WO2008004417A1 - Sensorless control apparatus of synchronous machine - Google Patents

Sensorless control apparatus of synchronous machine Download PDF

Info

Publication number
WO2008004417A1
WO2008004417A1 PCT/JP2007/061894 JP2007061894W WO2008004417A1 WO 2008004417 A1 WO2008004417 A1 WO 2008004417A1 JP 2007061894 W JP2007061894 W JP 2007061894W WO 2008004417 A1 WO2008004417 A1 WO 2008004417A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronous machine
phase angle
current
command
frequency
Prior art date
Application number
PCT/JP2007/061894
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Yasui
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to US12/307,276 priority Critical patent/US20090200974A1/en
Priority to EP07745161.5A priority patent/EP2075904A4/en
Priority to CN2007800255066A priority patent/CN101485079B/en
Publication of WO2008004417A1 publication Critical patent/WO2008004417A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/183Circuit arrangements for detecting position without separate position detecting elements using an injected high frequency signal

Definitions

  • the present invention relates to a sensorless control device for a synchronous machine.
  • noise or the like is superimposed on the signal line of the sensor force that detects the rotational phase angle.
  • the detected value is disturbed and the control performance is deteriorated.
  • the conventional sensorless control device for a synchronous machine described above has an advantage that the synchronous machine can be controlled without using a rotational phase angle sensor, and maintenance is improved at low cost.
  • a control method that detects a component corresponding to a high-frequency voltage command for high-frequency current response such as the sensorless control device described in the above-mentioned patent document, basically requires a desired high-frequency current to flow. Compared to a control device using sensors, there were problems when the loss and noise increased extremely.
  • the present invention has been made to solve the above-described problems of the prior art, and suppresses loss and noise increase caused by sensorless control, and enables stable operation with simple adjustment. It is an object of the present invention to provide a sensorless control device for a synchronous machine that enables this.
  • the present invention provides an inverter that mutually converts direct current power and alternating current power, a synchronous machine that has a magnetic saliency in a rotor and is driven by power supplied from the inverter, and controls the synchronous machine PWM modulation means for determining the output voltage in the inverter based on a command for the current, current detection means for detecting the current flowing in the synchronous machine, and the voltage determined in the PWM modulation means and output from the inverter
  • a high-frequency component calculating means for calculating a high-frequency component of the generated current change, and a rotation for estimating a rotation phase angle of the synchronous machine based on a spatial distribution of the high-frequency component on a rotating coordinate axis synchronized with the rotation of the synchronous machine. It features a sensorless control device for a synchronous machine equipped with phase angle estimation means.
  • the change in current flowing through the synchronous machine is high.
  • Control the synchronous machine by calculating the frequency component and estimating the phase angle of the motor rotor without the rotational phase angle sensor based on the spatial distribution of the high-frequency current change in the dq axis coordinate system that is synchronized with the rotation of the synchronous machine
  • the loss of the synchronous machine and the increase in noise caused by sensorless control can be suppressed, and stable operation can be achieved with simple adjustment.
  • FIG. 1 is a block diagram showing a general permanent magnet synchronous machine model and coordinate definitions.
  • FIG. 2 is a block diagram showing a definition of a voltage vector of the permanent magnet synchronous machine.
  • FIG. 3 is a block diagram of the sensorless control device of the synchronous machine according to the first embodiment of the present invention.
  • FIG. 4 is a graph showing a high-frequency component distribution of current change on the dq coordinate axis of the permanent magnet synchronous machine.
  • FIG. 5 is a graph showing a high-frequency component distribution when the current change error on the dq coordinate axis of the permanent magnet synchronous machine is 30 °.
  • FIG. 6 is a graph showing a high-frequency component distribution in a state where the permanent magnet synchronous machine has a 100% torque output on a dq axis coordinate and a current change error of 0 °.
  • FIG. 7 is a graph showing a high-frequency component distribution in a state where the permanent magnet synchronous machine has a torque 100% output on a dq axis coordinate and a current change error of 30 °.
  • FIG. 8 is a graph showing a high-frequency component distribution in a state where a permanent magnet synchronous machine has a torque 100% output on a dq axis coordinate and a current change error + 30 °.
  • Fig. 9 is a graph showing the relationship between the characteristic amount and the error in the sensorless control device of the synchronous machine according to the third embodiment of the present invention.
  • FIG. 10 is a block diagram of a sensorless control device for a synchronous machine according to a fourth embodiment of the present invention.
  • the sensorless control device for a synchronous machine calculates a high frequency component of a current change flowing through a permanent magnet synchronous machine, and synchronizes with the rotation of the synchronous machine. Based on the spatial distribution of changes, the phase angle of the motor rotor is estimated without the rotational phase angle sensor, and the permanent magnet synchronous machine is controlled.
  • FIG. 1 shows a configuration of a general permanent magnet synchronous machine.
  • the stator 01 of the permanent magnet synchronous machine is composed of U, V, W three-phase wire 01U, 01V, 01W, and the rotor is composed of a rotor core 02 and a permanent magnet 03.
  • the direction of the magnetic flux of the permanent magnet is d-axis, and the axis orthogonal to this d-axis is Defined as q axis.
  • the U-phase direction is defined as the ⁇ - axis
  • the direction perpendicular to this is defined as the ⁇ -axis
  • the angle from the a-axis direction to the d-axis direction is defined as the rotational phase angle ⁇ of the synchronous machine.
  • Vd and Vq are d-axis voltage and q-axis voltage, respectively, Id and Iq are d-axis current and q-axis current, R is resistance, Ld is d-axis inductance, and Lq is q-axis.
  • the phase angle estimated by the control device is Use instead of sensor output. Therefore, as shown in Fig. 1, the estimated phase angle is defined as ⁇ est, and the corresponding coordinate system is defined as the ⁇ -axis and ⁇ -axis.
  • the estimation error ⁇ 0 occurs, the ⁇ ⁇ axis is rotated by the dq axial force estimation error ⁇ 0.
  • FIG. 3 shows a configuration of the sensorless control device of the synchronous machine according to the first embodiment of the present invention.
  • the inverter 05 receives the gate command for driving the inverter 05 as an input, and converts AC Z DC power to each other by switching ONZOFF of the main circuit switching element built in the inverter 05.
  • the permanent magnet synchronous machine 07 generates a magnetic field due to the three-phase alternating current flowing in each excitation phase of the UVW, and torque is generated by magnetic interaction with the rotor.
  • the control command calculation unit 10 calculates a control command for the torque command force by calculation described later, and outputs the control command to the PWM modulation unit 04.
  • the PWM modulation unit 04 modulates a control command for driving the permanent magnet synchronous machine 07 by PWM (Pulse Width Modulation), and a gate command that is an ONZOFF command for each phase switching element of the inverter 05. Is output.
  • the current detection unit 06 detects a two-phase or three-phase current response value of the three-phase AC current flowing through the permanent magnet synchronous machine 07.
  • the two-phase currents Iu and Iw are detected.
  • the high frequency component calculation unit 11 extracts the high frequency current component from the response values of the input currents Iu and Iw, calculates the time change rate thereof, and outputs it. It also outputs a signal indicating the timing of computation.
  • the rotational phase angle estimation unit 08 uses the high-frequency component of the current change calculated from the current response values Iu and Iw detected by the current detection unit 06, and uses the spatial component of the component in the y ⁇ -axis coordinate system. Based on the distribution, the rotational phase angle ⁇ est of the permanent magnet synchronous machine 07 is estimated.
  • control command that is an input to the PWM modulation unit 04 is given by the control command calculation unit 10 by the following calculation processing based on the torque command to be output by the permanent magnet synchronous machine 07.
  • a torque command is given from the host control system, and based on the torque command! /, A y-axis current command I ⁇ ref and a ⁇ -axis current command I ⁇ rel ⁇ are calculated according to Equation 2.
  • Trqref is a torque command
  • k is a constant
  • 0 i is a current phase angle with respect to the ⁇ axis in the ⁇ ⁇ axis coordinate system.
  • the current commands I ⁇ ref and I ⁇ ref are tapes that can refer to the torque command as a parameter. It is also possible to prepare the file and refer to this table. The method using a table is effective in cases where it is preferable to formulate the relationship between torque and current as shown in the above equation (2).
  • ⁇ ⁇ ⁇ is a proportional gain
  • Ki is an integral gain
  • s is a Laplace operator
  • the control command calculation unit 10 uses the three-phase voltage command obtained by the above calculation as a control command.
  • the PWM modulation unit 04 performs PWM modulation and outputs a gate command to the inverter 05.
  • PWM modulation is a given control command, which is a three-phase voltage command, and is constant or variable in advance. Compared with a triangular wave carrier wave set to have a frequency of, the comparison result is used as a gate command.
  • the rotational phase angle estimation unit 08 is based on the high-frequency component of the current change flowing through the permanent magnet synchronous machine 07 obtained by the high-frequency component calculation unit 11 and based on the spatial distribution in the ⁇ axis coordinate system as follows. To estimate the rotational phase angle ⁇ est.
  • the phase currents Iu and Iw detected by the current detection unit 06 are used as the rotation phase angle estimation value 0 est ⁇ based on the rotation phase angle estimation unit 08. Then, coordinate transformation is performed by the following calculation !, and the ⁇ -axis current response value I y res and the ⁇ -axis current response value I ⁇ res are obtained.
  • the ⁇ -axis current response is calculated from the current values of the two phases of the three-phase current, as shown in the following equation.
  • the value I y res and the ⁇ -axis current response value I ⁇ res can be obtained.
  • the apparatus can be simplified compared to the case of detecting for three phases.
  • Im is the input current I at time tm
  • In is the input current I at time tn
  • dlbase / dt is the rate of time change of the fundamental wave component of the input current.
  • the fundamental wave component is an electrical rotational frequency component.
  • Equation 7 the current change between times tm and tn is linearly approximated to obtain the change between the times, and this is expressed by Equation 7. It is also possible to use as (Im-In).
  • a linear approximation method a generally used least square approximation is used. In that case, at least multiple sampling points are required between the computation times tm and tn. The number of samplings depends on the sampling frequency of the AZD converter, but this is because the general AZD variation in recent years can take a sufficient number of samplings to linearly approximate current changes that also increase the sampling frequency. It can be said that the method is also sufficiently practical. In addition, this method can eliminate the influence of noise, and can therefore be expected to improve estimation accuracy.
  • the rotational phase angle estimator 08 estimates the rotational phase angle from the spatial distribution of the high frequency component of the current change obtained by the high frequency component calculator 11.
  • the high-frequency component of the current change flowing through the permanent magnet synchronous machine 07 can be derived from the current differential term force in Equation (2). Dividing Eq. 2 into high-frequency components and fundamental wave components as shown in Eq. 8, and extracting high-frequency components, Eq. 9 is obtained.
  • Xbase is the fundamental component of waveform X
  • the high-frequency voltages V to d and V to (! Can be defined as the sum of the inverter output voltage and the high-frequency component of the motor-induced voltage.
  • the motor-induced voltage varies depending on the rotational speed and drive current, but the high-frequency component
  • the high frequency component of the inverter output voltage is dominant as the high frequency voltage related to the spatial distribution of the high frequency component used in the rotational phase angle estimation unit 08.
  • the high frequency component of the inverter output voltage is Therefore, the amplitude values of the high-frequency voltages V to d and V to q can be regarded as almost constant, so that the high-frequency currents d and I to q are as follows: , V ⁇ q, Ld, Lq.
  • the spatial distribution of the high-frequency component has a shape having a characteristic in the dq axis direction.
  • This distribution can be said to be the inductance distribution of the stator winding through which the drive current of the permanent magnet synchronous machine 07 flows, in terms of the structural power of the motor.
  • the spatial distribution of the stator inductance is strongly influenced by the rotor inductance, and the stator current is driven by the drive current. It can be said that the rotor inductance distribution is almost equal to the torque zero to middle range operation where the ductance is not saturated.
  • Figure 4 shows the inductance distribution obtained by superimposing a spatially uniform high-frequency voltage with zero output torque, that is, zero current. For the reasons described above, this distribution is considered to be rotor inductance. It is done.
  • the major axis direction of the elliptic distribution is coincident with the d axis, and the minor axis direction is coincident with the q axis.
  • Fig. 4 represents the rotor inductance
  • this elliptical distribution rotates according to the rotation of the rotor. Therefore, if the rotation of the ellipse is extracted from the distribution by approximation, the d-axis direction can be estimated. According to this method, if the minimum high-frequency component that can extract the rotation of the elliptic distribution can be obtained, the rotational phase angle can be estimated.
  • the conventional method it is necessary to superimpose a high-frequency voltage and observe a high-frequency current corresponding to or synchronized with at least the superimposed high-frequency voltage in some form. For example, it was necessary to observe the amplitude of the high-frequency current matched to the superposition period of the high-frequency voltage.
  • the conventional method has been adjusted so that the high frequency current amplitude is increased by increasing the amount of superimposed high frequency in order to increase the SZN ratio so that noise does not significantly affect the estimation result. .
  • this is not preferable because loss and noise due to high-frequency current increase.
  • the sensorless control device for a synchronous machine employs the phase angle estimation method described above, the current sampling time point is converted into a voltage within a range in which a correct current change high-frequency component can be measured.
  • the phase angle of the rotor can be estimated without using the rotational phase angle sensor, and the sensorless configuration reduces the size. Cost reduction, easy maintenance, and loss due to high-frequency currents' Adjustment for stable operation without incurring or increasing the noise can be simplified. Become. [0048] (Second embodiment)
  • a sensorless control device for a synchronous machine according to a second embodiment of the present invention will be described.
  • the configuration of the present embodiment is the same as that of the first embodiment and is shown in FIG. 3, but the calculation process performed by the rotational phase angle estimator 08 differs from the first embodiment in that it is permanent.
  • the rotational phase angle is estimated based on a change in the shape of the spatial distribution of the current changing high frequency component.
  • the estimation of the rotational phase angle performed by the rotational phase angle estimation unit 08 shown in the first embodiment is that the spatial distribution of the current change high frequency component represents the rotor inductance of the permanent magnet synchronous machine 07, which It utilized the fact that there was a rotational relationship corresponding to the synchronized dq axis coordinate system. In this case, when a high torque is output as a characteristic of the permanent magnet synchronous machine 07, the stator inductance is saturated by the drive current, and the rotational relationship of the above distribution cannot be observed.
  • the rotational phase angle estimation unit 08 performs effective rotational phase angle estimation even in such a case, and particularly pays attention to the shape of the above distribution, and the shape of the spatial distribution and the estimated phase.
  • the rotational phase angle is estimated in correspondence with the angular error.
  • Figure 4 shows the high-frequency component distribution of the current change in the low torque state. If an error ⁇ occurs in the estimated phase angle ⁇ est, this high-frequency component distribution is a distribution rotated by - ⁇ .
  • Figure 5 shows the distribution of high-frequency components in a state where the error ⁇ is intentionally generated by 30 °. From Fig. 5, the spatial correspondence between the dq-axis coordinate system and the high-frequency component distribution is clear.
  • the rotational phase angle estimation method employed in the first embodiment is to estimate the rotational phase angle by using such a feature.
  • the distribution shape of the high frequency component is not an ellipse but an ellipse close to a perfect circle as shown in Fig. 6 in a high torque operation state. In this state, an estimation error is likely to occur due to the influence of noise or the like that makes it difficult to extract the relationship corresponding to the dq axis coordinate system as described above.
  • the rotational relationship between the ellipse and the dq axis itself also varies depending on the current phase. Since the elliptic distribution and dq axis do not have a fixed rotational relationship, it is necessary to correct appropriately according to the driving situation.
  • the rotational phase angle estimator 08 uses the high frequency component distribution shape itself rather than performing the rotational phase angle estimation using the rotational relationship between the distribution of the high frequency component and the dq axis coordinate system. To estimate.
  • the rotational phase angle is estimated by observing the shape of the distribution and associating it with ⁇ .
  • the high frequency component distribution is affected by both the inductance of the stator itself and the rotor inductance. That is, for example, the shape of a substantially elliptic distribution is stored in correspondence with the torque command and the estimation error, and the rotational phase angle is estimated by comparing the obtained distributions.
  • the rotor phase angle is estimated without using the rotation phase angle sensor, thereby reducing the size and cost of the device and maintaining the device.
  • the rotation phase angle can be estimated stably even in a high torque state.
  • a third embodiment of the sensorless control device for a synchronous machine of the present invention will be described.
  • the configuration of the sensorless control device of this embodiment is the same as that of the first and second embodiments shown in FIG. 3, but the rotational phase angle estimation processing power performed by the rotational phase angle estimation unit 08 therein is the same.
  • a predetermined feature amount is calculated in the spatial distribution of the high-frequency component of the current change in the dq axis coordinate system, and the rotational phase angle is estimated based on the feature amount.
  • the maximum value of the component detected in the predetermined angle direction from the ⁇ -axis of the high-frequency component distribution of the current change on the ⁇ - ⁇ axis is selected as the feature amount.
  • the correspondence between the selected feature quantity and the estimation error is the characteristic shown in Fig. 9, and is a linear characteristic with an offset especially near the zero point of the estimation error.
  • the calculation is performed with the predetermined angle set to 45 °. Therefore, the rotational phase angle is estimated by performing feedback estimation so that the feature amount converges to a point with zero error.
  • the predetermined angle is about 45 degrees.
  • the feature quantity may be calculated in any way as long as the characteristics of the feature quantity are obtained.
  • the feature amount may be the area occupied by the distribution in the first quadrant on the ⁇ coordinate axes.
  • the area calculated in this way also has a characteristic that varies depending on the estimation error, so it can be adopted as a feature quantity.
  • the phase angle of the rotor is estimated without using the rotational phase angle sensor, thereby reducing the size and cost of the device. Maintenance can be facilitated, and stable rotation phase angle estimation can be performed without performing complicated calculations. Furthermore, by calculating the feature value based on the components detected in the predetermined angle direction from the ⁇ -axis, it is possible to simplify the calculations required for rotational phase angle estimation, shortening the calculation time and improving the performance of the processing unit. Reduction can be achieved.
  • a sensorless control device for a synchronous machine will be described with reference to FIG.
  • the same elements as those in the first embodiment shown in FIG. 3 are denoted by the same reference numerals.
  • the sensorless control device for a synchronous machine of the present embodiment is characterized in that a high frequency command superimposing unit 09 is added to the first embodiment.
  • the high-frequency command superimposing unit 09 is configured so that a high-frequency command having a frequency sufficiently higher than the fundamental frequency for operating the permanent magnet synchronous machine 07 is superimposed on the voltage output from the inverter 05. Superimpose the high-frequency command on the command. Furthermore, a rotating high frequency command is superimposed as a high frequency command. Furthermore, as a high frequency command, it is significant in a predetermined angular direction on the ⁇ ⁇ coordinate axes. A high-frequency command that generates a high-frequency component of current change is superimposed.
  • the principle of estimating the rotational phase angle is based on the time change rate of the high-frequency current.
  • the change in the high-frequency current must be observed with high accuracy.
  • the voltage command is small when the voltage output from the inverter 05 is low, for example, when the engine is stopped at low speed and low torque.
  • the state in which the high-frequency current time change rate can be calculated significantly is a state in which the voltage vector force VO, V7 other than the voltage vector force VO, V7 output from the inverter 05 as a result of modulation by the PWM modulator 04 is a so-called non-zero voltage vector Often there is.
  • the high frequency command superimposing unit 09 adds the high frequency command shown in Formula 11 to the current command, thereby extending the time interval of the non-zero voltage vector.
  • the reason why the superimposed command is a high frequency command is to act as a disturbance on the torque generated by the motor force.
  • Ihf is the high frequency command amplitude and ⁇ hf is the high frequency command angular velocity.
  • the high frequency command can be freely selected as long as the above-described characteristics can be obtained. Therefore, it is not always necessary to set as shown in Equation 11. However, by setting the rotational high frequency command to be superimposed as shown in Equation 11, the above characteristics can be obtained and the following effects can be obtained.
  • the rotational phase angle estimation unit 08 uses a high-frequency current change as a rotational phase angle estimation method. When the shape or area of the component is used, a uniform distribution can be obtained in the ⁇ coordinate system by giving a rotational high frequency, and the shape can be accurately grasped, so that the accuracy of phase angle estimation is improved. It becomes possible.
  • the high-frequency command that generates a high-frequency component of a significant current change in a predetermined angular direction may be selected as follows:
  • the phase angle of the rotor is estimated without using the rotation phase angle sensor, thereby reducing the size and cost of the apparatus. Maintenance can be facilitated, and a stable rotational phase angle can be estimated even when stopped at low speed and low torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A rotating machine sensorless control apparatus comprising an inverter (05) that converts DC and AC powers to each other; a permanent magnet synchronous machine (07) the rotator of which has a magnetic saliency and which is driven by a power supplied from the inverter; a PWM modulating means (04) that decides, based on a command for controlling the permanent magnet synchronous machine, an output voltage at the inverter; a current detecting means (06) that detects a current flowing through the permanent magnet synchronous machine; a high frequency component calculating means (10) that calculates the high frequency components of a current change caused by the voltage which is decided by the PWM modulating means and which is outputted from the inverter; and a rotation phase angle estimating means (08) that estimates the rotation phase angle of the permanent magnet synchronous machine based on a spatial distribution on a rotating coordinate axes synchronous with the rotation of the permanent magnet synchronous machine of the high frequency components; wherein the increase of loss and noise that are caused by the sensorless control of the rotating machine can be suppressed and a simple adjustment can provide a stable operation.

Description

明 細 書  Specification
同期機のセンサレス制御装置  Sensorless control device for synchronous machine
技術分野  Technical field
[0001] 本発明は、同期機のセンサレス制御装置に関する。  The present invention relates to a sensorless control device for a synchronous machine.
背景技術  Background art
[0002] 回転子に永久磁石を用いた同期機の制御には、同期機 (電動機や発電機)を駆動 制御するために回転子の回転位相角を検出するセンサが必要である。し力し回転位 相角を検出するセンサを用いて同期機を制御する制御装置の場合、以下に挙げるよ うな問題点が存在する。  [0002] In order to control a synchronous machine using a permanent magnet as a rotor, a sensor for detecting the rotational phase angle of the rotor is required to drive and control the synchronous machine (electric motor or generator). In the case of a control device that controls a synchronous machine using a sensor that detects the rotational phase angle by applying a force, the following problems exist.
[0003] 第一に回転位相角を検出するセンサの存在が駆動システム全体の容積を増大す ることである。これにより、限られた設置スペース内において同期機の出力を拡大す る妨げとなる。  First, the presence of a sensor that detects the rotational phase angle increases the volume of the entire drive system. This hinders expansion of the output of the synchronous machine in a limited installation space.
[0004] 第二に回転位相角を検出するセンサ自体の保守点検作業が必要になることである [0004] Secondly, the maintenance and inspection work of the sensor itself for detecting the rotational phase angle is required.
。これにより保守点検効率が悪化する。 . This deteriorates the maintenance inspection efficiency.
[0005] 第三に回転位相角を検出するセンサ力 の信号線にノイズ等が重畳することにより[0005] Third, noise or the like is superimposed on the signal line of the sensor force that detects the rotational phase angle.
、検出値に擾乱が乗り、制御性能が悪ィ匕することである。 The detected value is disturbed and the control performance is deteriorated.
[0006] 第四に回転位相角を検出するセンサはそれを駆動するための電源を必要とするも のがほとんどであり、同期機駆動とは別系統の電源を設置する必要があることである[0006] Fourthly, most of the sensors for detecting the rotational phase angle require a power source for driving the sensor, and it is necessary to install a power source different from that for driving the synchronous machine.
。これは電源設置空間、電力供給線、コスト等において負担増の要因となる。 . This becomes a factor of increasing the burden in the power supply installation space, the power supply line, the cost and the like.
[0007] 上記のような理由により、センサを用いずに回転位相角を推定し、推定された回転 位相角により駆動制御を行う制御方式が開発されている。これを「センサレス制御」と 称する。 [0007] For the reasons described above, a control method has been developed in which a rotational phase angle is estimated without using a sensor, and drive control is performed based on the estimated rotational phase angle. This is called “sensorless control”.
[0008] このような同期機のセンサレス制御を行う、特に停止 ·低速状態で有効なセンサレス 制御装置として、特許第 3168967号公報に記載されているように、 PWMインバータ により同期機を駆動するシステムにおいて、インバータを制御する指令に、同期機の 運転周波数に対して十分高 、周波数の高周波電圧指令を重畳し、これに起因して 生じる高周波電流応答から、重畳した高周波指令に対応した成分を検出して処理す ることによって回転位相角の誤差を得、これを用いて回転位相角の推定を行うものが 知られている。 [0008] As described in Japanese Patent No. 3168967, as a sensorless control device that performs sensorless control of such a synchronous machine and is effective particularly in a stop / low speed state, in a system that drives the synchronous machine by a PWM inverter In addition, a high frequency voltage command with a frequency sufficiently high with respect to the operating frequency of the synchronous machine is superimposed on the command for controlling the inverter, and a component corresponding to the superimposed high frequency command is detected from the high frequency current response caused by this. Process It is known that the rotational phase angle is estimated by using this to obtain the rotational phase angle error.
[0009] 上述した従来の同期機のセンサレス制御装置には、回転位相角センサを用いずに 同期機を制御でき、低コストでメンテナンス性などが向上する利点がある。しかし、上 記特許文献に記載のセンサレス制御装置のように、高周波電流応答の高周波電圧 指令に対応した成分を検出する制御方式では、基本的に所望の高周波電流を流す 必要があり、回転位相角センサを用いた制御装置と比較して、極端に損失や騒音が 増大するといつた問題点があった。し力も、副次的には、安定に回転位相角を推定 するため、重畳する高周波指令の振幅や周波数、高周波重畳方法を細かく調整する 必要があり、実際にモータと制御装置を組み合わせて安定した運転を行うためには、 複雑で時間の力かる調整を必要とするのが実情であった。具体的には、モータ卷線 の飽和によるインダクタンスの変動に起因してモータの特性が変動することから、モ ータのトルク電流に応じた高周波重畳方法の変更や高周波電流検出方法の微調整 等が必要であった。  [0009] The conventional sensorless control device for a synchronous machine described above has an advantage that the synchronous machine can be controlled without using a rotational phase angle sensor, and maintenance is improved at low cost. However, a control method that detects a component corresponding to a high-frequency voltage command for high-frequency current response, such as the sensorless control device described in the above-mentioned patent document, basically requires a desired high-frequency current to flow. Compared to a control device using sensors, there were problems when the loss and noise increased extremely. As a secondary matter, in order to estimate the rotational phase angle stably, it is necessary to finely adjust the amplitude and frequency of the high-frequency command to be superimposed and the high-frequency superposition method. In practice, it was necessary to make complicated and time-consuming adjustments. Specifically, since the motor characteristics fluctuate due to inductance fluctuations due to saturation of the motor windings, changes to the high-frequency superposition method according to the motor torque current, fine adjustment of the high-frequency current detection method, etc. Was necessary.
発明の開示  Disclosure of the invention
[0010] 本発明は、上述した従来技術の課題を解決するためになされたものであり、センサ レス制御のために生じる損失や騒音の増大を抑制し、かつ簡単な調整で安定した運 転を可能にする同期機のセンサレス制御装置を提供することを目的とする。  [0010] The present invention has been made to solve the above-described problems of the prior art, and suppresses loss and noise increase caused by sensorless control, and enables stable operation with simple adjustment. It is an object of the present invention to provide a sensorless control device for a synchronous machine that enables this.
[0011] 本発明は、直流電力と交流電力を相互に変換するインバータと、回転子に磁気的 突極性を有し前記インバータから電力が供給され駆動される同期機と、前記同期機 を制御するための指令に基づいて前記インバータにおける出力電圧を決定する PW M変調手段と、前記同期機に流れる電流を検出する電流検出手段と、前記 PWM変 調手段において決定され前記インバータから出力された電圧によって生じた電流変 化の高周波成分を演算する高周波成分演算手段と、前記高周波成分の前記同期機 の回転と同期する回転座標軸上における空間的分布に基づいて前記同期機の回転 位相角を推定する回転位相角推定手段とを備えた同期機のセンサレス制御装置を 特徴とする。  [0011] The present invention provides an inverter that mutually converts direct current power and alternating current power, a synchronous machine that has a magnetic saliency in a rotor and is driven by power supplied from the inverter, and controls the synchronous machine PWM modulation means for determining the output voltage in the inverter based on a command for the current, current detection means for detecting the current flowing in the synchronous machine, and the voltage determined in the PWM modulation means and output from the inverter A high-frequency component calculating means for calculating a high-frequency component of the generated current change, and a rotation for estimating a rotation phase angle of the synchronous machine based on a spatial distribution of the high-frequency component on a rotating coordinate axis synchronized with the rotation of the synchronous machine. It features a sensorless control device for a synchronous machine equipped with phase angle estimation means.
[0012] 本発明の同期機のセンサレス制御装置によれば、同期機に流れる電流変化の高 周波成分を演算して、同期機の回転に同期する dq軸座標系における高周波電流変 化の空間的分布に基づいて回転位相角センサなしにモータ回転子の位相角を推定 して同期機を制御するので、センサレス制御のために生じる同期機の損失や騒音の 増大を抑制し、かつ簡単な調整で安定した運転ができる。 [0012] According to the sensorless control device for a synchronous machine of the present invention, the change in current flowing through the synchronous machine is high. Control the synchronous machine by calculating the frequency component and estimating the phase angle of the motor rotor without the rotational phase angle sensor based on the spatial distribution of the high-frequency current change in the dq axis coordinate system that is synchronized with the rotation of the synchronous machine As a result, the loss of the synchronous machine and the increase in noise caused by sensorless control can be suppressed, and stable operation can be achieved with simple adjustment.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]図 1は、一般的な永久磁石同期機モデルと座標の定義を示すブロック図。 FIG. 1 is a block diagram showing a general permanent magnet synchronous machine model and coordinate definitions.
[図 2]図 2は、上記永久磁石同期機の電圧ベクトルの定義を示すブロック図。  FIG. 2 is a block diagram showing a definition of a voltage vector of the permanent magnet synchronous machine.
[図 3]図 3は、本発明の第 1の実施の形態の同期機のセンサレス制御装置のブロック 図。  FIG. 3 is a block diagram of the sensorless control device of the synchronous machine according to the first embodiment of the present invention.
[図 4]図 4は、永久磁石同期機の dq座標軸上における電流変化の高周波成分分布 を示すグラフ。  [FIG. 4] FIG. 4 is a graph showing a high-frequency component distribution of current change on the dq coordinate axis of the permanent magnet synchronous machine.
[図 5]図 5は、永久磁石同期機の dq座標軸上における電流変化の誤差 30° の場 合の高周波成分分布を示すグラフ。  [FIG. 5] FIG. 5 is a graph showing a high-frequency component distribution when the current change error on the dq coordinate axis of the permanent magnet synchronous machine is 30 °.
[図 6]図 6は、永久磁石同期機の dq軸座標上におけるトルク 100%出力、電流変化の 誤差 0° の状態における高周波成分分布を示すグラフ。  [FIG. 6] FIG. 6 is a graph showing a high-frequency component distribution in a state where the permanent magnet synchronous machine has a 100% torque output on a dq axis coordinate and a current change error of 0 °.
[図 7]図 7は、永久磁石同期機の dq軸座標上におけるトルク 100%出力、電流変化の 誤差 30° の状態における高周波成分分布を示すグラフ。  [FIG. 7] FIG. 7 is a graph showing a high-frequency component distribution in a state where the permanent magnet synchronous machine has a torque 100% output on a dq axis coordinate and a current change error of 30 °.
[図 8]図 8は、永久磁石同期機の dq軸座標上におけるトルク 100%出力、電流変化の 誤差 + 30° の状態における高周波成分分布を示すグラフ。  [FIG. 8] FIG. 8 is a graph showing a high-frequency component distribution in a state where a permanent magnet synchronous machine has a torque 100% output on a dq axis coordinate and a current change error + 30 °.
[図 9]図 9は、本発明の第 3の実施の形態の同期機のセンサレス制御装置における特 徴量と誤差の関係を示すグラフ。  [Fig. 9] Fig. 9 is a graph showing the relationship between the characteristic amount and the error in the sensorless control device of the synchronous machine according to the third embodiment of the present invention.
[図 10]図 10は、本発明の第 4の実施の形態の同期機のセンサレス制御装置のブロッ ク図。  FIG. 10 is a block diagram of a sensorless control device for a synchronous machine according to a fourth embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明の実施の形態を図に基づいて詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0015] (第 1の実施の形態) [0015] (First embodiment)
本発明の同期機のセンサレス制御装置は、永久磁石同期機に流れる電流変化の 高周波成分を演算して、同期機の回転に同期する dq軸座標系における高周波電流 変化の空間的分布に基づいて、回転位相角センサなしにモータ回転子の位相角を 推定し、永久磁石同期機を制御するものである。 The sensorless control device for a synchronous machine according to the present invention calculates a high frequency component of a current change flowing through a permanent magnet synchronous machine, and synchronizes with the rotation of the synchronous machine. Based on the spatial distribution of changes, the phase angle of the motor rotor is estimated without the rotational phase angle sensor, and the permanent magnet synchronous machine is controlled.
[0016] 図 1は、一般的な永久磁石同期機の構成を示している。永久磁石同期機の固定子 01は U, V, Wの 3相卷線 01U, 01V, 01Wで構成され、回転子は回転子鉄心 02と 永久磁石 03で構成されている。本実施の形態の同期機のセンサレス制御装置にお いては、永久磁石同期機の回転に同期して回転する座標系として、永久磁石の磁束 の方向を d軸、この d軸に直交する軸を q軸と定義する。また、 U相卷線方向を α軸、 これに直交する方向を β軸と定義し、 a軸方向を基準として d軸方向までの角度を同 期機の回転位相角 Θと定義する。このような定義に基づくと、永久磁石同期機の電 圧'電流の関係は、数 1式で表される。 FIG. 1 shows a configuration of a general permanent magnet synchronous machine. The stator 01 of the permanent magnet synchronous machine is composed of U, V, W three-phase wire 01U, 01V, 01W, and the rotor is composed of a rotor core 02 and a permanent magnet 03. In the sensorless control device for a synchronous machine according to the present embodiment, as a coordinate system that rotates in synchronization with the rotation of the permanent magnet synchronous machine, the direction of the magnetic flux of the permanent magnet is d-axis, and the axis orthogonal to this d-axis is Defined as q axis. Also, the U-phase direction is defined as the α- axis, the direction perpendicular to this is defined as the β-axis, and the angle from the a-axis direction to the d-axis direction is defined as the rotational phase angle Θ of the synchronous machine. Based on this definition, the relationship between the voltage and current of the permanent magnet synchronous machine is expressed by the following equation (1).
[数 1]
Figure imgf000006_0001
Figure imgf000006_0002
Figure imgf000006_0003
[Number 1]
Figure imgf000006_0001
Figure imgf000006_0002
Figure imgf000006_0003
[0017] ここで、 Vd, Vqはそれぞれ d軸電圧、 q軸電圧であり、 Id, Iqはそれぞれ d軸電流、 q軸電流であり、 Rは抵抗、 Ldは d軸インダクタンス、 Lqは q軸インダクタンス、 Φは永 久磁石磁束、 ωは回転速度、 pは微分演算子である。 Here, Vd and Vq are d-axis voltage and q-axis voltage, respectively, Id and Iq are d-axis current and q-axis current, R is resistance, Ld is d-axis inductance, and Lq is q-axis. Inductance, Φ is permanent magnet flux, ω is rotational speed, and p is a differential operator.
[0018] ただし、本実施の形態の同期機のセンサレス制御装置には回転位相角センサがな ぐ回転位相角 Θそのものを検出することができないため、当該制御装置において推 定された位相角をそのセンサ出力の代わりに使用する。したがって、図 1に示すよう に、推定位相角を Θ estとし、これに対応する座標系を γ軸, δ軸と定義する。推定 誤差 Δ 0が生じた場合、 γ δ軸は dq軸力 推定誤差 Δ 0だけ回転した位置となる。  However, since the sensorless control device of the synchronous machine of the present embodiment cannot detect the rotational phase angle Θ itself that the rotational phase angle sensor does not have, the phase angle estimated by the control device is Use instead of sensor output. Therefore, as shown in Fig. 1, the estimated phase angle is defined as Θ est, and the corresponding coordinate system is defined as the γ-axis and δ-axis. When the estimation error Δ 0 occurs, the γ δ axis is rotated by the dq axial force estimation error Δ 0.
[0019] 図 3は、本発明の第 1の実施の形態の同期機のセンサレス制御装置の構成を示し ている。インバータ 05は、当該インバータ 05を駆動するためのゲート指令を入力とし 、インバータ 05に内蔵される主回路スイッチング素子の ONZOFFを切替えることに よって交流 Z直流電力を相互に変換する。永久磁石同期機 07は、 UVW各励磁相 に流れる 3相交流電流によって磁界が発生し、回転子との磁気的相互作用によりトル クを発生する。 FIG. 3 shows a configuration of the sensorless control device of the synchronous machine according to the first embodiment of the present invention. The inverter 05 receives the gate command for driving the inverter 05 as an input, and converts AC Z DC power to each other by switching ONZOFF of the main circuit switching element built in the inverter 05. The permanent magnet synchronous machine 07 generates a magnetic field due to the three-phase alternating current flowing in each excitation phase of the UVW, and torque is generated by magnetic interaction with the rotor. Generate
[0020] 制御指令演算部 10は、後述する演算によってトルク指令力も制御指令を算出して PWM変調部 04に出力する。 PWM変調部 04は、永久磁石同期機 07を駆動するた めの制御指令を、 PWM (Pulse Width Modulation:パルス幅変調)によって変 調し、インバータ 05の各相スイッチング素子の ONZOFF指令であるゲート指令を出 力する。  [0020] The control command calculation unit 10 calculates a control command for the torque command force by calculation described later, and outputs the control command to the PWM modulation unit 04. The PWM modulation unit 04 modulates a control command for driving the permanent magnet synchronous machine 07 by PWM (Pulse Width Modulation), and a gate command that is an ONZOFF command for each phase switching element of the inverter 05. Is output.
[0021] 電流検出部 06は、永久磁石同期機 07に流れる 3相交流電流のうち 2相もしくは 3 相の電流応答値を検出する。本実施の形態では、 2相の電流 Iu, Iwを検出する構成 にしている。高周波数成分演算部 11は、入力である電流 Iu, Iwの応答値から高周 波電流成分を抽出し、その時間変化率を演算して出力する。また、演算のタイミング を示す信号を出力する。  The current detection unit 06 detects a two-phase or three-phase current response value of the three-phase AC current flowing through the permanent magnet synchronous machine 07. In this embodiment, the two-phase currents Iu and Iw are detected. The high frequency component calculation unit 11 extracts the high frequency current component from the response values of the input currents Iu and Iw, calculates the time change rate thereof, and outputs it. It also outputs a signal indicating the timing of computation.
[0022] 回転位相角推定部 08は、電流検出部 06において検出された電流応答値 Iu, Iwか ら算出された電流変化の高周波成分を用い、 y δ軸座標系における当該成分の空 間的分布に基づいて永久磁石同期機 07の回転位相角 Θ estを推定する。  [0022] The rotational phase angle estimation unit 08 uses the high-frequency component of the current change calculated from the current response values Iu and Iw detected by the current detection unit 06, and uses the spatial component of the component in the y δ-axis coordinate system. Based on the distribution, the rotational phase angle Θ est of the permanent magnet synchronous machine 07 is estimated.
[0023] 次に、以上のように構成した本実施の形態による同期機のセンサレス制御装置の 動作について説明する。図 3において、 PWM変調部 04への入力である制御指令は 、永久磁石同期機 07によって出力されるべきトルク指令に基づいて、制御指令演算 部 10が以下の演算処理によって与える。  Next, the operation of the sensorless control apparatus for a synchronous machine according to the present embodiment configured as described above will be described. In FIG. 3, the control command that is an input to the PWM modulation unit 04 is given by the control command calculation unit 10 by the following calculation processing based on the torque command to be output by the permanent magnet synchronous machine 07.
[0024] まず、トルク指令が上位制御系より与えられ、当該トルク指令に基づ!/、て y軸電流 指令 I γ ref、 δ軸電流指令 I δ rel^数 2式により演算する。  [0024] First, a torque command is given from the host control system, and based on the torque command! /, A y-axis current command I γ ref and a δ-axis current command I δ rel ^ are calculated according to Equation 2.
[数 2]  [Equation 2]
Iy'ef = Trqrcf -ん - cos ( ) I y ' ef = Trq rcf -n -cos ()
If = Trq'ef - . sin ( If = Trq ' ef -.sin (
[0025] ここで、 Trqrefはトルク指令、 kは定数、 0 iは γ δ軸座標系における γ軸を基準とし た電流位相角である。 Here, Trqref is a torque command, k is a constant, and 0 i is a current phase angle with respect to the γ axis in the γ δ axis coordinate system.
[0026] ただし、電流指令 I γ ref, I δ refは、トルク指令をパラメータとして参照できるテープ ルを用意しておき、このテーブルを参照することによって与えることも可能である。テ 一ブルを用いた方法は、トルクと電流の関係が上記の数 2式のように定式化すること が好ましくな 、場合などに有効である。 However, the current commands I γ ref and I δ ref are tapes that can refer to the torque command as a parameter. It is also possible to prepare the file and refer to this table. The method using a table is effective in cases where it is preferable to formulate the relationship between torque and current as shown in the above equation (2).
[0027] 次に、上記のようにトルク指令から求められた電流指令 I γ ref, I δ refと、当該永久 磁石同期機 07に流れる電流の γ軸応答値 I γ res, δ軸応答値 I δ resとを入力として 、次のような比例積分制御により γ軸電圧指令 V γ ref, δ軸電圧指令 V δ re 演算 する。 Next, the current command I γ ref, I δ ref obtained from the torque command as described above, and the γ-axis response value I γ res, δ-axis response value I of the current flowing through the permanent magnet synchronous machine 07 Using δ res as an input, γ-axis voltage command V γ ref and δ-axis voltage command V δ re are calculated by proportional integral control as follows.
[数 3] j  [Equation 3] j
v:ef = K + K. - -
Figure imgf000008_0001
v: ef = K + K .--
Figure imgf000008_0001
[0028] ここで、 Κρは比例ゲイン、 Kiは積分ゲイン、 sはラプラス演算子である。 Here, こ こ ρ is a proportional gain, Ki is an integral gain, and s is a Laplace operator.
[0029] 次に、以上のように出力される y軸電圧指令 ν γ ref、 δ軸電圧指令 V δ re 、回 転位相角推定部 08から出力される回転位相角推定値 Θ estに基づいて、次のような 演算により座標変換を行い、 3相電圧指令 Vuref, Vvref, Vwrel^演算する。 [0029] Next, based on the y-axis voltage command ν γ ref, the δ-axis voltage command V δ re output as described above, and the rotational phase angle estimated value Θ est output from the rotational phase angle estimator 08. Then, coordinate conversion is performed by the following calculation, and three-phase voltage commands Vuref, Vvref, Vwrel ^ are calculated.
[数 4]  [Equation 4]
Figure imgf000008_0002
Figure imgf000008_0002
[0030] 制御指令演算部 10は、以上の演算によって求めた 3相電圧指令を制御指令として[0030] The control command calculation unit 10 uses the three-phase voltage command obtained by the above calculation as a control command.
、 PWM変調部 04へ入力する。 , Input to PWM modulator 04.
[0031] PWM変調部 04は PWM変調を行い、インバータ 05へゲート指令を出力する。ここ で PWM変調とは、与えられた制御指令である 3相電圧指令と予め一定もしくは可変 の周波数を持つよう設定された三角波状の搬送波とを比較し、比較結果をゲート指 令とするちのである。 [0031] The PWM modulation unit 04 performs PWM modulation and outputs a gate command to the inverter 05. Here, PWM modulation is a given control command, which is a three-phase voltage command, and is constant or variable in advance. Compared with a triangular wave carrier wave set to have a frequency of, the comparison result is used as a gate command.
[0032] 回転位相角推定部 08は、高周波数成分演算部 11が求めた当該永久磁石同期機 07に流れる電流変化の高周波成分に基づき、以下のように γ δ軸座標系における 空間分布に基づいて回転位相角 Θ estを推定する。  The rotational phase angle estimation unit 08 is based on the high-frequency component of the current change flowing through the permanent magnet synchronous machine 07 obtained by the high-frequency component calculation unit 11 and based on the spatial distribution in the γδ axis coordinate system as follows. To estimate the rotational phase angle Θ est.
[0033] まず、高周波数成分演算部 11において、電流検出部 06によって検出された相電 流 Iu, Iwを、当該回転位相角推定部 08から出力される回転位相角推定値 0 est〖こ 基づ 、て次の演算により座標変換を行!、、 γ軸電流応答値 I y res, δ軸電流応答値 I δ resを求める。  First, in the high frequency component calculation unit 11, the phase currents Iu and Iw detected by the current detection unit 06 are used as the rotation phase angle estimation value 0 est 〖based on the rotation phase angle estimation unit 08. Then, coordinate transformation is performed by the following calculation !, and the γ-axis current response value I y res and the δ-axis current response value I δ res are obtained.
[数 5]  [Equation 5]
Figure imgf000009_0001
Figure imgf000009_0003
ここで、永久磁石同期機 07に流れる 3相電流の和が 0であることを利用すれば、次 の式で表されるように、 3相電流のうち 2相の電流値から γ軸電流応答値 I y res、 δ 軸電流応答値 I δ resを求めることができる。この場合、電流検出部 06を 2相分設ける だけで済み、 3相分検出する場合よりも装置を簡略ィ匕することが可能となる。
Figure imgf000009_0001
Figure imgf000009_0003
Here, using the fact that the sum of the three-phase currents flowing through the permanent magnet synchronous machine 07 is 0, the γ-axis current response is calculated from the current values of the two phases of the three-phase current, as shown in the following equation. The value I y res and the δ-axis current response value I δ res can be obtained. In this case, it is only necessary to provide the current detection unit 06 for two phases, and the apparatus can be simplified compared to the case of detecting for three phases.
[数 6]
Figure imgf000009_0002
[Equation 6]
Figure imgf000009_0002
2 / '" COS ! cos ( , 2 / '"COS ! Cos (,
[0035] 次に、次の演算によって、上記のように求められた γ δ軸電流応答値の変化分の 高周波成分を求めて出力する。
Figure imgf000010_0001
Next, a high frequency component corresponding to a change in the γδ axis current response value obtained as described above is obtained and output by the following calculation.
Figure imgf000010_0001
[0036] ここで、 Imは時刻 tmの時点の入力電流 I、 Inは時刻 tn時点の入力電流 I、 dlbase/ dtは入力電流の基本波成分の時間変化率である。基本波成分とは、電気的な回転 周波数成分である。 [0036] Here, Im is the input current I at time tm, In is the input current I at time tn, and dlbase / dt is the rate of time change of the fundamental wave component of the input current. The fundamental wave component is an electrical rotational frequency component.
[0037] dlbaseZdtの演算方法としては、(tm— tn)と比較して十分長い時間間隔における 入力電流の変化率や電流指令値の変化率を演算する方法があり、厳密には回転周 波数成分とはならなくとも、 tm— tnが基本波成分演算時間間隔よりも十分短くなるよ うに取れば、特に問題なく演算が可能である。  [0037] As a calculation method of dlbaseZdt, there is a method of calculating the rate of change of the input current and the rate of change of the current command value in a sufficiently long time interval compared to (tm-tn), strictly speaking, the rotational frequency component However, if tm-tn is set to be sufficiently shorter than the fundamental wave component computation time interval, computation can be performed without any particular problem.
[0038] また、電流変化の高周波成分のより精密な演算手段として、時刻 tm, tn間におけ る電流変化を線形近似して、当該時刻間における変化分を求め、これを数 7式にお ける(Im— In)として用いるという方法も可能である。線形近似方法としては、一般的 に用いられている最小二乗近似を用いる。その場合、演算時刻 tmと tnの間には少な くとも複数のサンプリング点が必要である。サンプリング数は AZD変換器のサンプリ ング周波数に左右されるものであるが、近年の一般的な AZD変 はサンプリング 周波数も高ぐ電流変化を線形近似するには十分なサンプリング数を取れるため、こ の方法も十分実用的であるといえる。また、この方法によればノイズの影響を除去で きるため、推定精度の向上も期待できる。  [0038] Further, as a more precise calculation means of the high-frequency component of the current change, the current change between times tm and tn is linearly approximated to obtain the change between the times, and this is expressed by Equation 7. It is also possible to use as (Im-In). As a linear approximation method, a generally used least square approximation is used. In that case, at least multiple sampling points are required between the computation times tm and tn. The number of samplings depends on the sampling frequency of the AZD converter, but this is because the general AZD variation in recent years can take a sufficient number of samplings to linearly approximate current changes that also increase the sampling frequency. It can be said that the method is also sufficiently practical. In addition, this method can eliminate the influence of noise, and can therefore be expected to improve estimation accuracy.
[0039] 回転位相角推定部 08は、高周波成分演算部 11にて求めた電流変化の高周波成 分の空間分布カゝら回転位相角を推定する。ここでは、まず推定原理カゝら説明していく 。永久磁石同期機 07に流れる電流変化の高周波成分は、数 2式における電流微分 項力 導くことができる。数 2式を、数 8式に表すように高周波成分と基本波成分とに 分け、高周波成分について抽出すると、数 9式のようになる。  The rotational phase angle estimator 08 estimates the rotational phase angle from the spatial distribution of the high frequency component of the current change obtained by the high frequency component calculator 11. Here, we first explain the estimation principle. The high-frequency component of the current change flowing through the permanent magnet synchronous machine 07 can be derived from the current differential term force in Equation (2). Dividing Eq. 2 into high-frequency components and fundamental wave components as shown in Eq. 8, and extracting high-frequency components, Eq. 9 is obtained.
[数 8]  [Equation 8]
[0040] ここで、 Xbaseは波形 Xの基本波成分、 ΧΊま波形 Xの高周波成分である
Figure imgf000011_0001
[0040] where Xbase is the fundamental component of waveform X, and the high frequency component of waveform X
Figure imgf000011_0001
一 pL I  PL I
[0041] 高周波電圧 V〜d, V〜(!は、インバータ出力電圧とモータ誘起電圧の高周波成分の 和と定義できる。ただし、モータ誘起電圧は回転速度と駆動電流とによって変動する がその高周波成分は微小であり、当該回転位相角推定部 08において用いられる高 周波成分の空間分布に関係する高周波電圧としては、インバータ出力電圧の高周 波成分が支配的である。インバータ出力電圧の高周波成分は、 PWMによる出力電 圧ベクトルによって決まるため、高周波電圧 V〜d, V〜qの振幅値はほぼ一定とみなす ことができる。これにより、高周波電流 d, I〜qは以下のように V〜d, V〜q, Ld, Lqに よって決まる一定の分布となることがわかる。 [0041] The high-frequency voltages V to d and V to (! Can be defined as the sum of the inverter output voltage and the high-frequency component of the motor-induced voltage. However, the motor-induced voltage varies depending on the rotational speed and drive current, but the high-frequency component The high frequency component of the inverter output voltage is dominant as the high frequency voltage related to the spatial distribution of the high frequency component used in the rotational phase angle estimation unit 08. The high frequency component of the inverter output voltage is Therefore, the amplitude values of the high-frequency voltages V to d and V to q can be regarded as almost constant, so that the high-frequency currents d and I to q are as follows: , V ~ q, Ld, Lq.
[数 10]  [Equation 10]
Figure imgf000011_0002
Figure imgf000011_0002
[0042] 本願発明者は、発明者の使用している開発設備である永久磁石同期機の dq軸座 標系において、電流変化の高周波成分を空間的にプロットすると、その分布は図 4に 示すような略楕円分布となることを実験的に確認した。これは、数 10式の原理を証明 するものである。この分布を用いること〖こより、回転位相角推定を実現することができ る。 [0042] When the present inventor spatially plots the high-frequency component of the current change in the dq axis coordinate system of the permanent magnet synchronous machine, which is the development facility used by the inventor, the distribution is shown in FIG. It was experimentally confirmed that the distribution was almost elliptical. This proves the principle of Equation 10. By using this distribution, rotational phase angle estimation can be realized.
[0043] 高周波成分の空間分布は、図 4からも明らかなように、 dq軸方向に特徴を持った形 状となる。この分布はモータの構造力も言えば、永久磁石同期機 07の駆動電流が流 れている固定子卷線のインダクタンス分布と言える。ただし、固定子インダクタンスの 空間的分布は回転子インダクタンスの影響を強く受け、駆動電流によって固定子イン ダクタンスが飽和しな 、程度のトルクゼロ〜中領域の運転では、回転子インダクタン スの分布とほぼ等しくなると言ってよい。図 4は、出力トルクゼロ、すなわち電流ゼロの 状態で空間的に一様な高周波電圧を重畳して調べたインダクタンス分布を表してお り、上述のような理由から、この分布は回転子インダクタンスと考えられる。 [0043] As is apparent from Fig. 4, the spatial distribution of the high-frequency component has a shape having a characteristic in the dq axis direction. This distribution can be said to be the inductance distribution of the stator winding through which the drive current of the permanent magnet synchronous machine 07 flows, in terms of the structural power of the motor. However, the spatial distribution of the stator inductance is strongly influenced by the rotor inductance, and the stator current is driven by the drive current. It can be said that the rotor inductance distribution is almost equal to the torque zero to middle range operation where the ductance is not saturated. Figure 4 shows the inductance distribution obtained by superimposing a spatially uniform high-frequency voltage with zero output torque, that is, zero current. For the reasons described above, this distribution is considered to be rotor inductance. It is done.
[0044] 図 4では、楕円分布の長軸方向が d軸に一致し、短軸方向が q軸に一致している。 In FIG. 4, the major axis direction of the elliptic distribution is coincident with the d axis, and the minor axis direction is coincident with the q axis.
上述のように図 4は回転子インダクタンスを表しているため、この楕円分布は回転子 の回転に応じて回転する。したがって、当該分布から楕円の回転を近似演算等によ つて抽出すれば、 d軸の方向を推定することが可能である。この方法によれば、楕円 分布の回転を抽出できる最低限の高周波成分を得ることができれば、回転位相角推 定が可能となる。  As described above, since Fig. 4 represents the rotor inductance, this elliptical distribution rotates according to the rotation of the rotor. Therefore, if the rotation of the ellipse is extracted from the distribution by approximation, the d-axis direction can be estimated. According to this method, if the minimum high-frequency component that can extract the rotation of the elliptic distribution can be obtained, the rotational phase angle can be estimated.
[0045] 一方、従来の方法では、高周波電圧を重畳し、少なくとも重畳した高周波電圧に何 らかの形で対応した、または同期した高周波電流を観測する必要があった。例えば 高周波電圧の重畳周期に合わせた高周波電流振幅などの観測が必要であった。こ の方法では、高周波電流振幅を観測するサンプリング時点にノイズなどの擾乱が発 生した場合、推定位相角の精度に大きく影響してしまう。このような欠点を回避するた め、従来の方法では、ノイズが推定結果に大きく影響しないように SZN比を上げる 目的で重畳高周波量を上げて、高周波電流振幅が大きくなるように調整していた。し 力しこれでは高周波電流による損失や騒音が大きくなつてしまい、好ましくない。  [0045] On the other hand, in the conventional method, it is necessary to superimpose a high-frequency voltage and observe a high-frequency current corresponding to or synchronized with at least the superimposed high-frequency voltage in some form. For example, it was necessary to observe the amplitude of the high-frequency current matched to the superposition period of the high-frequency voltage. In this method, if a disturbance such as noise occurs at the sampling time point when the high-frequency current amplitude is observed, the accuracy of the estimated phase angle is greatly affected. In order to avoid such drawbacks, the conventional method has been adjusted so that the high frequency current amplitude is increased by increasing the amount of superimposed high frequency in order to increase the SZN ratio so that noise does not significantly affect the estimation result. . However, this is not preferable because loss and noise due to high-frequency current increase.
[0046] しかし本実施の形態の同期機のセンサレス制御装置では、上述した位相角推定方 法を採用しているので、正しい電流変化高周波成分が計測できる範囲内で、電流サ ンプリング時点を電圧に左右されずに自由に選択できる上に、線形近似を用いて電 流変化を演算すればノイズの影響を低くすることも可能であり、結果として高周波重 畳量を 0もしくは従来よりも低くすることが可能である。  However, since the sensorless control device for a synchronous machine according to the present embodiment employs the phase angle estimation method described above, the current sampling time point is converted into a voltage within a range in which a correct current change high-frequency component can be measured. In addition to being able to select freely without being influenced, it is also possible to reduce the influence of noise by calculating the current change using linear approximation, and as a result, the amount of high-frequency multiplication is reduced to 0 or lower than before. Is possible.
[0047] したがって、本実施の形態による同期機のセンサレス制御装置によれば、回転位相 角センサを用いることなく回転子の位相角を推定することができ、センサレス構成とす ることによって小型化、低コスト化、メンテナンスの容易化が図れ、また、高周波電流 による損失 '騒音の極端な増大を招くことなぐもしくは増大させることなぐ安定した 運転を行うための調整の簡略ィ匕を図ることが可能となる。 [0048] (第 2の実施の形態) Therefore, according to the sensorless control device of the synchronous machine according to the present embodiment, the phase angle of the rotor can be estimated without using the rotational phase angle sensor, and the sensorless configuration reduces the size. Cost reduction, easy maintenance, and loss due to high-frequency currents' Adjustment for stable operation without incurring or increasing the noise can be simplified. Become. [0048] (Second embodiment)
本発明の第 2の実施の形態の同期機のセンサレス制御装置について、説明する。 本実施の形態の構成は第 1の実施の形態と同様であり、図 3に示したものであるが、 回転位相角推定部 08の行う演算処理が第 1の実施の形態とは異なり、永久磁石同 期機 07のインダクタンスが飽和する電流が流れる高トルク出力状態において、電流 変化高周波成分の空間分布の形状の変化に基づいて回転位相角推定を行うことを 特徴とする。  A sensorless control device for a synchronous machine according to a second embodiment of the present invention will be described. The configuration of the present embodiment is the same as that of the first embodiment and is shown in FIG. 3, but the calculation process performed by the rotational phase angle estimator 08 differs from the first embodiment in that it is permanent. In a high torque output state in which a current at which the inductance of the magnet synchronous machine 07 saturates flows, the rotational phase angle is estimated based on a change in the shape of the spatial distribution of the current changing high frequency component.
[0049] 第 1の実施の形態において示した回転位相角推定部 08が行う回転位相角の推定 は、電流変化高周波成分の空間分布が永久磁石同期機 07の回転子インダクタンス を表し、これが回転に同期する dq軸座標系と対応した回転関係にあることを利用す るものであった。この場合、永久磁石同期機 07の特性として高トルクを出力した場合 に駆動電流によって固定子インダクタンスが飽和し、上記分布の回転関係が観測で きなくなるような場合があり得る。  [0049] The estimation of the rotational phase angle performed by the rotational phase angle estimation unit 08 shown in the first embodiment is that the spatial distribution of the current change high frequency component represents the rotor inductance of the permanent magnet synchronous machine 07, which It utilized the fact that there was a rotational relationship corresponding to the synchronized dq axis coordinate system. In this case, when a high torque is output as a characteristic of the permanent magnet synchronous machine 07, the stator inductance is saturated by the drive current, and the rotational relationship of the above distribution cannot be observed.
[0050] 本実施の形態では、回転位相角推定部 08はそのような場合でも有効な回転位相 角推定を行うものであり、特に上記分布の形状に着目し、空間分布の形状と推定位 相角誤差とを対応させて回転位相角を推定する。  [0050] In the present embodiment, the rotational phase angle estimation unit 08 performs effective rotational phase angle estimation even in such a case, and particularly pays attention to the shape of the above distribution, and the shape of the spatial distribution and the estimated phase. The rotational phase angle is estimated in correspondence with the angular error.
[0051] 以上のように構成した本実施の形態の同期機のセンサレス制御装置に動作につい て、説明する。図 4は、低トルク状態における電流変化の高周波成分分布を示してい る。もし、推定位相角 Θ estに誤差 Δ Θが発生した場合、この高周波成分分布は— Δ Θだけ回転した分布となる。図 5は、故意に誤差 Δ Θを 30° 発生させた状態にお ける高周波成分分布を示している。この図 5からも、 dq軸座標系と高周波成分分布の 空間的な対応関係は明らかである。  The operation of the sensorless control apparatus for a synchronous machine of the present embodiment configured as described above will be described. Figure 4 shows the high-frequency component distribution of the current change in the low torque state. If an error ΔΘ occurs in the estimated phase angle Θest, this high-frequency component distribution is a distribution rotated by -ΔΘ. Figure 5 shows the distribution of high-frequency components in a state where the error ΔΘ is intentionally generated by 30 °. From Fig. 5, the spatial correspondence between the dq-axis coordinate system and the high-frequency component distribution is clear.
[0052] 第 1の実施の形態で採用している回転位相角推定方法は、このような特徴を利用 することによって回転位相角を推定するものである。しかし、同期機によっては、高ト ルク運転状態において、高周波成分の分布形状が図 6に示すように楕円ではなく真 円に近い楕円形状になる。この状態では、上述のような dq軸座標系に対応する関係 を抽出することが難しぐノイズ等の影響により推定誤差が発生しやすくなる。さらに、 図 6からも読み取れるように、楕円と dq軸との回転関係自体も電流位相によって変動 することがあり、単純に楕円分布と dq軸とが一定の回転関係にないため、運転状況 に合わせて適切に補正する必要がある。 [0052] The rotational phase angle estimation method employed in the first embodiment is to estimate the rotational phase angle by using such a feature. However, depending on the synchronous machine, the distribution shape of the high frequency component is not an ellipse but an ellipse close to a perfect circle as shown in Fig. 6 in a high torque operation state. In this state, an estimation error is likely to occur due to the influence of noise or the like that makes it difficult to extract the relationship corresponding to the dq axis coordinate system as described above. Furthermore, as can be seen from Fig. 6, the rotational relationship between the ellipse and the dq axis itself also varies depending on the current phase. Since the elliptic distribution and dq axis do not have a fixed rotational relationship, it is necessary to correct appropriately according to the driving situation.
[0053] そこで本実施の形態では、回転位相角推定部 08は高周波成分の分布と dq軸座標 系との回転関係を用いて回転位相角推定を行うのではなぐ高周波成分の分布形状 そのものを用いて推定を行う。  Therefore, in the present embodiment, the rotational phase angle estimator 08 uses the high frequency component distribution shape itself rather than performing the rotational phase angle estimation using the rotational relationship between the distribution of the high frequency component and the dq axis coordinate system. To estimate.
[0054] 高トルク出力状態では、固定子に流れる駆動電流によりインダクタンス飽和を誘起 し、固定子において観測できる突極比が低下し、最悪の場合には突極比 = 1となつ てしまう。しかし、インダクタンス飽和を誘起する高トルク状態において推定誤差 Δ Θ が発生すると、その影響により、 γ δ軸座標系において制御されている電流の位相 Θ iも、 dq軸座標系力も見ると Δ Θだけ回転した位相となる。このとき、電流位相が変 化するために、固定子インダクタンスの飽和の状態が変化し、電流変化の高周波成 分の形状は図 7、図 8に示すように Δ Θに応じて大きく変動する。したがって、このよう な高トルク状態においても、当該分布の形状を観測して Δ Θと対応づけることによつ て回転位相角を推定する。この時、高周波成分分布は、固定子自体のインダクタンス と回転子インダクタンスとの両方の影響を受けている。すなわち、例えば略楕円分布 の形状をトルク指令と推定誤差に対応させて記憶させておき、得られた分布を比較 することによって回転位相角を推定するのである。  [0054] In a high torque output state, inductance saturation is induced by the drive current flowing through the stator, and the salient pole ratio that can be observed in the stator is reduced. In the worst case, the salient pole ratio is 1. However, if an estimation error Δ Θ occurs in a high torque state that induces inductance saturation, the influence of that causes a phase of current Θ i controlled in the γ δ axis coordinate system and a force in the dq axis coordinate system to be only Δ Θ. It becomes a rotated phase. At this time, because the current phase changes, the saturation state of the stator inductance changes, and the shape of the high-frequency component of the current change varies greatly according to ΔΘ as shown in Figs. Therefore, even in such a high torque state, the rotational phase angle is estimated by observing the shape of the distribution and associating it with ΔΘ. At this time, the high frequency component distribution is affected by both the inductance of the stator itself and the rotor inductance. That is, for example, the shape of a substantially elliptic distribution is stored in correspondence with the torque command and the estimation error, and the rotational phase angle is estimated by comparing the obtained distributions.
[0055] 以上により、本実施の形態の同期機のセンサレス制御装置では、回転位相角セン サを用いることなく回転子の位相角を推定することで、装置の小型化、低コスト化、メ ンテナンスの容易化が図れ、その上に、高トルク状態でも安定した回転位相角推定 が可能となる。  As described above, in the sensorless control device for a synchronous machine according to the present embodiment, the rotor phase angle is estimated without using the rotation phase angle sensor, thereby reducing the size and cost of the device and maintaining the device. In addition, the rotation phase angle can be estimated stably even in a high torque state.
[0056] (第 3の実施の形態)  [0056] (Third embodiment)
本発明の同期機のセンサレス制御装置の第 3の実施の形態について、説明する。 本実施の形態のセンサレス制御装置の構成は、図 3に示した第 1、第 2の実施の形態 と共通であるが、その中の回転位相角推定部 08の行う回転位相角推定処理力これ らの実施の形態とは異なり、 dq軸座標系における電流変化の高周波成分の空間的 分布において所定の特徴量を演算し、当該特徴量に基づいて回転位相角推定を行 うことを特徴とする。 [0057] 本実施の形態では、その特徴量として、 γ δ軸における電流変化の高周波成分分 布の γ軸から所定角度方向に検出された成分の最大値を選ぶ。そのように選んだ特 徴量と推定誤差との対応関係は図 9に示すような特性であり、特に推定誤差のゼロ点 近傍においてオフセットを持った線形な特性である。図 9では、所定の角度を 45° 方 向に設定して演算している。そこで、当該特徴量を、誤差ゼロの点に収束するように フィードバック推定を行うことにより回転位相角推定を行う。 A third embodiment of the sensorless control device for a synchronous machine of the present invention will be described. The configuration of the sensorless control device of this embodiment is the same as that of the first and second embodiments shown in FIG. 3, but the rotational phase angle estimation processing power performed by the rotational phase angle estimation unit 08 therein is the same. Unlike these embodiments, a predetermined feature amount is calculated in the spatial distribution of the high-frequency component of the current change in the dq axis coordinate system, and the rotational phase angle is estimated based on the feature amount. . In the present embodiment, the maximum value of the component detected in the predetermined angle direction from the γ-axis of the high-frequency component distribution of the current change on the γ-δ axis is selected as the feature amount. The correspondence between the selected feature quantity and the estimation error is the characteristic shown in Fig. 9, and is a linear characteristic with an offset especially near the zero point of the estimation error. In Fig. 9, the calculation is performed with the predetermined angle set to 45 °. Therefore, the rotational phase angle is estimated by performing feedback estimation so that the feature amount converges to a point with zero error.
[0058] このように構成することにより、複雑な演算ではなぐ単純な比較演算によって得ら れる量に基づいた推定を行うことが可能である。尚、図 9では所定角度は約 45度の 方向に取っているが、当該特徴量の特性が得られれば特徴量の演算をどのように行 つてもよい。例えば、特徴量として、 γ δ座標軸上の第 1象限における分布の占める 面積でもよい。このように計算した面積も、推定誤差に応じて変動する特性を持った め、特徴量として採用することができる。  With this configuration, it is possible to perform estimation based on an amount obtained by a simple comparison operation rather than a complicated operation. In FIG. 9, the predetermined angle is about 45 degrees. However, the feature quantity may be calculated in any way as long as the characteristics of the feature quantity are obtained. For example, the feature amount may be the area occupied by the distribution in the first quadrant on the γδ coordinate axes. The area calculated in this way also has a characteristic that varies depending on the estimation error, so it can be adopted as a feature quantity.
[0059] 上述したように、本実施の形態の同期機のセンサレス制御装置では、回転位相角 センサを用いることなく回転子の位相角を推定することにより、装置の小型化、低コス ト化、メンテナンスの容易化が図れ、その上に、複雑な演算を実施することなく安定な 回転位相角推定が可能となる。さらに、特徴量を γ軸から所定角度方向に検出され た成分に基づいて計算することにより、回転位相角推定に必要な演算を簡略化する ことができ、演算時間の短縮や演算処理装置性能の低減が図れる。  [0059] As described above, in the sensorless control device for a synchronous machine according to the present embodiment, the phase angle of the rotor is estimated without using the rotational phase angle sensor, thereby reducing the size and cost of the device. Maintenance can be facilitated, and stable rotation phase angle estimation can be performed without performing complicated calculations. Furthermore, by calculating the feature value based on the components detected in the predetermined angle direction from the γ-axis, it is possible to simplify the calculations required for rotational phase angle estimation, shortening the calculation time and improving the performance of the processing unit. Reduction can be achieved.
[0060] (第 4の実施の形態)  [0060] (Fourth embodiment)
本発明の第 4の実施の形態の同期機のセンサレス制御装置について、図 10を用い て説明する。尚、本実施の形態において、図 3に示した第 1の実施の形態と同一要素 には同一符号を付して示して 、る。  A sensorless control device for a synchronous machine according to a fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the same elements as those in the first embodiment shown in FIG. 3 are denoted by the same reference numerals.
[0061] 本実施の形態の同期機のセンサレス制御装置は、第 1の実施の形態に対して、高 周波指令重畳部 09を付加した構成を特徴とする。この高周波指令重畳部 09は、ィ ンバータ 05から出力される電圧に、永久磁石同期機 07を運転する基本周波数と比 較して十分高い周波数の高周波指令が重畳されるよう、本センサレス制御装置の指 令に高周波指令を重畳する。さらに、高周波指令として回転高周波指令を重畳する 。またさらには、高周波指令として γ δ座標軸上において所定の角度方向に有意な 電流変化の高周波成分が発生するような高周波指令を重畳する。 [0061] The sensorless control device for a synchronous machine of the present embodiment is characterized in that a high frequency command superimposing unit 09 is added to the first embodiment. The high-frequency command superimposing unit 09 is configured so that a high-frequency command having a frequency sufficiently higher than the fundamental frequency for operating the permanent magnet synchronous machine 07 is superimposed on the voltage output from the inverter 05. Superimpose the high-frequency command on the command. Furthermore, a rotating high frequency command is superimposed as a high frequency command. Furthermore, as a high frequency command, it is significant in a predetermined angular direction on the γ δ coordinate axes. A high-frequency command that generates a high-frequency component of current change is superimposed.
[0062] 次に、以上のように構成した本実施の形態のセンサレス制御装置の動作を説明す る。回転位相角の推定を行う原理は、高周波電流の時間変化率に基づいている。当 該変化率を得るためには、当該高周波電流の変化を精度良く観測しなければならな い。しかし、インバータ 05から出力される電圧が低い状態、例えば停止 '低速'低トル クの状態では電圧指令が小さい。また、高周波電流時間変化率を有意に演算できる 状態は、 PWM変調部 04によって変調された結果としてインバータ 05から出力される 電圧ベクトル力 VO、 V7以外のいわゆる非ゼロ電圧ベクトルとなっている状態である ことが多い。非ゼロ電圧ベクトルが出力されると、大きな電流変動が発生するからであ る。インバータ 05から出力される電圧ベクトルの定義は図 2に示したものである。しか し、上述の停止 ·低速 ·低トルク状態では、非ゼロ電圧ベクトル時間間隔が非常に短く なり、 AZD変換器のサンプリング周期によっては、有意な高周波電流変化を観測で きない場合がある。そのような場合、結果として回転位相角の推定誤差が発生しやす くなつてしまう。  Next, the operation of the sensorless control device of the present embodiment configured as described above will be described. The principle of estimating the rotational phase angle is based on the time change rate of the high-frequency current. In order to obtain the rate of change, the change in the high-frequency current must be observed with high accuracy. However, the voltage command is small when the voltage output from the inverter 05 is low, for example, when the engine is stopped at low speed and low torque. In addition, the state in which the high-frequency current time change rate can be calculated significantly is a state in which the voltage vector force VO, V7 other than the voltage vector force VO, V7 output from the inverter 05 as a result of modulation by the PWM modulator 04 is a so-called non-zero voltage vector Often there is. This is because large current fluctuation occurs when a non-zero voltage vector is output. The definition of the voltage vector output from inverter 05 is shown in FIG. However, in the above-mentioned stop, low speed, and low torque states, the non-zero voltage vector time interval becomes very short, and a significant high-frequency current change may not be observed depending on the sampling period of the AZD converter. In such a case, an estimation error of the rotational phase angle tends to occur as a result.
[0063] そこで、本実施の形態では、高周波指令重畳部 09によって、数 11式に示す高周 波指令を電流指令に加算することにより、結果として非ゼロ電圧ベクトルの時間間隔 を長くする。重畳する指令が高周波指令であることの理由は、モータ力 発生されるト ルクに外乱として作用しに《するためである。  Therefore, in the present embodiment, the high frequency command superimposing unit 09 adds the high frequency command shown in Formula 11 to the current command, thereby extending the time interval of the non-zero voltage vector. The reason why the superimposed command is a high frequency command is to act as a disturbance on the torque generated by the motor force.
[数 11] 1 r f = sin、 り [Equation 11] 1 rf = sin , Ri
1呵 - Ihf cos mhf t j 1呵-I hf cos m hf tj
[0064] ただし、 Ihfは高周波指令振幅、 ω hfは高周波指令角速度である。 [0064] where Ihf is the high frequency command amplitude and ω hf is the high frequency command angular velocity.
[0065] 本実施の形態においては、高周波指令は最低限上記で説明した特性が得られる 範囲で自由に選択することができる。そのため、必ずしも数 11式のように設定する必 要はない。ただし、数 11式のように回転高周波指令が重畳されるよう設定することに より、上記の特性が得られる上、次のような効果を得ることができる。それは、回転位 相角推定部 08において用いられる回転位相角推定方法として、電流変化の高周波 成分の形状もしくは面積等を用いた場合において、回転高周波を与えることによって 、 Ύ δ座標系において一様な分布を得ることができ、形状を精度良く把握できるため 、位相角推定の精度を向上させることが可能となる。 In the present embodiment, the high frequency command can be freely selected as long as the above-described characteristics can be obtained. Therefore, it is not always necessary to set as shown in Equation 11. However, by setting the rotational high frequency command to be superimposed as shown in Equation 11, the above characteristics can be obtained and the following effects can be obtained. The rotational phase angle estimation unit 08 uses a high-frequency current change as a rotational phase angle estimation method. When the shape or area of the component is used, a uniform distribution can be obtained in the δδ coordinate system by giving a rotational high frequency, and the shape can be accurately grasped, so that the accuracy of phase angle estimation is improved. It becomes possible.
[0066] また、高周波指令として γ δ座標軸上において所定の角度方向に有意な電流変 化の高周波成分が発生するような高周波指令を重畳した場合は、次のような効果を 得ることができる。それは、第 3の実施の形態において説明した、電流変化の高周波 成分の γ軸から所定の角度方向の成分に基づいて回転位相角を推定する方法を実 施する場合において、所定の角度方向に有意な高周波を得ることが可能となり、検 出精度の向上、ひいては位相角推定の精度を向上させることが可能となる。  [0066] When a high-frequency command that generates a high-frequency component of a significant current change in a predetermined angular direction on the γδ coordinate axis is superimposed as a high-frequency command, the following effects can be obtained. This is significant in the predetermined angular direction when the method for estimating the rotational phase angle based on the component in the predetermined angular direction from the γ-axis of the high-frequency component of the current change described in the third embodiment is implemented. High frequency can be obtained, and the detection accuracy can be improved, and hence the accuracy of phase angle estimation can be improved.
[0067] ここで、所定の角度方向に有意な電流変化の高周波成分が発生するような高周波 指令とは、次式のように選べばよい。  Here, the high-frequency command that generates a high-frequency component of a significant current change in a predetermined angular direction may be selected as follows:
[数 12]  [Equation 12]
= , cos ( sin (CTA/t)=, cos (sin (CT A / t)
2 = v sin ( sin ( 2 = v sin (sin (
[0068] ただし、 φは所定の角度である。 [0068] where φ is a predetermined angle.
[0069] 上述したように、本実施の形態による同期機のセンサレス制御装置では、回転位相 角センサを用いることなく回転子の位相角を推定することにより、装置の小型化、低コ スト化、メンテナンスの容易化が図れ、さらに、停止 '低速'低トルク状態においても安 定な回転位相角推定が可能となる。  [0069] As described above, in the sensorless control apparatus for a synchronous machine according to the present embodiment, the phase angle of the rotor is estimated without using the rotation phase angle sensor, thereby reducing the size and cost of the apparatus. Maintenance can be facilitated, and a stable rotational phase angle can be estimated even when stopped at low speed and low torque.

Claims

請求の範囲 The scope of the claims
[1] 直流電力と交流電力を相互に変換するインバータと、  [1] an inverter that mutually converts DC power and AC power;
回転子に磁気的突極性を有し前記インバータカ 電力が供給され駆動される同期 機と、  A synchronous machine having a magnetic saliency on the rotor and driven by the inverter power,
前記同期機を制御するための指令に基づいて前記インバータにおける出力電圧を 決定する PWM変調手段と、  PWM modulation means for determining an output voltage in the inverter based on a command for controlling the synchronous machine;
前記同期機に流れる電流を検出する電流検出手段と、  Current detecting means for detecting a current flowing in the synchronous machine;
前記 PWM変調手段において決定され前記インバータから出力された電圧によつ て生じた電流変化の高周波成分を演算する高周波成分演算手段と、  High-frequency component calculation means for calculating a high-frequency component of a current change caused by a voltage determined by the PWM modulation means and output from the inverter;
前記高周波成分の前記同期機の回転と同期する回転座標軸上における空間的分 布に基づいて前記同期機の回転位相角を推定する回転位相角推定手段とを備えた ことを特徴とする同期機のセンサレス制御装置。  A rotation phase angle estimating means for estimating a rotation phase angle of the synchronous machine based on a spatial distribution of the high frequency component on a rotation coordinate axis synchronized with the rotation of the synchronous machine. Sensorless control device.
[2] 前記回転位相角推定手段は、前記同期機のインダクタンスが飽和する電流が流れ る高トルク出力状態において、前記高周波成分の空間的分布の形状に基づいて回 転位相角を推定することを特徴とする請求項 1に記載の同期機のセンサレス制御装 置。 [2] The rotational phase angle estimating means estimates the rotational phase angle based on a shape of a spatial distribution of the high frequency component in a high torque output state in which a current at which an inductance of the synchronous machine is saturated flows. The sensorless control device for a synchronous machine according to claim 1,
[3] 前記回転位相角推定手段は、前記高周波成分の回転座標軸上における特徴量に 基づいて前記同期機の回転位相角を推定することを特徴とする請求項 1又は 2に記 載の同期機のセンサレス制御装置。  [3] The synchronous machine according to claim 1 or 2, wherein the rotational phase angle estimator estimates a rotational phase angle of the synchronous machine based on a feature amount of the high-frequency component on a rotational coordinate axis. Sensorless control device.
[4] 前記回転位相角推定手段は、前記高周波成分の回転座標軸上における所定の角 度方向の成分に基づいて回転位相角を推定することを特徴とする請求項 1〜3のい ずれかに記載の同期機のセンサレス制御装置。 [4] The rotational phase angle estimation means estimates the rotational phase angle based on a component of the high-frequency component on a rotational coordinate axis in a predetermined angular direction. A sensorless control device for a synchronous machine as described.
[5] 前記同期機を制御するための指令に高周波指令を重畳させる高周波指令重畳手 段を備えたことを特徴とする請求項 1〜4のいずれかに記載の同期機のセンサレス制 御装置。 5. The sensorless control device for a synchronous machine according to any one of claims 1 to 4, further comprising a high frequency command superimposing unit that superimposes a high frequency command on a command for controlling the synchronous machine.
[6] 前記高周波指令重畳手段は、回転高周波指令を重畳させることを特徴とする請求 項 5に記載の同期機のセンサレス制御装置。  6. The sensorless control device for a synchronous machine according to claim 5, wherein the high-frequency command superimposing unit superimposes a rotating high-frequency command.
[7] 前記高周波指令重畳手段は、回転座標軸上において所定の角度方向に有意な高 周波電流変化が発生するような高周波指令を重畳させることを特徴とする請求項 記載の同期機のセンサレス制御装置。 [7] The high-frequency command superimposing means has a significant height in a predetermined angular direction on the rotational coordinate axis. The sensorless control device for a synchronous machine according to claim 1, wherein a high-frequency command that causes a change in frequency current is superimposed.
PCT/JP2007/061894 2006-07-05 2007-06-13 Sensorless control apparatus of synchronous machine WO2008004417A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/307,276 US20090200974A1 (en) 2006-07-05 2007-06-13 Sensorless control apparatus of synchronous machine
EP07745161.5A EP2075904A4 (en) 2006-07-05 2007-06-13 Sensorless control apparatus of synchronous machine
CN2007800255066A CN101485079B (en) 2006-07-05 2007-06-13 Sensorless control apparatus of synchronous machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-185552 2006-07-05
JP2006185552A JP4928855B2 (en) 2006-07-05 2006-07-05 Sensorless control device for synchronous machine

Publications (1)

Publication Number Publication Date
WO2008004417A1 true WO2008004417A1 (en) 2008-01-10

Family

ID=38894388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061894 WO2008004417A1 (en) 2006-07-05 2007-06-13 Sensorless control apparatus of synchronous machine

Country Status (5)

Country Link
US (1) US20090200974A1 (en)
EP (1) EP2075904A4 (en)
JP (1) JP4928855B2 (en)
CN (1) CN101485079B (en)
WO (1) WO2008004417A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5456873B1 (en) * 2012-11-30 2014-04-02 三菱電機株式会社 Synchronous machine controller

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008220096A (en) * 2007-03-06 2008-09-18 Toshiba Corp Sensorless controller of synchronous electric motor
US7906924B2 (en) * 2008-01-21 2011-03-15 Honeywell International Inc. Wide dynamic range motor control system and method
JP2010154598A (en) * 2008-12-24 2010-07-08 Aisin Aw Co Ltd Sensorless motor controller and drive unit
JP5151965B2 (en) * 2008-12-24 2013-02-27 アイシン・エィ・ダブリュ株式会社 Sensorless motor control device
JP5971707B2 (en) 2011-08-29 2016-08-17 株式会社東芝 Sensorless control device and inverter device for synchronous motor
TWI485973B (en) * 2013-08-08 2015-05-21 Delta Electronics Inc Estimating method for rotor position of motor and estimating device for the same
DE102015205691A1 (en) * 2015-03-30 2016-10-06 Siemens Aktiengesellschaft Method for reducing the noise of an electric motor
TWI654827B (en) * 2016-09-05 2019-03-21 日商東芝股份有限公司 Converter control device and motor driving system
CN107623407A (en) * 2017-09-11 2018-01-23 中国矿业大学 A kind of the high reliability transmission system and sensorless strategy method of magneto driving
CN107862702B (en) * 2017-11-24 2021-07-09 大连理工大学 Significance detection method combining boundary connectivity and local contrast
JP7225617B2 (en) * 2018-09-13 2023-02-21 株式会社アドヴィックス motor controller
EP3879695A1 (en) * 2020-03-11 2021-09-15 Mitsubishi Electric R & D Centre Europe B.V. Method and device for estimating the position of a rotor of a motor
CN113131800B (en) * 2021-03-25 2022-12-27 格至控智能动力科技(上海)有限公司 Permanent magnet synchronous motor rotary transformer signal fluctuation measuring device and using method thereof
TWI822105B (en) * 2022-06-13 2023-11-11 茂達電子股份有限公司 Automatic control system for phase angle of motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3168967B2 (en) 1997-09-12 2001-05-21 トヨタ自動車株式会社 Electric angle detecting device and method, and motor control device
JP2004129430A (en) * 2002-10-04 2004-04-22 Nissan Motor Co Ltd Control device of motor
JP2006129574A (en) * 2004-10-27 2006-05-18 Toshiba Corp Controller for synchronous machine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6462491B1 (en) * 1999-01-27 2002-10-08 Matsushita Electric Industrial Co., Ltd. Position sensorless motor control apparatus
JP4687846B2 (en) * 2001-03-26 2011-05-25 株式会社安川電機 Magnetic pole position estimation method and control apparatus for synchronous motor
JP2003037990A (en) * 2001-07-24 2003-02-07 Hitachi Ltd Motor control device
JP4665360B2 (en) * 2001-08-06 2011-04-06 株式会社安川電機 Electric motor control device
GB2385727B (en) * 2001-08-27 2005-01-12 Mitsubishi Electric Corp Sensorless control device for synchronous electric motor
JP3914108B2 (en) * 2002-07-15 2007-05-16 本田技研工業株式会社 DC brushless motor control device
JP4063166B2 (en) * 2002-07-31 2008-03-19 日産自動車株式会社 Electric motor control device
JP3695436B2 (en) * 2002-09-18 2005-09-14 株式会社日立製作所 Position sensorless motor control method and apparatus
JP4352678B2 (en) * 2002-10-03 2009-10-28 株式会社安川電機 Electric motor magnetic pole position estimation device and control device
US6756753B1 (en) * 2002-12-11 2004-06-29 Emerson Electric Co. Sensorless control system and method for a permanent magnet rotating machine
JP2004282873A (en) * 2003-03-14 2004-10-07 Meidensha Corp Sensorless measurement method for synchronous motor, and sensorless speed-variable device for synchronous motor
JP4230276B2 (en) * 2003-05-19 2009-02-25 本田技研工業株式会社 Brushless DC motor control device
JP4475903B2 (en) * 2003-09-12 2010-06-09 サンデン株式会社 Motor control device
JP4716118B2 (en) * 2006-03-29 2011-07-06 株式会社ジェイテクト Motor control device
JP5435252B2 (en) * 2008-01-30 2014-03-05 株式会社ジェイテクト Vehicle steering system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3168967B2 (en) 1997-09-12 2001-05-21 トヨタ自動車株式会社 Electric angle detecting device and method, and motor control device
JP2004129430A (en) * 2002-10-04 2004-04-22 Nissan Motor Co Ltd Control device of motor
JP2006129574A (en) * 2004-10-27 2006-05-18 Toshiba Corp Controller for synchronous machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2075904A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5456873B1 (en) * 2012-11-30 2014-04-02 三菱電機株式会社 Synchronous machine controller

Also Published As

Publication number Publication date
JP2008017608A (en) 2008-01-24
US20090200974A1 (en) 2009-08-13
CN101485079B (en) 2013-02-13
EP2075904A1 (en) 2009-07-01
CN101485079A (en) 2009-07-15
EP2075904A4 (en) 2016-09-21
JP4928855B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4928855B2 (en) Sensorless control device for synchronous machine
US7602138B2 (en) Driving apparatus and driving system for electric motor
JP5281339B2 (en) Synchronous motor drive system and control device used therefor
JP6008264B2 (en) Magnetic pole position detection device for permanent magnet type synchronous motor
EP2698916A2 (en) Motor control apparatus and motor control method
JP4455981B2 (en) Synchronous motor drive device
US20170264227A1 (en) Inverter control device and motor drive system
JP2008220096A (en) Sensorless controller of synchronous electric motor
JP5595835B2 (en) Electric motor drive
CN106026820B (en) Method and system for automatically tuning motor parameters
JP5428202B2 (en) Control device for permanent magnet type synchronous motor
WO2015056541A1 (en) Drive device for electric motor
JP5238241B2 (en) Control device for synchronous motor
JP2010166638A (en) Controller of rotating electrical machine
JP2009273283A (en) Controller for permanent magnet type synchronous motor
JP2007185099A (en) Sensorless controlling unit for synchronous generator, and controlling method
KR102409792B1 (en) Control device of permanent magnet synchronization electric motor, microcomputer, electric motor system, and driving method of permanent magnet synchronization electric motor
JP2018125955A (en) Motor controller
JP5798513B2 (en) Method and apparatus for detecting initial magnetic pole position of permanent magnet synchronous motor, and control apparatus for permanent magnet synchronous motor
JP5228435B2 (en) Inverter control device and control method thereof
JP2009284557A (en) Controller for permanent magnet type synchronous motor
WO2022215263A1 (en) Power conversion device, estimator, and estimation method
JP6422796B2 (en) Synchronous machine control device and drive system
JP2006271198A (en) Synchronous motor driving device
JP2024083840A (en) Inverter control device and power conversion device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780025506.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745161

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12307276

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007745161

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU