WO2008007788A1 - Structure and process for producing the same - Google Patents

Structure and process for producing the same Download PDF

Info

Publication number
WO2008007788A1
WO2008007788A1 PCT/JP2007/064026 JP2007064026W WO2008007788A1 WO 2008007788 A1 WO2008007788 A1 WO 2008007788A1 JP 2007064026 W JP2007064026 W JP 2007064026W WO 2008007788 A1 WO2008007788 A1 WO 2008007788A1
Authority
WO
WIPO (PCT)
Prior art keywords
curved
substrates
curved substrates
substrate
gap
Prior art date
Application number
PCT/JP2007/064026
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshige Ito
Satoshi Niiyama
Seiichi Miyasaka
Tadashi Hamano
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2008524866A priority Critical patent/JPWO2008007788A1/en
Publication of WO2008007788A1 publication Critical patent/WO2008007788A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer

Definitions

  • the present invention relates to a structure and a manufacturing method thereof, and more particularly to a liquid crystal element suitable for a light control roof glass, a light control side window, and the like of an automobile and a method of manufacturing the same.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-18856
  • the light control glass window made using the electoric chromic glass has a problem that it is difficult to change the light transmission Z non-transmission state in a short time.
  • a structure in which a sheet-like liquid crystal element made by sandwiching a liquid crystal layer with a resin film is sandwiched between two glass plates has a complicated glass plate shape. In the case of a curved shape, it is difficult to cause the liquid crystal element to sufficiently follow the shape of the glass plate, and there is a problem that wrinkles are likely to occur in the periphery of the liquid crystal element.
  • ODF one-drop-fill method
  • the ODF method is effective as a method for manufacturing a large-sized liquid crystal element because the liquid crystal composition can be filled in the cell in a short time.
  • the liquid crystal element used for the light control glass window is also larger than the liquid crystal element applied to an electronic device or the like, and the ODF method is effective as a manufacturing method thereof.
  • a light control glass window used as a vehicle window (such as the sunroof described above) may have a curved shape instead of a flat plate shape.
  • a curved substrate is made by bending a flat substrate, but the shape of the two curved substrates may not match due to manufacturing process constraints such as bending accuracy.
  • the present invention solves such problems, and an object thereof is to provide a structure (in particular, a liquid crystal element) having a curved shape and a method for manufacturing the structure.
  • the present invention provides the following inventions.
  • a first curved substrate, a second curved substrate having substantially the same shape as the first curved substrate and facing the first curved substrate, and all peripheral portions of the two curved substrates A sealing material that is provided on a circumference and that joins the curved substrates with a predetermined distance and seals a gap between the curved substrates; and a gap sealed by the curved substrates and the sealing material.
  • a sealing material which is provided on the entire periphery of the peripheral portion and joins the curved substrates with a predetermined distance and seals a gap between the curved substrates; and a gap sealed between the curved substrates and the sealing material.
  • a combination of the first and second curved substrates constituting the structure, and the surfaces facing the first and second curved substrates are substantially parallel to each other.
  • the distance between the curved substrates at the end of the curved substrate is opposed to the curved substrates in the structure.
  • the combination must be 20 times or less the predetermined distance separating the surfaces.
  • a spacer having a predetermined size is disposed in the gap between the opposing surfaces of the two curved substrates, and the distance between the opposing surfaces of the two curved substrates is maintained at a predetermined constant distance.
  • At least one of the two curved substrates is a transparent curved substrate, Each of the opposing surfaces has an electrode layer, and the functional material is a material containing liquid crystal,
  • a sealing material which is provided on the entire periphery of the peripheral portion and joins the curved substrates with a predetermined distance and seals a gap between the curved substrates; and a gap sealed between the curved substrates and the sealing material.
  • a first step of manufacturing a functional material holder by enclosing the functional material in a gap sealed with a material, and exposing the functional material holder to an atmosphere of atmospheric pressure to bring the functional material into the gap And the pressure is applied to at least one of the first and second curved substrates.
  • a second step of manufacturing the structure by making the distance separating the opposing surfaces of the two curved substrates in the functional material holder substantially uniform by deforming them by the change in the structure. Manufacturing method.
  • a sealing material is provided on the entire periphery of one of the curved substrates, the functional material is supplied into a region surrounded by the sealing material, and the reduced pressure atmosphere is used.
  • the other curved substrate is pressed against the surface of the one curved substrate to spread the functional material and form a sealed space in which the functional material is sandwiched in the gap between the two curved substrates.
  • the combination of the first and second curved substrates constituting the structure is such that the first and second curved substrates are superposed and curved so that the surfaces facing each other are substantially parallel.
  • the combination of the first and second curved substrates constituting the structure is such that the first and second curved substrates are superposed and curved so that the surfaces facing each other are substantially parallel. Where contact is made at at least one point on the opposite or in the peripheral surface of the substrate, the distance between the curved substrates at the end of the curved substrate separates the opposing surfaces of the curved substrates in the structure.
  • the method for producing a structure according to any one of [9] to [11], which is a combination that is 20 times or less the constant distance.
  • At least one of the two curved substrates is a transparent curved substrate, has an electrode layer on each of the opposing surfaces of the two curved substrates, and the functional material is a material containing liquid crystal.
  • the present invention it is possible to provide a structure (particularly a liquid crystal element) having a functional material sandwiched between two curved substrates. Further, even when a liquid crystal element is manufactured using two curved substrates whose shapes do not completely match, the distance between the substrates in the liquid crystal element can be kept constant.
  • FIG. 1 (a) A plan view showing one embodiment of a liquid crystal device according to the present invention,) a cross-sectional view taken along line 8-8 ', (c) a cross-sectional view taken along line BB', (d) FIG.
  • FIG. 2 is a flowchart showing one embodiment of a vacuum lamination process according to the present invention.
  • FIG. 3A is a plan view showing a transparent substrate 101
  • FIG. 3B is a plan view showing a transparent substrate 102.
  • FIG. 3A is a plan view showing a transparent substrate 101
  • FIG. 3B is a plan view showing a transparent substrate 102.
  • FIG. 4 (a) is a partially cutaway sectional view showing a vacuum chamber, and (b) is a top view showing a cradle.
  • FIG. 5 (a) to (d) are cross-sectional views schematically showing the state of vacuum lamination.
  • FIG. 6 is a flowchart showing a bending process of a transparent substrate.
  • FIG. 7 is an explanatory view schematically showing a bending process of a transparent substrate.
  • FIG. 8 is a partially cutaway side view showing one embodiment of a bending system.
  • FIG. 9 is a top view showing one embodiment of a shuttle used for transporting a transparent substrate.
  • FIG. 4 is a cross-sectional view taken along line D-D ′.
  • Fig. 10 (a) Side view of two superimposed transparent substrates after bending, and (b) Measurement lines and measurement points used to measure the gap between two transparent substrates. It is explanatory drawing shown.
  • FIG. 11] (a) and (b) are graphs showing measurement results according to an example of the present invention.
  • FIG. 12] (a) and (b) are graphs showing measurement results of comparative examples.
  • the present invention is preferably applied to a substrate having an area of 0.04 to 2 m 2 .
  • a substrate having an area in this range corresponds to a substrate having a size of approximately 200 mm ⁇ 200 mm to: LOOOmm ⁇ 1600 mm (preferably 300 mm ⁇ 300 mm to 800 mm ⁇ 1600 mm).
  • the curved open shape means that the radius of curvature of one side of the substrate is in the range of 800R to 5000R.
  • the thickness of the substrate is l ⁇ 3mm.
  • the functional material in the present invention is preferably a material containing a liquid. If the functional material in the structure is a liquid-containing material, the shapes do not match sufficiently! ⁇ ⁇ When a structure is made using two curved substrates, the distance between the curved substrates is a certain size. Not only is it difficult to make a seal, but the seal is insufficient, which can lead to liquid leakage and air ingress.
  • the functional material in the present invention may have only a liquid such as a liquid crystal substance. Further, it may be a liquid and solid material such as a liquid crystal Z cured product composite described later, or a material containing liquid and solid such as a solid fine particle dispersion liquid.
  • the functional material is preferably a material containing a liquid and a large structure.
  • a structure such as a liquid crystal element described later
  • the present invention provides such a structure and a method by which it can be produced.
  • the present invention will be described taking as an example an embodiment in which the structure is a liquid crystal element.
  • the liquid crystal element at least one of the curved substrates needs to be a transparent curved substrate, and in a liquid crystal element usually used for a light control glass window, a transparent curved substrate is used for both curved substrates.
  • the transparent curved substrate in the liquid crystal element is also referred to as a transparent substrate.
  • the liquid crystal element has an electrode layer on each of the opposite surfaces of the two curved substrates in order to drive the liquid crystal. At least one of the two electrode layers needs to be a transparent electrode layer.
  • the transparent electrode layer is also referred to as a transparent electrode.
  • FIG. 1 (a) is a plan view showing one embodiment of the liquid crystal element of the present invention
  • FIG. 1 (b) is a cross-sectional view taken along line AA ′
  • FIG. 1 (c) is a cross-sectional view taken along line BB ′
  • FIG. 4D is a cross-sectional view taken along the line CC ′.
  • the main components of the liquid crystal element 100 are transparent substrate 101, transparent electrode 101a, insulating film 101b, alignment film 101c, transparent substrate 102, transparent electrode 102a, extraction electrode 102a ′, insulating A film 102b, an alignment film 102c, a sealing material 103, a spacer 105, and a composite layer 104 are disclosed.
  • the transparent substrate 101 and the transparent substrate 102 are disposed so as to face each other, and a sealing material is provided on the entire periphery of the peripheral portion of both transparent substrates. Both the transparent substrates are joined to each other at a predetermined distance by this sealing material, and the gap between the transparent substrates is sealed.
  • the sealing material is provided on the entire periphery of the peripheral portion of the substrate means that the position where the sealing material is provided as long as a gap sealed between the two curved substrates and the sealing material can be formed. It can be determined as appropriate, meaning that there may be places where the seal material does not reach the edge of the curved substrate (the ridgeline formed by the intersection of the surfaces). For example, as shown in FIG.
  • the edge of the sealing material 103 coincides with the edge of the transparent substrate 101 for the transparent substrate 101 in a certain part of the liquid crystal element. However, with respect to the transparent substrate 102, the edge of the sealing material 103 is located inside the edge of the transparent substrate 102.
  • the transparent substrates 101 and 102 and the sealing material 103 form a sealed gap while maintaining the positional relationship as described above. In the present invention, such a mode is also “sealed around the entire periphery of the substrate. Materials will be provided. "
  • a composite layer 104 of liquid crystal and cured product is sandwiched as a layer of liquid crystal material (hereinafter referred to as composite of liquid crystal and cured product).
  • the body is also referred to as “liquid crystal Z cured product composite” or simply “composite.”)
  • a liquid crystal-only layer containing no cured product may be used.
  • the transparent substrates 101 and 102 are electrically insulating transparent substrates.
  • a transparent substrate or a resin substrate such as polycarbonate or acrylic resin is used.
  • the thickness of these glass substrates is usually a constant thickness in the range of 0.4 to LOmm.
  • an opaque substrate may be used as one of the transparent substrates 101 and 102.
  • a liquid crystal element in which the distance separating the opposing surfaces between the two transparent substrates is maintained at a predetermined constant distance is manufactured.
  • the distance separating the opposing surfaces of both transparent substrates in the liquid crystal element is also referred to as a cell gap.
  • the shape of the two curved substrates is not necessarily the same shape as the constraint force in the manufacturing process of the bending process. Therefore, when the two curved substrates are overlapped so that the opposing surfaces are substantially parallel, a gap is generated between the substrates, and the cell gap may not be a predetermined constant distance when a liquid crystal element is used. Concerned. However, according to the present invention, it is possible to produce a liquid crystal element in which the cell gap is maintained at a predetermined constant distance even when a curved substrate whose shape does not completely match is used.
  • the transparent substrate 101 and the transparent substrate 102 each having a curved shape have substantially the same shape.
  • substantially the same shape means that (A) the combination of the transparent substrate 101 and the transparent substrate 102 constituting the liquid crystal element is such that the surfaces facing the transparent substrate 101 and the transparent substrate 102 are substantially parallel.
  • the distance between the curved substrates at the end of the curved substrate is smaller than the maximum value of the distance between the curved substrates when they are overlapped and brought into contact with each other at least one point in the opposite or peripheral edges of both transparent substrates.
  • the combination of the transparent substrate 101 and the transparent substrate 102 constituting the liquid crystal element is such that the transparent substrate 101 and the transparent substrate 102 are overlapped so that the surfaces facing each other are substantially parallel to each other.
  • the gap between the curved substrates at the edge of the curved substrate is 0.5 mm or less
  • the liquid crystal element is constituted Transparent substrate 101 and Combined force of the transparent substrate 102
  • the combination of the transparent substrates 101 and 102 is the combination of the above (A), (B) or (C), so that the liquid crystal is formed using two curved substrates whose shapes do not completely match. Even when the element is manufactured, the distance separating the opposing surfaces of the two substrates in the liquid crystal element can be made substantially uniform.
  • the transparent substrates 101 and 102 in order to make the distance separating the opposing surfaces of both substrates uniform
  • the transparent substrates 101 and 102 must have the same shape on the opposing surfaces.
  • the transparent substrate 101 and the transparent substrate 102 are overlapped and brought into contact with each other so that the opposing surfaces are substantially parallel to each other, if the opposing surfaces have the same shape, the opposing surfaces theoretically contact each other.
  • the non-contacting portion there are parts that do not come into contact due to the difference in shape. Therefore, it is necessary to elastically deform the non-contacting portion so that the opposing surfaces have substantially the same shape.
  • the portion with the wide spacing is similarly deformed by elastically deforming the substrate.
  • a stress for expanding the interval remains at the end portion or the peripheral portion of the assembled structure. If this stress is large, the seal may be broken or deformed.
  • the seal is likely to be broken.
  • the gap is wide and there is no part at the edge or peripheral edge of the substrate, the stress that attempts to widen the gap at the edge or peripheral edge of the assembled structure is reduced, and the seal is broken. And the risk of deformation is reduced.
  • the case the combination of the transparent substrate 101 and the transparent substrate 102 is less than 0. 5m 2 0. 04m 2 or more areas of force transparent substrate depends on the area and the curvature of the transparent substrate, both a transparent substrate periphery A combination with an interval of 50 m or less is preferred, and a combination with 30 m or less is particularly preferred.
  • the area of the transparent substrate is 0.5 m 2 or more and 2 m 2 or less
  • a combination in which the distance between the peripheral edges of both transparent substrates is 0.4 mm or less is preferable, and a combination in which the distance between the transparent substrates is 0.2 mm or less is particularly preferable.
  • the distance between the peripheral edges of both transparent substrates is the same as A combination that is 15 times or less of the predetermined distance separating the opposing surfaces is preferred, and a combination that is 10 times or less is particularly preferred.
  • the two transparent substrates having a curved shape are preferably smaller than or equal to the distance between the two substrates in the space 1S plane between the two curved substrates at the edge of the curved substrate.
  • the distance between the two substrates is not necessarily monotonously decreasing from the in-plane toward the end, and the distance between the two substrates is greater than the center of the surface. There may be big points.
  • the distance between the two substrates at the end of the curved substrate does not need to be smaller than the distance between the two substrates at all points in the plane. There may be a growing point.
  • the combination of the transparent substrates 101 and 102 is the condition of both (A) and (B), the condition of both (A) and (C), or the condition (B) and (C). Both of the above conditions may be satisfied, and the above three conditions (A) to (C) may be satisfied.
  • a substantially rectangular transparent electrode 101a that is slightly smaller than the transparent substrate 101 is formed.
  • a substantially rectangular transparent electrode 102b that is slightly smaller than the transparent substrate 102 is formed on the surface of the transparent substrate 102 facing the transparent substrate 101.
  • the transparent electrodes 101a and 102a are made of, for example, ITO (Indium Tin Oxide).
  • a reflective electrode of A1 (aluminum) or a dielectric multilayer film may be used for one of the transparent electrodes 101a and 102a.
  • the pattern shape of the transparent electrodes 101a and 102a is appropriately selected depending on the use of the liquid crystal element 100, and may be a solid electrode as described above, or may be a stripe shape in which the transparent electrodes 101a and 102a are arranged orthogonal to each other. Furthermore, it may be a specific shape such as a mark, a character, a letter, a number, or a symbol.
  • Insulating films 101b and 102b are formed on the transparent electrodes 101a and 102a, respectively. Further, alignment films 101c and 102c are formed on the insulating films 101b and 102b, respectively.
  • the insulating films 101b and 102b are formed by firing a sol-gel solution of silica and titania.
  • the alignment films 101c and 102c are made of polyimide or the like .
  • the alignment films 101c and 102c are appropriately selected depending on the purpose, which may or may not be subjected to a rubbing treatment.
  • at least one of the alignment films 101c and 102c is preferably an alignment film that aligns the liquid crystal perpendicularly to the inner surfaces of the transparent substrates 101 and 102.
  • an alignment film having a pretilt angular force of 1 ⁇ 20 ° or more is preferable. Thereby, the transmittance
  • Sealing material 103 is provided around the entire periphery of transparent substrates 101 and 102, and joins transparent substrates 101 and 102 at a predetermined distance and seals the gap between the transparent substrates 101 and 102. 102, as well as a gap sealed with the sealing material 103 is formed.
  • an ultraviolet curable resin or a thermosetting resin is used as the material of the sealing material 103. Specifically, acrylic resin, epoxy resin, silicone resin or urethane resin can be used. Moreover, the spacer mentioned later may be contained in the sealing material.
  • Spacer 105 is disposed in the gap between the opposing surfaces of transparent substrates 101 and 102, and maintains a predetermined constant distance between the opposing surfaces of both transparent substrates in the liquid crystal element (hereinafter referred to as liquid crystal element).
  • the distance between the opposing surfaces of both transparent substrates in the crystal element is also referred to as a cell gap).
  • the spacers 105 are uniformly arranged in the gap.
  • the cell gap generally corresponds to the diameter of the spacer 105, and a value of 1 to 50 m is preferable, and a value of 1 to 30 m is more preferable, and 2 to 20 m is particularly preferable. If the cell gap is too small, the contrast will decrease, and if it is too large, the drive voltage will increase.
  • Spacer 105 is a particle that also has a hard material force such as glass, silica, or cross-linked acrylic resin.
  • a spacer whose surface is coated with rosin may be used.
  • the shape of the spacer 105 is not limited to a spherical shape, but may be a fiber shape. Further, a rib-shaped member may be formed on either one of the substrates 101 or 102 and used as a spacer.
  • the composite layer 104 is sealed in a gap sealed with the transparent substrates 101 and 102 and the sealing material 103.
  • the composite layer 104 is made of a composite of a liquid crystal and a cured product.
  • the composite layer 104 has a liquid crystal material containing a liquid crystal and a curable compound sealed in the gap. It is preferable that the composite strength obtained by curing the curable compound in the liquid crystal material is obtained by polymerization.
  • liquid crystal constituting the composite nematic liquid crystal or the like, which is an electric field drive type material, is used.
  • the liquid crystal two or more kinds of liquid crystals may be used in combination.
  • the polarity of the dielectric anisotropy of the liquid crystal may be positive or negative.
  • the absolute value of dielectric anisotropy is large.
  • the composite layer 104 used in the liquid crystal element according to the embodiment of the present invention includes at least one bifunctional polymerizable compound (A) represented by the following formula (1) and the following formula (2 It is preferably a composite layer obtained by polymerizing a liquid crystal material containing at least one of the bifunctional polymerizable compound (B) represented by formula (B) and the non-polymerizable liquid crystal.
  • the bifunctional polymerizable compound (A) is a component that forms a skeleton portion having rigidity in the composite.
  • the bifunctional polymerizable compound (B) is a component that forms a flexible portion that can play a role of shock absorption in the composite.
  • a layer 104 of a liquid crystal Z cured product composite suitable for the liquid crystal element 100 can be obtained.
  • the curable compound (polymerizable compound) for forming the cured product is not limited to this.
  • the bifunctional polymerizable compound (A) is a compound having a mesogenic structure, and the following first to third embodiments are preferable among the compounds represented by the formula (1).
  • a ⁇ A 2 each independently represents atalyloxy group, methacryloyloxy group or
  • Q ⁇ Q 2 , Q 3 , and Q 4 are each independently 1, 4 -phenylene Group or 1,4 cyclohexylene group.
  • X 1 and X 2 are each independently a single bond, an oxygen atom or an ester bond.
  • R ⁇ R 2 each independently has a single bond or one or more etheric oxygen atoms between carbon atoms, and may be a linear or branched alkylene group having 2 to 20 carbon atoms. It is.
  • p and q are both zero or one is 0 and the other is 1.
  • a ⁇ A 2 are each independently, Ru Atari Roy Ruo alkoxy group or a methacryloyloxy Ruo alkoxy group der.
  • Q ⁇ Q 2 is an optionally substituted 1, 4 -phenylene group
  • Q 3 and Q 4 are each independently an optionally substituted 1, 4 phenol. -Len group or 1,4 cyclohexane group.
  • X 1 , X 2 and R 1 R 2 have the same meaning as described above.
  • p and q are both zero or one is 0 and the other is 1.
  • a ⁇ A 2 are both Atari Roy Ruo alkoxy group.
  • Q ⁇ Q 2 is an optionally substituted 1, 4 -phenylene group
  • Q 3 and Q 4 are each independently an optionally substituted 1, 4 phenol. -Len group or 1,4 cyclohexylene group.
  • X 1 and X 2 have the same meaning as described above.
  • Each R 2 is independently a linear or branched alkylene group having 2 to 20 carbon atoms.
  • ⁇ c is one, and z 2 and z 3 are both single bonds.
  • p and q are both zero or one is 0 and the other is 1.
  • the bifunctional polymerizable compound (i) may be a liquid crystal compound or a non-liquid crystal compound.
  • the bifunctional polymerizable compound ( ⁇ ) only a non-liquid crystalline bifunctional polymerizable compound ( ⁇ ) or a liquid crystalline bifunctional polymerizable compound ( ⁇ ) is used.
  • a non-liquid crystalline bifunctional polymerizable compound ( ⁇ ) and a liquid crystalline bifunctional polymerizable compound ( ⁇ ) may be used in combination.
  • the bifunctional polymerizable compound ( ⁇ ) is a compound having no mesogenic structure and is preferably a compound represented by the following formula (2).
  • ⁇ 3 and ⁇ 4 are each independently an allyloyloxy group, a methacryloyloxy group or a butyl ether group.
  • R 3 is R 4 — or one (R 5 —0) —R 5 —.
  • R 4 and R 5 have the following meanings (i) or (ii).
  • R 4 is a linear or branched alkylene group having 2 to 20 carbon atoms
  • R 5 is a linear or branched alkylene group having 2 to 8 carbon atoms
  • n is an integer of 1 to 10 It is.
  • n is an integer from 1 to 10.
  • the bifunctional polymerizable compound (B) may be used alone or in combination of two or more. May be.
  • Examples of the bifunctional polymerizable compound (B) include compounds represented by the following formula (4).
  • the bifunctional polymerizable compound (B) has a polymerizable group A 3 , A 4 and a divalent group R 3 linking the polymerizable group A 3 and A 4 .
  • R 3 it is preferable to select a group having a portion in which atoms constituting R 3 are connected by a single bond and having a high degree of freedom of rotation in the molecule. By comprising in this way, the softness
  • a 3 carbon atoms of the radicals R 3 present between A 4, the number of etheric oxygen atoms many more, flexibility of the cured product obtained after hardening is improved.
  • the greater the number of these atoms the lower the compatibility with the liquid crystal when preparing the liquid crystal material.
  • the number of carbon atoms of the bifunctional polymerizable compound (B) is 8 or more, preferably 11 or more in consideration of volatility. In view of these circumstances, it is preferable to appropriately select the structure (number of atoms and constituent atoms) of the group R 3 .
  • the group R 3 contains, but does not contain, an etheric oxygen atom. When it contains an etheric oxygen atom, the flexibility of the cured product is improved, which is preferable.
  • the bifunctional polymerizable compound (B) does not contain a group (ring group) such as Q 1 in the molecule, it does not significantly increase the number of carbon atoms contained in the entire compound. It is relatively easy to increase the number of carbon atoms contained in R 3 .
  • the flexibility of the cured product obtained by curing the cured product of the liquid crystal material can be greatly improved while ensuring compatibility with the liquid crystal.
  • the liquid crystal material may contain a curing agent for initiating curing of the curable compound and a curing accelerator (such as a curing catalyst) for promoting curing.
  • a curing accelerator such as a curing catalyst
  • polymerization initiators Is preferably used.
  • Such a polymerization initiator can be appropriately selected from known polymerization catalysts.
  • a general photopolymerization initiator such as a benzoin ether type, a acetophenone type, or a phosphine oxide type can be used.
  • various compounds may be added to the liquid crystal material for the purpose of improving the contrast ratio and stability.
  • various dichroic dyes such as anthraquinone, styryl, azomethine, and azo may be used.
  • the dichroic dye is basically compatible with the liquid crystal compound and not compatible with the curable compound.
  • the addition of antioxidants, UV absorbers and various plasticizers is also preferred for improving stability and durability.
  • the liquid crystal in the composite layer 104 is generated by the electric field between these electrodes.
  • the molecules are randomly oriented, and the composite layer 104 is in a scattered state.
  • the composite layer 104 is in a transparent state.
  • the composite layer 104 in the transparent state can be observed from the front surface (the surface on the side where the observer is present) to the back surface (the surface opposite to the side where the observer is present) of the liquid crystal element 100.
  • the scattering state and the transparent state change when voltage is not applied and Z is not applied, a desired image or the like can be displayed.
  • a liquid crystal element that is in a transmission state when a voltage is applied and in a scattering state when a voltage is not applied may be used.
  • a liquid crystal element that is in a scattering state when a voltage is applied and is in a transmission state when no voltage is applied is preferable.
  • it may be a liquid crystal element that becomes turbid in a scattering state when no voltage is applied and becomes transparent in a transmission state when a voltage is applied.
  • the present invention is also a method for producing the structure such as the liquid crystal element.
  • the manufacturing method of the present invention manufactures a functional material holder enclosing a functional material under reduced pressure, and then exposes the functional material holder to an atmosphere of atmospheric pressure to make the distance between the two curved substrates substantially uniform. It is characterized by that. That is, it has the following first step and the following second step, It is a manufacturing method of the structure.
  • First step A functional material is sealed in a gap sealed by a first and second curved substrates and a sealing material disposed on the entire periphery of the peripheral portions of both curved substrates in a predetermined reduced-pressure atmosphere.
  • Second step The functional material holding body is exposed to an atmosphere of atmospheric pressure to fill the functional material into the gap, and at least one of the first and second curved substrates is pressurized.
  • a step of manufacturing the structure by making the distance separating the opposing surfaces of the two curved substrates in the functional material holding body substantially uniform by being deformed by the change of the above.
  • a sealing material is provided on the entire peripheral edge of one curved substrate, the functional material is supplied into a region surrounded by the sealing material, and the one curved substrate is provided in the reduced-pressure atmosphere.
  • the other curved substrate is pressed against the surface of the substrate to spread the functional material and form a sealed space in which the functional material is sandwiched in the gap between the two curved substrates. preferable.
  • FIG. 2 is a diagram showing an example of a manufacturing flow of the liquid crystal element of the present invention.
  • transparent substrates 101 and 102 formed in a predetermined curved shape are prepared, and in order to form transparent electrodes 1 Ola and 102a on these surfaces, a transparent conductive film is formed by a sputtering method or a vacuum evaporation method ( Step Sl). ITO is suitable as the transparent conductive film.
  • the transparent conductive film is patterned by, for example, a photolithography method to form transparent electrodes 101a and 102a and lead electrodes 101a ′ and 102a ′ having a pattern shape as shown in FIGS. 3A and 3B, for example. .
  • insulating films 101b and 102b and alignment films 10lc and 102c are sequentially formed on transparent electrodes 101a and 102a (step S2).
  • the alignment films 101c and 102c may be subjected to a rubbing treatment in order to align the liquid crystal molecules contained in the composite layer 104 in a predetermined direction (for example, a direction substantially normal to the transparent substrate).
  • the spacer 105 is spread on the surface of the transparent substrates 101 and 102 on which the alignment film or the like is formed, using an existing spreader (step S3).
  • Misalignment methods such as wet spraying and dry spraying can also be used.
  • the spacer when using a spacer whose surface is coated with a resin for fixing to the transparent substrate, the spacer is heated at a constant temperature when spraying the spacer in order to develop a fixing function with the transparent substrate. It is preferable to move to the next step after the resin on the surface of the spacer is melted and fixed to the surface of the transparent substrate.
  • Spacers can be dispersed on the surface of the transparent substrate where the alignment film, etc. is formed, and can also be included in the seal material described below!
  • a sealing material 103 is applied along the entire peripheral edge of the transparent substrates 101 and 102.
  • the sealing material 103 is applied to the entire periphery of the peripheral portion of the transparent substrate so as to have a thickness larger than the cell gap of the finished liquid crystal element.
  • the sealing material 103 can be applied to the entire circumference of one or both of the transparent substrates 101 and 102.
  • ultraviolet curable resin, thermosetting resin, or the like can be used as the sealing material 103.
  • the sealing material 103 is about 400, 000 ⁇ 200, 000 mPa, s to prevent the liquid crystal material from leaking from the sealed portion and air from entering the composite layer 104.
  • Those having a viscosity are desirable. If the viscosity of the sealing material is too high, application with a dispenser becomes difficult. On the other hand, if the viscosity is too low, air may enter the liquid crystal cell when the liquid crystal cell is exposed from a reduced-pressure atmosphere to an atmospheric pressure atmosphere in step 7 described later. This is because the external force of the cell is also pressurized by the action of atmospheric pressure, and a hole is formed in the sealing material that can withstand this pressure, or the sealing material peels off from the substrate surface and air enters. It is predicted that.
  • the transparent substrate 102 is placed on the cradle 201 shown in FIGS. 4 (a) and 4 (b) with the surface on which the alignment film or the like is formed facing up.
  • the cradle 201 has a rectangular frame shape when viewed from above, is an aluminum jig for supporting the peripheral edge of the transparent substrate 102, and has a structure that can be taken in and out of the vacuum chamber 203.
  • the surface of the cradle 201 in contact with the transparent substrate 102 is processed into a substantially concave shape in a side view so as to match the shape of the transparent substrate 102 that has been bent in advance! Speak.
  • the transparent substrate 102 is placed on the cradle 201 outside the vacuum chamber 203. Then transparent A liquid crystal material made of a mixture of a nematic liquid crystal and a photocurable compound is dropped onto the surface of the substrate 102 on which the alignment film or the like is formed (step S5). The total drop amount of the liquid crystal material is adjusted so that it does not protrude when the vacuum lamination process described later is performed, and a predetermined interval is provided on the surface of the transparent substrate 102 on which the alignment film and the like are formed. Quantitatively supplied
  • the ODF method employed in the present invention is simpler and shorter in time than the suction method or the vacuum injection method, and the liquid crystal material is sealed in the gap between the transparent substrates 101 and 102 and the sealing material 103. Can be encapsulated.
  • This ODF method is particularly suitable when a large liquid crystal element is manufactured using a liquid crystal with high viscosity such as a chiral nematic liquid crystal.
  • polytetrafluoroethylene pins 201a, 201b and 201c whose tip portions are processed into a hemispherical shape are inserted into three recesses (not shown) provided in the cradle 201.
  • the transparent substrate 101 is placed on the tip portion of these pins with the surface on which the orientation film or the like is formed facing down. Thereby, the state where the transparent substrate 101 and the transparent substrate 102 are separated from each other by a certain distance is maintained.
  • the depth of the recess is adjusted to be longer than the length of the pin 201a and the like, and the diameter of the pin 201a and the like is adjusted to be slightly larger than the diameter of the recess. For this reason, a frictional force acts between the recess and the pin 201a, etc., and the transparent substrate 101 is placed so that the pin 201a etc. cannot be inserted into the interior of the recess unless a certain level of force is applied. The pin 201a etc. will not sink into the recess.
  • the cradle 201 on which the transparent substrates 101 and 102 are mounted is stored in the vacuum chamber 203.
  • the cradle 201 can be moved up and down in the vacuum chamber by a predetermined lifting mechanism.
  • an aluminum mold 202 is fixed and held vertically above the stored cradle 201.
  • the mold 202 has a substantially convex shape in side view so as to be fitted to the surface of the cradle 201 on which the transparent substrate 102 or the like is mounted.
  • the vacuum chamber 203 is filled with a predetermined reduced-pressure atmosphere by the vacuum pump. Specifically, a state called a vacuum is generally created in which a pressure of 50 Pa (pascal) or less, particularly 20 Pa or less is preferred.
  • a series of processes performed in the vacuum chamber (hereinafter also referred to as vacuum lamination process).
  • the temperature of the transparent substrates 101 and 102 is preferably controlled. For example, an electric heater and a thermocouple are installed in the cradle 201 and Z or mold 202, and the heat generated by each heater is adjusted by the PID controller that receives the signal from the thermocouple. This enables control within the set temperature ⁇ 0.1 ° C. As a result, the transparent substrates 101 and 102 and the liquid crystal material sandwiched between them can be maintained at a constant temperature throughout.
  • the liquid crystal material supplied into the cell space is preferably maintained in a temperature range 5 to 60 ° C higher than the temperature at which the curable compound contained in the liquid crystal material is deposited. If the difference between the holding temperature of the liquid crystal material and the precipitation temperature of the curable compound is less than 5 ° C, the curable compound may be precipitated, and if it exceeds 60 ° C, the liquid crystal material may be damaged. There is a possibility that the curable compound may be cured before Step 8. Further, it is more effective to appropriately install a heater or a thermocouple on the wall, floor or ceiling surface of the vacuum chamber 203 and use the radiant heat from the wall surface.
  • the cradle 201 is raised, and the peripheral portions of the transparent substrates 101 and 102 are pressed by the mold 202 and the cradle 201.
  • the transparent substrate 101 first comes into contact with the mold 202.
  • the pins 201, 201b and 201c which cannot resist the friction force, gradually enter the recesses provided in the cradle 201.
  • the distance between the transparent substrates 101 and 102 gradually decreases (Fig. 5 (a)).
  • the liquid crystal material on the surface of the transparent substrate 102 is spread between the two transparent substrates.
  • the transparent substrates 101 and 102 are bonded together through the sealing material 103 to form a so-called liquid crystal cell in which the liquid crystal material is sealed in the sealed gap (step S6, FIG. 5 (b)). ).
  • the raising of the cradle 201 is stopped and then lowered to return to the initial position.
  • the pressure is returned to atmospheric pressure by supplying air to the vacuum chamber 203, and the transparent substrate 101 and 102 (liquid crystal cell) bonded together through the sealant 103 are placed together with the receiving table 201 and the chamber 201.
  • Remove outside step S7.
  • a force is applied to the two transparent substrates 101 and 102 which also presses the outside force of the cell, and both transparent substrates are drawn to the cell gap maintained by the spacer 105, Inside the liquid crystal material The fee will be charged (Fig. 5 (c), (d)).
  • the sealant 103 and the photocurable compound in the liquid crystal material are exposed to UV light and cured (step S8).
  • a layer 104 of the liquid crystal Z cured product composite is formed by curing the photocurable compound in the liquid crystal material. Note that when the sealing material 103 is not a photocurable cured product, the sealing material needs to be cured separately.
  • the cell gap of the obtained liquid crystal cell can be made uniform even if the shapes of the curved transparent substrates 101 and 102 do not completely match. Further, when the combination of the curved transparent substrates 101 and 102 satisfies at least one of the conditions (A), (B), and (C), this effect is more effectively exhibited. Note that the manufacturing method of the present invention is effective even when the transparent substrate is not a substrate made of a flexible material such as resin but is a rigid substrate made of glass.
  • FIG. 6 is a flowchart showing the bending process of the transparent substrate.
  • a flat plate-like glass force made by a float method or the like is pretreated by cutting out a glass plate having a desired shape and chamfering its peripheral edge.
  • a release agent made of powder of radiolite, baking soda, celite, magnesium oxide, silica, or the like is sprayed between the two transparent substrates that have been pretreated, and then the transparent substrates 101 and 102 are overlaid. Then, it is placed on a metal ring frame 305 (step Sl l, Fig. 7 (a)).
  • the transparent substrates 101 and 102 together with the ring frame 305 are carried into the heating furnace 301 of the bending molding system 300, and heat treatment is performed using an electric heater or a gas spanner, not shown in the figure.
  • the transparent substrates 101 and 102 are heated and softened, and as shown in FIGS. 7 (b) to (d), the transparent substrates 101 and 102 are gradually dropped by the dead weight of the substrate until the desired curved shape is obtained. Is applied (step S12).
  • the bent transparent substrates 101 and 102 are gradually cooled while being placed on the ring frame 305, and are then transported out of the furnace together with the ring frame (step S13). After the transparent substrates 101 and 102 are cooled to room temperature, both substrates are removed from the ring frame and washed with water (step S14).
  • FIG. 8 is a cross-sectional view showing an embodiment of a bending furnace used in the present invention.
  • the heating furnace 301 is made by stacking refractory bricks in the shape of a tunnel, and heats the transparent board with the upper outbound path, the ring frame 305 used in the outbound path, etc.
  • a lower return path for moving to The forward path and the return path are divided into a plurality of zones (in this case, having zones 1 to 7), and the transparent substrate put into the furnace external force zone 1 is moved to the subsequent zones one after another and subjected to heat treatment or the like.
  • Zones 2 to 5 are heating zones in which an electric heater or the like is installed on the furnace wall, zone 6 is a slow cooling zone, and zone 7 is a cooling zone for carrying the transparent substrate out of the furnace.
  • the door slidable up and down for partitioning adjacent zones 303 are provided between the zone 1 and the zone 2, between the zone 5 and the zone 6, and between the zone 6 and the zone 7, the door slidable up and down for partitioning adjacent zones 303 are provided. By opening and closing the door 303, the ambient temperature in each zone is individually maintained. Further, an elevator 302 force S is installed before and after the bending system 300, and the elevator 302 moves the shuttle 304 and the ring frame 305 from the forward path to the backward path or from the backward path to the forward path.
  • the ring frame 305 on which the transparent substrate is placed is fixed to a movable shuttle 304, and the shuttle 304 is connected to a transport mechanism 306 including a chain, a sprocket, a motor, and the like.
  • the ring frame 305 and the shuttle 304 are intermittently conveyed by the conveyance mechanism 306 to the right in the figure in the forward path in the upper part of the figure and intermittently to the left in the figure in the return path in the lower part of the figure. That is, the ring frame 305 is transported together with the shuttle 304, stays in each zone for a certain period of time, and then moves to the next zone repeatedly.
  • FIGS. 9 (a) and 9 (b) The details of the ring frame 305 and the shuttle 304 are as shown in FIGS. 9 (a) and 9 (b).
  • a shuttle frame 304 that also has SUS (stainless alloy) isotropic force is provided with a ring frame 305 that also has SUS isotropic force. Is held by a fastener.
  • the ring frame 305 is a frame member having a shape that substantially matches the product shape, and the surface that receives the transparent substrate is inclined toward the inside of the frame and inclined downward.
  • the surface of the ring frame 305 is made of glass fiber, silica fiber, ceramic fiber, metal fiber, etc. to prevent contact scratches on the transparent substrate. Covered with heat-resistant woven or non-woven fabric made of
  • FIG. 11 (a) shows the shape of the end of the obtained curved glass plate.
  • Figure 11 (b) shows the distance between the two glass plates calculated with the contact point of the two substrates as zero. Compared with the both ends of the glass plate, it can be seen that the deviation is larger than the both ends.
  • the edge shape of the glass plate was measured along the “measurement line” in FIG. 10 (b) with a linear gauge for each glass plate.
  • Tables 1 and 2 show the measurement results of the distance (cell gap) between the two glass plates.
  • the cell gap at each part of the measurement point is close to the spacer diameter of 8 ⁇ m, indicating that a substantially uniform cell gap can be achieved in the plane.
  • the cell gap was measured along the measurement lines L1, L2 and L3 shown in Fig. 10 (b) (measured by shifting the position from the base of the arrow).
  • Figure 12 (b) shows the distance between two substrates calculated with the contact point of the substrate as zero. Compared with the both ends of the substrate, the portion between them (in the plane of the substrate) shows a larger value than the both ends, and it can be seen that there is a portion.
  • the edge shape of the obtained substrate was measured and as shown in Table 1.
  • Table 1 shows the presence or absence of polishing of the transparent substrate, the shape of the spacer, the gap values measured after bending, their minimum and maximum values, the average value of the cell gap after sealing, and the sealing state. Is described.
  • the gap measurement after bending was performed as follows. In other words, in order to know the shape error of the two transparent substrates, the distance between the substrates was measured using a laser gap measuring instrument made by Keyence with the overlapping of these. The interval was measured at measurement points along L2 shown in Fig. 10 (b).
  • Classification means radiolite with a particle size of 30 ⁇ m or less
  • Spherical refers to silica beads with an average particle size of 8.01 ⁇ m and standard deviation of 0.08 ⁇ m
  • Shape 1 refers to an end shape that has substantially the same shape as FIG.
  • Shape 2 refers to an end shape having substantially the same shape as FIG.
  • the liquid crystal element according to the present invention can control the light transmission state and the light scattering state, and therefore can be used for other purposes as well.
  • architectural interiors such as windows (for automobiles (side windows, door glass, rear quarters, etc.), construction, aircraft, ships, railway vehicles, etc.), skylights, partitions, doors, etc. It can be applied to signboards, commercial advertising media, large partition devices, etc.
  • information can be provided to the user by displaying a combination of figures and patterns or displaying characters.
  • decorations such as a character, to a transparent plate as needed.
  • the present invention is not limited to this.
  • the present invention can also be applied to other drive type liquid crystal elements such as a static type and an active type.
  • a structure other than the liquid crystal element can be manufactured. That is, by using a solution or gel containing ITO ultrafine particles as a functional layer instead of a liquid crystal layer, a structure having a heat ray cutting function can be produced. This can be used in place of window glass for automobiles and buildings. Further, a colored solution or a colored gel can be used for the functional layer.
  • the substrate may be a seed such as glass, resin, metal or semiconductor. Substrates with various material strengths can also be used. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2006-194290 filed on July 14, 2006 are cited here as disclosure of the specification of the present invention. Incorporate.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A structure having a complicated curved shape; and a process for producing the structure. In a given reduced-pressure atmosphere, a liquid-crystal material and a spacer are disposed in a gap hermetically surrounded by first and second transparent substrates having a curved shape and a sealing material to thereby produce a liquid-crystal cell (first step). This liquid-crystal cell is exposed to an atmospheric-pressure atmosphere to cause the liquid-crystal material to fill the space and at least one of the transparent substrates to deform due to the pressure change and thereby make the cell gap almost even (second step).

Description

明 細 書  Specification
構造体およびその製造方法  Structure and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、構造体およびその製造方法に関し、特に自動車の調光ルーフガラスや 調光サイドウィンドウ等に好適な液晶素子およびその製造方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a structure and a manufacturing method thereof, and more particularly to a liquid crystal element suitable for a light control roof glass, a light control side window, and the like of an automobile and a method of manufacturing the same.
背景技術  Background art
[0002] 従来、自動車用サンルーフに調光機能を持たせるため、エレクト口クロミックガラス や液晶調光フィルムを 2枚のガラス板の間に挟んだ調光合わせガラスが提案されて いる。特許文献 1には、 2枚の PET (ポリエチレンテレフタレート)フィルムで液晶層を 挟んで作られた液晶素子を、 EVA (エチレン—酢酸ビニル共重合体)変性榭脂から なる 2枚の中間膜で挟み、これをさらに 2枚のガラス板で挟持して作られたサンルーフ が開示されている。  [0002] Conventionally, a dimming laminated glass in which an electrification chromic glass or a liquid crystal dimming film is sandwiched between two glass plates has been proposed in order to provide the sunroof for automobiles with a dimming function. In Patent Document 1, a liquid crystal element made by sandwiching a liquid crystal layer between two PET (polyethylene terephthalate) films is sandwiched between two interlayer films made of EVA (ethylene-vinyl acetate copolymer) modified resin. Further, a sunroof made by sandwiching this with two glass plates is disclosed.
[0003] 特許文献 1 :特開平 6— 18856号公報  Patent Document 1: Japanese Patent Laid-Open No. 6-18856
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、エレクト口クロミックガラスを用いて作られた調光ガラス窓は、短時間で 光の透過 Z不透過状態を変化させることが困難であるという問題がある。また、特許 文献 1に開示されて!ヽる、榭脂フィルムで液晶層を挟んで作られたシート状の液晶素 子を 2枚のガラス板で挟持する構造では、ガラス板の形状が複雑な湾曲形状である 場合に、液晶素子をガラス板の形状に十分に追従させることが困難となり、液晶素子 の周辺部にしわが生じやす ヽと 、つた問題がある。 [0004] However, the light control glass window made using the electoric chromic glass has a problem that it is difficult to change the light transmission Z non-transmission state in a short time. In addition, as disclosed in Patent Document 1, a structure in which a sheet-like liquid crystal element made by sandwiching a liquid crystal layer with a resin film is sandwiched between two glass plates has a complicated glass plate shape. In the case of a curved shape, it is difficult to cause the liquid crystal element to sufficiently follow the shape of the glass plate, and there is a problem that wrinkles are likely to occur in the periphery of the liquid crystal element.
また、液晶素子を製造する方法としては、以下の方法が知られている。  Moreover, the following methods are known as a method of manufacturing a liquid crystal element.
[吸引法]一対の基板をシール材を介して貼り合わせて作製されるセルのシール材 の部分に 2箇所以上の切り欠きを設け、切り欠きの一方を液晶組成物に浸し、他方よ り吸引する方法。  [Suction method] Two or more notches are provided in the sealing material portion of the cell produced by bonding a pair of substrates through a sealing material, and one of the notches is immersed in the liquid crystal composition and sucked from the other. how to.
[真空注入法]減圧条件下でシール材の部分に 1箇所以上の切り欠きを設けたセ ルの切り欠き部を液晶組成物に浸漬し、浸漬した状態のままで大気圧に戻しセルの 内圧と大気圧の差圧にてセル中に液晶組成物を充填させる方法。 [Vacuum injection method] Under reduced pressure conditions, the notch of the cell with one or more notches in the sealing material is immersed in the liquid crystal composition, and returned to atmospheric pressure in the soaked state. A method of filling a liquid crystal composition in a cell with a differential pressure between an internal pressure and an atmospheric pressure.
[ODF (one-drop-fill)法]一対の基板のうち一方の基板の表面に所定量の液晶組 成物を滴下し、つぎに減圧条件下で前記液晶組成物が滴下された基板と他方の基 板とをシール材を介して貼り合わせる方法。なお、 ODF法は液晶滴下法、真空滴下 法などとも呼ばれる。  [ODF (one-drop-fill) method] A predetermined amount of a liquid crystal composition is dropped on the surface of one of a pair of substrates, and then the substrate on which the liquid crystal composition is dropped under reduced pressure and the other This is a method in which the substrate is bonded together with a sealing material. The ODF method is also called a liquid crystal dropping method or a vacuum dropping method.
これらの方法のうち、大型の液晶素子を作製する方法としては、短時間でセルに液 晶組成物を充填できることから ODF法が有効である。前記の調光ガラス窓に用いら れる液晶素子も電子デバイス等に適用される液晶素子と比較して大型であり、その 製造方法としては ODF法が有効である。一方、車両用窓(前述のサンルーフなど)と して用いられる調光ガラス窓は、平板形状ではなく湾曲した形状を有する場合がある 。湾曲形状の基板は平板形状の基板を曲げ加工して作られるが、曲げ加工の精度 など製造工程上の制約によって 2枚の湾曲基板の形状が一致しないことがある。この ような形状が一致しない 2枚の湾曲基板を用いて液晶素子を作製する際には、液晶 素子における基板間の間隔を一定の大きさにすることが困難である問題があった。  Among these methods, the ODF method is effective as a method for manufacturing a large-sized liquid crystal element because the liquid crystal composition can be filled in the cell in a short time. The liquid crystal element used for the light control glass window is also larger than the liquid crystal element applied to an electronic device or the like, and the ODF method is effective as a manufacturing method thereof. On the other hand, a light control glass window used as a vehicle window (such as the sunroof described above) may have a curved shape instead of a flat plate shape. A curved substrate is made by bending a flat substrate, but the shape of the two curved substrates may not match due to manufacturing process constraints such as bending accuracy. When a liquid crystal element is manufactured using two curved substrates whose shapes do not match, there is a problem that it is difficult to make the distance between the substrates in the liquid crystal element constant.
[0005] 本発明はこのような課題を解決するものであり、湾曲形状を呈する構造体 (特に、液 晶素子)およびその製造方法を提供することを目的とする。 [0005] The present invention solves such problems, and an object thereof is to provide a structure (in particular, a liquid crystal element) having a curved shape and a method for manufacturing the structure.
課題を解決するための手段  Means for solving the problem
[0006] 以上の目的を達成するために本発明は、以下の発明を提供する。  In order to achieve the above object, the present invention provides the following inventions.
[1]第 1の湾曲基板、該第 1の湾曲基板と略同一の形状を有しかつ該第 1の湾曲基 板に対向している第 2の湾曲基板、前記両湾曲基板の周縁部全周に設けられかつ 前記両湾曲基板を所定距離隔てて接合するとともに両湾曲基板間の間隙を封止す るシール材、および前記両湾曲基板と前記シール材とで密封された間隙内に満たさ れている機能材料、を有する構造体であって、前記構造体を構成する第 1および第 2 の湾曲基板の組み合わせが、該第 1および第 2の湾曲基板を対向する面が略平行 になるように重ね合わせかつ両湾曲基板の対向する面内ないし周縁の少なくとも 1点 で接触させた場合、湾曲基板端部における両湾曲基板の間隔が両湾曲基板の間隔 の最大値よりも小さくなる組み合わせであることを特徴とする構造体。  [1] A first curved substrate, a second curved substrate having substantially the same shape as the first curved substrate and facing the first curved substrate, and all peripheral portions of the two curved substrates A sealing material that is provided on a circumference and that joins the curved substrates with a predetermined distance and seals a gap between the curved substrates; and a gap sealed by the curved substrates and the sealing material. A combination of the first and second curved substrates constituting the structure so that the surfaces facing the first and second curved substrates are substantially parallel to each other. Is a combination in which the distance between the two curved substrates at the end of the curved substrate is smaller than the maximum value of the distance between the two curved substrates. A structure characterized by that.
[0007] [2]第 1の湾曲基板、該第 1の湾曲基板と略同一の形状を有しかつ該第 1の湾曲基 板に対向している第 2の湾曲基板、前記両湾曲基板の周縁部全周に設けられかつ 前記両湾曲基板を所定距離隔てて接合するとともに両湾曲基板間の間隙を封止す るシール材、および前記両湾曲基板と前記シール材とで密封された間隙内に満たさ れている機能材料、を有する構造体であって、前記構造体を構成する第 1および第 2 の湾曲基板の組み合わせが、該第 1および第 2の湾曲基板を対向する面が略平行 になるように重ね合わせかつ両湾曲基板の対向する面内ないし周縁の少なくとも 1点 で接触させた場合、湾曲基板端部における両湾曲基板の間隔が 0. 5mm以下となる 組み合わせであることを特徴とする構造体。 [0007] [2] a first curved substrate, the first curved substrate having substantially the same shape as the first curved substrate A second curved substrate facing the plate, a sealing material provided on the entire periphery of the peripheral portion of the two curved substrates, and joining the curved substrates with a predetermined distance therebetween and sealing a gap between the curved substrates And a functional material filled in a gap sealed with both the curved substrates and the sealing material, wherein a combination of the first and second curved substrates constituting the structure is provided. When the first and second curved substrates are overlapped so that the opposing surfaces are substantially parallel and are brought into contact with each other at at least one point in the opposing surfaces or the peripheral edges of the two curved substrates, A structure having a combination in which the distance between the curved substrates is 0.5 mm or less.
[0008] [3]第 1の湾曲基板、該第 1の湾曲基板と略同一の形状を有しかつ該第 1の湾曲基 板に対向している第 2の湾曲基板、前記両湾曲基板の周縁部全周に設けられかつ 前記両湾曲基板を所定距離隔てて接合するとともに両湾曲基板間の間隙を封止す るシール材、および前記両湾曲基板と前記シール材とで密封された間隙内に満たさ れている機能材料、を有する構造体であって、前記構造体を構成する第 1および第 2 の湾曲基板の組み合わせが、該第 1および第 2の湾曲基板を対向する面が略平行 になるように重ね合わせかつ両湾曲基板の対向する面内ないし周縁の少なくとも 1点 で接触させた場合、湾曲基板端部における両湾曲基板の間隔が前記構造体におけ る両湾曲基板の対向する面を隔てる所定距離の 20倍以下となる組み合わせである ことを特徴とする構造体。  [3] A first curved substrate, a second curved substrate having substantially the same shape as the first curved substrate and facing the first curved substrate, and the two curved substrates. A sealing material which is provided on the entire periphery of the peripheral portion and joins the curved substrates with a predetermined distance and seals a gap between the curved substrates; and a gap sealed between the curved substrates and the sealing material. A combination of the first and second curved substrates constituting the structure, and the surfaces facing the first and second curved substrates are substantially parallel to each other. When the two curved substrates are overlapped and brought into contact with each other at at least one point in the opposite plane or the peripheral edge of the curved substrates, the distance between the curved substrates at the end of the curved substrate is opposed to the curved substrates in the structure. The combination must be 20 times or less the predetermined distance separating the surfaces. A structure characterized by
[0009] [4]前記両湾曲基板の少なくとも一方が大気圧によって変形させられることにより両 湾曲基板の対向する面が所定の形状に矯正され、両湾曲基板の対向する面を隔て る距離の分布が略均一となって 、る、 [1]〜 [3]の 、ずれかに記載の構造体。  [4] A distribution of distances separating the opposing surfaces of both curved substrates by correcting at least one of the curved substrates by atmospheric pressure so that the opposing surfaces of both curved substrates are corrected to a predetermined shape. The structure according to any one of [1] to [3], wherein is substantially uniform.
[5]前記構造体において、両湾曲基板の対向する面を隔てる距離力^〜 30 mの 範囲内の一定距離である、 [1]〜[4]のいずれかに記載の構造体。  [5] The structure according to any one of [1] to [4], wherein the structure has a constant distance within a range of a distance force of ~ 30 m separating the opposing surfaces of both curved substrates.
[0010] [6]前記両湾曲基板の対向する面の間隙に所定の大きさのスぺーサが配置され、 両湾曲基板の対向する面間が所定の一定の距離に保持されて 、る [ 1]〜 [5]のい ずれかに記載の構造体。  [6] A spacer having a predetermined size is disposed in the gap between the opposing surfaces of the two curved substrates, and the distance between the opposing surfaces of the two curved substrates is maintained at a predetermined constant distance. The structure according to any one of [1] to [5].
[7]機能材料が液体を含む材料である、 [1]〜 [6]の ヽずれかに記載の構造体。  [7] The structure according to any one of [1] to [6], wherein the functional material includes a liquid.
[8]前記両湾曲基板の少なくとも一方が透明湾曲基板であり、前記両湾曲基板の 対向する面の表面のそれぞれに電極層を有し、機能材料が液晶を含む材料である、[8] At least one of the two curved substrates is a transparent curved substrate, Each of the opposing surfaces has an electrode layer, and the functional material is a material containing liquid crystal,
[1]〜 [7]の 、ずれかに記載の構造体。 The structure according to any one of [1] to [7].
[0011] [9]第 1の湾曲基板、該第 1の湾曲基板と略同一の形状を有しかつ該第 1の湾曲基 板に対向している第 2の湾曲基板、前記両湾曲基板の周縁部全周に設けられかつ 前記両湾曲基板を所定距離隔てて接合するとともに両湾曲基板間の間隙を封止す るシール材、および前記両湾曲基板と前記シール材とで密封された間隙内に満たさ れている機能材料、を有する構造体の製造方法であって、所定の減圧雰囲気下で、 第 1および第 2の湾曲基板と、該両湾曲基板の周縁部全周に配されるシール材とで 密封された間隙内に機能材料を封入し、機能材料保持体を製造する第 1の工程と、 前記機能材料保持体を大気圧の雰囲気に曝すことにより前記機能材料を前記間隙 内に充満せしめ、かつ、前記第 1および第 2の湾曲基板の少なくとも何れか一方を圧 力の変化によって変形せしめることにより、前記機能材料保持体における両湾曲基 板の対向する面を隔てる距離を略均一にせしめて構造体を製造する第 2の工程とを 有することを特徴とする構造体の製造方法。  [9] A first curved substrate, a second curved substrate having substantially the same shape as the first curved substrate and facing the first curved substrate, and the two curved substrates. A sealing material which is provided on the entire periphery of the peripheral portion and joins the curved substrates with a predetermined distance and seals a gap between the curved substrates; and a gap sealed between the curved substrates and the sealing material. A functional material filled with the first and second curved substrates and a seal disposed on the entire periphery of the peripheral portions of the two curved substrates in a predetermined reduced-pressure atmosphere. A first step of manufacturing a functional material holder by enclosing the functional material in a gap sealed with a material, and exposing the functional material holder to an atmosphere of atmospheric pressure to bring the functional material into the gap And the pressure is applied to at least one of the first and second curved substrates. And a second step of manufacturing the structure by making the distance separating the opposing surfaces of the two curved substrates in the functional material holder substantially uniform by deforming them by the change in the structure. Manufacturing method.
[0012] [10]前記第 1の工程において、一方の湾曲基板の周縁部全周にシール材を設け 、該シール材で囲まれた領域内に前記機能材料を供給し、前記減圧雰囲気下で、 前記一方の湾曲基板の表面に向力つて他方の湾曲基板を押し当てて、前記機能性 材料を押し広げるとともに 2枚の湾曲基板の間隙内に該機能材料が挟持された密閉 空間を形成する、 [9]に記載の構造体の製造方法。  [0012] [10] In the first step, a sealing material is provided on the entire periphery of one of the curved substrates, the functional material is supplied into a region surrounded by the sealing material, and the reduced pressure atmosphere is used. The other curved substrate is pressed against the surface of the one curved substrate to spread the functional material and form a sealed space in which the functional material is sandwiched in the gap between the two curved substrates. [9] The method for producing a structure according to [9].
[0013] [11]前記構造体を構成する第 1および第 2の湾曲基板の組み合わせが、該第 1お よび第 2の湾曲基板を対向する面が略平行になるように重ね合わせかつ両湾曲基板 の対向する面内ないし周縁の少なくとも 1点で接触させた場合、湾曲基板端部にお ける両湾曲基板の間隔が 0. 5mm以下となる組み合わせである、 [9]または [10]に 記載の構造体の製造方法。  [0013] [11] The combination of the first and second curved substrates constituting the structure is such that the first and second curved substrates are superposed and curved so that the surfaces facing each other are substantially parallel. The combination according to [9] or [10], wherein the distance between the curved substrates at the edge of the curved substrate is 0.5 mm or less when the substrates are brought into contact with each other at at least one point in the opposite plane or the periphery of the substrate. Method for manufacturing the structure.
[0014] [12]前記構造体を構成する第 1および第 2の湾曲基板の組み合わせが、該第 1お よび第 2の湾曲基板を対向する面が略平行になるように重ね合わせかつ両湾曲基板 の対向する面内ないし周縁の少なくとも 1点で接触させた場合、湾曲基板端部にお ける両湾曲基板の間隔が前記構造体における両湾曲基板の対向する面を隔てる所 定距離の 20倍以下となる組み合わせである、 [9]〜 [11]の 、ずれかに記載の構造 体の製造方法。 [0014] [12] The combination of the first and second curved substrates constituting the structure is such that the first and second curved substrates are superposed and curved so that the surfaces facing each other are substantially parallel. Where contact is made at at least one point on the opposite or in the peripheral surface of the substrate, the distance between the curved substrates at the end of the curved substrate separates the opposing surfaces of the curved substrates in the structure. The method for producing a structure according to any one of [9] to [11], which is a combination that is 20 times or less the constant distance.
[0015] [13]前記構造体において、両湾曲基板の対向する面を隔てる距離力^〜 30 m の範囲内の一定距離である、 [9]〜 [ 12]の 、ずれかに記載の構造体の製造方法。  [13] The structure according to any one of [9] to [12], wherein the structure is a constant distance within a range of a distance force ^ to 30 m separating the opposing surfaces of both curved substrates. Body manufacturing method.
[14]機能材料とともに所定の大きさのスぺーサを封入する、 [9]〜 [ 13]の ヽずれ かに記載の構造体の製造方法。  [14] The method for producing a structure according to any one of [9] to [13], wherein a spacer having a predetermined size is enclosed together with the functional material.
[0016] [15]機能材料が液体を含む材料である、 [9]〜 [14]のいずれかに記載の構造体 の製造方法。  [15] The method for producing a structure according to any one of [9] to [14], wherein the functional material is a material containing a liquid.
[16]前記両湾曲基板の少なくとも一方が透明湾曲基板であり、前記両湾曲基板の 対向する面の表面のそれぞれに電極層を有し、機能材料が液晶を含む材料である、 [9]〜 [15]の 、ずれかに記載の構造体の製造方法。  [16] At least one of the two curved substrates is a transparent curved substrate, has an electrode layer on each of the opposing surfaces of the two curved substrates, and the functional material is a material containing liquid crystal. [15] The method for producing a structure according to any one of the above.
発明の効果  The invention's effect
[0017] 本発明によれば、 2枚の湾曲基板で挟持された機能材料を有する構造体 (特に、液 晶素子)を提供することができる。さらに、形状が完全には一致しない 2枚の湾曲基板 を用いて液晶素子を製造する場合であっても、液晶素子における基板間の間隔を一 定の大きさに保持することができる。  [0017] According to the present invention, it is possible to provide a structure (particularly a liquid crystal element) having a functional material sandwiched between two curved substrates. Further, even when a liquid crystal element is manufactured using two curved substrates whose shapes do not completely match, the distance between the substrates in the liquid crystal element can be kept constant.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1] (a)本発明に係る液晶素子の一つの実施の形態を示す平面図、 )八ー八'線 断面図、(c) B— B'線断面図、(d) C— C'線断面図である。  [0018] [FIG. 1] (a) A plan view showing one embodiment of a liquid crystal device according to the present invention,) a cross-sectional view taken along line 8-8 ', (c) a cross-sectional view taken along line BB', (d) FIG.
[図 2]本発明に係る真空積層工程の一つの実施の形態を示すフローチャートである。  FIG. 2 is a flowchart showing one embodiment of a vacuum lamination process according to the present invention.
[図 3] (a)透明基板 101を示す平面図、(b)透明基板 102を示す平面図である。  3A is a plan view showing a transparent substrate 101, and FIG. 3B is a plan view showing a transparent substrate 102. FIG.
[図 4] (a)真空チャンバを示す一部破断断面図、(b)受け台を示す上面図である。  FIG. 4 (a) is a partially cutaway sectional view showing a vacuum chamber, and (b) is a top view showing a cradle.
[図 5] (a)〜 (d)真空積層の様子を模式的に示した断面図である。  FIG. 5 (a) to (d) are cross-sectional views schematically showing the state of vacuum lamination.
[図 6]透明基板の曲げ成形工程を示すフローチャートである。  FIG. 6 is a flowchart showing a bending process of a transparent substrate.
[図 7]透明基板の曲げ成形工程を模式的に示す説明図である。  FIG. 7 is an explanatory view schematically showing a bending process of a transparent substrate.
[図 8]曲げ成形システムの一つの実施の形態を示す一部破断側面図である。  FIG. 8 is a partially cutaway side view showing one embodiment of a bending system.
[図 9]透明基板の搬送に用いられるシャトルの一つの実施の形態を示す上面図、(b) FIG. 9 is a top view showing one embodiment of a shuttle used for transporting a transparent substrate, (b)
D— D'線断面図である。 [図 10] (a)曲げ成形後の 2枚の重ね合わせられた透明基板の側面図、(b) 2枚の透 明基板同士のギャップを測定する際に用いられる測定ラインと測定点とを示す説明 図である。 FIG. 4 is a cross-sectional view taken along line D-D ′. [Fig. 10] (a) Side view of two superimposed transparent substrates after bending, and (b) Measurement lines and measurement points used to measure the gap between two transparent substrates. It is explanatory drawing shown.
[図 11] (a)、(b)本発明の一実施例による測定結果を示すグラフである。  [FIG. 11] (a) and (b) are graphs showing measurement results according to an example of the present invention.
[図 12] (a)、 (b)比較例による測定結果を示すグラフである。 [FIG. 12] (a) and (b) are graphs showing measurement results of comparative examples.
符号の説明 Explanation of symbols
100:液晶素子  100: Liquid crystal element
101、 102:透明基板  101, 102: Transparent substrate
101a, 102a:透明電極  101a, 102a: Transparent electrode
101a,ゝ 102b':引き出し電極  101a, ゝ 102b ': extraction electrode
101b, 102b:絶縁膜  101b, 102b: Insulating film
101c, 102c:配向膜  101c, 102c: Alignment film
103:シール材  103: Seal material
104:複合体層  104: Composite layer
105:スぺーサ  105: Spacer
200:真空積層装置  200: Vacuum laminator
201:受け台  201: cradle
201a, 201b, 201c:ピン  201a, 201b, 201c: Pin
202:モールド  202: Mold
203:真空チャンパ  203: Vacuum Champer
300:曲げ成形システム  300: Bending molding system
301:加熱炉  301: Heating furnace
302:エレベータ  302: Elevator
303:扉  303: Door
304:シャ卜ノレ  304: Chanore
305:リングフレーム  305: Ring frame
306:搬送機構  306: Transport mechanism
発明を実施するための最良の形態 [0020] 本発明は、面積が 0. 04〜2m2の基板に好ましく適用される。この範囲の面積の基 板としては、おおよそ 200mm X 200mm〜: LOOOmm X 1600mm (好ましくは 300m m X 300mm〜800mm X 1600mm)のサイズの基板が相当する。また、湾曲开状と は基板の 1辺の曲率半径が 800R〜5000Rの範囲にあることを意味する。基板の厚 さは l〜3mmである。 BEST MODE FOR CARRYING OUT THE INVENTION The present invention is preferably applied to a substrate having an area of 0.04 to 2 m 2 . A substrate having an area in this range corresponds to a substrate having a size of approximately 200 mm × 200 mm to: LOOOmm × 1600 mm (preferably 300 mm × 300 mm to 800 mm × 1600 mm). The curved open shape means that the radius of curvature of one side of the substrate is in the range of 800R to 5000R. The thickness of the substrate is l ~ 3mm.
本発明における機能材料は液体を含む材料であることが好ま 、。構造体中の機 能性材料が液体を含む材料である場合、形状が充分に一致しな!ヽ 2枚の湾曲基板 を用いて構造体を作製すると、湾曲基板間の間隔を一定の大きさにすることが困難と なるばかりでなぐシールが不充分となり液体の漏れや空気の進入を招きやすい。本 発明における機能材料は液晶物質などの液体のみ力もなつていてもよい。また、後 述の液晶 Z硬化物複合体などの液体と固体物質の複合体、固体微粒子分散液体な どの液体と固体を含む材料であってもよ 、。  The functional material in the present invention is preferably a material containing a liquid. If the functional material in the structure is a liquid-containing material, the shapes do not match sufficiently! 作 製 When a structure is made using two curved substrates, the distance between the curved substrates is a certain size. Not only is it difficult to make a seal, but the seal is insufficient, which can lead to liquid leakage and air ingress. The functional material in the present invention may have only a liquid such as a liquid crystal substance. Further, it may be a liquid and solid material such as a liquid crystal Z cured product composite described later, or a material containing liquid and solid such as a solid fine particle dispersion liquid.
本発明は、機能材料が液体を含む材料であってかつ大型の構造体であることが好 ましい。従来、液体を含みかつ湾曲した大型の構造体を製造することは困難であつ た。特にそのような大型の 2枚の湾曲基板の間隙が数十/ z m以下のきわめて薄いも のでかつ均一な間隙を必要とする構造体 (後述の液晶素子など)を製造することは困 難であった。本発明はこのような構造体およびそれを製造できる方法を提供する。  In the present invention, the functional material is preferably a material containing a liquid and a large structure. Conventionally, it has been difficult to manufacture large structures that contain liquid and are curved. In particular, it is difficult to manufacture a structure (such as a liquid crystal element described later) in which the gap between two large curved substrates is extremely thin with a thickness of several tens / zm or less and requires a uniform gap. It was. The present invention provides such a structure and a method by which it can be produced.
[0021] 以下に、本発明について、構造体が液晶素子である場合の実施形態を例にとって 説明する。なお、液晶素子においては少なくとも一方の湾曲基板は透明な湾曲基板 である必要があり、通常調光ガラス窓などに用いられる液晶素子おいては両湾曲基 板とも透明な湾曲基板が使用される。以下、液晶素子における透明な湾曲基板を透 明基板ともいう。また、液晶素子においては、液晶を駆動するために両湾曲基板の対 向する面の表面のそれぞれに電極層を有する。 2つの電極層の少なくとも一方は透 明な電極層である必要がある。以下、透明な電極層を透明電極ともいう。 [0021] Hereinafter, the present invention will be described taking as an example an embodiment in which the structure is a liquid crystal element. In the liquid crystal element, at least one of the curved substrates needs to be a transparent curved substrate, and in a liquid crystal element usually used for a light control glass window, a transparent curved substrate is used for both curved substrates. Hereinafter, the transparent curved substrate in the liquid crystal element is also referred to as a transparent substrate. In addition, the liquid crystal element has an electrode layer on each of the opposite surfaces of the two curved substrates in order to drive the liquid crystal. At least one of the two electrode layers needs to be a transparent electrode layer. Hereinafter, the transparent electrode layer is also referred to as a transparent electrode.
図 1 (a)は本発明の液晶素子の一つの実施の形態を示す平面図、同図(b)は A— A'線断面図、同図(c)は B— B'線断面図、同図(d)は C— C'線断面図である。図 1 (a)には、液晶素子 100の主要な構成として、透明基板 101、透明電極 101a、絶縁 膜 101b、配向膜 101c、透明基板 102、透明電極 102a、引き出し電極 102a'、絶縁 膜 102b、配向膜 102c、シール材 103、スぺーサ 105および複合体層 104が開示さ れている。 FIG. 1 (a) is a plan view showing one embodiment of the liquid crystal element of the present invention, FIG. 1 (b) is a cross-sectional view taken along line AA ′, FIG. 1 (c) is a cross-sectional view taken along line BB ′, FIG. 4D is a cross-sectional view taken along the line CC ′. In FIG. 1 (a), the main components of the liquid crystal element 100 are transparent substrate 101, transparent electrode 101a, insulating film 101b, alignment film 101c, transparent substrate 102, transparent electrode 102a, extraction electrode 102a ′, insulating A film 102b, an alignment film 102c, a sealing material 103, a spacer 105, and a composite layer 104 are disclosed.
[0022] 透明基板 101と透明基板 102とは互いに対向して配設され、両透明基板の周縁部 の全周にはシール材が設けられて ヽる。両透明基板はこのシール材により所定距離 隔てて接合されるとともに両透明基板の間隙が封止されている。本発明において「基 板の周縁部全周にシール材が設けられる」とは、 2枚の湾曲基板とシール材とで密封 された間隙を形成することができる限りにおいてシール材が設けられる位置を適宜決 定できるものであり、湾曲基板のエッジ (面と面とが交わって形成される稜線)までシ 一ル材が到達しない箇所があってもよいことを意味する。たとえば、図 1 (c)に示すよ うに、液晶素子のある部分では、透明基板 101については、シール材 103のエッジ は透明基板 101のエッジと一致している。し力し、透明基板 102については、シール 材 103のエッジは透明基板 102のエッジよりも内側に位置して 、る。透明基板 101、 102とシール材 103とは前記のような位置関係を保って密封された間隙を形成し、本 発明にお ヽては、このような態様も「基板の周縁部全周にシール材が設けられる」と する。  The transparent substrate 101 and the transparent substrate 102 are disposed so as to face each other, and a sealing material is provided on the entire periphery of the peripheral portion of both transparent substrates. Both the transparent substrates are joined to each other at a predetermined distance by this sealing material, and the gap between the transparent substrates is sealed. In the present invention, “the sealing material is provided on the entire periphery of the peripheral portion of the substrate” means that the position where the sealing material is provided as long as a gap sealed between the two curved substrates and the sealing material can be formed. It can be determined as appropriate, meaning that there may be places where the seal material does not reach the edge of the curved substrate (the ridgeline formed by the intersection of the surfaces). For example, as shown in FIG. 1C, the edge of the sealing material 103 coincides with the edge of the transparent substrate 101 for the transparent substrate 101 in a certain part of the liquid crystal element. However, with respect to the transparent substrate 102, the edge of the sealing material 103 is located inside the edge of the transparent substrate 102. The transparent substrates 101 and 102 and the sealing material 103 form a sealed gap while maintaining the positional relationship as described above. In the present invention, such a mode is also “sealed around the entire periphery of the substrate. Materials will be provided. "
前記両透明基板と前記シール材とで密封された間隙内には、液晶材料の層として 、液晶と硬化物との複合体の層 104が挟持されている(以下、液晶と硬化物との複合 体を「液晶 Z硬化物複合体」、または単に「複合体」とも記載する。 ) o複合体層 104 の代わりに、硬化物を含まない液晶のみの層を用いてもよい。透明基板 101および 1 02は、電気的に絶縁性の透明基板である。透明基板としては、例えばガラス基板、 またはポリカーボネート若しくはアクリル榭脂等の榭脂基板が用いられる。これらのガ ラス基板ゃ榭脂基板の厚さは、通常、 0. 4〜: LOmmの範囲の一定の厚さを有する。 本発明の液晶素子を表示装置等の用途に使用する場合は、透明基板 101および 102の何れか一方に不透明な基板を用いてもよい。  In the gap sealed by the two transparent substrates and the sealing material, a composite layer 104 of liquid crystal and cured product is sandwiched as a layer of liquid crystal material (hereinafter referred to as composite of liquid crystal and cured product). The body is also referred to as “liquid crystal Z cured product composite” or simply “composite.”) Instead of the composite layer 104, a liquid crystal-only layer containing no cured product may be used. The transparent substrates 101 and 102 are electrically insulating transparent substrates. As the transparent substrate, for example, a glass substrate or a resin substrate such as polycarbonate or acrylic resin is used. The thickness of these glass substrates is usually a constant thickness in the range of 0.4 to LOmm. When the liquid crystal element of the present invention is used for a display device or the like, an opaque substrate may be used as one of the transparent substrates 101 and 102.
[0023] 本発明によれば、湾曲形状を有する透明基板 101と透明基板 102とを用いて、両 透明基板間の対向する面を隔てる距離が所定の一定距離に保持された液晶素子を 作製することができる。以下、液晶素子における両透明基板の対向する面を隔てる 距離をセルギャップとも記載する。 2枚の湾曲基板の形状は、曲げ成形工程の製造工程上の制約力 必ずしも同一の 形状にはならないことが多い。よって、該 2枚の湾曲基板を対向する面がほぼ平行に なるように重ね合せた場合、基板同士の間に隙間が生じ、液晶素子とした場合にセ ルギャップが所定の一定距離にならないことが懸念される。しかし、本発明によれば、 前記のような形状が完全に一致しない湾曲形状の基板を用いても、セルギャップが 所定の一定距離に保持された液晶素子を作製することができる。 According to the present invention, using the transparent substrate 101 and the transparent substrate 102 having a curved shape, a liquid crystal element in which the distance separating the opposing surfaces between the two transparent substrates is maintained at a predetermined constant distance is manufactured. be able to. Hereinafter, the distance separating the opposing surfaces of both transparent substrates in the liquid crystal element is also referred to as a cell gap. The shape of the two curved substrates is not necessarily the same shape as the constraint force in the manufacturing process of the bending process. Therefore, when the two curved substrates are overlapped so that the opposing surfaces are substantially parallel, a gap is generated between the substrates, and the cell gap may not be a predetermined constant distance when a liquid crystal element is used. Concerned. However, according to the present invention, it is possible to produce a liquid crystal element in which the cell gap is maintained at a predetermined constant distance even when a curved substrate whose shape does not completely match is used.
本発明においては、セルギャップが所定の一定距離に保持された液晶素子の作製 が容易であることから、それぞれが湾曲形状を有する透明基板 101と透明基板 102 とは、略同一の形状を有することが好ましい。ここで「略同一の形状」とは、(A)液晶 素子を構成する透明基板 101および透明基板 102の組合わせが、該透明基板 101 および透明基板 102を対向する面が略平行になるように重ね合わせかつ両透明基 板の対向する面内ないし周縁の少なくとも 1点で接触させた場合、湾曲基板端部に おける両湾曲基板の間隔が両湾曲基板の間隔の最大値よりも小さくなる組み合わせ であること、(B)液晶素子を構成する透明基板 101および透明基板 102の組合わせ が、該透明基板 101および透明基板 102を対向する面が略平行になるように重ね合 わせかつ両透明基板の対向する面内ないし周縁の少なくとも 1点で接触させた場合 、湾曲基板端部における両湾曲基板の間隔が 0. 5mm以下となる糸且み合わせである こと、または、(C)液晶素子を構成する透明基板 101および透明基板 102の組合わ せ力 該透明基板 101および透明基板 102を対向する面がほぼ平行になるように重 ね合わせかつ両透明基板の対向する面内ないし周縁の少なくとも 1点で接触させた 場合、湾曲基板端部における両湾曲基板の間隔が前記構造体における両湾曲基板 の対向する面を隔てる所定距離の 20倍以下となる組み合わせであること、を意味す る。  In the present invention, since it is easy to produce a liquid crystal element in which the cell gap is maintained at a predetermined constant distance, the transparent substrate 101 and the transparent substrate 102 each having a curved shape have substantially the same shape. Is preferred. Here, “substantially the same shape” means that (A) the combination of the transparent substrate 101 and the transparent substrate 102 constituting the liquid crystal element is such that the surfaces facing the transparent substrate 101 and the transparent substrate 102 are substantially parallel. In a combination in which the distance between the curved substrates at the end of the curved substrate is smaller than the maximum value of the distance between the curved substrates when they are overlapped and brought into contact with each other at least one point in the opposite or peripheral edges of both transparent substrates. (B) The combination of the transparent substrate 101 and the transparent substrate 102 constituting the liquid crystal element is such that the transparent substrate 101 and the transparent substrate 102 are overlapped so that the surfaces facing each other are substantially parallel to each other. When contact is made at at least one point on the opposite surface or the periphery, the gap between the curved substrates at the edge of the curved substrate is 0.5 mm or less, or (C) the liquid crystal element is constituted Transparent substrate 101 and Combined force of the transparent substrate 102 When the transparent substrate 101 and the transparent substrate 102 are overlapped so that the opposing surfaces are substantially parallel, and contact is made at least at one point in the opposing surface or the peripheral edge of both transparent substrates This means that the distance between the curved substrates at the end of the curved substrate is a combination that is not more than 20 times the predetermined distance separating the opposing surfaces of the curved substrates in the structure.
本発明においては、透明基板 101および 102の組み合わせが前記 (A)、 (B)また は(C)の組み合わせであることによって、形状が完全に一致しない 2枚の湾曲形状の 基板を用いて液晶素子を作製した場合においても、液晶素子における両基板の対 向する面を隔てる間隔を略均一にできる。  In the present invention, the combination of the transparent substrates 101 and 102 is the combination of the above (A), (B) or (C), so that the liquid crystal is formed using two curved substrates whose shapes do not completely match. Even when the element is manufactured, the distance separating the opposing surfaces of the two substrates in the liquid crystal element can be made substantially uniform.
本発明の構造体において、両基板の対向する面を隔てる間隔を均一にするために は、透明基板 101および 102を対向面を同一形状にする必要がある。透明基板 101 と透明基板 102のみを対向する面が略平行になるように重ね合わせて接触させた場 合、対向面が同一形状であれば理論的に対向面は全面で接触する。しかし、実際に はその形状の相違により接触しない部分が生じる。したがって、接触しない部分は弾 性変形させて対向面を略同一形状とする必要がある。透明基板 101と透明基板 102 の対向する面の間にスぺーサ一などを介して対向面を隔てる間隔を均一にする場合 も同様に、間隔が広い部分は基板を弾性変形させることにより所定の間隔にする必 要がある。この場合、間隔の広い部分が基板の端部や周縁部に存在すると、組み立 てられた構造体の端部や周縁部に間隔を広げようとする応力が残留する。この応力 が大きい場合にはシールの破壊や変形のおそれが生じる。特に後述のような製造ェ 程にぉ 、て、シール材が未硬化の状態にぉ 、て機能材料保持体を減圧雰囲気から 大気圧雰囲気に移動させた場合、シールが破壊されるおそれが大きい。一方、間隔 の広 、部分が基板の端部や周縁部に存在しな 、場合には、組み立てられた構造体 の端部や周縁部に間隔を広げようとする応力が少なくなり、シールの破壊や変形の おそれが少なくなる。 In the structure of the present invention, in order to make the distance separating the opposing surfaces of both substrates uniform The transparent substrates 101 and 102 must have the same shape on the opposing surfaces. When only the transparent substrate 101 and the transparent substrate 102 are overlapped and brought into contact with each other so that the opposing surfaces are substantially parallel to each other, if the opposing surfaces have the same shape, the opposing surfaces theoretically contact each other. However, in actuality, there are parts that do not come into contact due to the difference in shape. Therefore, it is necessary to elastically deform the non-contacting portion so that the opposing surfaces have substantially the same shape. Similarly, when the spacing between the opposing surfaces of the transparent substrate 101 and the transparent substrate 102 is made uniform via a spacer or the like, the portion with the wide spacing is similarly deformed by elastically deforming the substrate. Must be an interval. In this case, if a portion having a large interval exists at the end portion or the peripheral portion of the substrate, a stress for expanding the interval remains at the end portion or the peripheral portion of the assembled structure. If this stress is large, the seal may be broken or deformed. In particular, during the manufacturing process as described later, when the functional material holder is moved from the reduced pressure atmosphere to the atmospheric pressure atmosphere while the sealing material is in an uncured state, the seal is likely to be broken. On the other hand, if the gap is wide and there is no part at the edge or peripheral edge of the substrate, the stress that attempts to widen the gap at the edge or peripheral edge of the assembled structure is reduced, and the seal is broken. And the risk of deformation is reduced.
前記 (A)においては、湾曲基板端部における両湾曲基板の間隔はそれ以外の部 分に存在する最大間隔より小さいことにより、湾曲基板端部に両湾曲基板の間隔を 広ける方向の応力が集中するおそれは少ない。したがって、湾曲基板の弾性変形に より略同一の形状となった対向面を有する (すなわち、対向する面を隔てる間隔が均 一である)構造体が得られ、かつ構造体におけるシールの破壊や変形のおそれは少 ない。  In (A), since the distance between the curved substrates at the end of the curved substrate is smaller than the maximum distance existing at the other portions, the stress in the direction in which the distance between the curved substrates is widened at the curved substrate end. There is little risk of concentration. Therefore, it is possible to obtain a structure having opposing surfaces that have substantially the same shape due to elastic deformation of the curved substrate (that is, the spacing between the opposing surfaces is uniform), and the seal is broken or deformed in the structure. There is little risk of this.
前記 (B)において、透明基板 101および透明基板 102の組み合わせは透明基板 の面積や曲率にもよる力 透明基板の面積が 0. 04m2以上 0. 5m2未満である場合 は、両透明基板周縁の間隔が 50 m以下となる組み合わせが好ましぐ 30 m以 下となる組み合わせが特に好ましい。また、透明基板の面積が 0. 5m2以上 2m2以下 である場合は、両透明基板周縁の間隔が 0. 4mm以下となる組み合わせが好ましく 、 0. 2mm以下となる組み合わせが特に好ましい。 Wherein (B), the case the combination of the transparent substrate 101 and the transparent substrate 102 is less than 0. 5m 2 0. 04m 2 or more areas of force transparent substrate depends on the area and the curvature of the transparent substrate, both a transparent substrate periphery A combination with an interval of 50 m or less is preferred, and a combination with 30 m or less is particularly preferred. In addition, when the area of the transparent substrate is 0.5 m 2 or more and 2 m 2 or less, a combination in which the distance between the peripheral edges of both transparent substrates is 0.4 mm or less is preferable, and a combination in which the distance between the transparent substrates is 0.2 mm or less is particularly preferable.
前記 (C)において、両透明基板周縁の間隔は、液晶素子における両透明基板の 対向する面を隔てる所定距離の 15倍以下となる組み合わせであることが好ましぐ 1 0倍以下となる組み合わせであることが特に好ましい。 In the above (C), the distance between the peripheral edges of both transparent substrates is the same as A combination that is 15 times or less of the predetermined distance separating the opposing surfaces is preferred, and a combination that is 10 times or less is particularly preferred.
湾曲形状を有する 2枚の透明基板は、湾曲基板端部における両湾曲基板の間隔 1S 面内の両基板の間隔よりも小さいかまたは同じであることが好ましぐ小さいことが 特に好ましい。湾曲基板端部における両基板の間隔が面内に比して小さいほど、容 易に周縁部をシールできる。カロえて、両基板の間隔は、必ずしも面内から端部へ向 力つて単調減少している必要はなぐ面中央部と端部との間に、両基板間の距離が 面の中央部よりも大きい点があってもよい。さらに、湾曲基板端部における両基板の 間隔が面内の全ての点における両基板の間隔よりも小さい必要はなぐ面内のある 点において両基板の間隔が湾曲基板端部における両基板の間隔より大きくなつてい る点があってもよい。  It is particularly preferable that the two transparent substrates having a curved shape are preferably smaller than or equal to the distance between the two substrates in the space 1S plane between the two curved substrates at the edge of the curved substrate. The smaller the distance between the two substrates at the end of the curved substrate is, the easier it is to seal the periphery. The distance between the two substrates is not necessarily monotonously decreasing from the in-plane toward the end, and the distance between the two substrates is greater than the center of the surface. There may be big points. Furthermore, the distance between the two substrates at the end of the curved substrate does not need to be smaller than the distance between the two substrates at all points in the plane. There may be a growing point.
なお、本発明においては、透明基板 101および 102の組み合わせは、前記 (A)と( B)の両方の条件、前記 (A)と(C)の両方の条件または前記(B)と(C)の両方の条件 を満たして 、てもよく、前記 (A)〜(C)の 3つの条件を満たして 、てもよ 、。  In the present invention, the combination of the transparent substrates 101 and 102 is the condition of both (A) and (B), the condition of both (A) and (C), or the condition (B) and (C). Both of the above conditions may be satisfied, and the above three conditions (A) to (C) may be satisfied.
[0024] 透明基板 101の透明基板 102と対向する側の面には、透明基板 101よりも一回り 小さな略矩形状の透明電極 101aが形成されている。同様に、透明基板 102の透明 基板 101と対向する側の面には、透明基板 102よりも一回り小さな略矩形状の透明 電極 102bが形成されている。透明電極 101aおよび 102aは、例えば ITO (Indium Ti n Oxide)からなる。但し、液晶素子 100を表示パネルとして用いる場合は、透明電極 101aおよび 102aのうちのいずれか一方に、 A1 (アルミニウム)や誘電体多層膜の反 射電極を用いてもよい。透明電極 101aおよび 102aのパターン形状は、液晶素子 10 0の用途によって適宜選択され、上記のようなベタ電極でもよいし、透明電極 101aと 102aとが互いに直交して配設されたストライプ形状でもよいし、さらにはマーク、キヤ ラタター、文字、数字または記号等の特定形状であってもよい。  On the surface of the transparent substrate 101 facing the transparent substrate 102, a substantially rectangular transparent electrode 101a that is slightly smaller than the transparent substrate 101 is formed. Similarly, a substantially rectangular transparent electrode 102b that is slightly smaller than the transparent substrate 102 is formed on the surface of the transparent substrate 102 facing the transparent substrate 101. The transparent electrodes 101a and 102a are made of, for example, ITO (Indium Tin Oxide). However, when the liquid crystal element 100 is used as a display panel, a reflective electrode of A1 (aluminum) or a dielectric multilayer film may be used for one of the transparent electrodes 101a and 102a. The pattern shape of the transparent electrodes 101a and 102a is appropriately selected depending on the use of the liquid crystal element 100, and may be a solid electrode as described above, or may be a stripe shape in which the transparent electrodes 101a and 102a are arranged orthogonal to each other. Furthermore, it may be a specific shape such as a mark, a character, a letter, a number, or a symbol.
[0025] 透明電極 101aおよび 102aの上には、それぞれ絶縁膜 101bおよび 102bが成膜 されている。さらに、絶縁膜 101bおよび 102bの上には、それぞれ配向膜 101cおよ び 102cが形成されている。絶縁膜 101bおよび 102bは、シリカとチタユアのゾルゲ ル液を焼成する等して作られる。配向膜 101cおよび 102cは、ポリイミド等で作られる 。配向膜 101cおよび 102cは、ラビング処理が施されてもよく施されなくてもよぐ目 的に応じて何れかが適宜選択される。ここで、配向膜 101cおよび 102cのうち少なく とも一方は、液晶を透明基板 101および 102の内面に垂直に配向させる配向膜であ ることが好ましい。具体的にはプレチルト角力 ½0° 以上の配向膜とすることが好まし い。これにより、透過状態での透過率を高くすることができる。 Insulating films 101b and 102b are formed on the transparent electrodes 101a and 102a, respectively. Further, alignment films 101c and 102c are formed on the insulating films 101b and 102b, respectively. The insulating films 101b and 102b are formed by firing a sol-gel solution of silica and titania. The alignment films 101c and 102c are made of polyimide or the like . The alignment films 101c and 102c are appropriately selected depending on the purpose, which may or may not be subjected to a rubbing treatment. Here, at least one of the alignment films 101c and 102c is preferably an alignment film that aligns the liquid crystal perpendicularly to the inner surfaces of the transparent substrates 101 and 102. Specifically, an alignment film having a pretilt angular force of ½0 ° or more is preferable. Thereby, the transmittance | permeability in a permeation | transmission state can be made high.
[0026] シール材 103は透明基板 101および 102の周縁部全周に設けられ、かつ透明基 板 101および 102を所定距離隔てて接合するとともに両透明基板の間隙を封止し、 透明基板 101および 102、ならびにシール材 103で密封された間隙を形成する。 シール材 103の材料としては、例えば紫外線硬化性榭脂ゃ熱硬化性榭脂が用いら れる。具体的には、アクリル系、エポキシ系、シリコーン系またはウレタン系等の榭脂 を用いることができる。また、シール材には後述するスぺーサが含まれていてもよい。  [0026] Sealing material 103 is provided around the entire periphery of transparent substrates 101 and 102, and joins transparent substrates 101 and 102 at a predetermined distance and seals the gap between the transparent substrates 101 and 102. 102, as well as a gap sealed with the sealing material 103 is formed. As the material of the sealing material 103, for example, an ultraviolet curable resin or a thermosetting resin is used. Specifically, acrylic resin, epoxy resin, silicone resin or urethane resin can be used. Moreover, the spacer mentioned later may be contained in the sealing material.
[0027] スぺーサ 105は、透明基板 101と 102との対向する面の間隙に配置され、液晶素 子における両透明基板の対向する面間を所定の一定の距離に保持する(以下、液 晶素子における両透明基板の対向する面間の距離をセルギャップとも記載する。 )。 スぺーサ 105は、前記間隙内に均一に配置される。セルギャップは、スぺーサ 105の 直径に概ね一致し、その値は 1〜50 mが好ましぐ 1〜30 mがさらに好ましぐ 2 〜20 mが特に好ましい。セルギャップが小さすぎるとコントラストが低下し、大き過 ぎると駆動電圧が上昇してしまう。  Spacer 105 is disposed in the gap between the opposing surfaces of transparent substrates 101 and 102, and maintains a predetermined constant distance between the opposing surfaces of both transparent substrates in the liquid crystal element (hereinafter referred to as liquid crystal element). The distance between the opposing surfaces of both transparent substrates in the crystal element is also referred to as a cell gap). The spacers 105 are uniformly arranged in the gap. The cell gap generally corresponds to the diameter of the spacer 105, and a value of 1 to 50 m is preferable, and a value of 1 to 30 m is more preferable, and 2 to 20 m is particularly preferable. If the cell gap is too small, the contrast will decrease, and if it is too large, the drive voltage will increase.
スぺーサ 105は、ガラス、シリカまたは架橋したアクリル榭脂等の硬質な材料力もな る粒子である。また、液晶素子として (完成品として)運搬されたり使用されたりする状 況において、振動等による両透明基板の位置ずれの影響を排除すること等を目的と して、透明基板と固着させるための榭脂を表面にコーティングしたスぺーサを用いて もよい。スぺーサ 105の形状は球状に限られるものではなぐファイバー状でもよい。 また、リブ状のものを基板 101または 102の何れか一方に形成し、これをスぺーサと して用いてもよい。  Spacer 105 is a particle that also has a hard material force such as glass, silica, or cross-linked acrylic resin. In addition, for the purpose of eliminating the influence of the displacement of both transparent substrates due to vibration, etc. in the situation where they are transported or used as liquid crystal elements (as finished products) A spacer whose surface is coated with rosin may be used. The shape of the spacer 105 is not limited to a spherical shape, but may be a fiber shape. Further, a rib-shaped member may be formed on either one of the substrates 101 or 102 and used as a spacer.
[0028] 複合体層 104は、透明基板 101および 102とシール材 103とで密封された間隙内 に封入されている。複合体層 104は、液晶と硬化物との複合体からなる。該複合体層 104は、前記間隙内に液晶と硬化性化合物とを含む液晶材料が封入された状態で 前記液晶材料中の硬化性ィ匕合物を重合によって硬化して得られる複合体力 なるこ とが好ましい。 The composite layer 104 is sealed in a gap sealed with the transparent substrates 101 and 102 and the sealing material 103. The composite layer 104 is made of a composite of a liquid crystal and a cured product. The composite layer 104 has a liquid crystal material containing a liquid crystal and a curable compound sealed in the gap. It is preferable that the composite strength obtained by curing the curable compound in the liquid crystal material is obtained by polymerization.
[0029] 複合体を構成する液晶としては、電界駆動型の材料であるネマティック液晶等が用 いられる。液晶としては、 2種類以上の液晶を組み合わせて用いてもよい。液晶の誘 電率異方性の極性は正負のどちらでもよい。電界による表示を目的とする場合、誘 電率異方性が負の液晶を用 、るのが好ま U、。誘電率異方性が負の液晶を用い、 垂直配向膜によって液晶分子の配向方向を透明基板に対して垂直にすることで、透 過状態での透過率を高くすることができるからである。また、駆動電圧を低減するた めには、誘電率異方性の絶対値が大き 、ことが好ま 、。  [0029] As the liquid crystal constituting the composite, nematic liquid crystal or the like, which is an electric field drive type material, is used. As the liquid crystal, two or more kinds of liquid crystals may be used in combination. The polarity of the dielectric anisotropy of the liquid crystal may be positive or negative. For the purpose of electric field display, it is preferable to use liquid crystal with negative dielectric anisotropy. This is because the transmittance in the transparent state can be increased by using a liquid crystal having a negative dielectric anisotropy and making the alignment direction of the liquid crystal molecules perpendicular to the transparent substrate by the vertical alignment film. In order to reduce the drive voltage, it is preferable that the absolute value of dielectric anisotropy is large.
[0030] 本発明の実施の形態に力かる液晶素子に用いられる複合体層 104は、下式(1)で 表される二官能重合性化合物 (A)の 1種以上と、下式 (2)で表される二官能重合性 化合物(B)の 1種以上と、非重合性の前記液晶とを少なくとも含む液晶材料を重合 によって硬化させて得られる複合体の層であることが好ましい。  [0030] The composite layer 104 used in the liquid crystal element according to the embodiment of the present invention includes at least one bifunctional polymerizable compound (A) represented by the following formula (1) and the following formula (2 It is preferably a composite layer obtained by polymerizing a liquid crystal material containing at least one of the bifunctional polymerizable compound (B) represented by formula (B) and the non-polymerizable liquid crystal.
[0031] A1— R1— X1— (Q3— Z2)— Q1— Z1— Q2— (Z3— Q4)— X2— R2— A2 (1) [0031] A 1 — R 1 — X 1 — (Q 3 — Z 2 ) — Q 1 — Z 1 — Q 2 — (Z 3 — Q 4 ) — X 2 — R 2 — A 2 (1)
P q  P q
[0032] A3— R3— A4 (2) [0032] A 3 — R 3 — A 4 (2)
[0033] 二官能重合性化合物 (A)は、複合体中で、剛直性を有する骨格部分を形成する 成分である。一方、二官能重合性ィ匕合物 (B)は、複合体中で、衝撃吸収の役割を果 たすことができる柔軟部分を形成する成分である。このような異なる物性の化合物を 組み合わせることにより、液晶素子 100に好適な液晶 Z硬化物複合体の層 104が得 られる。もちろん硬化物を形成するための硬化性化合物 (重合性化合物)はこれに限 定されるものではない。  [0033] The bifunctional polymerizable compound (A) is a component that forms a skeleton portion having rigidity in the composite. On the other hand, the bifunctional polymerizable compound (B) is a component that forms a flexible portion that can play a role of shock absorption in the composite. By combining these compounds having different physical properties, a layer 104 of a liquid crystal Z cured product composite suitable for the liquid crystal element 100 can be obtained. Of course, the curable compound (polymerizable compound) for forming the cured product is not limited to this.
[0034] 二官能重合性ィ匕合物 (A)としてはメソゲン構造を有する化合物であり、前記式(1) で表される化合物のうち以下に示す第 1〜第 3の実施形態が好ましい。  [0034] The bifunctional polymerizable compound (A) is a compound having a mesogenic structure, and the following first to third embodiments are preferable among the compounds represented by the formula (1).
[0035] 〔二官能重合性化合物 (A)の第 1の実施の形態〕  [First embodiment of bifunctional polymerizable compound (A)]
第 1の実施の形態においては、式(1)中の記号は以下の意味を示す。  In the first embodiment, the symbols in formula (1) have the following meanings.
A\ A2は、それぞれ独立に、アタリロイルォキシ基、メタクリロイルォキシ基またはビA \ A 2 each independently represents atalyloxy group, methacryloyloxy group or
-ルエーテル基である。 -Ruether group.
Q\ Q2、 Q3、 Q4は、それぞれ独立に、置換基を有していてもよい 1, 4 フエ-レン 基または 1, 4 シクロへキシレン基である。 Q \ Q 2 , Q 3 , and Q 4 are each independently 1, 4 -phenylene Group or 1,4 cyclohexylene group.
X1、 X2は、それぞれ独立に、単結合、酸素原子またはエステル結合である。 X 1 and X 2 are each independently a single bond, an oxygen atom or an ester bond.
R\ R2は、それぞれ独立に、単結合または炭素原子間に一個または複数個のエー テル性酸素原子を有して 、てもよ ヽ直鎖または分枝の炭素数 2〜20のアルキレン基 である。 R \ R 2 each independently has a single bond or one or more etheric oxygen atoms between carbon atoms, and may be a linear or branched alkylene group having 2 to 20 carbon atoms. It is.
z z z3は、それぞれ独立に、単結合、 c(=o)— o—、 -o-c(=o)一、zzz 3 is independently a single bond, c (= o) —o—, -oc (= o)
-CH -CH 一、 C≡C一、 -CH O—、 -O-CH一である。 —CH 2 —CH 1, C≡C 1, —CH 2 O—, —O—CH 1.
2 2 2 2  2 2 2 2
p、 qは、いずれも 0である力または一方が 0で他方が 1である。  p and q are both zero or one is 0 and the other is 1.
[0036] 〔二官能重合性化合物 (A)の第 2の実施の形態〕 [Second embodiment of bifunctional polymerizable compound (A)]
第 2の実施形態においては、式(1)中の記号は以下の意味を示す。  In the second embodiment, the symbols in formula (1) have the following meanings.
A\ A2は、それぞれ独立に、アタリロイルォキシ基またはメタクリロイルォキシ基であ る。 A \ A 2 are each independently, Ru Atari Roy Ruo alkoxy group or a methacryloyloxy Ruo alkoxy group der.
Q\ Q2はいずれも置換基を有していてもよい 1, 4 フエ-レン基であり、 Q3、 Q4が 、それぞれ独立に、置換基を有していてもよい 1, 4 フエ-レン基または 1, 4 シク 口へキシレン基である。 Q \ Q 2 is an optionally substituted 1, 4 -phenylene group, and Q 3 and Q 4 are each independently an optionally substituted 1, 4 phenol. -Len group or 1,4 cyclohexane group.
X1、 X2及び R1 R2は、前記と同様の意味を示す。 X 1 , X 2 and R 1 R 2 have the same meaning as described above.
z z2、 z3は、それぞれ独立に、単結合、 c(=o)— o—、— o— c(=o)—、zz 2 and z 3 are each independently a single bond, c (= o) — o—, — o— c (= o) —,
— CH—CH または C≡C一である。 — CH—CH or C≡C.
2 2  twenty two
p、 qは、いずれも 0である力または一方が 0で他方が 1である。  p and q are both zero or one is 0 and the other is 1.
[0037] 〔二官能重合性化合物 (A)の第 3の実施の形態〕 [Third Embodiment of Bifunctional Polymerizable Compound (A)]
第 3の実施の形態においては、式(1)中の記号は以下の意味を示す。  In the third embodiment, the symbols in the formula (1) have the following meanings.
A\ A2は、いずれもアタリロイルォキシ基である。 A \ A 2 are both Atari Roy Ruo alkoxy group.
Q\ Q2は、いずれも置換基を有していてもよい 1, 4 フエ-レン基であり、 Q3、 Q4 力 それぞれ独立に、置換基を有していてもよい 1, 4 フエ-レン基または 1, 4 シ クロへキシレン基である。 Q \ Q 2 is an optionally substituted 1, 4 -phenylene group, and Q 3 and Q 4 are each independently an optionally substituted 1, 4 phenol. -Len group or 1,4 cyclohexylene group.
X1、 X2は、前記と同様の意味を示す。 X 1 and X 2 have the same meaning as described above.
R2は、それぞれ独立に、直鎖または分枝の炭素数 2〜20のアルキレン基であ る。 Z1は、単結合、 C ( = 0)— O O C ( = 0) -CH -CH または C Each R 2 is independently a linear or branched alkylene group having 2 to 20 carbon atoms. Z 1 is a single bond, C (= 0) — OOC (= 0) -CH -CH or C
2 2  twenty two
≡c一であり、 z2、 z3がいずれも単結合である。 ≡c is one, and z 2 and z 3 are both single bonds.
p、 qは、いずれも 0である力または一方が 0で他方が 1である。  p and q are both zero or one is 0 and the other is 1.
[0038] 前述の二官能重合性化合物 (A)の具体例としては、下式(3)の化合物を例示する ことができる。 [0038] As a specific example of the above-mentioned bifunctional polymerizable compound (A), a compound of the following formula (3) can be exemplified.
[0039] [化 1] [0039] [Chemical 1]
Figure imgf000017_0001
Figure imgf000017_0001
[0040] 二官能重合性化合物 (Α)は、液晶性の化合物であってもよぐ非液晶性の化合物 であってもよい。二官能重合性ィ匕合物 (Α)としては、非液晶性の二官能重合性化合 物 (Α)のみを使用してもよぐ液晶性の二官能重合性化合物 (Α)のみを使用してもよ ぐさらに、非液晶性の二官能重合性ィ匕合物 (Α)と液晶性の二官能重合性ィ匕合物( Α)とを併用してもよい。 [0040] The bifunctional polymerizable compound (i) may be a liquid crystal compound or a non-liquid crystal compound. As the bifunctional polymerizable compound (Α), only a non-liquid crystalline bifunctional polymerizable compound (よ) or a liquid crystalline bifunctional polymerizable compound (Α) is used. However, a non-liquid crystalline bifunctional polymerizable compound (Α) and a liquid crystalline bifunctional polymerizable compound (Α) may be used in combination.
[0041] 二官能重合性化合物 (Β)は、メソゲン構造を持たな 、ィ匕合物であり、下式 (2)で表 される化合物が好ましい。  [0041] The bifunctional polymerizable compound (Β) is a compound having no mesogenic structure and is preferably a compound represented by the following formula (2).
Α3 - R3 - Α4 (2) Α 3 -R 34 (2)
Α3、 Α4は、それぞれ独立に、アタリロイルォキシ基、メタクリロイルォキシ基またはビ -ルエーテル基である。 Α 3 and Α 4 are each independently an allyloyloxy group, a methacryloyloxy group or a butyl ether group.
R3は、 R4—または一(R5—0) —R5—である。 R 3 is R 4 — or one (R 5 —0) —R 5 —.
ただし、 R4および R5は、下記 (i)または (ii)の意味を示す。 However, R 4 and R 5 have the following meanings (i) or (ii).
(i)R4は炭素数 2〜20の直鎖または分枝のアルキレン基であり、 R5は炭素数 2〜8 の直鎖または分枝のアルキレン基であり、 nは 1〜 10の整数である。 (i) R 4 is a linear or branched alkylene group having 2 to 20 carbon atoms, R 5 is a linear or branched alkylene group having 2 to 8 carbon atoms, and n is an integer of 1 to 10 It is.
( ) !^は炭素数2〜20の直鎖ァルキレン基でぁり、 が—(じ11 ) ―、 -CH— C  ()! ^ Is a straight-chain alkylene group having 2 to 20 carbon atoms, and is — (di 11) —, —CH— C
2 r 2 2 r 2
H (CH ) CH— CH— CH (CH )—または一 CH— CH— C (CH ) —であH (CH) CH— CH— CH (CH) — or one CH— CH— C (CH) —
3 2 2 3 2 2 3 2 り(ただし、 rは 2〜5の整数)、 nが 1〜10の整数である。 3 2 2 3 2 2 3 2 (where r is an integer from 2 to 5), n is an integer from 1 to 10.
[0042] 二官能重合性化合物(B)は、単独で用いてもよぐ 2種類以上組み合わせて用い てもよい。二官能重合性ィ匕合物 (B)としては、たとえば下式 (4)で表される化合物が 挙げられる。 [0042] The bifunctional polymerizable compound (B) may be used alone or in combination of two or more. May be. Examples of the bifunctional polymerizable compound (B) include compounds represented by the following formula (4).
[0043] [化 2] [0043] [Chemical 2]
Η \ Η \
CH  CH
2 ^ 0-(CH2CH2CH2CH20)9— C …(4 ) 2 ^ 0- (CH 2 CH 2 CH 2 CH 2 0) 9 — C… ( 4)
CH-C 0  CH-C 0
、\  , \
0  0
[0044] 二官能重合性化合物 (B)は重合性基 A3、 A4と、前記重合性基 A3と A4とを連結す る 2価の基 R3を有する。 R3としては、 R3を構成する原子間同士が単結合で連結され た部分を有し、分子内での回転の自由度の高い基を選択することが好ましい。このよ うに構成することで、硬化反応によって得られる硬化物の柔軟性を向上させることが できる。また、重合相分離をスムーズに進行させることができる。 The bifunctional polymerizable compound (B) has a polymerizable group A 3 , A 4 and a divalent group R 3 linking the polymerizable group A 3 and A 4 . As R 3 , it is preferable to select a group having a portion in which atoms constituting R 3 are connected by a single bond and having a high degree of freedom of rotation in the molecule. By comprising in this way, the softness | flexibility of the hardened | cured material obtained by hardening reaction can be improved. In addition, the polymerization phase separation can proceed smoothly.
[0045] A3、 A4間に存在する基 R3の炭素原子、エーテル性酸素原子の数が多 、ほど、硬 化後に得られる硬化物の柔軟性は向上する。一方、これらの原子数が多いほど、液 晶材料を調製する際の液晶との相溶性は低下する。また、 ODF法を採用する場合、 揮発性を考慮して、二官能重合性ィ匕合物 (B)の炭素原子数は 8以上、好ましくは 11 以上とする。これらの事情を鑑み、基 R3の構造 (原子数および構成原子)を適切に選 択することが好ましい。 [0045] A 3, carbon atoms of the radicals R 3 present between A 4, the number of etheric oxygen atoms many more, flexibility of the cured product obtained after hardening is improved. On the other hand, the greater the number of these atoms, the lower the compatibility with the liquid crystal when preparing the liquid crystal material. When the ODF method is employed, the number of carbon atoms of the bifunctional polymerizable compound (B) is 8 or more, preferably 11 or more in consideration of volatility. In view of these circumstances, it is preferable to appropriately select the structure (number of atoms and constituent atoms) of the group R 3 .
基 R3にはエーテル性酸素原子は含まれて 、ても含まれて 、なくてもょ 、。エーテル 性酸素原子を含んでいる場合は、硬化物の柔軟性が向上するので、好ましい。 The group R 3 contains, but does not contain, an etheric oxygen atom. When it contains an etheric oxygen atom, the flexibility of the cured product is improved, which is preferable.
[0046] 二官能重合性ィ匕合物 (B)は、分子内に Q1のような基 (環基)を含まないため、化合 物全体に含まれる炭素原子数を大幅に増大させることなく R3に含まれる炭素原子数 を増やすことが比較的容易である。この構造の採用により、液晶との相溶性を確保し つつ、液晶材料力 硬化物を硬化して得られる硬化物の柔軟性を大きく向上させる ことができる。 [0046] Since the bifunctional polymerizable compound (B) does not contain a group (ring group) such as Q 1 in the molecule, it does not significantly increase the number of carbon atoms contained in the entire compound. It is relatively easy to increase the number of carbon atoms contained in R 3 . By adopting this structure, the flexibility of the cured product obtained by curing the cured product of the liquid crystal material can be greatly improved while ensuring compatibility with the liquid crystal.
[0047] 本発明にお ヽて、液晶材料には硬化性化合物の硬化を開始させる硬化剤や硬化 を促すための硬化促進剤 (硬化触媒など)が含まれていてもよい。特に、重合開始剤 を用いることが好ましい。このような重合開始剤としては、公知の重合触媒から適宜選 択できる。例えば、光重合相分離法を用いる場合、ベンゾインエーテル系、ァセトフヱ ノン系、フォスフィンオキサイド系などの一般的な光重合開始剤を用いることができる [0047] In the present invention, the liquid crystal material may contain a curing agent for initiating curing of the curable compound and a curing accelerator (such as a curing catalyst) for promoting curing. In particular, polymerization initiators Is preferably used. Such a polymerization initiator can be appropriately selected from known polymerization catalysts. For example, when using a photopolymerization phase separation method, a general photopolymerization initiator such as a benzoin ether type, a acetophenone type, or a phosphine oxide type can be used.
[0048] さらに、コントラスト比や安定性の向上を目的として、種々の化合物を液晶材料に対 して添加することもできる。例えば、コントラストの向上を目的として、アントラキノン系、 スチリル系、ァゾメチン系、ァゾ系等の各種二色性色素を用いることができる。その場 合、二色性色素は、基本的に液晶化合物と相溶し、硬化性ィ匕合物とは相溶しないこ とが好ましい。この他に、酸化防止剤、紫外線吸収剤、各種可塑剤の添加も、安定性 や耐久性向上の点力 好まし 、。 Furthermore, various compounds may be added to the liquid crystal material for the purpose of improving the contrast ratio and stability. For example, for the purpose of improving contrast, various dichroic dyes such as anthraquinone, styryl, azomethine, and azo may be used. In that case, it is preferable that the dichroic dye is basically compatible with the liquid crystal compound and not compatible with the curable compound. In addition, the addition of antioxidants, UV absorbers and various plasticizers is also preferred for improving stability and durability.
[0049] 次に、上述した液晶素子 100の動作について説明する。  Next, the operation of the liquid crystal element 100 described above will be described.
たとえば、電圧印加時に散乱状態となり、電圧非印加時に透過状態となる液晶素 子においては、透明電極 101aおよび 102aの間に電圧を印加すると、これらの電極 間の電界により複合体層 104中の液晶分子がランダムに配向し、複合体層 104は散 乱状態となる。一方、透明電極 101aおよび 102aの間に電圧を印加していないとき は、液晶分子が配向しているため、複合体層 104は透明状態となる。透明状態の複 合体層 104は、液晶素子 100の前面 (観察者の居る側の面)から背面 (観察者の居る のとは反対側の面)側を観察することができる。このように電圧の印加 Z非印加により 、散乱状態と透明状態が変化するため、所望の画像などを表示することができる。  For example, in a liquid crystal element that is in a scattering state when a voltage is applied and is in a transmission state when no voltage is applied, when a voltage is applied between the transparent electrodes 101a and 102a, the liquid crystal in the composite layer 104 is generated by the electric field between these electrodes. The molecules are randomly oriented, and the composite layer 104 is in a scattered state. On the other hand, when no voltage is applied between the transparent electrodes 101a and 102a, since the liquid crystal molecules are aligned, the composite layer 104 is in a transparent state. The composite layer 104 in the transparent state can be observed from the front surface (the surface on the side where the observer is present) to the back surface (the surface opposite to the side where the observer is present) of the liquid crystal element 100. As described above, since the scattering state and the transparent state change when voltage is not applied and Z is not applied, a desired image or the like can be displayed.
[0050] なお、電圧印加時に透過状態となり、電圧非印加時に散乱状態となる液晶素子で もよい。ただし、車両の窓ガラスとして使用する場合等ではフェールセーフの観点か ら、電圧印加時に散乱状態となり、電圧非印加時に透過状態となる液晶素子が好ま しい。但しサンルーフであれば、電圧非印加時に散乱状態となって白濁し、電圧印 加により透過状態となって透明となる液晶素子であってもよい。  [0050] Note that a liquid crystal element that is in a transmission state when a voltage is applied and in a scattering state when a voltage is not applied may be used. However, when used as a window glass of a vehicle, from the viewpoint of fail-safety, a liquid crystal element that is in a scattering state when a voltage is applied and is in a transmission state when no voltage is applied is preferable. However, if it is a sunroof, it may be a liquid crystal element that becomes turbid in a scattering state when no voltage is applied and becomes transparent in a transmission state when a voltage is applied.
本発明は、また、前記液晶素子などの前記構造体を製造する方法である。本発明 の製造方法は、減圧下で機能材料を封入した機能材料保持体を製造し、次いで、機 能材料保持体を大気圧の雰囲気に曝すことにより両湾曲基板間の距離を略均一に せしめることを特徴とする。すなわち、下記第 1の工程と下記第 2の工程とを有する、 前記構造体の製造方法である。 The present invention is also a method for producing the structure such as the liquid crystal element. The manufacturing method of the present invention manufactures a functional material holder enclosing a functional material under reduced pressure, and then exposes the functional material holder to an atmosphere of atmospheric pressure to make the distance between the two curved substrates substantially uniform. It is characterized by that. That is, it has the following first step and the following second step, It is a manufacturing method of the structure.
第 1の工程:所定の減圧雰囲気下で、第 1および第 2の湾曲基板と、該両湾曲基板 の周縁部全周に配されるシール材とで密封された間隙内に機能材料を封入し、機能 材料保持体を製造する工程。  First step: A functional material is sealed in a gap sealed by a first and second curved substrates and a sealing material disposed on the entire periphery of the peripheral portions of both curved substrates in a predetermined reduced-pressure atmosphere. The process of manufacturing a functional material holder.
第 2の工程:前記機能材料保持体を大気圧の雰囲気に曝すことにより前記機能材 料を前記間隙内に充満せしめ、かつ、前記第 1および第 2の湾曲基板の少なくとも何 れか一方を圧力の変化によって変形せしめることにより、前記機能材料保持体にお ける両湾曲基板の対向する面を隔てる距離を略均一にせしめて構造体を製造する 工程。  Second step: The functional material holding body is exposed to an atmosphere of atmospheric pressure to fill the functional material into the gap, and at least one of the first and second curved substrates is pressurized. A step of manufacturing the structure by making the distance separating the opposing surfaces of the two curved substrates in the functional material holding body substantially uniform by being deformed by the change of the above.
上記第 1の工程では、一方の湾曲基板の周縁部全周にシール材を設け、該シール 材で囲まれた領域内に前記機能性材料を供給し、前記減圧雰囲気下で、前記一方 の湾曲基板の表面に向カゝつて他方の湾曲基板を押し当てて、前記機能性材料を押 し広げるとともに 2枚の湾曲基板の間隙内に該機能性材料が挟持された密閉空間を 形成することが好ましい。  In the first step, a sealing material is provided on the entire peripheral edge of one curved substrate, the functional material is supplied into a region surrounded by the sealing material, and the one curved substrate is provided in the reduced-pressure atmosphere. The other curved substrate is pressed against the surface of the substrate to spread the functional material and form a sealed space in which the functional material is sandwiched in the gap between the two curved substrates. preferable.
[0051] 次に、液晶素子 100を例にして上記本発明の製造方法について説明する。  Next, the manufacturing method of the present invention will be described using the liquid crystal element 100 as an example.
図 2は、本発明の液晶素子の製造フローの一例を示す図である。まず、所定の湾 曲形状に成形された透明基板 101および 102を用意し、これらの表面に透明電極 1 Olaおよび 102aを形成するため、透明導電膜をスパッタリング法または真空蒸着法 等により形成する (ステップ Sl)。透明導電膜としては、 ITOが好適である。次いで、 この透明導電膜を、例えばフォトリソグラフィ法によりパターユングし、例えば図 3 (a) および (b)に示すようなパターン形状の透明電極 101aおよび 102a並びに引き出し 電極 101a'および 102a'を形成する。  FIG. 2 is a diagram showing an example of a manufacturing flow of the liquid crystal element of the present invention. First, transparent substrates 101 and 102 formed in a predetermined curved shape are prepared, and in order to form transparent electrodes 1 Ola and 102a on these surfaces, a transparent conductive film is formed by a sputtering method or a vacuum evaporation method ( Step Sl). ITO is suitable as the transparent conductive film. Next, the transparent conductive film is patterned by, for example, a photolithography method to form transparent electrodes 101a and 102a and lead electrodes 101a ′ and 102a ′ having a pattern shape as shown in FIGS. 3A and 3B, for example. .
[0052] 次に、透明電極 101aおよび 102aの上に、絶縁膜 101bおよび 102bと、配向膜 10 lcおよび 102cとを順次形成する(ステップ S2)。配向膜 101cおよび 102cは、複合 体層 104に含まれる液晶分子を所定の方向(例えば透明基板の概ね法線方向)に 配向させるため、ラビング処理が施されてもよい。  Next, insulating films 101b and 102b and alignment films 10lc and 102c are sequentially formed on transparent electrodes 101a and 102a (step S2). The alignment films 101c and 102c may be subjected to a rubbing treatment in order to align the liquid crystal molecules contained in the composite layer 104 in a predetermined direction (for example, a direction substantially normal to the transparent substrate).
[0053] 次に、透明基板 101および 102の配向膜等の形成された側の面に、既存の散布機 を用いてスぺーサ 105を散布する (ステップ S3)。スぺーサを散布する方法としては、 湿式散布、乾式散布の 、ずれの方法も用いることができる。 Next, the spacer 105 is spread on the surface of the transparent substrates 101 and 102 on which the alignment film or the like is formed, using an existing spreader (step S3). As a method of spraying the spacer, Misalignment methods such as wet spraying and dry spraying can also be used.
前記のように、透明基板と固着させるための榭脂を表面にコーティングしたスぺー サを用いる場合は、透明基板との固着機能を発現させるため、スぺーサを散布した 際に一定温度で加熱し、スぺーサ表面の榭脂を溶融させて透明基板の表面と固着 させた後に、次のステップに移行するのが好ましい。  As described above, when using a spacer whose surface is coated with a resin for fixing to the transparent substrate, the spacer is heated at a constant temperature when spraying the spacer in order to develop a fixing function with the transparent substrate. It is preferable to move to the next step after the resin on the surface of the spacer is melted and fixed to the surface of the transparent substrate.
スぺーサは透明基板の配向膜等の形成された側の面に散布されるほか、後述する シール材に含ませてもよ!/、。  Spacers can be dispersed on the surface of the transparent substrate where the alignment film, etc. is formed, and can also be included in the seal material described below!
[0054] 次に、透明基板 101および 102の周縁部全周に沿って、シール材 103を塗布する Next, a sealing material 103 is applied along the entire peripheral edge of the transparent substrates 101 and 102.
(ステップ S4)。シール材 103は、透明基板の周縁部全周に、完成品である液晶素子 のセルギャップよりも大きな厚みになるように塗布される。なお、シール材 103は、透 明基板 101および 102の一方または両方の周縁部全周に塗布することができる。 シール材 103としては、紫外線硬化性榭脂または熱硬化性榭脂等を用いることが できる。  (Step S4). The sealing material 103 is applied to the entire periphery of the peripheral portion of the transparent substrate so as to have a thickness larger than the cell gap of the finished liquid crystal element. The sealing material 103 can be applied to the entire circumference of one or both of the transparent substrates 101 and 102. As the sealing material 103, ultraviolet curable resin, thermosetting resin, or the like can be used.
[0055] また、シール材 103は、シールされた部位から液晶材料がリークしたり、空気が複合 体層 104に侵入したりするのを防止するため、 400, 000 ± 200, 000mPa,s程度の 粘度を有するものが望ましい。シール材の粘性が高すぎると、ディスペンサーによる 塗布が困難になる。一方、粘性が低すぎると、後述するステップ 7において減圧雰囲 気下から大気圧雰囲気に液晶セルを曝した際に、空気が液晶セル内に侵入してしま うおそれがある。これは、大気圧の作用によってセルの外側力も圧力がかかり、この 圧力に耐え切れな力つたシール材に孔が空 、たり、シール材が基板表面からはがれ て空気が侵入したりすることが原因であると予測される。  [0055] In addition, the sealing material 103 is about 400, 000 ± 200, 000 mPa, s to prevent the liquid crystal material from leaking from the sealed portion and air from entering the composite layer 104. Those having a viscosity are desirable. If the viscosity of the sealing material is too high, application with a dispenser becomes difficult. On the other hand, if the viscosity is too low, air may enter the liquid crystal cell when the liquid crystal cell is exposed from a reduced-pressure atmosphere to an atmospheric pressure atmosphere in step 7 described later. This is because the external force of the cell is also pressurized by the action of atmospheric pressure, and a hole is formed in the sealing material that can withstand this pressure, or the sealing material peels off from the substrate surface and air enters. It is predicted that.
[0056] 次に、透明基板 102を配向膜等が形成された面を上にして図 4 (a)および (b)に示 す受け台 201に載置する。受け台 201は、上面視で矩形枠形状を呈し、透明基板 1 02の周縁部を支持するためのアルミニウム製の治具であり、真空チャンバ 203から出 し入れ可能な構造となっている。図 4 (a)に示すように、受け台 201の透明基板 102と 接する面は、事前に曲げ成形されている透明基板 102の形状に一致するように側面 視で略凹形状に加工されて!ヽる。  Next, the transparent substrate 102 is placed on the cradle 201 shown in FIGS. 4 (a) and 4 (b) with the surface on which the alignment film or the like is formed facing up. The cradle 201 has a rectangular frame shape when viewed from above, is an aluminum jig for supporting the peripheral edge of the transparent substrate 102, and has a structure that can be taken in and out of the vacuum chamber 203. As shown in Fig. 4 (a), the surface of the cradle 201 in contact with the transparent substrate 102 is processed into a substantially concave shape in a side view so as to match the shape of the transparent substrate 102 that has been bent in advance! Speak.
[0057] 透明基板 102は、真空チャンバ 203の外で受け台 201に載置される。次いで透明 基板 102の配向膜等が形成された面には、ネマティック液晶と光硬化性ィ匕合物との 混合物からなる液晶材料が滴下される (ステップ S5)。液晶材料は、後述の真空積層 処理を行った際にはみ出すことがないようトータルの滴下量が調整され、また透明基 板 102の配向膜等が形成された面の上に所定間隔をあけて所定量ずつ供給される The transparent substrate 102 is placed on the cradle 201 outside the vacuum chamber 203. Then transparent A liquid crystal material made of a mixture of a nematic liquid crystal and a photocurable compound is dropped onto the surface of the substrate 102 on which the alignment film or the like is formed (step S5). The total drop amount of the liquid crystal material is adjusted so that it does not protrude when the vacuum lamination process described later is performed, and a predetermined interval is provided on the surface of the transparent substrate 102 on which the alignment film and the like are formed. Quantitatively supplied
[0058] なお、本発明で採用する ODF法は、吸引法や真空注入法と比較して、簡便且つ 短時間で、液晶材料を透明基板 101および 102とシール材 103とで密封された間隙 内に封入することができる。カイラルネマチック液晶等の粘性の高い液晶を用いて大 型の液晶素子を製造する場合、この ODF法は特に好適である。 [0058] Note that the ODF method employed in the present invention is simpler and shorter in time than the suction method or the vacuum injection method, and the liquid crystal material is sealed in the gap between the transparent substrates 101 and 102 and the sealing material 103. Can be encapsulated. This ODF method is particularly suitable when a large liquid crystal element is manufactured using a liquid crystal with high viscosity such as a chiral nematic liquid crystal.
[0059] 次に、受け台 201に設けられている 3箇所の凹部(図示せず)に、先端部が半球状 に加工されているポリテトラフルォロエチレン製のピン 201a、 201bおよび 201cを当 該先端部を上向きに差し込んでから、これらのピンの先端部に、透明基板 101を配 向膜等の形成された面を下にして載置する。これにより、透明基板 101と透明基板 1 02とが一定距離だけ離間した状態が保持される。  [0059] Next, polytetrafluoroethylene pins 201a, 201b and 201c whose tip portions are processed into a hemispherical shape are inserted into three recesses (not shown) provided in the cradle 201. After inserting the tip portion upward, the transparent substrate 101 is placed on the tip portion of these pins with the surface on which the orientation film or the like is formed facing down. Thereby, the state where the transparent substrate 101 and the transparent substrate 102 are separated from each other by a certain distance is maintained.
[0060] なお、上記凹部の深さはピン 201a等の長さよりも長くなるように、またピン 201a等 の直径は凹部の直径よりも若干大きくなるように調整されている。そのため、凹部とピ ン 201a等の間には摩擦力が働き、ピン 201a等は一定以上の力をカ卩えなければ凹 部の奥に挿入されることはなぐ透明基板 101が載置された程度では、ピン 201a等 が凹部内に沈み込むようなことはない。  [0060] The depth of the recess is adjusted to be longer than the length of the pin 201a and the like, and the diameter of the pin 201a and the like is adjusted to be slightly larger than the diameter of the recess. For this reason, a frictional force acts between the recess and the pin 201a, etc., and the transparent substrate 101 is placed so that the pin 201a etc. cannot be inserted into the interior of the recess unless a certain level of force is applied. The pin 201a etc. will not sink into the recess.
[0061] 次に、透明基板 101および 102が搭載された受け台 201を、真空チャンバ 203内 に格納する。受け台 201は所定の昇降機構により真空チャンバ内で昇降動作が可能 となっている。また、真空チャンバ 203内には、格納された受け台 201の鉛直上方に アルミニウム製のモールド 202が固定保持されている。モールド 202は、受け台 201 の透明基板 102等を搭載した面と嵌合するように側面視で略凸形状を有する。  Next, the cradle 201 on which the transparent substrates 101 and 102 are mounted is stored in the vacuum chamber 203. The cradle 201 can be moved up and down in the vacuum chamber by a predetermined lifting mechanism. In the vacuum chamber 203, an aluminum mold 202 is fixed and held vertically above the stored cradle 201. The mold 202 has a substantially convex shape in side view so as to be fitted to the surface of the cradle 201 on which the transparent substrate 102 or the like is mounted.
[0062] 次に、受け台 201が真空チャンバ 203内に格納され、さらに密閉されると、真空ボン プによって真空チャンバ 203内が所定の減圧雰囲気とされる。具体的には、 50Pa ( パスカル)以下、特に 20Pa以下の圧力が好ましぐ一般的に真空と呼ばれる状態が 作られる。また、真空チャンバ内で行われる一連の工程 (以下、真空積層工程とも記 載する)において、透明基板 101および 102の温度は制御されるのが好ましい。例え ば、受け台 201および Zまたはモールド 202に電気ヒータおよび熱電対を設置し、熱 電対からの信号を受信した PIDコントローラにより各ヒータの発熱量を調整する。これ により、設定温度 ±0. 1°C以内での制御が可能となる。この結果、透明基板 101およ び 102、並びにそれらの間に挟持される液晶材料を全体にわたって一定温度に保持 できる。 [0062] Next, when the cradle 201 is stored in the vacuum chamber 203 and further sealed, the vacuum chamber 203 is filled with a predetermined reduced-pressure atmosphere by the vacuum pump. Specifically, a state called a vacuum is generally created in which a pressure of 50 Pa (pascal) or less, particularly 20 Pa or less is preferred. In addition, a series of processes performed in the vacuum chamber (hereinafter also referred to as vacuum lamination process). The temperature of the transparent substrates 101 and 102 is preferably controlled. For example, an electric heater and a thermocouple are installed in the cradle 201 and Z or mold 202, and the heat generated by each heater is adjusted by the PID controller that receives the signal from the thermocouple. This enables control within the set temperature ± 0.1 ° C. As a result, the transparent substrates 101 and 102 and the liquid crystal material sandwiched between them can be maintained at a constant temperature throughout.
[0063] また、セル空間内に供給された液晶材料は、該液晶材料に含まれる硬化性ィ匕合物 が析出する温度よりも 5〜60°C高い温度範囲に保持されるのが好ましい。液晶材料 の保持温度と硬化性化合物の析出温度との差が 5°C未満では、硬化性化合物が析 出するおそれがあり、 60°Cを超えると液晶材料にダメージを与えるおそれがありかつ 後述するステップ 8よりも前に硬化性ィ匕合物が硬化してしまうおそれがある。また、真 空チャンバ 203の壁、床または天井面等にも適宜ヒータや熱電対を設置し、壁面から の輻射熱を利用すると、さらに効果的である。  [0063] The liquid crystal material supplied into the cell space is preferably maintained in a temperature range 5 to 60 ° C higher than the temperature at which the curable compound contained in the liquid crystal material is deposited. If the difference between the holding temperature of the liquid crystal material and the precipitation temperature of the curable compound is less than 5 ° C, the curable compound may be precipitated, and if it exceeds 60 ° C, the liquid crystal material may be damaged. There is a possibility that the curable compound may be cured before Step 8. Further, it is more effective to appropriately install a heater or a thermocouple on the wall, floor or ceiling surface of the vacuum chamber 203 and use the radiant heat from the wall surface.
[0064] 真空チャンバ 201内が所定の減圧雰囲気になった後、受け台 201を上昇させ、モ 一ルド 202と受け台 201とで透明基板 101および 102の周縁部をプレスする。受け台 201が上昇すると、最初に透明基板 101がモールド 202に当接し、さらに上昇させる と摩擦力に抗しきれなくなつたピン 201, 201bおよび 201cが受け台 201に設けられ た凹部内に徐々に沈みこみ、透明基板 101と 102との距離が徐々に縮まる(図 5 (a) )。両透明基板間の距離が縮まるに従い、透明基板 102表面上の液晶材料は両透 明基板間で押し広げられる。最終的に、透明基板 101および 102は、シール材 103 を介して貼り合わせられ、密封された空隙内に液晶材料が封入された、いわゆる液 晶セルが作られる(ステップ S6、図 5 (b) )。その後、受け台 201の上昇を停止してか ら下降させ、初期状態の位置まで戻す。  [0064] After the inside of the vacuum chamber 201 reaches a predetermined reduced pressure atmosphere, the cradle 201 is raised, and the peripheral portions of the transparent substrates 101 and 102 are pressed by the mold 202 and the cradle 201. When the cradle 201 is raised, the transparent substrate 101 first comes into contact with the mold 202. When the cradle 201 is further lifted, the pins 201, 201b and 201c, which cannot resist the friction force, gradually enter the recesses provided in the cradle 201. The distance between the transparent substrates 101 and 102 gradually decreases (Fig. 5 (a)). As the distance between the two transparent substrates decreases, the liquid crystal material on the surface of the transparent substrate 102 is spread between the two transparent substrates. Finally, the transparent substrates 101 and 102 are bonded together through the sealing material 103 to form a so-called liquid crystal cell in which the liquid crystal material is sealed in the sealed gap (step S6, FIG. 5 (b)). ). Thereafter, the raising of the cradle 201 is stopped and then lowered to return to the initial position.
[0065] 次に、真空チャンバ 203に空気を供給することで圧力を大気圧に戻し、シール材 1 03を介して貼り合わされた透明基板 101および 102 (液晶セル)を受け台 201と一緒 にチャンバ外に取り出す (ステップ S 7)。その際、液晶セル内外の圧力の差によって 、 2枚の透明基板 101および 102にはセルの外側力も押す力が加わり、両透明基板 はスぺーサ 105によって保たれるセルギャップまで引き寄せられ、セル内には液晶材 料が充満することになる(図 5 (c)、(d) )。 [0065] Next, the pressure is returned to atmospheric pressure by supplying air to the vacuum chamber 203, and the transparent substrate 101 and 102 (liquid crystal cell) bonded together through the sealant 103 are placed together with the receiving table 201 and the chamber 201. Remove outside (step S7). At that time, due to the difference in pressure between the inside and outside of the liquid crystal cell, a force is applied to the two transparent substrates 101 and 102 which also presses the outside force of the cell, and both transparent substrates are drawn to the cell gap maintained by the spacer 105, Inside the liquid crystal material The fee will be charged (Fig. 5 (c), (d)).
[0066] 次に、シール材 103および液晶材料中の光硬化性ィ匕合物を紫外線により露光し硬 化させる (ステップ S8)。液晶材料中の光硬化性化合物の硬化により、液晶 Z硬化物 複合体の層 104が形成される。なお、シール材 103が光硬化性硬化物でない場合、 シール材の硬化は別途行う必要がある。  [0066] Next, the sealant 103 and the photocurable compound in the liquid crystal material are exposed to UV light and cured (step S8). A layer 104 of the liquid crystal Z cured product composite is formed by curing the photocurable compound in the liquid crystal material. Note that when the sealing material 103 is not a photocurable cured product, the sealing material needs to be cured separately.
[0067] 本発明の製造方法を採用することにより、湾曲した透明基板 101と 102との形状が 完全に一致していなくても、得られる液晶セルのセルギャップを均一にできる。また、 湾曲した透明基板 101および 102の組み合わせが前記 (A)、 (B)、 (C)の少なくとも 1つの条件を満たすとき、この効果はより一層有効に発現する。なお、本発明の製造 方法は、透明基板が榭脂など可撓性のある材料カゝらなる基板でなくとも、ガラス製の 剛直な基板である場合にも有効である。  By adopting the manufacturing method of the present invention, the cell gap of the obtained liquid crystal cell can be made uniform even if the shapes of the curved transparent substrates 101 and 102 do not completely match. Further, when the combination of the curved transparent substrates 101 and 102 satisfies at least one of the conditions (A), (B), and (C), this effect is more effectively exhibited. Note that the manufacturing method of the present invention is effective even when the transparent substrate is not a substrate made of a flexible material such as resin but is a rigid substrate made of glass.
[0068] 次に、上記で用いた湾曲形状の透明基板の製造方法について説明する。  [0068] Next, a method for manufacturing the curved transparent substrate used above will be described.
図 6は、透明基板の曲げ成形工程を示すフローチャートである。まず、加熱炉外に ぉ 、て、フロート法等で作られた平板状の素板ガラス力も所望の形状のガラス板を切 り出し、その周縁部を面取りするなどの前処理をする。次いで、前処理の終わった 2 枚の透明基板の間に事前にラジオライト、重曹、セライト、酸化マグネシウムまたはシ リカ等の粉末からなる離型剤を散布してから、透明基板 101および 102を重ね合わ せ、ついで金属製のリングフレーム 305に載置する(ステップ Sl l、図 7 (a) )。  FIG. 6 is a flowchart showing the bending process of the transparent substrate. First, outside of the heating furnace, a flat plate-like glass force made by a float method or the like is pretreated by cutting out a glass plate having a desired shape and chamfering its peripheral edge. Next, a release agent made of powder of radiolite, baking soda, celite, magnesium oxide, silica, or the like is sprayed between the two transparent substrates that have been pretreated, and then the transparent substrates 101 and 102 are overlaid. Then, it is placed on a metal ring frame 305 (step Sl l, Fig. 7 (a)).
[0069] 次いで、リングフレーム 305ごと透明基板 101および 102を曲げ成形システム 300 の加熱炉 301内に搬入し、図示しな!、電気ヒータまたはガスパーナ等を用いて加熱 処理を行う。その結果、透明基板 101および 102は加熱されて軟ィ匕し、図 7 (b)〜(d )に示すように、基板の自重によって少しずつ垂れ下がり、所望の湾曲形状になるま で曲げ成形処理が施される (ステップ S 12)。  [0069] Next, the transparent substrates 101 and 102 together with the ring frame 305 are carried into the heating furnace 301 of the bending molding system 300, and heat treatment is performed using an electric heater or a gas spanner, not shown in the figure. As a result, the transparent substrates 101 and 102 are heated and softened, and as shown in FIGS. 7 (b) to (d), the transparent substrates 101 and 102 are gradually dropped by the dead weight of the substrate until the desired curved shape is obtained. Is applied (step S12).
[0070] 次いで、曲げ成形された透明基板 101および 102はリングフレーム 305に載置され たまま徐冷され、その後炉外にリングフレームごと搬出される (ステップ S13)。透明基 板 101および 102が常温まで冷却された後に両基板をリングフレームから取り外し、 水洗により基板を洗浄する (ステップ S 14)。  [0070] Next, the bent transparent substrates 101 and 102 are gradually cooled while being placed on the ring frame 305, and are then transported out of the furnace together with the ring frame (step S13). After the transparent substrates 101 and 102 are cooled to room temperature, both substrates are removed from the ring frame and washed with water (step S14).
[0071] ここで、本発明における湾曲基板の製造に用いられる曲げ成形炉の一実施形態に ついて説明する。 [0071] Here, in an embodiment of a bending furnace used for manufacturing a curved substrate in the present invention. explain about.
図 8は、本発明で使用される曲げ成形炉の一実施形態を示す断面図である。同図 に示すように、加熱炉 301は、耐火レンガをトンネル状に積み上げて作られ、透明基 板を加熱処理するための上段の往路と、往路で使用されたリングフレーム 305等を 加熱開始地点まで移動させるための下段の復路とを備えている。往路および復路は 複数のゾーンに区切られ (ここではゾーン 1〜7を有する)、炉外力 ゾーン 1に投入さ れた透明基板は後段のゾーンへ次々移動させられ、加熱処理等が行われる。ゾーン 2〜5は炉壁に電気ヒータ等が設置された加熱ゾーンであり、ゾーン 6は徐冷ゾーン であり、ゾーン 7は透明基板を炉外へ搬出するための冷却ゾーンである。  FIG. 8 is a cross-sectional view showing an embodiment of a bending furnace used in the present invention. As shown in the figure, the heating furnace 301 is made by stacking refractory bricks in the shape of a tunnel, and heats the transparent board with the upper outbound path, the ring frame 305 used in the outbound path, etc. And a lower return path for moving to The forward path and the return path are divided into a plurality of zones (in this case, having zones 1 to 7), and the transparent substrate put into the furnace external force zone 1 is moved to the subsequent zones one after another and subjected to heat treatment or the like. Zones 2 to 5 are heating zones in which an electric heater or the like is installed on the furnace wall, zone 6 is a slow cooling zone, and zone 7 is a cooling zone for carrying the transparent substrate out of the furnace.
[0072] また、ゾーン 1とゾーン 2との間、ゾーン 5とゾーン 6との間、およびゾーン 6とゾーン 7 との間には、隣接するゾーン同士を仕切るための上下にスライド可能な扉 303がそれ ぞれ設けられている。この扉 303を開閉させることにより、各ゾーンにおける雰囲気温 度が個別に維持される。また、曲げ成形システム 300の前後にはそれぞれエレべ一 タ 302力 S設置され、このエレベータ 302によりシャトル 304およびリングフレーム 305 を往路から復路へまたは復路から往路へ移動させる。  [0072] In addition, between the zone 1 and the zone 2, between the zone 5 and the zone 6, and between the zone 6 and the zone 7, the door slidable up and down for partitioning adjacent zones 303 Are provided. By opening and closing the door 303, the ambient temperature in each zone is individually maintained. Further, an elevator 302 force S is installed before and after the bending system 300, and the elevator 302 moves the shuttle 304 and the ring frame 305 from the forward path to the backward path or from the backward path to the forward path.
[0073] 一方、透明基板が載置されるリングフレーム 305は可動式のシャトル 304に固定さ れ、シャトル 304はチェーン、スプロケットおよびモータ等で構成された搬送機構 306 に連結されている。リングフレーム 305およびシャトル 304は、この搬送機構 306によ り、図の上段の往路においては図の右向きに間欠的に搬送され、下段の復路におい ては図の左向きに間欠的に搬送される。すなわち、リングフレーム 305はシャトル 30 4とともに搬送され、各ゾーンに一定時間ずつ滞在してから、次のゾーンに移動する ことが繰り返される。  On the other hand, the ring frame 305 on which the transparent substrate is placed is fixed to a movable shuttle 304, and the shuttle 304 is connected to a transport mechanism 306 including a chain, a sprocket, a motor, and the like. The ring frame 305 and the shuttle 304 are intermittently conveyed by the conveyance mechanism 306 to the right in the figure in the forward path in the upper part of the figure and intermittently to the left in the figure in the return path in the lower part of the figure. That is, the ring frame 305 is transported together with the shuttle 304, stays in each zone for a certain period of time, and then moves to the next zone repeatedly.
[0074] リングフレーム 305およびシャトル 304の詳細は、図 9 (a)および(b)に示すとおりで あり、 SUS (ステンレス合金)等力もなるシャトル 304に、同じく SUS等力もなるリング フレーム 305が所定の締結具により保持されている。リングフレーム 305は製品形状 にほぼ一致した形状の枠部材であり、透明基板を受ける面が枠の内側に向力つて斜 め下向きに傾斜している。また、リングフレーム 305の表面は、透明基板に接触傷を 付けるのを防ぐため、ガラス繊維、シリカ繊維、セラミックス繊維、または金属繊維等 からなる耐熱性織布または不織布で覆われて ヽる。 [0074] The details of the ring frame 305 and the shuttle 304 are as shown in FIGS. 9 (a) and 9 (b). A shuttle frame 304 that also has SUS (stainless alloy) isotropic force is provided with a ring frame 305 that also has SUS isotropic force. Is held by a fastener. The ring frame 305 is a frame member having a shape that substantially matches the product shape, and the surface that receives the transparent substrate is inclined toward the inside of the frame and inclined downward. The surface of the ring frame 305 is made of glass fiber, silica fiber, ceramic fiber, metal fiber, etc. to prevent contact scratches on the transparent substrate. Covered with heat-resistant woven or non-woven fabric made of
実施例  Example
[0075] 次に、本発明の実施例について説明する。  Next, examples of the present invention will be described.
[0076] 〔実施例 1〕  [Example 1]
300 [mm] X 300 [mm] X 2 [mm厚]のソーダライム製のガラス板を 2枚準備し、曲 げ加工処理時に 2枚のガラス板が溶着しな ヽように基板間にラジオライトを散布した 上で重ね合わせた。重ね合わせたガラス板を、対向する 2辺がそれぞれ、 1000R (曲 率半径が 1000mm)および 4000R (曲率半径力 000mm)の加熱曲げ加工治具に 設置した。その後、 2枚のガラス板をこの治具とともに加熱炉の中に搬入し、自然重 力曲げを行った。  Prepare two glass plates made of soda lime of 300 [mm] X 300 [mm] X 2 [mm thickness], and radio light between the substrates so that the two glass plates are not welded during the bending process. Overlaid after spraying. The stacked glass plates were placed in a heating and bending jig with 1000R (curvature radius 1000mm) and 4000R (curvature radius force 000mm) on the two opposite sides. After that, the two glass plates were carried into the heating furnace together with this jig and subjected to natural heavy bending.
[0077] 得られた湾曲ガラス板の端部の形状を測定したところ、図 11 (a)に示す通りであつ た。図 11 (b)は 2枚の基板の接触点をゼロとして算出した 2枚のガラス板の間隔を示 す。ガラス板の両端部と比較しその間の部分では 、ずれも両端部よりも大き ヽ値を示 していることがわかる。なお、ガラス板の端部形状は、ガラス板毎にリニアゲージにより 図 10 (b)の「測定ライン」に沿って測定された。  [0077] When the shape of the end of the obtained curved glass plate was measured, it was as shown in Fig. 11 (a). Figure 11 (b) shows the distance between the two glass plates calculated with the contact point of the two substrates as zero. Compared with the both ends of the glass plate, it can be seen that the deviation is larger than the both ends. The edge shape of the glass plate was measured along the “measurement line” in FIG. 10 (b) with a linear gauge for each glass plate.
これらのガラス板に透明電極や絶縁膜などの各種成膜処理を行 ヽ、一方のガラス 板の成膜処理が施された面に直径 8 mのスぺーサを散布し、ついで周縁部にシー ル材を塗布した。つぎに、前記成膜処理が施された面の面内に所定量の液晶材料 を供給した後、図 4に示した受け台 201に、シール材が塗布され液晶材料が供給さ れた面を上にして、このガラス板をセットした。その後、もう一方のガラス板を成膜処理 が施された面を下にしてピン 201a〜201cの上に載置し、 2枚のガラス板に一定の間 隔を持たせた状態でセットした。その後、これらのガラス板を受け台とともに、プレス機 構を有する真空チャンバ 203内にセットし、真空チャンバ内の圧力を 20Pa以下とし た後、真空チャンバ 203内のプレス機構を稼動させ、ピンにより保持されているガラス 板をモールド 202に押し付け、 2枚のガラス板をシール材を介して貼り合わせた。つ いで、真空チャンバ 203内を大気圧に開放した。その結果、各ガラス板が大気圧の 作用により変形し、ガラス基板の面内の全域においてセルギャップをほぼ均一に保つ た液晶素子を作ることができた。 [0078] 表 1および 2に、真空積層後のセルのセルギャップを示した。上記実施例において 、ガラスセル内に液晶材料を挟持 (封入)しな力つた点以外は同一である。 2枚のガラ ス板の間隔 (セルギャップ)を測定した結果を表 1および 2に示す。測定点各部におけ るセルギャップは概ねスぺーサの直径 8 μ mに近い値となり、面内でほぼ均一なセル ギャップを実現できていることがわかる。なお、セルギャップの測定は図 10 (b)に示す 測定ライン L 1、 L2および L3に沿って実施した (矢印の根元を基点に位置をずらして 測定している。 ) o These glass plates were subjected to various film-forming processes such as transparent electrodes and insulating films, and a spacer with a diameter of 8 m was sprayed on the surface on which one of the glass sheets was subjected to the film-forming process, and then a sheet was applied to the periphery. The lumber was applied. Next, after a predetermined amount of liquid crystal material is supplied into the surface on which the film formation process has been performed, the surface on which the sealing material is applied and the liquid crystal material is supplied to the cradle 201 shown in FIG. This glass plate was set up. Thereafter, the other glass plate was placed on the pins 201a to 201c with the film-formed surface facing down, and the two glass plates were set with a certain gap between them. After that, these glass plates are set together with the cradle and in the vacuum chamber 203 having a press mechanism. After the pressure in the vacuum chamber is reduced to 20 Pa or less, the press mechanism in the vacuum chamber 203 is operated and held by a pin. The glass plate being pressed was pressed against the mold 202, and the two glass plates were bonded together via a sealing material. Subsequently, the inside of the vacuum chamber 203 was opened to atmospheric pressure. As a result, each glass plate was deformed by the action of atmospheric pressure, and a liquid crystal device in which the cell gap was kept almost uniform over the entire surface of the glass substrate could be produced. [0078] Tables 1 and 2 show cell gaps of the cells after vacuum lamination. The above embodiment is the same except that the liquid crystal material is not sandwiched (encapsulated) in the glass cell. Tables 1 and 2 show the measurement results of the distance (cell gap) between the two glass plates. The cell gap at each part of the measurement point is close to the spacer diameter of 8 μm, indicating that a substantially uniform cell gap can be achieved in the plane. The cell gap was measured along the measurement lines L1, L2 and L3 shown in Fig. 10 (b) (measured by shifting the position from the base of the arrow).
[0079] [表 1]  [0079] [Table 1]
Figure imgf000027_0001
Figure imgf000027_0001
[0080] [表 2] [0080] [Table 2]
位置 [mm] L3[ jU m] Position [mm] L3 [jU m]
20 8.46  20 8.46
25 8.35  25 8.35
30 8.39  30 8.39
60 8.32  60 8.32
90 8.32  90 8.32
120 8.33  120 8.33
150 8.42  150 8.42
180 8.34  180 8.34
210 8.35  210 8.35
240 8.31  240 8.31
270 8.31  270 8.31
300 8.24  300 8.24
330 8.45  330 8.45
360 8.32  360 8.32
390 8.79  390 8.79
395 8.33  395 8.33
400 8.38  400 8.38
[0081] 〔比較例〕 [0081] [Comparative Example]
300 [mm] X 300 [mm] X 2 [mm厚]のソーダライム製のガラス板を 2枚準備し、曲 げ加工処理時に 2枚のガラスが溶着しな ヽように基板間にラジオライトを散布した上 で重ね合わせた。重ね合わせられた 2枚の基板は、各辺の中央部を耐熱性のガラス テープで固定した上で、対向する 2辺がそれぞれ 1000Rおよび 4000Rの力!]熱曲げ 加工治具に設置した。その後、 2枚の基板を曲げ加工治具とともに加熱炉の中に搬 入し、 自然重力曲げを行った。得られた基板の端部形状を図 10 (b)に示す「測定ラ イン」に沿って測定したところ、図 12 (a)に示す通りであった。図 12 (b)は基板の接触 点をゼロとして算出した 2枚の基板の間隔である。基板両端部と比較しその間の部分 (基板の面内)が両端部よりも大き ヽ値を示して 、る部分のあることがわかる。  Prepare two 300 [mm] X 300 [mm] X 2 [mm thick] soda-lime glass plates, and put a radio light between the substrates so that the two glasses are not welded during the bending process. Overlaid after spreading. The two superposed substrates are fixed at the center of each side with heat-resistant glass tape, and the opposite two sides are 1000R and 4000R respectively! ] Installed on a hot bending jig. After that, the two substrates were carried into a heating furnace together with a bending jig and subjected to natural gravity bending. When the end shape of the obtained substrate was measured along the “measurement line” shown in FIG. 10 (b), it was as shown in FIG. 12 (a). Figure 12 (b) shows the distance between two substrates calculated with the contact point of the substrate as zero. Compared with the both ends of the substrate, the portion between them (in the plane of the substrate) shows a larger value than the both ends, and it can be seen that there is a portion.
[0082] これら基板について実施例と同様の操作により真空中での積層処理を行い、大気 圧に開放した後、基板を確認したところ、曲率半径 4000Rの辺の中央部よりリークが 発生し、 2枚のガラス間に 2枚のガラス間隔を矯正する形では封止物を封止できなか つた o These substrates were laminated in a vacuum by the same operation as in the example, released to atmospheric pressure, and then the substrates were checked. As a result, leakage occurred from the center of the side having a curvature radius of 4000R. O Sealed material could not be sealed in the form of correcting the distance between two glass sheets o
[0083] 〔その他の実施例等〕  [Other Examples, etc.]
300 [mm] X 300 [mm] X 2 [mm厚]のソーダライム製のガラス板を 2枚準備し、曲 げ加工処理時に 2枚のガラス板が溶着しな ヽように基板間にラジオライトを散布した 上で重ね合わせた。重ね合わせた基板を、対向する 2辺がそれぞれ、 1000Rおよび 4000Rの加熱曲げカ卩ェ治具に設置した。その後、 2枚の基板をこの治具とともにカロ 熱炉の中に投入し、自然重力曲げを行った。 Prepare two glass plates made of soda lime of 300 [mm] X 300 [mm] X 2 [mm thickness], and radio light between the substrates so that the two glass plates are not welded during the bending process. Sprayed Overlaid on top. The superposed substrates were placed on a heating and bending cage with two opposite sides, 1000R and 4000R, respectively. After that, the two substrates were put together with this jig into a calorie furnace and subjected to natural gravity bending.
[0084] 得られた基板の端部形状を測定したところ、表 1に示す通りであった。表 1には、透 明基板の研磨の有無、スぺーサの形状、曲げ成形後に測定したギャップの値ならび にそれらの最小値および最大値、封止後のセルギャップの平均値、封止状態につい て記載されている。ここで、曲げ成形後のギャップ測定は、以下のように行った。すな わち、 2枚の透明基板の形状誤差を知るために、これらを重ね合わせて力もキーェン ス製のレーザーギャップ測定器を用いて基板同士の間隔を測定した。間隔の測定は 、図 10 (b)に示す L2に沿った測定ポイントで行った。  The edge shape of the obtained substrate was measured and as shown in Table 1. Table 1 shows the presence or absence of polishing of the transparent substrate, the shape of the spacer, the gap values measured after bending, their minimum and maximum values, the average value of the cell gap after sealing, and the sealing state. Is described. Here, the gap measurement after bending was performed as follows. In other words, in order to know the shape error of the two transparent substrates, the distance between the substrates was measured using a laser gap measuring instrument made by Keyence with the overlapping of these. The interval was measured at measurement points along L2 shown in Fig. 10 (b).
[0085] [表 3]  [0085] [Table 3]
Figure imgf000029_0001
表 3において、「通常」とは、粒径 # 300メッシュ以下のラジオライト、
Figure imgf000029_0001
In Table 3, “normal” means a radiolite with a particle size of # 300 mesh or less,
「分級」とは、粒径 30 μ m以下のラジオライト、 「真球」とは、平均粒子径 8. 01 μ m、標準偏差 0. 08 μ mのシリカビーズ、 「形状 1」とは、図 11 (b)と略同一形状を有する端部形状、 “Classification” means radiolite with a particle size of 30 μm or less, “Spherical” refers to silica beads with an average particle size of 8.01 μm and standard deviation of 0.08 μm. “Shape 1” refers to an end shape that has substantially the same shape as FIG.
「形状 2」とは、図 12 (b)と略同一形状を有する端部形状をさす。  “Shape 2” refers to an end shape having substantially the same shape as FIG.
[0087] 実施例(1)〜(5)では、単にガラス板を重ね合わせた状態で炉内で曲げ成形を行 つたため、成形された 2枚の基板を重ね合わせた状態で基板同士の間隔を測定する と、透明基板の中央部から周縁部かけて単調減少して分布する形状となった。 [0087] In Examples (1) to (5), since the bending was performed in the furnace in a state where the glass plates were simply overlaid, the distance between the substrates in the state where the two formed substrates were overlaid. As a result, the shape was monotonously decreased and distributed from the central part to the peripheral part of the transparent substrate.
[0088] それに対して、比較例(1)〜(3)では、曲げ成形の際にガラステープで基板同士を 固定したため、上記形状が再現されず、上記 [比較例]で示したように端部での基板 間隔が広ぐ中央での基板間隔が狭い形状となり、その結果真空積層の際にリーク が生じ、所望の液晶素子を作ることができな力つた。 [0088] On the other hand, in Comparative Examples (1) to (3), since the substrates were fixed with glass tape at the time of bending, the above shape was not reproduced, and as shown in the above [Comparative Example]. The substrate spacing at the center was wide and the substrate spacing was narrow at the center. As a result, leakage occurred during vacuum lamination, and it was impossible to produce the desired liquid crystal element.
産業上の利用可能性  Industrial applicability
[0089] 以上説明したとおり、本発明に係る液晶素子は、光の透過状態と散乱状態とを制御 できることから自動車のサンルーフに好適である力 この他の用途にも利用すること ができる。例えば、窓(自動車用(サイドウィンドウ、ドアガラス、リアクウォータ等)、建 築用、航空機用、船舶用、鉄道車両用等)、天窓、間仕切り、扉等の建築の内装'外 装の材料、サインボード、広告商用媒体、大型の間仕切り装置等に適用することがで きる。たとえば冷蔵庫の扉に用いた場合、冷蔵庫の扉を開けることなぐ内部に収容 されている食品を確認することができる。あるいは、図形やパターンを組み合わせて 表示しあるいは文字などを表示させて、利用者に情報を提供するようにすることがで きる。また、透明板に必要に応じて、文字等の装飾を施してもよい。  [0089] As described above, the liquid crystal element according to the present invention can control the light transmission state and the light scattering state, and therefore can be used for other purposes as well. For example, architectural interiors such as windows (for automobiles (side windows, door glass, rear quarters, etc.), construction, aircraft, ships, railway vehicles, etc.), skylights, partitions, doors, etc. It can be applied to signboards, commercial advertising media, large partition devices, etc. For example, when it is used for a refrigerator door, it is possible to check the food contained inside the refrigerator door. Alternatively, information can be provided to the user by displaying a combination of figures and patterns or displaying characters. Moreover, you may give decorations, such as a character, to a transparent plate as needed.
[0090] なお、上記実施の形態にお!、ては、ノッシブ型の液晶素子にっ 、て例示したが、 本発明は、これに限られない。本発明を、スタティック型、アクティブ型などの他の駆 動方式の液晶素子に適用することもできる。  [0090] Although the above embodiment is exemplified by a noisy liquid crystal element, the present invention is not limited to this. The present invention can also be applied to other drive type liquid crystal elements such as a static type and an active type.
[0091] また、本発明により、液晶素子以外の構造体をも作ることができる。すなわち、 ITO 超微粒子等を含有する溶液やゲルを液晶層の代わりに機能層として用いることで、 熱線カット機能を備えた構造体を作ることができる。これは自動車や建築物等の窓ガ ラスの代わりに用いることができる。また、機能層にとして、着色溶液または着色ゲル を用いることもできる。さらに、基板としては、ガラス、榭脂、金属または半導体等の種 々の材料力 なる基板を用いることもできる。 なお、 2006年 7月 14日に出願された日本特許出願 2006— 194290号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。 In addition, according to the present invention, a structure other than the liquid crystal element can be manufactured. That is, by using a solution or gel containing ITO ultrafine particles as a functional layer instead of a liquid crystal layer, a structure having a heat ray cutting function can be produced. This can be used in place of window glass for automobiles and buildings. Further, a colored solution or a colored gel can be used for the functional layer. In addition, the substrate may be a seed such as glass, resin, metal or semiconductor. Substrates with various material strengths can also be used. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2006-194290 filed on July 14, 2006 are cited here as disclosure of the specification of the present invention. Incorporate.

Claims

請求の範囲 The scope of the claims
[1] 第 1の湾曲基板、該第 1の湾曲基板と略同一の形状を有しかつ該第 1の湾曲基板 に対向している第 2の湾曲基板、前記両湾曲基板の周縁部全周に設けられかつ前 記両湾曲基板を所定距離隔てて接合するとともに両湾曲基板間の間隙を封止する シール材、および前記両湾曲基板と前記シール材とで密封された間隙内に満たされ ている機能材料、を有する構造体であって、  [1] A first curved substrate, a second curved substrate having substantially the same shape as the first curved substrate and facing the first curved substrate, and the entire peripheral edge of both curved substrates And a sealing material that seals the gap between the two curved substrates and seals the gap between the two curved substrates and the gap sealed by the two curved substrates and the sealing material. A functional material comprising:
前記構造体を構成する第 1および第 2の湾曲基板の組み合わせが、該第 1および 第 2の湾曲基板を対向する面が略平行になるように重ね合わせかつ両湾曲基板の 対向する面内ないし周縁の少なくとも 1点で接触させた場合、湾曲基板端部における 両湾曲基板の間隔が両湾曲基板の間隔の最大値よりも小さくなる組み合わせである ことを特徴とする構造体。  The combination of the first and second curved substrates constituting the structure is superposed so that the surfaces facing the first and second curved substrates are substantially parallel, and the in-plane or opposite surfaces of both curved substrates are aligned. A structure having a combination in which the distance between the curved substrates at the edge of the curved substrate is smaller than the maximum value of the distance between the curved substrates when contacted at at least one point on the periphery.
[2] 第 1の湾曲基板、該第 1の湾曲基板と略同一の形状を有しかつ該第 1の湾曲基板 に対向している第 2の湾曲基板、前記両湾曲基板の周縁部全周に設けられかつ前 記両湾曲基板を所定距離隔てて接合するとともに両湾曲基板間の間隙を封止する シール材、および前記両湾曲基板と前記シール材とで密封された間隙内に満たされ ている機能材料、を有する構造体であって、  [2] A first curved substrate, a second curved substrate having substantially the same shape as the first curved substrate and facing the first curved substrate, and the entire circumference of the peripheral portions of both curved substrates And a sealing material that seals the gap between the curved substrates and seals the gap between the curved substrates, and a gap sealed between the curved substrates and the sealing material. A functional material comprising:
前記構造体を構成する第 1および第 2の湾曲基板の組み合わせが、該第 1および 第 2の湾曲基板を対向する面が略平行になるように重ね合わせかつ両湾曲基板の 対向する面内ないし周縁の少なくとも 1点で接触させた場合、湾曲基板端部における 両湾曲基板の間隔が 0. 5mm以下となる組み合わせであることを特徴とする構造体  The combination of the first and second curved substrates constituting the structure is superposed so that the surfaces facing the first and second curved substrates are substantially parallel, and the in-plane or opposite surfaces of both curved substrates are aligned. A structure having a combination in which the distance between the curved substrates at the edge of the curved substrate is 0.5 mm or less when contacted at at least one point on the periphery
[3] 第 1の湾曲基板、該第 1の湾曲基板と略同一の形状を有しかつ該第 1の湾曲基板 に対向している第 2の湾曲基板、前記両湾曲基板の周縁部全周に設けられかつ前 記両湾曲基板を所定距離隔てて接合するとともに両湾曲基板間の間隙を封止する シール材、および前記両湾曲基板と前記シール材とで密封された間隙内に満たされ ている機能材料、を有する構造体であって、 [3] a first curved substrate, a second curved substrate having substantially the same shape as the first curved substrate and facing the first curved substrate, and the entire circumference of the peripheral portions of both curved substrates And a sealing material that seals the gap between the two curved substrates and seals the gap between the two curved substrates and the gap sealed by the two curved substrates and the sealing material. A functional material comprising:
前記構造体を構成する第 1および第 2の湾曲基板の組み合わせが、該第 1および 第 2の湾曲基板を対向する面が略平行になるように重ね合わせかつ両湾曲基板の 対向する面内ないし周縁の少なくとも 1点で接触させた場合、湾曲基板端部における 両湾曲基板の間隔が前記構造体における両湾曲基板の対向する面を隔てる所定距 離の 20倍以下となる組み合わせであることを特徴とする構造体。 The combination of the first and second curved substrates constituting the structure is overlapped so that the surfaces facing the first and second curved substrates are substantially parallel, A combination in which the distance between the curved substrates at the end of the curved substrate is 20 times or less the predetermined distance separating the opposed surfaces of the curved substrates in the structure when contact is made at at least one point in the opposite plane or the peripheral edge. A structure characterized by being.
[4] 前記両湾曲基板の少なくとも一方が大気圧によって変形させられることにより両湾 曲基板の対向する面が所定の形状に矯正され、両湾曲基板の対向する面を隔てる 距離の分布が略均一となっている、請求項 1〜3のいずれかに記載の構造体。 [4] At least one of the curved substrates is deformed by atmospheric pressure, so that the opposing surfaces of the curved substrates are corrected to a predetermined shape, and the distance distribution separating the opposing surfaces of the curved substrates is substantially uniform. The structure according to any one of claims 1 to 3, wherein
[5] 前記構造体において、両湾曲基板の対向する面を隔てる距離力^〜 30 mの範 囲内の一定距離である、請求項 1〜4のいずれかに記載の構造体。 [5] The structure according to any one of [1] to [4], wherein in the structure, the distance is within a range of a distance force of ~ 30 m separating the opposing surfaces of both curved substrates.
[6] 前記両湾曲基板の対向する面の間隙に所定の大きさのスぺーサが配置され、両湾 曲基板の対向する面間が所定の一定の距離に保持されている請求項 1〜5のいず れかに記載の構造体。 [6] The spacer of a predetermined size is disposed in a gap between the opposing surfaces of the two curved substrates, and a distance between the opposing surfaces of the two curved substrates is maintained at a predetermined constant distance. The structure according to any one of 5 above.
[7] 機能材料が液体を含む材料である、請求項 1〜6のいずれか〖こ記載の構造体。  [7] The structure according to any one of claims 1 to 6, wherein the functional material is a material containing a liquid.
[8] 前記両湾曲基板の少なくとも一方が透明湾曲基板であり、前記両湾曲基板の対向 する面の表面のそれぞれに電極層を有し、機能材料が液晶を含む材料である、請求 項 1〜7のいずれかに記載の構造体。 [8] The at least one of the two curved substrates is a transparent curved substrate, has an electrode layer on each of the surfaces of the two curved substrates facing each other, and the functional material is a material containing liquid crystal. The structure according to any one of 7 above.
[9] 第 1の湾曲基板、該第 1の湾曲基板と略同一の形状を有しかつ該第 1の湾曲基板 に対向している第 2の湾曲基板、前記両湾曲基板の周縁部全周に設けられかつ前 記両湾曲基板を所定距離隔てて接合するとともに両湾曲基板間の間隙を封止する シール材、および前記両湾曲基板と前記シール材とで密封された間隙内に満たされ ている機能材料、を有する構造体の製造方法であって、 [9] The first curved substrate, the second curved substrate having substantially the same shape as the first curved substrate and facing the first curved substrate, and the entire circumference of the peripheral portions of the two curved substrates And a sealing material that seals the gap between the curved substrates and seals the gap between the curved substrates, and a gap sealed between the curved substrates and the sealing material. A structure having a functional material,
所定の減圧雰囲気下で、第 1および第 2の湾曲基板と、該両湾曲基板の周縁部全 周に配されるシール材とで密封された間隙内に機能材料を封入し、機能材料保持体 を製造する第 1の工程と、  In a predetermined reduced pressure atmosphere, the functional material is sealed in a gap sealed by the first and second curved substrates and the sealing material disposed around the entire periphery of the curved substrates, and the functional material holder A first step of manufacturing
前記機能材料保持体を大気圧の雰囲気に曝すことにより前記機能材料を前記間 隙内に充満せしめ、かつ、前記第 1および第 2の湾曲基板の少なくとも何れか一方を 圧力の変化によって変形せしめることにより、前記機能材料保持体における両湾曲 基板の対向する面を隔てる距離を略均一にせしめて構造体を製造する第 2の工程と を有することを特徴とする構造体の製造方法。 Exposing the functional material holder to an atmosphere of atmospheric pressure to fill the functional material in the gap and deforming at least one of the first and second curved substrates by a change in pressure; And a second step of manufacturing the structure by making the distance separating the opposing surfaces of the two curved substrates in the functional material holding body substantially uniform.
[10] 前記第 1の工程において、一方の湾曲基板の周縁部全周にシール材を設け、該シ 一ル材で囲まれた領域内に前記機能材料を供給し、前記減圧雰囲気下で、前記一 方の湾曲基板の表面に向かって他方の湾曲基板を押し当てて、前記機能性材料を 押し広げるとともに 2枚の湾曲基板の間隙内に該機能材料が挟持された密閉空間を 形成する、請求項 9に記載の構造体の製造方法。 [10] In the first step, a sealing material is provided on the entire periphery of one of the curved substrates, the functional material is supplied into a region surrounded by the sealing material, and in the reduced pressure atmosphere, The other curved substrate is pressed against the surface of the one curved substrate to spread the functional material and form a sealed space in which the functional material is sandwiched in the gap between the two curved substrates; A method for manufacturing the structure according to claim 9.
[11] 前記構造体を構成する第 1および第 2の湾曲基板の組み合わせが、該第 1および 第 2の湾曲基板を対向する面が略平行になるように重ね合わせかつ両湾曲基板の 対向する面内ないし周縁の少なくとも 1点で接触させた場合、湾曲基板端部における 両湾曲基板の間隔が 0. 5mm以下となる組み合わせである、請求項 9または 10に記 載の構造体の製造方法。  [11] The combination of the first and second curved substrates constituting the structure is overlapped so that the surfaces facing the first and second curved substrates are substantially parallel, and the curved substrates are opposed to each other. 11. The method for manufacturing a structure according to claim 9, wherein the structure is a combination in which the distance between the curved substrates at the end portion of the curved substrate is 0.5 mm or less when they are brought into contact with each other at least one point in the plane or the periphery.
[12] 前記構造体を構成する第 1および第 2の湾曲基板の組み合わせが、該第 1および 第 2の湾曲基板を対向する面が略平行になるように重ね合わせかつ両湾曲基板の 対向する面内ないし周縁の少なくとも 1点で接触させた場合、湾曲基板端部における 両湾曲基板の間隔が前記構造体における両湾曲基板の対向する面を隔てる所定距 離の 20倍以下となる組み合わせである、請求項 9〜: L 1のいずれかに記載の構造体 の製造方法。  [12] The combination of the first and second curved substrates constituting the structure is overlapped so that the surfaces facing the first and second curved substrates are substantially parallel, and both the curved substrates are opposed to each other. When contacting at least one point in the plane or at the periphery, the distance between the curved substrates at the end of the curved substrate is a combination that is 20 times or less the predetermined distance separating the opposing surfaces of the curved substrates in the structure. The method for producing a structure according to any one of claims 1 to 9.
[13] 前記構造体において、両湾曲基板の対向する面を隔てる距離力^〜 30 mの範 囲内の一定距離である、請求項 9〜 12の 、ずれかに記載の構造体の製造方法。  [13] The method for manufacturing a structure according to any one of [9] to [12], wherein in the structure, the distance is within a range of a distance force of ~ 30 m separating the opposing surfaces of both curved substrates.
[14] 機能材料とともに所定の大きさのスぺーサを封入する、請求項 9〜13のいずれかに 記載の構造体の製造方法。  [14] The method for manufacturing a structure according to any one of [9] to [13], wherein a spacer having a predetermined size is enclosed together with the functional material.
[15] 機能材料が液体を含む材料である、請求項 9〜14のいずれかに記載の構造体の 製造方法。  [15] The method for producing a structure according to any one of [9] to [14], wherein the functional material is a material containing a liquid.
[16] 前記両湾曲基板の少なくとも一方が透明湾曲基板であり、前記両湾曲基板の対向 する面の表面のそれぞれに電極層を有し、機能材料が液晶を含む材料である、請求 項 9〜 15のいずれかに記載の構造体の製造方法。  [16] The at least one of the two curved substrates is a transparent curved substrate, has an electrode layer on each of the opposing surfaces of the two curved substrates, and the functional material is a material containing liquid crystal. 16. A method for producing the structure according to any one of 15 above.
PCT/JP2007/064026 2006-07-14 2007-07-13 Structure and process for producing the same WO2008007788A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008524866A JPWO2008007788A1 (en) 2006-07-14 2007-07-13 Structure and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-194290 2006-07-14
JP2006194290 2006-07-14

Publications (1)

Publication Number Publication Date
WO2008007788A1 true WO2008007788A1 (en) 2008-01-17

Family

ID=38923343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064026 WO2008007788A1 (en) 2006-07-14 2007-07-13 Structure and process for producing the same

Country Status (2)

Country Link
JP (1) JPWO2008007788A1 (en)
WO (1) WO2008007788A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066462A (en) * 2008-09-10 2010-03-25 Mitsubishi Electric Corp Liquid crystal panel and method of manufacturing the same
US8455649B2 (en) 2007-10-09 2013-06-04 Dow Agrosciences, Llc Insecticidal substituted azinyl derivatives
JP2017502903A (en) * 2014-07-14 2017-01-26 サン−ゴバン グラス フランス Smart glass structure and window glass for transportation
JP2017026686A (en) * 2015-07-16 2017-02-02 富士フイルム株式会社 Dimmer
JP2017534083A (en) * 2014-11-17 2017-11-16 アルファミクロン・インコーポレイテッドAlphaMicron,Inc. Method for producing a soft electro-optic cell
DE102018129377A1 (en) 2018-11-22 2020-05-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Glass pane for glazing a vehicle
JPWO2019142719A1 (en) * 2018-01-17 2020-11-19 積水化学工業株式会社 Dimming laminate and resin spacer for dimming laminate
US10914991B2 (en) 2014-11-17 2021-02-09 Alphamicron Incorporated Method for producing a flexible electro-optic cell
JP2021123057A (en) * 2020-02-07 2021-08-30 大日本印刷株式会社 Laminate
CN113985637A (en) * 2021-10-29 2022-01-28 京东方科技集团股份有限公司 Dimming panel and dimming glass
US11435610B2 (en) 2014-11-17 2022-09-06 Alphamicron Incorporated Method for producing a flexible electro-optic cell
US12072583B2 (en) 2018-01-17 2024-08-27 Sekisui Chemical Co., Ltd. Dimming laminate and resin spacer for dimming laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132736A (en) * 1985-12-03 1987-06-16 Asahi Glass Co Ltd Production of light-conditioning glass for automobile
JP2002040492A (en) * 2000-07-26 2002-02-06 Central Glass Co Ltd Device and method for manufacturing thermochromic light controlling body
JP2004131335A (en) * 2002-10-10 2004-04-30 Asahi Glass Co Ltd Light control window
JP2004315311A (en) * 2003-04-17 2004-11-11 Sekisui Chem Co Ltd Method for bending glass for laminated glass, method for manufacturing laminated glass, and laminated glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132736A (en) * 1985-12-03 1987-06-16 Asahi Glass Co Ltd Production of light-conditioning glass for automobile
JP2002040492A (en) * 2000-07-26 2002-02-06 Central Glass Co Ltd Device and method for manufacturing thermochromic light controlling body
JP2004131335A (en) * 2002-10-10 2004-04-30 Asahi Glass Co Ltd Light control window
JP2004315311A (en) * 2003-04-17 2004-11-11 Sekisui Chem Co Ltd Method for bending glass for laminated glass, method for manufacturing laminated glass, and laminated glass

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8455649B2 (en) 2007-10-09 2013-06-04 Dow Agrosciences, Llc Insecticidal substituted azinyl derivatives
US8507671B2 (en) 2007-10-09 2013-08-13 Dow Agrosciences Llc Insecticidal substituted azinyl derivatives
JP2010066462A (en) * 2008-09-10 2010-03-25 Mitsubishi Electric Corp Liquid crystal panel and method of manufacturing the same
JP2017502903A (en) * 2014-07-14 2017-01-26 サン−ゴバン グラス フランス Smart glass structure and window glass for transportation
US11435610B2 (en) 2014-11-17 2022-09-06 Alphamicron Incorporated Method for producing a flexible electro-optic cell
JP2017534083A (en) * 2014-11-17 2017-11-16 アルファミクロン・インコーポレイテッドAlphaMicron,Inc. Method for producing a soft electro-optic cell
US10914991B2 (en) 2014-11-17 2021-02-09 Alphamicron Incorporated Method for producing a flexible electro-optic cell
JP7027165B2 (en) 2014-11-17 2022-03-01 アルファマイクロン インコーポレイテッド How to generate a soft electro-optic cell
JP2017026686A (en) * 2015-07-16 2017-02-02 富士フイルム株式会社 Dimmer
JPWO2019142719A1 (en) * 2018-01-17 2020-11-19 積水化学工業株式会社 Dimming laminate and resin spacer for dimming laminate
US11644717B2 (en) 2018-01-17 2023-05-09 Sekisui Chemical Co., Ltd. Dimming laminate and resin spacer for dimming laminate
US12072583B2 (en) 2018-01-17 2024-08-27 Sekisui Chemical Co., Ltd. Dimming laminate and resin spacer for dimming laminate
DE102018129377A1 (en) 2018-11-22 2020-05-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Glass pane for glazing a vehicle
JP2021123057A (en) * 2020-02-07 2021-08-30 大日本印刷株式会社 Laminate
CN113985637A (en) * 2021-10-29 2022-01-28 京东方科技集团股份有限公司 Dimming panel and dimming glass
CN113985637B (en) * 2021-10-29 2023-10-13 京东方科技集团股份有限公司 Dimming panel and dimming glass

Also Published As

Publication number Publication date
JPWO2008007788A1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
WO2008007788A1 (en) Structure and process for producing the same
EP2505352B1 (en) A process for producing a transparent laminate
US8830553B2 (en) Edge seals for, and processes for assembly of, electro-optic displays
EP1973089B1 (en) Process for producing display and method of laminating
KR101969597B1 (en) Method of bonded device
US7808603B2 (en) Laminated article with flexible substrate
TWI549830B (en) The manufacturing method of the layered body
CN102707509A (en) Liquid crystal panel and manufacturing method thereof
JP5816388B1 (en) Manufacturing method of bonding device and manufacturing device of bonding device
WO2014054592A1 (en) Transparent surface material equipped with adhesive layer, manufacturing method therefor, and display device
TW201418038A (en) Adhesive layer-equipped transparent surface material and display device
CN111488074A (en) Panel attaching method of curved screen and curved screen
CN105189119A (en) Device for manufacturing layered body, and method for manufacturing layered body
JP5173757B2 (en) Flat display panel and manufacturing method of flat display panel
US7349059B2 (en) Liquid crystal cell assembly method and system
JPWO2011121641A1 (en) Laminated panel and manufacturing method thereof
JP2008003217A (en) Display panel
JP2008003216A (en) Method for manufacturing liquid crystal display panel
JP5211441B2 (en) Manufacturing method of liquid crystal optical element
JP2000029051A (en) Manufacture of liquid crystal display device
KR20100026505A (en) Display device and fabricating method thereof
JP2009092898A (en) Method of manufacturing particle movement type display device
JPH02156220A (en) Manufacture of curved surface liquid crystal cell
KR20160005000A (en) Glass film laminate
JP6618835B2 (en) Method for producing composite film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790806

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008524866

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790806

Country of ref document: EP

Kind code of ref document: A1