JP2008024105A - Pneumatic radial tire - Google Patents

Pneumatic radial tire Download PDF

Info

Publication number
JP2008024105A
JP2008024105A JP2006197339A JP2006197339A JP2008024105A JP 2008024105 A JP2008024105 A JP 2008024105A JP 2006197339 A JP2006197339 A JP 2006197339A JP 2006197339 A JP2006197339 A JP 2006197339A JP 2008024105 A JP2008024105 A JP 2008024105A
Authority
JP
Japan
Prior art keywords
tire
belt
layer
belt layer
pneumatic radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006197339A
Other languages
Japanese (ja)
Inventor
Shinichiro Kanamaru
伸一郎 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006197339A priority Critical patent/JP2008024105A/en
Publication of JP2008024105A publication Critical patent/JP2008024105A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2041Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with an interrupted belt ply, e.g. using two or more portions of the same ply

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heating durability and uneven wear resistance by making radial growth amount of a pneumatic radial tire uniform in the tire width direction and suppressing deterioration of a grounding shape when traveling. <P>SOLUTION: The first to fourth belt layers 11-14 are arranged from an inner peripheral side toward an outer peripheral side in a tread part 5. The second to third belt layers 12 and 13 are made crossing layers having small belt angles with the tire peripheral direction and opposite directions with each other. A hollow part 11C is provided in a center part of the first belt layer 11 to lower peripheral direction rigidity of the center part. The fourth belt layer 14 is divided into three of a center part 14C and outside parts 14D. Peripheral direction rigidity of a shoulder part is increased by making a belt angle of the outside part 14D closer to the tire peripheral direction as compared with a belt angle of the third belt layer 13 and inclining the belt angle in the opposite direction of the tire peripheral direction. As a result, the radial growth amount suppressing effect of the shoulder part is relatively enhanced to make the radial growth amount uniform in the tire width direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、トレッド部に複層構造のベルト層を備えた空気入りラジアルタイヤに関し、特に、内圧充填時や走行時等におけるタイヤの径成長をタイヤ幅方向でより均一化させた空気入りラジアルタイヤに関する。   The present invention relates to a pneumatic radial tire provided with a belt layer having a multi-layer structure in a tread portion, and more particularly, a pneumatic radial tire in which the tire diameter growth is more uniform in the tire width direction during internal pressure filling and running. About.

空気入りラジアルタイヤ、例えばトラックやバス等の重荷重用空気入りラジアルタイヤ等では、一般に、車両走行時等に大きな荷重が負荷されるため、トレッド部のカーカス層の外周側に3層以上のベルト層を配置し、充分なトレッド部の剛性を確保するとともに、高いタガ効果等を発揮させている。   In a pneumatic radial tire, for example, a pneumatic radial tire for heavy loads such as a truck or a bus, generally, a large load is applied when the vehicle travels. Therefore, three or more belt layers are provided on the outer peripheral side of the carcass layer in the tread portion. To ensure sufficient tread rigidity and to achieve a high tagging effect.

図3、4は、このような従来の空気入りラジアルタイヤの例を示す図であり、図3は、この空気入りラジアルタイヤのトレッド部を模式的に示すタイヤ幅方向の断面図であり、図4は、トレッド部の構造を概略的に破断して示す平面展開図である。
この従来の空気入りラジアルタイヤ80は、図示のように、トレッド部5に、例えばスチールコード等のラジアル方向の骨格素子6Bを有するラジアル構造のカーカス層6と、カーカス層6の外周側に配置された少なくとも3層(図では4層)のベルト層11〜14と、ベルト層11〜14の外周側に配置されたタイヤ外周面を構成するトレッドゴム7と、を備える。
3 and 4 are views showing examples of such a conventional pneumatic radial tire, and FIG. 3 is a sectional view in the tire width direction schematically showing a tread portion of the pneumatic radial tire. 4 is a developed plan view schematically showing the structure of the tread portion by breaking it.
As shown in the figure, this conventional pneumatic radial tire 80 is disposed on the tread portion 5 on the outer circumferential side of the carcass layer 6 having a radial structure having a skeleton element 6B in the radial direction such as a steel cord, for example. Further, at least three (four in the figure) belt layers 11 to 14 and a tread rubber 7 constituting a tire outer peripheral surface disposed on the outer peripheral side of the belt layers 11 to 14 are provided.

ベルト層11〜14は、タイヤ半径方向内側から外側に向かって順次隣接して配置された、第1ベルト層11、第2ベルト層12、第3ベルト層13、及び第4ベルト層14からなり、それぞれの内部に、例えばスチール等の金属製のコードや有機繊維コード等の複数本の並列した補強素子11B〜14Bを有する。なお、これら各ベルト層11〜14の補強素子11B〜14Bは、タイヤ赤道面CL(タイヤ周方向)に対してそれぞれ所定角度で傾斜して配列されており、本発明では、このようなベルト層内の補強素子の傾斜角度(補強素子の延在角度)を、ベルト層のベルト角度という。   The belt layers 11 to 14 include a first belt layer 11, a second belt layer 12, a third belt layer 13, and a fourth belt layer 14 that are sequentially arranged adjacent to each other from the inner side to the outer side in the tire radial direction. In each, a plurality of parallel reinforcing elements 11B to 14B such as a metal cord such as steel or an organic fiber cord are provided. The reinforcing elements 11B to 14B of the belt layers 11 to 14 are arranged at a predetermined angle with respect to the tire equatorial plane CL (tire circumferential direction). In the present invention, such belt layers The inclination angle of the inner reinforcing element (the extending angle of the reinforcing element) is called the belt angle of the belt layer.

この空気入りラジアルタイヤ80では、第2、第3ベルト層12、13のタイヤ周方向に対するベルト角度を比較的小さく(例えば10°以上30°以下)、かつタイヤ周方向に対して互いに逆方向に形成している。即ち、第2、第3ベルト層12、13は、その補強素子12B、13Bがタイヤ周方向に対して互いに逆方向(図4参照)に交錯(交差)する交錯層であり、タイヤ周方向の変形に対する剛性(以下、周方向剛性という)が高く、同方向の張力を主に負担してタイヤ外径の径成長を抑制する機能を有する。また、このタイヤ80では、第1ベルト層11のベルト角度を、タイヤ周方向に対して、外周側に隣接する第2ベルト層12のベルト角度と同じ方向に、かつ、より大きな角度(例えば45°以上)に形成し、第4ベルト層14のベルト角度を、タイヤ周方向に対して、内周側に隣接する第3ベルト層13のベルト角度と同じ方向に、かつ、略同程度の角度に形成している。   In the pneumatic radial tire 80, the belt angle of the second and third belt layers 12 and 13 with respect to the tire circumferential direction is relatively small (for example, 10 ° or more and 30 ° or less) and opposite to each other with respect to the tire circumferential direction. Forming. That is, the second and third belt layers 12 and 13 are crossing layers in which the reinforcing elements 12B and 13B cross (cross) each other in opposite directions (see FIG. 4) with respect to the tire circumferential direction. The rigidity against deformation (hereinafter referred to as circumferential rigidity) is high, and it has a function of mainly suppressing the growth of the outer diameter of the tire by mainly bearing the tension in the same direction. Further, in the tire 80, the belt angle of the first belt layer 11 is set in the same direction as the belt angle of the second belt layer 12 adjacent to the outer peripheral side with respect to the tire circumferential direction, and a larger angle (for example, 45 The belt angle of the fourth belt layer 14 in the same direction as the belt angle of the third belt layer 13 adjacent to the inner circumferential side with respect to the tire circumferential direction, and substantially the same angle. Is formed.

ここで、空気入りタイヤでは、一般に、内圧充填時や走行時等におけるタイヤ外径の径成長量がタイヤ幅方向で不均一になると、路面転動時の接地形状が悪化し、或いは接地圧がタイヤ幅方向で不均一化する等して、トレッド部に偏摩耗が生じやすくなる。同時に、径成長が大きい箇所では、接地圧の増加に伴い発熱量が増大し、発熱耐久性が低下する恐れもある。従って、径成長は、センタ部(タイヤ幅方向中央部)からショルダ部(タイヤ幅方向両端部)まで均一であるのが望ましい。   Here, in general, in the pneumatic tire, when the amount of growth of the outer diameter of the tire at the time of internal pressure filling or running becomes uneven in the tire width direction, the contact shape at the time of rolling on the road surface deteriorates, or the contact pressure increases. Uneven wear in the tire width direction or the like tends to cause uneven wear in the tread portion. At the same time, at locations where the diameter growth is large, the amount of heat generation increases as the ground pressure increases, and the heat generation durability may decrease. Therefore, it is desirable that the diameter growth is uniform from the center portion (center portion in the tire width direction) to the shoulder portion (both end portions in the tire width direction).

しかしながら、このようなベルト層11〜14を備える従来の空気入りラジアルタイヤ80では、特に偏平タイヤ(例えば偏平比70%以下)の場合等、ベルト層11〜14の周方向剛性及び径成長抑制効果がショルダ部に比べてセンタ部で大きくなり、ショルダ部の径成長が相対的に大きくなり、タイヤ幅方向で径成長量が不均一化する傾向がある。その結果、この空気入りラジアルタイヤ80では、走行時におけるショルダ部の径成長が助長されてタイヤ80の両ショルダ部側の接地面積が増加し、接地形状が悪化するとともに、その部分の接地圧が増加して発熱量も増大し、耐偏摩耗性や発熱耐久性が低下する恐れがある。   However, in the conventional pneumatic radial tire 80 provided with such belt layers 11 to 14, especially in the case of a flat tire (for example, a flat ratio of 70% or less), the circumferential rigidity and the radial growth suppressing effect of the belt layers 11 to 14 are achieved. However, there is a tendency that the diameter growth of the shoulder portion becomes relatively large and the diameter growth amount becomes non-uniform in the tire width direction as compared with the shoulder portion. As a result, in this pneumatic radial tire 80, the diameter growth of the shoulder portion during driving is promoted, the contact area on both shoulder portions of the tire 80 is increased, the contact shape is deteriorated, and the contact pressure of the portion is increased. The amount of heat generation increases and the uneven wear resistance and heat generation durability may decrease.

このような問題に対処するため、従来、上記した複数層のベルト層に加えて細幅ベルト層を追加する等し、径成長の均一化を図った空気入りラジアルタイヤが提案されている(特許文献1参照)。   In order to deal with such problems, conventionally, a pneumatic radial tire has been proposed in which a narrow belt layer is added in addition to the plurality of belt layers described above to achieve uniform diameter growth (patent) Reference 1).

図5は、この従来の空気入りラジアルタイヤのトレッド部の構造を概略的に破断して示す平面展開図である。
この空気入りラジアルタイヤ100は、図示のように、トレッド部108のカーカス層109とトレッドゴム(図示せず)との間に、タイヤ半径方向内側から外側に向かって順に、第1ベルト層101、第2ベルト層102、第3ベルト層103、第4ベルト層104、及び細幅ベルト層105を備える。第2、第3ベルト層102、103は、ベルト角度がタイヤ周方向に対して逆方向、かつ同程度の角度で交錯する交錯層である。一方、第1ベルト層101は、タイヤ周方向に対するベルト角度が隣接する第2ベルト層102のベルト角度よりも大きくかつ同じ方向に形成され、第4ベルト層104は、タイヤ周方向に対するベルト角度が隣接する第3ベルト層103のベルト角度と同程度かつ同一方向に形成されている。
FIG. 5 is a developed plan view schematically showing the structure of the tread portion of this conventional pneumatic radial tire, broken away.
As shown in the figure, the pneumatic radial tire 100 includes a first belt layer 101 between a carcass layer 109 of a tread portion 108 and a tread rubber (not shown) in order from the inner side to the outer side in the tire radial direction. A second belt layer 102, a third belt layer 103, a fourth belt layer 104, and a narrow belt layer 105 are provided. The second and third belt layers 102 and 103 are crossing layers in which the belt angle crosses in the opposite direction to the tire circumferential direction and at the same angle. On the other hand, the first belt layer 101 is formed in the same direction as the belt angle of the adjacent second belt layer 102 with respect to the tire circumferential direction, and the fourth belt layer 104 has a belt angle with respect to the tire circumferential direction. It is formed in the same direction and in the same direction as the belt angle of the adjacent third belt layer 103.

以上に加えて、このタイヤ100では、最も幅狭な第4ベルト層104のタイヤ幅方向両側に、それぞれ細幅ベルト層105を、タイヤ半径方向内側に隣接する第3ベルト層103の両側部を覆うようにして配置している。また、両細幅ベルト層105のタイヤ周方向に対するベルト角度を、隣接する第3ベルト層103のベルト角度と同一方向で、よりタイヤ周方向に近い角度に形成し、その周方向剛性を高くしている。これにより、第3ベルト層103の両側部(ショルダ部)付近の剛性を強化してショルダ部の径成長を抑制し、タイヤ幅方向における径成長量の均一化を図っている。   In addition to the above, in the tire 100, the narrow belt layer 105 is provided on both sides of the narrowest fourth belt layer 104 in the tire width direction, and both side portions of the third belt layer 103 adjacent to the inner side in the tire radial direction are provided. It is arranged so as to cover it. Further, the belt angle with respect to the tire circumferential direction of both narrow belt layers 105 is formed in the same direction as the belt angle of the adjacent third belt layer 103 and closer to the tire circumferential direction to increase the circumferential rigidity. ing. Thereby, the rigidity in the vicinity of both side portions (shoulder portions) of the third belt layer 103 is strengthened to suppress the diameter growth of the shoulder portions, and the diameter growth amount in the tire width direction is made uniform.

しかしながら、この従来の空気入りラジアルタイヤ100では、上記した図3、4の空気入りラジアルタイヤ80と比較して、ある程度タイヤ幅方向の径成長量を均一化できるものの、センタ部の周方向剛性は変えられず高いままである等、タイヤ幅方向全体の径成長抑制効果のバランスを効果的に改良するのが難しい。そのため、このタイヤ100では、径成長を均一化する効果がなお充分とはいえず、タイヤ幅方向で径成長量に過不足が生じて不均一化する恐れがある。特に、近年ではタイヤが偏平化する傾向があるが、このような偏平タイヤでは、タイヤ及びベルト層の幅が広くなるのに伴い、センタ部からショルダ部にかけての周方向剛性の差もより大きくなる。その結果、ショルダ部付近における径成長の助長もより顕著に現れるため、径成長量がタイヤ幅方向で不均一化する程度も大きくなり、接地形状の悪化や発熱耐久性及び耐偏摩耗性の低下等の問題も生じやすくなる。従って、このような偏平タイヤでは、径成長抑制効果をタイヤ幅方向でより均一にし、径成長量の更なる均一化を図る必要がある。   However, in the conventional pneumatic radial tire 100, the radial growth amount in the tire width direction can be made uniform to some extent as compared with the pneumatic radial tire 80 shown in FIGS. It is difficult to effectively improve the balance of the radial growth suppression effect in the entire tire width direction, for example, it remains unchanged and remains high. Therefore, in this tire 100, it cannot be said that the effect of making the diameter growth uniform is still sufficient, and there is a possibility that the diameter growth amount becomes excessive and insufficient in the tire width direction and becomes non-uniform. In particular, tires tend to be flattened in recent years. In such flattened tires, as the width of the tire and belt layer increases, the difference in circumferential rigidity from the center portion to the shoulder portion also increases. . As a result, the promotion of diameter growth in the vicinity of the shoulder portion also appears more conspicuously, so the degree of diameter growth becoming uneven in the tire width direction also increases, and the contact shape deteriorates and the heat generation durability and uneven wear resistance decrease. Such problems are likely to occur. Therefore, in such a flat tire, it is necessary to make the diameter growth suppression effect more uniform in the tire width direction and to further uniform the diameter growth amount.

特開平5−131808号公報JP-A-5-131808

本発明は、前記従来の問題に鑑みなされたものであって、その目的は、空気入りラジアルタイヤの径成長量をタイヤ幅方向で均一化し、走行時における接地形状の悪化を抑制するとともに、発熱耐久性及び耐偏摩耗性を向上させることである。   The present invention has been made in view of the above-described conventional problems, and its purpose is to uniformize the radial growth amount of the pneumatic radial tire in the tire width direction, suppress deterioration of the ground contact shape during traveling, and generate heat. It is to improve durability and uneven wear resistance.

請求項1の発明は、トレッド部のカーカス層の外周側に配置された少なくとも4層のベルト層と、該ベルト層の外周側に配置されたトレッドゴムと、を備えた空気入りラジアルタイヤであって、前記ベルト層内に、タイヤ半径方向最内側に設けられ、タイヤ赤道面を挟んでタイヤ幅方向に分断して配置された中抜き構造の中抜ベルト層と、タイヤ半径方向に隣接し、かつベルト角度がタイヤ周方向に対して互いに逆方向に交錯するベルト層からなる交錯層と、前記交錯層のタイヤ半径方向外側に隣接して設けられ、タイヤ幅方向の中央部及び該中央部を挟んだ両外側部に3分断して配置された分断ベルト層と、を有することを特徴とする。
請求項2の発明は、請求項1に記載された空気入りラジアルタイヤにおいて、前記分断ベルト層のタイヤ幅方向最外側端部が、前記交錯層のタイヤ幅方向外側端部よりもタイヤ幅方向内側に配置され、かつ前記分断ベルト層の分断位置と前記トレッドゴムに形成されたタイヤ周方向に延びる主溝の溝底位置とが、タイヤ幅方向に離間して配置されていることを特徴とする。
請求項3の発明は、請求項1又は2に記載された空気入りラジアルタイヤにおいて、前記分断ベルト層の外側部のベルト角度が、タイヤ半径方向内側に隣接する前記交錯層内のベルト層のベルト角度とタイヤ周方向に対して逆方向であることを特徴とする。
請求項4の発明は、請求項1ないし3のいずれかに記載された空気入りラジアルタイヤにおいて、前記分断ベルト層の外側部のタイヤ周方向に対するベルト角度が、タイヤ半径方向内側に隣接する前記交錯層内のベルト層のタイヤ周方向に対するベルト角度よりも小さいことを特徴とする。
請求項5の発明は、請求項1ないし4のいずれかに記載された空気入りラジアルタイヤにおいて、前記分断ベルト層の中央部のベルト角度が、タイヤ半径方向内側に隣接する前記交錯層内のベルト層のベルト角度とタイヤ周方向に対して逆方向であることを特徴とする。
請求項6の発明は、請求項1ないし5のいずれかに記載された空気入りラジアルタイヤにおいて、前記分断ベルト層及び/又は前記交錯層内のベルト層のタイヤ周方向に対するベルト角度が、10°以上25°以下であることを特徴とする。
請求項7の発明は、請求項1ないし6のいずれかに記載された空気入りラジアルタイヤにおいて、前記中抜ベルト層のタイヤ周方向に対するベルト角度が、45°以上90°以下であることを特徴とする。
The invention of claim 1 is a pneumatic radial tire comprising at least four belt layers disposed on the outer peripheral side of the carcass layer of the tread portion, and tread rubber disposed on the outer peripheral side of the belt layer. In the belt layer, a hollow belt layer with a hollow structure provided on the innermost side in the tire radial direction and divided in the tire width direction across the tire equatorial plane, adjacent to the tire radial direction, And an intersection layer composed of belt layers whose belt angles intersect with each other in the opposite direction with respect to the tire circumferential direction, and adjacent to the outer side in the tire radial direction of the intersection layer, and a center portion in the tire width direction and the center portion. And a divided belt layer arranged by being divided into three at both outer side portions sandwiched therebetween.
According to a second aspect of the present invention, in the pneumatic radial tire according to the first aspect, an outermost end portion in the tire width direction of the divided belt layer is an inner side in the tire width direction than an outer end portion in the tire width direction of the crossing layer. And the dividing position of the dividing belt layer and the groove bottom position of the main groove formed in the tread rubber extending in the tire circumferential direction are arranged apart from each other in the tire width direction. .
According to a third aspect of the present invention, in the pneumatic radial tire according to the first or second aspect, the belt of the belt layer in the crossing layer adjacent to the inner side in the tire radial direction is a belt angle of the outer portion of the divided belt layer. The angle is opposite to the tire circumferential direction.
According to a fourth aspect of the present invention, in the pneumatic radial tire according to any one of the first to third aspects, the intersection of the outer circumferential portion of the divided belt layer with respect to the tire circumferential direction is adjacent to the inner side in the tire radial direction. The belt angle in the layer is smaller than the belt angle with respect to the tire circumferential direction.
According to a fifth aspect of the present invention, in the pneumatic radial tire according to any one of the first to fourth aspects, a belt in the crossing layer in which the belt angle at the center of the divided belt layer is adjacent to the inner side in the tire radial direction. The belt angle of the layer is opposite to the tire circumferential direction.
According to a sixth aspect of the present invention, in the pneumatic radial tire according to any one of the first to fifth aspects, a belt angle with respect to a tire circumferential direction of the divided belt layer and / or the belt layer in the crossing layer is 10 °. The angle is 25 ° or less.
The invention according to claim 7 is the pneumatic radial tire according to any one of claims 1 to 6, wherein a belt angle of the hollow belt layer with respect to a tire circumferential direction is not less than 45 ° and not more than 90 °. And

本発明によれば、空気入りラジアルタイヤの径成長量をタイヤ幅方向で均一化でき、走行時における接地形状の悪化を抑制し、かつ発熱耐久性及び耐偏摩耗性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the diameter growth amount of a pneumatic radial tire can be equalize | homogenized in a tire width direction, deterioration of the contact shape at the time of driving | running | working can be suppressed, and heat_generation | fever durability and uneven wear resistance can be improved.

以下、本発明の一実施形態について、図面を参照して説明する。
本実施形態の空気入りラジアルタイヤは、例えばバスやトラック等に使用される重荷重用の空気入りラジアルタイヤ等であり、一対のビードコアや、その間に渡ってトロイダル状に延びる少なくとも一枚のカーカスプライからなるカーカス層を備える等、公知の空気入りラジアルタイヤの構造を有する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The pneumatic radial tire of the present embodiment is a heavy-duty pneumatic radial tire used for buses, trucks, etc., for example, and includes a pair of bead cores and at least one carcass ply extending between them in a toroidal shape. It has the structure of a known pneumatic radial tire, such as having a carcass layer.

図1、2は、本実施形態の空気入りラジアルタイヤを示す図であり、図1は、この空気入りラジアルタイヤのトレッド部を模式的に示すタイヤ幅方向の断面図であり、図2は、トレッド部の構造を概略的に破断して示す平面展開図である。
この空気入りラジアルタイヤ1は、図示のように、トレッド部5に、例えばスチールコード等のラジアル方向の骨格素子6Bを有するラジアル構造のカーカス層6と、カーカス層6の外周側に配置された少なくとも4層(図では4層)のベルト層11〜14と、ベルト層11〜14の外周側に配置されたタイヤ外周面を構成するトレッドゴム7と、を備えている。また、トレッドゴム7の表面(接地面)には、タイヤ周方向に延びる複数本(図では4本)の主溝8が形成されている。
1 and 2 are views showing the pneumatic radial tire of the present embodiment, FIG. 1 is a cross-sectional view in the tire width direction schematically showing a tread portion of the pneumatic radial tire, and FIG. FIG. 3 is a plan development view schematically showing the structure of a tread portion in a fractured manner.
As shown in the figure, this pneumatic radial tire 1 includes a radial structure carcass layer 6 having a radial skeleton element 6B such as a steel cord in the tread portion 5, and at least an outer circumferential side of the carcass layer 6. Four layers (four layers in the figure) of belt layers 11 to 14 and a tread rubber 7 constituting a tire outer peripheral surface disposed on the outer peripheral side of the belt layers 11 to 14 are provided. A plurality of (four in the figure) main grooves 8 extending in the tire circumferential direction are formed on the surface (grounding surface) of the tread rubber 7.

ベルト層11〜14は、タイヤ半径方向内側から外側に向かって順次隣接し、タイヤ半径方向に重ね合わせて配置された、タイヤ半径方向最内側の第1ベルト層11、中間位置に配置された第2ベルト層12と第3ベルト層13、及びタイヤ半径方向最外側の第4ベルト層14からなり、図2に示すように、それぞれの内部に、例えばスチール等の金属製のコードや有機繊維コード等の複数本の並列した補強素子11B〜14Bを有する。   The belt layers 11 to 14 are adjacent to each other in the tire radial direction from the inner side to the outer side, and are arranged so as to overlap with each other in the tire radial direction. 2 belt layer 12, third belt layer 13, and fourth belt layer 14 on the outermost side in the tire radial direction, and as shown in FIG. And a plurality of parallel reinforcing elements 11B to 14B.

第1ベルト層11は、タイヤ赤道面CLを挟んでタイヤ幅方向に分断して配置された中抜き構造の中抜ベルト層であり、タイヤ幅方向中央のセンタ部(タイヤ赤道面CL上)に中抜き部11Cを有する。即ち、第1ベルト層11は、中抜き部11Cを挟んでタイヤ幅方向に離間して配置された一対の側部(分割ベルト)11Dからなり、これら両側部11Dは、タイヤ赤道面CLの両側(ショルダ部側)に所定の距離(中抜き幅)を隔てて配置されている。また、この第1ベルト層11は、タイヤ周方向に対するベルト角度が、他のベルト層12〜14に比べて大きく(タイヤ幅方向に近い)、ここでは45°以上90°以下に形成されている。   The first belt layer 11 is a hollow belt layer with a hollow structure that is divided and arranged in the tire width direction across the tire equatorial plane CL, and in the center portion (on the tire equatorial plane CL) at the center in the tire width direction. It has a hollow portion 11C. That is, the first belt layer 11 includes a pair of side portions (divided belts) 11D that are spaced apart in the tire width direction with the hollow portion 11C interposed therebetween, and these both side portions 11D are on both sides of the tire equatorial plane CL. It is arranged on the (shoulder part side) with a predetermined distance (centering width). Further, the first belt layer 11 has a belt angle with respect to the tire circumferential direction that is larger than that of the other belt layers 12 to 14 (close to the tire width direction), and is formed at 45 ° or more and 90 ° or less here. .

第2、第3ベルト層12、13は、タイヤ半径方向に隣接し、かつベルト角度がタイヤ周方向に対して互いに逆方向に交錯(交差)する交錯層であり、第2ベルト層12のベルト角度が、そのタイヤ半径方向内側に隣接する第1ベルト層11のベルト角度と、タイヤ周方向に対して同じ方向に形成されている。また、第2、第3ベルト層12、13は、タイヤ周方向に対するベルト角度が比較的小さく(タイヤ周方向に近い)、ここでは10°以上25°以下に形成されている。   The second and third belt layers 12 and 13 are crossing layers adjacent to each other in the tire radial direction and intersecting (crossing) in opposite directions with respect to the tire circumferential direction. The angle is formed in the same direction as the belt angle of the first belt layer 11 adjacent to the inner side in the tire radial direction and the tire circumferential direction. Further, the second and third belt layers 12 and 13 have a relatively small belt angle with respect to the tire circumferential direction (close to the tire circumferential direction), and are formed at 10 ° or more and 25 ° or less here.

第4ベルト層14は、前記交錯層のタイヤ半径方向外側に隣接して設けられた交錯層を保護する保護層であるとともに、タイヤ幅方向の中央部14C及び中央部14Cを挟んだ両外側部14Dに3分断して配置された分断ベルト層である。即ち、第4ベルト層14は、センタ部に配置された中央部14Cと、両ショルダ部側に配置された外側部14Dの、タイヤ幅方向に分断された3つの幅狭ベルトからなり、これらは、各分断端部間に所定の距離を隔てて、又は、各分断端部を所定の幅だけ重ね合わせて配置されている。また、この第4ベルト層14は、両外側部14D及び中央部14Cのベルト角度が、共にタイヤ半径方向内側に隣接する交錯層内の第3ベルト層13のベルト角度と、タイヤ周方向に対して逆方向、かつ同程度の角度(ここでは10°以上25°以下)に形成されている。   The fourth belt layer 14 is a protective layer for protecting the crossing layer provided adjacent to the outer side in the tire radial direction of the crossing layer, and both the outer side part sandwiching the central part 14C and the central part 14C in the tire width direction. 14D is a divided belt layer that is divided into three parts. That is, the fourth belt layer 14 is composed of three narrow belts divided in the tire width direction, a central portion 14C disposed in the center portion and an outer portion 14D disposed on both shoulder portions. In addition, the divided end portions are arranged with a predetermined distance therebetween, or the divided end portions are overlapped with each other by a predetermined width. In addition, the belt angle of both the outer portion 14D and the central portion 14C is such that the belt angle of the third belt layer 13 in the crossing layer adjacent to the inner side in the tire radial direction and the tire circumferential direction of the fourth belt layer 14 are both. And in the opposite direction and at the same angle (here, 10 ° to 25 °).

更に、本実施形態では、第4ベルト層14内で各部14C、14Dのベルト角度を異なる角度にし、少なくとも外側部14Dのタイヤ周方向に対するベルト角度を、タイヤ半径方向内側に隣接する交錯層内の第3ベルト層13のタイヤ周方向に対するベルト角度よりも小さくし、タイヤ周方向により近づけている。また、第4ベルト層14の分断位置とトレッドゴム7に形成されたタイヤ周方向に延びる主溝8(図1参照)の溝底位置とを、タイヤ幅方向にずらせて離間して配置し、第4ベルト層14の各部14C、14Dの分断端部が主溝8の溝底付近(タイヤ半径方向内側)に位置しないようにしている。   Further, in the present embodiment, the belt angles of the respective portions 14C and 14D are made different in the fourth belt layer 14, and at least the belt angle of the outer portion 14D with respect to the tire circumferential direction is set in the crossing layer adjacent to the inner side in the tire radial direction. The belt angle of the third belt layer 13 with respect to the tire circumferential direction is made smaller and closer to the tire circumferential direction. Further, the dividing position of the fourth belt layer 14 and the groove bottom position of the main groove 8 (see FIG. 1) formed in the tread rubber 7 extending in the tire circumferential direction are arranged to be spaced apart from each other in the tire width direction. The divided end portions of the respective portions 14C and 14D of the fourth belt layer 14 are prevented from being positioned near the bottom of the main groove 8 (in the tire radial direction).

これら各ベルト層11〜14内では、交錯層を構成する第2ベルト層12が、最もタイヤ幅方向の幅(以下、単に幅という)が広い最幅広ベルト層であり、同じく交錯層である第3ベルト層13の幅と最内側ベルト層である第1ベルト層11の幅(両側部11Dのタイヤ幅方向外側端部間の幅)が、略同程度の幅に、かつ第2ベルト層12よりも狭い幅に形成されている。また、最外側の第4ベルト層14は、その幅(両外側部14Dのタイヤ幅方向外側端部間の幅)がタイヤ半径方向内側に隣接する交錯層(第3ベルト層13)の幅よりも狭く、最も幅狭に形成されている。従って、第4ベルト層14のタイヤ幅方向最外側端部(外側部14Dのショルダ部側端部)は、交錯層のタイヤ幅方向外側端部よりもタイヤ幅方向内側に配置されている。   Within each of these belt layers 11 to 14, the second belt layer 12 constituting the crossing layer is the widest belt layer having the widest width in the tire width direction (hereinafter simply referred to as width), and is also the crossing layer. The width of the third belt layer 13 and the width of the first belt layer 11 that is the innermost belt layer (the width between the outer ends in the tire width direction of both side portions 11D) are substantially the same, and the second belt layer 12 It is formed with a narrower width. Further, the outermost fourth belt layer 14 has a width (a width between outer end portions in the tire width direction of both outer side portions 14D) larger than a width of the crossing layer (third belt layer 13) adjacent to the inner side in the tire radial direction. Is also the narrowest and the narrowest. Accordingly, the outermost end portion in the tire width direction of the fourth belt layer 14 (the shoulder portion side end portion of the outer portion 14D) is disposed on the inner side in the tire width direction with respect to the outer end portion in the tire width direction of the crossing layer.

以上説明した本実施形態の空気入りラジアルタイヤ1では、4層の各ベルト層11〜14を備え、その第2ベルト層12と第3ベルト層13とを交錯層にして、ベルト層の有する周方向等の剛性や径成長抑制効果、及びタガ効果等の諸機能を効果的に発揮させている。また、最内側の第1ベルト層11を中抜き構造にしてタイヤのセンタ部に中抜部11Cを設け、かつ、その両側部11Dをショルダ部側に配置したため、ショルダ部の周方向剛性を低下させることなくセンタ部の周方向剛性及び径成長抑制効果のみ従来よりも低くすることができる。その結果、内圧充填時及び走行時等に、ショルダ部の径成長を抑制しつつセンタ部の径成長をやや大きくすることができ、それらの間の径成長量の差を小さくしてタイヤ幅方向の径成長バランスを改良することができる。同時に、センタ部のベルト層の数が減少して剛性が低くなり、センタ部が変形しやすくなるため、走行時に路面の突起物等に乗り上げた際に、センタ部がそれらを包み込むように変形してカット傷が生じるのを抑制できる等、センタ部の柔軟性を高めることができ、悪路におけるタイヤ性能を向上させることもできる。   In the pneumatic radial tire 1 of the present embodiment described above, each of the belt layers 11 to 14 includes four belt layers 11 to 14, the second belt layer 12 and the third belt layer 13 are cross layers, and the belt layer has a circumference. Various functions such as the rigidity of the direction, the diameter growth suppression effect, and the tagging effect are effectively exhibited. In addition, the innermost first belt layer 11 has a hollow structure, and a hollow portion 11C is provided at the center of the tire, and both side portions 11D are arranged on the shoulder portion side, so that the circumferential rigidity of the shoulder portion is reduced. Only the circumferential rigidity of the center portion and the effect of suppressing the radial growth can be made lower than before. As a result, the diameter growth of the center part can be slightly increased while suppressing the diameter growth of the shoulder part during internal pressure filling and traveling, and the difference in the diameter growth amount between them can be reduced to reduce the tire width direction. The diameter growth balance can be improved. At the same time, the number of belt layers in the center portion is reduced and rigidity is lowered, and the center portion is easily deformed.Therefore, the center portion is deformed so as to wrap them when riding on a protrusion on the road surface during traveling. Thus, the flexibility of the center portion can be increased, for example, the occurrence of cut scratches can be suppressed, and the tire performance on rough roads can also be improved.

加えて、第4ベルト層14を3分断して両ショルダ部側に外側部14Dを配置したため、径成長が大きくなるショルダ部の周方向剛性を高めることができ、その付近の径成長を更に抑制することができる。また、第4ベルト層14のセンタ部側に配置された中央部14Cは主に保護層としての機能を、両外側部14Dは高い周方向剛性を有するショルダ部の径成長抑制層としての機能を、それぞれ発揮させる等、各部毎に必要とされる機能の効果的な向上を図ることが可能となる。   In addition, since the fourth belt layer 14 is divided into three parts and the outer portions 14D are arranged on both shoulder portions, the circumferential rigidity of the shoulder portion where the diameter growth is increased can be increased, and the diameter growth in the vicinity thereof is further suppressed. can do. Further, the central portion 14C disposed on the center portion side of the fourth belt layer 14 mainly functions as a protective layer, and both outer side portions 14D function as a diameter growth suppression layer of a shoulder portion having high circumferential rigidity. Thus, it is possible to effectively improve the functions required for each part, such as to exhibit each.

従って、本実施形態の空気入りラジアルタイヤ1によれば、タイヤの径成長量をタイヤ幅方向で均一化でき、走行時における接地形状の悪化を抑制することができる。これにより、局部的な接地圧及び発熱量の増加等を防止することもでき、発熱耐久性及び耐偏摩耗性を向上させることができる。特に扁平比が80%以下の扁平タイヤでは、ショルダ部の径成長及びタイヤ幅方向の径成長量差がより大きくなり、早期に故障に至る恐れがあるが、このようなベルト層11〜14を設けることで上記した各効果が発揮され、早期の故障等を効果的に防止することができる。   Therefore, according to the pneumatic radial tire 1 of the present embodiment, the tire diameter growth amount can be made uniform in the tire width direction, and deterioration of the ground contact shape during traveling can be suppressed. As a result, it is possible to prevent a local contact pressure and increase in the amount of heat generated, and to improve heat generation durability and uneven wear resistance. In particular, in flat tires with a flatness ratio of 80% or less, the diameter growth of the shoulder portion and the difference in the amount of radial growth in the tire width direction may be larger, leading to failure at an early stage. By providing, each effect mentioned above is exhibited and an early failure etc. can be prevented effectively.

ここで、分断された第4ベルト層14の外側部14Dのベルト角度は、本実施形態のように、タイヤ半径方向内側に隣接する交錯層(第3ベルト層13)のベルト角度とタイヤ周方向に対して逆方向にするのが望ましい。この場合には、交錯層間に加えて、第3ベルト層13と外側部14D間でもベルト角度が交錯(交差)してショルダ部の周方向剛性を更に高めることができ、ショルダ部の径成長を抑制してタイヤ幅方向で径成長量をより均一化させることができる。同様に、第4ベルト層14の中央部14Cのベルト角度は、第3ベルト層13のベルト角度とタイヤ周方向に対して同じ方向に形成してもよいが、逆方向にすると、センタ部も第3ベルト層13と交錯して径成長をタイヤ幅方向の全体に亘って抑制できるため、より望ましい。   Here, the belt angle of the outer portion 14D of the divided fourth belt layer 14 is equal to the belt angle of the crossing layer (third belt layer 13) adjacent to the inner side in the tire radial direction and the tire circumferential direction as in this embodiment. It is desirable to reverse the direction. In this case, in addition to the crossing layers, the belt angle also crosses (crosses) between the third belt layer 13 and the outer portion 14D, so that the circumferential rigidity of the shoulder portion can be further increased, and the diameter of the shoulder portion can be increased. It is possible to suppress and make the diameter growth amount more uniform in the tire width direction. Similarly, the belt angle of the central portion 14C of the fourth belt layer 14 may be formed in the same direction as the belt angle of the third belt layer 13 with respect to the tire circumferential direction. It is more desirable because it can cross the third belt layer 13 to suppress the diameter growth over the entire tire width direction.

また、この外側部14Dのタイヤ周方向に対するベルト角度は、第3ベルト層13のタイヤ周方向に対するベルト角度よりも小さくするのが望ましい。この場合には、外側部14Dの周方向剛性をより高くでき、ショルダ部の径成長抑制効果が効果的に向上して、径成長量をタイヤ幅方向でより均一化することができる。   The belt angle of the outer portion 14D with respect to the tire circumferential direction is desirably smaller than the belt angle of the third belt layer 13 with respect to the tire circumferential direction. In this case, the circumferential rigidity of the outer portion 14D can be further increased, the effect of suppressing the radial growth of the shoulder portion can be effectively improved, and the radial growth amount can be made more uniform in the tire width direction.

更に、第4ベルト層14(中央部14C、外側部14D)と交錯層(第2ベルト層12、第3ベルト層13)のタイヤ周方向に対するベルト角度は、10°以上25°以下に形成するのが望ましい。これら角度が、10°よりも小さい場合には、タイヤ幅方向のベルト端部に生じる歪みが大きくなって端部付近でセパレーションが発生する等、タイヤに故障が生じる恐れがある。逆に、25°よりも大きい場合には、径成長抑制効果が小さくなり過ぎてタイヤ全体が大きく径成長し、これによりタイヤが故障する恐れがある。特に、第4ベルト層14の外側部14Dは、ベルト角度が10°よりも小さい場合には、第3ベルト層13との間で層間セパレーションが早期に発生する恐れがあり、25°よりも大きい場合には、必要な周方向剛性が得られずにショルダ部の径成長が大きくなる恐れがある。また、第4ベルト層14の中央部14Dは、ベルト角度が10°よりも小さい場合には、センタ部の径成長が抑制され過ぎてショルダ部との間の径成長量の差が大きくなり、25°よりも大きい場合には、保護層としての役割を果たせなくなる恐れがある。但し、第4ベルト層14と交錯層のベルト角度は、共に上記範囲に形成してもよいが、いずれか一方のみであってもよい。   Furthermore, the belt angle with respect to the tire circumferential direction of the fourth belt layer 14 (the center portion 14C and the outer portion 14D) and the crossing layers (the second belt layer 12 and the third belt layer 13) is 10 ° or more and 25 ° or less. Is desirable. When these angles are smaller than 10 °, there is a risk that the tire will break down, such as a large distortion generated at the belt end in the tire width direction and separation occurring near the end. On the other hand, when the angle is larger than 25 °, the effect of suppressing the diameter growth becomes too small, and the entire tire grows in diameter, which may cause the tire to break down. In particular, when the belt angle is smaller than 10 °, the outer portion 14D of the fourth belt layer 14 may cause early interlayer separation with the third belt layer 13, and is larger than 25 °. In some cases, the required circumferential rigidity cannot be obtained, and the diameter growth of the shoulder portion may increase. Further, in the central portion 14D of the fourth belt layer 14, when the belt angle is smaller than 10 °, the diameter growth of the center portion is excessively suppressed and the difference in the diameter growth amount from the shoulder portion becomes large. When it is larger than 25 °, there is a possibility that it cannot serve as a protective layer. However, the belt angles of the fourth belt layer 14 and the crossing layer may both be formed in the above range, but may be only one of them.

加えて、第4ベルト層14の幅を交錯層の幅よりも狭くし、第4ベルト層14のタイヤ幅方向最外側端部(外側部14Dのタイヤ幅方向外側端部)を交錯層のタイヤ幅方向外側端部よりもタイヤ幅方向内側に配置した場合には、第4ベルト層14の端部における歪みが大きくなるのを防止できる等、ベルト端での故障が発生しにくくなるため、より望ましい。また、トレッドゴム7の主溝8の溝底付近(溝底のタイヤ半径方向内側)に第4ベルト層14の分断端部を位置させた場合には、その剛性段差により溝底にせん断歪み等の負荷力が生じて応力集中が起こり、これにより溝底部分が割れてグルーブクラックが発生する恐れがある。従って、第4ベルト層14の分断位置とトレッドゴム7の主溝8の溝底位置とは、タイヤ幅方向に離間させて配置するのが望ましい。   In addition, the width of the fourth belt layer 14 is made narrower than the width of the crossing layer, and the outermost end portion in the tire width direction of the fourth belt layer 14 (the outer end portion in the tire width direction of the outer portion 14D) is the tire of the crossing layer. When arranged in the tire width direction inner side than the width direction outer side end, it is possible to prevent a failure at the end of the belt, such as preventing distortion at the end of the fourth belt layer 14 from being increased. desirable. Further, when the divided end portion of the fourth belt layer 14 is positioned near the groove bottom of the main groove 8 of the tread rubber 7 (inner side in the tire radial direction of the groove bottom), shear strain is applied to the groove bottom due to the rigidity step. Such a load force is generated and stress concentration occurs, which may cause the groove bottom portion to crack and generate a groove crack. Therefore, it is desirable that the dividing position of the fourth belt layer 14 and the groove bottom position of the main groove 8 of the tread rubber 7 are separated from each other in the tire width direction.

一方、第1ベルト層11は、タイヤ周方向に対するベルト角度が45°よりも小さいと、タイヤ幅方向の拘束力が低下して第2ベルト層12及び交錯層がタイヤ幅方向に縮もうとする力を抑制できない恐れがあるため、そのベルト角度をタイヤ周方向に対して45°以上90°以下に形成するのが望ましい。上限の90°は、ベルト角度を傾斜させうる最大角度である。   On the other hand, when the belt angle with respect to the tire circumferential direction is smaller than 45 °, the first belt layer 11 has a lower restraining force in the tire width direction, and the second belt layer 12 and the crossing layer tend to shrink in the tire width direction. Since there is a possibility that the force cannot be suppressed, it is desirable to form the belt angle at 45 ° or more and 90 ° or less with respect to the tire circumferential direction. The upper limit of 90 ° is the maximum angle at which the belt angle can be inclined.

なお、本実施形態では、空気入りラジアルタイヤ1のトレッド部5に4層構造のベルト層を設けたが、ベルト層内に、以上説明した各ベルト層11〜14を有していれば、5層以上のベルト層を設けてもよい。即ち、例えば第1ベルト層11と第2ベルト層12との間にベルト層を追加し、或いは第4ベルト層14の外周側にベルト層を追加する等、少なくとも4層のベルト層11〜14をトレッド部5のカーカス層6の外周側に配置すればよい。同様に、追加するベルト層は、タイヤ幅方向に連続したものでも、分断配置したものであってもよい。   In this embodiment, a belt layer having a four-layer structure is provided on the tread portion 5 of the pneumatic radial tire 1. However, if the belt layers 11 to 14 described above are included in the belt layer, the belt layer 5 You may provide the belt layer more than a layer. That is, for example, a belt layer is added between the first belt layer 11 and the second belt layer 12, or a belt layer is added to the outer peripheral side of the fourth belt layer 14. May be disposed on the outer peripheral side of the carcass layer 6 of the tread portion 5. Similarly, the belt layer to be added may be continuous in the tire width direction or may be divided.

また、本実施形態の第4ベルト層14の外側部14Dは、隣接する第3ベルト層13の幅をL2(図1参照)、中央部14Cの幅をL3とした時、そのタイヤ幅方向外側端部を、タイヤ赤道面CLからの距離が0.30×L2〜0.49×L2となる範囲内に配置し、タイヤ幅方向内側端部を、タイヤ赤道面CLからの距離が0.45×L3〜0.55×L3となる範囲内に配置するのが望ましい。   Further, the outer portion 14D of the fourth belt layer 14 of the present embodiment has an outer side in the tire width direction when the width of the adjacent third belt layer 13 is L2 (see FIG. 1) and the width of the central portion 14C is L3. The end portion is arranged in a range where the distance from the tire equatorial plane CL is 0.30 × L2 to 0.49 × L2, and the inner end portion in the tire width direction is 0.45 distance from the tire equatorial plane CL. It is desirable to arrange within a range of × L3 to 0.55 × L3.

これは、外側部14Dのタイヤ幅方向外側端部とタイヤ赤道面CLとの距離が0.30×L2よりも短いと、その端部がセンタ部側に近づいて外側部14Dの幅が狭くなり、外側部14Dがショルダ部を覆う範囲が少なくなる恐れがあり、その結果、ショルダ部の周方向剛性が低下するとともに、交錯層と交錯させた場合の交錯効果が低減するからである。また、0.49×L2よりも長いと、外側部14Dの端部と交錯層の端部の位置が近づき過ぎ、又は外側部14Dの端部が交錯層よりもタイヤ幅方向外側に位置することになり、その間の歪みが大きくなる等して、層間にセパレーションが早期に発生する恐れがあるからである。   This is because if the distance between the outer end portion of the outer portion 14D in the tire width direction and the tire equatorial plane CL is shorter than 0.30 × L2, the end portion approaches the center portion side and the width of the outer portion 14D becomes narrower. This is because the range in which the outer portion 14D covers the shoulder portion may be reduced, and as a result, the circumferential rigidity of the shoulder portion is lowered and the crossing effect when crossing with the crossing layer is reduced. Further, if it is longer than 0.49 × L2, the position of the end of the outer portion 14D and the end of the crossing layer are too close, or the end of the outer portion 14D is positioned outside the crossing layer in the tire width direction. This is because there is a possibility that separation between layers may occur at an early stage due to an increase in distortion during the process.

一方、外側部14Dのタイヤ幅方向内側端部は、タイヤ赤道面CLとの距離が0.45×L3以上0.50×L3未満のときには、中央部14Cの端部よりもタイヤ赤道面CL側に位置することになる。この場合には、第4ベルト層14内で外側部14Dと中央部14Cの分断端部同士が重なり合うため、各端部が互いに変形を抑制し合って歪みが小さくなる等し、端部からの亀裂の発生を抑制できるため、より望ましい。しかしながら、外側部14Dのタイヤ幅方向内側端部とタイヤ赤道面CLとの距離が0.45×L3よりも短いと、外側部14Dの端部がセンタ部側に近づいてショルダ部に対するセンタ部側の周方向剛性が高くなり、センタ部側(特に端部同士の重なり部)の径成長が必要以上に抑制されて、ショルダ部の径成長量が相対的に大きくなる恐れがある。また、0.55×L3よりも長いと、その端部がショルダ部側に近づいて外側部14Dの幅が狭くなり、外側部14Dがショルダ部を覆う範囲が少なくなる恐れがある。その結果、ショルダ部の周方向剛性が低下するとともに、交錯層と交錯させた場合の交錯効果が低減する。   On the other hand, the inner end of the outer portion 14D in the tire width direction is closer to the tire equatorial plane CL than the end of the central portion 14C when the distance from the tire equatorial plane CL is 0.45 × L3 or more and less than 0.50 × L3. Will be located. In this case, since the split end portions of the outer portion 14D and the central portion 14C overlap each other in the fourth belt layer 14, each end portion suppresses deformation from each other and distortion is reduced. It is more desirable because it can suppress the occurrence of cracks. However, if the distance between the tire width direction inner end portion of the outer portion 14D and the tire equatorial plane CL is shorter than 0.45 × L3, the end portion of the outer portion 14D approaches the center portion side and the center portion side with respect to the shoulder portion. , The radial growth on the center portion side (particularly the overlapping portion between the end portions) is suppressed more than necessary, and the amount of radial growth in the shoulder portion may be relatively increased. Moreover, when longer than 0.55 * L3, the edge part approaches the shoulder part side, the width | variety of outer side part 14D becomes narrow, and there exists a possibility that the range which outer side part 14D covers a shoulder part may decrease. As a result, the circumferential rigidity of the shoulder portion is reduced, and the crossing effect when crossing with the crossing layer is reduced.

この第4ベルト層14の外側部14Dのタイヤ幅方向外側端部が、上記した望ましい範囲内で、更にタイヤ赤道面CLからの距離が0.45×L2〜0.49×L2である場合には、外側部14Dの端部と隣接する第3ベルト層13の端部との間の距離が近くなるため、両端部間及びベルト層間に層間ゴムを配置するのが望ましい。このようにした場合には、外側部14Dと第3ベルト層13の両端部間付近のタイヤ半径方向のゴムの厚さが、センタ部側の他の部分よりも厚くなるため、両端部付近の層間に生じる歪みを緩和することができ、その付近で層間にセパレーションが発生するのを抑制することができる。   When the outer end portion in the tire width direction of the outer portion 14D of the fourth belt layer 14 is within the above-described desirable range, and the distance from the tire equatorial plane CL is 0.45 × L2 to 0.49 × L2. Since the distance between the end portion of the outer portion 14D and the end portion of the adjacent third belt layer 13 is reduced, it is desirable to place an interlayer rubber between both end portions and between the belt layers. In such a case, the thickness of the rubber in the tire radial direction in the vicinity of the end portion between the outer portion 14D and the third belt layer 13 becomes thicker than the other portions on the center portion side. Strain generated between the layers can be reduced, and separation between the layers can be suppressed in the vicinity thereof.

(タイヤ試験)
本発明の効果を確認するため、以上説明した構造のベルト層を備えた5種類の実施例のタイヤ(以下、実施品1〜5という)と、従来例のタイヤ(以下、従来品という)を作製し、以下の条件でタイヤ成長試験とドラム走行試験を行った。これらタイヤは全て、ETRTO(The European Tire and Rim Technical Organization、2006)で定めるタイヤサイズ385/65R22.5のトラック及びバス用の空気入りラジアルタイヤである。
(Tire test)
In order to confirm the effects of the present invention, five types of tires (hereinafter referred to as “Examples 1 to 5”) including the belt layer having the structure described above and conventional tires (hereinafter referred to as “conventional products”) are used. The tire growth test and the drum running test were performed under the following conditions. All of these tires are pneumatic radial tires for trucks and buses having a tire size of 385 / 65R22.5 as defined by ETRTO (The European Tire and Rim Technical Organization, 2006).

まず、各タイヤのベルト層の構造について説明する。
従来品は、上記した図3、4に示す構成の各ベルト層11〜14を備えたタイヤであり、ベルト層の分断等をしていない従来のベルト層構造に形成した。この従来品では、交錯層内の第3ベルト層13の幅を290mmに、隣接する第4ベルト層14の幅を260mmにして、それらのベルト角度をタイヤ周方向に対して同じ方向に形成した。
First, the structure of the belt layer of each tire will be described.
The conventional product is a tire including the belt layers 11 to 14 having the configuration shown in FIGS. 3 and 4 described above, and is formed in a conventional belt layer structure in which the belt layer is not divided. In this conventional product, the width of the third belt layer 13 in the crossing layer is 290 mm, the width of the adjacent fourth belt layer 14 is 260 mm, and the belt angles are formed in the same direction with respect to the tire circumferential direction. .

実施品1〜5は、図1、2に示す以上説明した構成の各ベルト層11〜14を備えたタイヤであり、これらは、第3ベルト層13の幅を290mmに、第4ベルト層14の中央部14Cの幅を120mmにして、それらのベルト角度をタイヤ周方向に対して同じ方向に形成した。一方、第4ベルト層14の外側部14Dは、その幅を70mmに形成したが、各実施品でベルト角度及びベルト方向を変化させて形成した。   The implementation products 1 to 5 are tires including the belt layers 11 to 14 having the above-described configuration illustrated in FIGS. 1 and 2, and the fourth belt layer 14 has a width of the third belt layer 13 of 290 mm. The width of the central portion 14C was 120 mm, and the belt angles were formed in the same direction with respect to the tire circumferential direction. On the other hand, the outer portion 14D of the fourth belt layer 14 was formed to have a width of 70 mm, but was formed by changing the belt angle and the belt direction in each embodiment.

即ち、第4ベルト層14の外側部14Dは、実施品1では、タイヤ周方向に対するベルト角度を5°にして、隣接する第3ベルト層13のベルト角度とタイヤ周方向に対して同じ方向に形成した。以下同様に、実施品2では、ベルト角度を10°にして第3ベルト層13と同じ方向に形成した。実施品3では、ベルト角度を25°にして第3ベルト層13と同じ方向に形成した。実施品4では、ベルト角度を25°にして第3ベルト層13と逆方向に形成した。実施品5では、ベルト角度を30°にして第3ベルト層13と同じ方向に形成した。   That is, in the embodiment 1, the outer portion 14D of the fourth belt layer 14 has a belt angle of 5 ° with respect to the tire circumferential direction, and is in the same direction as the belt angle of the adjacent third belt layer 13 and the tire circumferential direction. Formed. In the same manner, in the product 2, the belt angle was set to 10 ° and the belt was formed in the same direction as the third belt layer 13. In the product 3, the belt angle was set to 25 ° and the belt was formed in the same direction as the third belt layer 13. In the product 4, the belt angle was set to 25 ° and the third belt layer 13 was formed in the opposite direction. In the product 5, the belt angle was 30 °, and the belt was formed in the same direction as the third belt layer 13.

タイヤ成長試験では、以上の各タイヤを11.75×22.5のリムに装着して内圧を900kPaとし、その際のセンタ部及びショルダ部の径成長量の差(以下、径成長差という)を測定して各タイヤの径成長量のタイヤ幅方向の均一性を評価した。また、ドラム走行試験は、上記と同じ条件で試験リムに装着して内圧を充填した各タイヤを、試験ドラムの外周に押し付けて44.1kNの一定荷重を負荷し、速度57km/hでドラム上を転動させて故障等が生じるまでの走行距離を測定した。   In the tire growth test, each of the above tires is mounted on an 11.75 × 22.5 rim and the internal pressure is set to 900 kPa, and the difference in the diameter growth amount between the center portion and the shoulder portion (hereinafter referred to as the diameter growth difference). Was measured to evaluate the uniformity in the tire width direction of the diameter growth amount of each tire. Also, in the drum running test, each tire mounted on the test rim and filled with the internal pressure under the same conditions as above was pressed against the outer periphery of the test drum, loaded with a constant load of 44.1 kN, and on the drum at a speed of 57 km / h. The distance traveled until the vehicle was rolled and a failure occurred was measured.

表1に、以上説明した各タイヤのベルト層の構造と試験結果を示す。
表中のベルト角度は、タイヤ周方向に対する角度であり、第4ベルト層外側部の第3ベルト層との方向は、外側部と第3ベルト層のベルト角度の方向が、タイヤ周方向に対して同じか逆かを示している。
Table 1 shows the belt layer structure and test results of the tires described above.
The belt angle in the table is an angle with respect to the tire circumferential direction, and the direction of the fourth belt layer outer portion with the third belt layer is the direction of the belt angle between the outer portion and the third belt layer with respect to the tire circumferential direction. Indicate the same or opposite.

Figure 2008024105
Figure 2008024105

表1において、各タイヤの径成長差は、従来品の0.93mmを100とした指数で表し、この径成長均一化指数が小さいほど径成長のタイヤ幅方向の均一性が高いことを示している。また、各タイヤのドラム上での走行距離は、従来品の3200kmを100とした指数で表し、このドラム走行距離指数が大きいほど走行距離が長く、故障等が生じにくいことを示している。なお、径成長均一化指数は95以下で要求性能を満足し、ドラム走行距離指数は120以上で要求性能を満足する。   In Table 1, the difference in diameter growth of each tire is represented by an index with 0.93 mm of the conventional product as 100, and the smaller the diameter growth uniformity index, the higher the uniformity of the diameter growth in the tire width direction. Yes. In addition, the travel distance on the drum of each tire is represented by an index with 3200 km of the conventional product as 100, and the greater the drum travel distance index, the longer the travel distance and the less likely that a failure or the like occurs. The diameter growth uniformity index is 95 or less to satisfy the required performance, and the drum mileage index is 120 or more to satisfy the required performance.

径成長均一化指数は、表1に示すように、従来品の100に対して、実施品1〜5では、最高値が実施品1の85、最低値が実施品5の94であり、全ての実施品で径成長量がタイヤ幅方向で均一化し、上記した要求性能(95以下)を満足したことが分かる。
また、ドラム走行距離指数は、従来品の100に対し、実施品1〜5では、最高値が実施品4の140、最低値が実施品1の123であり、全ての実施品で走行距離が長く故障等が生じにくくなり、上記した要求性能(120以上)を満足したことが分かる。
As shown in Table 1, the diameter growth uniformity index is 100 for the conventional product, the highest value is 85 for the implementation product 1 and 94 for the implementation product 5 for the implementation products 1 to 5, It can be seen that the diameter growth amount was uniform in the tire width direction and the above required performance (95 or less) was satisfied.
Also, the drum mileage index is 100 for the conventional product, while the highest value for the products 1 to 5 is 140 for the product 4 and the lowest value is 123 for the product 1. It can be seen that failure and the like are less likely to occur for a long time, and the required performance (120 or more) is satisfied.

以上の結果から、本発明により、空気入りラジアルタイヤの径成長量をタイヤ幅方向で均一化でき、走行時における接地形状の悪化を抑制し、かつ発熱耐久性及び耐偏摩耗性を向上できることが証明された。   From the above results, according to the present invention, the radial growth amount of the pneumatic radial tire can be made uniform in the tire width direction, deterioration of the contact shape during running can be suppressed, and heat generation durability and uneven wear resistance can be improved. Proved.

本実施形態の空気入りラジアルタイヤのトレッド部を模式的に示すタイヤ幅方向の断面図である。It is sectional drawing of the tire width direction which shows typically the tread part of the pneumatic radial tire of this embodiment. 図1の空気入りラジアルタイヤのトレッド部の構造を概略的に破断して示す平面展開図である。FIG. 2 is a plan development view schematically showing a structure of a tread portion of the pneumatic radial tire of FIG. 従来の空気入りラジアルタイヤのトレッド部を模式的に示すタイヤ幅方向の断面図である。It is sectional drawing of the tire width direction which shows typically the tread part of the conventional pneumatic radial tire. 図3の空気入りラジアルタイヤのトレッド部の構造を概略的に破断して示す平面展開図である。FIG. 4 is a developed plan view schematically showing a structure of a tread portion of the pneumatic radial tire of FIG. 従来の空気入りラジアルタイヤのトレッド部の構造を概略的に破断して示す平面展開図である。It is a plane development view which shows the structure of the tread part of the conventional pneumatic radial tire roughly fractured.

符号の説明Explanation of symbols

1・・・空気入りラジアルタイヤ、5・・・トレッド部、6・・・カーカス層、7・・・トレッドゴム、8・・・主溝、11・・・第1ベルト層、11B・・・補強素子、12・・・第2ベルト層、12B・・・補強素子、13・・・第3ベルト層、13B・・・補強素子、14・・・第4ベルト層、14B・・・補強素子、14C・・・中央部、14D・・・外側部、CL・・・タイヤ赤道面。 DESCRIPTION OF SYMBOLS 1 ... Pneumatic radial tire, 5 ... Tread part, 6 ... Carcass layer, 7 ... Tread rubber, 8 ... Main groove, 11 ... 1st belt layer, 11B ... Reinforcing element, 12 ... second belt layer, 12B ... reinforcing element, 13 ... third belt layer, 13B ... reinforcing element, 14 ... fourth belt layer, 14B ... reinforcing element , 14C ... center part, 14D ... outer part, CL ... tire equatorial plane.

Claims (7)

トレッド部のカーカス層の外周側に配置された少なくとも4層のベルト層と、該ベルト層の外周側に配置されたトレッドゴムと、を備えた空気入りラジアルタイヤであって、
前記ベルト層内に、タイヤ半径方向最内側に設けられ、タイヤ赤道面を挟んでタイヤ幅方向に分断して配置された中抜き構造の中抜ベルト層と、
タイヤ半径方向に隣接し、かつベルト角度がタイヤ周方向に対して互いに逆方向に交錯するベルト層からなる交錯層と、
前記交錯層のタイヤ半径方向外側に隣接して設けられ、タイヤ幅方向の中央部及び該中央部を挟んだ両外側部に3分断して配置された分断ベルト層と、
を有することを特徴とする空気入りラジアルタイヤ。
A pneumatic radial tire comprising: at least four belt layers disposed on the outer peripheral side of the carcass layer of the tread portion; and a tread rubber disposed on the outer peripheral side of the belt layer,
In the belt layer, a hollow belt layer of a hollow structure provided on the innermost side in the tire radial direction and divided and arranged in the tire width direction across the tire equatorial plane,
An intersecting layer composed of belt layers adjacent to each other in the tire radial direction and intersecting in opposite directions with respect to the circumferential direction of the tire;
A dividing belt layer provided adjacent to the outer side in the tire radial direction of the crossing layer, and divided into three parts at the center part in the tire width direction and both outer parts sandwiching the center part;
A pneumatic radial tire characterized by comprising:
請求項1に記載された空気入りラジアルタイヤにおいて、
前記分断ベルト層のタイヤ幅方向最外側端部が、前記交錯層のタイヤ幅方向外側端部よりもタイヤ幅方向内側に配置され、かつ前記分断ベルト層の分断位置と前記トレッドゴムに形成されたタイヤ周方向に延びる主溝の溝底位置とが、タイヤ幅方向に離間して配置されていることを特徴とする空気入りラジアルタイヤ。
In the pneumatic radial tire according to claim 1,
The outermost end portion in the tire width direction of the dividing belt layer is disposed on the inner side in the tire width direction than the outer end portion in the tire width direction of the crossing layer, and is formed in the dividing position of the dividing belt layer and the tread rubber. A pneumatic radial tire, characterized in that a groove bottom position of a main groove extending in the tire circumferential direction is spaced apart in the tire width direction.
請求項1又は2に記載された空気入りラジアルタイヤにおいて、
前記分断ベルト層の外側部のベルト角度が、タイヤ半径方向内側に隣接する前記交錯層内のベルト層のベルト角度とタイヤ周方向に対して逆方向であることを特徴とする空気入りラジアルタイヤ。
In the pneumatic radial tire according to claim 1 or 2,
A pneumatic radial tire characterized in that a belt angle of an outer portion of the divided belt layer is opposite to a belt angle of a belt layer in the crossing layer adjacent to the inner side in the tire radial direction and a tire circumferential direction.
請求項1ないし3のいずれかに記載された空気入りラジアルタイヤにおいて、
前記分断ベルト層の外側部のタイヤ周方向に対するベルト角度が、タイヤ半径方向内側に隣接する前記交錯層内のベルト層のタイヤ周方向に対するベルト角度よりも小さいことを特徴とする空気入りラジアルタイヤ。
In the pneumatic radial tire according to any one of claims 1 to 3,
A pneumatic radial tire characterized in that a belt angle with respect to a tire circumferential direction of an outer portion of the divided belt layer is smaller than a belt angle with respect to the tire circumferential direction of a belt layer in the crossing layer adjacent to the inner side in the tire radial direction.
請求項1ないし4のいずれかに記載された空気入りラジアルタイヤにおいて、
前記分断ベルト層の中央部のベルト角度が、タイヤ半径方向内側に隣接する前記交錯層内のベルト層のベルト角度とタイヤ周方向に対して逆方向であることを特徴とする空気入りラジアルタイヤ。
In the pneumatic radial tire according to any one of claims 1 to 4,
A pneumatic radial tire characterized in that the belt angle at the center of the divided belt layer is opposite to the belt angle of the belt layer in the crossing layer adjacent to the inner side in the tire radial direction and the tire circumferential direction.
請求項1ないし5のいずれかに記載された空気入りラジアルタイヤにおいて、
前記分断ベルト層及び/又は前記交錯層内のベルト層のタイヤ周方向に対するベルト角度が、10°以上25°以下であることを特徴とする空気入りラジアルタイヤ。
In the pneumatic radial tire according to any one of claims 1 to 5,
A pneumatic radial tire, wherein a belt angle with respect to a tire circumferential direction of the divided belt layer and / or a belt layer in the crossing layer is 10 ° or more and 25 ° or less.
請求項1ないし6のいずれかに記載された空気入りラジアルタイヤにおいて、
前記中抜ベルト層のタイヤ周方向に対するベルト角度が、45°以上90°以下であることを特徴とする空気入りラジアルタイヤ。
In the pneumatic radial tire according to any one of claims 1 to 6,
A pneumatic radial tire characterized in that a belt angle of the hollow belt layer with respect to a tire circumferential direction is 45 ° or more and 90 ° or less.
JP2006197339A 2006-07-19 2006-07-19 Pneumatic radial tire Pending JP2008024105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006197339A JP2008024105A (en) 2006-07-19 2006-07-19 Pneumatic radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006197339A JP2008024105A (en) 2006-07-19 2006-07-19 Pneumatic radial tire

Publications (1)

Publication Number Publication Date
JP2008024105A true JP2008024105A (en) 2008-02-07

Family

ID=39115192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006197339A Pending JP2008024105A (en) 2006-07-19 2006-07-19 Pneumatic radial tire

Country Status (1)

Country Link
JP (1) JP2008024105A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251603A (en) * 2010-06-01 2011-12-15 Yokohama Rubber Co Ltd:The Pneumatic tire
CN104875555A (en) * 2015-05-14 2015-09-02 江苏大学 Bionic tire structure
JP2016501776A (en) * 2012-12-21 2016-01-21 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Variable belt structure
JP2017105307A (en) * 2015-12-09 2017-06-15 東洋ゴム工業株式会社 Pneumatic tire
JP2019147474A (en) * 2018-02-27 2019-09-05 住友ゴム工業株式会社 Tire for two-wheel vehicle
WO2020084832A1 (en) * 2018-10-23 2020-04-30 横浜ゴム株式会社 Pneumatic tire
JP2020066303A (en) * 2018-10-23 2020-04-30 横浜ゴム株式会社 Pneumatic tire
CN114368250A (en) * 2021-12-17 2022-04-19 泰凯英(青岛)专用轮胎技术研究开发有限公司 Engineering radial tire with heavy-load belted layer structure
CN115352222A (en) * 2022-06-20 2022-11-18 山东玲珑轮胎股份有限公司 Novel all-steel radial tire with belted layer structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367703A (en) * 1989-08-07 1991-03-22 Bridgestone Corp Heavy duty pneumatic radial tire
JPH05131808A (en) * 1991-11-11 1993-05-28 Toyo Tire & Rubber Co Ltd Radial tire for heavy load use
JPH11321230A (en) * 1998-05-08 1999-11-24 Bridgestone Corp Pneumatic radial tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367703A (en) * 1989-08-07 1991-03-22 Bridgestone Corp Heavy duty pneumatic radial tire
JPH05131808A (en) * 1991-11-11 1993-05-28 Toyo Tire & Rubber Co Ltd Radial tire for heavy load use
JPH11321230A (en) * 1998-05-08 1999-11-24 Bridgestone Corp Pneumatic radial tire

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251603A (en) * 2010-06-01 2011-12-15 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2016501776A (en) * 2012-12-21 2016-01-21 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Variable belt structure
CN104875555A (en) * 2015-05-14 2015-09-02 江苏大学 Bionic tire structure
JP2017105307A (en) * 2015-12-09 2017-06-15 東洋ゴム工業株式会社 Pneumatic tire
JP2019147474A (en) * 2018-02-27 2019-09-05 住友ゴム工業株式会社 Tire for two-wheel vehicle
JP7081207B2 (en) 2018-02-27 2022-06-07 住友ゴム工業株式会社 Motorcycle tires
WO2020084830A1 (en) * 2018-10-23 2020-04-30 横浜ゴム株式会社 Pneumatic tire
JP2020066306A (en) * 2018-10-23 2020-04-30 横浜ゴム株式会社 Pneumatic tire
JP2020066303A (en) * 2018-10-23 2020-04-30 横浜ゴム株式会社 Pneumatic tire
CN112867612A (en) * 2018-10-23 2021-05-28 横滨橡胶株式会社 Pneumatic tire
CN112912260A (en) * 2018-10-23 2021-06-04 横滨橡胶株式会社 Pneumatic tire
US20210379933A1 (en) * 2018-10-23 2021-12-09 The Yokohama Rubber Co., Ltd. Pneumatic tire
WO2020084832A1 (en) * 2018-10-23 2020-04-30 横浜ゴム株式会社 Pneumatic tire
JP7215071B2 (en) 2018-10-23 2023-01-31 横浜ゴム株式会社 pneumatic tire
EP4194227A1 (en) * 2018-10-23 2023-06-14 The Yokohama Rubber Co., Ltd. Pneumatic tire
CN114368250A (en) * 2021-12-17 2022-04-19 泰凯英(青岛)专用轮胎技术研究开发有限公司 Engineering radial tire with heavy-load belted layer structure
CN114368250B (en) * 2021-12-17 2024-01-26 泰凯英(青岛)专用轮胎技术研究开发有限公司 Engineering radial tire with heavy-duty belt structure
CN115352222A (en) * 2022-06-20 2022-11-18 山东玲珑轮胎股份有限公司 Novel all-steel radial tire with belted layer structure

Similar Documents

Publication Publication Date Title
JP5836286B2 (en) Pneumatic tire
JP2008024105A (en) Pneumatic radial tire
JP4707105B2 (en) Pneumatic tire
JP5101052B2 (en) Heavy duty pneumatic tire
WO2012042873A1 (en) Pneumatic tyre
WO2015163215A1 (en) Pneumatic tyre
US20200001652A1 (en) Pneumatic tire
JP4471410B2 (en) Heavy duty radial tire
JP4703644B2 (en) Heavy duty pneumatic tire
JP4865259B2 (en) Pneumatic radial tire
JP3419830B2 (en) Pneumatic radial tire
JP5103994B2 (en) Pneumatic tire
JP2021123263A (en) tire
JP2016165924A (en) Pneumatic tire for heavy load
JP4586518B2 (en) Heavy duty pneumatic tire
JP4628080B2 (en) Heavy duty pneumatic radial tire
JP5917889B2 (en) Pneumatic tire
JP5330820B2 (en) Pneumatic tire
JP2001138710A (en) Pneumatic radial tire for heavy load
JP2014168976A (en) Pneumatic tire
JP4463010B2 (en) Pneumatic radial tire
JP2010228600A (en) Pneumatic radial tire for heavy load
JP2000264014A (en) Radial tire for heavy load
JP6362967B2 (en) Pneumatic tire
JP2015037943A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120622