WO2008010379A1 - Pneumatic tire for heavy load - Google Patents

Pneumatic tire for heavy load Download PDF

Info

Publication number
WO2008010379A1
WO2008010379A1 PCT/JP2007/062437 JP2007062437W WO2008010379A1 WO 2008010379 A1 WO2008010379 A1 WO 2008010379A1 JP 2007062437 W JP2007062437 W JP 2007062437W WO 2008010379 A1 WO2008010379 A1 WO 2008010379A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
belt
belt layer
width direction
layer
Prior art date
Application number
PCT/JP2007/062437
Other languages
French (fr)
Japanese (ja)
Inventor
Kazutaka Matsuzawa
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Publication of WO2008010379A1 publication Critical patent/WO2008010379A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2006Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2041Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with an interrupted belt ply, e.g. using two or more portions of the same ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2219Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre with a partial zero degree ply at the belt edges - edge band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles

Definitions

  • the present invention relates to a pneumatic tire used in a heavy load region such as a truck or a bus, for example, and more particularly makes the tire diameter growth more uniform in the tire width direction during internal pressure filling or running.
  • the present invention relates to a heavy duty pneumatic tire.
  • Pneumatic tires for heavy loads are generally subjected to a large load when the vehicle is running, etc., and therefore, three or more belt layers are arranged on the outer peripheral side of the carcass layer of the tread portion to provide a sufficient tread portion. In addition to ensuring rigidity, a high tagging effect is exhibited.
  • FIG. 3 is a half sectional view in the tire width direction schematically showing a belt layer of such a conventional heavy duty pneumatic tire, although it is not described in the patent literature.
  • the pneumatic tire 60 includes a first belt layer 11, a second belt layer 12, a third belt layer 13, and a tread portion 8 in order from the inner side to the outer side in the tire radial direction. And a fourth belt layer 14.
  • Each of these belt layers: :! To 14 are sequentially arranged adjacent to each other between the carcass layer of the tread portion 8 and the tread rubber, and a plurality of cords such as metal cords such as steel and organic fiber cords are disposed in the inside thereof.
  • the reinforcing elements of each of the belt layers 11 to 14 are arranged so as to be inclined at a predetermined angle with respect to the tire equatorial plane CL (tire circumferential direction). The inclination angle of the reinforcing element is called the belt angle of the belt layer.
  • the belt angle of the second and third belt layers 12, 13 with respect to the tire equatorial plane CL is relatively small (for example, 25 degrees or less), and in opposite directions to the tire equatorial plane CL.
  • the second and third belt layers 12 and 13 are crossing layers in which the reinforcing elements cross in opposite directions, and the tension in the same direction increases the rigidity against deformation in the tire circumferential direction (hereinafter referred to as circumferential rigidity).
  • the main function is to suppress the growth of the tire outer diameter.
  • the belt angle of the first belt layer 11 is set in the same direction as the belt angle of the second belt layer 12 adjacent to the outer peripheral side with respect to the tire equatorial plane CL, and a larger angle.
  • the belt angle of the fourth belt layer 14 is set in the same direction as the belt angle of the third belt layer 13 adjacent to the inner circumferential side with respect to the tire equatorial plane CL and substantially the same. It is formed at a certain angle.
  • the diameter growth amount of the shoulder portion tends to be larger than that of the center portion. That is, in the tire 60, during vulcanization, which is a part of the manufacturing process, the tension in the circumferential direction of the tire acts on the belt layer, whereby the belt layer in the center portion is stretched in the circumferential direction of the tire, and the tire width direction The belt angle with respect to the tire equatorial plane CL becomes smaller.
  • the tension in the tire circumferential direction is smaller than the center portion, and as the center portion shrinks in the tire width direction, it is pulled inward in the tire width direction. The belt angle becomes larger compared to the center part with less.
  • a mold (die) bone is pushed into the tread portion 8 to form a main groove or the like extending in the tire circumferential direction, but the outermost tire width side (shoulder portion side) is formed.
  • the tread rubber is pushed by the bone of the mold and moves greatly in the tire width direction and the tire radial direction. Due to the rubber flow during vulcanization, the belt layer in the vicinity of the outermost main groove 9 is pulled in the tire width direction and pushed toward the center in the tire radial direction.
  • the change in the belt angle is the smallest, and in some cases, the belt angle relative to the tire equatorial plane CL may be larger than before partial vulcanization.
  • the belt angle of the shoulder portion with respect to the tire equatorial plane CL tends to be larger than the benolet angle of the center portion, and accordingly, the shoulder portion (especially near the outermost main groove 9). ),
  • the circumferential rigidity of the above-mentioned crossing layer that is, the effect of suppressing the radial growth is also lowered.
  • the diameter growth amount of the shoulder portion tends to be larger than that of the center portion. Since there is a tendency for the diameter growth to become non-uniform in the tire width direction, there is a risk that uneven wear resistance and durability will be reduced.
  • FIG. 4 is a developed plan view schematically showing a part of the structure of the tread portion of the conventional pneumatic tire.
  • the pneumatic tire 100 includes a first belt between a carcass layer (not shown) of the tread portion 101 and a tread rubber (not shown) in order from the inner side to the outer side in the tire radial direction.
  • the first and second belt layers 102 and 103 are crossing layers in which the belt angle crosses in the opposite direction to the tire equatorial plane CL and at the same angle.
  • the first belt layer 102 Is divided in the tire width direction around the tire equatorial plane CL, and is formed by two split belt layer pieces 102A.
  • the full band layer 104 has a reinforcing element 104A inclined at a smaller angle with respect to the tire equatorial plane CL, and covers the first and second belt layers 102 and 103 from the outer side in the tire radial direction.
  • the split band layer 105 has the reinforcing element 105A inclined in the opposite direction to the reinforcing element 104A of the full band layer 104 and at the same angle with respect to the tire equatorial plane CL, and on the tire equatorial plane CL.
  • the center band layer 105B is divided into two shoulder band layers 105C arranged near both ends in the tire width direction.
  • the circumferential rigidity of the center portion of the belt layer can be lowered, and the radial growth suppression effect in the vicinity thereof can be further improved.
  • the power to make it smaller is S.
  • the shoulder band layer 105C improves the circumferential rigidity of the shoulder portion, so that the diameter growth in the vicinity thereof can also be suppressed.
  • the diameter growth is made more uniform in the tire width direction, and uneven wear resistance and durability can be improved.
  • the rigidity between the split belt layer pieces 102A is Since the center band layer 105B is disposed in the center portion in order to alleviate the step, the circumferential rigidity in the vicinity thereof is also increased. As for the distance between the split belt layer pieces 102A, etc., there are no provisions for optimizing the effect of suppressing the radial growth of the center part. There is a risk that the circumferential rigidity and diameter growth in the vicinity will become excessive and insufficient, resulting in unevenness.
  • the effect of suppressing the belt angle of the belt portion of the shoulder portion from becoming large during vulcanization is low, and the circumferential rigidity of the shoulder portion of the crossing layer (radiation growth suppressing effect) is reduced. ) Is also low.
  • the shoulder band layer 105C increases the circumferential rigidity of the shoulder portion, the arrangement position thereof is not considered in relation to the crossing layer, the main groove, etc. There is also a possibility that the diameter growth near the groove 9 cannot be suppressed.
  • the effect of uniformizing the belt angle, the circumferential rigidity, and the diameter growth in the tire width direction is still not sufficient.
  • Patent Document 1 Japanese Patent Laid-Open No. 4 154403
  • the present invention has been made in view of the above-described conventional problems, and the object thereof is to make the diameter growth of a heavy duty pneumatic tire more uniform in the tire width direction, and the tread is completely worn from the beginning. In other words, tires can be used without impairing durability and uneven wear resistance.
  • the invention of claim 1 includes at least three belt layers disposed on the outer circumferential side of the carcass layer of the tread portion, and a main groove disposed on the outer circumferential side of the belt layer and extending in the tire circumferential direction.
  • a heavy-duty pneumatic tire provided with a tread rubber, wherein the belt layer is adjacent to the tire layer in the radial direction of the tire and the belt angle intersects with the tire equatorial plane in opposite directions.
  • At least one belt layer of the crossing layer is divided in the tire width direction on both sides of the tire equatorial plane, and all the dividing positions of the divided belt layer in the tire width direction are Of the main grooves, located on the inner side in the tire width direction of the outermost main grooves formed on the outermost side in the tire width direction, and the belt angle of the divided belt layer with respect to the tire equatorial plane is 25 degrees or less, the same of Within the divided belt layer, the belt angle of the belt layer piece located on the outer side in the tire width direction is smaller than the belt angle of the belt layer piece located on the inner side in the tire width direction with respect to the tire equatorial plane. It is characterized by that.
  • the invention according to claim 2 is the heavy duty pneumatic tire according to claim 1, wherein the belt angle of each belt layer piece located on each of the outer side and the inner side in the tire width direction in the same separated belt layer. The directions are opposite to each other with respect to the tire equatorial plane.
  • the invention according to claim 3 is the heavy duty pneumatic tire according to claim 1 or 2, wherein the distance in the tire width direction between the divided position of the divided belt layer and the tire equatorial plane is Of these, the width is the widest and the width of the widest belt layer is between 1/4 and 2/3 of the distance in the tire width direction between the outer edge in the tire width direction and the tire equatorial plane.
  • the invention of claim 4 is the heavy-duty pneumatic tire according to any one of claims 1 to 3, wherein the narrowest belt layer having the narrowest width among the belt layer pieces of the divided belt layer.
  • the width of the piece is 1/10 or more and 2Z3 or less of the distance in the tire width direction between the outer end in the tire width direction of the widest belt layer of the widest belt layer of the belt layers and the tire equatorial plane. To do.
  • the diameter growth of a heavy-duty pneumatic tire can be made more uniform in the tire width direction, and the durability and uneven wear resistance are deteriorated from when it is new to when the tread is completely worn out.
  • Na Tires can be used without tingling.
  • FIG. 1 is a half sectional view in the tire width direction schematically showing a belt layer of a heavy duty pneumatic tire of the present embodiment.
  • FIG. 2 is a half sectional view in the tire width direction schematically showing a belt layer of a heavy duty pneumatic tire of another embodiment.
  • FIG. 3 is a half sectional view in the tire width direction schematically showing a belt layer of a conventional heavy duty pneumatic tire.
  • FIG. 4 is a developed plan view schematically showing a part of the structure of a tread portion of a conventional pneumatic tire.
  • the heavy-duty pneumatic tire of the present embodiment is a tire used in a heavy-load region such as a bus or a truck, for example, and has a radial structure carcass layer extending between a pair of bead cores in a toroidal shape, and a carcass in a tread portion. It has a known structure, for example, comprising at least three belt layers (such as three layers or four layers) disposed on the outer peripheral side of the layer and a tread rubber disposed on the outer peripheral side of the belt layer. A main groove extending in the tire circumferential direction is formed on the surface of the tread rubber.
  • FIG. 1 is a half cross-sectional view in the tire width direction schematically showing the belt layer of the heavy duty pneumatic tire of the present embodiment.
  • the pneumatic tire 1 includes a first belt layer 11, a second belt layer 12, a third belt layer 13, and a fourth belt layer in order from the inner side to the outer side in the tire radial direction.
  • a belt layer with a four-layer structure consisting of a belt layer 14 is provided.
  • Each of these belt layers: :! ⁇ 14 tread Between the carcass layer of part 8 and the tread rubber, they are sequentially arranged adjacent to each other, and there are a plurality of parallel reinforcing elements such as metal cords such as steel and organic fiber cords inside. .
  • the second and third belt layers 12 and 13 adjacent in the tire radial direction are relatively small angles (here, 16 degrees) with a belt angle of 25 degrees or less with respect to the tire equatorial plane CL.
  • the crossing layers cross in opposite directions with respect to the tire equatorial plane CL.
  • the first belt layer 11 is formed at a belt angle that is the same as the belt angle of the second belt layer 12 adjacent to the outer peripheral side and a larger angle (here, 50 degrees) with respect to the tire equatorial plane CL.
  • the belt angle of the fourth belt layer 14 is the same as the belt angle of the third belt layer 13 adjacent to the inner circumferential side and the belt angle in the same direction with respect to the tire equatorial plane CL (16 degrees in this case). It is formed.
  • the second belt layer 12 is the widest belt layer having the widest width (the width between the outer end portions in the tire width direction), and the fourth belt layer 14 on the outermost circumferential side.
  • the first belt layer 11 and the third belt layer 13 having the narrowest width are formed to have a width that is approximately between the second belt layer 12 and the fourth belt layer 14.
  • the third belt layer 13 constituting the crossing layer is divided in at least one place in the tire width direction.
  • the third belt layer 13 is located at one location on each side of the tire equatorial plane CL (two locations in total), and the dividing position in the tire width direction is the outermost portion in the tire width direction (the shoulder portion). It is divided so that it is on the inner side in the tire width direction than the outermost main groove 9 formed on the side).
  • the third belt layer 13 includes an inner belt layer piece 13A located on the inner center side in the tire width direction and a pair located on both shoulder sides on the outer side in the tire width direction (in the figure, only one side is shown. E) outer belt layer piece 13B.
  • These belt layer pieces 13A and 13B have the same belt angle direction with respect to the tire equatorial plane CL, and are divided so that the width of the outer belt layer piece 13B is narrower than that of the inner belt layer piece 13A. It is arranged at a predetermined interval in the direction.
  • the crossing layer including the third belt layer 13 has high circumferential rigidity, and mainly exerts the tension in the same direction to exert the effect of suppressing the radial growth of the tire outer diameter.
  • the belt angle relative to the tire equatorial plane CL of the shoulder is larger than that of the center
  • the diameter growth suppression effect becomes low.
  • the third belt layer 13 constituting the crossing layer is divided at the inner side in the tire width direction from the outermost main groove 9 positioned on the shoulder side. The belt angle of the shoulder portion (outer belt layer piece 13B) can be suppressed from becoming larger than that of the center portion (inner belt layer piece 13A).
  • the circumferential rigidity and the radial growth suppressing effect of the shoulder portion and the center portion of the crossing layer can be made more uniform than before, and the diameter growth of the shoulder portion at the time of internal pressure filling or the like is suppressed, and the center portion is suppressed. And the difference in the diameter growth amount can be further reduced.
  • the dividing position in the tire width direction is on the inner side in the tire width direction than the outermost main groove 9, it is possible to reliably suppress the radial growth particularly in the vicinity of the outermost main groove 9, which tends to increase the radial growth. be able to.
  • the contact shape of the tire when rolling on the road surface can be improved, and the contact pressure can also be made more uniform in the tire width direction, thereby suppressing uneven wear in the tread portion 8.
  • the distortion generated in the tread portion 8 can be reduced, the durability of the tire 1 can also be improved.
  • the diameter growth of the tire 1 can be made more uniform in the tire width direction, and the durability and uneven wear resistance can be improved from when it is new to when the tread is completely worn out.
  • Tire 1 can be used without loss.
  • the distance in the tire width direction between the divided position of the divided third belt layer 13 and the tire equatorial plane CL is the widest belt layer (here, the widest belt layer) having the widest width among all belt layers. 2)
  • the belt width in the tire width direction between the outer edge of the belt layer 12) and the tire equatorial plane CL, that is, the belt width from the tire equatorial plane CL (BW in the figure) is 1Z4 or more and 2Z3 or less. Is preferred. This is because the inner belt layer piece 13A becomes less rigid in the circumferential direction if the belt width BW is less than 1Z4 in the tire width direction at the dividing position.
  • the dividing position will be the most In addition to increasing the possibility of exerting force near the outermost main groove 9 where the diameter growth amount increases, the width of the outer belt layer 13B becomes narrower, and sufficient circumferential rigidity is required to suppress the diameter growth of the shoulder portion. This is because there is a risk that sex cannot be obtained. Therefore, it is preferable that the belt layer 13 is divided outside the outermost main groove 9 as described above. As described above, the dividing position is preferably inside the outermost main groove 9.
  • the width of the narrowest belt layer piece (herein, the outer belt layer piece 13B) having the narrowest width among the belt layer pieces 13A and 13B in the divided third belt layer 13 (F in the figure) Force If the belt width from the tire equatorial plane CL of the widest belt layer (second belt layer 12) is smaller than lZlO of the belt width BW, the belt width of the outer belt layer piece 13B becomes narrower, and sufficient radial growth suppression effect is obtained. There is a fear that it cannot be used. On the other hand, if it is larger than 2/3, the belt width of the other belt layer piece (in this case, the inner beret layer piece 13A) becomes relatively narrow, and the effect of suppressing the diameter growth may not be sufficient. There is.
  • the width F of the narrowest belt layer piece is preferably within 1/10 to 2/3 of the belt width BW from the tire equatorial plane CL of the widest belt layer within this range. All of the divided belt layer pieces can exhibit sufficient rigidity as a belt layer constituting the crossing layer.
  • the belt angles of the belt layer pieces 13A and 13B may be different angles.
  • the belt angle with respect to the tire equatorial plane CL of the outer belt layer piece 13B located on the outer side in the tire width direction in the same third belt layer 13 divided is set to the inner belt located on the inner side in the tire width direction. It is preferable to make it smaller than the belt angle of the layer piece 13A with respect to the tire equatorial plane CL.
  • the effect of suppressing the radial growth of the shoulder portion of the crossing layer, which tends to decrease, can be maintained high, and the radial growth of the shoulder portion can be more reliably suppressed.
  • the belt angle direction of each of the belt layer pieces 13A and 13B located on the outer side and the inner side in the tire width direction in the same third belt layer 13 is divided into the tire equatorial plane CL.
  • the inner belt layer piece 13A may be in the same direction with respect to the belt angle of the other second belt layer 12 constituting the crossing layer and the tire equatorial plane CL.
  • the belt angle of the outer belt layer piece 13B may be crossed in the opposite direction to the belt angle of the second belt layer 12.
  • the diameter growth restraining effect of the center portion that increases the diameter growth restraining effect of the shoulder portion can be lowered, and the diameter growth in the tire width direction can be achieved by optimizing the magnitude of the effect of each part.
  • the inner belt layer piece 13A can be preset to the second belt layer 12 and the outer belt layer 13B can be preset to the fourth belt layer 14, respectively, before the green tire is molded, four times are required in the past. This process can improve the productivity of manufacturing tires because the belt can be attached only three times. If the belt angle of each of the belt layer pieces 13A and 13B is reversed from that described above, the diameter growth of the center portion can be suppressed.
  • one third belt layer 13 constituting the crossing layer is divided, but the other belt layer 12 may be divided in the tire width direction. , 13 can be divided together.
  • the above-described effects can be more efficiently obtained when the crossing layer that mainly bears the circumferential tension and has a high diameter growth suppression effect is divided.
  • a belt layer having a belt angle of 25 degrees or less with respect to the tire equatorial plane CL can exert a radial growth suppressing effect while bearing a certain amount of circumferential tension, such other belt layer (here, the first belt layer) is used.
  • the four belt layers 14) may be divided together with the division of the crossing layers (belt layers 12, 13). Therefore, in order to obtain the above effects, it is necessary to divide at least one of the belt layers (here, the crossing layers) whose belt angle with respect to the tire equatorial plane CL is 25 degrees or less.
  • the third belt layer 13 is divided at one place on each side of the tire equatorial plane CL (two places in total).
  • the third belt layer 13 is divided into a total of three places and the belt layer is divided into four belt layer pieces.
  • all the dividing positions in the tire width direction are on the inner side in the tire width direction with respect to the outermost main groove 9, for example, it may be divided at two or more locations.
  • FIG. 2 is a half cross-sectional view in the tire width direction schematically showing the belt layer of this heavy duty pneumatic tire.
  • the heavy-duty pneumatic tire 4 of the present embodiment is similar to the tire 1 described above in that the tread portion 8 and the first belt layer 11 and the crossing layer are sequentially formed from the inner side to the outer side in the tire radial direction.
  • the fourth belt layer 14 is formed wider and arranged to the shoulder side, and The tire 1 is different from the tire 1 in that it is divided on both sides of the tire equatorial plane CL so that the dividing position in the tire width direction is inside the outermost main groove 9 in the tire width direction.
  • the fourth belt layer 14 is divided, and the inner belt layer piece 14A positioned on the inner side in the tire width direction and the pair of outer belt layer pieces positioned on the outer side in the tire width direction. Consists of 14B.
  • the belt angles of the inner belt layer piece 14A and the outer belt layer piece 14B are formed in opposite directions and different angles with respect to the tire equatorial plane CL (here, the outer side of the inner belt layer piece 14A).
  • the belt angle of the belt layer piece 14B with respect to the tire equatorial plane CL is reduced) and the belt angle of the outer belt layer piece 14B is set to the belt angle of the third belt layer 13 in the adjacent crossing layer and the tire equatorial plane.
  • the outer side belt layer pieces 14B and the third belt layer 13 are crossed in the opposite direction to CL.
  • the outer belt layer piece 14B is disposed on the inner side in the tire radial direction of the outermost main groove 9 formed on the shoulder portion side, and is formed wider than the groove width of the outermost main groove 9, and is It is arranged so as to cover the inner radial force of the tire over the entire width of the main groove 9.
  • the effect of suppressing the radial growth of the shoulder portion can be enhanced, and the radial growth is effectively suppressed to change the radial growth in the tire width direction.
  • Each effect similar to that of the tire 1 described above can be obtained, for example, the amount can be made uniform.
  • exemplary products 1 and 2 the tires of the two types of examples described above (hereinafter referred to as “exemplary products 1 and 2”) and the tires of the conventional examples (hereinafter referred to as “conventional products”) were produced, and A tire growth test was performed when the internal pressure was filled.
  • These tires are all heavy-duty pneumatic radial tires with a tire size of 385 / 55R22.5 as defined by ETRTO (The European Time and Rim Technical Organization, 2006).
  • the conventional product is a tire including the belt layers 11 to 14 having the configuration described in FIG. 3 and is formed in a conventional belt layer structure in which the belt layer is not divided.
  • the second belt layer 12 and the third belt layer 13 are cross layers, and the respective belt angles are formed in the opposite direction and the same angle (16 degrees) with respect to the tire equatorial plane CL.
  • first belt layer 11 is formed at a belt angle of 50 degrees in the same direction with respect to the belt angle of the second belt layer 12 adjacent to the outer peripheral side and the tire equatorial plane CL
  • fourth belt layer 14 is The belt angle was formed at the same angle (16 degrees) in the same direction with respect to the belt angle of the third benolet layer 13 adjacent to the inner peripheral side and the tire equatorial plane CL.
  • the belt layers 11 to 14 of the products 1 and 2 are configured in substantially the same manner as the conventional product, and only different configurations will be described below.
  • the implemented product 1 is a tire including the belt layers 11 to 14 configured as described in FIG. 1, and the third belt layer 13 is divided in the tire width direction, and the divided third belt layer 13 is divided.
  • the belt angle of each belt layer piece 13A, 13B was changed.
  • the inner belt layer piece 13A has a belt angle of 16 degrees with respect to the tire equatorial plane CL
  • the outer belt layer piece 13B has a belt angle with respect to the tire equatorial plane CL of 14 degrees, which is smaller.
  • the implemented product 2 is a tire including the belt layers 11 to 14 configured as described in FIG. 2, and the belt angles and directions of the belt layer pieces 14A and 14B of the divided fourth belt layer 14 are determined. Changed.
  • the inner belt layer piece 14A forms a belt angle with respect to the tire equatorial plane CL at 16 degrees
  • the outer belt layer piece 14B forms a belt angle with respect to the tire equatorial plane CL at a smaller 14 degrees.
  • the equatorial plane CL was formed in directions opposite to each other. Further, the belt angle of the outer belt layer piece 14B was reversed with respect to the belt angle of the third belt layer 13 and the tire equatorial plane CL, and they were crossed with each other.
  • each of the above tires is mounted on a rim having a rim width of 11.75 inches, and the internal pressure is set to lOOkPa and 900 kPa. , Called perimeter). After the measurement, the difference in circumference between the internal pressure of 900 kPa and the internal pressure of lOOkPa is divided by the circumference of the internal pressure of lOOkPa, and the ratio is determined as the growth rate at the internal pressure in each part of the center and shoulder parts. By comparing these differences, the uniformity of tire growth in the tire width direction was evaluated. [0044] Table 1 shows the structural specifications and test results of the belt layer of each tire.
  • each belt layer in the table is indicated by R when the belt angle (reinforcing element) is rising to the right, and L when it is rising to the left, as seen from the outside in the tire radial direction.
  • Belt angle with respect to plane CL Each internal pressure growth rate and growth rate difference are expressed as percentages, and the smaller the growth rate difference, the higher the uniformity of diameter growth in the tire width direction.
  • the diameter growth of the heavy-duty pneumatic tire can be made more uniform in the tire width direction, and the durability and uneven wear resistance are impaired from the time of new article to the complete wear of the tread. It has been proved that tires can be used without any problems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

A tire which can be used without losing durability and partial abrasion resistance until the tread abrades thoroughly by making radial growth of a pneumatic tire for heavy load uniform in the tire width direction. Second and third adjoining belt layers (12, 13) out of first through fourth belt layers (11-14) arranged sequentially from radial inside toward outside of the tire are layers having relatively small belt angles with respect to the equatorial plane of the tire (CL) and crossing in the reverse directions with respect to the equatorial plane of the tire (CL). The third crossing belt layer (13) is divided in the tire width direction and constituted of a center portion side inner belt layer piece (13A) and a shoulder portion side outer belt layer piece (13B). The dividing position is located on the inside of a main groove (9) on the outermost side in the tire width direction, and radial growth of the shoulder portion is suppressed by enhancing radial growth suppression effect of the outer belt layer piece (13B), thus making radial growth uniform in the tire width direction.

Description

明 細 書  Specification
重荷重用空気入りタイヤ  Heavy duty pneumatic tire
技術分野  Technical field
[0001] 本発明は、例えばトラックやバス等の重荷重領域で使用される空気入りタイヤに関 し、特に、内圧充填時や走行時等におけるタイヤの径成長をタイヤ幅方向でより均一 化させた重荷重用空気入りタイヤに関する。  TECHNICAL FIELD [0001] The present invention relates to a pneumatic tire used in a heavy load region such as a truck or a bus, for example, and more particularly makes the tire diameter growth more uniform in the tire width direction during internal pressure filling or running. The present invention relates to a heavy duty pneumatic tire.
背景技術  Background art
[0002] 重荷重用空気入りタイヤは、一般に、車両走行時等に大きな荷重が負荷されるた め、トレッド部のカーカス層の外周側に 3層以上のベルト層を配置して充分なトレッド 部の剛性を確保するとともに、高いタガ効果等を発揮させている。  [0002] Pneumatic tires for heavy loads are generally subjected to a large load when the vehicle is running, etc., and therefore, three or more belt layers are arranged on the outer peripheral side of the carcass layer of the tread portion to provide a sufficient tread portion. In addition to ensuring rigidity, a high tagging effect is exhibited.
図 3は、特許文献に記載されたものではないが、このような従来の重荷重用空気入 りタイヤのベルト層を模式的に示すタイヤ幅方向の半断面図である。  FIG. 3 is a half sectional view in the tire width direction schematically showing a belt layer of such a conventional heavy duty pneumatic tire, although it is not described in the patent literature.
[0003] この空気入りタイヤ 60は、図示のように、トレッド部 8に、タイヤ半径方向内側から外 側に向かって順に、第 1ベルト層 11、第 2ベルト層 12、第 3ベルト層 13、及び第 4ベ ルト層 14を備える。これら各ベルト層:!:!〜 14は、トレッド部 8のカーカス層とトレッドゴ ムとの間に、順次隣接して配置されており、その内部に、例えばスチール等の金属製 のコードや有機繊維コード等の、複数本の並列した補強素子を有する。なお、これら 各ベルト層 11〜14の補強素子は、タイヤ赤道面 CL (タイヤ周方向)に対してそれぞ れ所定角度で傾斜して配列されており、本発明では、このようなベルト層内の補強素 子の延びる傾斜角度を、ベルト層のベルト角度という。  [0003] As shown in the figure, the pneumatic tire 60 includes a first belt layer 11, a second belt layer 12, a third belt layer 13, and a tread portion 8 in order from the inner side to the outer side in the tire radial direction. And a fourth belt layer 14. Each of these belt layers: :! To 14 are sequentially arranged adjacent to each other between the carcass layer of the tread portion 8 and the tread rubber, and a plurality of cords such as metal cords such as steel and organic fiber cords are disposed in the inside thereof. Of parallel reinforcing elements. The reinforcing elements of each of the belt layers 11 to 14 are arranged so as to be inclined at a predetermined angle with respect to the tire equatorial plane CL (tire circumferential direction). The inclination angle of the reinforcing element is called the belt angle of the belt layer.
[0004] このタイヤ 60では、第 2、第 3ベルト層 12、 13のタイヤ赤道面 CLに対するベルト角 度を比較的小さく(例えば 25度以下)、かつタイヤ赤道面 CLに対して互いに逆方向 に形成している。即ち、第 2、第 3ベルト層 12、 13は、その補強素子が逆方向に交錯 する交錯層であり、タイヤ周方向の変形に対する剛性 (以下、周方向剛性という)が 高ぐ同方向の張力を主に負担してタイヤ外径の径成長を抑制する機能を有する。ま た、このタイヤ 60では、第 1ベルト層 11のベルト角度を、タイヤ赤道面 CLに対して、 外周側に隣接する第 2ベルト層 12のベルト角度と同じ方向に、かつ、より大きな角度 (例えば 50度)に形成し、第 4ベルト層 14のベルト角度を、タイヤ赤道面 CLに対して 、内周側に隣接する第 3ベルト層 13のベルト角度と同じ方向に、かつ、略同程度の 角度に形成している。 [0004] In this tire 60, the belt angle of the second and third belt layers 12, 13 with respect to the tire equatorial plane CL is relatively small (for example, 25 degrees or less), and in opposite directions to the tire equatorial plane CL. Forming. That is, the second and third belt layers 12 and 13 are crossing layers in which the reinforcing elements cross in opposite directions, and the tension in the same direction increases the rigidity against deformation in the tire circumferential direction (hereinafter referred to as circumferential rigidity). The main function is to suppress the growth of the tire outer diameter. In the tire 60, the belt angle of the first belt layer 11 is set in the same direction as the belt angle of the second belt layer 12 adjacent to the outer peripheral side with respect to the tire equatorial plane CL, and a larger angle. The belt angle of the fourth belt layer 14 is set in the same direction as the belt angle of the third belt layer 13 adjacent to the inner circumferential side with respect to the tire equatorial plane CL and substantially the same. It is formed at a certain angle.
[0005] ここで、空気入りタイヤでは、一般に、内圧充填時や走行時等におけるタイヤ外径 の径成長がタイヤ幅方向で不均一になると、路面転動時の接地形状が悪化し、或い は接地圧がタイヤ幅方向で不均一化する等して、トレッド部に偏摩耗が生じ易くなる 。同時に、径成長量が大きい箇所での歪みが増大して耐久性が低下する恐れもある ため、径成長は、センタ部(タイヤ幅方向中央部側)からショルダ部(タイヤ幅方向両 端部側)まで均一であることが望ましい。  [0005] Here, in general, in a pneumatic tire, if the growth of the outer diameter of the tire at the time of internal pressure filling or running is not uniform in the tire width direction, the contact shape at the time of rolling on the road surface may deteriorate. The contact pressure becomes uneven in the tire width direction, and uneven wear tends to occur in the tread portion. At the same time, there is a risk that durability at the location where the diameter growth is large will increase and the durability may decrease. Therefore, the diameter growth will start from the center portion (center side in the tire width direction) to the shoulder portion (on both ends in the tire width direction). It is desirable that it is uniform.
[0006] し力 ながら、このような交錯層を備えた従来の重荷重用空気入りタイヤ 60では、セ ンタ部に比べてショルダ部の径成長量が大きくなる傾向がある。即ち、このタイヤ 60 では、製造工程の一部である加硫時に、ベルト層にタイヤ周方向の張力が作用し、こ れによりセンタ部のベルト層がタイヤ周方向に引き伸ばされ、かつタイヤ幅方向に縮 小し、そのタイヤ赤道面 CLに対するベルト角度が小さくなる。一方、ショルダ部では、 タイヤ周方向の張力がセンタ部より小さいことにカ卩えて、センタ部のタイヤ幅方向の縮 小に伴い、タイヤ幅方向内側に向かって引っ張られるため、そのベルト角度の変化が 少なぐセンタ部に比べてベルト角度がより大きくなる。  [0006] However, in the conventional heavy-duty pneumatic tire 60 provided with such a crossing layer, the diameter growth amount of the shoulder portion tends to be larger than that of the center portion. That is, in the tire 60, during vulcanization, which is a part of the manufacturing process, the tension in the circumferential direction of the tire acts on the belt layer, whereby the belt layer in the center portion is stretched in the circumferential direction of the tire, and the tire width direction The belt angle with respect to the tire equatorial plane CL becomes smaller. On the other hand, in the shoulder portion, the tension in the tire circumferential direction is smaller than the center portion, and as the center portion shrinks in the tire width direction, it is pulled inward in the tire width direction. The belt angle becomes larger compared to the center part with less.
[0007] また、加硫時には、トレッド部 8にモールド (金型)の骨が押し込まれてタイヤ周方向 に延びる主溝等が形成されるが、タイヤ幅方向最外側(ショルダ部側)の最外側主溝 9付近では、トレッドゴムがモールドの骨に押されてタイヤ幅方向及びタイヤ半径方向 に大きく移動する。この加硫時のゴムの流れにより、最外側主溝 9付近のベルト層が タイヤ幅方向に引っ張られるとともに、タイヤ半径方向内側の中心方向に向かって押 されるため、その付近(ショルダ部)のベルト角度の変化が最も小さくなり、場合によつ ては、一部加硫前よりもタイヤ赤道面 CLに対するベルト角度が大きくなることもある。  [0007] Further, during vulcanization, a mold (die) bone is pushed into the tread portion 8 to form a main groove or the like extending in the tire circumferential direction, but the outermost tire width side (shoulder portion side) is formed. In the vicinity of the outer main groove 9, the tread rubber is pushed by the bone of the mold and moves greatly in the tire width direction and the tire radial direction. Due to the rubber flow during vulcanization, the belt layer in the vicinity of the outermost main groove 9 is pulled in the tire width direction and pushed toward the center in the tire radial direction. The change in the belt angle is the smallest, and in some cases, the belt angle relative to the tire equatorial plane CL may be larger than before partial vulcanization.
[0008] 以上のように、ショルダ部のタイヤ赤道面 CLに対するベルト角度は、センタ部のベ ノレト角度に比べて、より大きくなり易ぐこれに伴い、ショルダ部(特に最外側主溝 9付 近)における上記した交錯層の周方向剛性、即ち、径成長抑制効果も低くなる。その 結果、このタイヤ 60では、センタ部に比べてショルダ部の径成長量が大きくなり易く、 タイヤ幅方向で径成長が不均一化する傾向があるため、耐偏摩耗性や耐久性が低 下する恐れがある。 [0008] As described above, the belt angle of the shoulder portion with respect to the tire equatorial plane CL tends to be larger than the benolet angle of the center portion, and accordingly, the shoulder portion (especially near the outermost main groove 9). ), The circumferential rigidity of the above-mentioned crossing layer, that is, the effect of suppressing the radial growth is also lowered. As a result, in this tire 60, the diameter growth amount of the shoulder portion tends to be larger than that of the center portion. Since there is a tendency for the diameter growth to become non-uniform in the tire width direction, there is a risk that uneven wear resistance and durability will be reduced.
[0009] このような問題に対処するため、従来、複数のベルト層の一部をタイヤ幅方向に分 断する等し、径成長の均一化を図った空気入りタイヤが提案されてレ、る(特許文献 1 参照)。  [0009] In order to cope with such problems, conventionally, a pneumatic tire has been proposed in which a part of a plurality of belt layers is divided in the tire width direction to achieve uniform diameter growth. (See Patent Document 1).
[0010] 図 4は、この従来の空気入りタイヤのトレッド部の構造の一部を概略的に示す平面 展開図である。  FIG. 4 is a developed plan view schematically showing a part of the structure of the tread portion of the conventional pneumatic tire.
この空気入りタイヤ 100は、図示のように、トレッド部 101のカーカス層(図示せず)と トレッドゴム(図示せず)との間に、タイヤ半径方向内側から外側に向かって順に、第 1 ベルト層 102、第 2ベルト層 103、フルバンド層 104、及び分割バンド層 105を備える  As shown, the pneumatic tire 100 includes a first belt between a carcass layer (not shown) of the tread portion 101 and a tread rubber (not shown) in order from the inner side to the outer side in the tire radial direction. Layer 102, second belt layer 103, full band layer 104, and split band layer 105
[0011] 第 1、第 2ベルト層 102、 103は、ベルト角度がタイヤ赤道面 CLに対して逆方向、か つ同程度の角度で交錯する交錯層であり、ここでは、第 1ベルト層 102をタイヤ赤道 面 CLを中心にタイヤ幅方向に分断し、 2枚の分割ベルト層片 102Aから形成してレヽ る。これに対し、フルバンド層 104は、タイヤ赤道面 CLに対して、より小さい角度で傾 斜する補強素子 104Aを有し、第 1、第 2ベルト層 102、 103をタイヤ半径方向外側か ら覆うように配置されている。また、分割バンド層 105は、タイヤ赤道面 CLに対して、 フルバンド層 104の補強素子 104Aと逆方向に、かつ同程度の角度で傾斜した補強 素子 105Aを有するとともに、タイヤ赤道面 CL上に配置されたセンタバンド層 105B 、及びタイヤ幅方向両端部付近に配置された両ショルダバンド層 105Cに 3分割され ている。 [0011] The first and second belt layers 102 and 103 are crossing layers in which the belt angle crosses in the opposite direction to the tire equatorial plane CL and at the same angle. Here, the first belt layer 102 Is divided in the tire width direction around the tire equatorial plane CL, and is formed by two split belt layer pieces 102A. In contrast, the full band layer 104 has a reinforcing element 104A inclined at a smaller angle with respect to the tire equatorial plane CL, and covers the first and second belt layers 102 and 103 from the outer side in the tire radial direction. Are arranged as follows. Further, the split band layer 105 has the reinforcing element 105A inclined in the opposite direction to the reinforcing element 104A of the full band layer 104 and at the same angle with respect to the tire equatorial plane CL, and on the tire equatorial plane CL. The center band layer 105B is divided into two shoulder band layers 105C arranged near both ends in the tire width direction.
[0012] この空気入りタイヤ 100によれば、第 1ベルト層 102をタイヤ赤道面 CL上で分断し たため、ベルト層のセンタ部の周方向剛性を低くでき、その付近の径成長抑制効果 をより小さくすること力 Sできる。また、ショルダバンド層 105Cによりショルダ部の周方向 剛性が向上するため、その付近の径成長を抑制することもできる。その結果、このタイ ャ 100では、上記した空気入りタイヤ 60に比べて、径成長がタイヤ幅方向である程 度均一化し、耐偏摩耗性や耐久性の向上を図ることができる。  [0012] According to this pneumatic tire 100, since the first belt layer 102 is divided on the tire equatorial plane CL, the circumferential rigidity of the center portion of the belt layer can be lowered, and the radial growth suppression effect in the vicinity thereof can be further improved. The power to make it smaller is S. Further, the shoulder band layer 105C improves the circumferential rigidity of the shoulder portion, so that the diameter growth in the vicinity thereof can also be suppressed. As a result, in the tire 100, as compared with the pneumatic tire 60 described above, the diameter growth is made more uniform in the tire width direction, and uneven wear resistance and durability can be improved.
[0013] し力 ながら、この従来の空気入りタイヤ 100では、分割ベルト層片 102A間の剛性 段差を緩和するため、センタ部にセンタバンド層 105Bを配置したため、その付近の 周方向剛性も高くなる。力 0えて、分割ベルト層片 102A間の距離等に関しても、セン タ部の径成長抑制効果を最適化するための規定等を設けていないため、場合によつ ては、ショルダ部に対するセンタ部付近の周方向剛性及び径成長量に過不足が生じ て不均一化する恐れがある。 [0013] However, in this conventional pneumatic tire 100, the rigidity between the split belt layer pieces 102A is Since the center band layer 105B is disposed in the center portion in order to alleviate the step, the circumferential rigidity in the vicinity thereof is also increased. As for the distance between the split belt layer pieces 102A, etc., there are no provisions for optimizing the effect of suppressing the radial growth of the center part. There is a risk that the circumferential rigidity and diameter growth in the vicinity will become excessive and insufficient, resulting in unevenness.
[0014] また、このタイヤ 100では、ショルダ部のベルト層のベルト角度が加硫時に大きくな るのを抑制する効果が低く、上記した交錯層のショルダ部の周方向剛性 (径成長抑 制効果)も低くなる。更に、ショルダバンド層 105Cによりショルダ部の周方向剛性は 高くなるものの、その配置位置等について交錯層や主溝等との関係が考慮されてい ないため、例えば、特にベルト角度が大きくなる最外側主溝 9付近の径成長を抑制で きない恐れもある。以上のように、この従来の空気入りタイヤ 100では、ベルト角度や 周方向剛性、及び径成長をタイヤ幅方向で均一化する効果が、なお充分とはいえな レ、。 [0014] In addition, in the tire 100, the effect of suppressing the belt angle of the belt portion of the shoulder portion from becoming large during vulcanization is low, and the circumferential rigidity of the shoulder portion of the crossing layer (radiation growth suppressing effect) is reduced. ) Is also low. Furthermore, although the shoulder band layer 105C increases the circumferential rigidity of the shoulder portion, the arrangement position thereof is not considered in relation to the crossing layer, the main groove, etc. There is also a possibility that the diameter growth near the groove 9 cannot be suppressed. As described above, in the conventional pneumatic tire 100, the effect of uniformizing the belt angle, the circumferential rigidity, and the diameter growth in the tire width direction is still not sufficient.
[0015] 特に、近年では、重荷重用空気入りタイヤにおいても偏平化が進んでいる力 この 偏平化に伴いタイヤ幅が広くなり、上記したショルダ部における交錯層のタイヤ赤道 面 CLに対するベルト角度も大きくなる傾向がある。その結果、ショルダ部付近の径成 長抑制効果が低下する傾向もより顕著に現れるため、径成長がタイヤ幅方向で不均 一化する程度も大きくなり、偏摩耗の発生や耐久性の低下等も生じ易くなる。従って 、このような偏平タイヤでは、径成長抑制効果がタイヤ幅方向で不均一になるのを確 実に抑制し、径成長の更なる均一化を図る必要がある。  [0015] In particular, in recent years, the flattening force is increasing even in heavy-duty pneumatic tires. With this flattening, the width of the tire is widened, and the belt angle of the crossing layer in the shoulder portion with respect to the tire equatorial plane CL is also large. Tend to be. As a result, the tendency to reduce the effect of suppressing the diameter growth near the shoulder portion also appears more conspicuously.Therefore, the degree to which the diameter growth becomes uneven in the tire width direction is increased, causing the occurrence of uneven wear and the decrease in durability. Is also likely to occur. Therefore, in such a flat tire, it is necessary to surely suppress the effect of suppressing the radial growth from becoming nonuniform in the tire width direction and to make the radial growth more uniform.
[0016] 特許文献 1 :特開平 4 154403号公報  Patent Document 1: Japanese Patent Laid-Open No. 4 154403
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0017] 本発明は、前記従来の問題に鑑みなされたものであって、その目的は、重荷重用 空気入りタイヤの径成長をタイヤ幅方向でより均一化し、新品時からトレッドが完全に 摩耗するに至るまで、耐久性及び耐偏摩耗性を損なうことなくタイヤを使用できるよう にすることである。 [0017] The present invention has been made in view of the above-described conventional problems, and the object thereof is to make the diameter growth of a heavy duty pneumatic tire more uniform in the tire width direction, and the tread is completely worn from the beginning. In other words, tires can be used without impairing durability and uneven wear resistance.
課題を解決するための手段 [0018] 請求項 1の発明は、トレッド部のカーカス層の外周側に配置された少なくとも 3層の ベルト層と、該ベルト層の外周側に配置され、タイヤ周方向に延びる主溝が形成され たトレッドゴムと、を備えた重荷重用空気入りタイヤであって、前記ベルト層内に、タイ ャ半径方向に隣接し、かつベルト角度がタイヤ赤道面に対して互いに逆方向に交錯 するベルト層からなる交錯層を含み、該交錯層のベルト層の少なくとも一層が、タイヤ 赤道面を挟んだ両側でタイヤ幅方向に分断されるとともに、該分断されたベルト層の タイヤ幅方向の分断位置が全て、前記主溝のうちタイヤ幅方向最外側に形成された 最外側主溝よりもタイヤ幅方向内側に位置し、かつ前記分断されたベルト層のタイヤ 赤道面に対するベルト角度が 25度以下であり、同一の前記分断されたベルト層内で 、タイヤ幅方向外側に位置するベルト層片のタイヤ赤道面に対するベルト角度を、タ ィャ幅方向内側に位置するベルト層片のタイヤ赤道面に対するベルト角度よりも小さ くしたことを特徴とする。 Means for solving the problem [0018] The invention of claim 1 includes at least three belt layers disposed on the outer circumferential side of the carcass layer of the tread portion, and a main groove disposed on the outer circumferential side of the belt layer and extending in the tire circumferential direction. A heavy-duty pneumatic tire provided with a tread rubber, wherein the belt layer is adjacent to the tire layer in the radial direction of the tire and the belt angle intersects with the tire equatorial plane in opposite directions. And at least one belt layer of the crossing layer is divided in the tire width direction on both sides of the tire equatorial plane, and all the dividing positions of the divided belt layer in the tire width direction are Of the main grooves, located on the inner side in the tire width direction of the outermost main grooves formed on the outermost side in the tire width direction, and the belt angle of the divided belt layer with respect to the tire equatorial plane is 25 degrees or less, the same of Within the divided belt layer, the belt angle of the belt layer piece located on the outer side in the tire width direction is smaller than the belt angle of the belt layer piece located on the inner side in the tire width direction with respect to the tire equatorial plane. It is characterized by that.
請求項 2の発明は、請求項 1に記載された重荷重用空気入りタイヤにおいて、同一 の前記分断されたベルト層内で、タイヤ幅方向外側と内側のそれぞれに位置する各 ベルト層片のベルト角度の方向を、タイヤ赤道面に対して互いに逆方向にしたことを 特徴とする。  The invention according to claim 2 is the heavy duty pneumatic tire according to claim 1, wherein the belt angle of each belt layer piece located on each of the outer side and the inner side in the tire width direction in the same separated belt layer. The directions are opposite to each other with respect to the tire equatorial plane.
請求項 3の発明は、請求項 1又は 2に記載された重荷重用空気入りタイヤにおいて 、前記分断されたベルト層の分断位置とタイヤ赤道面との間のタイヤ幅方向距離が、 前記ベルト層のうち最も幅が広レ、最幅広ベルト層のタイヤ幅方向外側端部とタイヤ赤 道面との間のタイヤ幅方向距離の 1/4以上 2/3以下であることを特徴とする。 請求項 4の発明は、請求項 1ないし 3のいずれかに記載された重荷重用空気入りタ ィャにおいて、前記分断されたベルト層の各ベルト層片のうち最も幅が狭い最幅狭 ベルト層片の幅が、前記ベルト層のうち最も幅が広い最幅広ベルト層のタイヤ幅方向 外側端部とタイヤ赤道面との間のタイヤ幅方向距離の 1/10以上 2Z3以下であるこ とを特徴とする。  The invention according to claim 3 is the heavy duty pneumatic tire according to claim 1 or 2, wherein the distance in the tire width direction between the divided position of the divided belt layer and the tire equatorial plane is Of these, the width is the widest and the width of the widest belt layer is between 1/4 and 2/3 of the distance in the tire width direction between the outer edge in the tire width direction and the tire equatorial plane. The invention of claim 4 is the heavy-duty pneumatic tire according to any one of claims 1 to 3, wherein the narrowest belt layer having the narrowest width among the belt layer pieces of the divided belt layer. The width of the piece is 1/10 or more and 2Z3 or less of the distance in the tire width direction between the outer end in the tire width direction of the widest belt layer of the widest belt layer of the belt layers and the tire equatorial plane. To do.
発明の効果  The invention's effect
[0019] 本発明によれば、重荷重用空気入りタイヤの径成長をタイヤ幅方向でより均一化で き、新品時からトレッドが完全に摩耗するに至るまで、耐久性及び耐偏摩耗性を損な うことなくタイヤを使用することができる。 [0019] According to the present invention, the diameter growth of a heavy-duty pneumatic tire can be made more uniform in the tire width direction, and the durability and uneven wear resistance are deteriorated from when it is new to when the tread is completely worn out. Na Tires can be used without tingling.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本実施形態の重荷重用空気入りタイヤのベルト層を模式的に示すタイヤ幅方 向の半断面図である。  FIG. 1 is a half sectional view in the tire width direction schematically showing a belt layer of a heavy duty pneumatic tire of the present embodiment.
[図 2]他の実施形態の重荷重用空気入りタイヤのベルト層を模式的に示すタイヤ幅 方向の半断面図である。  FIG. 2 is a half sectional view in the tire width direction schematically showing a belt layer of a heavy duty pneumatic tire of another embodiment.
[図 3]従来の重荷重用空気入りタイヤのベルト層を模式的に示すタイヤ幅方向の半 断面図である。  FIG. 3 is a half sectional view in the tire width direction schematically showing a belt layer of a conventional heavy duty pneumatic tire.
[図 4]従来の空気入りタイヤのトレッド部の構造の一部を概略的に示す平面展開図で ある。  FIG. 4 is a developed plan view schematically showing a part of the structure of a tread portion of a conventional pneumatic tire.
符号の説明  Explanation of symbols
[0021] 1···重荷重用空気入りタイヤ、 4···重荷重用空気入りタイヤ、 8···トレッド部、 9··· 最外側主溝、 11'''第1べルト層、 12···第 2ベルト層、 13···第 3ベルト層、 13Α·· '内側ベルト層片、 13Β···外側ベルト層片、 14···第 4ベルト層、 14Α···内側べノレ ト層片、 14Β· · '外側ベルト層片、 CL- · 'タイヤ赤道面。  [0021] 1 ... Pneumatic tire for heavy load, 4 ... Pneumatic tire for heavy load, 8 ... Tread part, 9 ... Outermost main groove, 11 '' '1st belt layer, 12 ··· 2nd belt layer, 13 ··· 3rd belt layer, 13Α · 'Inner belt layer piece, 13Β · · · Outer belt layer piece, 14 · · · 4th belt layer, 14Α · · · Noret layer piece, 14Β ·· 'Outer belt layer piece, CL- ·' Tire equatorial plane.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
本実施形態の重荷重用空気入りタイヤは、例えばバスやトラック等の重荷重領域で 使用されるタイヤであり、一対のビードコア間に渡ってトロイダル状に延びるラジアル 構造のカーカス層と、トレッド部のカーカス層の外周側に配置された少なくとも 3層(3 層又は 4層等)のベルト層と、ベルト層の外周側に配置されたトレッドゴムとを備える等 、公知の構造を有する。また、トレッドゴムの表面には、タイヤ周方向に延びる主溝が 形成されている。  The heavy-duty pneumatic tire of the present embodiment is a tire used in a heavy-load region such as a bus or a truck, for example, and has a radial structure carcass layer extending between a pair of bead cores in a toroidal shape, and a carcass in a tread portion. It has a known structure, for example, comprising at least three belt layers (such as three layers or four layers) disposed on the outer peripheral side of the layer and a tread rubber disposed on the outer peripheral side of the belt layer. A main groove extending in the tire circumferential direction is formed on the surface of the tread rubber.
[0023] 図 1は、本実施形態の重荷重用空気入りタイヤのベルト層を模式的に示すタイヤ幅 方向の半断面図である。  FIG. 1 is a half cross-sectional view in the tire width direction schematically showing the belt layer of the heavy duty pneumatic tire of the present embodiment.
この空気入りタイヤ 1は、図示のように、トレッド部 8に、タイヤ半径方向内側から外 側に向かって順に、第 1ベルト層 11、第 2ベルト層 12、第 3ベルト層 13、及び第 4ベ ルト層 14からなる 4層構造のベルト層を備える。これら各ベルト層:!:!〜 14は、トレッド 部 8のカーカス層とトレッドゴムとの間に、順次隣接して配置されており、その内部に、 例えばスチール等の金属製のコードや有機繊維コード等の、複数本の並列した補強 素子を有する。 As shown in the figure, the pneumatic tire 1 includes a first belt layer 11, a second belt layer 12, a third belt layer 13, and a fourth belt layer in order from the inner side to the outer side in the tire radial direction. A belt layer with a four-layer structure consisting of a belt layer 14 is provided. Each of these belt layers: :! ~ 14 tread Between the carcass layer of part 8 and the tread rubber, they are sequentially arranged adjacent to each other, and there are a plurality of parallel reinforcing elements such as metal cords such as steel and organic fiber cords inside. .
[0024] このタイヤ 1では、タイヤ半径方向に隣接する第 2、第 3ベルト層 12、 13を、そのタイ ャ赤道面 CLに対するベルト角度が 25度以下の比較的小さな角度(ここでは 16度) で、かつタイヤ赤道面 CLに対して互いに逆方向に交錯する交錯層にしている。また 、第 1ベルト層 11は、外周側に隣接する第 2ベルト層 12のベルト角度と、タイヤ赤道 面 CLに対して同じ方向で、かつより大きな角度(ここでは 50度)のベルト角度に形成 され、第 4ベルト層 14は、内周側に隣接する第 3ベルト層 13のベルト角度と、タイヤ 赤道面 CLに対して同じ方向で、かつ略同一角度(ここでは 16度)のベルト角度に形 成されている。これら各ベルト層 11〜: 14内では、第 2ベルト層 12が最も幅(タイヤ幅 方向の外側端部間の幅)が広い最幅広ベルト層であり、最外周側の第 4ベルト層 14 の幅が最も狭ぐ第 1ベルト層 11と第 3ベルト層 13は、第 2ベルト層 12と第 4ベルト層 14の略中間程度の幅に形成されている。  [0024] In this tire 1, the second and third belt layers 12 and 13 adjacent in the tire radial direction are relatively small angles (here, 16 degrees) with a belt angle of 25 degrees or less with respect to the tire equatorial plane CL. In addition, the crossing layers cross in opposite directions with respect to the tire equatorial plane CL. Further, the first belt layer 11 is formed at a belt angle that is the same as the belt angle of the second belt layer 12 adjacent to the outer peripheral side and a larger angle (here, 50 degrees) with respect to the tire equatorial plane CL. The belt angle of the fourth belt layer 14 is the same as the belt angle of the third belt layer 13 adjacent to the inner circumferential side and the belt angle in the same direction with respect to the tire equatorial plane CL (16 degrees in this case). It is formed. Within each of these belt layers 11 to 14, the second belt layer 12 is the widest belt layer having the widest width (the width between the outer end portions in the tire width direction), and the fourth belt layer 14 on the outermost circumferential side. The first belt layer 11 and the third belt layer 13 having the narrowest width are formed to have a width that is approximately between the second belt layer 12 and the fourth belt layer 14.
[0025] 以上に加えて、この重荷重用空気入りタイヤ 1では、交錯層を構成する少なくとも一 方のベルト層(ここでは第 3ベルト層 13)を、少なくとも 1箇所でタイヤ幅方向に分断し ている。本実施形態では、第 3ベルト層 13を、タイヤ赤道面 CLを挟んだ両側の各 1 箇所ずつ(計 2箇所)で、そのタイヤ幅方向の分断位置が、タイヤ幅方向最外側(ショ ルダ部側)に形成された最外側主溝 9よりもタイヤ幅方向内側になるように分断してい る。従って、この第 3ベルト層 13は、タイヤ幅方向内側のセンタ部側に位置する内側 ベルト層片 13Aと、タイヤ幅方向外側の両ショルダ部側に位置する一対(図では片側 のみ示してレ、る)の外側ベルト層片 13Bから構成されてレ、る。これら各ベルト層片 13 A、 13Bは、タイヤ赤道面 CLに対するベルト角度の方向が同一であり、内側ベルト層 片 13Aに比べて外側ベルト層片 13Bの幅が狭くなるように分断され、タイヤ幅方向に 所定の間隔を隔てて配置されている。  [0025] In addition to the above, in this heavy-duty pneumatic tire 1, at least one belt layer (here, the third belt layer 13) constituting the crossing layer is divided in at least one place in the tire width direction. Yes. In the present embodiment, the third belt layer 13 is located at one location on each side of the tire equatorial plane CL (two locations in total), and the dividing position in the tire width direction is the outermost portion in the tire width direction (the shoulder portion). It is divided so that it is on the inner side in the tire width direction than the outermost main groove 9 formed on the side). Therefore, the third belt layer 13 includes an inner belt layer piece 13A located on the inner center side in the tire width direction and a pair located on both shoulder sides on the outer side in the tire width direction (in the figure, only one side is shown. E) outer belt layer piece 13B. These belt layer pieces 13A and 13B have the same belt angle direction with respect to the tire equatorial plane CL, and are divided so that the width of the outer belt layer piece 13B is narrower than that of the inner belt layer piece 13A. It is arranged at a predetermined interval in the direction.
[0026] ここで、この第 3ベルト層 13を含む交錯層は、上記したように、周方向剛性が高ぐ 同方向の張力を主に負担してタイヤ外径の径成長抑制効果を発揮するものであるが 、加硫時に、センタ部に比べてショルダ部のタイヤ赤道面 CLに対するベルト角度が 大きくなり、その径成長抑制効果が低くなる傾向がある。し力しながら、本実施形態の 重荷重用空気入りタイヤ 1では、交錯層を構成する第 3ベルト層 13を、ショルダ部側 に位置する最外側主溝 9よりもタイヤ幅方向内側で分断するため、そのショルダ部( 外側ベルト層片 13B)のベルト角度がセンタ部(内側ベルト層片 13A)に比べて大き くなるのを抑制することができる。 [0026] Here, as described above, the crossing layer including the third belt layer 13 has high circumferential rigidity, and mainly exerts the tension in the same direction to exert the effect of suppressing the radial growth of the tire outer diameter. However, at the time of vulcanization, the belt angle relative to the tire equatorial plane CL of the shoulder is larger than that of the center There is a tendency that the diameter growth suppression effect becomes low. However, in the heavy-duty pneumatic tire 1 of the present embodiment, the third belt layer 13 constituting the crossing layer is divided at the inner side in the tire width direction from the outermost main groove 9 positioned on the shoulder side. The belt angle of the shoulder portion (outer belt layer piece 13B) can be suppressed from becoming larger than that of the center portion (inner belt layer piece 13A).
[0027] 即ち、このタイヤ 1では、加硫時のタイヤ周方向(ベルト角度を小さくする方向)の張 力で内側ベルト層片 13Aが変形しても、その変形に伴うタイヤ幅方向内側方向(ベ ノレト角度を大きくする方向)の張力力 外側ベルト層片 13Bに作用しないため、加硫 時における各ベルト層片 13A、 13Bのベルト角度の変化量の差をより小さくすること ができる。その結果、このタイヤ 1では、交錯層のショルダ部とセンタ部の周方向剛性 及び径成長抑制効果を従来よりも均一化でき、内圧充填時等におけるショルダ部の 径成長を抑制して、センタ部との径成長量の差をより小さくすることができる。また、タ ィャ幅方向の分断位置が、最外側主溝 9よりもタイヤ幅方向内側であるため、特に径 成長が大きくなる傾向がある最外側主溝 9付近の径成長を確実に抑制することがで きる。これにより、路面転動時のタイヤの接地形状を改善できることに加えて、接地圧 もタイヤ幅方向でより均一になる等し、トレッド部 8に偏摩耗が生じるのを抑制すること ができる。同時に、トレッド部 8内に生じる歪みを低減できるため、タイヤ 1の耐久性を 向上させることもできる。 [0027] That is, in the tire 1, even if the inner belt layer piece 13A is deformed by the tension in the tire circumferential direction (the direction in which the belt angle is reduced) during vulcanization, the inner side in the tire width direction ( Tension force in the direction of increasing the beret angle) Since it does not act on the outer belt layer piece 13B, the difference in the change in belt angle between the belt layer pieces 13A and 13B during vulcanization can be further reduced. As a result, in this tire 1, the circumferential rigidity and the radial growth suppressing effect of the shoulder portion and the center portion of the crossing layer can be made more uniform than before, and the diameter growth of the shoulder portion at the time of internal pressure filling or the like is suppressed, and the center portion is suppressed. And the difference in the diameter growth amount can be further reduced. In addition, since the dividing position in the tire width direction is on the inner side in the tire width direction than the outermost main groove 9, it is possible to reliably suppress the radial growth particularly in the vicinity of the outermost main groove 9, which tends to increase the radial growth. be able to. As a result, the contact shape of the tire when rolling on the road surface can be improved, and the contact pressure can also be made more uniform in the tire width direction, thereby suppressing uneven wear in the tread portion 8. At the same time, since the distortion generated in the tread portion 8 can be reduced, the durability of the tire 1 can also be improved.
[0028] 従って、この重荷重用空気入りタイヤ 1では、タイヤ 1の径成長をタイヤ幅方向でより 均一化でき、新品時からトレッドが完全に摩耗するに至るまで、耐久性及び耐偏摩耗 性を損なうことなくタイヤ 1を使用することができる。  [0028] Therefore, in this heavy-duty pneumatic tire 1, the diameter growth of the tire 1 can be made more uniform in the tire width direction, and the durability and uneven wear resistance can be improved from when it is new to when the tread is completely worn out. Tire 1 can be used without loss.
[0029] ここで、分断された第 3ベルト層 13の分断位置とタイヤ赤道面 CLとの間のタイヤ幅 方向距離は、全ベルト層のうち最も幅が広い最幅広ベルト層(ここでは、第 2ベルト層 12)のタイヤ幅方向外側端部とタイヤ赤道面 CLとの間のタイヤ幅方向距離、即ち、タ ィャ赤道面 CLからのベルト幅(図の BW)の 1Z4以上 2Z3以下であるのが好ましい 。これは、分断位置のタイヤ幅方向距離力 ベルト幅 BWの 1Z4よりも小さいと、内側 ベルト層片 13Aの周方向剛性が低くなり、その径成長抑制効果が低下してセンタ部 の径成長が大きくなりすぎる恐れがあり、逆に 2Z3よりも大きいと、分断位置が、最も 径成長量が大きくなる最外側主溝 9付近に力かる可能性が高くなることに加えて、外 側ベルト層 13Bの幅が狭くなり、ショルダ部の径成長抑制に必要な充分な周方向剛 性が得られない恐れがあるからである。従って、最外側主溝 9よりも外側でベルト層 1 3を分断する意義は少なぐ上記したように、分断位置は、最外側主溝 9よりも内側で あるのが望ましい。 [0029] Here, the distance in the tire width direction between the divided position of the divided third belt layer 13 and the tire equatorial plane CL is the widest belt layer (here, the widest belt layer) having the widest width among all belt layers. 2) The belt width in the tire width direction between the outer edge of the belt layer 12) and the tire equatorial plane CL, that is, the belt width from the tire equatorial plane CL (BW in the figure) is 1Z4 or more and 2Z3 or less. Is preferred. This is because the inner belt layer piece 13A becomes less rigid in the circumferential direction if the belt width BW is less than 1Z4 in the tire width direction at the dividing position. On the contrary, if it is larger than 2Z3, the dividing position will be the most In addition to increasing the possibility of exerting force near the outermost main groove 9 where the diameter growth amount increases, the width of the outer belt layer 13B becomes narrower, and sufficient circumferential rigidity is required to suppress the diameter growth of the shoulder portion. This is because there is a risk that sex cannot be obtained. Therefore, it is preferable that the belt layer 13 is divided outside the outermost main groove 9 as described above. As described above, the dividing position is preferably inside the outermost main groove 9.
[0030] また、分断された第 3ベルト層 13内の各ベルト層片 13A、 13Bのうち最も幅が狭い 最幅狭ベルト層片(ここでは外側ベルト層片 13B)の幅(図の F)力 最幅広ベルト層( 第 2ベルト層 12)のタイヤ赤道面 CLからのベルト幅 BWの lZlOよりも小さい場合に は、外側ベルト層片 13Bのベルト幅が狭くなり、充分な径成長抑制効果を発揮し得な い恐れがある。逆に、 2/3よりも大きい場合には、他のベルト層片(ここでは内側べ ノレト層片 13A)のベルト幅が相対的に狭くなり、その径成長抑制効果が充分でなくな る恐れがある。従って、最幅狭ベルト層片の幅 Fは、最幅広ベルト層のタイヤ赤道面 CLからのベルト幅 BWの 1/10以上 2/3以下であるのが好ましぐこの範囲内であ れば、分断された全てのベルト層片が、交錯層を構成するベルト層としても充分な剛 性を発揮し得る。  [0030] The width of the narrowest belt layer piece (herein, the outer belt layer piece 13B) having the narrowest width among the belt layer pieces 13A and 13B in the divided third belt layer 13 (F in the figure) Force If the belt width from the tire equatorial plane CL of the widest belt layer (second belt layer 12) is smaller than lZlO of the belt width BW, the belt width of the outer belt layer piece 13B becomes narrower, and sufficient radial growth suppression effect is obtained. There is a fear that it cannot be used. On the other hand, if it is larger than 2/3, the belt width of the other belt layer piece (in this case, the inner beret layer piece 13A) becomes relatively narrow, and the effect of suppressing the diameter growth may not be sufficient. There is. Therefore, the width F of the narrowest belt layer piece is preferably within 1/10 to 2/3 of the belt width BW from the tire equatorial plane CL of the widest belt layer within this range. All of the divided belt layer pieces can exhibit sufficient rigidity as a belt layer constituting the crossing layer.
[0031] なお、第 3ベルト層 13内で、各ベルト層片 13A、 13Bのベルト角度は異なる角度に してもよレ、。この場合には、同一の分断された第 3ベルト層 13内で、タイヤ幅方向外 側に位置する外側ベルト層片 13Bのタイヤ赤道面 CLに対するベルト角度を、タイヤ 幅方向内側に位置する内側ベルト層片 13Aのタイヤ赤道面 CLに対するベルト角度 よりも小さくするのが好ましい。このようにした場合には、低下しがちな交錯層のショル ダ部の径成長抑制効果を高く維持でき、ショルダ部の径成長をより確実に抑制するこ とができる。このとき、外側ベルト層片 13Bのタイヤ赤道面 CLに対するベルト角度を、 内側ベルト層片 13Aのそれよりも 2度〜 4度小さくするのが効果的であり、より好まし レ、。  [0031] In the third belt layer 13, the belt angles of the belt layer pieces 13A and 13B may be different angles. In this case, the belt angle with respect to the tire equatorial plane CL of the outer belt layer piece 13B located on the outer side in the tire width direction in the same third belt layer 13 divided is set to the inner belt located on the inner side in the tire width direction. It is preferable to make it smaller than the belt angle of the layer piece 13A with respect to the tire equatorial plane CL. In this case, the effect of suppressing the radial growth of the shoulder portion of the crossing layer, which tends to decrease, can be maintained high, and the radial growth of the shoulder portion can be more reliably suppressed. At this time, it is effective and more preferable to make the belt angle of the outer belt layer piece 13B with respect to the tire equatorial plane CL 2 to 4 degrees smaller than that of the inner belt layer piece 13A.
[0032] 同様に、同一の分断された第 3ベルト層 13内で、タイヤ幅方向外側と内側のそれぞ れに位置する各ベルト層片 13A、 13Bのベルト角度の方向を、タイヤ赤道面 CLに対 して互いに逆方向にしてもよぐここでは、例えば内側ベルト層片 13Aを、交錯層を 構成する他方の第 2ベルト層 12のベルト角度と、タイヤ赤道面 CLに対して同じ方向 にし、外側ベルト層片 13Bのベルト角度を、第 2ベルト層 12のベルト角度と逆方向に 交錯させてもよい。このようにした場合には、ショルダ部の径成長抑制効果を高ぐセ ンタ部の径成長抑制効果を低くでき、各部の効果の大きさを最適化することで、タイ ャ幅方向における径成長の更なる均一化を図ることが可能となる。カロえて、グリーンタ ィャの成型前に、内側ベルト層片 13Aは第 2ベルト層 12に、外側ベルト層 13Bは第 4ベルト層 14に、それぞれプリセットが可能となるため、従来、 4回必要であったベル ト層の貼り合わせ作業が 3回で済むため、タイヤ製造の生産性を向上させることもでき る。各ベルト層片 13A、 13Bのベルト角度を上記と逆にすれば、センタ部の径成長の 抑制が可能となる。 [0032] Similarly, the belt angle direction of each of the belt layer pieces 13A and 13B located on the outer side and the inner side in the tire width direction in the same third belt layer 13 is divided into the tire equatorial plane CL. Here, for example, the inner belt layer piece 13A may be in the same direction with respect to the belt angle of the other second belt layer 12 constituting the crossing layer and the tire equatorial plane CL. The belt angle of the outer belt layer piece 13B may be crossed in the opposite direction to the belt angle of the second belt layer 12. In this case, the diameter growth restraining effect of the center portion that increases the diameter growth restraining effect of the shoulder portion can be lowered, and the diameter growth in the tire width direction can be achieved by optimizing the magnitude of the effect of each part. It becomes possible to achieve further uniformization. Since the inner belt layer piece 13A can be preset to the second belt layer 12 and the outer belt layer 13B can be preset to the fourth belt layer 14, respectively, before the green tire is molded, four times are required in the past. This process can improve the productivity of manufacturing tires because the belt can be attached only three times. If the belt angle of each of the belt layer pieces 13A and 13B is reversed from that described above, the diameter growth of the center portion can be suppressed.
[0033] また、本実施形態では、交錯層を構成する一方の第 3ベルト層 13を分断したが、他 方の第 2ベルト層 12をタイヤ幅方向に分断してもよぐ両ベルト層 12、 13を、ともに分 断してもよレ、。このように、周方向張力を主に負担し、径成長抑制効果が高い交錯層 を分断する場合に、上記した各効果をより効率的に得ることができる。しかしながら、 タイヤ赤道面 CLに対するベルト角度が 25度以下であるベルト層は、ある程度の周方 向張力を負担して径成長抑制効果を発揮し得るため、そのような他のベルト層(ここ では第 4ベルト層 14)を、この交錯層(ベルト層 12、 13)の分断と併せて分断するよう にしてもよい。従って、上記各効果を得るためには、タイヤ赤道面 CLに対するベルト 角度が 25度以下であるベルト層(ここでは交錯層)の少なくとも一層を分断すればよ レ、。  [0033] In the present embodiment, one third belt layer 13 constituting the crossing layer is divided, but the other belt layer 12 may be divided in the tire width direction. , 13 can be divided together. As described above, the above-described effects can be more efficiently obtained when the crossing layer that mainly bears the circumferential tension and has a high diameter growth suppression effect is divided. However, since a belt layer having a belt angle of 25 degrees or less with respect to the tire equatorial plane CL can exert a radial growth suppressing effect while bearing a certain amount of circumferential tension, such other belt layer (here, the first belt layer) is used. The four belt layers 14) may be divided together with the division of the crossing layers (belt layers 12, 13). Therefore, in order to obtain the above effects, it is necessary to divide at least one of the belt layers (here, the crossing layers) whose belt angle with respect to the tire equatorial plane CL is 25 degrees or less.
[0034] 更に、ここでは、第 3ベルト層 13をタイヤ赤道面 CLの両側で 1箇所ずつ(計 2箇所) 分断したが、例えば合計 3箇所で分断してベルト層を 4つのベルト層片で構成する等 、全てのタイヤ幅方向の分断位置が最外側主溝 9よりもタイヤ幅方向内側であれば、 2箇所以上で分断してもよい。  [0034] Further, here, the third belt layer 13 is divided at one place on each side of the tire equatorial plane CL (two places in total). For example, the third belt layer 13 is divided into a total of three places and the belt layer is divided into four belt layer pieces. As long as all the dividing positions in the tire width direction are on the inner side in the tire width direction with respect to the outermost main groove 9, for example, it may be divided at two or more locations.
[0035] 以上の実施形態では、第 3ベルト層 13を分断する場合の例を示したが、次に、第 4 ベルト層 14を分断して径成長をタイヤ幅方向で均一化させた他の実施形態につい て説明する。  [0035] In the above embodiment, an example in which the third belt layer 13 is divided is shown. Next, another belt in which the fourth belt layer 14 is divided to make the diameter growth uniform in the tire width direction is shown. Embodiments will be described.
[0036] 図 2は、この重荷重用空気入りタイヤのベルト層を模式的に示すタイヤ幅方向の半 断面図である。 図示のように、本実施形態の重荷重用空気入りタイヤ 4は、上記したタイヤ 1と同様 に、トレッド部 8に、タイヤ半径方向内側から外側に向かって順に、第 1ベルト層 11と 、交錯層である第 2ベルト層 12及び第 3ベルト層 13と、第 4ベルト層 14と、力 なる 4 層構造のベルト層を備える。し力、しながら、このタイヤ 4では、第 3ベルト層 13を分断し ないことに加えて、その替わりに、第 4ベルト層 14を、より幅広に形成してショルダ部 側まで配置し、かつタイヤ赤道面 CLを挟んだ両側で、そのタイヤ幅方向の分断位置 が最外側主溝 9よりもタイヤ幅方向内側になるように分断している点で、前記タイヤ 1 と相違する。 FIG. 2 is a half cross-sectional view in the tire width direction schematically showing the belt layer of this heavy duty pneumatic tire. As shown in the figure, the heavy-duty pneumatic tire 4 of the present embodiment is similar to the tire 1 described above in that the tread portion 8 and the first belt layer 11 and the crossing layer are sequentially formed from the inner side to the outer side in the tire radial direction. The second belt layer 12 and the third belt layer 13, the fourth belt layer 14, and a belt layer having a powerful four-layer structure. However, in this tire 4, in addition to not dividing the third belt layer 13, instead, the fourth belt layer 14 is formed wider and arranged to the shoulder side, and The tire 1 is different from the tire 1 in that it is divided on both sides of the tire equatorial plane CL so that the dividing position in the tire width direction is inside the outermost main groove 9 in the tire width direction.
[0037] 本実施形態では、このように、第 4ベルト層 14を分断して、タイヤ幅方向内側に位 置する内側ベルト層片 14Aと、タイヤ幅方向外側に位置する一対の外側ベルト層片 14Bから構成している。加えて、このタイヤ 4では、内側ベルト層片 14Aと外側ベルト 層片 14Bのベルト角度を、タイヤ赤道面 CLに対して逆方向かつ異なる角度に形成( ここでは、内側ベルト層片 14Aよりも外側ベルト層片 14Bのタイヤ赤道面 CLに対す るベルト角度を小さく形成)するとともに、外側ベルト層片 14Bのベルト角度を、隣接 する交錯層内の第 3ベルト層 13のベルト角度と、タイヤ赤道面 CLに対して逆方向に し、両外側ベルト層片 14Bと第 3ベルト層 13を交錯させている。また、外側ベルト層 片 14Bは、ショルダ部側に形成された最外側主溝 9のタイヤ半径方向内側に配置さ れるとともに、最外側主溝 9の溝幅よりも幅広に形成されて、最外側主溝 9の全幅に 亘つてタイヤ半径方向内側力 覆うようにして配置されてレ、る。  In the present embodiment, in this way, the fourth belt layer 14 is divided, and the inner belt layer piece 14A positioned on the inner side in the tire width direction and the pair of outer belt layer pieces positioned on the outer side in the tire width direction. Consists of 14B. In addition, in this tire 4, the belt angles of the inner belt layer piece 14A and the outer belt layer piece 14B are formed in opposite directions and different angles with respect to the tire equatorial plane CL (here, the outer side of the inner belt layer piece 14A). The belt angle of the belt layer piece 14B with respect to the tire equatorial plane CL is reduced) and the belt angle of the outer belt layer piece 14B is set to the belt angle of the third belt layer 13 in the adjacent crossing layer and the tire equatorial plane. The outer side belt layer pieces 14B and the third belt layer 13 are crossed in the opposite direction to CL. The outer belt layer piece 14B is disposed on the inner side in the tire radial direction of the outermost main groove 9 formed on the shoulder portion side, and is formed wider than the groove width of the outermost main groove 9, and is It is arranged so as to cover the inner radial force of the tire over the entire width of the main groove 9.
[0038] 従って、本実施形態の重荷重用空気入りタイヤ 4では、ショルダ部の径成長抑制効 果を高めることができ、その径成長を効果的に抑制してタイヤ幅方向の径成長の変 化量を均一化できる等、上記したタイヤ 1と同様の各効果を得ることができる。  Therefore, in the heavy-duty pneumatic tire 4 of the present embodiment, the effect of suppressing the radial growth of the shoulder portion can be enhanced, and the radial growth is effectively suppressed to change the radial growth in the tire width direction. Each effect similar to that of the tire 1 described above can be obtained, for example, the amount can be made uniform.
[0039] (タイヤ試験)  [0039] (Tire test)
本発明の効果を確認するため、以上説明した 2種類の実施例のタイヤ(以下、実施 品 1、 2という)と、従来例のタイヤ (以下、従来品という)を作製し、以下の条件で内圧 充填時のタイヤ成長試験を行った。これらタイヤは全て、 ETRTO (The European Tir e and Rim Technical Organization, 2006)で定めるタイヤサイズ 385/55R22. 5の 重荷重用の空気入りラジアルタイヤである。 [0040] まず、各タイヤのベルト層の構成について説明する。 In order to confirm the effect of the present invention, the tires of the two types of examples described above (hereinafter referred to as “exemplary products 1 and 2”) and the tires of the conventional examples (hereinafter referred to as “conventional products”) were produced, and A tire growth test was performed when the internal pressure was filled. These tires are all heavy-duty pneumatic radial tires with a tire size of 385 / 55R22.5 as defined by ETRTO (The European Time and Rim Technical Organization, 2006). [0040] First, the configuration of the belt layer of each tire will be described.
従来品は、図 3で説明した構成の各ベルト層 11〜: 14を備えたタイヤであり、ベルト 層の分断をしていない従来のベルト層構造に形成した。従来品では、第 2ベルト層 1 2と第 3ベルト層 13を交錯層とし、それぞれのベルト角度を、タイヤ赤道面 CLに対し て逆方向に、かつ同じ角度(16度)に形成した。また、第 1ベルト層 11は、ベルト角度 を、外周側に隣接する第 2ベルト層 12のベルト角度とタイヤ赤道面 CLに対して同じ 方向で 50度に形成し、第 4ベルト層 14は、ベルト角度を、内周側に隣接する第 3ベ ノレト層 13のベルト角度とタイヤ赤道面 CLに対して同じ方向で同じ角度(16度)に形 成した。なお、実施品 1、 2の各ベルト層 11〜: 14も、従来品とほぼ同様に構成してお り、以下では、異なる構成のみ説明する。  The conventional product is a tire including the belt layers 11 to 14 having the configuration described in FIG. 3 and is formed in a conventional belt layer structure in which the belt layer is not divided. In the conventional product, the second belt layer 12 and the third belt layer 13 are cross layers, and the respective belt angles are formed in the opposite direction and the same angle (16 degrees) with respect to the tire equatorial plane CL. Further, the first belt layer 11 is formed at a belt angle of 50 degrees in the same direction with respect to the belt angle of the second belt layer 12 adjacent to the outer peripheral side and the tire equatorial plane CL, and the fourth belt layer 14 is The belt angle was formed at the same angle (16 degrees) in the same direction with respect to the belt angle of the third benolet layer 13 adjacent to the inner peripheral side and the tire equatorial plane CL. The belt layers 11 to 14 of the products 1 and 2 are configured in substantially the same manner as the conventional product, and only different configurations will be described below.
[0041] 実施品 1は、図 1で説明した構成の各ベルト層 11〜: 14を備えたタイヤであり、第 3 ベルト層 13をタイヤ幅方向に分断し、分断した第 3ベルト層 13の各ベルト層片 13A、 13Bのベルト角度を変化させた。内側ベルト層片 13Aは、タイヤ赤道面 CLに対する ベルト角度を 16度にし、外側ベルト層片 13Bは、タイヤ赤道面 CLに対するベルト角 度をより小さい 14度に形成した。  [0041] The implemented product 1 is a tire including the belt layers 11 to 14 configured as described in FIG. 1, and the third belt layer 13 is divided in the tire width direction, and the divided third belt layer 13 is divided. The belt angle of each belt layer piece 13A, 13B was changed. The inner belt layer piece 13A has a belt angle of 16 degrees with respect to the tire equatorial plane CL, and the outer belt layer piece 13B has a belt angle with respect to the tire equatorial plane CL of 14 degrees, which is smaller.
[0042] 実施品 2は、図 2で説明した構成の各ベルト層 11〜: 14を備えたタイヤであり、分断 した第 4ベルト層 14の各ベルト層片 14A、 14Bのベルト角度と方向を変化させた。内 側ベルト層片 14Aは、タイヤ赤道面 CLに対するベルト角度を 16度に、外側ベルト層 片 14Bは、タイヤ赤道面 CLに対するベルト角度をより小さい 14度にそれぞれ形成し 、かつ、それらを、タイヤ赤道面 CLに対して互いに逆方向に形成した。また、外側べ ルト層片 14Bのベルト角度を、第 3ベルト層 13のベルト角度と、タイヤ赤道面 CLに対 して逆方向にして、それらを互いに交錯させた。  [0042] The implemented product 2 is a tire including the belt layers 11 to 14 configured as described in FIG. 2, and the belt angles and directions of the belt layer pieces 14A and 14B of the divided fourth belt layer 14 are determined. Changed. The inner belt layer piece 14A forms a belt angle with respect to the tire equatorial plane CL at 16 degrees, and the outer belt layer piece 14B forms a belt angle with respect to the tire equatorial plane CL at a smaller 14 degrees. The equatorial plane CL was formed in directions opposite to each other. Further, the belt angle of the outer belt layer piece 14B was reversed with respect to the belt angle of the third belt layer 13 and the tire equatorial plane CL, and they were crossed with each other.
[0043] タイヤ成長試験では、以上の各タイヤをリム幅 11. 75インチのリムに装着して、内圧 を lOOkPa及び 900kPaとし、その際のセンタ部及びショルダ部のタイヤ周方向の長 さ(以下、周長という)を測定した。測定後、内圧 900kPa時と内圧 lOOkPa時の周長 の差を、内圧 lOOkPa時の周長で除し、その比を内圧時成長率としてセンタ部及び ショルダ部の各部で求め、各内圧時成長率の差を比較して、各タイヤの径成長のタ ィャ幅方向の均一性を評価した。 [0044] 表 1に、各タイヤのベルト層の構造諸元と試験結果を示す。 [0043] In the tire growth test, each of the above tires is mounted on a rim having a rim width of 11.75 inches, and the internal pressure is set to lOOkPa and 900 kPa. , Called perimeter). After the measurement, the difference in circumference between the internal pressure of 900 kPa and the internal pressure of lOOkPa is divided by the circumference of the internal pressure of lOOkPa, and the ratio is determined as the growth rate at the internal pressure in each part of the center and shoulder parts. By comparing these differences, the uniformity of tire growth in the tire width direction was evaluated. [0044] Table 1 shows the structural specifications and test results of the belt layer of each tire.
表中の各ベルト層の方向は、それらをタイヤ半径方向外側から見て、ベルト角度( 補強素子)が右上がりであるときを R、左上がりであるときを Lで表し、角度は、タイヤ 赤道面 CLに対するベルト角度である。また、各内圧時成長率及び成長率差は百分 率で表し、成長率差が小さいほど径成長のタイヤ幅方向の均一性が高いことを示す  The direction of each belt layer in the table is indicated by R when the belt angle (reinforcing element) is rising to the right, and L when it is rising to the left, as seen from the outside in the tire radial direction. Belt angle with respect to plane CL. Each internal pressure growth rate and growth rate difference are expressed as percentages, and the smaller the growth rate difference, the higher the uniformity of diameter growth in the tire width direction.
[0045] [表 1] [0045] [Table 1]
Figure imgf000015_0001
Figure imgf000015_0001
[0046] 表 1に示すように、従来品では、センタ部とショルダ部の成長率差は 0. 5%と大きく 、径成長のタイヤ幅方向の均一性が低くなつていた。これに対し、実施品 1、 2の成長 率差は、それぞれ 0· 1 %、 0. 2%と全て低くなつており、これより、従来品に比べて、 全ての実施品で、径成長のタイヤ幅方向の均一性が向上したことが分かる。なお、走 行後の径成長は、内圧充填時の径成長と比例関係にあり、以上の評価と同様の結 果になることから、実施品では、走行後においても径成長のタイヤ幅方向の均一性を 維持できることが分かる。 [0046] As shown in Table 1, with the conventional product, the growth rate difference between the center and shoulder is as large as 0.5%. The uniformity in the tire width direction of the diameter growth was becoming low. On the other hand, the growth rate differences between the implemented products 1 and 2 are all low, 0.1% and 0.2%, respectively. It can be seen that the uniformity in the tire width direction is improved. The diameter growth after running has a proportional relationship with the diameter growth at the time of internal pressure filling, and the results are the same as the above evaluation. It can be seen that uniformity can be maintained.
以上の結果から、本発明により、重荷重用空気入りタイヤの径成長をタイヤ幅方向 でより均一化でき、新品時からトレッドが完全に摩耗するに至るまで、耐久性及び耐 偏摩耗性を損なうことなくタイヤを使用できることが証明された。  From the above results, according to the present invention, the diameter growth of the heavy-duty pneumatic tire can be made more uniform in the tire width direction, and the durability and uneven wear resistance are impaired from the time of new article to the complete wear of the tread. It has been proved that tires can be used without any problems.

Claims

請求の範囲 The scope of the claims
[1] トレッド部のカーカス層の外周側に配置された少なくとも 3層のベルト層と、該ベルト 層の外周側に配置され、タイヤ周方向に延びる主溝が形成されたトレッドゴムと、を備 えた重荷重用空気入りタイヤであって、  [1] At least three belt layers disposed on the outer circumferential side of the carcass layer of the tread portion, and a tread rubber disposed on the outer circumferential side of the belt layer and having a main groove extending in the tire circumferential direction. A heavy duty pneumatic tire,
前記ベルト層内に、タイヤ半径方向に隣接し、かつベルト角度がタイヤ赤道面に対 して互いに逆方向に交錯するベルト層からなる交錯層を含み、  The belt layer includes an intersection layer composed of belt layers adjacent to each other in the tire radial direction and intersecting in opposite directions with respect to the tire equatorial plane.
該交錯層のベルト層の少なくとも一層が、タイヤ赤道面を挟んだ両側でタイヤ幅方 向に分断されるとともに、該分断されたベルト層のタイヤ幅方向の分断位置が全て、 前記主溝のうちタイヤ幅方向最外側に形成された最外側主溝よりもタイヤ幅方向内 側に位置し、かつ前記分断されたベルト層のタイヤ赤道面に対するベルト角度が 25 度以下であり、  At least one of the belt layers of the crossing layer is divided in the tire width direction on both sides of the tire equatorial plane, and all the dividing positions in the tire width direction of the divided belt layers are all of the main grooves. A belt angle with respect to the tire equatorial plane of the divided belt layer that is located on the inner side in the tire width direction with respect to the outermost main groove formed on the outermost side in the tire width direction is 25 degrees or less;
同一の前記分断されたベルト層内で、タイヤ幅方向外側に位置するベルト層片の タイヤ赤道面に対するベルト角度を、タイヤ幅方向内側に位置するベルト層片のタイ ャ赤道面に対するベルト角度よりも小さくしたことを特徴とする重荷重用空気入りタイ ャ。  Within the same divided belt layer, the belt angle of the belt layer piece located on the outer side in the tire width direction with respect to the tire equatorial plane is set to be larger than the belt angle of the belt layer piece located on the inner side in the tire width direction with respect to the tire equatorial plane. A heavy duty pneumatic tire characterized by a small size.
[2] 請求項 1に記載された重荷重用空気入りタイヤにぉレ、て、  [2] A heavy duty pneumatic tire as set forth in claim 1,
同一の前記分断されたベルト層内で、タイヤ幅方向外側と内側のそれぞれに位置 する各ベルト層片のベルト角度の方向を、タイヤ赤道面に対して互いに逆方向にし たことを特徴とする重荷重用空気入りタイヤ。  In the same divided belt layer, the belt angle direction of each belt layer piece located on the outer side and the inner side in the tire width direction is opposite to each other with respect to the tire equatorial plane. Heavy duty pneumatic tire.
[3] 請求項 1又は 2に記載された重荷重用空気入りタイヤにぉレ、て、 [3] The heavy duty pneumatic tire according to claim 1 or 2,
前記分断されたベルト層の分断位置とタイヤ赤道面との間のタイヤ幅方向距離が、 前記ベルト層のうち最も幅が広レ、最幅広ベルト層のタイヤ幅方向外側端部とタイヤ赤 道面との間のタイヤ幅方向距離の 1/4以上 2/3以下であることを特徴とする重荷重 用空気入りタイヤ。  The tire width direction distance between the divided position of the divided belt layer and the tire equatorial plane is the widest of the belt layers, the outer end in the tire width direction of the widest belt layer and the tire equatorial plane. A heavy-duty pneumatic tire characterized in that it is not less than 1/4 and not more than 2/3 of the distance in the width direction of the tire.
[4] 請求項 1ないし 3のいずれかに記載された重荷重用空気入りタイヤにおいて、 前記分断されたベルト層の各ベルト層片のうち最も幅が狭い最幅狭ベルト層片の 幅力 前記ベルト層のうち最も幅が広い最幅広ベルト層のタイヤ幅方向外側端部とタ ィャ赤道面との間のタイヤ幅方向距離の 1/10以上 2/3以下であることを特徴とす る重荷重用空気入りタイヤ。 [4] The heavy duty pneumatic tire according to any one of claims 1 to 3, wherein the width force of the narrowest narrow belt layer piece among the belt layer pieces of the divided belt layer is the belt. It is characterized in that it is 1/10 or more and 2/3 or less of the distance in the tire width direction between the outer end in the tire width direction of the widest belt layer of the widest layer and the tire equatorial plane. Heavy duty pneumatic tire.
PCT/JP2007/062437 2006-07-19 2007-06-20 Pneumatic tire for heavy load WO2008010379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006197338A JP2008024104A (en) 2006-07-19 2006-07-19 Pneumatic tire for heavy load
JP2006-197338 2006-07-19

Publications (1)

Publication Number Publication Date
WO2008010379A1 true WO2008010379A1 (en) 2008-01-24

Family

ID=38956714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062437 WO2008010379A1 (en) 2006-07-19 2007-06-20 Pneumatic tire for heavy load

Country Status (2)

Country Link
JP (1) JP2008024104A (en)
WO (1) WO2008010379A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2181862A1 (en) * 2008-10-31 2010-05-05 The Goodyear Tire & Rubber Company Light weight steel belted tire device
CN102582368A (en) * 2012-01-17 2012-07-18 安徽佳通轮胎有限公司 Inflatable Load radial tire with sectional type belted layer structure
CN102858557A (en) * 2010-04-21 2013-01-02 大陆轮胎德国有限公司 Pneumatic vehicle tyre
EP3711978A1 (en) * 2019-03-18 2020-09-23 Sumitomo Rubber Industries, Ltd. Heavy duty pneumatic tire
US20210178820A1 (en) * 2019-12-17 2021-06-17 The Goodyear Tire & Rubber Company Pneumatic tire
CN114368250A (en) * 2021-12-17 2022-04-19 泰凯英(青岛)专用轮胎技术研究开发有限公司 Engineering radial tire with heavy-load belted layer structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772254B2 (en) * 2011-06-07 2015-09-02 横浜ゴム株式会社 Pneumatic tire
JP6936857B2 (en) * 2017-06-20 2021-09-22 株式会社ブリヂストン Pneumatic tires

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175504A (en) * 1987-12-28 1989-07-12 Bridgestone Corp Pneumatic radial tire
JPH04118306A (en) * 1990-09-08 1992-04-20 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH0569702A (en) * 1991-09-13 1993-03-23 Toyo Tire & Rubber Co Ltd Radial tire
JPH05131808A (en) * 1991-11-11 1993-05-28 Toyo Tire & Rubber Co Ltd Radial tire for heavy load use
JPH10250313A (en) * 1997-03-14 1998-09-22 Yokohama Rubber Co Ltd:The Heavy duty pneumatic radial tire
JPH11321230A (en) * 1998-05-08 1999-11-24 Bridgestone Corp Pneumatic radial tire
JP2002172915A (en) * 2000-11-29 2002-06-18 Goodyear Tire & Rubber Co:The Radial tire having divided belt structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175504A (en) * 1987-12-28 1989-07-12 Bridgestone Corp Pneumatic radial tire
JPH04118306A (en) * 1990-09-08 1992-04-20 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH0569702A (en) * 1991-09-13 1993-03-23 Toyo Tire & Rubber Co Ltd Radial tire
JPH05131808A (en) * 1991-11-11 1993-05-28 Toyo Tire & Rubber Co Ltd Radial tire for heavy load use
JPH10250313A (en) * 1997-03-14 1998-09-22 Yokohama Rubber Co Ltd:The Heavy duty pneumatic radial tire
JPH11321230A (en) * 1998-05-08 1999-11-24 Bridgestone Corp Pneumatic radial tire
JP2002172915A (en) * 2000-11-29 2002-06-18 Goodyear Tire & Rubber Co:The Radial tire having divided belt structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2181862A1 (en) * 2008-10-31 2010-05-05 The Goodyear Tire & Rubber Company Light weight steel belted tire device
US8322390B2 (en) 2008-10-31 2012-12-04 The Goodyear Tire & Rubber Company, Inc. Light weight steel belted tire device
CN102858557A (en) * 2010-04-21 2013-01-02 大陆轮胎德国有限公司 Pneumatic vehicle tyre
CN102582368A (en) * 2012-01-17 2012-07-18 安徽佳通轮胎有限公司 Inflatable Load radial tire with sectional type belted layer structure
CN102582368B (en) * 2012-01-17 2014-08-27 安徽佳通轮胎有限公司 Inflatable Load radial tire with sectional type belted layer structure
EP3711978A1 (en) * 2019-03-18 2020-09-23 Sumitomo Rubber Industries, Ltd. Heavy duty pneumatic tire
CN111703259A (en) * 2019-03-18 2020-09-25 住友橡胶工业株式会社 Heavy load pneumatic tire
US20210178820A1 (en) * 2019-12-17 2021-06-17 The Goodyear Tire & Rubber Company Pneumatic tire
CN114368250A (en) * 2021-12-17 2022-04-19 泰凯英(青岛)专用轮胎技术研究开发有限公司 Engineering radial tire with heavy-load belted layer structure
CN114368250B (en) * 2021-12-17 2024-01-26 泰凯英(青岛)专用轮胎技术研究开发有限公司 Engineering radial tire with heavy-duty belt structure

Also Published As

Publication number Publication date
JP2008024104A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
WO2008010379A1 (en) Pneumatic tire for heavy load
KR101286264B1 (en) Pneumatic tire
JP4046502B2 (en) Pneumatic radial tire
JP5836286B2 (en) Pneumatic tire
JP6412461B2 (en) Run flat tire
EP1484196B1 (en) Tire tread contour
WO2011036893A1 (en) Pneumatic tire
JP7081999B2 (en) Pneumatic tires
JP2008024105A (en) Pneumatic radial tire
JP4843661B2 (en) Heavy duty tire
WO2011126077A1 (en) Pneumatic tire
JP2009184371A (en) Pneumatic tire
US20150183271A1 (en) Base tire manufacturing method and base tire
JP4551163B2 (en) Heavy duty tire
JP4279018B2 (en) Pneumatic tire
US8578990B2 (en) Low aspect ratio super single truck tire
JP5129855B2 (en) Heavy duty tire
JPS62247905A (en) Heavy duty pneumatic radial tire
JP2013166397A (en) Pneumatic radial tire for heavy load
JP4286588B2 (en) Pneumatic tire
JP6107041B2 (en) Pneumatic tire
JP4628080B2 (en) Heavy duty pneumatic radial tire
JP5917889B2 (en) Pneumatic tire
JP2006306151A (en) Pneumatic tire
JP4463010B2 (en) Pneumatic radial tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767275

Country of ref document: EP

Kind code of ref document: A1