WO2008004395A1 - Laser processing method - Google Patents

Laser processing method Download PDF

Info

Publication number
WO2008004395A1
WO2008004395A1 PCT/JP2007/061476 JP2007061476W WO2008004395A1 WO 2008004395 A1 WO2008004395 A1 WO 2008004395A1 JP 2007061476 W JP2007061476 W JP 2007061476W WO 2008004395 A1 WO2008004395 A1 WO 2008004395A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified region
workpiece
region
position information
laser
Prior art date
Application number
PCT/JP2007/061476
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuya Osajima
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO2008004395A1 publication Critical patent/WO2008004395A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/221Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Definitions

  • the present invention relates to a laser calorie method for cutting a plate-like workpiece along a planned cutting line.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-150537
  • the modified region closest to the first surface and the first surface facing the first surface are arranged.
  • the position where the modified region is closest to the surface of 2 is required to have particularly high accuracy in terms of the quality of the cut surface. This is because if these modified regions are not accurately formed at the positions of the first surface and the second surface force at predetermined distances, for example, cutting in the thickness direction of the workpiece is performed. This is because a so-called skirt phenomenon may occur in which the edge of the surface is greatly disengaged from the planned cutting line force.
  • the modified region is formed in a plurality of rows in the thickness direction of the object to be processed on the basis of only the position of the first surface.
  • the thickness of an object varies among multiple workpieces due to differences in grinding lots, for example, or when a part of the workpiece becomes thicker or thinner (that is, the workpiece to be processed)
  • the thickness of the object changes
  • the modified region closest to the second surface cannot be accurately formed at the position of the second surface force at a predetermined distance.
  • the present invention provides the first modified region closest to the first surface and the first modified region in the case where a plurality of modified regions are formed in the thickness direction of the workpiece along the planned cutting line. It is an object of the present invention to provide a laser processing method capable of accurately forming the second modified region closest to the second surface.
  • a laser processing method is designed to cut a cutting target line by irradiating a laser beam with a focusing point inside a plate-like processing target.
  • the step of forming the first modified region closest to the first surface in the quality region and the position of the second surface facing the first surface in the workpiece are defined. Forming a second modified region closest to the second surface.
  • the first modified region closest to the first surface in the modified region is formed with reference to the position of the first surface, and the second modified region in the modified region.
  • a second modified region closest to the surface is formed with reference to the position of the second surface.
  • each modified region causes multiphoton absorption and other light absorption inside the workpiece by irradiating the laser beam with the focusing point on the inside of the workpiece. It is formed.
  • the first position information related to the position of the first surface is obtained by detecting the reflected light reflected by the first surface.
  • the first Based on the positional information, in the step of forming the first modified region inside the first surface force by a predetermined distance and forming the second modified region, the reflected light reflected by the second surface
  • Second position information on the position of the second surface is acquired by detecting the second surface force, and based on the second position information, the second surface force is also moved inward by a predetermined distance from the second modified region. May form.
  • the first position information related to the position of the first surface is acquired by detecting the reflected light reflected by the first surface, Based on the first position information, in the step of forming the first modified region inside the first surface force by a predetermined distance and forming the second modified region, the first position information and Based on the thickness information related to the thickness of the workpiece, the second modified region may be formed on the inner side by a predetermined distance of the second surface force.
  • second position information relating to the position of the second surface is acquired by detecting reflected light reflected by the second surface, and Based on the second position information, the second surface area is formed in the second modified area inward by a predetermined distance, and in the step of forming the first modified area, the second position information and Based on the thickness information of the workpiece, the first modified region may be formed inside the first surface force by a predetermined distance.
  • the workpiece includes a semiconductor substrate, and the modified region includes a melt processing region.
  • the method further includes a step of cutting the object to be processed along a planned cutting line using the modified region as a starting point of cutting. As a result, the workpiece can be accurately cut along the planned cutting line.
  • the first modified region closest to the first surface, and the first The second modified region closest to the surface of 2 can be accurately formed.
  • FIG. 1 is a plan view of an object to be processed in a laser cage by the laser carriage device according to the present embodiment. It is.
  • FIG. 2 is a cross-sectional view taken along line II-II of the cache object shown in FIG.
  • FIG. 3 is a plan view of an object to be processed after laser processing by the laser processing apparatus according to the present embodiment.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of the cache object shown in FIG.
  • FIG. 5 is a cross-sectional view taken along line VV of the cache object shown in FIG.
  • FIG. 6 is a plan view of a processing object cut by the laser processing apparatus according to the present embodiment.
  • FIG. 7 is a graph showing the relationship between electric field strength and crack spot size in the laser processing apparatus according to the present embodiment.
  • FIG. 10 is a cross-sectional view of the object to be processed in the third step of the laser processing apparatus according to the present embodiment.
  • FIG. 11 A sectional view of the object to be processed in the fourth step of the laser processing apparatus according to the present embodiment.
  • FIG. 12 is a view showing a photograph of a cross section of a part of a silicon wafer cut by the laser carriage device according to the present embodiment.
  • FIG. 13 is a graph showing the relationship between the wavelength of laser light and the transmittance inside the silicon substrate in the laser processing apparatus according to the present embodiment.
  • FIG. 14 is a front view showing a workpiece to be processed by the laser processing method according to the first embodiment of the present invention.
  • FIG. 15 is a partial sectional view taken along line XV—XV in FIG.
  • FIG. 17 is a diagram for explaining calculation of back surface position information and front surface position information in the laser processing method shown in FIG.
  • FIG. 18 is a partial cross-sectional view taken along line XVIII-XVIII in FIG. 14 for illustrating the laser care method shown in FIG.
  • FIG. 19 is a diagram for explaining calculation of back surface position information and surface position information in the laser processing method according to the second embodiment of the present invention.
  • FIG. 20 is a partial cross-sectional view taken along line XVIII-XVI II in FIG. 14 in the laser care method using the conventional autofocus function.
  • FIG. 21 is a schematic configuration diagram showing a laser processing apparatus according to an embodiment of the present invention.
  • 31 Work object, 5... Scheduled line, 11a... Front surface (second surface), 21 ⁇ Back surface (first surface), L... Laser light, LI, L3, L5... Reflected light (reflected light reflected on the first surface), L2, L4, L6 ... Reflected light (reflected light reflected on the second surface), Ml, M2, M3, M4, M5, ⁇ 6 ⁇ Modified area, P ... Focusing point.
  • the peak power density is calculated by (energy per pulse of laser beam at the focal point) ⁇ (beam spot cross-sectional area of laser beam x pulse width).
  • beam spot cross-sectional area of laser beam x pulse width.
  • the intensity of the laser beam is determined by the electric field strength (WZcm2) at the focal point of the laser beam.
  • wafer-like (plate-like) workpiece On the surface 3 of 1, there is a planned cutting line 5 for cutting the workpiece 1.
  • the planned cutting line 5 is a virtual line extending straight.
  • the modified region 7 is irradiated with the laser beam L with the focusing point P aligned inside the workpiece 1 under the condition that multiphoton absorption occurs.
  • the condensing point P is a part where the laser beam is condensed.
  • the planned cutting line 5 is not limited to a straight line, but may be a curved line, or may be a line actually drawn on the workpiece 1 without being limited to a virtual line.
  • the laser beam L is moved along the planned cutting line 5 (ie, in the direction of arrow A in FIG. 1) to move the condensing point P along the planned cutting line 5. .
  • the modified region 7 is formed inside the workpiece 1 along the planned cutting line 5, and the modified region 7 becomes the cutting start region 8.
  • the cutting starting point region 8 means a region that becomes a starting point of cutting (cracking) when the workpiece 1 is cut.
  • This cutting starting point region 8 may be formed by continuously forming the modified region 7 or may be formed by intermittently forming the modified region 7.
  • the surface 3 of the workpiece 1 is hardly absorbed by the surface 3 of the workpiece 1, so that the surface 3 of the workpiece 1 is not melted.
  • the other is that by forming the cutting start region 8, it naturally cracks in the cross-sectional direction (thickness direction) of the workpiece 1 starting from the cutting start region 8, resulting in the processing target This is the case where object 1 is cut. This is for example machining vs.
  • This can be achieved by forming the cutting start region 8 by the modified region 7 in one row, and when the thickness of the workpiece 1 is large, the thickness direction is increased. This is made possible by forming the cutting start region 8 by the modified regions 7 formed in a plurality of rows.
  • the modified region includes the following (1) to (1) to
  • the modified region is a crack region including one or more cracks
  • the focusing point is set inside the workpiece (for example, piezoelectric material made of glass or LiTa03), and the electric field strength at the focusing point is 1 X 108 (W / cm2) or more and the pulse width is 1 ⁇ s or less.
  • the magnitude of this pulse width is a condition under which a crack region can be formed only inside the workpiece without causing extra damage to the surface of the workpiece while causing multiphoton absorption.
  • a phenomenon called optical damage due to multiphoton absorption occurs inside the workpiece. This optical damage induces thermal strain inside the workpiece, thereby forming a crack region inside the workpiece.
  • the upper limit value of the electric field strength is, for example, 1 ⁇ 1012 (WZcm2).
  • the pulse width is preferably lns to 200ns, for example.
  • the present inventor obtained the relationship between the electric field strength and the crack size by experiment.
  • the experimental conditions are as follows.
  • the laser light quality TEMOO means that the light condensing property is high and the light can be condensed up to the wavelength of the laser light.
  • FIG. 7 is a graph showing the results of the experiment.
  • the horizontal axis is the peak power density. Since the laser beam is a pulsed laser beam, the electric field strength is expressed by the peak power density.
  • the vertical axis shows the size of the crack part (crack spot) formed inside the workpiece by 1 pulse of laser light. Crack spots gather to form a crack region. The size of the crack spot is the size of the maximum length of the crack spot shape.
  • the data indicated by the black circles in the graph is when the condenser lens (C) has a magnification of 100 and the numerical aperture (NA) is 0.80.
  • the data indicated by white circles in the graph is for the case where the magnification of the condenser lens (C) is 50 times and the numerical aperture (NA) is 0.55.
  • the peak power density increases from about 1011 (WZcm2), crack spots are generated inside the cache object and the peak power density increases.
  • FIG. 8 Under the condition that multiphoton absorption occurs, the condensing point P is aligned inside the workpiece 1 and the laser beam L is irradiated to form a crack region 9 along the planned cutting line.
  • Crack region 9 is a region containing one or more cracks .
  • the crack region 9 thus formed becomes a cutting start region.
  • the crack further grows starting from the crack region 9 (that is, starting from the cutting start region), and as shown in FIG.
  • FIG. 11 when the workpiece 1 is cracked, the workpiece 1 is cut. Cracks that reach the front surface 3 and back surface 21 of the workpiece 1 may grow naturally, and the workpiece 1 is marked with force.
  • the focusing point is set inside the object to be processed (for example, a semiconductor material such as silicon), and the electric field strength at the focusing point is 1 X 108 (W / cm2) or more and the pulse width is 1 ⁇ s or less.
  • the laser beam is irradiated with.
  • the inside of the workpiece is locally heated by multiphoton absorption.
  • a melt processing region is formed inside the workpiece.
  • the melt treatment region is a region once solidified after melting, a region in a molten state, or a region re-solidified from a molten state, and can also be referred to as a phase-changed region or a region where the crystal structure has changed.
  • the melt-processed region can also be referred to as a region in which one structure is changed to another in a single crystal structure, an amorphous structure, or a polycrystalline structure.
  • a region changed to a single crystal structural force amorphous structure a region changed from a single crystal structure to a polycrystalline structure, a region changed to a structure including a single crystal structural force amorphous structure and a polycrystalline structure.
  • the melt processing region has, for example, an amorphous silicon structure.
  • the upper limit value of the electric field strength is, for example, 1 ⁇ 1012 (WZcm2).
  • the pulse width is preferably lns to 200 ns.
  • the present inventor has confirmed through experiments that a melt-processed region is formed inside a silicon wafer (semiconductor substrate).
  • the experimental conditions are as follows.
  • FIG. 12 is a view showing a photograph of a cross section of a part of a silicon wafer cut by a laser cage under the above conditions.
  • a melt processing region 13 is formed inside the silicon wafer 11.
  • the size in the thickness direction of the melt processing region 13 formed under the above conditions is about 100 ⁇ m.
  • FIG. 13 is a graph showing the relationship between the wavelength of the laser beam and the transmittance inside the silicon substrate. However, the reflection component on the front side and the back side of the silicon substrate is removed, and the transmittance only inside is shown. The above relationship was shown for each of the silicon substrate thicknesses t of 50 ⁇ m, 100 ⁇ m, 200 ⁇ m, 500 ⁇ m, and 1000 ⁇ m.
  • the thickness of the silicon substrate is 500 m or less at the wavelength of 1064 nm of the Nd: YAG laser, it can be understood that 80% or more of the laser light is transmitted inside the silicon substrate. Since the thickness of the silicon wafer 11 shown in FIG. 12 is 350 m, the melt processing region 13 by multiphoton absorption is formed near the center of the silicon wafer 11, that is, at a portion of 175 m from the surface. In this case, the transmittance is 90% or more with reference to a silicon wafer having a thickness of 200 m. Therefore, the laser beam is hardly absorbed inside the silicon wafer 11, and almost all is transmitted.
  • melt processing region 13 is formed by multiphoton absorption.
  • the formation of the melt processing region by multiphoton absorption is, for example, “Evaluation of processing characteristics of silicon by picosecond pulse laser” on pages 72 to 73 of the 66th Annual Meeting Summary (April 2000). It is described in.
  • the silicon wafer generates a crack by applying a force in the cross-sectional direction starting from the cutting start region formed by the melt processing region, and the crack reaches the front and back surfaces of the silicon wafer. , Resulting in disconnection.
  • the cracks that reach the front and back surfaces of the silicon wafer may grow spontaneously, or they may grow when force is applied to the silicon wafer. Then, if the crack grows naturally on the front and back surfaces of the silicon wafer, the crack grows from the state where the melt processing area forming the cutting origin area is melted, and the cutting origin area In some cases, cracks grow when the solidified region is melted from the molten state.
  • the melt processing region is formed only inside the silicon wafer, and the melt processing region is formed only inside the cut surface after cutting as shown in FIG.
  • the formation of the melt-processed region may be caused not only by multiphoton absorption but also by other absorption effects.
  • a focusing point is set inside the object to be processed (eg, glass), and laser light is irradiated under the condition that the electric field strength at the focusing point is 1 X 108 (W / cm2) or more and the pulse width is Ins or less. If the pulse width is made extremely short and multiphoton absorption occurs inside the target object, the energy due to the multiphoton absorption will not be converted to thermal energy, and the ionic valence will be present inside the workpiece. Permanent structural changes such as change, crystallization or polarization orientation are induced to form a refractive index change region.
  • the upper limit value of the electric field strength is, for example, 1 ⁇ 1012 (W / cm2).
  • the Norse width is preferably less than Ins, more preferably less than lps.
  • the formation of the refractive index change region by multiphoton absorption is described in, for example, “Inside Glass by Femtosecond Laser Irradiation” on pages 105-111 of the 42nd Laser Thermal Processing Society Proceedings (November 1997). Described in “Formation of Photo-Induced Structure in Part”.
  • the cutting origin region is determined as follows in consideration of the crystal structure of the wafer-like workpiece and its cleavage property. Once formed, the workpiece can be cut with a smaller force and with higher accuracy, starting from the cutting start region.
  • the cutting origin region in the direction along the (111) plane (first cleavage plane) or the (110) plane (second cleavage plane) Is preferably formed.
  • the cutting start region in the direction along the (110) plane it is preferable to form the cutting start region in the direction along the (110) plane.
  • the (0001) plane (C plane) is the main plane and the (1120) plane (eight planes) or! (1100) plane ( It is preferable to form the cutting origin region in the direction along the (M-plane) U.
  • the direction in which the above-described cutting start region is to be formed (for example, the direction along the (111) plane in the single crystal silicon substrate) or! Is orthogonal to the direction in which the cutting start region is to be formed. If an orientation flat is formed on the substrate along the direction, it is possible to easily and accurately form the cutting start area along the direction in which the cutting start area is to be formed on the basis of the orientation flat. become.
  • the workpiece 1 includes a silicon wafer 11 and a plurality of functional elements 15, and the surface of the silicon wafer 11 (hereinafter, also simply referred to as “surface”) 11a.
  • the functional element layer 16 is formed in the thickness of about 300 m.
  • the functional element 15 is, for example, a semiconductor operating layer formed by crystal growth, a light receiving element such as a photodiode, a light emitting element such as a laser diode, or a circuit element formed as a circuit. Many are formed in a matrix in the direction parallel to the orientation flat 6 and in the direction perpendicular to it. Such a workpiece 1 is cut along a planned cutting line 5 (see the broken line in FIG.
  • a protective tape is applied to the surface of the functional element layer 16, and the functional element layer 16 is protected by the protective tape. Secure the protective tape holding the workpiece 1. Subsequently, the back surface of the workpiece 1 (hereinafter, also simply referred to as “rear surface”) 21 is irradiated with laser light under conditions where multi-photon absorption occurs by aligning the focal point from the inside of the silicon wafer 11 and cutting each cut. A modified region that is the starting point of cutting is formed along the planned line 5 (back-side incident processing).
  • modified regions are formed in the thickness direction of the workpiece 1 along each planned cutting line 5.
  • the protective tape fixed to the stage is separated with the workpiece 1.
  • an expand tape is applied to the back surface 21 of the silicon wafer 11, and after the protective tape is peeled off from the surface force of the functional element layer 16, the expand tape is expanded.
  • the processing object 1 is accurately cut for each functional element 15 along the scheduled cutting line 5 using the modified region as a starting point of cutting, and a plurality of semiconductor chips are separated from each other.
  • the modified region may include a crack region in addition to the melt processing region.
  • the thickness of the workpiece 1 varies among a plurality of workpieces 1 due to differences in grinding lots, for example, or a portion of the workpiece 1 is uneven due to unevenness in grinding. It may be thicker or thinner (when the thickness of the workpiece 1 changes). Specifically, in the workpiece 1 with a thickness of 300 m, the thickness may vary by more than ⁇ 10 m between the workpieces 1, and the thickness of a part of one workpiece 1 May vary by more than ⁇ 5 m.
  • the thickness of the workpiece 1 is considered to be constant, and only the amount of displacement of the back surface 21 that is the laser light incident surface is measured, so that the focal point position of the laser light is measured. Is controlled from the rear surface 21 to a predetermined position. Therefore, conventionally, as shown in FIG. 20, in the modified region M formed, the modified region closest to the surface 1 la is such that the workpiece 1 is thick! May be formed near the back surface 21 without reaching the deep position of the cache object 1 when the object 1 is thin.
  • the formation of the reforming region will be described in more detail.
  • the distance measuring laser beam is irradiated and the reflected light of the distance measuring laser beam reflected on the back surface 21 is detected as a voltage value. And memorize the detected voltage value (Sl in Fig. 16).
  • the line scheduled to be cut so that the reflected light of the distance measuring laser light irradiated with the distance measuring laser light and reflected by the back surface 21 is detected as a voltage value, and this voltage value maintains the voltage value by the height set. 5 is scanned to obtain the displacement of the back surface 21 along the planned cutting line 5, and the displacement of the back surface 21 is stored as back surface position information (first position information). In other words, it is obtained as the relative distance in the thickness direction from the rear surface 21 to the height 21 back surface position.
  • Back surface position information displacement of back surface 21
  • the thickness (thickness information) of the workpiece 1 is optically measured and calculated along the planned cutting line 5 by the thickness measuring device. Specifically, as shown in FIG. 17 (a), along the planned cutting line 5, the reflected light L1 from the back surface 21 and the reflected light L2 that passes through the inside of the workpiece 1 and is reflected by the front surface 11a. Is received by the line sensor 50. Then, the distance from the front surface 11a to the back surface 21, that is, the thickness of the workpiece 1 is calculated based on the light receiving positions of the reflected lights LI and L2 in the line sensor 50 and the refractive index of the workpiece 1 obtained in advance. To do.
  • the above-described back surface position information is added to the calculated thickness of the workpiece 1 and stored as surface position information (second position information) along the planned cutting line 5. That is, the surface position information force is obtained as the relative distance in the thickness direction from the front surface 1 la to the height-set 21 back surface position (S2 in FIG. 16).
  • the measurement system of the back surface 21 and the measurement system of the thickness of the cache object 1 are composed of two axes. It has been. Further, the displacement of the back surface 21 and the thickness force of the cover object 1 are acquired in association with the coordinates in the direction along the cutting line 5. Therefore, the measurement system for the back surface 21 and the thickness measurement system for the workpiece 1 are composed of two axes, and the back surface position information and the surface position information are synthesized on the coordinates from the distance D1 between each measurement system. Position information and surface position information are required with high accuracy.
  • the thickness of the workpiece 1 may be measured by causing the reflected light L3 from the back surface 21 and the reflected light L4 from the front surface 11a to interfere with each other. is there.
  • the measurement system of the back surface 21 and the thickness measurement system of the workpiece 1 are configured with two axes, and the displacement of the back surface 21 and the thickness force of the workpiece 1 are set in the line 5 to be cut. Acquired in association with the coordinates of the direction along. Therefore, the back surface position information and the front surface position information are synthesized on the coordinates from the distance D2 between the respective measurement systems, and the back surface position information and the front surface position information are accurately obtained.
  • a laser beam is irradiated with the focusing point on the inner side (upper side in the figure) of the surface 11a by m, and along the planned cutting line 5 Scan.
  • the focal point is moved to the position on the rear surface 21 side by 10 m from the surface position information, and laser light is emitted at 0.72 W, and the stored surface position information Is scanned by a position adjusting element (actuator using a piezo element in this embodiment) to scan along the planned cutting line 5 while controlling the focal point position.
  • a modified region (second modified layer) Ml is formed along the planned cutting line 5 by 10 m from the surface 11a with reference to the surface 11a (S3 in FIG. 16). Specifically, a modified region Ml along the planned cutting line 5 is formed at a position on the back surface 21 side by 10 m from the surface position information.
  • a laser beam is irradiated with a focusing point on the inner side (upper side in the drawing) of 25 m from the surface 11a and to be cut.
  • the modified region M2 is formed along the planned cutting line 5 inward by 25 m from the surface 11a with respect to the surface 11a (S4 in FIG. 16). Specifically, a modified region M2 along the planned cutting line 5 is formed at a position on the back surface 21 side by 25 m from the surface position information.
  • the laser beam is irradiated with the focusing point on the inner side (upper side in the drawing) of 35 m from the surface 11 a and scanned along the planned cutting line 5.
  • the focal point is moved to the position on the back 21 side by 35 m from the surface position information, and the laser beam is output.
  • the information is reproduced by the piezo element and scanned along the planned cutting line 5 while controlling the focal point position.
  • the modified region M3 is formed along the planned cutting line 5 only 35 m from the surface 11a with respect to the surface 11a (S5 in FIG. 16).
  • a modified region M3 along the planned cutting line 5 is formed at a position on the back surface 21 side by 35 m from the surface position information.
  • the laser beam is irradiated with the focusing point on the inner side (upper side in the drawing) of 45 m from the surface 11 a and scanned along the planned cutting line 5.
  • the focal point is moved to the position on the back 21 side by 45 m from the surface position information, and laser light is output.
  • the information is reproduced by the piezo element and scanned along the planned cutting line 5 while controlling the focal point position.
  • the modified region M4 is formed along the planned cutting line 5 within 45 m from the surface 11a with respect to the surface 11a (S6 in FIG. 16).
  • a modified region M4 along the planned cutting line 5 is formed at a position on the back surface 21 side by 45 m from the surface position information.
  • a laser beam is irradiated with a focusing point on the inner side (lower side in the drawing) by 25 m from the rear surface 21 and cut. Scan along planned line 5.
  • the laser beam is output by moving the condensing point to the position on the front surface 11a side by 25 ⁇ m from the back surface position information.
  • the back side position information stored in memory is reproduced by a piezo element and scanned along the planned cutting line 5 while controlling the focal point position.
  • the modified region M5 is formed along the planned cutting line 5 within 25 ⁇ m from the back surface 21 with respect to the back surface 21 (S7 in FIG. 16).
  • a modified region M5 along the planned cutting line 5 is formed at a position on the front surface 11a side by 25 m from the back surface position information.
  • the laser beam is irradiated with the focusing point on the inner side (lower side in the figure) of 15 m from the back surface 21, and scanning is performed along the planned cutting line 5.
  • the focal point is moved to the position on the front surface 11a side by 10 m from the back surface position information, and the laser beam is emitted at 0.68 W, and the back surface stored in memory.
  • the position information is reproduced by the piezo element, and scanning is performed along the planned cutting line 5 while controlling the focal point position.
  • a modified region (second modified layer) M6 is formed along the planned cutting line 5 on the inner side by 15 / z m from the rear surface 21 with respect to the rear surface 21 (S8 in FIG. 16).
  • a modified region M6 along the planned cutting line 5 is formed at a position on the front surface 11a side by 15 / zm from the back surface position information.
  • the modified regions M5 and M6 are modified to form a half cut on the upper surface.
  • This area is called the so-called half-cut SD.
  • This half-cut ensures separation by expanding the expanded tape, so half-cut SD is a very important factor.
  • the modified region Ml closest to the surface 11a is a modified region that particularly affects the quality of the cut surface after cutting. Called. Quality SD is for cutting the functional element layer 16 with high accuracy, and is a very important factor for maintaining the quality when the workpiece 1 is cut.
  • the modified regions M5 and M6 are scheduled to be cut inside the workpiece 1 by a predetermined distance from the back surface 21 with respect to the back surface 21 as a reference.
  • the modified region Ml is formed along the planned cutting line 5 inwardly from the surface 11a by a predetermined distance with respect to the surface 11a.
  • the modified regions M6 and modified regions closest to the back surface 21 are formed. It is possible to accurately form the adjacent modified region M5 and the modified region Ml closest to the surface 11a.
  • the modified regions M5 and M6 are formed with high accuracy, the following effects are obtained. That is, since the modified regions M5 and M6 are too close to the back surface 21, the half-cut meandering and quality deterioration are suppressed. Furthermore, since the modified regions M5 and M6 are too far from the back surface 21, the elongation of cracks generated from the modified regions M5 and M6 becomes insufficient, and it is possible to prevent the half cut from being formed well.
  • the modified region Ml is formed with high accuracy, and therefore the following effects are obtained. That is, since the modified region Ml is too close to the surface 11a, the irradiated laser beam protrudes from the workpiece 1 and a hole is made in the surface 11a, so that the bending strength of the workpiece 1 is weakened. Suppress. Furthermore, since the modified region Ml is too far away from the surface 11a, the end of the surface 1 la side is greatly disengaged from the planned cutting line 5 at the cut surface, thereby preventing the occurrence of a scouring phenomenon.
  • the functional element 15 is formed on the surface 11a, which is the surface opposite to the surface on which laser light is incident, for back-side incident processing, and thus the above effect of preventing the occurrence of the skirt phenomenon. Is particularly prominent.
  • the thickness of the workpiece 1 may be measured with a contact-type thickness measuring instrument, in this case, there is a foreign object between the workpiece 1 and the stage, When affixed to the expanded tape, air may be mixed between the expanded tape and the workpiece 1, and the position of the workpiece 1 that is in contact with the expanded tape does not necessarily indicate the thickness of the workpiece 1. Must not. Therefore, in this embodiment, a measuring instrument using a transmission type laser is used. Therefore, the thickness of the workpiece 1 is accurately measured.
  • the modified regions M2, M3, and M4 are formed based on the surface 11a, but the modified region M is not limited to the present embodiment. 2, M3 and M4 may be formed with reference to the back surface 21.
  • the laser processing method according to the second embodiment is different from the laser processing method according to the first embodiment in that an autofocus function is used as shown in FIG. 19 without measuring the thickness of the workpiece 1. This is the point at which the reflected light L5 on the back surface 21 and the reflected light L6 on the front surface 11a were detected using the optical system in this case.
  • the reflected light L5 reflected by the back surface 21 and the reflected light L6 transmitted through the workpiece 1 and reflected by the surface 11a are detected, respectively, and the surface 11a
  • the back surface position information and the front surface position information can be obtained directly.
  • Back side position information displacement of back side 21
  • the modified region has the effect of suppressing the displacement of the positions of M5 and M6 and the position of the modified region M6 due to the change in the thickness of the workpiece 1.
  • the modified region M6 and the modified region M6 closest to the back surface 21 are formed.
  • the adjacent modified region M5 and the modified region Ml closest to the surface 11a can be formed with high accuracy.
  • the laser carriage device 100 is configured to change the direction of the optical axis of the laser beam L by 90 ° and the laser light source 101 that pulsates the laser beam (processing laser beam) L. Placed A dichroic mirror 103 and a condensing lens 105 for condensing the laser beam L.
  • the laser carriage device 100 includes a mounting table 107 for mounting the workpiece 1 to be irradiated with the laser beam L condensed by the condensing lens 105, and a mounting table 107 for X, Y, ⁇ A stage 111 for moving in the axial direction, a laser light source control unit 102 for controlling the laser light source 101 to adjust the output and pulse width of the laser light L, and a stage control unit 115 for controlling the movement of the stage 111 And prepare for.
  • the laser light L emitted from the laser light source 101 is changed in its optical axis by 90 ° by the dichroic mirror 103, and processed on the mounting table 107 by the condenser lens 105. It is condensed inside the object 1.
  • the stage 111 is moved, and the workpiece 1 is moved relative to the laser beam L along the planned cutting line 5. As a result, a modified region is formed on the workpiece 1 along the planned cutting line 5.
  • the laser cache device 100 is not limited to this embodiment, and the laser light L from the laser light source 101 may be guided to the condensing lens 105 without using the dichroic mirror 103.
  • the laser beam L may be moved as long as the laser beam L can be moved relative to the workpiece 1. Particularly in the axial direction, it is possible to change the focal position of the laser light L by moving the position of the condensing lens 105 instead of moving the mounting table 107.
  • the displacement of the force surface 1 la which is a so-called trace carriage that scans the laser light after measuring the displacement or the like of the surface 11a of the workpiece 1 to form a modified region.
  • Etc. can be measured at the same time to form a modified region.
  • a single laser light source may be used for irradiation of the distance measuring laser light that passes through the workpiece and the distance measuring laser light that is reflected without being transmitted. You can change the wavelength and irradiate.
  • the back surface incident processing in which laser light is incident from the back surface 21 side facing the front surface 11a on which the functional element 15 is formed is used. Of course, it is good even for the incident processing.
  • the case object 1 including the silicon wafer 11 is used as the object to be processed.
  • a material having crystallinity such as a material or a sapphire may be used.
  • the first modified region closest to the first surface, and the first The second modified region closest to the surface of 2 can be accurately formed.

Abstract

In the case of forming a plurality of rows of modified regions, in the thickness direction of a processing object, along a line to be cut, a first modified region closest to a first surface and a second modified region closest to a second surface are accurately formed. In a laser processing method, laser beams are applied by having a light collecting point inside the processing object (1), and the modified regions (M1-M6) to be starting points of cutting are formed, in the thickness direction of the processing object (1), along the line (5) to be cut on the processing object (1). Among the modified regions (M1-M6), the modified region (M6) closest to a rear surface (21) is formed by having the position of the rear surface (21) as reference, and the modified region (M1) closest to the front surface (11a) is formed by having the position of the front surface (11a) as reference. Thus, even when the thickness of the processing object (1) varies, shift of the position of the modified region (M6) and that of the position of the modified region (M1) due to changes of the thickness of the processing object (1) are suppressed.

Description

明 細 書  Specification
レーザ加工方法  Laser processing method
技術分野  Technical field
[0001] 本発明は、板状の加工対象物を切断予定ラインに沿って切断するためのレーザカロ ェ方法に関する。  The present invention relates to a laser calorie method for cutting a plate-like workpiece along a planned cutting line.
背景技術  Background art
[0002] 従来のレーザ加工方法として、板状の加工対象物の内部に集光点を合わせてレー ザ光を照射することにより、加工対象物の切断予定ラインに沿って、切断の起点とな る改質領域を加工対象物の厚さ方向に複数列形成する方法が知られて ヽる(例えば 、特許文献 1参照)。このようなレーザ加工方法では、加工対象物においてレーザ光 が入射する第 1の面の位置を検出し、この検出信号に応じてレーザ光の集光点の位 置を制御することにより、加工対象物の内部において第 1の面力 所定の距離の位 置に各改質領域を形成することが一般的である。  [0002] As a conventional laser processing method, by aligning a condensing point inside a plate-like workpiece and irradiating laser light, it becomes a starting point for cutting along the planned cutting line of the workpiece. There is known a method for forming a plurality of modified regions in the thickness direction of a workpiece (for example, see Patent Document 1). In such a laser processing method, the position of the first surface where the laser light is incident on the object to be processed is detected, and the position of the condensing point of the laser light is controlled in accordance with this detection signal, whereby the object to be processed is detected. It is common to form each modified region at the position of the first surface force at a predetermined distance inside the object.
特許文献 1 :特開 2005— 150537号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-150537
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] ところで、改質領域を加工対象物の厚さ方向に複数列形成して加工対象物を切断 する場合、第 1の面に最も近い改質領域、及び第 1の面に対向する第 2の面に最も近 ぃ改質領域の形成位置には、切断面の品質上、特に高い精度が要求される。なぜな らば、これらの改質領域が第 1の面及び第 2の面力 所定の距離の位置にそれぞれ 精度良く形成されていないと、切断した際、例えば加工対象物の厚さ方向における 切断面の端部が切断予定ライン力 大きく外れるいわゆるスカート現象が発生するこ とがあるためである。 [0003] Incidentally, when a plurality of modified regions are formed in the thickness direction of the workpiece and the workpiece is cut, the modified region closest to the first surface and the first surface facing the first surface are arranged. The position where the modified region is closest to the surface of 2 is required to have particularly high accuracy in terms of the quality of the cut surface. This is because if these modified regions are not accurately formed at the positions of the first surface and the second surface force at predetermined distances, for example, cutting in the thickness direction of the workpiece is performed. This is because a so-called skirt phenomenon may occur in which the edge of the surface is greatly disengaged from the planned cutting line force.
[0004] し力しながら、上述したようなレーザカ卩ェ方法では、第 1の面の位置のみを基準とし て、改質領域を加工対象物の厚さ方向に複数列形成するため、加工対象物の厚さ が例えば研削ロットの違いにより複数の加工対象物間でばらついたり、 1つの加工対 象物においてその一部分が厚く若しくは薄くなつたりする場合 (すなわち、加工対象 物の厚さが変化する場合)には、第 2の面に最も近い改質領域を第 2の面力 所定の 距離の位置に精度良く形成することができないおそれがある。 [0004] However, in the laser cage method as described above, the modified region is formed in a plurality of rows in the thickness direction of the object to be processed on the basis of only the position of the first surface. When the thickness of an object varies among multiple workpieces due to differences in grinding lots, for example, or when a part of the workpiece becomes thicker or thinner (that is, the workpiece to be processed) When the thickness of the object changes), there is a possibility that the modified region closest to the second surface cannot be accurately formed at the position of the second surface force at a predetermined distance.
[0005] そこで、本発明は、切断予定ラインに沿って改質領域を加工対象物の厚さ方向に 複数列形成する場合において、第 1の面に最も近い第 1の改質領域、及び第 2の面 に最も近い第 2の改質領域を精度良く形成することができるレーザ加工方法を提供 することを課題とする。 [0005] Therefore, the present invention provides the first modified region closest to the first surface and the first modified region in the case where a plurality of modified regions are formed in the thickness direction of the workpiece along the planned cutting line. It is an object of the present invention to provide a laser processing method capable of accurately forming the second modified region closest to the second surface.
課題を解決するための手段  Means for solving the problem
[0006] 上記課題を達成するために、本発明に係るレーザ加工方法は、板状の加工対象物 の内部に集光点を合わせてレーザ光を照射することにより、加工対象物の切断予定 ラインに沿って、切断の起点となる改質領域を厚さ方向に複数列形成するレーザカロ ェ方法であって、加工対象物においてレーザ光が入射する第 1の面の位置を基準と して、改質領域のうち第 1の面に最も近い第 1の改質領域を形成する工程と、加工対 象物において第 1の面に対向する第 2の面の位置を基準として、改質領域のうち第 2 の面に最も近い第 2の改質領域を形成する工程と、を含むことを特徴とする。  [0006] In order to achieve the above object, a laser processing method according to the present invention is designed to cut a cutting target line by irradiating a laser beam with a focusing point inside a plate-like processing target. Is a laser calorie method in which a plurality of modified regions that are the starting points of cutting are formed in the thickness direction, and is modified with reference to the position of the first surface where the laser beam is incident on the workpiece. Of the modified regions, the step of forming the first modified region closest to the first surface in the quality region and the position of the second surface facing the first surface in the workpiece are defined. Forming a second modified region closest to the second surface.
[0007] このレーザ加工方法によれば、改質領域のうち第 1の面に最も近い第 1の改質領域 が第 1の面の位置を基準として形成され、改質領域のうち第 2の面に最も近い第 2の 改質領域が第 2の面の位置を基準として形成される。このように、第 1の面及び第 2の 面の双方の位置が基準とされるため、たとえ加工対象物の厚さが変化する場合であ つても、改質領域のうち第 1の面に最も近い第 1の改質領域の位置及び第 2の面に最 も近い第 2の改質領域の位置が加工対象物の厚さの変化に起因してずれるのを抑 制することができる。すなわち、切断予定ラインに沿って改質領域を加工対象物の厚 さ方向に複数列形成する場合において、第 1の面に最も近い第 1の改質領域、及び 第 2の面に最も近い第 2の改質領域を精度良く形成することが可能となる。その結果 、切断面の高い品質を保持することができる。なお、各改質領域は、加工対象物の内 部に集光点を合わせてレーザ光を照射することにより、加工対象物の内部にお 、て 多光子吸収その他の光吸収を生じさせることで形成される。  [0007] According to this laser processing method, the first modified region closest to the first surface in the modified region is formed with reference to the position of the first surface, and the second modified region in the modified region. A second modified region closest to the surface is formed with reference to the position of the second surface. As described above, since the positions of both the first surface and the second surface are used as a reference, even if the thickness of the workpiece is changed, the first surface of the modified region is changed to the first surface. The position of the first modified region closest to the second surface and the position of the second modified region closest to the second surface can be prevented from shifting due to a change in the thickness of the workpiece. That is, when forming a plurality of modified regions along the planned cutting line in the thickness direction of the workpiece, the first modified region closest to the first surface and the first closest to the second surface It becomes possible to accurately form the second modified region. As a result, the high quality of the cut surface can be maintained. In addition, each modified region causes multiphoton absorption and other light absorption inside the workpiece by irradiating the laser beam with the focusing point on the inside of the workpiece. It is formed.
[0008] ここで、第 1の改質領域を形成する工程においては、第 1の面で反射された反射光 を検出することにより第 1の面の位置に関する第 1の位置情報を取得し、当該第 1の 位置情報に基づいて、第 1の面力 所定の距離だけ内側に第 1の改質領域を形成し 、第 2の改質領域を形成する工程においては、第 2の面で反射された反射光を検出 することにより第 2の面の位置に関する第 2の位置情報を取得し、当該第 2の位置情 報に基づいて、第 2の面力も所定の距離だけ内側に第 2の改質領域を形成する場合 がある。 [0008] Here, in the step of forming the first modified region, the first position information related to the position of the first surface is obtained by detecting the reflected light reflected by the first surface, The first Based on the positional information, in the step of forming the first modified region inside the first surface force by a predetermined distance and forming the second modified region, the reflected light reflected by the second surface Second position information on the position of the second surface is acquired by detecting the second surface force, and based on the second position information, the second surface force is also moved inward by a predetermined distance from the second modified region. May form.
[0009] また、第 1の改質領域を形成する工程においては、第 1の面で反射された反射光を 検出することにより第 1の面の位置に関する第 1の位置情報を取得し、当該第 1の位 置情報に基づいて、第 1の面力 所定の距離だけ内側に第 1の改質領域を形成し、 第 2の改質領域を形成する工程においては、第 1の位置情報と加工対象物の厚さに 関する厚さ情報とに基づいて、第 2の面力 所定の距離だけ内側に第 2の改質領域 を形成する場合がある。  [0009] Further, in the step of forming the first modified region, the first position information related to the position of the first surface is acquired by detecting the reflected light reflected by the first surface, Based on the first position information, in the step of forming the first modified region inside the first surface force by a predetermined distance and forming the second modified region, the first position information and Based on the thickness information related to the thickness of the workpiece, the second modified region may be formed on the inner side by a predetermined distance of the second surface force.
[0010] また、第 2の改質領域を形成する工程においては、第 2の面で反射された反射光を 検出することにより第 2の面の位置に関する第 2の位置情報を取得し、当該第 2の位 置情報に基づいて、第 2の面力 所定の距離だけ内側に第 2の改質領域を形成し、 第 1の改質領域を形成する工程においては、第 2の位置情報と加工対象物の厚さ〖こ 関する厚さ情報とに基づいて、第 1の面力 所定の距離だけ内側に第 1の改質領域 を形成する場合がある。  [0010] Further, in the step of forming the second modified region, second position information relating to the position of the second surface is acquired by detecting reflected light reflected by the second surface, and Based on the second position information, the second surface area is formed in the second modified area inward by a predetermined distance, and in the step of forming the first modified area, the second position information and Based on the thickness information of the workpiece, the first modified region may be formed inside the first surface force by a predetermined distance.
[0011] また、加工対象物が半導体基板を備え、改質領域が溶融処理領域を含む場合が ある。  [0011] In some cases, the workpiece includes a semiconductor substrate, and the modified region includes a melt processing region.
[0012] また、改質領域を切断の起点として切断予定ラインに沿って加工対象物を切断す る工程を含むことが好ましい。これにより、加工対象物を切断予定ラインに沿って精 度良く切断することができる。  [0012] It is preferable that the method further includes a step of cutting the object to be processed along a planned cutting line using the modified region as a starting point of cutting. As a result, the workpiece can be accurately cut along the planned cutting line.
発明の効果  The invention's effect
[0013] 本発明によれば、切断予定ラインに沿って改質領域を加工対象物の厚さ方向に複 数列形成する場合において、第 1の面に最も近い第 1の改質領域、及び第 2の面に 最も近い第 2の改質領域を精度良く形成することができる。  [0013] According to the present invention, in the case where a plurality of modified regions are formed in the thickness direction of the workpiece along the planned cutting line, the first modified region closest to the first surface, and the first The second modified region closest to the surface of 2 can be accurately formed.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]本実施形態に係るレーザカ卩ェ装置によるレーザカ卩ェ中の加工対象物の平面図 である。 [0014] FIG. 1 is a plan view of an object to be processed in a laser cage by the laser carriage device according to the present embodiment. It is.
[図 2]図 1に示すカ卩ェ対象物の II— II線に沿った断面図である。  FIG. 2 is a cross-sectional view taken along line II-II of the cache object shown in FIG.
[図 3]本実施形態に係るレーザ加工装置によるレーザ加工後の加工対象物の平面図 である。  FIG. 3 is a plan view of an object to be processed after laser processing by the laser processing apparatus according to the present embodiment.
[図 4]図 3に示すカ卩ェ対象物の IV— IV線に沿った断面図である。  FIG. 4 is a cross-sectional view taken along line IV-IV of the cache object shown in FIG.
[図 5]図 3に示すカ卩ェ対象物の V—V線に沿った断面図である。  FIG. 5 is a cross-sectional view taken along line VV of the cache object shown in FIG.
[図 6]本実施形態に係るレーザ加工装置により切断された加工対象物の平面図であ る。  FIG. 6 is a plan view of a processing object cut by the laser processing apparatus according to the present embodiment.
[図 7]本実施形態に係るレーザ加工装置における電界強度とクラックスポットの大きさ との関係を示すグラフである。  FIG. 7 is a graph showing the relationship between electric field strength and crack spot size in the laser processing apparatus according to the present embodiment.
圆 8]本実施形態に係るレーザ加工装置の第 1工程における加工対象物の断面図で ある。 8] A sectional view of the object to be processed in the first step of the laser processing apparatus according to the present embodiment.
圆 9]本実施形態に係るレーザ加工装置の第 2工程における加工対象物の断面図で ある。 9] A sectional view of the object to be processed in the second step of the laser processing apparatus according to the present embodiment.
圆 10]本実施形態に係るレーザ加工装置の第 3工程における加工対象物の断面図 である。 [10] FIG. 10 is a cross-sectional view of the object to be processed in the third step of the laser processing apparatus according to the present embodiment.
圆 11]本実施形態に係るレーザ加工装置の第 4工程における加工対象物の断面図 である。 FIG. 11] A sectional view of the object to be processed in the fourth step of the laser processing apparatus according to the present embodiment.
[図 12]本実施形態に係るレーザカ卩ェ装置により切断されたシリコンウェハの一部にお ける断面の写真を表す図である。  FIG. 12 is a view showing a photograph of a cross section of a part of a silicon wafer cut by the laser carriage device according to the present embodiment.
[図 13]本実施形態に係るレーザ加工装置におけるレーザ光の波長とシリコン基板の 内部の透過率との関係を示すグラフである。  FIG. 13 is a graph showing the relationship between the wavelength of laser light and the transmittance inside the silicon substrate in the laser processing apparatus according to the present embodiment.
[図 14]本発明の第 1実施形態に係るレーザ加工方法の対象となる加工対象物を示 す正面図である。  FIG. 14 is a front view showing a workpiece to be processed by the laser processing method according to the first embodiment of the present invention.
[図 15]図 14中の XV— XV線に沿った部分断面図である。  FIG. 15 is a partial sectional view taken along line XV—XV in FIG.
圆 16]本発明の第 1実施形態に係るレーザ加工方法を示すフローチャートである。 圆 17]図 16に示すレーザ加工方法における裏面位置情報及び表面位置情報の算 出を説明するための図である。 [図 18]図 16に示すレーザカ卩ェ方法を説明するための図 14中の XVIII— XVIII線に沿 つた部分断面図である。 16] A flowchart showing the laser processing method according to the first embodiment of the present invention. [17] FIG. 17 is a diagram for explaining calculation of back surface position information and front surface position information in the laser processing method shown in FIG. FIG. 18 is a partial cross-sectional view taken along line XVIII-XVIII in FIG. 14 for illustrating the laser care method shown in FIG.
[図 19]本発明の第 2実施形態に係るレーザ加工方法における裏面位置情報及び表 面位置情報の算出を説明するための図である。  FIG. 19 is a diagram for explaining calculation of back surface position information and surface position information in the laser processing method according to the second embodiment of the present invention.
[図 20]従来のオートフォーカス機能によるレーザカ卩ェ方法での図 14中の XVIII— XVI II線に沿った部分断面図である。  FIG. 20 is a partial cross-sectional view taken along line XVIII-XVI II in FIG. 14 in the laser care method using the conventional autofocus function.
[図 21]本発明の一実施形態に係るレーザ加工装置を示す概略構成図である。  FIG. 21 is a schematic configuration diagram showing a laser processing apparatus according to an embodiment of the present invention.
符号の説明  Explanation of symbols
[0015] 31· ··加工対象物、 5…切断予定ライン、 11a…表面 (第 2の面)、 21· ··裏面 (第 1の 面)、 L…レーザ光、 LI, L3, L5…反射光 (第 1の面で反射された反射光)、 L2, L4 , L6…反射光(第 2の面で反射された反射光)、 Ml, M2, M3, M4, M5, Μ6· ··改 質領域、 P…集光点。  [0015] 31 ··· Work object, 5… Scheduled line, 11a… Front surface (second surface), 21 ··· Back surface (first surface), L… Laser light, LI, L3, L5… Reflected light (reflected light reflected on the first surface), L2, L4, L6 ... Reflected light (reflected light reflected on the second surface), Ml, M2, M3, M4, M5, Μ6 ··· Modified area, P ... Focusing point.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。本実 施形態のレーザ加工方法では、加工対象物の内部に改質領域を形成するために多 光子吸収という現象を利用する。そこで、最初に、改質領域を形成するためのレーザ 加工方法にっ 、て説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the laser processing method of this embodiment, a phenomenon called multiphoton absorption is used in order to form a modified region inside the workpiece. Therefore, first, a laser processing method for forming the modified region will be described.
[0017] 材料の吸収のバンドギャップ EGよりも光子のエネルギー h V力 S小さいと光学的に透 明となる。よって、材料に吸収が生じる条件は h v >EGである。しかし、光学的に透 明でも、レーザ光の強度を非常に大きくすると nh v >EGの条件 (n= 2, 3, 4, · · ·) で材料に吸収が生じる。この現象を多光子吸収という。パルス波の場合、レーザ光の 強度はレーザ光の集光点のピークパワー密度 (WZcm2)で決まり、例えばピークパ ヮー密度が 1 X 108 (W/cm2)以上の条件で多光子吸収が生じる。ピークパワー密 度は、(集光点におけるレーザ光の 1パルス当たりのエネルギー) ÷ (レーザ光のビー ムスポット断面積 Xパルス幅)により求められる。また、連続波の場合、レーザ光の強 度はレーザ光の集光点の電界強度 (WZcm2)で決まる。  [0017] Absorption band gap of material When photon energy h V force S is smaller than EG, it becomes optically transparent. Therefore, the condition for absorption in the material is h v> EG. However, even if it is optically transparent, if the intensity of the laser beam is made very large, the material will be absorbed under the condition of nh v> EG (n = 2, 3, 4,...). This phenomenon is called multiphoton absorption. In the case of a pulse wave, the intensity of the laser beam is determined by the peak power density (WZcm2) at the condensing point of the laser beam. For example, multiphoton absorption occurs when the peak power density is 1 X 108 (W / cm2) or more. The peak power density is calculated by (energy per pulse of laser beam at the focal point) ÷ (beam spot cross-sectional area of laser beam x pulse width). In the case of a continuous wave, the intensity of the laser beam is determined by the electric field strength (WZcm2) at the focal point of the laser beam.
[0018] このような多光子吸収を利用する本実施形態に係るレーザ加工方法の原理につい て、図 1〜図 6を参照して説明する。図 1に示すように、ウェハ状 (板状)の加工対象物 1の表面 3には、加工対象物 1を切断するための切断予定ライン 5がある。切断予定ラ イン 5は直線状に延びた仮想線である。本実施形態に係るレーザ加工方法では、図 2に示すように、多光子吸収が生じる条件で加工対象物 1の内部に集光点 Pを合わ せてレーザ光 Lを照射して改質領域 7を形成する。なお、集光点 Pとは、レーザ光しが 集光する箇所のことである。また、切断予定ライン 5は、直線状に限らず曲線状であつ てもよいし、仮想線に限らず加工対象物 1に実際に引かれた線であってもよい。 [0018] The principle of the laser processing method according to the present embodiment using such multiphoton absorption will be described with reference to FIGS. As shown in Figure 1, wafer-like (plate-like) workpiece On the surface 3 of 1, there is a planned cutting line 5 for cutting the workpiece 1. The planned cutting line 5 is a virtual line extending straight. In the laser processing method according to the present embodiment, as shown in FIG. 2, the modified region 7 is irradiated with the laser beam L with the focusing point P aligned inside the workpiece 1 under the condition that multiphoton absorption occurs. Form. The condensing point P is a part where the laser beam is condensed. Further, the planned cutting line 5 is not limited to a straight line, but may be a curved line, or may be a line actually drawn on the workpiece 1 without being limited to a virtual line.
[0019] そして、レーザ光 Lを切断予定ライン 5に沿って (すなわち、図 1の矢印 A方向に)相 対的に移動させることにより、集光点 Pを切断予定ライン 5に沿って移動させる。これ により、図 3〜図 5に示すように、改質領域 7が切断予定ライン 5に沿って加工対象物 1の内部に形成され、この改質領域 7が切断起点領域 8となる。ここで、切断起点領 域 8とは、加工対象物 1が切断される際に切断 (割れ)の起点となる領域を意味する。 この切断起点領域 8は、改質領域 7が連続的に形成されることで形成される場合もあ るし、改質領域 7が断続的に形成されることで形成される場合もある。  Then, the laser beam L is moved along the planned cutting line 5 (ie, in the direction of arrow A in FIG. 1) to move the condensing point P along the planned cutting line 5. . Thereby, as shown in FIGS. 3 to 5, the modified region 7 is formed inside the workpiece 1 along the planned cutting line 5, and the modified region 7 becomes the cutting start region 8. Here, the cutting starting point region 8 means a region that becomes a starting point of cutting (cracking) when the workpiece 1 is cut. This cutting starting point region 8 may be formed by continuously forming the modified region 7 or may be formed by intermittently forming the modified region 7.
[0020] 本実施形態に係るレーザカ卩ェ方法においては、加工対象物 1の表面 3ではレーザ 光 Lがほとんど吸収されないので、加工対象物 1の表面 3が溶融することはない。  [0020] In the laser caching method according to this embodiment, the surface 3 of the workpiece 1 is hardly absorbed by the surface 3 of the workpiece 1, so that the surface 3 of the workpiece 1 is not melted.
[0021] 加工対象物 1の内部に切断起点領域 8を形成すると、この切断起点領域 8を起点と して割れが発生し易くなるため、図 6に示すように、比較的小さな力で加工対象物 1を 切断することができる。よって、加工対象物 1の表面 3に不必要な割れを発生させるこ となぐ加工対象物 1を高精度に切断することが可能になる。  [0021] If the cutting start region 8 is formed inside the workpiece 1, cracks are likely to occur starting from the cutting start region 8, so that the processing target can be processed with a relatively small force as shown in FIG. Item 1 can be cut. Therefore, it is possible to cut the workpiece 1 that causes unnecessary cracks in the surface 3 of the workpiece 1 with high accuracy.
[0022] この切断起点領域 8を起点としたカ卩ェ対象物 1の切断には、次の 2通りが考えられ る。 1つは、切断起点領域 8形成後、加工対象物 1に人為的な力が印加されることに より、切断起点領域 8を起点として加工対象物 1が割れ、加工対象物 1が切断される 場合である。これは、例えば加工対象物 1の厚さが大きい場合の切断である。人為的 な力が印加されるとは、例えば、加工対象物 1の切断起点領域 8に沿ってカ卩ェ対象 物 1に曲げ応力やせん断応力を加えたり、加工対象物 1に温度差を与えることにより 熱応力を発生させたりすることである。他の 1つは、切断起点領域 8を形成することに より、切断起点領域 8を起点として加工対象物 1の断面方向(厚さ方向)に向力つて自 然に割れ、結果的に加工対象物 1が切断される場合である。これは、例えば加工対 象物 1の厚さが小さい場合には、 1列の改質領域 7により切断起点領域 8が形成され ることで可能となり、加工対象物 1の厚さが大きい場合には、厚さ方向に複数列形成 された改質領域 7により切断起点領域 8が形成されることで可能となる。なお、この自 然に割れる場合も、切断する箇所において、切断起点領域 8が形成されていない部 位に対応する部分の表面 3上にまで割れが先走ることがなぐ切断起点領域 8を形成 した部位に対応する部分のみを割断することができるので、割断を制御よくすること ができる。近年、シリコンウェハ等の加工対象物 1の厚さは薄くなる傾向にあるので、 このような制御性のよい割断方法は大変有効である。 [0022] The following two types of cutting of the cleaning object 1 starting from the cutting starting region 8 are conceivable. First, after the cutting start region 8 is formed, an artificial force is applied to the processing target 1, so that the processing target 1 is cracked and the processing target 1 is cut from the cutting start region 8. Is the case. This is, for example, cutting when the workpiece 1 is thick. The artificial force is applied, for example, by applying a bending stress or a shear stress to the workpiece 1 along the cutting start region 8 of the workpiece 1 or giving a temperature difference to the workpiece 1. To generate thermal stress. The other is that by forming the cutting start region 8, it naturally cracks in the cross-sectional direction (thickness direction) of the workpiece 1 starting from the cutting start region 8, resulting in the processing target This is the case where object 1 is cut. This is for example machining vs. When the thickness of the object 1 is small, this can be achieved by forming the cutting start region 8 by the modified region 7 in one row, and when the thickness of the workpiece 1 is large, the thickness direction is increased. This is made possible by forming the cutting start region 8 by the modified regions 7 formed in a plurality of rows. Even in the case of natural cracking, the part where the cutting start region 8 is formed so that the crack does not run on the surface 3 of the portion corresponding to the portion where the cutting start region 8 is not formed at the part to be cut. Since only the part corresponding to can be cleaved, the cleaving can be controlled well. In recent years, since the thickness of the workpiece 1 such as a silicon wafer tends to be thin, such a cleaving method with good controllability is very effective.
[0023] さて、本実施形態に係るレーザ加工方法において、改質領域としては、次の(1)〜 [0023] Now, in the laser processing method according to the present embodiment, the modified region includes the following (1) to (1) to
(3)の場合がある。  There is a case of (3).
[0024] (1)改質領域が 1つ又は複数のクラックを含むクラック領域の場合  [0024] (1) When the modified region is a crack region including one or more cracks
加工対象物(例えばガラスや LiTa03からなる圧電材料)の内部に集光点を合わせ て、集光点における電界強度が 1 X 108 (W/cm2)以上で且つパルス幅が 1 μ s以 下の条件でレーザ光を照射する。このパルス幅の大きさは、多光子吸収を生じさせ つつ加工対象物の表面に余計なダメージを与えずに、加工対象物の内部にのみク ラック領域を形成できる条件である。これにより、加工対象物の内部には多光子吸収 による光学的損傷という現象が発生する。この光学的損傷により加工対象物の内部 に熱ひずみが誘起され、これにより加工対象物の内部にクラック領域が形成される。 電界強度の上限値としては、例えば 1 X 1012 (WZcm2)である。パルス幅は例えば lns〜200nsが好まし  The focusing point is set inside the workpiece (for example, piezoelectric material made of glass or LiTa03), and the electric field strength at the focusing point is 1 X 108 (W / cm2) or more and the pulse width is 1 μs or less. Irradiate laser light under conditions. The magnitude of this pulse width is a condition under which a crack region can be formed only inside the workpiece without causing extra damage to the surface of the workpiece while causing multiphoton absorption. As a result, a phenomenon called optical damage due to multiphoton absorption occurs inside the workpiece. This optical damage induces thermal strain inside the workpiece, thereby forming a crack region inside the workpiece. The upper limit value of the electric field strength is, for example, 1 × 1012 (WZcm2). The pulse width is preferably lns to 200ns, for example.
い。なお、多光子吸収によるクラック領域の形成は、例えば、第 45回レーザ熱加工研 究会論文集(1998年. 12月)の第 23頁〜第 28頁の「固体レーザー高調波によるガ ラス基板の内部マーキング」に記載されている。  Yes. The formation of crack regions by multiphoton absorption is described in, for example, “Glass Substrates Using Solid-State Laser Harmonics” on pages 23-28 of the 45th Laser Thermal Processing Workshop Papers (December 1998). "Internal marking".
[0025] 本発明者は、電界強度とクラックの大きさとの関係を実験により求めた。実験条件は 次ぎの通りである。 The present inventor obtained the relationship between the electric field strength and the crack size by experiment. The experimental conditions are as follows.
(A)加工対象物:パイレックス (登録商標)ガラス (厚さ 700 μ m)  (A) Workpiece: Pyrex (registered trademark) glass (thickness 700 μm)
(B)レーザ  (B) Laser
光源:半導体レーザ励起 Nd: YAGレーザ 波長: 1064nm Light source: Semiconductor laser excitation Nd: YAG laser Wavelength: 1064nm
レーザ光スポット断面積: 3. 14 X 10-8cm2  Laser beam spot cross section: 3. 14 X 10-8cm2
発振形態: Qスィッチパルス  Oscillation form: Q switch pulse
繰り返し周波数: 100kHz  Repeat frequency: 100kHz
パルス幅:30ns  Pulse width: 30ns
出力:出力く lmjZパルス  Output: Output lmjZ pulse
レーザ光品質: TEM00  Laser light quality: TEM00
偏光特性:直線偏光  Polarization characteristics: Linear polarization
(C)集光用レンズ  (C) Condensing lens
レーザ光波長に対する透過率: 60パーセント  Transmittance for laser light wavelength: 60%
(D)加工対象物が載置される載置台の移動速度: lOOmmZ秒  (D) Moving speed of mounting table on which workpiece is mounted: lOOmmZ seconds
[0026] なお、レーザ光品質が TEMOOとは、集光性が高くレーザ光の波長程度まで集光 可能を意味する。  [0026] Note that the laser light quality TEMOO means that the light condensing property is high and the light can be condensed up to the wavelength of the laser light.
[0027] 図 7は上記実験の結果を示すグラフである。横軸はピークパワー密度であり、レー ザ光がパルスレーザ光なので電界強度はピークパワー密度で表される。縦軸は 1パ ルスのレーザ光により加工対象物の内部に形成されたクラック部分 (クラックスポット) の大きさを示している。クラックスポットが集まりクラック領域となる。クラックスポットの 大きさは、クラックスポットの形状のうち最大の長さとなる部分の大きさである。グラフ 中の黒丸で示すデータは集光用レンズ (C)の倍率が 100倍、開口数 (NA)が 0. 80 の場合である。一方、グラフ中の白丸で示すデータは集光用レンズ (C)の倍率が 50 倍、開口数 (NA)が 0. 55の場合である。ピークパワー密度が 1011 (WZcm2)程度 からカ卩ェ対象物の内部にクラックスポットが発生し、ピークパワー密度が大きくなるに 従  FIG. 7 is a graph showing the results of the experiment. The horizontal axis is the peak power density. Since the laser beam is a pulsed laser beam, the electric field strength is expressed by the peak power density. The vertical axis shows the size of the crack part (crack spot) formed inside the workpiece by 1 pulse of laser light. Crack spots gather to form a crack region. The size of the crack spot is the size of the maximum length of the crack spot shape. The data indicated by the black circles in the graph is when the condenser lens (C) has a magnification of 100 and the numerical aperture (NA) is 0.80. On the other hand, the data indicated by white circles in the graph is for the case where the magnification of the condenser lens (C) is 50 times and the numerical aperture (NA) is 0.55. As the peak power density increases from about 1011 (WZcm2), crack spots are generated inside the cache object and the peak power density increases.
V、クラックスポットも大きくなることが分かる。  It can be seen that V and crack spots also increase.
[0028] 次に、クラック領域形成による加工対象物の切断のメカニズムについて、図 8〜図 1 1を参照して説明する。図 8に示すように、多光子吸収が生じる条件で加工対象物 1 の内部に集光点 Pを合わせてレーザ光 Lを照射して切断予定ラインに沿って内部に クラック領域 9を形成する。クラック領域 9は 1つ又は複数のクラックを含む領域である 。このように形成されたクラック領域 9が切断起点領域となる。図 9に示すように、クラッ ク領域 9を起点として (すなわち、切断起点領域を起点として)クラックがさらに成長し 、図 10に示すように、クラックが加工対象物 1の表面 3と裏面 21とに到達し、図 11に 示すように、加工対象物 1が割れることにより加工対象物 1が切断される。加工対象物 1の表面 3と裏面 21とに到達するクラックは自然に成長する場合もあるし、加工対象 物 1に力が印 [0028] Next, a mechanism of cutting the workpiece by forming a crack region will be described with reference to FIGS. As shown in FIG. 8, under the condition that multiphoton absorption occurs, the condensing point P is aligned inside the workpiece 1 and the laser beam L is irradiated to form a crack region 9 along the planned cutting line. Crack region 9 is a region containing one or more cracks . The crack region 9 thus formed becomes a cutting start region. As shown in FIG. 9, the crack further grows starting from the crack region 9 (that is, starting from the cutting start region), and as shown in FIG. As shown in FIG. 11, when the workpiece 1 is cracked, the workpiece 1 is cut. Cracks that reach the front surface 3 and back surface 21 of the workpiece 1 may grow naturally, and the workpiece 1 is marked with force.
カロされることにより成長する場合もある。  Sometimes it grows by being carotened.
[0029] (2)改質領域が溶融処理領域の場合 [0029] (2) When the reforming region is a melt processing region
加工対象物(例えばシリコンのような半導体材料)の内部に集光点を合わせて、集 光点における電界強度が 1 X 108 (W/cm2)以上で且つパルス幅が 1 μ s以下の条 件でレーザ光を照射する。これにより加工対象物の内部は多光子吸収によって局所 的に加熱される。この加熱により加工対象物の内部に溶融処理領域が形成される。 溶融処理領域とは一旦溶融後再固化した領域や、まさに溶融状態の領域や、溶融 状態から再固化する状態の領域であり、相変化した領域や結晶構造が変化した領域 ということもできる。また、溶融処理領域とは単結晶構造、非晶質構造、多結晶構造 において、ある構造が別の構造に変化した領域ということもできる。つまり、例えば、 単結晶構造力 非晶質構造に変化した領域、単結晶構造から多結晶構造に変化し た領域、単結晶構造力 非晶質構造及び多結晶構造を含む構造に変化した領域を 意味する。加工対象物がシリコン単結晶構造の場合、溶融処理領域は例えば非晶 質シリコン構造である。電界強度の上限値としては、例えば 1 X 1012 (WZcm2)で ある。パルス幅は例えば lns〜200nsが好ましい。  Condition where the focusing point is set inside the object to be processed (for example, a semiconductor material such as silicon), and the electric field strength at the focusing point is 1 X 108 (W / cm2) or more and the pulse width is 1 μs or less. The laser beam is irradiated with. As a result, the inside of the workpiece is locally heated by multiphoton absorption. By this heating, a melt processing region is formed inside the workpiece. The melt treatment region is a region once solidified after melting, a region in a molten state, or a region re-solidified from a molten state, and can also be referred to as a phase-changed region or a region where the crystal structure has changed. The melt-processed region can also be referred to as a region in which one structure is changed to another in a single crystal structure, an amorphous structure, or a polycrystalline structure. In other words, for example, a region changed to a single crystal structural force amorphous structure, a region changed from a single crystal structure to a polycrystalline structure, a region changed to a structure including a single crystal structural force amorphous structure and a polycrystalline structure. means. When the object to be processed has a silicon single crystal structure, the melt processing region has, for example, an amorphous silicon structure. The upper limit value of the electric field strength is, for example, 1 × 1012 (WZcm2). For example, the pulse width is preferably lns to 200 ns.
[0030] 本発明者は、シリコンウェハ(半導体基板)の内部で溶融処理領域が形成されること を実験により確認した。実験条件は次の通りである。 [0030] The present inventor has confirmed through experiments that a melt-processed region is formed inside a silicon wafer (semiconductor substrate). The experimental conditions are as follows.
(A)加工対象物:シリコンウェハ(厚さ 350 μ m、外径 4インチ)  (A) Workpiece: Silicon wafer (thickness 350 μm, outer diameter 4 inches)
(B)レーザ  (B) Laser
光源:半導体レーザ励起 Nd: YAGレーザ  Light source: Semiconductor laser excitation Nd: YAG laser
波長: 1064nm  Wavelength: 1064nm
レーザ光スポット断面積: 3. 14 X 10-8cm2 発振形態: Qスィッチパルス Laser beam spot cross section: 3. 14 X 10-8cm2 Oscillation form: Q switch pulse
繰り返し周波数: 100kHz  Repeat frequency: 100kHz
パルス幅:30ns  Pulse width: 30ns
出力: 20 JZパルス  Output: 20 JZ pulse
レーザ光品質: TEM00  Laser light quality: TEM00
偏光特性:直線偏光  Polarization characteristics: Linear polarization
(C)集光用レンズ  (C) Condensing lens
倍率: 50倍  Magnification: 50x
N. A. : 0. 55  N. A .: 0.55
レーザ光波長に対する透過率: 60パーセント  Transmittance for laser light wavelength: 60%
(D)加工対象物が載置される載置台の移動速度: lOOmmZ秒  (D) Moving speed of mounting table on which workpiece is mounted: lOOmmZ seconds
[0031] 図 12は、上記条件でのレーザカ卩ェにより切断されたシリコンウェハの一部における 断面の写真を表した図である。シリコンウェハ 11の内部に溶融処理領域 13が形成さ れている。なお、上記条件により形成された溶融処理領域 13の厚さ方向の大きさは 1 00 μ m程度である。  FIG. 12 is a view showing a photograph of a cross section of a part of a silicon wafer cut by a laser cage under the above conditions. A melt processing region 13 is formed inside the silicon wafer 11. The size in the thickness direction of the melt processing region 13 formed under the above conditions is about 100 μm.
[0032] 溶融処理領域 13が多光子吸収により形成されたことを説明する。図 13は、レーザ 光の波長とシリコン基板の内部の透過率との関係を示すグラフである。ただし、シリコ ン基板の表面側と裏面側それぞれの反射成分を除去し、内部のみの透過率を示し ている。シリコン基板の厚さ tが 50 μ m、 100 μ m、 200 μ m、 500 μ m、 1000 μ mの 各々について上記関係を示した。  [0032] It will be described that the melt processing region 13 is formed by multiphoton absorption. FIG. 13 is a graph showing the relationship between the wavelength of the laser beam and the transmittance inside the silicon substrate. However, the reflection component on the front side and the back side of the silicon substrate is removed, and the transmittance only inside is shown. The above relationship was shown for each of the silicon substrate thicknesses t of 50 μm, 100 μm, 200 μm, 500 μm, and 1000 μm.
[0033] 例えば、 Nd:YAGレーザの波長である 1064nmにおいて、シリコン基板の厚さが 5 00 m以下の場合、シリコン基板の内部ではレーザ光が 80%以上透過することが分 力る。図 12に示すシリコンウェハ 11の厚さは 350 mであるので、多光子吸収による 溶融処理領域 13はシリコンウェハ 11の中心付近、つまり表面から 175 mの部分に 形成される。この場合の透過率は、厚さ 200 mのシリコンウェハを参考にすると、 90 %以上なので、レーザ光がシリコンウェハ 11の内部で吸収されるのは僅かであり、ほ とんどが透過する。このことは、シリコンウェハ 11の内部でレーザ光が吸収されて、溶 融処理領域 13がシリコンウェハ 11の内部に形成(つまりレーザ光による通常の加熱 で溶融処理領域が形成)されたものではなぐ溶融処理領域 13が多光子吸収により 形成されたことを意味する。多光子吸収による溶融処理領域の形成は、例えば、溶 接学会全国大会講演概要第 66集(2000年 4月)の第 72頁〜第 73頁の「ピコ秒パル スレーザによるシリコンの加工特性評価」に記載されている。 [0033] For example, when the thickness of the silicon substrate is 500 m or less at the wavelength of 1064 nm of the Nd: YAG laser, it can be understood that 80% or more of the laser light is transmitted inside the silicon substrate. Since the thickness of the silicon wafer 11 shown in FIG. 12 is 350 m, the melt processing region 13 by multiphoton absorption is formed near the center of the silicon wafer 11, that is, at a portion of 175 m from the surface. In this case, the transmittance is 90% or more with reference to a silicon wafer having a thickness of 200 m. Therefore, the laser beam is hardly absorbed inside the silicon wafer 11, and almost all is transmitted. This is because the laser beam is absorbed inside the silicon wafer 11 and the melt treatment region 13 is formed inside the silicon wafer 11 (that is, normal heating by the laser beam). This means that the melt-processed region 13 is formed by multiphoton absorption. The formation of the melt processing region by multiphoton absorption is, for example, “Evaluation of processing characteristics of silicon by picosecond pulse laser” on pages 72 to 73 of the 66th Annual Meeting Summary (April 2000). It is described in.
[0034] なお、シリコンウェハは、溶融処理領域によって形成される切断起点領域を起点と して断面方向に向力つて割れを発生させ、その割れがシリコンウェハの表面と裏面と に到達することにより、結果的に切断される。シリコンウェハの表面と裏面に到達する この割れは自然に成長する場合もあるし、シリコンウェハに力が印加されることにより 成長する場合もある。そして、切断起点領域力 シリコンウェハの表面と裏面とに割れ が自然に成長する場合には、切断起点領域を形成する溶融処理領域が溶融してい る状態から割れが成長する場合と、切断起点領域を形成する溶融処理領域が溶融 している状態から再固化する際に割れが成長する場合とのいずれもある。ただし、ど ちらの場合も溶融処理領域はシリコンウェハの内部のみに形成され、切断後の切断 面には、図 12のように内部にのみ溶融処理領域が形成されている。このように、加工 対象物の内部に溶融処理領域によって切断起点領域を形成すると、割断時、切断 起点領域ライン力も外れた不必要な割れが生じにく 、ので、割断制御が容易となる。 ちなみに、溶融処理領域の形成は多光子吸収が原因の場合のみでなぐ他の吸収 作用が原因の場合もある。  [0034] It should be noted that the silicon wafer generates a crack by applying a force in the cross-sectional direction starting from the cutting start region formed by the melt processing region, and the crack reaches the front and back surfaces of the silicon wafer. , Resulting in disconnection. The cracks that reach the front and back surfaces of the silicon wafer may grow spontaneously, or they may grow when force is applied to the silicon wafer. Then, if the crack grows naturally on the front and back surfaces of the silicon wafer, the crack grows from the state where the melt processing area forming the cutting origin area is melted, and the cutting origin area In some cases, cracks grow when the solidified region is melted from the molten state. However, in either case, the melt processing region is formed only inside the silicon wafer, and the melt processing region is formed only inside the cut surface after cutting as shown in FIG. As described above, when the cutting start region is formed in the workpiece by the melt processing region, unnecessary cracking in which the cutting starting region line force is also not easily generated at the time of cleaving, so that the cleaving control becomes easy. Incidentally, the formation of the melt-processed region may be caused not only by multiphoton absorption but also by other absorption effects.
[0035] (3)改質領域が屈折率変化領域の場合  [0035] (3) When the modified region is a refractive index changing region
加工対象物(例えばガラス)の内部に集光点を合わせて、集光点における電界強 度が 1 X 108 (W/cm2)以上で且つパルス幅が Ins以下の条件でレーザ光を照射 する。パルス幅を極めて短くして、多光子吸収をカ卩ェ対象物の内部に起こさせると、 多光子吸収によるエネルギーが熱エネルギーに転ィ匕せずに、加工対象物の内部に はイオン価数変化、結晶化又は分極配向等の永続的な構造変化が誘起されて屈折 率変化領域が形成される。電界強度の上限値としては、例えば 1 X 1012 (W/cm2 )である。ノ ルス幅は例えば Ins以下が好ましぐ lps以下がさらに好ましい。多光子 吸収による屈折率変化領域の形成は、例えば、第 42回レーザ熱加工研究会論文集 (1997年. 11月)の第 105頁〜第 111頁の「フェムト秒レーザー照射によるガラス内 部への光誘起構造形成」に記載されている。 A focusing point is set inside the object to be processed (eg, glass), and laser light is irradiated under the condition that the electric field strength at the focusing point is 1 X 108 (W / cm2) or more and the pulse width is Ins or less. If the pulse width is made extremely short and multiphoton absorption occurs inside the target object, the energy due to the multiphoton absorption will not be converted to thermal energy, and the ionic valence will be present inside the workpiece. Permanent structural changes such as change, crystallization or polarization orientation are induced to form a refractive index change region. The upper limit value of the electric field strength is, for example, 1 × 1012 (W / cm2). For example, the Norse width is preferably less than Ins, more preferably less than lps. The formation of the refractive index change region by multiphoton absorption is described in, for example, “Inside Glass by Femtosecond Laser Irradiation” on pages 105-111 of the 42nd Laser Thermal Processing Society Proceedings (November 1997). Described in “Formation of Photo-Induced Structure in Part”.
[0036] 以上、改質領域として(1)〜(3)の場合を説明したが、ウェハ状の加工対象物の結 晶構造やその劈開性などを考慮して切断起点領域を次のように形成すれば、その切 断起点領域を起点として、より一層小さな力で、しかも精度良く加工対象物を切断す ることが可能になる。  As described above, the cases of (1) to (3) have been described as the modified regions, but the cutting origin region is determined as follows in consideration of the crystal structure of the wafer-like workpiece and its cleavage property. Once formed, the workpiece can be cut with a smaller force and with higher accuracy, starting from the cutting start region.
[0037] すなわち、シリコンなどのダイヤモンド構造の単結晶半導体力 なる基板の場合は 、 ( 111)面 (第 1劈開面)や ( 110)面 (第 2劈開面)に沿った方向に切断起点領域を 形成するのが好ましい。また、 GaAsなどの閃亜鉛鉱型構造の III— V族化合物半導 体力 なる基板の場合は、(110)面に沿った方向に切断起点領域を形成するのが 好ましい。さらに、サファイア (A1203)などの六方晶系の結晶構造を有する基板の 場合は、(0001)面(C面)を主面として(1120)面 (八面)或!、は(1100)面(M面)に 沿った方向に切断起点領域を形成するのが好ま U、。  [0037] That is, in the case of a substrate having a single crystal semiconductor force of diamond structure such as silicon, the cutting origin region in the direction along the (111) plane (first cleavage plane) or the (110) plane (second cleavage plane) Is preferably formed. In addition, in the case of a substrate having a zinc-blende structure III-V compound semiconductor force such as GaAs, it is preferable to form the cutting start region in the direction along the (110) plane. Furthermore, in the case of a substrate having a hexagonal crystal structure such as sapphire (A1203), the (0001) plane (C plane) is the main plane and the (1120) plane (eight planes) or! (1100) plane ( It is preferable to form the cutting origin region in the direction along the (M-plane) U.
[0038] なお、上述した切断起点領域を形成すべき方向(例えば、単結晶シリコン基板にお ける(111)面に沿った方向)、或!、は切断起点領域を形成すべき方向に直交する方 向に沿って基板にオリエンテーションフラットを形成すれば、そのオリエンテーション フラットを基準とすることで、切断起点領域を形成すべき方向に沿った切断起点領域 を容易且つ正確に基板に形成することが可能になる。  [0038] It should be noted that the direction in which the above-described cutting start region is to be formed (for example, the direction along the (111) plane in the single crystal silicon substrate) or! Is orthogonal to the direction in which the cutting start region is to be formed. If an orientation flat is formed on the substrate along the direction, it is possible to easily and accurately form the cutting start area along the direction in which the cutting start area is to be formed on the basis of the orientation flat. become.
[0039] 次に、本発明の好適な実施形態について説明する。  [0039] Next, a preferred embodiment of the present invention will be described.
〔第 1実施形態〕  [First embodiment]
[0040] 図 14及び図 15に示すように、加工対象物 1は、シリコンウェハ 11と、複数の機能素 子 15を含んでシリコンウェハ 11の表面(以下、単に「表面」ともいう。) 11aに形成され た機能素子層 16とを備え、その厚さが約 300 mとなっている。機能素子 15は、例 えば、結晶成長により形成された半導体動作層、フォトダイオード等の受光素子、レ 一ザダイオード等の発光素子、又は回路として形成された回路素子等であり、シリコ ンウェハ 11のオリエンテーションフラット 6に平行な方向及び垂直な方向にマトリックス 状に多数形成されている。このような加工対象物 1は、隣り合う機能素子 15間を通る ように格子状に設定された切断予定ライン 5 (図 14の破線参照)に沿って切断され、 微小チップであるディスクリートデバイス等となるものである。 [0041] この加工対象物 1を切断する場合、まず、機能素子層 16の表面に保護テープを貼 り付け、保護テープにより機能素子層 16を保護した状態で、レーザ加工装置のステ ージに、加工対象物 1を保持した保護テープを固定する。続いて、加工対象物 1の裏 面(以下、単に「裏面」ともいう。) 21からシリコンウェハ 11の内部に集光点を合わせて 多光子吸収が生じる条件でレーザ光を照射し、各切断予定ライン 5に沿って、切断の 起点となる改質領域を形成する (裏面入射加工)。ここでは、各切断予定ライン 5に沿 つて加工対象物 1の厚さ方向に改質領域を 6列形成する。続いて、ステージに固定さ れた保護テープを加工対象物 1と共に離隔させる。そして、シリコンウェハ 11の裏面 2 1にエキスパンドテープを貼り付け、機能素子層 16の表面力も保護テープを剥がした 後、エキスパンドテープを拡張させる。これにより、改質領域を切断の起点として、加 ェ対象物 1が切断予定ライン 5に沿って機能素子 15毎に精度良く切断され、複数の 半導体チップが互いに離間することになる。なお、改質領域は、溶融処理領域の他 に、クラック領域等を含む場合がある。 As shown in FIGS. 14 and 15, the workpiece 1 includes a silicon wafer 11 and a plurality of functional elements 15, and the surface of the silicon wafer 11 (hereinafter, also simply referred to as “surface”) 11a. The functional element layer 16 is formed in the thickness of about 300 m. The functional element 15 is, for example, a semiconductor operating layer formed by crystal growth, a light receiving element such as a photodiode, a light emitting element such as a laser diode, or a circuit element formed as a circuit. Many are formed in a matrix in the direction parallel to the orientation flat 6 and in the direction perpendicular to it. Such a workpiece 1 is cut along a planned cutting line 5 (see the broken line in FIG. 14) set in a lattice shape so as to pass between the adjacent functional elements 15, and a discrete device or the like that is a microchip. It will be. [0041] When the workpiece 1 is cut, first, a protective tape is applied to the surface of the functional element layer 16, and the functional element layer 16 is protected by the protective tape. Secure the protective tape holding the workpiece 1. Subsequently, the back surface of the workpiece 1 (hereinafter, also simply referred to as “rear surface”) 21 is irradiated with laser light under conditions where multi-photon absorption occurs by aligning the focal point from the inside of the silicon wafer 11 and cutting each cut. A modified region that is the starting point of cutting is formed along the planned line 5 (back-side incident processing). Here, six rows of modified regions are formed in the thickness direction of the workpiece 1 along each planned cutting line 5. Subsequently, the protective tape fixed to the stage is separated with the workpiece 1. Then, an expand tape is applied to the back surface 21 of the silicon wafer 11, and after the protective tape is peeled off from the surface force of the functional element layer 16, the expand tape is expanded. As a result, the processing object 1 is accurately cut for each functional element 15 along the scheduled cutting line 5 using the modified region as a starting point of cutting, and a plurality of semiconductor chips are separated from each other. The modified region may include a crack region in addition to the melt processing region.
[0042] ところで、加工対象物 1は、その厚さが例えば研削ロットの違いにより複数の加工対 象物 1間でばらついたり、 1つの加工対象物 1において研削時のムラ等によりその一 部分が厚く若しくは薄くなつたりする場合 (加工対象物 1の厚さが変化する場合)があ る。具体的には、厚さ 300 mの加工対象物 1では、複数の加工対象物 1間で厚さが ± 10 m以上ばらつくことがあり、また、 1つの加工対象物 1中でその一部分の厚さ が ± 5 m以上ばらつくことがある。  [0042] By the way, the thickness of the workpiece 1 varies among a plurality of workpieces 1 due to differences in grinding lots, for example, or a portion of the workpiece 1 is uneven due to unevenness in grinding. It may be thicker or thinner (when the thickness of the workpiece 1 changes). Specifically, in the workpiece 1 with a thickness of 300 m, the thickness may vary by more than ± 10 m between the workpieces 1, and the thickness of a part of one workpiece 1 May vary by more than ± 5 m.
[0043] しかし、一般的なオートフォーカス機能では、加工対象物 1の厚さを一定とみなし、 レーザ光入射面である裏面 21の変位量のみを測定する事により、レーザ光の集光 点位置を裏面 21から所定の位置に制御する。そのため、従来、図 20に示すように、 形成された改質領域 Mのうち表面 1 laに最も近 ヽ改質領域は、加工対象物 1が厚!ヽ 部分では当該加工対象物 1から飛び出るように形成されたり、加工対象物 1が薄い部 分ではカ卩ェ対象物 1の深い位置まで届かずに裏面 21寄りに形成されたりしてしまうこ とがある。  [0043] However, with a general autofocus function, the thickness of the workpiece 1 is considered to be constant, and only the amount of displacement of the back surface 21 that is the laser light incident surface is measured, so that the focal point position of the laser light is measured. Is controlled from the rear surface 21 to a predetermined position. Therefore, conventionally, as shown in FIG. 20, in the modified region M formed, the modified region closest to the surface 1 la is such that the workpiece 1 is thick! May be formed near the back surface 21 without reaching the deep position of the cache object 1 when the object 1 is thin.
[0044] そこで、本実施形態のレーザ加工方法では、加工対象物 1の切断予定ライン 5に沿 つて、厚さ方向に複数列形成された改質領域のうち、裏面 (第 1の面) 21に最も近い 第 1の改質領域が裏面 21の位置を基準として形成され、表面 (第 2の面) 11aに最も 近い第 2の改質領域が表面 11aの位置を基準として形成される。以下、この改質領 域の形成についてより詳細に説明する。 Therefore, in the laser processing method of the present embodiment, the back surface (first surface) 21 of the modified regions formed in a plurality of rows in the thickness direction along the line 5 to be cut of the workpiece 1. Closest to The first modified region is formed with reference to the position of the back surface 21, and the second modified region closest to the front surface (second surface) 11a is formed with reference to the position of the front surface 11a. Hereinafter, the formation of the reforming region will be described in more detail.
[0045] [ノ、イトセット]  [0045] [No, Ito Set]
まず、加工対象物 1の裏面 21に投影した例えばレクチル画像のピントを合わせた 状態で、測距用レーザ光を照射し、裏面 21で反射した測距用レーザ光の反射光を 電圧値として検出し、検出された電圧値をメモリーする(図 16中の Sl)。  First, with the focus of the reticle image projected on the back surface 21 of the workpiece 1 being focused, for example, the distance measuring laser beam is irradiated and the reflected light of the distance measuring laser beam reflected on the back surface 21 is detected as a voltage value. And memorize the detected voltage value (Sl in Fig. 16).
[0046] [トレース]  [0046] [Trace]
続いて、測距用レーザ光を照射し裏面 21で反射する測距用レーザ光の反射光を 電圧値として検出しつつ、この電圧値がハイトセットによる電圧値を維持するように切 断予定ライン 5に沿ってスキャンして、切断予定ライン 5に沿う裏面 21の変位を取得し 、当該裏面 21の変位を裏面位置情報 (第 1の位置情報)としてメモリーする。すなわ ち、裏面位置情報力 裏面 21からハイトセットした裏面 21位置までの厚さ方向の相 対距離として求められる。  Next, the line scheduled to be cut so that the reflected light of the distance measuring laser light irradiated with the distance measuring laser light and reflected by the back surface 21 is detected as a voltage value, and this voltage value maintains the voltage value by the height set. 5 is scanned to obtain the displacement of the back surface 21 along the planned cutting line 5, and the displacement of the back surface 21 is stored as back surface position information (first position information). In other words, it is obtained as the relative distance in the thickness direction from the rear surface 21 to the height 21 back surface position.
[0047] 裏面位置情報 =裏面 21の変位  [0047] Back surface position information = displacement of back surface 21
=裏面 21からハイトセットした裏面 21位置までの厚さ方向の相対距離 = Relative distance in the thickness direction from back 21 to height 21
[0048] このとき、測距用レーザ光をスキャンすると同時に、切断予定ライン 5に沿って、厚さ 測定器により光学的に加工対象物 1の厚さ (厚さ情報)を測定し演算する。具体的に は、図 17 (a)に示すように、切断予定ライン 5に沿って、裏面 21からの反射光 L1及 び加工対象物 1の内部に透過して表面 11aで反射する反射光 L2をラインセンサ 50 で受光する。そして、ラインセンサ 50におけるこれらの反射光 LI, L2の受光位置と 予め求められた加工対象物 1の屈折率とにより、表面 11aから裏面 21までの距離、 すなわち加工対象物 1の厚さを演算する。 At this time, at the same time as scanning the distance measuring laser beam, the thickness (thickness information) of the workpiece 1 is optically measured and calculated along the planned cutting line 5 by the thickness measuring device. Specifically, as shown in FIG. 17 (a), along the planned cutting line 5, the reflected light L1 from the back surface 21 and the reflected light L2 that passes through the inside of the workpiece 1 and is reflected by the front surface 11a. Is received by the line sensor 50. Then, the distance from the front surface 11a to the back surface 21, that is, the thickness of the workpiece 1 is calculated based on the light receiving positions of the reflected lights LI and L2 in the line sensor 50 and the refractive index of the workpiece 1 obtained in advance. To do.
[0049] そして、この演算された加工対象物 1の厚さに上述の裏面位置情報を加算し、切断 予定ライン 5に沿う表面位置情報 (第 2の位置情報)としてメモリーする。すなわち、表 面位置情報力 表面 1 laからハイトセットした裏面 21位置までの厚さ方向の相対距 離として求められる(図 16中の S2)。  [0049] Then, the above-described back surface position information is added to the calculated thickness of the workpiece 1 and stored as surface position information (second position information) along the planned cutting line 5. That is, the surface position information force is obtained as the relative distance in the thickness direction from the front surface 1 la to the height-set 21 back surface position (S2 in FIG. 16).
[0050] 表面位置情報 =裏面位置情報 +加ェ対象物 1の厚さ =表面 11aからハイトセットした裏面 21位置までの厚さ方向の相対距離 [0051] なお、ここでは、裏面 21の測定系とカ卩ェ対象物 1の厚さの測定系とが 2軸で構成さ れている。また、裏面 21の変位及びカ卩ェ対象物 1の厚さ力 切断予定ライン 5に沿つ た方向の座標と関連付けされて取得されている。従って、裏面 21の測定系と加工対 象物 1の厚さ測定系とを 2軸で構成され、各測定系の間の距離 D1から裏面位置情報 及び表面位置情報を座標上で合成され、裏面位置情報及び表面位置情報が精度 良く求められている。 [0050] Front surface position information = Back surface position information + thickness of workpiece 1 = Relative distance in the thickness direction from the front surface 11a to the height 21 back surface position [0051] Here, the measurement system of the back surface 21 and the measurement system of the thickness of the cache object 1 are composed of two axes. It has been. Further, the displacement of the back surface 21 and the thickness force of the cover object 1 are acquired in association with the coordinates in the direction along the cutting line 5. Therefore, the measurement system for the back surface 21 and the thickness measurement system for the workpiece 1 are composed of two axes, and the back surface position information and the surface position information are synthesized on the coordinates from the distance D1 between each measurement system. Position information and surface position information are required with high accuracy.
[0052] 或いは、図 17 (b)に示すように、裏面 21からの反射光 L3と表面 11aからの反射光 L4とを干渉させること〖こより、加工対象物 1の厚さを測定することもある。この場合でも 、裏面 21の測定系と加工対象物 1の厚さ測定系とが 2軸で構成されており、また、裏 面 21の変位及び加工対象物 1の厚さ力 切断予定ライン 5に沿った方向の座標と関 連付けされて取得されている。よって、各測定系の間の距離 D2から裏面位置情報及 び表面位置情報が座標上で合成され、裏面位置情報及び表面位置情報が精度良く 求められている。  [0052] Alternatively, as shown in FIG. 17 (b), the thickness of the workpiece 1 may be measured by causing the reflected light L3 from the back surface 21 and the reflected light L4 from the front surface 11a to interfere with each other. is there. Even in this case, the measurement system of the back surface 21 and the thickness measurement system of the workpiece 1 are configured with two axes, and the displacement of the back surface 21 and the thickness force of the workpiece 1 are set in the line 5 to be cut. Acquired in association with the coordinates of the direction along. Therefore, the back surface position information and the front surface position information are synthesized on the coordinates from the distance D2 between the respective measurement systems, and the back surface position information and the front surface position information are accurately obtained.
[0053] [改質領域の形成]  [0053] [Formation of modified region]
続いて、図 18 (a)に示すように、加工対象物 1の内部において、表面 11aから mだけ内側(図示上側)に集光点を合わせてレーザ光を照射し、切断予定ライン 5に 沿ってスキャンする。具体的には、加工対象物 1の内部において、表面位置情報から 10 mだけ裏面 21側の位置に集光点を移動させてレーザ光を出力 0. 72Wで照射 し、メモリーされた表面位置情報を位置調整素子 (本実施形態ではピエゾ素子を用 いたァクチユエ一ター)により再生して集光点位置を制御しつつ切断予定ライン 5に 沿ってスキャンする。これにより、これにより、表面 11aを基準にして当該表面 11aから 10 mだけ内側に改質領域 (第 2の改質層) Mlが切断予定ライン 5に沿って形成さ れる(図 16中の S3)。具体的には、表面位置情報から 10 mだけ裏面 21側の位置 に、切断予定ライン 5に沿った改質領域 Mlが形成される。  Subsequently, as shown in FIG. 18 (a), within the object 1 to be processed, a laser beam is irradiated with the focusing point on the inner side (upper side in the figure) of the surface 11a by m, and along the planned cutting line 5 Scan. Specifically, inside the workpiece 1, the focal point is moved to the position on the rear surface 21 side by 10 m from the surface position information, and laser light is emitted at 0.72 W, and the stored surface position information Is scanned by a position adjusting element (actuator using a piezo element in this embodiment) to scan along the planned cutting line 5 while controlling the focal point position. Thus, a modified region (second modified layer) Ml is formed along the planned cutting line 5 by 10 m from the surface 11a with reference to the surface 11a (S3 in FIG. 16). ). Specifically, a modified region Ml along the planned cutting line 5 is formed at a position on the back surface 21 side by 10 m from the surface position information.
[0054] 続いて、図 18 (b)に示すように、加工対象物 1の内部において、表面 11aから 25 mだけ内側(図示上側)に集光点を合わせてレーザ光を照射し、切断予定ライン 5に 沿ってスキャンする。具体的には、加工対象物 1の内部において、表面位置情報から 25 μ mだけ裏面 21側の位置に集光点を移動させてレーザ光を出力 1. 20Wで照射 し、メモリーされた表面位置情報をピエゾ素子により再生して集光点位置を制御しつ つ切断予定ライン 5に沿ってスキャンする。これにより、表面 11aを基準にして当該表 面 11aから 25 mだけ内側に、改質領域 M2が切断予定ライン 5に沿って形成される (図 16中の S4)。具体的には、表面位置情報から 25 mだけ裏面 21側の位置に、 切断予定ライン 5に沿った改質領域 M2が形成される。 [0054] Subsequently, as shown in FIG. 18 (b), within the object 1 to be processed, a laser beam is irradiated with a focusing point on the inner side (upper side in the drawing) of 25 m from the surface 11a and to be cut. Scan along line 5. Specifically, from the surface position information inside the workpiece 1 Move the condensing point to the position on the back 21 side by 25 μm and output laser light 1. Control the condensing point position by irradiating with 20 W and reproducing the memorized surface position information with the piezo element. Scan along planned cutting line 5. As a result, the modified region M2 is formed along the planned cutting line 5 inward by 25 m from the surface 11a with respect to the surface 11a (S4 in FIG. 16). Specifically, a modified region M2 along the planned cutting line 5 is formed at a position on the back surface 21 side by 25 m from the surface position information.
[0055] 続いて、加工対象物 1の内部において、表面 11aから 35 mだけ内側(図示上側) に集光点を合わせてレーザ光を照射し、切断予定ライン 5に沿ってスキャンする。具 体的には、加工対象物 1の内部において、表面位置情報から 35 mだけ裏面 21側 の位置に集光点を移動させてレーザ光を出力 1. 20Wで照射し、メモリーされた表面 位置情報をピエゾ素子により再生して集光点位置を制御しつつ切断予定ライン 5に 沿ってスキャンする。これにより、表面 11aを基準にして当該表面 11aから 35 mだ け内側に、改質領域 M3が切断予定ライン 5に沿って形成される(図 16中の S5)。具 体的には、表面位置情報から 35 mだけ裏面 21側の位置に、切断予定ライン 5に 沿った改質領域 M3が形成される。  Subsequently, inside the workpiece 1, the laser beam is irradiated with the focusing point on the inner side (upper side in the drawing) of 35 m from the surface 11 a and scanned along the planned cutting line 5. Specifically, inside the workpiece 1, the focal point is moved to the position on the back 21 side by 35 m from the surface position information, and the laser beam is output. The information is reproduced by the piezo element and scanned along the planned cutting line 5 while controlling the focal point position. Thus, the modified region M3 is formed along the planned cutting line 5 only 35 m from the surface 11a with respect to the surface 11a (S5 in FIG. 16). Specifically, a modified region M3 along the planned cutting line 5 is formed at a position on the back surface 21 side by 35 m from the surface position information.
[0056] 続いて、加工対象物 1の内部において、表面 11aから 45 mだけ内側(図示上側) に集光点を合わせてレーザ光を照射し、切断予定ライン 5に沿ってスキャンする。具 体的には、加工対象物 1の内部において、表面位置情報から 45 mだけ裏面 21側 の位置に集光点を移動させてレーザ光を出力 1. 20Wで照射し、メモリーされた表面 位置情報をピエゾ素子により再生して集光点位置を制御しつつ切断予定ライン 5に 沿ってスキャンする。これにより、表面 11aを基準にして当該表面 11aから 45 mだ け内側に、改質領域 M4が切断予定ライン 5に沿って形成される(図 16中の S6)。具 体的には、表面位置情報から 45 mだけ裏面 21側の位置に、切断予定ライン 5に 沿った改質領域 M4が形成される。  Subsequently, inside the workpiece 1, the laser beam is irradiated with the focusing point on the inner side (upper side in the drawing) of 45 m from the surface 11 a and scanned along the planned cutting line 5. Specifically, inside the workpiece 1, the focal point is moved to the position on the back 21 side by 45 m from the surface position information, and laser light is output. The information is reproduced by the piezo element and scanned along the planned cutting line 5 while controlling the focal point position. As a result, the modified region M4 is formed along the planned cutting line 5 within 45 m from the surface 11a with respect to the surface 11a (S6 in FIG. 16). Specifically, a modified region M4 along the planned cutting line 5 is formed at a position on the back surface 21 side by 45 m from the surface position information.
[0057] 続いて、図 18 (c)に示すように、加工対象物 1の内部において、裏面 21から 25 mだけ内側(図示下側)に集光点を合わせてレーザ光を照射し、切断予定ライン 5に 沿ってスキャンする。具体的には、加工対象物 1の内部において、裏面位置情報から 25 μ mだけ表面 11a側の位置に集光点を移動させてレーザ光を出力 1. 20Wで照 射し、メモリーされた裏面位置情報をピエゾ素子により再生して集光点位置を制御し つつ切断予定ライン 5に沿ってスキャンする。これにより、裏面 21を基準として当該裏 面 21から 25 μ mだけ内側に、改質領域 M5が切断予定ライン 5に沿って形成される ( 図 16中の S7)。具体的には、裏面位置情報から 25 mだけ表面 11a側の位置に、 切断予定ライン 5に沿った改質領域 M5が形成される。 [0057] Subsequently, as shown in FIG. 18 (c), inside the object 1 to be processed, a laser beam is irradiated with a focusing point on the inner side (lower side in the drawing) by 25 m from the rear surface 21 and cut. Scan along planned line 5. Specifically, inside the workpiece 1, the laser beam is output by moving the condensing point to the position on the front surface 11a side by 25 μm from the back surface position information. The back side position information stored in memory is reproduced by a piezo element and scanned along the planned cutting line 5 while controlling the focal point position. As a result, the modified region M5 is formed along the planned cutting line 5 within 25 μm from the back surface 21 with respect to the back surface 21 (S7 in FIG. 16). Specifically, a modified region M5 along the planned cutting line 5 is formed at a position on the front surface 11a side by 25 m from the back surface position information.
[0058] 最後に、加工対象物 1の内部において、裏面 21から 15 mだけ内側(図示下側) に集光点を合わせてレーザ光を照射し、切断予定ライン 5に沿ってスキャンする。具 体的には、加工対象物 1の内部において、裏面位置情報から 10 mだけ表面 11a 側の位置に集光点を移動させてレーザ光を出力 0. 68Wで照射し、メモリーされた裏 面位置情報をピエゾ素子により再生して集光点位置を制御しつつ切断予定ライン 5 に沿ってスキャンする。これにより、裏面 21を基準として当該裏面 21から 15 /z mだけ 内側に、改質領域 (第 2の改質層) M6が切断予定ライン 5に沿って形成される(図 16 中の S8)。具体的には、裏面位置情報から 15 /z mだけ表面 11a側の位置に、切断 予定ライン 5に沿った改質領域 M6が形成される。  Finally, inside the workpiece 1, the laser beam is irradiated with the focusing point on the inner side (lower side in the figure) of 15 m from the back surface 21, and scanning is performed along the planned cutting line 5. Specifically, inside the workpiece 1, the focal point is moved to the position on the front surface 11a side by 10 m from the back surface position information, and the laser beam is emitted at 0.68 W, and the back surface stored in memory. The position information is reproduced by the piezo element, and scanning is performed along the planned cutting line 5 while controlling the focal point position. As a result, a modified region (second modified layer) M6 is formed along the planned cutting line 5 on the inner side by 15 / z m from the rear surface 21 with respect to the rear surface 21 (S8 in FIG. 16). Specifically, a modified region M6 along the planned cutting line 5 is formed at a position on the front surface 11a side by 15 / zm from the back surface position information.
[0059] ここで、加工対象物 1の内部において厚さ方向に複数列形成された改質領域 Ml 〜M6のうち、改質領域 M5, M6は、上面にハーフカットを形成するための改質領域 であり、いわゆるハーフカット SDと称される。このハーフカットは、エキスパンドテープ を拡張させることによる分離を確実にするものであり、よって、ハーフカット SDは、大 変重要な要素である。また、複数列形成された改質領域 M1〜M6のうち、表面 11a に最も近 ヽ改質領域 Mlは、切断後の切断面の品質に特に影響する改質領域であ り、いわゆる品質 SDと称される。品質 SDは、機能素子層 16を精度良く切断するため のものであり、加工対象物 1を切断する際の品質を維持させるため、大変重要な要素 である。  Here, among the modified regions Ml to M6 formed in a plurality of rows in the thickness direction inside the workpiece 1, the modified regions M5 and M6 are modified to form a half cut on the upper surface. This area is called the so-called half-cut SD. This half-cut ensures separation by expanding the expanded tape, so half-cut SD is a very important factor. Of the modified regions M1 to M6 formed in a plurality of rows, the modified region Ml closest to the surface 11a is a modified region that particularly affects the quality of the cut surface after cutting. Called. Quality SD is for cutting the functional element layer 16 with high accuracy, and is a very important factor for maintaining the quality when the workpiece 1 is cut.
[0060] そこで、本実施形態では、上述のように、加工対象物 1の内部において、裏面 21を 基準として当該裏面 21から所定の距離だけ内側に、改質領域 M5, M6を切断予定 ライン 5に沿って形成すると共に、表面 11aを基準として当該表面 11aから所定の距 離だけ内側に、改質領域 Mlを切断予定ライン 5に沿って形成する。このように、裏面 21及び表面 11aの双方の位置が基準とされるため、たとえカ卩ェ対象物 1の厚さがば らついて変化しても、改質領域 M5, M6の位置及び改質領域 M6の位置が加工対 象物 1の厚さの変化に起因してずれてしまうのを抑制することができる。従って、本実 施形態によれば、切断予定ライン 5に沿って改質領域を加工対象物 1の厚さ方向に 複数列形成する場合において、裏面 21に最も近い改質領域 M6、改質領域 M6〖こ 隣接する改質領域 M5、及び表面 11aに最も近い改質領域 Mlを精度良く形成する ことができる。 Therefore, in the present embodiment, as described above, the modified regions M5 and M6 are scheduled to be cut inside the workpiece 1 by a predetermined distance from the back surface 21 with respect to the back surface 21 as a reference. And the modified region Ml is formed along the planned cutting line 5 inwardly from the surface 11a by a predetermined distance with respect to the surface 11a. Thus, since the positions of both the back surface 21 and the front surface 11a are used as a reference, even if the thickness of the cache object 1 is reduced. Even if it changes, the position of the modified regions M5 and M6 and the position of the modified region M6 can be prevented from shifting due to the change in the thickness of the workpiece 1. Therefore, according to the present embodiment, when multiple modified regions are formed in the thickness direction of the workpiece 1 along the planned cutting line 5, the modified regions M6 and modified regions closest to the back surface 21 are formed. It is possible to accurately form the adjacent modified region M5 and the modified region Ml closest to the surface 11a.
[0061] さらに、このように本実施形態では、改質領域 M5, M6が精度良く形成されるため 、以下の効果を奏する。すなわち、改質領域 M5, M6が裏面 21に近すぎることから ハーフカットが蛇行し品質が劣化することを抑制する。さらに、改質領域 M5, M6が 裏面 21から離れすぎることから当該改質領域 M5, M6から発生する亀裂の伸びが 不十分になり、ハーフカットがうまく形成されないことも防止する。  Furthermore, in this embodiment, since the modified regions M5 and M6 are formed with high accuracy, the following effects are obtained. That is, since the modified regions M5 and M6 are too close to the back surface 21, the half-cut meandering and quality deterioration are suppressed. Furthermore, since the modified regions M5 and M6 are too far from the back surface 21, the elongation of cracks generated from the modified regions M5 and M6 becomes insufficient, and it is possible to prevent the half cut from being formed well.
[0062] また、上述のように、改質領域 Mlが精度良く形成されるため、以下の効果を奏する 。すなわち、改質領域 Mlが表面 11aに近すぎることから照射されるレーザ光が加工 対象物 1から突出してしまい表面 11aに孔が穿かれ、加工対象物 1の抗折強度が弱 まってしまうことを抑制する。さらに、改質領域 Mlが表面 11aから離れすぎることから 切断面にお 、て表面 1 la側の端部が切断予定ライン 5から大きく外れる 、わゆるスカ ート現象が発生することを防止する。なお、本実施形態では、裏面入射加工のため にレーザ光が入射する面と反対側の面である表面 11aに機能素子 15が形成されて おり、よって、スカート現象の発生を防止するという上記効果は特に顕著である。  [0062] Further, as described above, the modified region Ml is formed with high accuracy, and therefore the following effects are obtained. That is, since the modified region Ml is too close to the surface 11a, the irradiated laser beam protrudes from the workpiece 1 and a hole is made in the surface 11a, so that the bending strength of the workpiece 1 is weakened. Suppress. Furthermore, since the modified region Ml is too far away from the surface 11a, the end of the surface 1 la side is greatly disengaged from the planned cutting line 5 at the cut surface, thereby preventing the occurrence of a scouring phenomenon. In the present embodiment, the functional element 15 is formed on the surface 11a, which is the surface opposite to the surface on which laser light is incident, for back-side incident processing, and thus the above effect of preventing the occurrence of the skirt phenomenon. Is particularly prominent.
[0063] また、本実施形態によれば、加工対象物 1に厚さのばらつきやムラが存在すること による改質領域の位置のずれを補正でき、また、表面 11aとの距離及び裏面 21との 距離に依存する改質領域の品質を最良にして、切断後の切断面品質を最良とする 多段加工を行うことが可能となる。  [0063] Further, according to the present embodiment, it is possible to correct the shift of the position of the modified region due to the thickness variation or unevenness of the workpiece 1, and the distance from the front surface 11a and the back surface 21 can be corrected. It is possible to perform multi-stage processing that optimizes the quality of the modified region that depends on the distance of the material, and optimizes the quality of the cut surface after cutting.
[0064] なお、加工対象物 1の厚さは、接触型の厚さ測定器で測定することも考えられるが、 この場合には、加工対象物 1とステージとの間に異物があったり、エキスパンドテープ に貼り付けた際にエキスパンドテープと加工対象物 1との間に空気が混入したりする ことがあり、接触した加工対象物 1の位置が必ずしも加工対象物 1の厚さを示す位置 とはならない。そこで、本実施形態では、透過型のレーザを使用する測定器を用いて おり、加工対象物 1の厚さが精度良く測定されている。 [0064] Although the thickness of the workpiece 1 may be measured with a contact-type thickness measuring instrument, in this case, there is a foreign object between the workpiece 1 and the stage, When affixed to the expanded tape, air may be mixed between the expanded tape and the workpiece 1, and the position of the workpiece 1 that is in contact with the expanded tape does not necessarily indicate the thickness of the workpiece 1. Must not. Therefore, in this embodiment, a measuring instrument using a transmission type laser is used. Therefore, the thickness of the workpiece 1 is accurately measured.
[0065] ちなみに、本実施形態では、上述のように、改質領域 M2, M3, M4は、表面 11a を基準として形成されているが、本実施形態に限定されるものではなぐ改質領域 M 2, M3, M4は、裏面 21を基準として形成されていてもよい。 Incidentally, in the present embodiment, as described above, the modified regions M2, M3, and M4 are formed based on the surface 11a, but the modified region M is not limited to the present embodiment. 2, M3 and M4 may be formed with reference to the back surface 21.
〔第 2実施形態〕  [Second Embodiment]
[0066] 次に、本発明の第 2実施形態に係るレーザ加工方法について説明する。この第 2 実施形態に係るレーザ加工方法が、第 1実施形態に係るレーザ加工方法と違う点は 、加工対象物 1の厚さを測定せずに、図 19に示すように、オートフォーカス機能にお ける光学系を利用して裏面 21での反射光 L5及び表面 11aでの反射光 L6をそれぞ れ検出した点である。  Next, a laser processing method according to the second embodiment of the present invention will be described. The laser processing method according to the second embodiment is different from the laser processing method according to the first embodiment in that an autofocus function is used as shown in FIG. 19 without measuring the thickness of the workpiece 1. This is the point at which the reflected light L5 on the back surface 21 and the reflected light L6 on the front surface 11a were detected using the optical system in this case.
[0067] 具体的には、本実施形態に係るレーザ加工方法では、裏面 21で反射した反射光 L 5及び加工対象物 1を透過し表面 11aで反射した反射光 L6をそれぞれ検出し、表面 11aの変位と裏面 21の変位とをそれぞれ直接に取得することで、裏面位置情報及び 表面位置情報が直接に求められる。  [0067] Specifically, in the laser processing method according to the present embodiment, the reflected light L5 reflected by the back surface 21 and the reflected light L6 transmitted through the workpiece 1 and reflected by the surface 11a are detected, respectively, and the surface 11a By directly acquiring the displacement of the back surface and the displacement of the back surface 21, the back surface position information and the front surface position information can be obtained directly.
[0068] 裏面位置情報 =裏面 21の変位  [0068] Back side position information = displacement of back side 21
=裏面 21からハイトセットした裏面 21位置までの厚さ方向の相対距離 = Relative distance in the thickness direction from back 21 to height 21
[0069] 表面位置情報 =表面 11aの変位 [0069] Surface position information = displacement of surface 11a
=表面 11aからハイトセットした裏面 21位置までの厚さ方向の相対距離 = Relative distance in the thickness direction from the front surface 11a to the height 21 back surface position
[0070] このように、本実施形態のレーザ加工方法であっても、上記実施形態と同様な効果 、すなわち、たとえカ卩ェ対象物 1の厚さがばらついて変化しても、改質領域 M5, M6 の位置及び改質領域 M6の位置が加工対象物 1の厚さの変化に起因してずれてしま うのを抑制するという効果を奏する。これにより、切断予定ライン 5に沿って改質領域 を加工対象物 1の厚さ方向に複数列形成する場合にお!、て、裏面 21に最も近 ヽ改 質領域 M6、改質領域 M6に隣接する改質領域 M5、及び表面 11aに最も近い改質 領域 Mlを精度良く形成することができる。 [0070] Thus, even in the laser processing method of the present embodiment, the same effect as the above embodiment, that is, even if the thickness of the cache object 1 varies and changes, the modified region This has the effect of suppressing the displacement of the positions of M5 and M6 and the position of the modified region M6 due to the change in the thickness of the workpiece 1. As a result, when multiple modified regions are formed in the thickness direction of the workpiece 1 along the planned cutting line 5, the modified region M6 and the modified region M6 closest to the back surface 21 are formed. The adjacent modified region M5 and the modified region Ml closest to the surface 11a can be formed with high accuracy.
[0071] 次に、本発明の一実施形態に係るレーザ加工装置について説明する。  Next, a laser processing apparatus according to an embodiment of the present invention will be described.
[0072] 図 21に示すように、レーザカ卩ェ装置 100は、レーザ光 (加工用レーザ光) Lをパル ス発振するレーザ光源 101と、レーザ光 Lの光軸の向きを 90° 変えるように配置され たダイクロイツクミラー 103と、レーザ光 Lを集光するための集光用レンズ 105と、を備 えている。また、レーザカ卩ェ装置 100は、集光用レンズ 105で集光されたレーザ光 L が照射される加工対象物 1を載置するための載置台 107と、載置台 107を X、 Y、 Ζ 軸方向に移動させるためのステージ 111と、レーザ光 Lの出力やパルス幅等を調節 するためにレーザ光源 101を制御するレーザ光源制御部 102と、ステージ 111の移 動を制御するステージ制御部 115と、を備えて 、る。 [0072] As shown in FIG. 21, the laser carriage device 100 is configured to change the direction of the optical axis of the laser beam L by 90 ° and the laser light source 101 that pulsates the laser beam (processing laser beam) L. Placed A dichroic mirror 103 and a condensing lens 105 for condensing the laser beam L. In addition, the laser carriage device 100 includes a mounting table 107 for mounting the workpiece 1 to be irradiated with the laser beam L condensed by the condensing lens 105, and a mounting table 107 for X, Y, Ζ A stage 111 for moving in the axial direction, a laser light source control unit 102 for controlling the laser light source 101 to adjust the output and pulse width of the laser light L, and a stage control unit 115 for controlling the movement of the stage 111 And prepare for.
[0073] このレーザカ卩ェ装置 100によれば、レーザ光源 101から照射されたレーザ光 Lが、 ダイクロイツクミラー 103でその光軸が 90° 変えられ、集光レンズ 105で載置台 107 上の加工対象物 1の内部に集光される。これと共に、ステージ 111が移動され、加工 対象物 1がレーザ光 Lに対して切断予定ライン 5に沿って相対移動される。これにより 、切断予定ライン 5に沿って、加工対象物 1に改質領域が形成されることとなる。  [0073] According to this laser carriage device 100, the laser light L emitted from the laser light source 101 is changed in its optical axis by 90 ° by the dichroic mirror 103, and processed on the mounting table 107 by the condenser lens 105. It is condensed inside the object 1. At the same time, the stage 111 is moved, and the workpiece 1 is moved relative to the laser beam L along the planned cutting line 5. As a result, a modified region is formed on the workpiece 1 along the planned cutting line 5.
[0074] なお、レーザカ卩ェ装置 100はこの実施形態に限られず、ダイクロイツクミラー 103を 用いずにレーザ光源 101からのレーザ光 Lを集光用レンズ 105に導光してもよい。ま た、レーザ光 Lの移動は、レーザ光 Lが加工対象物 1に対して相対的に移動させるこ とができればよい。特に Ζ軸方向については、載置台 107を移動させる代わりに集光 用レンズ 105の位置を移動させることで、レーザ光 Lの焦点位置を変えることが可能と なる。  Note that the laser cache device 100 is not limited to this embodiment, and the laser light L from the laser light source 101 may be guided to the condensing lens 105 without using the dichroic mirror 103. The laser beam L may be moved as long as the laser beam L can be moved relative to the workpiece 1. Particularly in the axial direction, it is possible to change the focal position of the laser light L by moving the position of the condensing lens 105 instead of moving the mounting table 107.
[0075] 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に 限定されるものではない。  [0075] The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.
[0076] 例えば、上記実施形態では、加工対象物 1の表面 11aの変位等を測定した後にレ 一ザ光をスキャンして改質領域を形成するいわゆるトレースカ卩ェである力 表面 1 la の変位等を測定すると同時に改質領域を形成する 、わゆるリャルタイム加工でもよ ヽ  [0076] For example, in the above embodiment, the displacement of the force surface 1 la, which is a so-called trace carriage that scans the laser light after measuring the displacement or the like of the surface 11a of the workpiece 1 to form a modified region. , Etc., can be measured at the same time to form a modified region.
[0077] また、加工対象物を透過する測距用レーザ光及び透過せずに反射される測距用レ 一ザ光の照射に際しては、複数のレーザ光源を用いてもよぐ 1つのレーザ光源から 波長を変えて照射してもよ 、。 [0077] Further, a single laser light source may be used for irradiation of the distance measuring laser light that passes through the workpiece and the distance measuring laser light that is reflected without being transmitted. You can change the wavelength and irradiate.
[0078] また、上記実施形態では、機能素子 15が形成された表面 11aに対向する裏面 21 側からレーザ光を入射する裏面入射加工としているが、表面 1 la側力 レーザ光を 入射する加工であっても勿論良 、。 [0078] In the above-described embodiment, the back surface incident processing in which laser light is incident from the back surface 21 side facing the front surface 11a on which the functional element 15 is formed is used. Of course, it is good even for the incident processing.
[0079] また、加工対象物として、シリコンウェハ 11を備えたカ卩ェ対象物 1を用いているが、 シリコンウェハ 11でなくとも、例えば、ガリウム砒素等の半導体ィ匕合物材料、圧電材 料、サフアイャ等の結晶性を有する材料でもよい。  [0079] In addition, as the object to be processed, the case object 1 including the silicon wafer 11 is used. A material having crystallinity such as a material or a sapphire may be used.
産業上の利用可能性  Industrial applicability
[0080] 本発明によれば、切断予定ラインに沿って改質領域を加工対象物の厚さ方向に複 数列形成する場合において、第 1の面に最も近い第 1の改質領域、及び第 2の面に 最も近い第 2の改質領域を精度良く形成することができる。 [0080] According to the present invention, in the case where a plurality of modified regions are formed in the thickness direction of the workpiece along the planned cutting line, the first modified region closest to the first surface, and the first The second modified region closest to the surface of 2 can be accurately formed.

Claims

請求の範囲 The scope of the claims
[1] 板状の加工対象物の内部に集光点を合わせてレーザ光を照射することにより、前 記加工対象物の切断予定ラインに沿って、切断の起点となる改質領域を前記加工対 象物の厚さ方向に複数列形成するレーザ加工方法であって、  [1] By aligning the condensing point inside the plate-like workpiece and irradiating the laser beam, the modified region that is the starting point of cutting is processed along the planned cutting line of the workpiece. A laser processing method for forming a plurality of rows in the thickness direction of an object,
前記加工対象物においてレーザ光が入射する第 1の面の位置を基準として、前記 改質領域のうち前記第 1の面に最も近い第 1の改質領域を形成する工程と、 前記加工対象物において前記第 1の面に対向する第 2の面の位置を基準として、 前記改質領域のうち前記第 2の面に最も近い第 2の改質領域を形成する工程と、を 含むことを特徴とするレーザ加工方法。  Forming a first modified region closest to the first surface in the modified region with reference to a position of a first surface on which laser light is incident on the workpiece, and the processed object Forming a second modified region closest to the second surface in the modified region with reference to the position of the second surface facing the first surface. A laser processing method.
[2] 前記第 1の改質領域を形成する工程においては、前記第 1の面で反射された反射 光を検出することにより前記第 1の面の位置に関する第 1の位置情報を取得し、当該 第 1の位置情報に基づいて、前記第 1の面から所定の距離だけ内側に前記第 1の改 質領域を形成し、 [2] In the step of forming the first modified region, first position information relating to the position of the first surface is obtained by detecting reflected light reflected by the first surface; Based on the first position information, the first modified region is formed inward by a predetermined distance from the first surface,
前記第 2の改質領域を形成する工程においては、前記第 2の面で反射された反射 光を検出することにより前記第 2の面の位置に関する第 2の位置情報を取得し、当該 第 2の位置情報に基づいて、前記第 2の面から所定の距離だけ内側に前記第 2の改 質領域を形成することを特徴とする請求項 1記載のレーザ加工方法。  In the step of forming the second modified region, second position information relating to the position of the second surface is obtained by detecting reflected light reflected by the second surface, and the second modified region is obtained. 2. The laser processing method according to claim 1, wherein the second modified region is formed inward by a predetermined distance from the second surface based on the position information.
[3] 前記第 1の改質領域を形成する工程においては、前記第 1の面で反射された反射 光を検出することにより前記第 1の面の位置に関する第 1の位置情報を取得し、当該 第 1の位置情報に基づいて、前記第 1の面から所定の距離だけ内側に前記第 1の改 質領域を形成し、 [3] In the step of forming the first modified region, first position information relating to the position of the first surface is obtained by detecting reflected light reflected by the first surface; Based on the first position information, the first modified region is formed inward by a predetermined distance from the first surface,
前記第 2の改質領域を形成する工程においては、前記第 1の位置情報と前記加工 対象物の厚さに関する厚さ情報とに基づいて、前記第 2の面から所定の距離だけ内 側に前記第 2の改質領域を形成することを特徴とする請求項 1記載のレーザ加工方 法。  In the step of forming the second modified region, based on the first position information and the thickness information related to the thickness of the workpiece, the second modified region is formed inward by a predetermined distance from the second surface. 2. The laser processing method according to claim 1, wherein the second modified region is formed.
[4] 前記第 2の改質領域を形成する工程にぉ ヽては、前記第 2の面で反射された反射 光を検出することにより前記第 2の面の位置に関する第 2の位置情報を取得し、当該 第 2の位置情報に基づいて、前記第 2の面から所定の距離だけ内側に前記第 2の改 質領域を形成し、 [4] For the step of forming the second modified region, the second position information on the position of the second surface is obtained by detecting the reflected light reflected by the second surface. Based on the second position information, the second revision is made inward by a predetermined distance from the second surface. Forming a quality region,
前記第 1の改質領域を形成する工程においては、前記第 2の位置情報と前記加工 対象物の厚さに関する厚さ情報とに基づいて、前記第 1の面から所定の距離だけ内 側に前記第 1の改質領域を形成することを特徴とする請求項 1記載のレーザ加工方 法。  In the step of forming the first modified region, based on the second position information and the thickness information related to the thickness of the workpiece, the first modified region is inward from the first surface by a predetermined distance. 2. The laser processing method according to claim 1, wherein the first modified region is formed.
[5] 前記加工対象物は半導体基板を備え、前記改質領域は溶融処理領域を含むこと を特徴とする請求項 1記載のレーザ加工方法。  5. The laser processing method according to claim 1, wherein the object to be processed includes a semiconductor substrate, and the modified region includes a melt processing region.
[6] 前記改質領域を切断の起点として前記切断予定ラインに沿って前記加工対象物を 切断する工程を含むことを特徴とする請求項 1記載のレーザ加工方法。 6. The laser processing method according to claim 1, further comprising a step of cutting the object to be processed along the scheduled cutting line using the modified region as a starting point for cutting.
PCT/JP2007/061476 2006-07-03 2007-06-06 Laser processing method WO2008004395A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006183451A JP2008012542A (en) 2006-07-03 2006-07-03 Laser beam machining method
JP2006-183451 2006-07-03

Publications (1)

Publication Number Publication Date
WO2008004395A1 true WO2008004395A1 (en) 2008-01-10

Family

ID=38894368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061476 WO2008004395A1 (en) 2006-07-03 2007-06-06 Laser processing method

Country Status (5)

Country Link
JP (1) JP2008012542A (en)
KR (1) KR20090030301A (en)
CN (1) CN101484269A (en)
TW (1) TW200809941A (en)
WO (1) WO2008004395A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107464762A (en) * 2016-06-03 2017-12-12 株式会社迪思科 The inspection method of machined object, check device, laser processing device, expanding unit
CN113369712A (en) * 2021-06-23 2021-09-10 业成科技(成都)有限公司 Laser cutting method, laser cutting device and computer readable storage medium

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010209A (en) * 2008-06-24 2010-01-14 Tokyo Seimitsu Co Ltd Laser dicing method
JP5583981B2 (en) * 2010-01-25 2014-09-03 株式会社ディスコ Laser processing method
JP2013230478A (en) * 2012-04-27 2013-11-14 Disco Corp Laser machining apparatus and laser machining method
JP6425368B2 (en) * 2012-04-27 2018-11-21 株式会社ディスコ Laser processing apparatus and laser processing method
KR101425493B1 (en) * 2012-12-26 2014-08-04 주식회사 이오테크닉스 method of laser machining and apparatus adopting the method
KR102065370B1 (en) * 2013-05-03 2020-02-12 삼성디스플레이 주식회사 Method of peeling substrate and substrate peeling device
CN108788488A (en) * 2018-06-12 2018-11-13 华丰源(成都)新能源科技有限公司 A kind of laser cutting device and its control method
JP7285433B2 (en) * 2019-03-07 2023-06-02 株式会社東京精密 LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
JP7235563B2 (en) * 2019-03-29 2023-03-08 株式会社ディスコ Laser processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274259A (en) * 1998-03-26 1999-10-08 Hitachi Ltd Thickness measuring device and thickness controller
JP2001313279A (en) * 2000-05-01 2001-11-09 Hamamatsu Photonics Kk Thickness measuring device, apparatus and method for wet etching using the same
JP2005019667A (en) * 2003-06-26 2005-01-20 Disco Abrasive Syst Ltd Method for dividing semiconductor wafer by utilizing laser beam
JP2006202933A (en) * 2005-01-20 2006-08-03 Disco Abrasive Syst Ltd Wafer dividing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274259A (en) * 1998-03-26 1999-10-08 Hitachi Ltd Thickness measuring device and thickness controller
JP2001313279A (en) * 2000-05-01 2001-11-09 Hamamatsu Photonics Kk Thickness measuring device, apparatus and method for wet etching using the same
JP2005019667A (en) * 2003-06-26 2005-01-20 Disco Abrasive Syst Ltd Method for dividing semiconductor wafer by utilizing laser beam
JP2006202933A (en) * 2005-01-20 2006-08-03 Disco Abrasive Syst Ltd Wafer dividing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107464762A (en) * 2016-06-03 2017-12-12 株式会社迪思科 The inspection method of machined object, check device, laser processing device, expanding unit
CN107464762B (en) * 2016-06-03 2022-10-18 株式会社迪思科 Inspection method and inspection device for workpiece, laser processing device, and expansion device
CN113369712A (en) * 2021-06-23 2021-09-10 业成科技(成都)有限公司 Laser cutting method, laser cutting device and computer readable storage medium

Also Published As

Publication number Publication date
TW200809941A (en) 2008-02-16
JP2008012542A (en) 2008-01-24
KR20090030301A (en) 2009-03-24
CN101484269A (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP4732063B2 (en) Laser processing method
JP4358762B2 (en) Substrate dividing method
JP4754801B2 (en) Laser processing method
WO2008004395A1 (en) Laser processing method
JP4515096B2 (en) Laser processing method
KR101408491B1 (en) Laser processing method and laser processing system
JP4198123B2 (en) Laser processing method
JP3935189B2 (en) Laser processing method
WO2008035679A1 (en) Laser processing method and laser processing apparatus
WO2008041604A1 (en) Laser processing method
JP4463796B2 (en) Laser processing method
JP2006043713A (en) Laser beam machining method
JP4527098B2 (en) Laser processing method
JP5117806B2 (en) Laser processing method and laser processing apparatus
JP3990710B2 (en) Laser processing method
JP2006179941A (en) Method of cutting semiconductor material substrate
WO2004080642A1 (en) Laser beam machining method
JP3869850B2 (en) Laser processing method
JP4095092B2 (en) Semiconductor chip

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780025390.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097000467

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07744819

Country of ref document: EP

Kind code of ref document: A1