WO2008002176A1 - Ladle steel deoxidation method - Google Patents

Ladle steel deoxidation method Download PDF

Info

Publication number
WO2008002176A1
WO2008002176A1 PCT/RU2006/000344 RU2006000344W WO2008002176A1 WO 2008002176 A1 WO2008002176 A1 WO 2008002176A1 RU 2006000344 W RU2006000344 W RU 2006000344W WO 2008002176 A1 WO2008002176 A1 WO 2008002176A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
ladle
stream
desoxidant
deoxidizer
Prior art date
Application number
PCT/RU2006/000344
Other languages
French (fr)
Russian (ru)
Inventor
Evald Shumaher
Anatoliy Konstantinovich Belitchenko
Gennadiy Arkadevich Lozin
Igor Vitalevich Derevyanchenko
Viktor Nikolaevich Khloponin
Vladimir Konstantinovich Turovskiy
Edgar Shumaher
Aleksandr Nikolaevich Savyuk
Konstantin Filippovich Dorn
Vladimir Vladimirovich Yakovenko
Renata Frantski
Aleksandr Heshele
Original Assignee
Techcom Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38845840&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008002176(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to ES06843948T priority Critical patent/ES2328895T3/en
Priority to DK06843948.8T priority patent/DK2039785T3/en
Priority to CN2006800551775A priority patent/CN101522922B/en
Priority to PCT/RU2006/000344 priority patent/WO2008002176A1/en
Priority to AT06843948T priority patent/ATE508210T1/en
Priority to SI200631073T priority patent/SI2039785T1/en
Priority to BRPI0621816-4A priority patent/BRPI0621816B1/en
Application filed by Techcom Gmbh filed Critical Techcom Gmbh
Priority to PT06843948T priority patent/PT2039785E/en
Priority to DE06843948T priority patent/DE06843948T1/en
Priority to EP06843948A priority patent/EP2039785B1/en
Priority to DE602006021808T priority patent/DE602006021808D1/en
Priority to PL06843948T priority patent/PL2039785T3/en
Priority to EA200802345A priority patent/EA014276B1/en
Publication of WO2008002176A1 publication Critical patent/WO2008002176A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0075Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0068Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by introducing material into a current of streaming metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing

Definitions

  • the invention relates to the field of ferrous metallurgy, in particular to technological methods for the production of high-quality low-carbon steel
  • An invariable and especially important process used in the production of high-quality steels is the process of deoxidation or removal of excess oxygen from a melt prepared for casting.
  • An increased or inadequate oxygen content in the hardened metal determines the continuation of the oxidation of residual carbon in it with the release of gaseous carbon monoxide, up to the end of crystallization of the ingot. At the same time, gas porosity is formed in the finished product, violating its quality indicators and density.
  • the most commonly used deoxidation method in steelmaking is the deposition method.
  • a feature of this method is the conversion of oxygen from a solution in the form of iron oxide into non-metallic compounds with elements that have a greater affinity for oxygen than iron and less than iron oxide and are soluble in metal. In this case, the resulting oxidation products are released from the metal into slag in the solid or liquid state.
  • the most common method of introducing aluminum is the method of introducing aluminum into the bucket in pieces or in ingots, or pieces commensurate with them.
  • the degree of absorption of the useful element of the deoxidizing agent by the melt is at an extremely low level (For example: for aluminum 5–20%) and is extremely unstable.
  • the input method itself requires significant manual labor.
  • methods of introducing deoxidizing agents into the ladle in crushed lumpy or granular form are used.
  • the closest in technical essence and the achieved result is a method of steel deoxidation in a ladle, including the introduction of a granular or lump deoxidizer having a density lower than the melt density in the ladle into the melt during its discharge from the technological unit into the ladle.
  • a granular or lump deoxidizer having a density lower than the melt density in the ladle into the melt during its discharge from the technological unit into the ladle.
  • the known method has the following disadvantages: the crushed deoxidizer introduced is fed to the melt mirror or the surface of the metal stream upon release, as a result of which most of it burns out due to atmospheric oxygen, without being able to dissolve in the metal, which leads to losses of the deoxidizer and reduces the quality of the metal.
  • the objective of the invention is to develop a deoxidation technology that improves the quality of the metal to reduce material loss.
  • the expected technical result is a decrease in the deoxidant fumes increase the stability of its absorption, increase
  • the technical result is achieved by the fact that in the known method of steel deoxidation in a ladle, including the introduction of a granular or lump deoxidizer having a density lower than the melt density in the ladle into the melt during its discharge from the technological unit into the ladle, according to the invention, the deoxidizer is introduced into the melt stream in a concentrated high-speed stream with an impulse providing penetration of the deoxidizer directly into the melt.
  • the deoxidizer is introduced into the jet of melt, drained into the ladle from the technological unit, using a shot blasting machine.
  • granular or lump aluminum is used with a granule or lump size of 0.5-12 mm., which can be injected with a stream of melt being drained into a ladle from a technological unit using a shot blasting machine.
  • the place of introduction of aluminum into the stream is set depending on its fractional composition, and the smaller the granule size, the closer the place of introduction of stream into the stream to the surface of the melt in the bucket to be filled.
  • the place of introduction of aluminum into the stream is set depending on its fractional composition, and the finer the size of the granules, the closer the place of introduction of stream into the stream to the surface of the melt in the bucket to be filled.
  • the granule is less than 0.5 mm in size, the granules melt at the moment of contact with a stream of metal, which leads to a significant oxidation of the deoxidizer with atmospheric oxygen.
  • the supply of a deoxidizer with a fraction of more than 12 mm leads to difficulties in the operation of the shot blasting unit for introducing a deoxidizer into the melt and also to additional deoxidant combustion in air.
  • the method is implemented when smelting steel grade 20 in an arc furnace.
  • the metal was deoxidized with manganese and silicon.
  • aluminum was introduced into the bucket in the form of a fraction of a fraction of 6 mm in portions of 100 kg using a shot blasting machine with a capacity of 400 kg / min. Air pressure in the highway 5 atm.
  • the transportation route was made of a metal pipe, which provided a flow of aluminum into the melt stream at a distance of about 1.5-2.0 m from it.
  • the melt was discharged from the furnace with a temperature of 1545 0 C.
  • Aluminum was introduced based on the calculation of its introduction up to 1.5 kg per ton of steel with a pulse of 200 H.
  • the oxygen content was 0.007-0.008%, with a residual aluminum content of 0.017%.
  • the application of the proposed invention allows to reduce the amount of deoxidizing agent by 2 times, increase its absorption and significantly improve the quality of the metal.

Abstract

The invention relates to producing a high-quality low-carbon steel. The inventive ladle steel deoxidation method consists in introducing granulated or lump desoxidant, the density of which is less than the density of a melt in a ladle, in to a said melt. Said desoxidant is introduced during the melt pouring off a production unit into the ladle by means of a concentrated high-rate flow, the impulse of which allows the desoxidant to penetrate directly inside the melt. The desoxidant is introduced into the melt stream with the aid of a shotblast machine. The desoxidant is embodied in the form of a granulated or lump aluminium of a size ranging from 0.5 to 12.0 mm. The use of the invention makes it possible to reduce the desoxidant loss by two times, to increase the recovery thereof and to improve the metal quality.

Description

СПОСОБ РАСКИСЛЕНИЯ СТАЛИ В КОВШЕ METHOD FOR DIVIDING STEEL IN A DUCK
Изобретение относится к области черной металлургии, в частности к технологическим приемам производства высококачественной низкоуглеродистой сталиThe invention relates to the field of ferrous metallurgy, in particular to technological methods for the production of high-quality low-carbon steel
Неизменным и особенно важным процессом, используемым при производстве высококачественных сталей, является процесс раскисления или удаления из подготовленного к разливке расплава избыточного кислорода.An invariable and especially important process used in the production of high-quality steels is the process of deoxidation or removal of excess oxygen from a melt prepared for casting.
Повышенное или не соответствующее существующим требованиям содержание кислорода в затвердевшем металле предопределяет продолжение процессов окисления в нем остаточного углерода с выделением газообразной окиси углерода, вплоть до окончания кристаллизации слитка. При этом в готовой продукции образуется газовая пористость, нарушающая её качественные показатели и плотность.An increased or inadequate oxygen content in the hardened metal determines the continuation of the oxidation of residual carbon in it with the release of gaseous carbon monoxide, up to the end of crystallization of the ingot. At the same time, gas porosity is formed in the finished product, violating its quality indicators and density.
Наиболее широко используемым в сталеплавильном производстве методом раскисления является метод осаждения. Особенность этого метода состоит в переводе кислорода из раствора в виде закиси железа в неметаллические соединения с элементами, которые имеют большое, чем железо сродство с кислородом и меньше чем закись железа , и растворимы в металле. При этом образующиеся продукты окисления выделяются из металла в шлак в твердом или жидком состоянии.The most commonly used deoxidation method in steelmaking is the deposition method. A feature of this method is the conversion of oxygen from a solution in the form of iron oxide into non-metallic compounds with elements that have a greater affinity for oxygen than iron and less than iron oxide and are soluble in metal. In this case, the resulting oxidation products are released from the metal into slag in the solid or liquid state.
В практике производства специализированных сталей осаждающее раскисление производят в ковше или непосредственно на установке внепечной обработки. Наряду с алюминием, иногда в качестве раскислителей и модификаторов при производстве стали, используется кремний, марганец магний, барий, кальций, комплексные сплавы, алюминий и другие.In practice, the production of specialized steels, precipitating deoxidation is carried out in the ladle or directly at the out-of-furnace treatment plant. Along with aluminum, sometimes as deoxidizers and modifiers in steel production, silicon, manganese, magnesium, barium, calcium, complex alloys, aluminum and others are used.
Наиболее распространенным приемом ввода алюминия является прием ввода алюминия в ковш в виде кусков или в чушках, или соизмеримых с ними кусках. При таком вводе материала раскислителя, степень усвоения полезного элемента раскислителя расплавом находится на крайне низком уровне (Например: для алюминия 5-20%) и отличается крайней нестабильностью. Сам метод ввода требует значительных затрат ручного труда. Для уменьшения угара раскислителей применяются методы ввода раскислителей в ковш в измельченном кусковом или гранулированном виде.The most common method of introducing aluminum is the method of introducing aluminum into the bucket in pieces or in ingots, or pieces commensurate with them. With this input of the deoxidizing material, the degree of absorption of the useful element of the deoxidizing agent by the melt is at an extremely low level (For example: for aluminum 5–20%) and is extremely unstable. The input method itself requires significant manual labor. To reduce the burnout of deoxidizing agents, methods of introducing deoxidizing agents into the ladle in crushed lumpy or granular form are used.
Наиболее близким по технической сущности и достигаемому результату является , способ раскисления стали в ковше, включающий ввод в расплав в процессе его слива из технологического агрегата в ковш гранулированного или кускового раскислителя, имеющего плотность ниже плотности расплава в ковше. (Ю.Ф.Вяткин , В.А. Вихревчук, В.Ф. Поляков и др. , Ресурсосберегающая технология раскисления стали алюминием в кoвшe», Бюллетень «Чepмeтинфopмaция» N°6 1990 с.53-55).The closest in technical essence and the achieved result is a method of steel deoxidation in a ladle, including the introduction of a granular or lump deoxidizer having a density lower than the melt density in the ladle into the melt during its discharge from the technological unit into the ladle. (Yu.F. Vyatkin, V.A. Vikhrevchuk, V.F. Polyakov et al., Resource-saving technology for the deoxidation of steel by aluminum in aluminum ", Information Bulletin N ° 6 1990 p. 53-55).
Однако известный способ имеет следующие недостатки: вводимый измельченный раскислитель подается на зеркало расплава или поверхность струи металла при выпуске, вследствие чего большая его часть сгорает за счет кислорода воздуха, не успевая, растворяться в металле, что приводит к потерям раскислителя и понижает качество металла.However, the known method has the following disadvantages: the crushed deoxidizer introduced is fed to the melt mirror or the surface of the metal stream upon release, as a result of which most of it burns out due to atmospheric oxygen, without being able to dissolve in the metal, which leads to losses of the deoxidizer and reduces the quality of the metal.
Задача изобретения - разработать технологию раскисления позволяющую повысить качество металла снизить потери материала. Ожидаемый технический результат- снижение угара раскислителя повышение стабильности его усвоения, повышениеThe objective of the invention is to develop a deoxidation technology that improves the quality of the metal to reduce material loss. The expected technical result is a decrease in the deoxidant fumes increase the stability of its absorption, increase
" ч качества металла. " h quality metal.
Технический результат достигается тем, что в известном способе раскисления стали в ковше, включающем ввод в расплав в процессе его слива из технологического агрегата в ковш гранулированного или кускового раскислителя, имеющего плотность ниже плотности расплава в ковше, по изобретению раскислитель в струю расплава вводят концентрированным высокоскоростным потоком с импульсом, обеспечивающим проникновение раскислителя непосредственно вовнутрь расплава.The technical result is achieved by the fact that in the known method of steel deoxidation in a ladle, including the introduction of a granular or lump deoxidizer having a density lower than the melt density in the ladle into the melt during its discharge from the technological unit into the ladle, according to the invention, the deoxidizer is introduced into the melt stream in a concentrated high-speed stream with an impulse providing penetration of the deoxidizer directly into the melt.
Возможны другие варианты осуществления способа раскисления, предусматривающие, чтоOther embodiments of the deoxidation process are possible, providing that
- раскислитель вводят в струю расплава, сливаемого в ковш из технологического агрегата, с помощью дробеструйной установки.- the deoxidizer is introduced into the jet of melt, drained into the ladle from the technological unit, using a shot blasting machine.
- в качестве раскислителя используют гранулированный или кусковой алюминий с размером гранул или кусков 0,5-12 мм., который можно вводить струю расплава, сливаемого в ковш из технологического агрегата, с помощью дробеструйной установки. - место внедрения алюминия в струю, устанавливают в зависимости от его фракционного состава, при этом, чем мельче размер гранул, тем ближе место внедрения потока в струю к поверхности расплава в заполняемом ковше.- as a deoxidizing agent, granular or lump aluminum is used with a granule or lump size of 0.5-12 mm., which can be injected with a stream of melt being drained into a ladle from a technological unit using a shot blasting machine. - the place of introduction of aluminum into the stream is set depending on its fractional composition, and the smaller the granule size, the closer the place of introduction of stream into the stream to the surface of the melt in the bucket to be filled.
Для того чтобы ввести гранулы непосредственно внутрь расплава с необходимым расходом необходимо придать гранулам или кускам, скорость, обеспечивающую для этой гранулы условие равновесия динамического напора высокоскоростного потока и статического давления внутри металла. ω2p!/2=/-p2-g где ω - скорость потока реагента;In order to introduce the granules directly into the melt at the required flow rate, it is necessary to give the granules or pieces the speed that provides for this granule the equilibrium of the dynamic pressure of the high-speed flow and the static pressure inside the metal. ω 2 p ! / 2 = / - p 2 -g where ω is the flow rate of the reagent;
Pi и p2 - плотность потока реагента и жидкой стали; g - ускорение свободного падения; / -глубина погружения реагента в расплав. Проведенные расчеты показывают, что для обеспечения условий внедрения гранулированного алюминия фракцией 0,5-12 мм, непосредственно в струю сливаемого из сталеплавильного агрегата в ковш раскислитель необходимо подавать с импульсом (i)oт 40 до 318,6 H («H» - Ньютон равный кг-м/с2). Приведенные сведения не исчерпывают все возможные значения импульса потока и определены только для алюминия. Одним из технических устройств, позволяющих достигать погружения раскислителя в расплав, как в струю так и под зеркало металла в ковше - является дробеструйная машина. Обычно такие машины оборудуются дозирующими устройствами и позволяют вдувать раскислитель порциями от 50 до 200 кг.Pi and p 2 - flux density of the reagent and liquid steel; g is the acceleration of gravity; / - depth of immersion of the reagent in the melt. The calculations show that in order to ensure the conditions for the introduction of granular aluminum with a fraction of 0.5-12 mm, the deoxidizer must be fed directly from the steelmaking unit to the ladle with a pulse (i) from 40 to 318.6 H (“H” is equal to Newton kg-m / s 2 ). The information given does not exhaust all possible values of the flow momentum and is determined only for aluminum. One of the technical devices that allow the deoxidizer to be immersed in the melt, both in the stream and under the metal mirror in the bucket, is a shot blasting machine. Typically, such machines are equipped with metering devices and allow the blowing agent to be injected in portions of 50 to 200 kg.
Другой особенностью изобретения является то, что место внедрения алюминия в струю, устанавливают в зависимости от его фракционного состава, при этом, чем мельче размер гранул, тем ближе место внедрения потока в струю к поверхности расплава в заполняемом ковше. При грануле размером менее 0,5 мм гранулы расплавляются в момент соприкосновения со струей металла, что приводит к значительному окислению раскислителя кислородом воздуха. Подача раскислителя фракцией свыше 12 мм приводит к возникновению трудностей работы дробеструйной установки по внедрению раскислителя в расплав и также дополнительному сгоранию раскислителя на воздухе. При движении расплава от среза выпускного отверстия или носка желоба металл дробится, захватывает при своем движении кислород из воздуха, что приводит к его угару. Мощности перемешивания струи так велики, что если давать на срез желоба раскислитель мелкой фракции, то он практически в ковш не попадает, а следовательно, при подаче реагента в струю для каждого реагента необходима определить место внедрения в струю при котором потери реагента раскислителя минимальны.Another feature of the invention is that the place of introduction of aluminum into the stream is set depending on its fractional composition, and the finer the size of the granules, the closer the place of introduction of stream into the stream to the surface of the melt in the bucket to be filled. When the granule is less than 0.5 mm in size, the granules melt at the moment of contact with a stream of metal, which leads to a significant oxidation of the deoxidizer with atmospheric oxygen. The supply of a deoxidizer with a fraction of more than 12 mm leads to difficulties in the operation of the shot blasting unit for introducing a deoxidizer into the melt and also to additional deoxidant combustion in air. When the melt moves from the cut of the outlet or toe of the gutter, the metal is crushed, captures during its movement oxygen from the air, which leads to its intoxication. The mixing powers of the jet are so great that if a fine fraction deoxidant is fed to the cut of the gutter, it practically does not get into the bucket, and therefore, when feeding the reagent into the stream for each reagent, it is necessary to determine the place of introduction into the stream at which the losses of the deoxidizing reagent are minimal.
Пример N» 1Example N 1
Способ реализован, при выплавке стали марки 20 в дуговой печи.The method is implemented when smelting steel grade 20 in an arc furnace.
Металл раскисляли марганцем и кремнием. При выпуске металла в ковш вводили алюминий в виде дроби фракцией 6 мм порциями по 100 кг при помощи дробеструйной установки производительностью 400 кг/мин. Давление воздуха в трассе 5 атм. Транспортировочная трасса была выполнена из металлической трубы, которая обеспечивала подачу потока алюминия в струю расплава на удалении от нее около 1,5-2,0 м.The metal was deoxidized with manganese and silicon. When releasing metal, aluminum was introduced into the bucket in the form of a fraction of a fraction of 6 mm in portions of 100 kg using a shot blasting machine with a capacity of 400 kg / min. Air pressure in the highway 5 atm. The transportation route was made of a metal pipe, which provided a flow of aluminum into the melt stream at a distance of about 1.5-2.0 m from it.
Расплав выпускали из печи с температурой 15450C. Алюминий вводили из расчета его введения до 1,5 кг на одну тонну стали с импульсом 200 H.The melt was discharged from the furnace with a temperature of 1545 0 C. Aluminum was introduced based on the calculation of its introduction up to 1.5 kg per ton of steel with a pulse of 200 H.
При раскислении стали заявленным способом, содержание кислорода в ней составило 0,005-0,006% при остаточном содержании алюминия 0,022%.When steel was deoxidized by the claimed method, the oxygen content in it was 0.005-0.006% with a residual aluminum content of 0.022%.
В той же стали выплавленной по способу прототипу, содержание кислорода равнялось 0,007-0,008%, при остаточном содержании алюминия 0,017%.In the same steel smelted by the prototype method, the oxygen content was 0.007-0.008%, with a residual aluminum content of 0.017%.
Применение предложенного изобретения позволяет снизить угар раскислителя в 2 раза, повысить его усвоение и существенно улучшить качество металла. The application of the proposed invention allows to reduce the amount of deoxidizing agent by 2 times, increase its absorption and significantly improve the quality of the metal.

Claims

Формула изобретения Claim
1. Способ раскисления стали в ковше, включающий ввод в струю расплава в процессе его слива из технологического агрегата в ковш гранулированного или кускового раскислителя, имеющего плотность ниже плотности расплава в ковше, отличающийся тем, что раскислитель в струю расплава вводят импульсом концентрированного высокоскоростного потока, обеспечивающим проникновение раскислителя непосредственно вовнутрь расплава. 1. The method of deoxidation of steel in a ladle, comprising introducing into the jet of melt during its discharge from the technological unit into a ladle a granular or lump deoxidizer having a density lower than the density of the melt in the ladle, characterized in that the deoxidizer is introduced into the melt stream by a concentrated high-speed flow pulse, providing penetration of the deoxidizer directly into the melt.
2. Способ по п.l отличающийся тем, что раскислитель вводят в струю расплава, сливаемого в ковш из технологического агрегата, с помощью дробеструйной установки.2. The method according to p. 1, characterized in that the deoxidizer is injected into the melt stream, drained into the ladle from the technological unit, using a shot blasting machine.
3. Способ по п.l отличающийся тем, что в качестве раскислителя используют гранулированный или кусковой алюминий с размером гранул или кусков 0,5-12 мм.3. The method according to claim 1, characterized in that granular or lump aluminum with a granule or lump size of 0.5-12 mm is used as a deoxidizing agent.
4. Способ по п.З отличающийся тем, что алюминий вводят в струю расплава, сливаемого в ковш из технологического агрегата, с помощью дробеструйной установки4. The method according to p. 3, characterized in that the aluminum is injected into the stream of melt, drained into the ladle from the technological unit, using a shot blasting machine
5. Способ по п.4 отличающийся тем, что место внедрения алюминия в струю, устанавливают в зависимости от его фракционного состава, при этом, чем мельче размер гранул, тем ближе место внедрения потока в струю к поверхности расплава в заполняемом ковше. 5. The method according to claim 4, characterized in that the place of introduction of aluminum into the stream is set depending on its fractional composition, the finer the size of the granules, the closer the place of introduction of stream into the stream to the surface of the melt in the bucket to be filled.
PCT/RU2006/000344 2006-06-30 2006-06-30 Ladle steel deoxidation method WO2008002176A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
EA200802345A EA014276B1 (en) 2006-06-30 2006-06-30 Ladle steel deoxidation method
BRPI0621816-4A BRPI0621816B1 (en) 2006-06-30 2006-06-30 Steel pan deoxidization method
CN2006800551775A CN101522922B (en) 2006-06-30 2006-06-30 Ladle steel deoxidation method
PCT/RU2006/000344 WO2008002176A1 (en) 2006-06-30 2006-06-30 Ladle steel deoxidation method
AT06843948T ATE508210T1 (en) 2006-06-30 2006-06-30 PAN STEEL DEOXIDATION PROCESS
SI200631073T SI2039785T1 (en) 2006-06-30 2006-06-30 Ladle steel deoxidation method
PT06843948T PT2039785E (en) 2006-06-30 2006-06-30 Ladle steel deoxidation method
ES06843948T ES2328895T3 (en) 2006-06-30 2006-06-30 STEEL DEOXIDATION PROCESS IN COLADA SPOON.
DK06843948.8T DK2039785T3 (en) 2006-06-30 2006-06-30 Method for steel pocket deoxidation
DE06843948T DE06843948T1 (en) 2006-06-30 2006-06-30 PFANNENSTAHLDESOXIDATIONSVERFAHREN
EP06843948A EP2039785B1 (en) 2006-06-30 2006-06-30 Ladle steel deoxidation method
DE602006021808T DE602006021808D1 (en) 2006-06-30 2006-06-30 PFANNENSTAHLDESOXIDATIONSVERFAHREN
PL06843948T PL2039785T3 (en) 2006-06-30 2006-06-30 Ladle steel deoxidation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2006/000344 WO2008002176A1 (en) 2006-06-30 2006-06-30 Ladle steel deoxidation method

Publications (1)

Publication Number Publication Date
WO2008002176A1 true WO2008002176A1 (en) 2008-01-03

Family

ID=38845840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2006/000344 WO2008002176A1 (en) 2006-06-30 2006-06-30 Ladle steel deoxidation method

Country Status (12)

Country Link
EP (1) EP2039785B1 (en)
CN (1) CN101522922B (en)
AT (1) ATE508210T1 (en)
BR (1) BRPI0621816B1 (en)
DE (2) DE602006021808D1 (en)
DK (1) DK2039785T3 (en)
EA (1) EA014276B1 (en)
ES (1) ES2328895T3 (en)
PL (1) PL2039785T3 (en)
PT (1) PT2039785E (en)
SI (1) SI2039785T1 (en)
WO (1) WO2008002176A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102031335A (en) * 2010-11-01 2011-04-27 武汉科技大学 Complex deoxidizer for smelting high heat input welded high-strength steel and using method thereof
CN102146518A (en) * 2011-04-02 2011-08-10 钢铁研究总院 Refining agent for atmosphere protected electro-slag re-melting
DE102015113241A1 (en) 2015-08-11 2017-02-16 Rhm Rohstoff-Handelsgesellschaft Mbh Method for introducing additives into molten metals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1153117A (en) * 1967-02-24 1969-05-21 Brown Fintube Co Apparatus and process for Introducing Addition Agent into Molten Steel
SU827560A1 (en) * 1978-08-25 1981-05-07 Центральный Ордена Трудового Красногознамени Научно-Исследовательскийинститут Черной Металлургии Им.И.П.Бардина Method of steel production
WO1998041658A1 (en) * 1997-03-17 1998-09-24 Stein - Industrie-Anlagen Inh. Christel Stein Method for feeding granular solids into metal melts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391319A (en) * 1979-08-27 1983-07-05 Keystone Consolidated Industries, Inc. Apparatus for introducing elements into molten metal streams and casting in inert atmosphere
US4389249A (en) * 1982-04-22 1983-06-21 Inland Steel Company Method for adding ingredient to steel as shot
US4863684A (en) * 1989-01-13 1989-09-05 Inland Steel Company Method and apparatus for adding shot to molten steel
CN1030532C (en) * 1994-01-08 1995-12-20 中国冶金技术公司 Iron and steel smelting process by using aluminium slag

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1153117A (en) * 1967-02-24 1969-05-21 Brown Fintube Co Apparatus and process for Introducing Addition Agent into Molten Steel
SU827560A1 (en) * 1978-08-25 1981-05-07 Центральный Ордена Трудового Красногознамени Научно-Исследовательскийинститут Черной Металлургии Им.И.П.Бардина Method of steel production
WO1998041658A1 (en) * 1997-03-17 1998-09-24 Stein - Industrie-Anlagen Inh. Christel Stein Method for feeding granular solids into metal melts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU.F. VYATKIN; V.A. VIKHREVCHUK; V.F. POLYAKOV ET AL.: "A resource-saving technology of deoxidizing steel with aluminum in a ladle", CHERMETINFORMATSYA JOURNAL, 1990, pages 53 - 55

Also Published As

Publication number Publication date
ES2328895T1 (en) 2009-11-19
DE06843948T1 (en) 2009-12-17
EA200802345A1 (en) 2009-04-28
SI2039785T1 (en) 2011-09-30
ES2328895T3 (en) 2011-10-18
EP2039785B1 (en) 2011-05-04
EP2039785A4 (en) 2009-10-21
CN101522922A (en) 2009-09-02
EP2039785A1 (en) 2009-03-25
ATE508210T1 (en) 2011-05-15
DK2039785T3 (en) 2011-08-15
PL2039785T3 (en) 2011-10-31
PT2039785E (en) 2011-08-17
DE602006021808D1 (en) 2011-06-16
BRPI0621816B1 (en) 2015-06-02
EA014276B1 (en) 2010-10-29
BRPI0621816A2 (en) 2012-09-18
CN101522922B (en) 2012-08-01

Similar Documents

Publication Publication Date Title
CN102071287B (en) Method for melting high-temperature-resistance and high-pressure-resistance alloy steel
Liu et al. Inclusion variations and calcium treatment optimization in pipeline steel production
US4652299A (en) Process for treating metals and alloys for the purpose of refining them
JP6816777B2 (en) Slag forming suppression method and converter refining method
WO2008002176A1 (en) Ladle steel deoxidation method
RU2533263C1 (en) Method of dry steel production
RU2286393C1 (en) Method for reducing of steel in ladle
RU2334796C1 (en) Method of steel production
RU2353667C1 (en) Manufacturing method of low-silicon steel
RU2219249C1 (en) Off-furnace steel treatment in ladle
RU2333255C1 (en) Method of steel smelting
RU2461635C1 (en) Method of steel out-of-furnace processing by calcium
RU2392333C1 (en) Method of low-carbon steel production
KR100336855B1 (en) Flux wire for use in the manufacture of high purity aluminum deoxidized steel
SU1044641A1 (en) Method for alloying steel with manganese
KR100900650B1 (en) Calcium Cored Wire for Controlling Calcium Content in Molten Steel and Method for Controlling Calcium Content in Molten Steel Using the Wire
RU2218422C2 (en) Method of treatment of steel in ladle
RU2201458C1 (en) Method of modification of steel
RU2222607C1 (en) Method of alloying steel
RU2366724C1 (en) Method of production of electric steel
SU827560A1 (en) Method of steel production
RU2104311C1 (en) Method of alloying steel by manganese
Rutskii et al. The Impact of the Production Stages of Grade D Steel on its Contamination and the Chemical Composition of Nonmetallic Inclusions
RU1786109C (en) Process for producing titanium steel
SU598944A1 (en) Method of producing steel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680055177.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06843948

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2006843948

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200802345

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 10573/DELNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: PI0621816

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081226