic friction force smaller than the resistance force. Here, the initial resistance force received by the nozzle is proportional to the product of the number of nozzles, the coefficient of static friction, and the drag in the normal direction acting between the outer peripheral protrusion and the inner peripheral wall surface. When the movement of the nozzle head in the insertion direction is continued, it relates to a resistance force having a magnitude using a dynamic friction coefficient instead of the static friction coefficient. In general, since the dynamic friction coefficient is smaller than the static friction coefficient, the resistance force based on the dynamic friction coefficient is smaller than the resistance force based on the static friction coefficient / J. [0023] Soon, with respect to the nozzles belonging to the second nozzle group having the outer peripheral protrusion having the next largest distance from the reference horizontal plane, the outer peripheral protrusion is brought into close contact with or in contact with the inner peripheral wall surface of the tip-shaped container. Buy until. Then, as described above, the number of nozzles belonging to the second nozzle group, the collision between the outer peripheral protrusion and the inner peripheral wall surface, or the coefficient of static friction and the normal line between the outer peripheral protrusion and the inner peripheral wall surface. The resistance force proportional to the product of the directional force is added to the resistance force corresponding to the dynamic friction coefficient of the first nozzle group, and the nozzle head receives the resistance force.
[0024] そのまま、揷入方向への移動が続行されると、前述したように、静止摩擦係数に代 わり動摩擦係数に比例した抵抗力を第 2のノズル群に関して受けることになる。  If the movement in the insertion direction is continued as it is, as described above, a resistance force proportional to the dynamic friction coefficient is received instead of the static friction coefficient with respect to the second nozzle group.
[0025] 前記チップ状容器収容部が設置されたステージ上には、さらに、種々の液体を収 容しまたは収容可能な液収容部群を設けるのが好ましい。「種々の液体」には、各種 試薬、検体、化学物質、または磁性体を含有する液体を含む。  [0025] It is preferable to further provide a liquid storage section group that can store or store various liquids on the stage on which the chip-shaped container storage section is installed. “Various liquids” include liquids containing various reagents, specimens, chemical substances, or magnetic substances.
[0026] 第 2の発明は、前記ノズルに設けられた 2以上の前記外周突部は、先端側の外周 突部の外周長が、後端側の外周突部の外周長よりも短く形成され、前記チップ状容 器の前記装着用開口部には、前記外周突部に対応して前記外周突部と密接または 接触する内周壁面が形成されたチップ装着式集積処理装置である。  In the second invention, the two or more outer peripheral protrusions provided on the nozzle are formed such that the outer peripheral length of the outer peripheral protrusion on the front end side is shorter than the outer peripheral length of the outer peripheral protrusion on the rear end side. The chip mounting type integrated processing device is provided with an inner peripheral wall surface in close contact with or in contact with the outer peripheral protrusion corresponding to the outer peripheral protrusion.
[0027] ここで、 2以上の前記外周突部間は相互に離間して設けられ、前記外周突部に密 接または接触する内周壁面は、例えば容器の軸方向に離間して設けた内周筒状壁 面(軸方向に垂直な断面形状が同一)を有し、該内周筒状壁面間はテーパ面や段差 面が形成されている場合、または、 2以上の外周突部に密接または接触するテーパ 面等がある。  [0027] Here, the two or more outer peripheral protrusions are provided apart from each other, and the inner peripheral wall surface that is in close contact with or in contact with the outer peripheral protrusions is provided, for example, in the axial direction of the container. It has a peripheral cylindrical wall surface (the cross-sectional shape perpendicular to the axial direction is the same), and a taper surface or a step surface is formed between the inner peripheral cylindrical wall surfaces, or in close contact with two or more outer peripheral protrusions Or there is a tapered surface that comes into contact.
[0028] 第 3の発明は、前記内周壁面は、前記外周突部に対応して相互に離間して設けら れた複数の内周筒状壁面からなり、各内周筒状壁面は前記外周突部と密接または 接触するとともに、前記内周筒状壁面の後端側には、先細りのテーパ面が前記内周 筒状壁面と接続して設けられたチップ装着式集積処理装置である。  [0028] In a third aspect of the invention, the inner peripheral wall surface includes a plurality of inner peripheral cylindrical wall surfaces provided to be spaced apart from each other corresponding to the outer peripheral protrusion, and each inner peripheral cylindrical wall surface is The chip mounting type integrated processing apparatus is provided in close contact with or in contact with the outer peripheral protrusion and provided with a tapered taper surface connected to the inner peripheral cylindrical wall surface on the rear end side of the inner peripheral cylindrical wall surface.
[0029] したがって、装着用開口部の後端には、外方向に向かって拡開するテーパ面が形 成されていることになる。このテーパ面の先端側の縁は、前記内周筒状壁面の後端 側の縁と連続的につながって!/、るのが好ましレ、。 [0030] 同様に、隣接する先端側の内周筒状壁面と後端側の内周筒状壁面との間に設けら れたテーパ面については、そのテーパ面の先端縁は、前記先端側の内周筒状壁面 の後端縁と連続的に接続し、そのテーパ面の後端縁と前記後端側の内周筒状壁面 の先端縁と連続的に接続することが好ましい。 [0029] Therefore, a taper surface that expands outward is formed at the rear end of the mounting opening. It is preferable that the edge on the front end side of the tapered surface is continuously connected to the edge on the rear end side of the inner peripheral cylindrical wall surface! [0030] Similarly, with respect to the tapered surface provided between the adjacent inner peripheral cylindrical wall surface on the front end side and the inner peripheral cylindrical wall surface on the rear end side, the front end edge of the tapered surface is the front end side. It is preferable to continuously connect the rear end edge of the inner peripheral cylindrical wall surface and continuously connect the rear end edge of the tapered surface to the front end edge of the inner peripheral cylindrical wall surface on the rear end side.
[0031] これによつて、同一ノズルについての、各外周突部と内周筒状壁面との間の静止摩 擦力等による抵抗力が同時に生じる事態を防止することができる。  Accordingly, it is possible to prevent a situation in which a resistance force due to a static frictional force or the like between each of the outer peripheral protrusions and the inner peripheral cylindrical wall surface of the same nozzle is generated at the same time.
[0032] 前記ノズルに軸方向に相互に離間した 2箇所の前記外周突部が設けられ、先端側 の外周突部の外周長が、後端側の外周突部の外周長よりも短く形成された場合には 、前記チップ状容器の前記装着用開口部には、先端側の前記外周突部と密接また は接触する先端側内周筒状壁面と後端側の外周突部と密接または接触する後端側 内周筒状壁面とが離間して設けられ、該先端側内周筒状壁面と後端側内周筒状壁 面との間、および後端側内周筒状壁面の後端側には、先細りのテーパ面が形成され るのが好ましい。  [0032] The nozzle is provided with two outer peripheral protrusions spaced apart from each other in the axial direction, and the outer peripheral length of the outer peripheral protrusion on the front end side is shorter than the outer peripheral length of the outer peripheral protrusion on the rear end side. In this case, the mounting opening of the chip-shaped container is in close contact with or in contact with the inner peripheral cylindrical wall surface in contact with the outer peripheral protrusion on the front end and the outer peripheral protrusion on the rear end. The rear end side inner peripheral cylindrical wall surface is spaced from the front end side inner peripheral cylindrical wall surface and between the rear end side inner peripheral cylindrical wall surface and the rear end side inner peripheral cylindrical wall surface. It is preferable that a tapered surface be formed on the end side.
[0033] 第 4の発明は、前記移動手段は、該ノズルヘッドの各ノズルが、前記チップ状容器 の前記装着用開口部内に揷入可能な位置に達した後、少なくとも前記ノズル群に属 するノズルの構造および各ノズル群に属するノズル数に基づいて各ノズルが前記装 着用開口部内に挿入されるように、前記ノズルヘッドと前記チップ状容器収容部との 間を相対的に移動するチップ装着式集積処理装置である。  [0033] In a fourth invention, the moving means belongs to at least the nozzle group after each nozzle of the nozzle head has reached a position where it can be inserted into the mounting opening of the chip-like container. Tip mounting that relatively moves between the nozzle head and the tip-shaped container housing portion so that each nozzle is inserted into the mounting opening based on the nozzle structure and the number of nozzles belonging to each nozzle group This is an integrated processing apparatus.
[0034] 移動手段のこのような移動は制御部によって制御される。該制御部は、さらに、ノズ ルヘッドと前記チップ状容器収容部との間の移動を、さらに、前記チップ状容器の個 数もしくは構造、吸引吐出すべき液体、そこに含まれる物質、その量、その収容位置 、その温度もしくはその濃度、処理内容、または指示に基づいて制御することができ る。物質には、核酸、タンパク質、糖鎖、アミノ酸等の生体物質のみならず、金属等を も含む種々の化学物質を含む。  [0034] Such movement of the moving means is controlled by the control unit. The control unit further controls the movement between the nozzle head and the chip-shaped container housing unit, further the number or structure of the chip-shaped container, the liquid to be sucked and discharged, the substance contained therein, the amount thereof, It can be controlled based on its storage position, its temperature or its concentration, processing details, or instructions. Substances include various chemical substances including not only biological substances such as nucleic acids, proteins, sugar chains and amino acids but also metals.
[0035] 第 5の発明は、各ノズルに装着したチップ状容器を、一斉に脱着させる脱着部を有 し、該脱着部は、前記ノズルの水平断面の最大外径または最大幅よりも大きいが、チ ップ状容器の水平断面の最大外径または最大幅よりも小さい径または幅をもつ孔ま たは隙間を前記所定配列パターンに応じて形成した脱着板を有し、該脱着板は、そ の板面が前記所定基準水平面に平行に設けられ、前記孔または前記隙間内を前記 各ノズルの軸線が通るように、該ノズルの軸線方向に沿って該ノズルに対して相対的 に移動可能に設けたチップ状容器である。 [0035] The fifth aspect of the present invention has a detaching part that detaches the chip-like containers attached to the nozzles all at once, and the detaching part is larger than the maximum outer diameter or maximum width of the horizontal cross section of the nozzle. And a desorption plate in which holes or gaps having a diameter or width smaller than the maximum outer diameter or maximum width of the horizontal cross section of the chip-shaped container are formed in accordance with the predetermined arrangement pattern, So The plate surface of the nozzle is provided in parallel to the predetermined reference horizontal plane, and is movable relative to the nozzle along the axial direction of the nozzle so that the axis of the nozzle passes through the hole or the gap. It is the provided chip-shaped container.
[0036] ここで、「最大外径または最大幅」とは、前記ノズルまたはチップ状容器に存在する 軸線方向に垂直な水平断面の外径または幅の内で最大のものである。 「孔」とは、各 ノズル毎に設けられた脱着板の法線方向を囲むように穿設した閉じた空隙であり、ノ ズノレは脱着板の法線方向から孔内に挿入し得る。「隙間」とは、脱着板に設けられ脱 着板の側方向に開いた空隙であり、ノズルは脱着板の法線方向から及び側方向に 開いた部分から隙間内に挿入し得る。「径」とは、円周形状に対応し、「幅」とは円周 形状以外のものに対応するものである。「相対的」であるので、例えば、第 1には、ノズ ルを止めて脱着板を前記チップ状容器の上側から下方向に移動させる場合と、第 2 には、脱着板を固定してノズルを前記チップ状容器の上側から上方向に移動させる 場合と、第 3には、双方を移動させる場合とがある。例えば、第 1の場合としては、前 記脱着板がノズルヘッドに支持されて、ノズルヘッドに対してノズルの軸線方向に沿 つて移動可能に設けられる場合がある。第 2の場合としては、脱着板が、前記チップ 状容器収容部が設けられたステージ上に固定して設けられ、該脱着板には隙間を設 けて、前記ノズルが脱着板の隙間に側方向から揷入させた後、前記移動手段によつ てノズルヘッドを上昇させることによってノズルからチップ状容器を脱着する場合があ る。「所定配列パターンに応じて形成して」であるので、所定配列パターンと同一配列 パターン、例えば同一行数、同一列数かつ同一の行間隔、列間隔をもつように孔を 形成したり、該配列パターンに対応する配列パターン、例えば、列方向(または行方 向)に沿って列数個(または行数個)の長孔ゃ空隙を前記行数個ほたは列数個)の ノズルが揷入可能となるように形成する場合等がある。  Here, the “maximum outer diameter or maximum width” is the largest of the outer diameters or widths of the horizontal cross section perpendicular to the axial direction existing in the nozzle or the tip-like container. The “hole” is a closed gap that is formed so as to surround the normal direction of the desorption plate provided for each nozzle, and the nozzle can be inserted into the hole from the normal direction of the desorption plate. The “gap” is a gap provided in the desorption plate and opened in the lateral direction of the desorption plate, and the nozzle can be inserted into the gap from the normal direction of the desorption plate and from the portion opened in the lateral direction. “Diameter” corresponds to a circumferential shape, and “Width” corresponds to something other than a circumferential shape. For example, in the first case, the nozzle is stopped and the desorption plate is moved downward from the upper side of the chip-like container. In the second case, the desorption plate is fixed and the nozzle is fixed. There are a case where the chip is moved upward from the upper side of the chip-like container and a third case where both are moved. For example, in the first case, the desorption plate may be supported by the nozzle head and provided so as to be movable along the axial direction of the nozzle with respect to the nozzle head. In the second case, the detachable plate is fixedly provided on the stage provided with the chip-shaped container housing portion, and a gap is formed in the detachable plate, and the nozzle is located on the side of the gap of the detachable plate. After inserting from the direction, the tip container may be detached from the nozzle by raising the nozzle head by the moving means. Since it is “formed according to the predetermined arrangement pattern”, holes are formed so as to have the same arrangement pattern as the predetermined arrangement pattern, for example, the same number of rows, the same number of columns and the same row spacing, column spacing, An array pattern corresponding to the array pattern, for example, a plurality of rows (or rows) of long holes along the column direction (or row direction), and the nozzles of the number of rows or the number of columns) In some cases, it is formed so that it can be inserted.
[0037] 第 6の発明は、内部に液体を収容可能な略筒状の筒状容器であって、 1または軸 方向に相互に離間した 2以上の閉じた外周帯に沿って外向きに突出した 1または 2以 上の外周突部を有するノズルに装着可能な装着用開口部と、前記容器の先端に設 けられ前記ノズルを介しての気体の吸引吐出によって流体の入出が可能な口部とを 有するとともに、前記装着用開口部は、前記ノズルへの装着によって前記ノズルの前 記外周突部と密接または接触する内周壁面と、該内周壁面の後端側に設けられ該 内周壁面と接続した先細りのテーパ面とを有するチップ状容器である。 [0037] A sixth invention is a substantially cylindrical cylindrical container capable of containing a liquid therein, and protrudes outward along one or two or more closed outer peripheral bands spaced apart from each other in the axial direction. A mounting opening that can be attached to a nozzle having one or more outer peripheral projections, and a mouth that is provided at the tip of the container and allows the fluid to enter and exit by suction and discharge of gas through the nozzle. And the opening for mounting is mounted in front of the nozzle by mounting to the nozzle. It is a chip-like container having an inner peripheral wall surface that is in close contact with or in contact with the outer peripheral protrusion, and a tapered tapered surface that is provided on the rear end side of the inner peripheral wall surface and is connected to the inner peripheral wall surface.
[0038] 第 7の発明は、前記内周壁面は、前記ノズルの軸方向に相互に離間した 2以上の 閉じた外周帯に沿って外向きに突出した 1または 2以上の外周突部に対応して設け られ、前記ノズルへの装着によって該外周突部と各々密接または接触し、該容器の 軸方向に相互に離間して設けられた複数の内周筒状壁面を有し、先端側の内周筒 状壁面の内周長は、後端側の内周筒状壁面の内周長よりも短く形成され、該内周筒 状壁面の後端側には、先細りのテーパ面が形成されたチップ状容器である。  [0038] In a seventh aspect of the invention, the inner peripheral wall surface corresponds to one or more outer peripheral protrusions projecting outward along two or more closed outer peripheral bands spaced apart from each other in the axial direction of the nozzle. Provided with a plurality of inner peripheral cylindrical wall surfaces provided in close contact with or in contact with the outer peripheral projections by being attached to the nozzles and spaced apart from each other in the axial direction of the container. The inner peripheral length of the inner peripheral cylindrical wall surface is shorter than the inner peripheral length of the inner peripheral cylindrical wall surface on the rear end side, and a tapered taper surface is formed on the rear end side of the inner peripheral cylindrical wall surface. Chip-shaped container.
[0039] 当然、前記ノズルに設けられた複数の外周突部においても、先端側の外周突部の 外周長が、後端側の外周突部の外周長よりも短く形成され、内周筒状壁面の内周長 と対応していることになる。  Naturally, even in the plurality of outer peripheral protrusions provided on the nozzle, the outer peripheral length of the outer peripheral protrusion on the front end side is formed shorter than the outer peripheral length of the outer peripheral protrusion on the rear end side, and the inner peripheral cylindrical shape This corresponds to the inner circumference of the wall.
[0040] 第 8の発明は、前記ノズルに設けられた軸方向に相互に離間した 2箇所の前記外 周突部は、先端側の外周突部の外周長が、後端側の外周突部の外周長よりも短く形 成され、前記チップ状容器の前記装着用開口部は、前記外周突部と各々密接また は接触可能であって、前記容器の軸方向に離間して設けられた 2箇所の内周筒状壁 面を有し、先端側内周筒状壁面の内周長は、後端側内周筒状壁面の内周長よりも 短ぐ先端側内周筒状壁面の後端側、後端側内周筒状壁面と先端側内周筒状壁面 との間には、先細りのテーパ面が形成されるとともに、前記ノズルへの装着によって 前記先端側内周筒状壁面は、前記ノズルの先端側の外周突部と密接し、前記後端 側内周筒状壁面は、前記後端側の外周突部と接触するチップ状容器である。  [0040] According to an eighth aspect of the present invention, the two outer peripheral protrusions provided in the nozzle and spaced apart from each other in the axial direction have an outer peripheral length of the outer peripheral protrusion on the front end side and an outer peripheral protrusion on the rear end side. The opening for mounting of the chip-like container can be in close contact with or in contact with each of the outer peripheral projections, and is provided spaced apart in the axial direction of the container. The inner circumferential length of the inner circumferential cylindrical wall surface of the tip end side is shorter than the inner circumferential length of the rear inner circumferential cylindrical wall surface. A tapered taper surface is formed between the end side and rear end side inner peripheral cylindrical wall surface and the front end side inner peripheral cylindrical wall surface. The tip end side of the nozzle is in close contact with the outer peripheral protruding portion, and the rear end side inner peripheral cylindrical wall surface is a tip-shaped container that comes into contact with the outer end protruding portion on the rear end side.
[0041] 第 9の発明は、 1または軸方向に相互に離間した 2以上の閉じた外周帯に沿って外 向きに突出した 1または 2以上の外周突部を有するノズルと、 2以上の該ノズルを所定 配列パターンで配列したノズルヘッドと、該ノズルを介して気体の吸引吐出を行う吸 引吐出機構と、前記ノズルに装着可能な装着用開口部、および先端に設けた前記 気体の吸引吐出によって流体の入出が可能な口部を有する略筒状の 2以上のチッ プ状容器と、該チップ状容器を前記所定配列パターンで配列し、前記ノズルに装着 可能な状態で収容したチップ状容器収容部と、前記ノズルヘッドを前記チップ状容 器収容部に対して相対的に移動させる移動手段とを有し、前記ノズルヘッドに設けら れた 2以上の前記ノズルは、前記チップ状容器の装着によって該各ノズルの前記外 周突部が前記装着用開口部の内周壁面と密接または接触し、該外周突部は所定基 準水平面から前記外周突部までの距離が相互に異なる複数種類のノズル群からなる とともに、前記ノズルヘッドの各ノズルが前記チップ状容器収容部に収容された前記 チップ状容器の前記装着用開口部に揷入可能な位置にまで前記ノズルヘッドを移 動し、前記ノズルヘッドを下降させて、前記チップ状容器を前記ノズルヘッドの各ノズ ルに装着させる工程を有するチップ装着式集積処理方法である。 [0041] According to a ninth aspect of the invention, there is provided one or more nozzles having one or more outer peripheral protrusions projecting outward along two or more closed outer peripheral bands spaced apart from each other in the axial direction; Nozzle head in which nozzles are arranged in a predetermined arrangement pattern, suction / discharge mechanism that performs suction / discharge of gas through the nozzle, mounting opening that can be attached to the nozzle, and suction / discharge of the gas provided at the tip Two or more substantially chip-shaped containers having a mouth portion through which fluid can be entered and exited, and a chip-shaped container in which the chip-shaped containers are arranged in the predetermined arrangement pattern and can be attached to the nozzles An accommodating portion; and a moving means for moving the nozzle head relative to the tip-shaped container accommodating portion, provided on the nozzle head. In the two or more nozzles, the outer peripheral protrusions of the nozzles are in close contact with or in contact with the inner peripheral wall surface of the mounting opening by mounting the tip-shaped container, and the outer peripheral protrusions are in a predetermined reference horizontal plane. And a plurality of types of nozzle groups having different distances from the outer peripheral projection to each other, and each nozzle of the nozzle head is placed in the mounting opening of the tip-like container accommodated in the tip-like container accommodation portion. The tip mounting type integrated processing method includes a step of moving the nozzle head to a position where it can be inserted, lowering the nozzle head, and mounting the tip-shaped container on each nozzle of the nozzle head.
[0042] ここで、前記ノズルヘッドの下降は、少なくとも前記各ノズル群に属するノズルの構 造および各ノズル群に属するノズル数に基づ!/、て行うことが好ましレ、。これによつて最 適な力で装着することができる。  Here, the lowering of the nozzle head is preferably performed based on at least the structure of the nozzles belonging to each nozzle group and the number of nozzles belonging to each nozzle group. As a result, it can be mounted with an optimum force.
[0043] 第 10の発明は、各ノズルに装着したチップ状容器を、一斉に脱着させる脱着部を 有し、該脱着部は、前記ノズルの水平断面の最大外径または最大幅よりも大きいが、 チップ状容器の最大外径または最大幅よりも小さい径または幅を持つ孔または隙間 を前記所定配列パターンに応じて設けた脱着板を有し、該脱着板は、その板面が前 記所定基準水平面に平行に設けられ、前記孔または前記隙間を前記各ノズルの軸 線が通るように、該ノズルの軸線方向に沿って該ノズルに対して相対的に移動させて 、前記ノズルに装着された前記チップ状容器を脱着する工程を有するチップ装着式 集積処理方法である。  [0043] A tenth aspect of the invention has a detaching part for detaching the chip-like containers attached to the nozzles all at once, and the detaching part is larger than the maximum outer diameter or the maximum width of the horizontal cross section of the nozzle. A desorption plate provided with holes or gaps having a diameter or width smaller than the maximum outer diameter or maximum width of the chip-like container according to the predetermined arrangement pattern, the plate surface of the desorption plate having the predetermined surface The nozzle is mounted in parallel with a reference horizontal plane and is moved relative to the nozzle along the axial direction of the nozzle so that the axis of each nozzle passes through the hole or the gap. And a chip mounting type integration processing method including a step of detaching the chip container.
発明の効果  The invention's effect
[0044] 第 1の発明、第 6の発明または第 9の発明によれば、複数のノズル群に属する 2以 上のノズルをノズルヘッドに設けることによって、全ノズルと全チップ状容器との間の 装着又は脱着の際の相対的移動に伴う、外周突部と内周壁面との間で生ずる抵抗 力のパターンがノズル群ごとに異なることを利用して、全ノズルの静止摩擦力の総和 に基づく抵抗力が、同一の時間または同一の位置にノズルヘッドに集中することを避 けること力 Sできる。したがって、ノズルへのチップ状容器の装着または脱着時に、前記 静止摩擦力に基づく抵抗力の総和に相当するような大きな力を、前記ノズル群の群 数に相当する回数に分散させることで、ノズルヘッドに加わる最大の力を減少させて 、各外周突部に加わる力を減少させ、各外周突部の磨耗を防止し、運用コストを削減 し、かつ装置寿命を延ばすことができ、これによつて製品管理を容易化することがで きる。 [0044] According to the first invention, the sixth invention, or the ninth invention, two or more nozzles belonging to a plurality of nozzle groups are provided in the nozzle head, thereby providing a space between all the nozzles and all the chip-like containers. By using the fact that the pattern of resistance force generated between the outer peripheral protrusion and the inner peripheral wall surface due to relative movement during mounting or removal of the nozzles differs for each nozzle group, the total frictional force of all nozzles can be calculated. It is possible to prevent the resistance force based on the nozzle head from concentrating on the nozzle head at the same time or at the same position. Therefore, when the tip-shaped container is attached to or detached from the nozzle, a large force corresponding to the sum of the resistance forces based on the static friction force is dispersed to the number of times corresponding to the number of groups of the nozzle group, whereby the nozzle Reduce the maximum force applied to the head, reduce the force applied to each outer protrusion, prevent wear of each outer protrusion, and reduce operating costs In addition, the life of the apparatus can be extended, and thereby product management can be facilitated.
[0045] また、前記ノズルに前記チップ状容器を自動的に装着し、または、脱着することによ つて、種々の処理を一貫して行うことができ、 自動化に適している。さらに、各外周突 部を閉じた外周帯に沿つて設けて!/、るので、チップ状容器外への水密性および気密 性が高い。  [0045] Further, by automatically attaching or detaching the tip-shaped container to or from the nozzle, various processes can be performed consistently, which is suitable for automation. Furthermore, since each outer peripheral protrusion is provided along a closed outer peripheral band! /, The water-tightness and air-tightness to the outside of the chip-like container are high.
[0046] 第 2の発明、第 3の発明、第 7の発明または第 8の発明によれば、前述した効果の 他に、複数の外周突部の外周長を、先端に向かって短くするように形成することで複 数の外周突部のあるノズルを円滑に揷入することができる。  [0046] According to the second invention, the third invention, the seventh invention or the eighth invention, in addition to the effects described above, the outer peripheral lengths of the plurality of outer peripheral protrusions are shortened toward the tip. By forming the nozzles in this manner, it is possible to smoothly insert nozzles having a plurality of outer peripheral protrusions.
[0047] また、複数箇所の閉じた外周帯に沿って設けた外周突部と、該外周突部と密接ま たは接触する内周壁面を設けることによって、液体または気体の漏れをさらに一層、 確実に防止することができるので、クロスコンタミネーシヨンを防止して信頼性が高レヽ  [0047] Further, by providing an outer peripheral protrusion provided along a plurality of closed outer peripheral bands and an inner peripheral wall surface in close contact with or in contact with the outer peripheral protrusion, liquid or gas leakage is further enhanced. Since it can be reliably prevented, cross contamination is prevented and reliability is high.
[0048] さらに、複数箇所の外周突部を設けた場合に、 1の内周壁面と密接させ、他の内周 壁面とは接触させることで、該内周壁面との摩擦による抵抗力を削減させて揷入しゃ すくするが、これによつて、 1の外周突部のみを設けた場合に比較して、ノズルとチッ プ状容器との軸方向のずれによるノズル装着時のがたつきを防止し揷入を円滑に行 うこと力 Sでさる。 [0048] Further, when a plurality of outer peripheral protrusions are provided, they are brought into close contact with one inner peripheral wall surface and brought into contact with the other inner peripheral wall surface, thereby reducing resistance due to friction with the inner peripheral wall surface. As a result, compared to the case where only the outer peripheral protrusion 1 is provided, this causes the rattling at the time of mounting the nozzle due to the axial displacement between the nozzle and the chip-shaped container. Use force S to prevent and insert smoothly.
[0049] 第 3の発明、第 6の発明または第 8の発明によれば、前述した効果の他に、ノズルの 外周突部と密接又は接触する内周壁面を設けるとともに、該内周壁面の後端側に、 先細りのテーパ面を形成することによって、ノズルのチップ状容器の装着用開口部へ の揷入を円滑化することができる。さらに、ノズルの先端部をも先細りに形成するのが 好ましい。ノズルの外周突部と密接又は接触する内周壁面を設けることによって、前 記チップ状容器から前記ノズルの外周突部を越える気体や液体の流れを阻止するこ と力 Sできる。  [0049] According to the third invention, the sixth invention, or the eighth invention, in addition to the above-described effects, an inner peripheral wall surface that is in close contact with or in contact with the outer peripheral protrusion of the nozzle is provided. By forming a tapered surface on the rear end side, insertion of the nozzle into the mounting opening of the tip-shaped container can be facilitated. Further, it is preferable that the tip of the nozzle is also tapered. By providing an inner peripheral wall surface that is in close contact with or in contact with the outer peripheral protrusion of the nozzle, it is possible to prevent the flow of gas or liquid from the tip-shaped container over the outer peripheral protrusion of the nozzle.
[0050] 第 4の発明によれば、前述した効果の他に、ノズル群に属するノズルの構造および 各ノズル群に属するノズル数に基づいて、予め前記ノズルヘッドに加えるべき力を求 めることによって、適切な大きさの力を加えることができ、外周突部の必要以上の磨 耗を防止することができて、装置寿命を延ばすことができる。 [0050] According to the fourth invention, in addition to the effects described above, the force to be applied to the nozzle head in advance is obtained based on the structure of the nozzles belonging to the nozzle group and the number of nozzles belonging to each nozzle group. Can apply an appropriate amount of force and polish the outer peripheral protrusion more than necessary. Wear can be prevented and the life of the apparatus can be extended.
[0051] 第 5の発明または第 10の発明によれば、脱着部として、脱着板に所定の孔または 隙間を設け、前記ノズルと脱着板との間を相対的に移動可能に設けることによって、 簡単な構成で、一括してかつ確実に、ノズルに装着したノズルチップを脱着すること 力 Sできる。また、該脱着板は前記所定基準水平面に平行に設けているので、ノズノレ へのチップ状容器の装着または脱着時に、前記静止摩擦力に基づく抵抗力の総和 に相当するような大きな力を、前記ノズル群の群数に相当する回数に分散させること で、ノズルヘッドや脱着板に加わる最大の力を減少させて、各外周突部に加わる力 を減少させ、各外周突部の磨耗を防止し、運用コストを削減し、かつ装置寿命を延ば すことができ、これによつて製品管理を容易化することができる。 [0051] According to the fifth invention or the tenth invention, by providing a predetermined hole or gap in the detachable plate as the detachable portion, and providing the movably between the nozzle and the detachable plate, With a simple configuration, it is possible to remove and install the nozzle tips attached to the nozzles in a batch and reliably. Further, since the desorption plate is provided in parallel to the predetermined reference horizontal plane, a large force corresponding to the sum of the resistance forces based on the static friction force is applied when the chip-like container is attached to or detached from the nozzle. By distributing the number of nozzles corresponding to the number of nozzle groups, the maximum force applied to the nozzle head and the detachable plate is reduced, the force applied to each outer peripheral protrusion is reduced, and wear of each outer peripheral protrusion is prevented. As a result, operational costs can be reduced and the life of the equipment can be extended, which makes product management easier.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0052] 続いて、図面に基づいて、本発明の実施の形態に係るチップ装着式集積処理装置[0052] Next, based on the drawings, a chip-mounted integrated processing apparatus according to an embodiment of the present invention.
、チップ状容器およびチップ装着式集積処理方法について説明する。 The chip-like container and the chip mounting type integration processing method will be described.
[0053] 図 1には、本発明の実施の形態に係るチップ装着式集積処理装置 10を模式的に 示す。 FIG. 1 schematically shows a chip-mounted integrated processing apparatus 10 according to an embodiment of the present invention.
該チップ装着式集積処理装置 10は、全部で 96本の略円筒状のノズル 14a, 14b, 14c, 14dと、該ノズノレ 14a, 14b, 14c, 14dを 12行 X 8列の行列状の配列パターン で、前記所定基準水平面を下面に有するノズル配列プレート 20から下方に突出する ように配列したノズルへッド 12と、前記ノズルを介して気体の吸引吐出を行う吸引吐 出機構(16 , 18, 22, 24, 26, 28, 30)と、前記ノズルヘッド 12を前記チップ収容部 に対して相対的に移動させる移動手段(34, 36, 38, 40)とを有するものである。  The chip-mounted integrated processing apparatus 10 includes a total of 96 substantially cylindrical nozzles 14a, 14b, 14c, 14d, and a nodule 14a, 14b, 14c, 14d arranged in a matrix of 12 rows by 8 columns. The nozzle heads 12 arranged so as to protrude downward from the nozzle array plate 20 having the predetermined reference horizontal surface on the lower surface, and suction / discharge mechanisms (16, 18, 18) for sucking and discharging gas through the nozzles 22, 24, 26, 28, 30) and a moving means (34, 36, 38, 40) for moving the nozzle head 12 relative to the chip housing portion.
[0054] 該チップ装着式集積処理装置 10には、後述するように、前記ノズル 14a, 14b, 14 c, 14dに装着されるチップ状容器としての分注チップと、該分注チップを前記配列パ ターンに応じて配列され、前記ノズル 14a, 14b, 14c, 14dに装着可能な状態で収 容する後述するチップ状容器収容部としてのチップ収容部とを有するものである。  In the chip mounting type integrated processing apparatus 10, as will be described later, a dispensing chip as a chip-shaped container mounted on the nozzles 14a, 14b, 14c, 14d, and the dispensing chip are arranged in the array. It has a chip accommodating part as a chip-like container accommodating part to be described later, which is arranged according to the pattern and accommodates the nozzles 14a, 14b, 14c, 14d in a state where it can be mounted.
[0055] 前記吸引吐出機構(16, 18, 22, 24, 26, 28, 30) (ま、前記ノス、ノレヘッド 12ίこ設 けられた、前記配列パターンの 12行 X 8列の行列状の配列パターンで配列され、前 記ノズノレ 14a, 14b, 14c, 14dと各々連通する 96本のシリンダ 16と、前記シリンダ 16 内に摺動可能に揷入されたプランジャ (図示せず)駆動用の 96本のロッド 18と、該 96 本のロッドを連結するロッド駆動用プレート 22と、該ロッド駆動用プレート 22と接続し て、該ロッド駆動用プレート 22を、したがって各ロッドを一斉に上下方向(Z軸方向)に 駆動する 2本の柱状のァクチユエータ 24と、該ァクチユエータ 24と連結し、該ァクチュ エータ 24を上下方向に駆動するためにボール螺子 28と螺合し、ボール螺子 28の回 転によって上下方向に並進移動するナット部 26と、吸引吐出用モータ 30によって回 転駆動するボール螺子 28とを有する。なお、前記吸引吐出用モータ 30、および前記 ノズル配列プレート 20を支持し、かつ前記ァクチユエータ 24を上下動可能に支持す るのはノズルヘッド支持体 32である。 [0055] The suction / discharge mechanism (16, 18, 22, 24, 26, 28, 30) (The above-mentioned nose and nore head 12ί are arranged in a matrix of 12 rows by 8 columns of the array pattern. 96 cylinders 16 arranged in a pattern and communicating with the above-mentioned Noznoles 14a, 14b, 14c, 14d, respectively, and the cylinders 16 96 rods 18 for driving a plunger (not shown) slidably inserted therein, a rod driving plate 22 for connecting the 96 rods, and the rod driving plate 22 The rod driving plate 22 is connected to the two columnar actuators 24 for driving the rods in the vertical direction (Z-axis direction) at the same time, and the actuators 24, and the actuators 24 are moved in the vertical direction. A nut screw 26 that is screwed with the ball screw 28 to be driven and translated in the vertical direction by the rotation of the ball screw 28, and a ball screw 28 that is driven to rotate by the suction / discharge motor 30. The nozzle head support 32 supports the suction / discharge motor 30 and the nozzle array plate 20 and supports the actuator 24 so as to be movable up and down.
[0056] 前記移動手段(34, 36, 38, 40)は、 X軸方向(前記配列パターンの行方向)に前 記ノズルヘッド 12を X軸モータ(図示せず)によって回転駆動されるボール螺子を有 する X軸駆動機構(図示せず)および Y軸モータ(図示せず)によって回転駆動される ボール螺子を有し、 Y軸方向 (前記配列パターンの列方向)に駆動する Y軸駆動機構 (図示せず)と連結して、 X軸方向および Y軸方向に移動可能な枠体 33と、該枠体 3 3に回転可能に支持され上下方向(Z軸方向)に伸びるボール螺子 34と、該ボール 螺子 34に螺合するとともに、前記ノズルヘッド支持体 32と連結し、該ボール螺子 34 の回転によって、前記ノズルヘッド支持体 32を、したがってノズルヘッド 12を上下方 向に並進移動させるナット部 36と、前記枠体 33に支持され前記ボール螺子 34を回 転駆動する Z軸モータ 40と、前記 Z軸モータ 40のモータ軸と前記ボール螺子 34とを 連結するコネクタ 38とを有する。なお、図示していないが、本装置には、前記移動手 段、吸引吐出機構等を制御するための制御部を有している。該制御部は、例えば、 CPU,メモリからなる情報処理装置、マウス、キーボード等のデータ入力装置、液晶 パネル等の表示装置、プリンタ等のデータ出力装置、通信手段、または CDや DVD 、フレキシブルディスク等の外部メモリの駆動装置等を有している。  [0056] The moving means (34, 36, 38, 40) includes a ball screw that rotationally drives the nozzle head 12 in the X-axis direction (row direction of the array pattern) by an X-axis motor (not shown). A Y-axis drive mechanism having a ball screw that is rotationally driven by an X-axis drive mechanism (not shown) and a Y-axis motor (not shown), and driving in the Y-axis direction (column direction of the array pattern) (Not shown), a frame 33 that is movable in the X-axis direction and the Y-axis direction, and a ball screw 34 that is rotatably supported by the frame 33 and extends in the vertical direction (Z-axis direction); A nut that engages with the ball screw 34 and is connected to the nozzle head support 32 and translates the nozzle head support 32 and thus the nozzle head 12 upward and downward by rotation of the ball screw 34. Part 36 and the ball screw 34 supported by the frame 33. Rolling with a Z-axis motor 40 for driving, and a connector 38 for connecting the motor shaft of the Z-axis motor 40 and the ball screw 34. Although not shown, the apparatus includes a control unit for controlling the moving means, the suction / discharge mechanism, and the like. The control unit includes, for example, an information processing device including a CPU and a memory, a data input device such as a mouse and a keyboard, a display device such as a liquid crystal panel, a data output device such as a printer, a communication means, or a CD, DVD, flexible disk, etc. The external memory drive device.
[0057] 図 2は、前記ノズルヘッド 12に設けられた前記ノズル配列プレート 20を下側から見 た平面図である。このノズル配列プレート 20の下側の面が前記所定基準水平面に相 当する。 96本の前記ノズル 14a, 14b, 14c, 14dは、各々後述する 4種類のノズル群 に属するノズル力、ら各々 24本ずつ採用したものであって、 12行 X 8列の配列パターン の隣接する各要素ごとに、後述する先端側外周突部と所定前記基準水平面との間 の距離または長さに応じて定まる順序、すなわち、交互に長短がくるように、第 1のノ ズル群に属するノズル 14a,第 3のノズル群に属するノズル 14c、第 2のノズル群に属 するノズル 14b、および第 4のノズル群に属するノズル 14dの順に、順次配列する。し たがって、各ノズル群に属するノズルの本数は 24本となる。これによつて、ノズルへッ ド 12全体が分注チップ 46全体から受ける抵抗力をできるだけ分散させたものである FIG. 2 is a plan view of the nozzle array plate 20 provided in the nozzle head 12 as viewed from below. The lower surface of the nozzle array plate 20 corresponds to the predetermined reference horizontal plane. Each of the 96 nozzles 14a, 14b, 14c, and 14d employs 24 nozzles each belonging to four types of nozzle groups, which will be described later, and has an array pattern of 12 rows x 8 columns. For each adjacent element, the first nozzle group has an order determined according to the distance or length between the outer peripheral protrusion on the tip side, which will be described later, and the predetermined reference horizontal plane, that is, the length is alternately increased or decreased. Are sequentially arranged in the order of the nozzle 14a belonging to the nozzle group 14a, the nozzle 14c belonging to the third nozzle group, the nozzle 14b belonging to the second nozzle group, and the nozzle 14d belonging to the fourth nozzle group. Therefore, the number of nozzles belonging to each nozzle group is 24. As a result, the resistance force that the entire nozzle head 12 receives from the entire dispensing tip 46 is dispersed as much as possible.
[0058] 他の配列のやり方としては、例えば、列ごとに同一のノズル群に属する 12本のノズ ルを配列する。後述するノズルの先端側外周突部と所定基準水平面との間の距離又 は長さの順に従って形成した第 1のノズル群から第 4のノズル群について、第 1のノズ ル群に属するノズル 14aを、第 1列と第 5列に 12本ずつ 24本配列し、第 2のノズル群 に属するノズル 14bを、第 3列と第 7列に 12本ずつ 24本配列し、第 3のノズル群に属 するノズル 14cを、第 2列と第 6列に 12本ずつ 24本配列し、第 4のノズル群に属するノ ズル 14dを、第 4列と第 8列に 12本ずつ 24本配列する場合がある。 [0058] As another arrangement method, for example, 12 nozzles belonging to the same nozzle group are arranged for each row. Nozzles 14a belonging to the first nozzle group with respect to the first to fourth nozzle groups formed according to the order of the distance or length between the outer peripheral protrusion on the tip side of the nozzle and a predetermined reference horizontal plane, which will be described later. Are arranged in the first row and the fifth row, twelve in the second row, and the nozzles 14b belonging to the second nozzle group are arranged in the third row and the seventh row, twelve in the third row and in the third row. No. 14 nozzles belonging to No. 4 are arranged in 12 rows in the 2nd row and 6th row, and 24 nozzles 14d belonging to the No. 4 nozzle group are arranged in 12 rows in the 4th row and 8th row. There is a case.
[0059] 図 3には、模式的に表した前記ノズルヘッド 12と、該ノズルヘッド 12のノズル 14a, 14b, 14c, 14dに装着可能な 96本の同一形状の分注チップ 46を前記配列パターン 、すなわち、 12行 X 8列の行列状に水平に配列され、前記ノズル 14a, 14b, 14c, 1 4dに装着可能な状態で収容したチップ収容部 42を示すものである。  FIG. 3 schematically shows the nozzle head 12 and 96 dispensing tips 46 of the same shape that can be attached to the nozzles 14a, 14b, 14c, and 14d of the nozzle head 12. That is, the chip accommodating portion 42 that is horizontally arranged in a matrix of 12 rows × 8 columns and accommodated in the state where it can be attached to the nozzles 14a, 14b, 14c, 14d is shown.
[0060] 該チップ収容部 42は、前記分注チップ 46を揷入して支持するための 12行 X 8列の 配列パターンに配列された 96個の貫通孔が穿設された上板 44と、該上板 44の四隅 で、該上板 44を水平に支え、前記分注チップ 46を前記上板 44の貫通孔で支持する ことができる高さをもつ 4本の支柱 48と、前記支柱 48をその四隅において、直立する ように支えるための下板 50とを有している。前記貫通孔の大きさは、前記分注チップ 46の本体 (後述する太管部 62、細管部 66および移行部 68)は揷入可能であるが上 端に設けた複数本の突条が形成された突条形成部 47が揷入できない大きさに形成 されている。なお、該チップ収容部 42が載置されたステージ上には、さらに種々の液 体を収容し又は収容可能なゥエルが前記配列パターンに配列されたマイクロプレート (図示せず)が設けられて!/、る。 [0061] 図 4は、前記ノズルヘッド 12およびチップ収容部 42を下側から見上げた状態を示 すものである。 96本の各ノス、ノレ 14a, 14b, 14c, 14dは、前記ノス、ノレヘッド 12の、ノズ ル配列プレート 20の下面である基準水平面から、同一形状をもつ 96本のノズル支持 部材 51を介して下方向に垂直に突出するように設けられている。 [0060] The tip accommodating portion 42 includes an upper plate 44 having 96 through holes arranged in an array pattern of 12 rows x 8 columns for inserting and supporting the dispensing tips 46, and The four columns 48 having a height capable of supporting the upper plate 44 horizontally at the four corners of the upper plate 44 and supporting the dispensing tips 46 through the through holes of the upper plate 44, and the columns In its four corners, it has a lower plate 50 for supporting it upright. The size of the through hole is such that the main body of the dispensing tip 46 (a thick tube portion 62, a thin tube portion 66 and a transition portion 68 described later) can be inserted, but a plurality of protrusions provided at the upper end are formed. The formed ridge forming portion 47 is formed in a size that cannot be inserted. On the stage on which the chip accommodating portion 42 is placed, there is further provided a microplate (not shown) in which various liquids are accommodated or wells that can be accommodated are arranged in the arrangement pattern! / FIG. 4 shows a state in which the nozzle head 12 and the chip accommodating portion 42 are looked up from below. Each of 96 noses and nores 14a, 14b, 14c, and 14d is passed through 96 nozzle support members 51 having the same shape from the reference horizontal plane that is the lower surface of the nozzle arrangement plate 20 of the nose and nore head 12. It is provided so as to protrude vertically downward.
[0062] 図 5は、該ノズノレヘッド 12に設けられたノズノレ 14a, 14b, 14c, 14dに前記分注チ ップ 46を装着させた状態を示すものである。  FIG. 5 shows a state in which the dispensing tip 46 is attached to the nozzles 14 a, 14 b, 14 c, 14 d provided on the nozzle head 12.
[0063] 図 6には、前記ノズルヘッド 12に設けられた 1の種類のノズル 14aに前記分注チッ プ 46を装着させた状態を示すものである。  FIG. 6 shows a state where the dispensing tip 46 is attached to one kind of nozzle 14 a provided in the nozzle head 12.
[0064] 該ノズノレ 14aは、前記ノズノレヘッド 12のノズノレ配列プレート 20の下面から突設し、 内部に前記ノズル 14aと連通する円筒状の流路 51aが中央に設けられたノズル支持 部材 51の下側に接続して設けられている。該ノズル 14aは、円筒状の本体 56aと、ノ ズノレの軸線を囲むように閉じた円環状の外周帯に沿って本体 56aに対して外向きに 一定の高さに突出し、軸方向に相互に離間して設けられた後端側外周突部 52aと先 端側外周突部 54aとを有する。前記外周突部の最外縁の幅は外周面上の外周帯の 幅に比べて狭ぐ例えば、前記分注チップ 46の肉厚程度に形成する。先端側外周突 部 54aは、後端側外周突部 52aに比較して、外周長が短く形成されている。該ノズル 14aの先端 58aは、前記先端側外周突部 54aの下側は、該ノズル 14aの先端 58aに 向かって先細りのテーパ面が形成されて!/、る。  [0064] The nozzle 14a protrudes from the lower surface of the nozzle array plate 20 of the nozzle head 12, and the lower side of the nozzle support member 51 in which a cylindrical channel 51a communicating with the nozzle 14a is provided in the center. It is provided in connection with. The nozzle 14a protrudes at a certain height outwardly with respect to the main body 56a along a cylindrical main body 56a and an annular outer peripheral band that is closed so as to surround the axis of the nozzle, and mutually in the axial direction. It has a rear end side outer peripheral protrusion 52a and a front end side outer peripheral protrusion 54a which are provided apart from each other. The width of the outermost edge of the outer peripheral projection is narrower than the width of the outer peripheral band on the outer peripheral surface. The front end side outer peripheral protrusion 54a is formed to have a shorter outer peripheral length than the rear end side outer peripheral protrusion 52a. The tip 58a of the nozzle 14a has a taper surface tapered toward the tip 58a of the nozzle 14a on the lower side of the outer peripheral protrusion 54a.
[0065] 該ノズル 14aに装着された分注チップ 46は、全体として略円筒状に形成され、その 後端に設けられ、前記ノズル 14a (または 14b, 14c, 14d)に装着され、または装着 可能な装着用開口部 60と、先端に設けられ、前記ノズル 14a (または、 14b,14c,14 d)による前記気体の吸引吐出によって流体の入出が可能な口部 64と、前記装着用 開口部 60が上側に設けられた太管部 62と、前記口部 64が下端に設けられ、前記太 管部 62よりも細く形成され、略先細り状の細管部 66と、前記太管部 62と細管部 66と の間に設けられた漏斗状の移行部 68とを有する。  [0065] The dispensing tip 46 attached to the nozzle 14a is formed in a substantially cylindrical shape as a whole, is provided at the rear end thereof, and is attached to or attachable to the nozzle 14a (or 14b, 14c, 14d). An opening for mounting 60, a port 64 provided at the tip, and capable of entering and exiting fluid by suction and discharge of the gas by the nozzle 14a (or 14b, 14c, 14d), and the opening 60 for mounting A thick tube portion 62 provided on the upper side, the mouth portion 64 is provided at the lower end, and is formed to be narrower than the thick tube portion 62, and has a substantially tapered thin tube portion 66, and the thick tube portion 62 and the thin tube portion. 66 and a funnel-shaped transition portion 68 provided between them.
[0066] 前記装着用開口部 60は、前記先端側外周突部 54aと密接する先端側内周筒状壁 面 72と、該先端側内周筒状壁面 72と離間して設けられ、前記後端側外周突部 52a と接触する後端側内周筒状壁面 70とを有し、先端側内周筒状壁面 72と後端側内周 筒状壁面 70との間には、下方向に先細りのテーパ面 76が形成され、前記後端側内 周筒状壁面 70の後端側にも下方向に先細りのテーパ面 74が形成されている。また、 太管部 62の外側壁面の後端には、軸方向に沿った突条が複数本設けられた突条形 成部 47を有している。 [0066] The mounting opening 60 is provided at a distal end inner circumferential cylindrical wall surface 72 that is in close contact with the distal end outer circumferential projection 54a, and spaced from the distal end inner circumferential cylindrical wall surface 72. A rear-end-side inner peripheral cylindrical wall surface 70 in contact with the end-side outer peripheral protrusion 52a, and a front-end-side inner peripheral cylindrical wall surface 72 and a rear-end-side inner periphery A tapered surface 76 that is tapered downward is formed between the cylindrical wall surface 70 and a tapered surface 74 that is tapered downward is also formed on the rear end side of the inner peripheral cylindrical wall surface 70 of the rear end side. Yes. Further, at the rear end of the outer wall surface of the thick pipe portion 62, there is a ridge forming portion 47 provided with a plurality of ridges along the axial direction.
[0067] 図 7は、前記ノズノレへッド12の4種類のノズノレ群に属するノズル14&,1413,14じ,14(1 に各々同一種類の分注チップ 46が装着された場合を示す。  FIG. 7 shows a case where the same type of dispensing tip 46 is attached to each of the nozzles 14 &, 1413, 14 and 14 (1) belonging to the four types of nozzles of the nozzle head 12.
[0068] 図 7は、分注チップ 46が装着された第 1のノズル群に属するノズル 14a、第 2のノズ ル群に属するノズル 14b、第 3のノズル群に属するノズル 14c、第 4のノズル群に属す
Figure imgf000019_0001
FIG. 7 shows a nozzle 14a belonging to the first nozzle group to which the dispensing tip 46 is attached, a nozzle 14b belonging to the second nozzle group, a nozzle 14c belonging to the third nozzle group, and a fourth nozzle. Belong to a group
Figure imgf000019_0001
前記所定基準水平面としての、前記ノズル配列プレート 20の下面から前記後端側 外周突部 52a、 52b、 52c、 52dまでの距離を各々 U , U , U , Uとし、前記下面か ら前記先端側外周突部 54a, 54b, 54c, 54dまでの距離を各々 L,L,L,Lとすると a b e d The distances from the lower surface of the nozzle array plate 20 to the rear end side outer peripheral projections 52a, 52b, 52c, 52d as the predetermined reference horizontal plane are U, U, U, U, respectively, and from the lower surface to the tip side. If the distances to the outer protrusions 54a, 54b, 54c, 54d are L, L, L, and L, respectively, abed
、次のような関係式が成立する。すなわち、 U < U < U < Uであり、 L >L >L > a b e d a b cThe following relational expression is established. That is, U <U <U <U and L> L> L> a b e d a b c
Lである。また、 U < Lである。これによつて、ノズルヘッド 12に設けられたノズル 14 d d d L. U <L. As a result, the nozzle 14 d d d provided in the nozzle head 12
a, 14b, 14c, 14dの装着の際に、全ノズルが同時に最大抵抗力を受けることを防止 し、 4段皆に分けることカできる。  When a, 14b, 14c and 14d are installed, all nozzles are prevented from receiving the maximum resistance at the same time, and can be divided into four stages.
[0070] さらに、特に、先端側外周突部 54a, 54b, 54c, 54dが先端側内周筒状壁面 72の みならず、後端側外周突部 52a, 52b, 52c, 52dが後端側内周筒状壁面 70と密接 する場合には、前記分注チップ 46の前記ノズル 14a (14b, 14c, 14d)への完全装 着時における前記基準水平面から後端側内周筒状壁面 70の後端縁までの距離を U、先端側内周筒状壁面 72の後端縁までの距離を Lとすると、 U— Uと、 L 一 Lと t t a t a t を異ならせ、 U— Uと、 L— Lとを異ならせ、 U— Uと、 L— Lとを異ならせ、 U— b t b t c t c t d[0070] Further, in particular, the front end side outer peripheral protrusions 54a, 54b, 54c, 54d are not only the front end side inner peripheral cylindrical wall surface 72, but the rear end side outer peripheral protrusions 52a, 52b, 52c, 52d are the rear end side. When in close contact with the inner peripheral cylindrical wall surface 70, when the dispensing tip 46 is fully attached to the nozzle 14a (14b, 14c, 14d), the rear end side inner peripheral cylindrical wall surface 70 If the distance to the rear edge is U, and the distance to the rear edge of the inner peripheral cylindrical wall 72 is L, U—U and L 1 L and ttatat are different, and U—U and L— Make L different, U— U, L— L different, U— btbtctctd
Uと、 L 一 Lとを異ならせるように設定する。これによつて、分注チップの装着の際に t d t Set U to be different from L to L. As a result, t d t
、同一のノズルにおいて後端側外周突部と先端側内周筒状突部が同時に最大抵抗 力を内周壁面から受けることを防止することができる。  In the same nozzle, it is possible to prevent the rear end side outer peripheral protrusion and the front end side inner peripheral cylindrical protrusion from simultaneously receiving the maximum resistance force from the inner peripheral wall surface.
[0071] 続いて、本発明の実施の形態に係るノズル 14a, 14b, 14c, 14dへの分注チップ 4[0071] Subsequently, a dispensing tip 4 to the nozzles 14a, 14b, 14c, 14d according to the embodiment of the present invention 4
6の装着の動作について図面に基づいて説明する。 6 will be described with reference to the drawings.
[0072] 図 1、図 2、図 3、図 4に示すように、前記ノズルヘッド 12を、前記チップ収容部 42の 上方にまで、前記移動手段の X軸駆動機構(図示せず)および Y軸駆動機構(図示 せず)を用いて移動させる。次に、前記 Z軸モータ 40、ボール螺子 43を駆動して、ノ ズルヘッド支持体 32およびノズルヘッド 12を、前記チップ収容部 42に向かって一斉 に下降させる。このいずれかのノズル 14a, 14b, 14c, 14dの外周突部が、前記分 注チップ 46のいずれかの内周筒状壁面と接触するまでは、これらのノズル、したがつ てノズルヘッド 12が前記分注チップ 46から受ける抵抗力は 0または非常に小さい。 前記ノズルヘッド 12に設けられた前記ノズルは、前記基準水平面から前記外周突部 までの距離が相互に異なる 4種類のノズル群から形成されているため、ノズル 14a, 1 4b, 14c, 14dの内、前記基準水平面からの距離が最も大きい Lをもつ第 1のノズル 群に属するノズル 14aの先端側外周突部 54aが、最初に前記分注チップ 46の先端 側内周筒状壁面 72と接触する位置にまで降下する。先端側外周突部 54aと先端側 内周筒状壁面 72との間の密接状態に係る先端側内周筒状壁面 72の狭まりによる衝 突および抗力の発生と物体間の静止摩擦力に基づき抵抗力 ϋを 1のノズル 14aが受 ける。 [0072] As shown in FIG. 1, FIG. 2, FIG. 3, and FIG. It is moved upward using an X-axis drive mechanism (not shown) and a Y-axis drive mechanism (not shown) of the moving means. Next, the Z-axis motor 40 and the ball screw 43 are driven to lower the nozzle head support 32 and the nozzle head 12 all at once toward the chip housing portion 42. Until the outer peripheral protrusions of any one of the nozzles 14a, 14b, 14c, 14d come into contact with any one of the inner peripheral cylindrical wall surfaces of the dispensing tip 46, these nozzles, and therefore the nozzle head 12 is The resistance force received from the dispensing tip 46 is 0 or very small. The nozzles provided in the nozzle head 12 are formed of four types of nozzle groups having different distances from the reference horizontal plane to the outer peripheral protrusion, and therefore, among the nozzles 14a, 14b, 14c, and 14d, The outer peripheral protrusion 54a on the tip side of the nozzle 14a belonging to the first nozzle group having the largest distance L from the reference horizontal plane first comes into contact with the inner cylindrical wall surface 72 on the tip side of the dispensing tip 46. Descent to position. Resistance based on the generation of collision and drag due to the narrowing of the distal inner cylindrical wall 72 and the static frictional force between the objects in close contact between the distal outer circumferential protrusion 54a and the distal inner cylindrical wall 72 Nozzle 14a receives force ϋ.
[0073] したがって、図 8に示すように、そのようなノズル 14aを 24本有するノズルヘッド 12と しては、 P = 24p (製品間の公差やノズル群間の形状による相違はないと仮定する。 以下同じ)の力を受ける。この力 Pは、静止摩擦係数 Mと、前記外周突部と前記内周 筒状壁面との間に働く法線方向の抗カ N (挟持力)との積 MNに関係する。  Therefore, as shown in FIG. 8, for a nozzle head 12 having 24 such nozzles 14a, P = 24p (assuming that there is no difference due to tolerance between products or shape between nozzle groups) The same shall apply hereinafter. This force P is related to the product MN of the coefficient of static friction M and the normal resistance N (holding force) acting between the outer peripheral projection and the inner peripheral cylindrical wall surface.
[0074] その際、後端側内周筒状壁面 70については、ノズル 14a, 14b, 14c, 14dの内、 前記基準水平面からの距離が最も大きレ、Uをもつ第 4のノズル群に属するノズル 14  At that time, the rear end side inner peripheral cylindrical wall surface 70 belongs to the fourth nozzle group having the largest U and the distance U from the reference horizontal plane among the nozzles 14a, 14b, 14c, 14d. Nozzle 14
d  d
dの後端側外周突部 52dが、最初に前記分注チップ 46の後端側内周筒状壁面 70と 接触する位置にまで降下しているとしても、該後端側外周突部 52dと後端側内周筒 状壁面 70との間の摩擦による抵抗力は、先端側外周突部 54dと先端側内周筒状壁 面 72との間の摩擦による抵抗力に比較して小さいとして、以下、後端側外周突部 52 a, 52b, 52c, 52dと後端側内周筒状壁面 70に基づく抵抗力は、以下の説明では無 視する。すなわち、摩擦による抵抗力が小さいのは、後端側外周突部と後端側内周 筒状との間の状態が、例えば、密接状態ではなく接触状態であってその抗力が後者 に比べて小さいからであったり、摩擦係数が、接触する材料の組合せ、潤滑油の有 無または質、表面の滑らかさ、清浄度、材質等によって後者よりも小さい場合がある。 Even if the rear end side outer peripheral projection 52d of the d is first lowered to a position where it comes into contact with the rear end side inner peripheral cylindrical wall surface 70 of the dispensing tip 46, the rear end side outer peripheral projection 52d The resistance force due to friction between the rear end side inner peripheral cylindrical wall surface 70 is smaller than the resistance force due to friction between the front end side outer peripheral protrusion 54d and the front end side inner peripheral cylindrical wall surface 72. Hereinafter, the resistance force based on the rear end side outer peripheral protrusions 52a, 52b, 52c, 52d and the rear end side inner peripheral cylindrical wall surface 70 is ignored in the following description. That is, the resistance force due to friction is small because, for example, the state between the rear end side outer peripheral projection and the rear end side inner peripheral cylindrical shape is not a close state but a contact state, and the drag is smaller than that of the latter. Because of its small size, the friction coefficient is a combination of materials that come into contact with the presence of lubricant. It may be smaller than the latter depending on the absence or quality, surface smoothness, cleanliness, material, etc.
[0075] やがて、前記ノズルヘッド 12の力がこの抵抗力に打ち勝って降下が進行すると、前 記抵抗力よりも小さい動摩擦力による抵抗力 Rを受けることになる。この抵抗力 Rは 、動摩擦係数 mと、前記外周突部と前記内周筒状壁面との間に働く法線方向の抗カ (挟持力に相当) Nとの積 24mNに関係する。一般には、動摩擦係数 mは、静止摩擦係 数 Mよりも小さいので、動摩擦係数に基づく抵抗力は、静止摩擦係数に基づく抵抗 力よりも/ J、さいことになる。 [0075] Eventually, when the force of the nozzle head 12 overcomes the resistance force and the descent proceeds, a resistance force R due to a dynamic friction force smaller than the resistance force is received. This resistance force R is related to the product 24 mN of the dynamic friction coefficient m and the normal resistance N (corresponding to the clamping force) N acting between the outer peripheral projection and the inner cylindrical wall surface. In general, since the dynamic friction coefficient m is smaller than the static friction coefficient M, the resistance force based on the dynamic friction coefficient is / J, which is smaller than the resistance force based on the static friction coefficient.
[0076] やがて、前記基準水平面からの距離が次に大きい距離 Lをもつ第 2のノズル群に 属するノズル 14bの先端側外周突部 54bが、前記分注チップ 46の先端側内周筒状 壁面 72と接触する位置にまで下降する。先端側外周突部 54bと先端側内周筒状壁 面 72との間の密接状態に係る先端側内周筒状壁面 72の狭まりによる衝突および挟 持力の発生と物体間の静止摩擦力に基づく抵抗力 Pをノズル 14bが受ける。したが つて、そのようなノズノレ 14bを 24本有するノズノレヘッド 12としては、 P =24pの力を、[0076] Soon, the distal outer peripheral protrusion 54b of the nozzle 14b belonging to the second nozzle group having the next largest distance L from the reference horizontal plane is the distal inner circumferential cylindrical wall surface of the dispensing tip 46. Lowers to a position where it contacts 72. Due to the narrowing of the tip-side inner peripheral cylindrical wall surface 72 between the tip-side outer peripheral protrusion 54b and the tip-side inner peripheral cylindrical wall surface 72, the occurrence of collision and pinching force and the static friction force between objects The nozzle 14b receives the resistance force P based on it. Therefore, the Nozure head 12 having 24 such Nozno 14b has a force of P = 24p,
Rに加えて受けることになる。したがって、この時点で、ノズルヘッド 12が受ける力 PIt will be received in addition to R. Therefore, at this point, the force that the nozzle head 12 receives is P
=R +Pである。 = R + P.
[0077] やがて、前記ノズルヘッド 12の力がこの抵抗力に打ち勝って降下が進行すると、ノ ズル 14bに関して、ノズルヘッド 12は、前記抵抗力よりも小さい動摩擦力による抵抗 力 Rを受けることになる。この抵抗力 Rは、動摩擦係数 mと、前記外周突部と前記内 周筒状壁面との間に働く法線方向の抗カ Nとの積 24mNに関係する。したがって、前 述したように、動摩擦係数に基づく抵抗力は、静止摩擦係数に基づく抵抗力よりも小 さいことになる。  [0077] Eventually, when the force of the nozzle head 12 overcomes this resistance force and the descent proceeds, the nozzle head 12 receives a resistance force R due to a dynamic friction force smaller than the resistance force with respect to the nozzle 14b. . This resistance force R is related to the product 24 mN of the dynamic friction coefficient m and the normal resistance N acting between the outer peripheral projection and the inner peripheral cylindrical wall surface. Therefore, as described above, the resistance force based on the dynamic friction coefficient is smaller than the resistance force based on the static friction coefficient.
[0078] したがって、ノズルヘッド 12全体として受ける力 R =R +Rであり、 P >R となる 同様にして、下降が進行し、第 3のノズル群に属するノズル 14cの先端側外周突部 54cが先端側内周筒状壁面 72に達すると、 P =R +R +P ( = 24ρ , ρは、衝突 または静止摩擦係数に基づく 1本のノズル 14cが受ける抵抗力)の力をノズルヘッド 1 2が受けることになる。該抵抗力に打ち勝って前記ノズルヘッド 12の下降がさらに進 行すると、ノズノレヘッド 12が受ける抵抗力は、 R =R +R +R (=第 3ノズノレ群に 属するノズル 14cが受ける動摩擦係数 mに基づく抵抗力 24mNで前記 Pよりも小さい) となる。したがって、 P >R となる。 Therefore, the force R = R + R received as a whole of the nozzle head 12 is satisfied, and P> R. Similarly, the lowering proceeds and the outer peripheral protrusion 54c on the tip side of the nozzle 14c belonging to the third nozzle group When the nozzle reaches the inner cylindrical wall surface 72 on the tip side, the force of P = R + R + P (= 24ρ, ρ is the resistance force received by one nozzle 14c based on the collision or static friction coefficient) 2 will receive. When this resistance force is overcome and the nozzle head 12 descends further, the resistance force received by the nozzle head 12 becomes R = R + R + R (= the third nozzle group). The resistance force 24 mN based on the dynamic friction coefficient m received by the nozzle 14 c to which the nozzle 14 c belongs is smaller than P). Therefore, P> R.
abc abc  abc abc
[0079] さらに、ノズルヘッド 12の下降が進行し、第 4のノズル群に属するノズル 14dの先端 側外周突部 54dが先端側内周筒状壁面 72に達すると、 P =R +R +R +P (= abed a b e d [0079] Further, when the lowering of the nozzle head 12 proceeds and the tip outer peripheral protrusion 54d of the nozzle 14d belonging to the fourth nozzle group reaches the tip inner cylindrical wall surface 72, P = R + R + R + P (= abed abed
24p , pは、衝突または静止摩擦係数に基づく 1本のノズル 14dが受ける抵抗力)の d d 24p, p is the resistance force that one nozzle 14d receives based on the collision or static friction coefficient) d d
力をノズルヘッド 12が受けることになる。該抵抗力に打ち勝って前記ノズルヘッド 12 の下降がさらに進行すると、該ノズルヘッド 12が受ける抵抗力は、 R =R +R +R abed a b The nozzle head 12 receives the force. When the nozzle head 12 descends further by overcoming the resistance force, the resistance force received by the nozzle head 12 is R = R + R + R abed a b
+ R (=第 4のノズル群に属するノズル 14dが受ける動摩擦係数 mに基づく抵抗力 2 c d + R (= resistance force based on the dynamic friction coefficient m received by the nozzle 14d belonging to the fourth nozzle group 2 c d
4mNで前記 Pよりも小さい)となる。したがって、 P >R となる。これによつて、図 5 d abed abed  4mN and smaller than P). Therefore, P> R. This makes the 5d abed abed
に示すように、 96本の前記分注チップ 46が前記ノズノレヘッド 12の各ノズノレ 14a, 14b , 14c, 14dに装着されることになる。  As shown in FIG. 9, 96 dispensing tips 46 are attached to the respective nozzles 14a, 14b, 14c, 14d of the nozzle head 12.
[0080] 一方、従来のように、 1のノズル群に属するノズル、例えば、先端側外周突部として 、 Lを有するノズル 14aのみがノズルヘッド 12に 96本前記配列パターンで設けられて いる場合には、前記先端側外周突部 54aが前記分注チップ 46の先端側内周筒状壁 面 72に一斉に接触することになる。したがって、図 8に示すように、 1本のノズルが受 ける力 pは、衝突または静止摩擦係数に基づく抵抗力、すなわち、 mNに関係し、該[0080] On the other hand, as in the conventional case, when only 96 nozzles 14a having L are provided in the nozzle head 12 in the arrangement pattern, for example, as nozzles belonging to one nozzle group, for example, as front end side outer peripheral protrusions. In other words, the tip-side outer peripheral projection 54a contacts the tip-side inner peripheral cylindrical wall surface 72 of the dispensing tip 46 all at once. Therefore, as shown in FIG. 8, the force p received by one nozzle is related to the resistance force based on the collision or static friction coefficient, that is, mN, and
0 0
ノズルヘッドが受ける力 Pは、 P =96pとなる。これは、一般に、動摩擦係数に基づ  The force P received by the nozzle head is P = 96p. This is generally based on the dynamic friction coefficient.
0 0 0  0 0 0
く力を含有する前記 P よりも大きいことになる。  It will be larger than the above-mentioned P containing force.
abed  abed
[0081] 続いて、図 9乃至図 11には、本発明の第 2および第 3の実施の形態に係るチップ装 着式集積処理装置 100, 110を模式的に示す。図 1乃至図 5に示す前記第 1の実施 の形態に係るチップ装着式集積処理装置 10と同一の符号は、同一のものを示すの で、説明を省略する。該チップ装着式集積処理装置 100, 110は、前述したチップ装 着式集積処理装置 10と異なり、脱着部 11 , 111が設けられたものである。  Next, FIGS. 9 to 11 schematically show chip-mounted integrated processing apparatuses 100 and 110 according to the second and third embodiments of the present invention. The same reference numerals as those of the chip-mounted integrated processing apparatus 10 according to the first embodiment shown in FIG. 1 to FIG. Unlike the chip-mounted integrated processing apparatus 10 described above, the chip-mounted integrated processing apparatuses 100 and 110 are provided with detachable portions 11 and 111.
[0082] 図 9に示す第 2の実施の形態に係るチップ装着式集積処理装置 100の脱着部 11 は、前記ノズルヘッド 12に支持され、該ノズルヘッド 12に設けられた全部で 96本の前 記ノズル 14a, 14b, 14c, 14dに対して相対的に移動可能に設けられた脱着板 15を 、前記ノズルヘッド 12の所定基準水平面に相当するノズル配列プレート 20に対し板 面カ平 fiで、該ノズノレ酉己歹 IJプレート 20の下佃 Jで、各ノス、ノレ 14a, 14b, 14c, 14dに 装着されるべき分注チップ 46の上側に位置させている。したがって、前記脱着板 15 は、分注チップ 46の装着前に、該位置にまで移動させておく。 [0082] The attachment / detachment portion 11 of the chip mounting integrated processing apparatus 100 according to the second embodiment shown in FIG. 9 is supported by the nozzle head 12 and a total of 96 front parts provided on the nozzle head 12 are provided. The detaching plate 15 provided so as to be relatively movable with respect to the nozzles 14a, 14b, 14c, 14d is a plate surface fi with respect to the nozzle array plate 20 corresponding to a predetermined reference horizontal plane of the nozzle head 12. In the lower part J of the IJ plate 20 to each noss, nore 14a, 14b, 14c, 14d It is located above the dispensing tip 46 to be installed. Therefore, the detaching plate 15 is moved to this position before the dispensing tip 46 is attached.
[0083] 該脱着部 11の前記脱着板 15には、前記ノズル 14a, 14b, 14c, 14dの水平断面 の最大外径に相当する前記後端側外周突部 52a, 52b, 52c, 52dよりも大きいが、 前記チップ状容器としての分注チップ 46の最大幅に相当する装着用開口部 60の突 条形成き よりは/ J、さい径をもつ? L13力 前記ノス、ノレ 14a, 14b, 14c, 14dの、前 記ノズル配列プレート 20に形成された配列パターン、すなわち、 12行 X 8列の行列状 であって、前記ノズル配列プレート 20に形成されたものと同一の行間隔、列間隔をも つて形成されている。該脱着板 15は、前記所定基準水平面に相当するノズル配列プ レート 20に平行に設けられ、図示しない移動機構によって、前記孔 13内を前記各ノ ズノレ 14a, 14b, 14c, 14dの軸線が通るように、前記ノズノレの軸線方向に沿って前 記ノズルに対して移動可能に設けられている。  [0083] The detaching plate 15 of the detachable portion 11 is more than the rear end side outer peripheral protrusions 52a, 52b, 52c, 52d corresponding to the maximum outer diameter of the horizontal cross section of the nozzles 14a, 14b, 14c, 14d. Is it larger than the ridge formation of the opening 60 for mounting corresponding to the maximum width of the dispensing tip 46 as the tip-shaped container? L13 force Noss, Noles 14a, 14b, 14c, 14d are arranged in the nozzle arrangement plate 20, that is, a matrix of 12 rows x 8 columns, and formed in the nozzle arrangement plate 20. It is formed with the same row spacing and column spacing. The detaching plate 15 is provided in parallel to the nozzle array plate 20 corresponding to the predetermined reference horizontal plane, and the axes of the nozzles 14a, 14b, 14c, 14d pass through the holes 13 by a moving mechanism (not shown). Thus, it is provided so as to be movable with respect to the nozzle along the axial direction of the nozzle.
[0084] 図 10および図 11に示す第 3の実施の形態に係るチップ装着式集積処理装置 110 の脱着部 111は、前記チップ収容部 42が設けられたステージ上に固定して設けられ たものであって、櫛歯状に形成された脱着板 19と、該脱着板 19をステージ上に支持 する支持板 21とを有している。該脱着板 19の板面は、前記ノズルヘッド 12の所定基 準水平面に相当するノズル配列プレート 20に対して板面が平行に設けられている。 符号 17は、前記ステージに埋設された、前記分注チップ 46が収容されるチップ収容 部の開口を示す。  [0084] The detachable portion 111 of the chip mounting type integrated processing apparatus 110 according to the third embodiment shown in FIGS. 10 and 11 is fixedly provided on the stage on which the chip accommodating portion 42 is provided. In this case, a desorption plate 19 formed in a comb shape and a support plate 21 for supporting the desorption plate 19 on a stage are provided. The plate surface of the detachable plate 19 is provided parallel to the nozzle array plate 20 corresponding to a predetermined reference horizontal surface of the nozzle head 12. Reference numeral 17 denotes an opening of a tip accommodating portion that is embedded in the stage and accommodates the dispensing tip 46.
[0085] 該脱着部 111の該脱着板 19には、前記ノズル 14a, 14b, 14c, 14dの水平断面の 最大外径に相当する前記後端側外周突部 52a, 52b, 52c, 52dよりも大きいが、前 記チップ状容器としての分注チップ 46の最大幅に相当する装着用開口部 60の突条 形成部 47よりは小さい幅を持つ複数の隙間(この例では 12個)であってその脱着板 19の片側方向に開!/、たものに挟まれた複数本の櫛歯部材 23 (この例では 11本)が 、前記ノズル配列プレート 20に形成された配列パターン、すなわち、 12行 X 8列の行 列状に対応するように、行方向に沿って、前記ノズル配列プレート 20に形成されたも のと同一の行間隔、および行方向の長さをカバーするような長さで形成されている。 該脱着板 15は、前記所定基準水平面に相当するノズル配列プレート 20に平行に設 けられ、図示しない移動機構によって、前記孔 13内を前記各ノズル 14a, 14b, 14c , 14dの軸線が通るように、形成されている。 [0085] The detaching plate 19 of the detachable portion 111 is more than the rear end side outer peripheral protrusions 52a, 52b, 52c, 52d corresponding to the maximum outer diameter of the horizontal section of the nozzles 14a, 14b, 14c, 14d. A plurality of gaps (12 in this example) having a width smaller than that of the protrusion forming portion 47 of the mounting opening 60 corresponding to the maximum width of the dispensing tip 46 as the tip-shaped container is large. A plurality of comb-tooth members 23 (11 in this example) sandwiched between one side and the other of the detachable plate 19 are arranged in the nozzle array plate 20, that is, 12 rows. X so as to correspond to a row of 8 columns, with the same length as the nozzle array plate 20 along the row direction, and a length that covers the length in the row direction. Is formed. The detaching plate 15 is provided in parallel to the nozzle array plate 20 corresponding to the predetermined reference horizontal plane. The nozzles 14a, 14b, 14c and 14d pass through the holes 13 by a moving mechanism (not shown).
[0086] 該脱着部 111を用いて、前記ノズル 14a, 14b, 14c, 14dに装着された分注チップ 46を脱着するには、前記移動手段によって前記ノズルヘッド 12を移動させて、該ノ ズノレ 14a, 14b, 14c, 14d力 装着した前記分注チップ 46の上側で前記脱着板 19 の隙間内に行方向に移動させることによって揷入させる。次に、前記移動手段によつ て、前記分注チップ 46を前記ノズルから脱着させる方向、すなわち、該ノズルヘッド 1 2を上方向に、前記ノズルまたは分注チップの軸線方向に沿って力を加えてこそぎ落 とするように構成する。  [0086] In order to detach the dispensing tip 46 attached to the nozzles 14a, 14b, 14c, 14d using the detaching part 111, the nozzle head 12 is moved by the moving means, and the nozzle nose is moved. 14a, 14b, 14c, and 14d forces are inserted by moving in the row direction into the gaps of the detachable plate 19 above the mounted dispensing tips 46. Next, the moving means applies a force along the direction in which the dispensing tip 46 is detached from the nozzle, that is, the nozzle head 12 is directed upward, along the axial direction of the nozzle or dispensing tip. In addition, it is configured to chop off.
このようにして、脱着の際にも、前記チップ状容器の内周壁面と前記ノズルの外周 突部との密接または接触によって生ずる抵抗力が前記脱着部に加わる時間的位置 的関係が異なる複数種類のノズル群によって分散され、小さな力でノズルから前記チ ップ状容器を脱着することができる。  In this way, even when detaching, a plurality of types in which the temporal positional relationship in which the resistance force generated by the close contact or contact between the inner peripheral wall surface of the tip-shaped container and the outer peripheral protrusion of the nozzle is applied to the detachable portion is different. The tip-shaped container can be detached from the nozzles with a small force.
[0087] 以上説明した各実施の形態は、本発明をより良く理解するために具体的に説明し たものであって、別形態を制限するものではない。したがって、発明の主旨を変更し ない範囲で変更可能である。例えば、前記実施の形態では、主として 2箇所の外周 突部を有するノズルであつて、上側の外周突部と上側の内周壁面との間では接触し 、下側の外周突部と下側の内周壁面との間では密接する場合について説明したが、 この場合に限られるわけではなぐ例えば、外周突部が 1のノズルに 1箇所または 3箇 所設けた場合、または、上側の外周突部と上側の内周壁面との間でも密接する場合 であっても良い。  Each of the embodiments described above is specifically described for better understanding of the present invention, and does not limit other embodiments. Therefore, changes can be made without departing from the spirit of the invention. For example, in the above-described embodiment, the nozzle mainly has two outer peripheral protrusions, and is in contact between the upper outer peripheral protrusion and the upper inner peripheral wall surface, and the lower outer peripheral protrusion and the lower outer peripheral protrusion are in contact with each other. The case of close contact with the inner peripheral wall surface has been described. However, the present invention is not limited to this case. For example, when one or three outer peripheral protrusions are provided in one nozzle, or the upper outer peripheral protrusion is provided. It may be a case where it is in close contact with the upper inner wall surface.
[0088] また、前記チップ状容器についても前述したものに限られず、移行部に段差をもつ ものや、移行部以外に段差をもつものであっても良い。また、分注チップの代わりに、 チップ状容器内に、粒子状、ブロック状、細長形状、巻装された担体が封入されたも のであっても良い。  [0088] The tip-shaped container is not limited to the above-described one, and may have a step at the transition part or a step other than the transition part. Further, instead of a dispensing tip, a particulate, block, elongated, or wound carrier may be enclosed in a tip-like container.
[0089] また、前記配列パターンも、 12行 X 8列の場合に限られるものではない。例えば、 4 , 6, 8, 12, 96, 384本などを一列状または行列状、その他の形状に配列したものがあ さらに、前記チップ状容器の細管の口部にはさらに、ステンレス製等のより径が小さ い短管を嵌合させて、その分注精度を高めるようにしても良い。 Further, the arrangement pattern is not limited to the case of 12 rows × 8 columns. For example, there are 4, 6, 8, 12, 96, 384 etc. arranged in a single line or matrix, or other shapes. Furthermore, a short tube having a smaller diameter such as stainless steel may be further fitted into the mouth portion of the thin tube of the chip-shaped container to increase the dispensing accuracy.
なお、全ての空間的な位置関係への言及は、例示目的のためであって、本発明を 限定するものと解釈すべきではなレ、。  Note that all references to spatial relationships are for illustrative purposes and should not be construed as limiting the invention.
産業上の利用可能性  Industrial applicability
[0090] 本発明に係るチップ装着式集積処理装置、チップ状容器、およびチップ装着式処 理方法は、種々の溶液の処理が要求される分野、例えば、工業分野、食品、農産、 水産加工等の農業分野、製薬分野、衛生、保険、免疫、疾病、遺伝等を扱う医療分 野、化学若しくは生物学等の分野等、あらゆる分野に関係するものである。本発明は 、特に、多数の試薬や物質を用いた一連の処理を所定の順序に連続的に処理を実 行する場合に有効である。 [0090] The chip-mounted integrated processing apparatus, chip-shaped container, and chip-mounted processing method according to the present invention include fields requiring processing of various solutions, such as industrial fields, foods, agricultural products, and fishery processing. In the fields of agriculture, pharmaceuticals, hygiene, insurance, immunity, disease, genetics, etc., and chemical and biology fields. The present invention is particularly effective when a series of processes using a large number of reagents and substances are continuously performed in a predetermined order.
図面の簡単な説明  Brief Description of Drawings
[0091] [図 1]本発明の第 1の実施の形態に係るチップ装着式集積処理装置を示す斜視図で ある。  FIG. 1 is a perspective view showing a chip mounting type integrated processing apparatus according to a first embodiment of the present invention.
[図 2]本発明の第 1の実施の形態に係るノズルヘッドのノズル配列パターンを示す表 面図である。  FIG. 2 is a surface view showing a nozzle arrangement pattern of the nozzle head according to the first embodiment of the present invention.
[図 3]本発明の第 1の実施の形態に係るノズルヘッドおよびチップ収容部を模式的に 示す斜視図である。  FIG. 3 is a perspective view schematically showing a nozzle head and a chip accommodating portion according to the first embodiment of the present invention.
[図 4]本発明の第 1の実施の形態に係るノズルヘッドおよびチップ収容部を模式的に 示す斜視図である。  FIG. 4 is a perspective view schematically showing a nozzle head and a chip accommodating portion according to the first embodiment of the present invention.
[図 5]本発明の第 1の実施の形態に係る分注チップをノズルに装着したチップ装着式 集積処理装置を示す斜視図である。  FIG. 5 is a perspective view showing a chip mounting type integrated processing apparatus in which a dispensing chip according to the first embodiment of the present invention is mounted on a nozzle.
[図 6]本発明の第 1の実施の形態に係る分注チップを示す一部切欠き図である。  FIG. 6 is a partially cutaway view showing a dispensing tip according to the first embodiment of the present invention.
[図 7]本発明の第 1の実施の形態に係る各ノズル群に属する 4種類のノズルに分注チ ップを装着した場合の一部切り欠き図である。  FIG. 7 is a partially cutaway view when a dispensing tip is attached to four types of nozzles belonging to each nozzle group according to the first embodiment of the present invention.
[図 8]本発明の第 1の実施の形態に係るノズルの分注チップへの揷入量と抵抗力を [図 9]本発明の第 2の実施の形態に係るチップ装着式集積処理装置のノズルヘッドに 設けた脱着部を模式的に示す斜視図である。 FIG. 8 shows the amount of insertion and resistance of the nozzle into the dispensing tip according to the first embodiment of the present invention. FIG. 9 shows the chip-mounted integrated processing device according to the second embodiment of the present invention. Nozzle head It is a perspective view which shows typically the provided removal | desorption part.
[図 10]本発明の第 3の実施の形態に係るチップ装着式集積処理装置のステージ上 に設けた脱着部を模式的に示す斜視図である。  FIG. 10 is a perspective view schematically showing an attaching / detaching portion provided on a stage of a chip mounting type integrated processing apparatus according to a third embodiment of the present invention.
[図 11]本発明の第 3の実施の形態に係るチップ装着式集積処理装置のステージ上 に設けた脱着部を模式的に示す斜視図である。  FIG. 11 is a perspective view schematically showing an attaching / detaching portion provided on a stage of a chip mounting integrated processing apparatus according to a third embodiment of the present invention.
符号の説明 Explanation of symbols
10, 100, 110 チップ装着式集積処理装置  10, 100, 110 Chip mounted integrated processing equipment
11 , 111 脱着部  11, 111 Desorption part
12 ノズノレヘッド  12 Noznore Head
16 シリンダ  16 cylinders
14a, 14b, 14c, 14d ノス、ノレ  14a, 14b, 14c, 14d Nos, Nore
20 ノズノレ配列プレート  20 Nozure array plate
42 チップ収容部 (チップ状容器収容部)  42 Chip container (chip-shaped container container)
46 分注チップ (チップ状容器)  46 Dispensing tips (chip-shaped containers)
52a, 52b, 52c, 52d 後端側外周突部  52a, 52b, 52c, 52d
54a, 54b, 54c, 54d 先端側外周突部  54a, 54b, 54c, 54d Tip protrusion
60 装着用開口部  60 Mounting opening
70 後端側内周筒状壁面(内周壁面)  70 Rear end inner peripheral cylindrical wall surface (inner peripheral wall surface)
72 先端側内周筒状壁面 (内周壁面)  72 Tip side inner peripheral cylindrical wall surface (inner peripheral wall surface)
64 P部  64 P section

Claims

請求の範囲 The scope of the claims
[1] 1またはノズルの軸方向に相互に離間した 2以上の閉じた外周帯に沿って外向きに 突出した 1または 2以上の外周突部を有するノズルと、 2以上の該ノズルを所定配列 パターンで配列したノズルヘッドと、該ノズルを介して気体の吸引吐出を行う吸引吐 出機構と、前記ノズルに装着しまたは装着可能な装着用開口部、および先端に設け た前記気体の吸引吐出によって流体の入出が可能な口部を有する略筒状の 2以上 のチップ状容器と、該チップ状容器を前記所定配列パターンで前記ノズルに装着可 能な状態で収容しまたは収容可能としたチップ状容器収容部と、前記ノズルヘッドと 前記チップ状容器収容部との間を相対的に移動させる移動手段とを有し、  [1] 1 or 2 or more nozzles having one or more outer peripheral protrusions projecting outward along two or more closed outer peripheral bands spaced apart from each other in the axial direction of the nozzle, and two or more nozzles in a predetermined arrangement A nozzle head arranged in a pattern, a suction / discharge mechanism for sucking and discharging gas through the nozzle, a mounting opening that can be attached to or attached to the nozzle, and a suction / discharge of the gas provided at the tip Two or more substantially chip-shaped containers having a mouth portion through which fluid can enter and exit, and a chip-shaped container in which the chip-shaped containers can be attached to or accommodated in the nozzle in the predetermined arrangement pattern. A container accommodating portion, and a moving means for relatively moving between the nozzle head and the chip-shaped container accommodating portion,
前記ノズルヘッドに設けられた 2以上の前記ノズルは、前記チップ状容器の装着に よって該各ノズルに設けられた前記外周突部が前記装着用開口部の内周壁面と密 接または接触し、所定基準水平面から少なくとも 1の前記外周突部までの距離が相 互に異なる複数種類のノズル群からなるチップ装着式集積処理装置。  In the two or more nozzles provided in the nozzle head, the outer peripheral protrusions provided in the nozzles are in close contact with or in contact with the inner peripheral wall surface of the mounting opening by mounting the tip-shaped container, A chip-mounted integrated processing apparatus comprising a plurality of types of nozzle groups having different distances from a predetermined reference horizontal plane to at least one of the outer peripheral protrusions.
[2] 前記ノズルに設けられた 2以上の前記外周突部は、先端側の外周突部の外周長が 、後端側の外周突部の外周長よりも短く形成され、前記チップ状容器の前記装着用 開口部には、前記外周突部に対応して前記外周突部と密接または接触する内周壁 面が形成された請求の範囲第 1項に記載のチップ装着式集積処理装置。  [2] The two or more outer peripheral protrusions provided in the nozzle are formed such that the outer peripheral length of the outer peripheral protrusion on the front end side is shorter than the outer peripheral length of the outer peripheral protrusion on the rear end side, 2. The chip mounting type integrated processing device according to claim 1, wherein an inner peripheral wall surface in close contact with or in contact with the outer peripheral protrusion is formed in the mounting opening corresponding to the outer peripheral protrusion.
[3] 前記内周壁面は、前記外周突部に対応して相互に離間して設けられた複数の内 周筒状壁面からなり、各内周筒状壁面は前記外周突部と密接または接触するととも に、前記内周筒状壁面の後端側には、先細りのテーパ面が前記内周筒状壁面と接 続して設けられた請求の範囲第 1項または請求の範囲第 2項に記載のチップ装着式 集積処理装置。  [3] The inner peripheral wall surface includes a plurality of inner peripheral cylindrical wall surfaces provided to be spaced apart from each other corresponding to the outer peripheral protrusion, and each inner peripheral cylindrical wall surface is in close contact with or in contact with the outer peripheral protrusion. In addition, a tapered tapered surface is provided on the rear end side of the inner peripheral cylindrical wall surface so as to be connected to the inner peripheral cylindrical wall surface. The chip mounting type integrated processing apparatus as described.
[4] 前記移動手段は、該ノズルヘッドの各ノズルが、前記チップ状容器の前記装着用 開口部内に揷入可能な位置に達した後、少なくとも前記ノズル群に属するノズルの 構造および各ノズル群に属するノズル数に基づ!/、て各ノズルが前記装着用開口部 内に挿入されるように、前記ノズルヘッドと該チップ状容器収容部との間を相対的に 移動する請求の範囲第 1項乃至請求の範囲第 3項のいずれかに記載のチップ装着 式集積処理装置。 [4] The moving means includes at least the structure of the nozzle belonging to the nozzle group and the nozzle group after each nozzle of the nozzle head reaches a position where the nozzle can be inserted into the mounting opening of the chip-like container. Based on the number of nozzles belonging to the! /, The nozzle head and the tip-like container housing portion relatively move so that each nozzle is inserted into the mounting opening. 4. The chip mounting type integrated processing device according to claim 1, wherein the chip mounting type integrated processing device is used.
[5] 各ノズルに装着したチップ状容器を、一斉に脱着させる脱着部を有し、該脱着部は 、前記ノズルの水平断面の最大外径または最大幅よりも大きいが、チップ状容器の 水平断面の最大外径または最大幅よりも小さい径または幅をもつ孔または隙間を前 記所定配列パターンに応じて形成した脱着板を有し、該脱着板は、その板面が前記 所定基準水平面に平行に設けられ、前記孔または前記隙間内を前記各ノズルの軸 線が通るように、該ノズルの軸線方向に沿って該ノズルに対して相対的に移動可能 に設けた請求の範囲第 1項乃至請求の範囲第 4項のいずれかに記載のチップ装着 式集積処理容器 [5] A chip-like container attached to each nozzle has a desorption part that desorbs all at once, and the desorption part is larger than the maximum outer diameter or the maximum width of the horizontal cross section of the nozzle, A desorption plate having holes or gaps having a diameter or width smaller than the maximum outer diameter or maximum width of the cross section formed in accordance with the predetermined arrangement pattern is provided, and the demounting plate has a plate surface in the predetermined reference horizontal plane. The first aspect of the present invention is provided in parallel, and is provided so as to be movable relative to the nozzle along the axial direction of the nozzle so that the axis of each nozzle passes through the hole or the gap. Or a chip-mounted integrated processing container according to any one of claims 4 to 5.
[6] 内部に液体を収容可能な略筒状の筒状容器であって、 1または軸方向に相互に離 間した 2以上の閉じた外周帯に沿って外向きに突出した 1または 2以上の外周突部を 有するノズルに装着可能な装着用開口部と、前記容器の先端に設けられ前記ノズル を介しての気体の吸引吐出によって流体の入出が可能な口部とを有するとともに、 前記装着用開口部は、前記ノズルへの装着によって前記ノズルの前記外周突部と 密接または接触する内周壁面と、該内周壁面の後端側に設けられ該内周壁面と接 続した先細りのテーパ面とを有するチップ状容器。  [6] A substantially cylindrical cylindrical container that can contain a liquid inside, and protrudes outwardly along two or more closed outer circumferential bands 1 or axially separated from each other. A mounting opening that can be attached to a nozzle having an outer peripheral protrusion, and a mouth that is provided at the tip of the container and through which the fluid can be introduced and discharged by suction and discharge of gas through the nozzle. The opening for use is attached to the nozzle so as to be in close contact with or in contact with the outer peripheral protrusion of the nozzle, and a tapered taper provided on the rear end side of the inner peripheral wall and connected to the inner peripheral wall. A chip-like container having a surface.
[7] 前記内周壁面は、前記ノズルの軸方向に相互に離間した 2以上の閉じた外周帯に 沿って外向きに突出した 1または 2以上の外周突部に対応して設けられ、前記ノズル への装着によって該外周突部と各々密接または接触し、該容器の軸方向に相互に 離間して設けられた複数の内周筒状壁面を有し、先端側の内周筒状壁面の内周長 は、後端側の内周筒状壁面の内周長よりも短く形成され、該内周筒状壁面の後端側 には、先細りのテーパ面が形成された請求の範囲第 6項に記載のチップ状容器。  [7] The inner peripheral wall surface is provided corresponding to one or more outer peripheral protrusions protruding outward along two or more closed outer peripheral bands spaced apart from each other in the axial direction of the nozzle, A plurality of inner peripheral cylindrical wall surfaces that are in close contact with or in contact with each of the outer peripheral projections by being attached to the nozzle and are spaced apart from each other in the axial direction of the container. The inner peripheral length is shorter than the inner peripheral length of the inner peripheral cylindrical wall surface on the rear end side, and a tapered tapered surface is formed on the rear end side of the inner peripheral cylindrical wall surface. The chip-like container according to item.
[8] 前記ノズルに設けられた軸方向に相互に離間した 2箇所の前記外周突部は、先端 側の外周突部の外周長が、後端側の外周突部の外周長よりも短く形成され、前記チ ップ状容器の前記装着用開口部は、前記外周突部と各々密接または接触可能であ つて、前記容器の軸方向に離間して設けられた 2箇所の内周筒状壁面を有し、先端 側内周筒状壁面の内周長は、後端側内周筒状壁面の内周長よりも短ぐ先端側内 周筒状壁面の後端側、後端側内周筒状壁面と先端側内周筒状壁面との間には、先 細りのテーパ面が形成されるとともに、前記ノズルへの装着によって前記先端側内周 筒状壁面は、前記ノズルの先端側の外周突部と密接し、前記後端側内周筒状壁面 は、前記後端側の外周突部と接触する請求の範囲第 6項に記載のチップ状容器。 [8] The two outer peripheral protrusions provided in the nozzle and spaced apart from each other in the axial direction are formed such that the outer peripheral length of the outer peripheral protrusion on the front end side is shorter than the outer peripheral length of the outer peripheral protrusion on the rear end side. The mounting opening of the chip-shaped container can be in close contact with or in contact with the outer peripheral protrusion, and two inner peripheral cylindrical wall surfaces provided apart from each other in the axial direction of the container. The inner circumferential length of the inner circumferential cylindrical wall surface on the front end side is shorter than the inner circumferential length of the inner circumferential cylindrical wall surface on the rear end side, and the rear end side inner circumference on the rear end side inner cylindrical wall surface A tapered surface is formed between the cylindrical wall surface and the inner circumferential cylindrical wall surface on the front end side. 7. The tip according to claim 6, wherein the cylindrical wall surface is in close contact with the outer peripheral protrusion on the tip end side of the nozzle, and the inner peripheral cylindrical wall surface on the rear end side is in contact with the outer peripheral protrusion on the rear end side. Container.
[9] 1または軸方向に相互に離間した 2以上の閉じた外周帯に沿って外向きに突出した 1または 2以上の外周突部を有するノズルと、 2以上の該ノズルを所定配列パターン で配列したノズルヘッドと、該ノズルを介して気体の吸引吐出を行う吸引吐出機構と、 前記ノズルに装着可能な装着用開口部、および先端に設けた前記気体の吸引吐出 によって流体の入出が可能な口部を有する略筒状の 2以上のチップ状容器と、該チ ップ状容器を前記所定配列パターンで配列し、前記ノズルに装着可能な状態で収容 したチップ状容器収容部と、前記ノズルヘッドを前記チップ状容器収容部に対して相 対的に移動させる移動手段とを有し、前記ノズルヘッドに設けられた 2以上の前記ノ ズルは、前記チップ状容器の装着によって該各ノズルの前記外周突部が前記装着 用開口部の内周壁面と密接または接触し、該外周突部は所定基準水平面から前記 外周突部までの距離が相互に異なる複数種類のノズル群からなるとともに、 [9] One or two or more nozzles having one or more outer peripheral projections projecting outward along an axially spaced outer circumferential band and two or more nozzles in a predetermined arrangement pattern Fluid can be entered and exited by an array of nozzle heads, a suction and discharge mechanism that performs suction and discharge of gas through the nozzle, a mounting opening that can be attached to the nozzle, and the suction and discharge of gas provided at the tip. Two or more chip-shaped containers having a substantially cylindrical shape having a mouth part, a chip-shaped container housing part in which the chip-shaped containers are arrayed in the predetermined array pattern and accommodated in a state of being attached to the nozzles, and the nozzles Moving means for moving the head relative to the tip-shaped container housing portion, and the two or more nozzles provided on the nozzle head are provided for each nozzle by mounting the tip-shaped container. The outer peripheral projection is Serial close to or in contact with the inner peripheral wall surface of the fitting opening, with the outer peripheral protrusion distance from a predetermined reference horizontal surface to the peripheral projection comprising a plurality kinds of nozzle groups different from each other,
前記ノズルヘッドの各ノズルが前記チップ状容器収容部に収容された前記チップ 状容器の前記装着用開口部に揷入可能な位置にまで前記ノズルヘッドを移動し、前 記ノズルヘッドを下降させて、前記チップ状容器を前記ノズルヘッドの各ノズルに装 着させる工程を有するチップ装着式集積処理方法。  The nozzle head is moved to a position where each nozzle of the nozzle head can be inserted into the mounting opening of the tip-like container accommodated in the tip-like container accommodating portion, and the nozzle head is lowered. A chip mounting type integration processing method comprising a step of mounting the chip container on each nozzle of the nozzle head.
[10] 各ノズルに装着したチップ状容器を、一斉に脱着させる脱着部を有し、該脱着部は 、前記ノズルの水平断面の最大外径または最大幅よりも大きいが、チップ状容器の 最大外径または最大幅よりも小さい径または幅を持つ孔または隙間を前記所定配列 パターンに応じて設けた脱着板を有し、該脱着板は、その板面が前記所定基準水平 面に平行に設けられ、前記孔または前記隙間内を前記各ノズルの軸線が通るように 、該ノズルの軸線方向に沿って該ノズルに対して相対的に移動させて、前記ノズルに 装着された前記チップ状容器を脱着する工程を有する請求の範囲第 9項に記載の チップ装着式集積処理方法。 [10] A chip-like container attached to each nozzle has a detachable part for detaching all at once, and the detachable part is larger than the maximum outer diameter or maximum width of the horizontal cross section of the nozzle, A desorption plate having holes or gaps having a diameter or width smaller than the outer diameter or maximum width according to the predetermined arrangement pattern is provided, and the demounting plate has a plate surface provided in parallel to the predetermined reference horizontal plane. The tip-like container mounted on the nozzle is moved relative to the nozzle along the axial direction of the nozzle so that the axis of each nozzle passes through the hole or the gap. 10. The chip mounting type integration processing method according to claim 9, further comprising a step of detaching.
PCT/JP2007/064596 2006-07-25 2007-07-25 Chip mounting type integration processing apparatus, chip-shaped container and chip mounting type integration processing method WO2008013205A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008526792A JP4944888B2 (en) 2006-07-25 2007-07-25 Chip-mounting-type integrated processing apparatus, chip-shaped container, and chip-mounting-type integrated processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-202315 2006-07-25
JP2006202315 2006-07-25

Publications (1)

Publication Number Publication Date
WO2008013205A1 true WO2008013205A1 (en) 2008-01-31

Family

ID=38981516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064596 WO2008013205A1 (en) 2006-07-25 2007-07-25 Chip mounting type integration processing apparatus, chip-shaped container and chip mounting type integration processing method

Country Status (2)

Country Link
JP (1) JP4944888B2 (en)
WO (1) WO2008013205A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109791163A (en) * 2016-08-22 2019-05-21 环球生物研究株式会社 Dispensing cylinder body, the dispenser for having used dispensing cylinder body and dispensing processing method
EP3974841A1 (en) * 2020-09-25 2022-03-30 Tecan Trading AG Multichannel pipetting device
WO2022230448A1 (en) * 2021-04-28 2022-11-03 ユニバーサル・バイオ・リサーチ株式会社 Dispensing device and analyte processing/measuring system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07501006A (en) * 1991-11-08 1995-02-02 アボツト・ラボラトリーズ Pipette tips with self-aligning and self-sealing features
JPH08254539A (en) * 1995-03-15 1996-10-01 Sanyo Electric Co Ltd Dispenser
JP2000097950A (en) * 1998-09-21 2000-04-07 Matsushita Electric Ind Co Ltd Dispensing apparatus
JP2001324509A (en) * 2000-05-16 2001-11-22 Aloka Co Ltd Nozzle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07501006A (en) * 1991-11-08 1995-02-02 アボツト・ラボラトリーズ Pipette tips with self-aligning and self-sealing features
JPH08254539A (en) * 1995-03-15 1996-10-01 Sanyo Electric Co Ltd Dispenser
JP2000097950A (en) * 1998-09-21 2000-04-07 Matsushita Electric Ind Co Ltd Dispensing apparatus
JP2001324509A (en) * 2000-05-16 2001-11-22 Aloka Co Ltd Nozzle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109791163A (en) * 2016-08-22 2019-05-21 环球生物研究株式会社 Dispensing cylinder body, the dispenser for having used dispensing cylinder body and dispensing processing method
CN109791163B (en) * 2016-08-22 2022-10-21 环球生物研究株式会社 Dispensing cylinder, dispensing device using dispensing cylinder, and dispensing processing method
EP3974841A1 (en) * 2020-09-25 2022-03-30 Tecan Trading AG Multichannel pipetting device
WO2022230448A1 (en) * 2021-04-28 2022-11-03 ユニバーサル・バイオ・リサーチ株式会社 Dispensing device and analyte processing/measuring system

Also Published As

Publication number Publication date
JP4944888B2 (en) 2012-06-06
JPWO2008013205A1 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP4990266B2 (en) Microplate processing apparatus and microplate processing method
US9796521B2 (en) Bellows type dispensing tip, bellows type dispensing apparatus and method of bellows type dispensing processing
US8163183B2 (en) Magnetic particle parallel processing apparatus permitting repeated use of container and method of magnetic particle parallel processing permitting repeated use of container
US6244119B1 (en) Multichannel pipette system and pipette tips therefor
TWI600907B (en) Deforming element build-in dispensing tips, deforming element built-in dispensing apparatus, and method of deforming element built-in dispensing processing
US20030026732A1 (en) Continuous processing automated workstation
JP4804278B2 (en) Microplate division processing apparatus and microplate division processing method
WO2006123688A1 (en) Filter processing method, filter encapsulation chip, and filter processing device
WO2008013205A1 (en) Chip mounting type integration processing apparatus, chip-shaped container and chip mounting type integration processing method
WO2001012330A1 (en) Flexible pipette strip and method of its use
JP6864377B2 (en) Dispensing cylinder, dispensing device and dispensing processing method using it
WO2004076018A2 (en) Reagent dispenser and dispensing method
US20220126285A1 (en) Fluid delivery device and method for carrying out chemical or biological assays
JP2008517255A (en) Pipette device
US20070258862A1 (en) Variable volume dispenser and method
JP2002022701A (en) Sample introduction device for flat gel electrophoresis device and its sample introduction method
JPH11337558A (en) Many sample processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791312

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008526792

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791312

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)