WO2008011140A2 - Pile à combustible et capteur d'humidité dans des produits de combustion - Google Patents

Pile à combustible et capteur d'humidité dans des produits de combustion Download PDF

Info

Publication number
WO2008011140A2
WO2008011140A2 PCT/US2007/016449 US2007016449W WO2008011140A2 WO 2008011140 A2 WO2008011140 A2 WO 2008011140A2 US 2007016449 W US2007016449 W US 2007016449W WO 2008011140 A2 WO2008011140 A2 WO 2008011140A2
Authority
WO
WIPO (PCT)
Prior art keywords
sample chamber
fuel cell
gas stream
split beam
instrument enclosure
Prior art date
Application number
PCT/US2007/016449
Other languages
English (en)
Other versions
WO2008011140A3 (fr
Inventor
Nathan N. Hurvitz
Carl Allan Kukkonen
Original Assignee
Viaspace, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viaspace, Inc. filed Critical Viaspace, Inc.
Publication of WO2008011140A2 publication Critical patent/WO2008011140A2/fr
Publication of WO2008011140A3 publication Critical patent/WO2008011140A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1704Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/396Type of laser source
    • G01N2021/399Diode laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes

Definitions

  • the subject matter disclosed herein relates to detection and measurements of water vapor densities in gas streams, including but not limited to gas streams for fuel cells and exhaust streams from combustion processes.
  • an apparatus in one aspect, includes an instrument enclosure and a light source that emits a light beam directed within the instrument enclosure.
  • a beam splitter is disposed within the instrument enclosure to split the light beam into a first split beam and a second split beam.
  • a sample chamber configured to accept a flowing humidified gas stream can optionally be positioned within or outside of the instrument enclosure and disposed so that the first split beam passes through the sample chamber over a sample chamber path length.
  • a first detector is positioned within the instrument enclosure and disposed in the path of the first split beam after the first split beam passes through the sample chamber. The first detector quantifies a first intensity of light transmitted in the first split beam as the first split beam traverses a first instrument enclosure path length within the instrument enclosure and the sample chamber path length.
  • a second detector is positioned within the instrument enclosure and disposed in the path of the second split beam.
  • the second detector quantifies a second intensity of light transmitted in the second split beam as the second split beam traverses a second instrument enclosure path length within the instrument enclosure.
  • the second instrument enclosure path length being approximately equal to the first instrument path length.
  • a controller is configured to receive and interpret a first signal from the first detector and a second signal from the second detector to calculate the water vapor partial pressure in the flowing humidified gas stream.
  • the apparatus can optionally also include an inlet to the sample chamber and an outlet from the sample chamber, and a fuel cell system connected to the inlet.
  • the fuel cell system can provide the flowing humidified gas stream.
  • a connector configured to connect a fuel cell to the outlet can be provided such that the flowing humidified gas stream from the fuel cell system is supplied to the fuel celL
  • a connector configured to connect a fuel cell to the inlet can be provided such that the flowing humidified gas stream from the fuel cell is supplied back to the fuel cell system.
  • a connector configured to connect a fuel cell to the inlet can be provided such that the flowing humidified gas stream from the fuel cell is vented to atmosphere.
  • the flowing humidified gas stream can be an exhaust stream emitted from a combustion device connected to an inlet on the sample chamber.
  • the combustion device can optionally be an internal combustion engine.
  • the apparatus can optionally further include an automobile with an internal combustion engine that comprises an exhaust connected to an inlet on the sample chamber.
  • the exhaust can provide the flowing humidified gas stream and the controller can optionally provide a feedback signal regarding the partial pressure or density of water vapor in the exhaust.
  • a method includes splitting a beam of light from a light source into a first split beam and a second split beam within an instrument enclosure and flowing a humidified gas stream through a sample chamber.
  • the sample chamber can optionally be positioned inside or outside of the instrument enclosure or the sample chamber can optionally be positioned outside of the instrument enclosure and include a portion of a system being analyzed.
  • the first split beam is directed through the sample chamber and to a first detector positioned within the instrument enclosure so that the first detector can quantify a first intensity of light transmitted in the first split beam as the first split beam traverses a first instrument enclosure path length within the instrument enclosure and a first sample chamber path length within the sample chamber.
  • the second split beam is directed to a second detector positioned within the instrument enclosure so that the second detector can quantify a second intensity of light transmitted in the second split beam as the second split beam traverses a second instrument enclosure path length within the instrument enclosure.
  • the second instrument enclosure path length is approximately equal to the first instrument path length.
  • a density (or partial pressure) of water vapor in the sample chamber is calculated and promoted based on the first intensity of light and the second intensity of light.
  • the density can optionally be promoted by displaying, transmitting, or storing the density of water vapor in the sample chamber.
  • the light source can be selected from a group consisting of a vertical cavity surface emitting laser, a horizontal cavity surface emitting laser, a quantum cascade laser, a distributed feedback laser, a color center laser, a light emitting diode, and an incandescent lamp.
  • the light source can be a tunable diode laser controlled by the controller.
  • the light beam can include a range of wavelengths and the controller can tune the tunable diode laser across the range of wavelengths, demodulate the first signal and second signal to determine a first absorption spectrum for the first split beam and a second absorption spectrum for the second split beam, and calculate the water vapor density in the flowing gas stream based on the first absorption spectrum and the second absorption spectrum.
  • the light source can optionally emit light with a wavelength in a range of about 1.35 to 1.39 ⁇ m or optionally at a wavelength of approximately 1.12 ⁇ m, 1.37 ⁇ m, 1.88 ⁇ m, 2.35 ⁇ m, 2.70 ⁇ m, 3.00 ⁇ m, 6.00 ⁇ m, or 6.50 ⁇ m.
  • the sample chamber can be maintained at a temperature above approximately 105° C, and/or the instrument enclosure can be maintained at a temperature in a range of approximately 20° to 35° C.
  • the light source can be maintained at a temperature in a range of approximately 20° to 40° C.
  • the sample chamber can be maintained at a temperature that can be adjustable.
  • FIG 1 is a block diagram showing an example of a humidity sensor
  • FIG 2 is a block diagram showing a humidity sensor incorporated into a fuel cell system
  • FIG 3 is a block diagram showing a humidity sensor incorporated into a combustion device exhaust system
  • FIG 4 is a process flow diagram illustrating a method of detecting and/or quantifying water vapor densities in gas streams.
  • FIG 5 is a chart showing sample absorbance spectra for a humidity sensor.
  • a humidity sensor as well as methods of using the same are provided.
  • the subject matter disclosed is capable of making measurements of the humidity or changes in the humidity of a flowing gas stream quickly, for example on a sample cycle of approximately one second.
  • the sample chamber in which, the optical measurements are made can be heated sufficiently to evaporate liquid water that is entrained in the gas stream. In the event that entrained water droplets in the gas stream are not evaporated, they will still not affect the humidity reading of the humidity sensor, as liquid water absorbs light at different wavelengths than gaseous water vapor. In case of flooding of the humidity sensor sample chamber with liquid water, recovery can be automatic and rapid due to the heating of the sample chamber as described in greater detail below.
  • Various aspects of the subject matter disclosed herein can provide one or more advantages, including but not limited to accurate, quick, and reproducible measurements of water vapor partial pressure.
  • the quick time response of systems, methods, techniques, articles of manufacture, and the like employing the current subject matter can make them well suited for use in measurement and control loops for monitoring and adjusting the water vapor densities in flowing gas streams, such as for example gas streams used in fuel cell operation or combustion process monitoring and/or control.
  • Water vapor partial pressure can be measured for flowing gas streams at relatively high humidity at high temperatures with an in situ sensor.
  • the gas stream being analyzed can be a fuel stream that can optionally contain hydrogen, methane, natural gas, or other fuel gases.
  • the gas stream being analyzed can otherwise be an oxidizer stream that can optionally contain air, an oxygen/nitrogen mix, or other oxidizer gas combinations.
  • a sensor as described here can also be used as part of a fuel cell system for development of, for testing of, or for providing maintenance to a fuel cell or fuel cell system.
  • a sensor such as described here can also optionally be used downstream of a combustion system or device, such as for example an internal combustion engine in an automotive application, to measure- the partial pressures of products of combustion (POC).
  • POC partial pressures of products of combustion
  • Such sensors can in one variation be installed in series between a fuel cell humidifier and a fuel cell and/or fuel cell stack being analyzed such that the humidity level of a gas stream is measured prior to its admission to the fuel cell.
  • the humidity measurement can be used to optimize performance of the fuel cell, which may depend critically on the humidification state of the fuel cell membrane (among other factors).
  • Such sensors can also be installed after the fuel cell on either of the two exhaust gas streams to measure the humidity level of the exhaust gas.
  • the device, systems and techniques described here can be used with any fuel cell, fuel cell stack, fuel cell testing instrumentation, or fuel cell system utilizing any gaseous anode or cathode gas streams (fuel or oxidizer gas streams) that may be humidified with water vapor, including, but not limited to, hydrogen, air, oxygen, and nitrogen.
  • gaseous anode or cathode gas streams fuel or oxidizer gas streams
  • water vapor including, but not limited to, hydrogen, air, oxygen, and nitrogen.
  • the subject matter disclosed herein can also be used to measure partial pressure of water vapor and/or other components of an exhaust gas stream from a combustion process, such as for example, from an internal combustion engine in perhaps an automotive application.
  • the products of combustion (POC) in the exhaust gas stream of an internal combustion engine of an automobile may be of interest to scientists and engineers researching and developing engine design, fuel/air ratio, studying fuel formulations and their POCs. This may be particularly useful in characterizing the cold start-up exhaust products of the engine, where stoichiometric calculations may not be employed. Characterization of POCs may also be of interest to persons or organizations involved with environmental air quality.
  • the subject matter disclosed herein can be used to measure the water vapor partial pressure in the metal processing industry, such as for example in a furnace or heat treating application.
  • the subject matter disclosed herein can be used to measure the water vapor partial pressure within a sauna or other application which has high humidity and high temperatures.
  • a humidity sensor can be used to provide control of a humidification system or alternatively of a combustion system, one variation being an internal combustion engine for an automotive application.
  • FIG 1 is a block diagram 100 showing an example of a humidity sensor.
  • an instrument enclosure 102 is provided that encloses most of the components of the sensor.
  • the interior volume of the instrument enclosure 102 can optionally be temperature controlled, such as for example at a temperature near room temperature, such as for example in a range of approximately 20 to 35° Celsius.
  • Various mechanisms such as for example a thermostat with a feedback control to a heating element or the like, can be used to maintain the instrument enclosure 102 and the components therein at a preset and fixed temperature.
  • a light source 104 such as for example a laser, that produces a continuous or pulsed beam 106 can be positioned within the instrument enclosure 102 such that it is maintained at the preset temperature of the instrument enclosure 102.
  • the light source 104 can be positioned outside of the instrument enclosure 102, especially if fiber coupled.
  • the light source 104 itself can be temperature controlled, such as for example at a temperature in a range of approximately 20° to 40° Celsius.
  • Various mechanisms or techniques such as for example a thermostat with a feedback control to a heating and/or cooling element or the like, can be used to maintain the light source 104 at a preset and fixed temperature.
  • the light source can be chosen to emit a wavelength or range of wavelengths that coincide with a spectral feature of the gas to be measured.
  • the chosen wavelength or wavelength range can coincide with a wavelength at which a spectral absorption feature of gas-phase water molecules is distinguishable from other components in the gas stream or sample.
  • the light source can provide light in the wavelength range of 1.35 to 1.39 microns ( ⁇ m). The absorption spectra of water vapor are well known.
  • the beam 106 from the light source 104 can optionally be focused or directed by one or more collimating lenses 108 or other optical components.
  • the light source 104 can optionally be a tunable diode laser such as for example a distributed feedback laser (DFB), a vertical cavity surface emitting laser (VCSEL), a horizontal cavity surface emitting laser (HCSEL), or the like. These lasers can be direct emitters or fiber coupled. Quantum cascade lasers can also be utilized as can other lasers capable of producing a beam of incident light in the desired wavelength range.
  • An LED (“light-emitting diode”) or alternatively an incandescent light can also optionally be used as the light source 104.
  • a band pass filter can optionally be installed after the light source to permit only selected wavelengths of light to pass.
  • the beam 106 is split by a beam splitter 110 into a first split beam 112 and a second split beam 114.
  • the beam splitter 110 can optionally have a polka dot reflective pattern in the path of the light beam 106.
  • the beam splitter 110 can optionally be partially reflecting, such as for example a partially silvered beam splitter in the path of the light beam 106.
  • a mirror can partially occlude the light beam 106 and reflect a portion of the laser beam to the second detector 132.
  • the first split beam 112 passes through a sample chamber 116, either directly or optionally using one or more optical components including but not limited to fiber optics, mirrors, and the like.
  • the sample chamber 116 can include one or more windows 120 that are transparent to the wavelength or wavelength range produced by the light source 104.
  • the sample chamber can be maintained at an elevated temperature relative to the instrument enclosure 102 to prevent condensation of water from the humidified gas stream.
  • the sample chamber 116 can be insulated and can include a mechanism that heats and maintains the sample chamber 116 at a temperature of 105° C or greater, m another example, the sample chamber 116 can be insulated and can include a mechanism that heats and maintains the sample chamber 116 at a temperature that can be adjusted through a range of temperatures via a control mechanism operated by the humidity sensor user. In still another example, the sample chamber 116 can be insulated and can include a mechanism that heats and maintains the sample chamber 116 at a temperature that may be adjusted through a range of temperatures via an automated control mechanism.
  • the first split beam 112 can pass through the window or windows 120, through a gas contained within the sample chamber 116, and then out through either the same window 120 through which it entered, or alternatively, through a second window 120. If the sample chamber 116 includes only one window 120, a mirror can be provided to reflect the first split beam 112 back out of the one window 120. More than one mirror can also be used to extend the distance the first split beam 112 travels within the sample chamber 116. Regardless of the configuration, the first split beam 112 traverses a sample chamber path length 122 within the sample chamber 116.
  • the sample chamber 116 can have an inlet 124 and an outlet 126 through which gas can flow into and out of, respectively, the sample chamber 116.
  • the sample chamber 116 can optionally be located outside of the instrument enclosure 102, such as could be formed by existing piping or a chamber in the system being measured, for example in an in-situ measurement.
  • the instrument enclosure 102 can be maintained at or near normal room temperatures as noted above and can be sufficiently insulated from the sample chamber 116 such that it is possible to maintain thermal control of the light source and/or the detectors and other components within the instrument enclosure 102 at one temperature and the sample chamber 116 at an elevated temperature that may differ from the instrument enclosure temperature by, for example as much as about 70 to 85°C or more.
  • the gas stream flowing through the sample chamber 116 can optionally be at ambient pressure, for example approximately 1 atmosphere, or alternatively at a vacuum or under positive pressure.
  • the first split beam 112 After passing through the sample chamber 116, the first split beam 112 impinges, either directly or optionally using one or more optical components including but not limited to fiber optics, mirrors, and the like, a first detector 130 that quantifies the intensity of light at the wavelength or wavelength range of the light source 104.
  • the first split beam 112 In addition to the sample chamber path length 122 that the first split beam 112 traverses on its way from the beam splitter 110 to the first detector 130, the first split beam 112 also traverses a first instrument enclosure path length during which it passes through the air or other gas mixture that is present in the instrument enclosure 102. This air or other gas mixture can contain a significant density of water vapor that can bias the inferred water vapor density in the sample chamber 116.
  • the first instrument enclosure path length is the sum of the distance Ll between the beam splitter and the sample chamber window 120 through which the first split beam 112 enters the sample chamber 116 and the distance L2 between the sample chamber window 120 through which the first split beam 112 exits the sample chamber 116 and the first detector 130.
  • the second split beam 114 After the beam splitter 110, the second split beam 114 impinges a second detector 132, either directly as shown in FIG 1 or optionally via one or more optical components including but not limited to fiber optics, mirrors, and the like.
  • the second split beam 114 traverses a second instrument enclosure path length during which it passes through the air or other gas mixture that is present in the instrument enclosure 102.
  • this second instrument enclosure path length is the distance L3 between the beam splitter 110 and the second detector 132.
  • the first detector 130 and the second detector 132 can each be a photo detector.
  • One photo detector is an indium gallium arsenide (InGaAs) photodiode sensitive to light in the 1200 to 2600 nm wavelength region. For longer wavelengths, an indium arsenide photodiode, sensitive for wavelengths up to approximately 3.6 ⁇ m, can be used.
  • InGaAs indium gallium arsenide
  • indium antimonide detectors are currently available for wavelengths as long as approximately 5.5 ⁇ m. Both of the indium devices operate in a photovoltaic mode and do not require a bias current for operation. These photodetectors, which lack low frequency noise, are advantageous for DC or low frequency applications. Such detectors are also advantageous for high speed pulse laser detection, making them particularly useful in trace gas absorption spectroscopy.
  • Other photodetectors such as for example indium arsenide (InAs), silicon (Si), or germanium (Ge) photodiodes and mercury-cadmium-telluride (MCT) and lead-sulf ⁇ de (PbS) detectors, can also be selected and used to match the wavelength of the light source 104.
  • a controller or control unit 134 can be included to receive signals output from the first detector 130 and the second detector 132 and to process these signals to calculate a partial pressure of water vapor in the sample chamber 116. Absorption of light from the first split beam 112 due to water vapor in the instrument enclosure 102 along the first enclosure path length (Ll + L2 in FIG 1) can be corrected by using the measured absorption of the second split beam 114 along the second instrument enclosure path length (L3) by assuming that the water vapor density in the instrument enclosure 102 is uniform through the instrument enclosure 102.
  • the controller or control unit 134 can include one or more processors coupled to a memory that stores instructions in computer readable code.
  • the instructions can implement a method, such as for example that described above, to analyze the humidity in a flowing gas stream or fixed gas sample volume.
  • the control unit 134 can optionally control the light source 104.
  • the control unit 134 can control the scan rate and also interpret the direct voltage measurements by the first detector 130 and the second detector 132.
  • the control unit 134 can also adjust the modulation amplitude as necessary to improve spectral resolution.
  • the tunable laser wavelength can be varied by changing the injection current while keeping the laser temperature constant.
  • the temperature of the laser can be controlled, and thereby tuned to an appropriate water vapor absorption peak wavelength, independently from the temperature of the sample chamber 116 or of the temperature of the instrument enclosure 102.
  • the tunable laser as the light source 104, can optionally be temperature controlled, such as for example at a temperature in a range of approximately 20° to 40° C.
  • Various mechanisms and techniques such as for example a thermostat with a feedback control to a heating and/or cooling element or the like in thermal contact with the tunable laser, can optionally be used to maintain the tunable laser at a preset and fixed temperature.
  • the control unit 134 can provide process control functions to regulate the instrument enclosure 102 temperature.
  • a sensor as described herein can utilize a laser whose spectral bandwidth is much narrower than the bandwidth of the absorption lines of interest. Such an arrangement allows for single line absorption spectroscopy in which it is not necessary to scan the entire width of the absorption line or even the peak absorption feature of the line.
  • the wavelength of the laser can be chosen to be one at which there is a resolvable difference in the relative absorbance of water molecules and the other components of the gas to be measured.
  • Direct absorption spectroscopy is insensitive to background gas composition. By measuring direct absorption, noise due to variations in the background gases can be eliminated or substantially reduced.
  • the humidity sensor uses direct absorption spectroscopy.
  • an absorption spectrometer system can employ a harmonic spectroscopy technique in connection with a. TDL light source.
  • Harmonic spectroscopy as used in the disclosed subject matter involves the modulation of the TDL laser (DFB or VCSEL) wavelength at a high frequency (kHz-MHz) and the detection of the signal at a multiple of the modulation frequency. If the detection is performed at twice the modulation frequency, the term second harmonic or "2f ' spectroscopy is used.
  • Advantages to this technique include the minimization of 1/f noise, and the removal of the sloping baseline that is present on TDL spectra (due to the fact that the laser output power increases as the laser injection current increases, and changing the laser injection current is how the laser is tuned).
  • a combination of a slow ramp and a fast sinusoidal modulation of the wavelength can be used to drive the diode laser.
  • Each of the first detector 130 and the second detector 132 receives this modulated intensity signal.
  • the N th harmonic component is resolved by demodulating the received signal. Detection using the signal at the second harmonic (2f) can be used.
  • the 2f lineshape is symmetric and peaks at line center due to the nature of even function. Additionally, the second harmonic (2f) provides the strongest signal of the even-numbered harmonics.
  • 2f spectroscopy can significantly reduce 1/f noise and thereby provide a substantial sensitivity enhancement compared to direct absorption methods. Photoacoustic spectroscopy can also be utilized.
  • data from the first detector 130, the second detector 132 and/or other sensors associated with the system can be received by a data acquisition device.
  • these data or a subset thereof can be transmitted wirelessly to a computer or to a data acquisition device.
  • the instrument enclosure 102 can be connected to the control unit 134 by means of a single control cable.
  • the control unit 134 can be an electronics enclosure holding electronics as a free-standing control box or can be installed in a rack-mounted chassis.
  • the control unit 134 components can be installed in a computer, within an automobile, or within another variation of electronics and electronics enclosure.
  • the water vapor density in the gas sample or gas stream can be determined using ratiometric measurement techniques for an absorption spectrometer where the light beam 106 has been split into two paths.
  • the transmitted intensity T is the ratio of I to Io where I 0 is the intensity observed at the end of a reference beam path (in the example of FIG 1, the second split beam 114) that does not pass through the sample cell 116 and I is the intensity observed at the end of the beam path that passes through the sample cell 116 (in the example of FIG 1, the first split beam 112).
  • the water vapor density, W may be obtained from:
  • W -In(T) / (kL) (1)
  • k the absorption cross section (or absorption coefficient)
  • L the optical path length within the sample chamber.
  • W can be reported as number density (molecules per cm 3 ), vapor pressure (mbar), and the like.
  • the optical beam paths internal to the instrument enclosure 102 can be configured such that the first instrument enclosure path length and the second instrument enclosure path length traveled by the first split beam 112 and the second split beam 114, respectively, are equal or approximately equal.
  • Part of the overall beam path traveled between the light source 104 and the respective first detector 130 and second detector 132 can also be common to both legs (for example the distance between the light source 104 and the beam splitter 110).
  • This configuration makes the optical beam paths outside of the sample chamber path length equivalent.
  • the water vapor density inside the instrument enclosure 102 produces the same optical absorption level in the two legs, and this value cancels when the ratio I/Io is formed leaving only the absorption spectrum from the sample chamber's internal volume.
  • Calibration of the sensor may be accomplished according to equation 1 (which is Beer's law), for direct absorption measurements. Based on k and L, and a measurement of T, W may be computed. In one variation, no specific calibration procedure is required if the value for k is known. For measurements using a tunable laser and a modulated laser current, calibration can optionally be performed using gas streams of differing humidity, background gas composition, and/or pressure. For direct absorption measurements using a tunable laser and unmodulated laser current, the calibration can be independent of the background gas composition and pressure.
  • FIG 2 shows a general view of one implementation of a fuel cell humidity sensor installed in a fuel cell system 200.
  • a fuel cell system or fuel cell balance of plant can include the apparatus necessary to run, to test, and/or to maintain a polymer electrolytic membrane (PEM) fuel cell.
  • the fuel cell system or fuel cell balance of plant can include components including, but not limited to, gas flow controllers, gas pressure controllers, gas temperature controllers, gas mixing mechanisms, gas humidification apparatus with water piping, tubing and tube fittings, heating mechanisms for the gas lines or for the fuel cell, power conditioners or analyzers for the fuel cell electrical output, or other controls or equipment to enable operation, testing, or maintenance of the fuel cell.
  • a fuel gas stream is conditioned and possibly humidified and sent to the fuel cell by way of a gas conduit such as a tube.
  • an oxidizer gas stream can optionally be conditioned and possibly humidified and sent to the fuel cell by way of a gas conduit such as a tube.
  • the oxidizer can be uncontrolled and can be an air vent mechanism attached to the fuel cell. Implementations of a fuel cell system can also optionally include a system for processing or measuring the fuel gas stream and/or oxidizer gas stream after they exit the fuel cell.
  • system control can be run on an embedded processor within the system, a computer within the system, a remote computer, or another method of control.
  • An example of a fuel cell apparatus is shown as a fuel cell test station 202, a humidity sensor 100, a fuel cell 204, and a control unit 134.
  • the fuel cell test station 202 produces a humidified flowing gas stream.
  • the humidified flowing gas stream is supplied to the humidity sensor 100 via the inlet 124 to the sample chamber (within the instrument enclosure 102).
  • the gas stream exits the humidity sensor 100 via the outlet 126 and enters the fuel cell under test 204.
  • Data from the humidity sensor 100 can be received by the control unit 134 or by some other data acquisition device, a computer, or the like.
  • the control unit 134 can also optionally be connected electronically to the fuel cell test station 202 to provide feedback on the measured humidity and/or to control the fuel cell test station 202 to change the humidity or other operating conditions.
  • the sample chamber 126 can optionally be a pipe or tube or other portion of the fuel cell system, that can optionally be external to the instrument enclosure 102.
  • a humidity sensor 100 as described above can be employed to measure the products of combustion from a combustion device, such as for example an internal combustion engine.
  • the system 300 shown in FIG 3 includes a humidity sensor 100 and a control unit 134.
  • a combustion device 302 with an exhaust 304 generates an exhaust gas stream that contains products of combustion including water vapor.
  • At least a portion of the exhaust gas stream flowing from the exhaust 304 can be directed into the inlet 124 of the humidity sensor 100.
  • This humidified gas stream flows through the sample chamber within the humidity sensor 100.
  • Signals from the first and second detector (130 and 132 in FIG 1) are provided to the control unit 134 which periodically calculates the water vapor partial pressure of the humidified exhaust gas stream.
  • the exhaust gas stream passes out of the humidity sensor outlet 126 to, for example, the ambient atmosphere, additional analytical equipment, emissions controls devices, or the like.
  • the control unit 134 can provide signals back to the combustion device 302 to indicate the composition of the exhaust gas stream and thereby facilitate adjustment and/or optimization of the combustion process.
  • the sample chamber 126 can optionally be a pipe or tube or other portion of the exhaust of a combustion device, that can optionally be external to the instrument enclosure 102.
  • FIG 4 is a process flow chart 400 illustrating a method for measuring water vapor partial pressure in a flowing humidified gas stream.
  • the flowing humidified gas stream flows through a sample chamber 116 that is contained within an interior volume of an instrument enclosure 102.
  • the instrument enclosure 102 can, as described above, optionally be temperature controlled, optionally at approximately room temperature.
  • the sample chamber 116 can, as described above, optionally be located outside of the instrument enclosure 102.
  • the light beam from the light source 104 is split into a first split beam 112 and a second split beam 114.
  • the first split beam 112 passes through the sample chamber 116 and also along a first instrument enclosure path within the instrument enclosure 102.
  • the second split beam 114 passes only along a second instrument enclosure path length that is equal to the first instrument enclosure path length.
  • the absorption of light for each of the first split beam 112 and the second split beam 114 are quantified such as for example as described above.
  • the water vapor partial pressure within the sample chamber 116 is quantified at 410 based on the quantified absorptions along the first split beam 112 and the second split beam 114.
  • FIG 5 shows a graph 500 of sample spectra data taken by an example of a humidity sensor as disclosed herein.
  • the laser scans about its wavelength range, the laser light absorption appears as a dip in the sample beam spectrum 502 and as a dip in the reference beam spectrum 504.
  • the absorption curve 506 is calculated as the logarithm of the ratio of the two spectra. This removes the contribution of the ambient humidity in the enclosure and leaves only the contribution of the humidity in the sample chamber 116. According to Beer's Law, the area under the curve is proportional to the molecular density of the water vapor.
  • Calibration of the sensor can include collecting additional data to linearize this result and to remove the effect of the gas stream temperature, since the absorption coefficient k in Beer's Law is temperature dependent. 33]
  • the subject matter described herein can be embodied in systems, apparatus, methods, and/or articles depending on the desired configuration. In particular, various aspects of the subject matter described herein can be realized in digital electronic circuitry, integrated circuitry, specially designed application specific integrated circuits (ASICs), computer hardware, firmware, software, and/or combinations thereof.
  • ASICs application specific integrated circuits
  • These various implementations can include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which can be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device.
  • These computer programs also known as programs, software, software applications or code
  • machine-readable medium refers to any computer program product, apparatus and/or device (e.g., magnetic discs, optical disks, memory, programmable logic devices (PLDs)) used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

L'invention permet de détecter et de quantifier les densités de vapeur d'eau dans un gaz à une fréquence d'échantillonnage élevée. Le gaz peut être contenu dans une chambre d'échantillonnage à l'intérieur ou à l'extérieur de l'enceinte d'un instrument. Un premier faisceau divisé traverse l'enceinte et la chambre d'échantillonnage alors qu'un deuxième faisceau divisé traversant uniquement l'enceinte constitue une référence susceptible d'être utilisée pour corriger l'humidité ambiante dans l'enceinte de l'instrument.
PCT/US2007/016449 2006-07-19 2007-07-19 Pile à combustible et capteur d'humidité dans des produits de combustion WO2008011140A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US83224406P 2006-07-19 2006-07-19
US60/832,244 2006-07-19

Publications (2)

Publication Number Publication Date
WO2008011140A2 true WO2008011140A2 (fr) 2008-01-24
WO2008011140A3 WO2008011140A3 (fr) 2008-05-15

Family

ID=38957394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/016449 WO2008011140A2 (fr) 2006-07-19 2007-07-19 Pile à combustible et capteur d'humidité dans des produits de combustion

Country Status (2)

Country Link
TW (1) TW200818587A (fr)
WO (1) WO2008011140A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353633A (zh) * 2011-06-15 2012-02-15 西安毅达信息系统有限公司 烟气气体含量激光在线检测方法及系统
CN109975224A (zh) * 2019-04-17 2019-07-05 西南交通大学 气体拍摄检测系统
CN116046730A (zh) * 2023-04-03 2023-05-02 宁德时代新能源科技股份有限公司 电解液监测设备、方法、存储介质和程序产品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018165749A1 (fr) * 2017-03-13 2018-09-20 Buijs Henry L Dispositifs, systèmes et procédés d'analyse des gaz dissous

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146092A (en) * 1990-05-23 1992-09-08 Ntc Technology, Inc. Gas analysis transducers with electromagnetic energy detector units
US20050018193A1 (en) * 2003-07-22 2005-01-27 Frank Chilese Apparatus and method for maintaining uniform and stable temperature for cavity enhanced optical spectroscopy
WO2005047872A1 (fr) * 2003-10-16 2005-05-26 Spectrasensors, Inc. Technique de detection de vapeur d'eau dans du gaz naturel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146092A (en) * 1990-05-23 1992-09-08 Ntc Technology, Inc. Gas analysis transducers with electromagnetic energy detector units
US20050018193A1 (en) * 2003-07-22 2005-01-27 Frank Chilese Apparatus and method for maintaining uniform and stable temperature for cavity enhanced optical spectroscopy
WO2005047872A1 (fr) * 2003-10-16 2005-05-26 Spectrasensors, Inc. Technique de detection de vapeur d'eau dans du gaz naturel

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BASU ET AL: "In situ simultaneous measurements of temperature and water partial pressure in a PEM fuel cell under steady state and dynamic cycling" JOURNAL OF POWER SOURCES, ELSEVIER, AMSTERDAM, NL, vol. 159, no. 2, 10 January 2006 (2006-01-10), pages 987-994, XP005630110 ISSN: 0378-7753 *
CATTANEO H ET AL: "VCSEL based detection of water vapor near 940nm" SPECTROCHIMICA ACTA. PART A: MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, ELSEVIER, AMSTERDAM, NL, vol. 60, no. 14, December 2004 (2004-12), pages 3269-3275, XP004652913 ISSN: 1386-1425 *
SONG K ET AL: "Application of laser photoacoustic spectroscopy for the detection of water vapor near 1.38 mum" MICROCHEMICAL JOURNAL, NEW YORK, NY, US, vol. 80, no. 2, June 2005 (2005-06), pages 113-119, XP004850333 ISSN: 0026-265X *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353633A (zh) * 2011-06-15 2012-02-15 西安毅达信息系统有限公司 烟气气体含量激光在线检测方法及系统
CN109975224A (zh) * 2019-04-17 2019-07-05 西南交通大学 气体拍摄检测系统
CN109975224B (zh) * 2019-04-17 2024-04-05 西南交通大学 气体拍摄检测系统
CN116046730A (zh) * 2023-04-03 2023-05-02 宁德时代新能源科技股份有限公司 电解液监测设备、方法、存储介质和程序产品

Also Published As

Publication number Publication date
WO2008011140A3 (fr) 2008-05-15
TW200818587A (en) 2008-04-16

Similar Documents

Publication Publication Date Title
US7499169B2 (en) Fuel cell and product of combustion humidity sensor
KR102455470B1 (ko) 대기압 및 상승된 압력 하에서 수소의 측정을 위한 수소 가스 센서 및 방법
McManus et al. Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air
Tuzson et al. High precision and continuous field measurements of δ 13 C and δ 18 O in carbon dioxide with a cryogen-free QCLAS
US9097583B2 (en) Long-path infrared spectrometer
Gorrotxategi-Carbajo et al. Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit
Tuzson et al. Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements
Kluczynski et al. Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range
CN109085133B (zh) 一种基于实时反射率修正的离轴积分腔大气ch4浓度的测量装置及其测量方法
JP2009534659A (ja) 炭化水素中の水蒸気の測定
CN105765381B (zh) 用于测量溶解在液体中的气体的气体浓度的方法及系统
CN105954229A (zh) 基于步进扫描积分吸收法的烷烃类气体检测系统及方法
Song et al. Interband cascade laser-based ppbv-level mid-infrared methane detection using two digital lock-in amplifier schemes
CN112748087A (zh) 基于温度调谐吸收光谱技术的多组分检测装置及方法
Wei et al. Demonstration of non-absorbing interference rejection using wavelength modulation spectroscopy in high-pressure shock tubes
Zheng et al. Near-infrared off-axis integrated cavity output spectroscopic gas sensor for real-time, in situ atmospheric methane monitoring
WO2008011140A2 (fr) Pile à combustible et capteur d'humidité dans des produits de combustion
Zhang et al. Improvement in QEPAS system utilizing a second harmonic based wavelength calibration technique
US5818598A (en) Nondispersive optical monitor for nitrogen-oxygen compounds
CN108132229A (zh) 基于时分复用的tdlas变压器油中溶解气体成分测量系统
Tanaka et al. Sensitive measurements of stable carbon isotopes of CO 2 with wavelength modulation spectroscopy near 2 μm
CN110057779A (zh) 基于温度自动补偿tdlas技术测量气体浓度的方法与装置
Yang et al. Highly sensitive QEPAS sensor for sub-ppb N2O detection using a compact butterfly-packaged quantum cascade laser
Tanaka et al. Continuous measurements of stable carbon isotopes in CO2 with a near-IR laser absorption spectrometer
Kan et al. A high sensitivity spectrometer with tunable diode laser for ambient methane monitoring

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

NENP Non-entry into the national phase in:

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07796958

Country of ref document: EP

Kind code of ref document: A2