WO2008001853A1 - Plasma processing method and equipment - Google Patents

Plasma processing method and equipment Download PDF

Info

Publication number
WO2008001853A1
WO2008001853A1 PCT/JP2007/063013 JP2007063013W WO2008001853A1 WO 2008001853 A1 WO2008001853 A1 WO 2008001853A1 JP 2007063013 W JP2007063013 W JP 2007063013W WO 2008001853 A1 WO2008001853 A1 WO 2008001853A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
processing
pressure
gas
processing container
Prior art date
Application number
PCT/JP2007/063013
Other languages
French (fr)
Japanese (ja)
Inventor
Noriaki Fukiage
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2008001853A1 publication Critical patent/WO2008001853A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • H01L21/0212Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC the material being fluoro carbon compounds, e.g.(CFx) n, (CHxFy) n or polytetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Definitions

  • the present invention relates to a method and apparatus for performing plasma processing such as plasma film formation processing or plasma etching processing on an object to be processed such as a semiconductor wafer, and more particularly to a technique for improving throughput.
  • the plasma processing apparatus 2 includes a processing container 4 that can be evacuated, and a mounting table 6 on which a semiconductor wafer W is mounted is provided in the processing container 4.
  • the mounting table 6 is supported by a support column 8 standing from the bottom wall of the processing container 4.
  • a microwave-permeable disk-shaped top plate 10 made of aluminum nitride or quartz is provided on the ceiling of the processing vessel 4.
  • a gas nozzle 12 for introducing various gases into the processing container 4 is provided on the side wall of the processing container 4.
  • a disk-shaped planar antenna member 14 having a thickness of about several millimeters and a dielectric force for shortening the microwave wavelength in the radial direction of the planar antenna member 14 are also provided.
  • Wave material 16 is installed.
  • the planar antenna member 14 is formed with a slot 18 for microwave radiation composed of a number of elongated through holes.
  • a central conductor 22 of the coaxial waveguide 20 is connected to the center of the planar antenna member 14.
  • An exhaust port 28 is provided at the bottom of the processing container 4, An exhaust passage 34 in which a pressure control valve 30 and a vacuum pump 32 are interposed is connected to the vent 28 so that the atmosphere in the processing container 4 can be evacuated.
  • Plasma is generated in the processing space S by the energy of the microwave introduced into the processing container 4, and the plasma processing such as plasma etching or plasma deposition is performed on the semiconductor wafer and W using this plasma. .
  • the flow rate, (C) shows the pressure in the processing vessel, and (D) shows the microwave power for plasma generation.
  • CF gas which is a film forming gas, is used as the processing gas, and the plasma gas is not used.
  • a CF film is formed as a low dielectric constant (Low-k) film used for interlayer insulation films and the like.
  • the first step is performed.
  • the supply of Ar gas into the processing container 4 is started, and the pressure in the processing container 4 is maintained at a pressure at which plasma can be ignited, for example, about 500 mTorr (67 Pa) for a predetermined time, for example, about 5 seconds.
  • the microwave generator 24 is driven to supply microwaves into the processing container 4.
  • the microwave power at this time is about 2500W, which is slightly lower than the process power (semiconductor UE, microwave power supplied into the processing vessel 4 when film is formed on W), for example, 30 OOW (Watt))
  • the plasma is ignited and the plasma is stably maintained in the processing container 4.
  • the second process takes about 5 seconds.
  • the third step is performed.
  • the pressure in the processing container 4 is changed from 500 mTorr to the process pressure (pressure in the processing container 4 when a film is formed on the semiconductor wafer W), for example, 45 mTorr and stabilized at this process pressure.
  • the microwave power is increased from 2500W to the process power of 3000W.
  • the time for the third step is about 5 sec.
  • the fourth step is performed.
  • CF gas is fed into the processing container 4 at a predetermined flow rate. Supply. Thereby, the deposition of the CF film on the semiconductor wafer W starts.
  • the time of the 4th process depends on the target film thickness of the CF film.
  • the plasma film forming process described above is a single wafer process that processes wafers W one by one. In order to improve throughput, the time required for processing one wafer W is several seconds. It is also desirable to shorten it.
  • the time of the first to third steps is relatively long.
  • the CF film is immediately after the start of the supply of CF gas.
  • the CF gas supply starting force does not start deposition About 5 seconds until the CF film deposition starts
  • This delay time causes a decrease in throughput.
  • FIG. 10 is a graph showing the relationship between the elapsed time from the start of the fourth step in the fourth step and the deposited film thickness. As is clear from FIG. 10, the film thickness does not increase until about 5 seconds after the CF gas supply start force elapses.
  • the time of about 5 seconds during which the film thickness does not increase is the delay time T1.
  • the delay time T1 occurs because the partial pressure of C F gas in the processing vessel 4 from the start of C F gas supply causes film deposition.
  • the delay time T1 varies depending on the capacity of the processing container 4 and the type of gas used.
  • a thin film of about 20 A is deposited on the wafer W at the start of the fourth process, but this thin film is deposited in the processing container 4 prior to the start of the film forming process.
  • a precoat film made of CF film adhered to the wall surface is deposited on the wafer surface by Ar sputtering in the second and third steps. The film quality of this thin film is slightly inferior to that of the film formed in the fourth step.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a plasma processing technique that can significantly improve the throughput by minimizing the delay time described above.
  • the present invention supplies an inert gas and a processing gas into a processing container that can be evacuated to a predetermined object with respect to an object to be processed in the presence of plasma.
  • processing An ignition pressure setting step for setting the pressure in the processing container to a pressure at which plasma can be ignited by starting the supply of an inert gas into the processing container, and the processing A plasma ignition step of starting the supply of the processing gas into the container, and igniting the plasma before the plasma becomes non-ignitable due to an increase in the partial pressure of the processing gas; and the pressure in the processing container A pressure adjusting step for changing to a process pressure for performing a predetermined process, and supplying / swinging the plasma to ignite and maintain the plasma power to a plasma power value for performing the predetermined process.
  • a plasma processing method characterized by including a process execution step for performing the predetermined process by changing.
  • the predetermined process may be a film forming process or an etching process.
  • the processing gas is supplied at the same flow rate as the supply flow rate of the processing gas in the processing execution step simultaneously with the start of the supply of the processing gas in the plasma ignition step.
  • the value of the plasma power in the process execution step is changed when the pressure in the process container reaches a process pressure for performing the predetermined process.
  • the plasma power in the plasma ignition step is lower than the plasma power in the processing execution step.
  • the plasma power in the plasma ignition step is lower than the plasma power in the processing execution step.
  • the pressure in the processing container in the ignition pressure setting step is higher than the pressure in the processing container in the processing execution step.
  • the present invention provides a plasma processing apparatus that performs a predetermined process in the presence of a plasma using a predetermined processing gas and an inert gas with respect to the target object.
  • a processing container provided with a mounting table, an exhaust system having a vacuum pump and a pressure control valve for exhausting the atmosphere in the processing container, the processing gas and an inert gas into the processing container
  • Gas supply means for supplying the plasma, plasma forming means for forming plasma in the processing container, and supply of an inert gas into the processing container is started so that the plasma can ignite the pressure in the processing container
  • An ignition pressure setting step for setting the pressure to a suitable pressure, and plasma for starting the supply of the processing gas into the processing container and igniting the plasma before the plasma cannot be ignited due to an increase in the partial pressure of the processing gas.
  • An ignition step a pressure adjusting step for changing the pressure in the processing container to a process pressure for performing the predetermined processing, and a plasma supplied to ignite and maintain the plasma.
  • At least the exhaust system, the gas supply means, and the plasma so that the process execution step of performing the predetermined process by changing the electric power to the value of the plasma power for performing the predetermined process is sequentially performed.
  • a control means for controlling the operation of the forming means.
  • the present invention provides a processing container provided with a mounting table on which a workpiece is placed, an exhaust system having a vacuum pump and a pressure control valve for exhausting the atmosphere in the processing container, and the processing
  • a gas supply means for supplying a processing gas and an inert gas into the container; and a plasma forming means for generating plasma in the processing container; and supplying the inert gas and the processing gas into the processing container.
  • a storage medium is provided which is configured to control the plasma processing apparatus.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of an embodiment of a plasma processing apparatus according to the present invention.
  • FIG. 2 is a timing chart for explaining an embodiment of the plasma processing method according to the present invention.
  • FIG. 3 is a flowchart illustrating an embodiment of a plasma processing method according to the present invention.
  • FIG. 4 is a timing chart for explaining a first modification of the plasma processing method according to the present invention.
  • FIG. 5 is a timing chart for explaining a second modification of the plasma processing method according to the present invention.
  • FIG. 6 is a timing chart for explaining a third modification of the plasma processing method according to the present invention.
  • FIG. 7 is a graph showing the relationship between the elapsed time in the process execution process and the deposited film thickness of the CF film.
  • FIG. 8 is a schematic cross-sectional view showing a configuration of a conventional general plasma processing apparatus.
  • FIG. 9 is a timing chart illustrating an example of a conventional plasma film forming method.
  • FIG. 10 is a graph showing the relationship between the elapsed time in the fourth step and the deposited film thickness of the CF film.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of an embodiment of a plasma processing apparatus according to the present invention.
  • a CF film is formed by plasma treatment using Ar gas and CF gas.
  • the plasma processing apparatus 40 has a cylindrical processing vessel 42 as a whole. Processing container
  • the side walls and bottom wall of 42 are formed of a conductor such as aluminum.
  • a sealed processing space S is defined inside the processing container 42, and plasma is formed in the processing space S.
  • the processing vessel 42 is electrically grounded.
  • a flat disk-shaped mounting table 44 is accommodated in the processing container 42. Upper surface of mounting table 44 A workpiece, for example, a semiconductor wafer W having a diameter of 300 mm is placed on the substrate.
  • the mounting table 44 is made of ceramic such as alumina.
  • the mounting table 44 is supported on the bottom wall of the container via an aluminum-made column 46.
  • a thin electrostatic chuck 50 is provided on the mounting table 44. Inside the electrostatic chuck 50, conductor wires arranged in a mesh shape as electrodes are provided. This conductor wire is connected to a DC power supply 54 via a wiring 52. By applying a DC voltage to the conductor wire, the wafer W placed on the mounting table 44, that is, on the electrostatic chuck 50 is removed. It is electrostatically attracted.
  • a bias high-frequency power source 56 is connected to the wiring 52 in order to apply a bias power of a predetermined frequency, for example, 13.56 MHz to the conductor wire of the electrostatic chuck 50.
  • a heating means 58 composed of a resistance heater is provided, and the wafer W can be heated by heat if necessary.
  • the mounting table 44 is provided with a plurality of elevating pins (not shown), for example, three that raise and lower the wafer W when the wafer W is carried in and out.
  • a gate valve 60 is provided that opens and closes when the Ueno and W are carried into and out of the processing vessel 42.
  • An exhaust port 62 is provided in the bottom wall of the container.
  • An exhaust system 64 is connected to the exhaust port 62 in order to exhaust, for example, vacuum exhaust the atmosphere in the processing container 42.
  • the exhaust system 64 has an exhaust passage 66 connected to the exhaust port 62.
  • a pressure control valve 68 made of, for example, a baffle valve is interposed in the upstream portion of the exhaust passage 66, and a vacuum pump 70 is interposed in the downstream portion of the exhaust passage 66.
  • a pressure detector 74 made of, for example, a capacitance manometer is provided on the side wall of the processing container 42, and the opening degree of the pressure control valve 68 is fed back based on the pressure in the processing container 42 measured by the pressure detector 74. Be controlled.
  • a ceramic material such as Al 2 O or a microphone having a quartz force is provided in the opening of the ceiling of the processing vessel 42.
  • a mouth wave permeable top plate 76 is airtightly attached through a seal member 78 such as an O-ring.
  • the thickness of the top plate 76 is, for example, about 20 mm in consideration of pressure resistance.
  • a plasma forming means 80 is provided on the upper surface side of the top plate 76.
  • the plasma forming means 80 has a disk-shaped planar antenna member 82 provided on the upper surface of the top plate 76 so as to face the mounting table 44.
  • Planar antenna section A slow wave material 84 is provided on the material 82.
  • the slow wave material 84 also has a high dielectric constant material force, and shortens the wavelength of the microwave propagating therein.
  • the entire surface of the slow wave member 84 is covered with a conductive waveguide box 86 in the form of a hollow cylindrical container.
  • the planar antenna member 82 constitutes the bottom plate of the waveguide box 86.
  • the peripheral portions of the waveguide box 86 and the planar antenna member 82 are both electrically connected to the processing container 42.
  • the outer conductor 88A of the coaxial waveguide 88 is connected to the central portion of the upper portion of the waveguide box 86.
  • the central conductor 88B of the coaxial waveguide 88 is connected to the central portion of the planar antenna member 82 through the through hole at the center of the slow wave member 84.
  • the coaxial waveguide 88 is connected to a microwave generator 94 having a predetermined frequency, for example, 2.45 GHz, through a waveguide 92 having a mode converter 90 and a matching unit (not shown) in the middle thereof. Then, the microwave is propagated to the planar antenna member 82.
  • the planar antenna member 82 is a conductor plate, for example, a copper plate or aluminum plate force with a silver-plated surface.
  • the planar antenna member 82 is formed with a number of microwave radiation slots 96 in the form of elongated through holes.
  • the slots 96 can be arranged, for example, concentrically, spirally, or radially.
  • a gas supply means 98 for supplying various gases necessary for processing is provided in the processing container 42.
  • the gas supply means 98 has a shower head portion 100 disposed above the mounting table 44 in the processing container 42.
  • the shower head unit 100 can be configured by combining a plurality of quartz tubular bodies in which a large number of gas injection holes 102 are formed in a lattice shape.
  • the shower head unit 100 can be in the form of a box-shaped container having a number of gas injection holes formed on the lower surface thereof.
  • a gas flow path 104 is connected to the shower head unit 100.
  • a plurality of gas flow paths 104 are branched into two branch paths here on the base end side, and gas sources 104A and 104B are connected to the respective branch paths.
  • One gas source 104A stores an inert gas as a plasma gas.
  • the force in which Ar gas is used as an inert gas is not limited to this, and other inert gases such as He gas, Ne gas, and N gas are used.
  • a sex gas can also be used.
  • the other gas source 104B stores a film forming gas as a processing gas.
  • a CF gas as a film forming gas, specifically, Replacing force using F gas Not limited to this, other CF gas may be used.
  • the gas supply means 98 includes a supply source of an inert gas such as N gas.
  • the two branch paths are respectively provided with flow controllers 106A and 106B for controlling the flow rate of the gas flowing therethrough, and further on the upstream side and the downstream side of each of the flow controllers 106A and 106B.
  • On-off valves 108A and 108B are interposed, respectively.
  • each gas can be supplied to the shower head unit 100 while controlling the flow rate as necessary.
  • the overall operation of the plasma processing apparatus 40 is controlled by a control means 110 having, for example, a microcomputer equal power.
  • a program for controlling the computer is stored in a storage medium 112 such as a flexible disk, CD (Compact Disc), HDD (Hard Disk Drive), or flash memory.
  • a storage medium 112 such as a flexible disk, CD (Compact Disc), HDD (Hard Disk Drive), or flash memory.
  • supply of each processing gas and flow control, supply of microwaves and power control (control of plasma power), control of process temperature and process pressure, and the like are performed.
  • the semiconductor wafer W is loaded into the processing container 42 by the transfer arm (not shown) through the opened gate valve 60, and the upper and lower pins (not shown) are moved up and down to move the wafer W to the upper surface of the mounting table 44. Then, the wafer W is electrostatically adsorbed by the electrostatic chuck 50.
  • the temperature of the wafer W is controlled as necessary by the heating means 58 built in the mounting table 44.
  • the Ar gas and Z or C F gas are supplied from the gas supply means 98 through the gas flow path 104 at the flow rates described in the timing chart of FIG.
  • the pressure in the processing vessel 42 is controlled to the pressure described in the timing chart of FIG. 2 through driving of the vacuum pump 70 of the exhaust system 64 and adjusting the opening of the pressure control valve 68.
  • the microwave generator 94 of the plasma forming means 80 generates microwaves having the output shown in the timing chart of FIG. 2 and the generated microphone mouth wave is planarized through the waveguide 92 and the coaxial waveguide 88.
  • the microwave whose wavelength is shortened by the slow wave material 84 is introduced into the processing space S in the processing container 42 after being supplied to the antenna member 82. Then, the gas in the processing space S is turned into plasma by the microwave energy, A film is deposited on the surface of the wafer w by the active species generated at this time.
  • FIG. 2 (A) is the Ar gas supply flow rate, (B) is the CF gas supply flow rate, (C) is the pressure inside the processing vessel, and (D) is the pre-flow rate.
  • Razma power meaning microwave power to generate plasma; the same applies hereinafter.
  • throughput is improved by suppressing the delay time T1 (see Fig. 7) that occurs in the conventional method.
  • the pressure at which the plasma can be ignited varies depending on the type of gas used.
  • the pressure is in the range of 5 to: LOOOOmTorr.
  • the pressure in the processing vessel 42 is set to 500 mTorr in consideration of the certainty of ignition.
  • the time for the ignition pressure setting step (S4) is, for example, about 1 sec.
  • the supply of 5 8 is started and plasma is ignited (S5: plasma ignition process).
  • the flow rate of DC F gas can be in the range of 10 to 1000 sccm, for example,
  • the flow rate of CF gas here is the flow rate in the process execution process described later.
  • the plasma power used for plasma ignition is preferably as low as possible. The reason is to suppress etching of the surface of the member exposed to the plasma such as the top plate 76 by Ar sputtering, as will be described later.
  • the lower limit of the plasma power that is, the microwave power required to ignite the plasma depends on the gas type and the pressure in the container. In the case of this embodiment, the lower limit of the plasma power required to ignite the plasma is about 1000 W (watts).
  • the time of the plasma ignition step (S5) is set to a minimum time required for the plasma to ignite and stabilize, for example, about 2 seconds.
  • the supply of CF gas and the supply of plasma power are started simultaneously.
  • the power supply may be started or vice versa. In any case, supply of CF gas and supply of plasma power are started within a short time of about 2 seconds. Processing capacity
  • the pressure in the processing container 42 is set to the process pressure (the pressure in the processing container when the CF film is deposited on the wafer W).
  • S6 Pressure adjustment process
  • the process pressure here can be in the range of 10 to 1000 mTorr, for example, and here it is 48 mTorr (6.4 Pa).
  • the time of the pressure adjustment process is the time required to change the pressure to the process pressure of the plasma ignition process, for example, about 3 seconds.
  • the plasma power is the process power (meaning the plasma power when the CF film is deposited on the wafer W. The same applies hereinafter) while maintaining the flow rate of each gas. ))
  • S7 process execution step
  • the plasma power that is, the process power
  • the plasma power can be set within a range of 1000 to 6000 W, for example, 3000 W here.
  • the time of the process execution step S7 is determined depending on the target film thickness of the CF film.
  • the processed wafer W is carried out of the processing container 42 (S9). If there is an unprocessed wafer W (NO in S10), the process returns to step S1. Repeat the above steps to complete the processing of all wafers (YES in S10)
  • the supply of the CF gas is started before the time point at which the process conditions for the deposition of the CF film are completely adjusted (that is, the start time of the processing execution step).
  • the delay time that has occurred in the conventional technology does not occur, so the wafer processing time per sheet is greatly shortened, and the throughput can be greatly improved.
  • the preceding supply time of CF gas depends on the plasma ignition process and pressure.
  • the sum of the time of the force adjustment process that is, 5 seconds. If this pre-feed time is too long, film deposition may begin before the plasma power is raised to process power. A film deposited under a condition different from the process condition in the processing execution step is inferior in film quality. In order to prevent the deposition of films with poor film quality, the capacity of the processing vessel 42 and the flow rate of CF gas must be adjusted.
  • the advance supply time of CF gas should be shorter than twice the delay time T1.
  • the delay time can be shortened compared to the conventional film formation method (see Fig. 9).
  • the starting force of the process execution process can substantially reduce the delay time until the deposition of the film starts. There is no risk of inferior CF film depositing on the wafer prior to the process.
  • the starting time of the plasma ignition process and the period until the end of the pressure adjustment process is the V ⁇ incubation time during which no film is formed.
  • the supply of CF gas was started after the start of the plasma ignition process and 5 seconds before the start of the process execution process.
  • the flow rate, pressure in the processing vessel, and plasma power were the same as those described in the timing chart of Fig. 2.
  • the experimental results are shown in the graph of Fig. 7.
  • the graph in Fig. 7 shows the relationship between the elapsed time from the start of the process execution process (when the plasma power is increased to 3000 W) and the total film thickness of the film deposited on the wafer.
  • A shows a comparative example
  • line B shows an example.
  • Ar plasma energy is given to CF gas, which reduces the amount of Ar sputtering.
  • the plasma power when igniting the plasma is set to about 1500 W, which is considerably lower than 2500 W in the conventional method (see FIG. 6).
  • Ar top sputtering made of alumina can be prevented from being sputtered. For this reason, it is possible to suppress the incorporation of the A1 component into the CF film deposited on wafer W.
  • the aluminum concentration in the CF film formed by the conventional method is “100”
  • the aluminum concentration in the CF film formed by the method of the present invention is 0.94-5. It was reduced to about 8 ”.
  • the film to be formed is a CF film.
  • the film is not limited to this, but may be any kind of film, such as a SiCO film, a SiN film, or a SiO film. Also,
  • the type of the plasma treatment is not limited to the film formation process, and may be another plasma process such as an etching process, an ashing process, or a cleaning process.
  • the target object is not limited to a semiconductor wafer, but may be another type of target object such as a glass substrate, an LCD substrate, or a ceramic substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

When a predetermined processing, e.g. a film deposition processing, is performed on a workpiece (W) under the existence of plasma by supplying inert gas and processing gas into a processing container, a step for setting a pressure in the processing container to a pressure capable of igniting plasma by starting inert gas supply into the processing container, a step for starting processing gas supply into the processing container and igniting plasma before it becomes non-ignitable due to an increase in partial pressure of the processing gas, a step for regulating the pressure in the processing container to a process pressure for carrying out the predetermined processing, and a step for carrying out the predetermined processing by altering plasma power supplied in order to ignite and sustain plasma to the value of plasma power for carrying out the predetermined processing, are performed sequentially. Since the predetermined processing is performed effectively on the workpiece immediately after start of the step for carrying out the predetermined processing, throughput can be enhanced sharply.

Description

明 細 書  Specification
プラズマ処理方法及び装置  Plasma processing method and apparatus
技術分野  Technical field
[0001] 本発明は、半導体ウェハ等の被処理体に対してプラズマ成膜処理またはプラズマ エッチング処理等のプラズマ処理を行う方法及び装置に係り、特にスループットを向 上させるための技術に関する。  The present invention relates to a method and apparatus for performing plasma processing such as plasma film formation processing or plasma etching processing on an object to be processed such as a semiconductor wafer, and more particularly to a technique for improving throughput.
背景技術  Background art
[0002] 一般に、半導体集積回路等の半導体製品を製造するときには、半導体ウェハに対 して成膜処理、エッチング処理、酸化拡散処理、アツシング処理、改質処理等の各種 の処理が繰り返し施される。このような処理に対しては、処理の面内均一性およびス ループットの向上が求められて 、る。  In general, when manufacturing a semiconductor product such as a semiconductor integrated circuit, various processes such as a film forming process, an etching process, an oxidative diffusion process, an ashing process, and a modification process are repeatedly performed on a semiconductor wafer. . For such processing, there is a need to improve the in-plane uniformity and throughput of the processing.
[0003] 上記の各種処理を行う装置として、例え «JP09— 181052Aに開示されているよう な枚葉式のプラズマ処理装置が知られている。以下に、従来の枚葉式のプラズマ処 理装置の一例について図 8を参照して説明する。図 8において、プラズマ処理装置 2 は、真空引き可能になされた処理容器 4を備えており、処理容器 4内には半導体ゥェ ハ Wを載置する載置台 6が設けられて 、る。載置台 6は処理容器 4の底壁から起立 する支柱 8により支持されている。処理容器 4の天井部に、窒化アルミ若しくは石英か らなるマイクロ波透過性の円板状の天板 10が設けられて 、る。処理容器 4の側壁に は、処理容器 4内へ各種のガスを導入するためのガスノズル 12が設けられて!/、る。  [0003] As an apparatus for performing the above-described various processes, for example, a single-wafer type plasma processing apparatus as disclosed in JP09-181052A is known. Hereinafter, an example of a conventional single wafer plasma processing apparatus will be described with reference to FIG. In FIG. 8, the plasma processing apparatus 2 includes a processing container 4 that can be evacuated, and a mounting table 6 on which a semiconductor wafer W is mounted is provided in the processing container 4. The mounting table 6 is supported by a support column 8 standing from the bottom wall of the processing container 4. A microwave-permeable disk-shaped top plate 10 made of aluminum nitride or quartz is provided on the ceiling of the processing vessel 4. A gas nozzle 12 for introducing various gases into the processing container 4 is provided on the side wall of the processing container 4.
[0004] 天板 10の上面には、厚さ数 mm程度の円板状の平面アンテナ部材 14と、平面アン テナ部材 14の半径方向に関するマイクロ波の波長を短縮するための誘電体力もなる 遅波材 16とが設置されている。平面アンテナ部材 14には、多数の細長い貫通孔か らなるマイクロ波放射用のスロット 18が形成されている。平面アンテナ部材 14の中心 部に同軸導波管 20の中心導体 22が接続されている。マイクロ波発生器 24で発生し た所定周波数例えば 2. 45GHzのマイクロ波力 モード変 26にて所定の振動モ ードへ変換されて平面アンテナ部材に導かれ、平面アンテナ部材 14のスロット 18か ら処理容器 4内へ放射される。処理容器 4の底には排気口 28が設けられており、排 気口 28には圧力制御弁 30及び真空ポンプ 32が介設された排気通路 34が接続され ており、処理容器 4内の雰囲気を真空引きできるようになつている。処理容器 4内に導 入されたマイクロ波のエネルギにより処理空間 S内にプラズマが生成され、このプラズ マを用いて半導体ウエノ、 Wにプラズマエッチングまたはプラズマ成膜等のプラズマ処 理が施される。 [0004] On the top surface of the top plate 10, a disk-shaped planar antenna member 14 having a thickness of about several millimeters and a dielectric force for shortening the microwave wavelength in the radial direction of the planar antenna member 14 are also provided. Wave material 16 is installed. The planar antenna member 14 is formed with a slot 18 for microwave radiation composed of a number of elongated through holes. A central conductor 22 of the coaxial waveguide 20 is connected to the center of the planar antenna member 14. A predetermined frequency generated by the microwave generator 24, for example, 2.45 GHz, converted into a predetermined vibration mode by a microwave force mode change 26 and guided to the planar antenna member, from the slot 18 of the planar antenna member 14 Radiated into processing container 4. An exhaust port 28 is provided at the bottom of the processing container 4, An exhaust passage 34 in which a pressure control valve 30 and a vacuum pump 32 are interposed is connected to the vent 28 so that the atmosphere in the processing container 4 can be evacuated. Plasma is generated in the processing space S by the energy of the microwave introduced into the processing container 4, and the plasma processing such as plasma etching or plasma deposition is performed on the semiconductor wafer and W using this plasma. .
[0005] 上記装置にて実行されるプラズマ成膜処理について図 9のタイミングチャートを参 照して説明する。図 9において、(A)は Arガスの供給流量、(B)は C Fガスの供給  [0005] The plasma film forming process executed by the above apparatus will be described with reference to the timing chart of FIG. In Fig. 9, (A) is the Ar gas supply flow rate, and (B) is the CF gas supply.
5 8  5 8
流量、(C)は処理容器内の圧力、(D)はプラズマ発生のマイクロ波電力を示している [0006] ここでは、処理ガスとして成膜ガスである C Fガスを用い、プラズマ用ガスとして不  The flow rate, (C) shows the pressure in the processing vessel, and (D) shows the microwave power for plasma generation. [0006] Here, CF gas, which is a film forming gas, is used as the processing gas, and the plasma gas is not used.
5 8  5 8
活性ガスである Arガスを用いて、層間絶縁膜等に使用される低誘電率 (Low— k)膜 として CF膜を形成する。まず、処理容器 4内に半導体ウェハ Wを搬入して、これを載 置台 6上に載置し、処理容器 4内を真空引きして減圧する。  Using an Ar gas, which is an active gas, a CF film is formed as a low dielectric constant (Low-k) film used for interlayer insulation films and the like. First, the semiconductor wafer W is loaded into the processing container 4, placed on the mounting table 6, and the processing container 4 is evacuated and decompressed.
[0007] その後、第 1工程を実施する。第 1工程では、処理容器 4内に Arガスの供給を開始 すると共に、処理容器 4内の圧力をプラズマが着火できる圧力、例えば 500mTorr( 67Pa)程度に所定時間例えば 5sec程度の間維持する。  [0007] Thereafter, the first step is performed. In the first step, the supply of Ar gas into the processing container 4 is started, and the pressure in the processing container 4 is maintained at a pressure at which plasma can be ignited, for example, about 500 mTorr (67 Pa) for a predetermined time, for example, about 5 seconds.
[0008] 次に、第 2工程を実施する。第 2工程では、マイクロ波発生器 24を駆動してマイクロ 波を処理容器 4内に供給する。このときのマイクロ波電力は、プロセス電力(半導体ゥ エノ、 W上に成膜がされるときに処理容器 4内に供給されるマイクロ波電力)例えば 30 OOW (ワット))よりもやや低い 2500W程度とする。これによりプラズマを着火するとと もに処理容器 4内でプラズマを安定的に維持する。第 2工程の時間は 5sec程度であ る。  [0008] Next, the second step is performed. In the second step, the microwave generator 24 is driven to supply microwaves into the processing container 4. The microwave power at this time is about 2500W, which is slightly lower than the process power (semiconductor UE, microwave power supplied into the processing vessel 4 when film is formed on W), for example, 30 OOW (Watt)) And As a result, the plasma is ignited and the plasma is stably maintained in the processing container 4. The second process takes about 5 seconds.
[0009] 次に、第 3工程を実施する。第 3工程では、処理容器 4内の圧力を、 500mTorrか らプロセス圧力(半導体ウェハ W上に成膜がされるときの処理容器 4内圧力)例えば 4 5mTorrに変化させるとともにこのプロセス圧力で安定させる。これと同時に、マイクロ 波電力を 2500Wからプロセス電力である 3000Wへ上昇させる。第 3工程の時間は 5 sec程度である。  [0009] Next, the third step is performed. In the third step, the pressure in the processing container 4 is changed from 500 mTorr to the process pressure (pressure in the processing container 4 when a film is formed on the semiconductor wafer W), for example, 45 mTorr and stabilized at this process pressure. . At the same time, the microwave power is increased from 2500W to the process power of 3000W. The time for the third step is about 5 sec.
[0010] 次に、第 4工程を実施する。第 4工程では、 C Fガスを処理容器 4内に所定流量で 供給する。これにより、半導体ウェハ W上に CF膜の堆積が始まる。第 4工程の時間 は CF膜の目標膜厚に依存する。 [0010] Next, the fourth step is performed. In the fourth step, CF gas is fed into the processing container 4 at a predetermined flow rate. Supply. Thereby, the deposition of the CF film on the semiconductor wafer W starts. The time of the 4th process depends on the target film thickness of the CF film.
[0011] 上述したプラズマ成膜処理は、ウェハ Wを一枚ずつ処理する枚葉式処理であり、ス ループットの向上のためには一枚のウェハ Wの処理に要する時間をたとえ数秒であ つても短縮することが望まし 、。 [0011] The plasma film forming process described above is a single wafer process that processes wafers W one by one. In order to improve throughput, the time required for processing one wafer W is several seconds. It is also desirable to shorten it.
[0012] し力しながら、上述した従来方法では、第 1〜第 3工程の時間が比較的長い。これ に加えて、第 4工程 (成膜工程)においても、 C Fガスの供給開始直後から CF膜の However, in the conventional method described above, the time of the first to third steps is relatively long. In addition to this, in the fourth step (film formation step), the CF film is immediately after the start of the supply of CF gas.
5 8  5 8
堆積が始まるのではなぐ C Fガスの供給開始力 CF膜の堆積開始まで 5sec程度  The CF gas supply starting force does not start deposition About 5 seconds until the CF film deposition starts
5 8  5 8
の遅延時間がある。この遅延時間がスループット低下の原因となっている。  There is a delay time. This delay time causes a decrease in throughput.
[0013] この遅延時間について、第 4工程における第 4工程開始時点からの経過時間と堆 積膜厚との関係を示すグラフである図 10を参照して詳述する。図 10より明らかなよう に、 C Fガス供給開始力 約 5secが経過するまでの間は膜厚が増加せず、その後This delay time will be described in detail with reference to FIG. 10, which is a graph showing the relationship between the elapsed time from the start of the fourth step in the fourth step and the deposited film thickness. As is clear from FIG. 10, the film thickness does not increase until about 5 seconds after the CF gas supply start force elapses.
5 8 5 8
CF膜が高 、成膜レートで堆積し始める。  CF film starts to deposit at a high film formation rate.
[0014] この膜厚の増加しない約 5secの時間が遅延時間 T1である。遅延時間 T1が生じる 理由は、 C Fガスの供給開始から処理容器 4内の C Fガスの分圧が膜堆積が生じ [0014] The time of about 5 seconds during which the film thickness does not increase is the delay time T1. The delay time T1 occurs because the partial pressure of C F gas in the processing vessel 4 from the start of C F gas supply causes film deposition.
5 8 5 8  5 8 5 8
るために必要な値となるまでにある程度の時間が必要なためである。遅延時間 T1は 、処理容器 4の容量および使用するガス種等に依存して変化する。なお、図 10に示 すように、第 4工程の開始時点においてウェハ W上に 20 A程度の薄膜が付着してい るが、この薄膜は、成膜処理の開始に先立って処理容器 4の内壁面等に付着させた CF膜よりなるプリコート膜が第 2及び第 3工程において Arスパッタされることによって ウェハ表面に堆積したものである。この薄膜の膜質は第 4工程で成膜される膜の膜 質よりもやや劣る。  This is because a certain amount of time is required to reach a necessary value. The delay time T1 varies depending on the capacity of the processing container 4 and the type of gas used. As shown in FIG. 10, a thin film of about 20 A is deposited on the wafer W at the start of the fourth process, but this thin film is deposited in the processing container 4 prior to the start of the film forming process. A precoat film made of CF film adhered to the wall surface is deposited on the wafer surface by Ar sputtering in the second and third steps. The film quality of this thin film is slightly inferior to that of the film formed in the fourth step.
発明の開示  Disclosure of the invention
[0015] 本発明は、上記実情に鑑みなされたものであり、上述した遅延時間を最小化してス ループットを大幅に向上させることが可能なプラズマ処理技術を提供することを目的 としている。  [0015] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a plasma processing technique that can significantly improve the throughput by minimizing the delay time described above.
[0016] 上記目的を達成するため、本発明は、真空引き可能になされた処理容器内へ不活 性ガスと処理ガスとを供給してプラズマの存在下にて被処理体に対して所定の処理 を施すプラズマ処理方法にぉ ヽて、前記処理容器内へ不活性ガスの供給を開始し て前記処理容器内の圧力をプラズマが着火できるような圧力に設定する着火圧力設 定工程と、前記処理容器内への前記処理ガスの供給を開始すると共に、前記処理ガ スの分圧の増大によってプラズマが着火不能になる前にプラズマを着火するプラズ マ着火工程と、前記処理容器内の圧力を前記所定の処理を行うためのプロセス圧力 に変化させる圧力調整工程と、前記プラズマを着火して維持するために供給して!/ヽる プラズマ電力を前記所定の処理を行うためのプラズマ電力の値に変更して前記所定 の処理を行う処理実行工程と、を有することを特徴とするプラズマ処理方法を提供す る。前記所定の処理は、成膜処理又はエッチング処理とすることができる。 [0016] In order to achieve the above object, the present invention supplies an inert gas and a processing gas into a processing container that can be evacuated to a predetermined object with respect to an object to be processed in the presence of plasma. processing An ignition pressure setting step for setting the pressure in the processing container to a pressure at which plasma can be ignited by starting the supply of an inert gas into the processing container, and the processing A plasma ignition step of starting the supply of the processing gas into the container, and igniting the plasma before the plasma becomes non-ignitable due to an increase in the partial pressure of the processing gas; and the pressure in the processing container A pressure adjusting step for changing to a process pressure for performing a predetermined process, and supplying / swinging the plasma to ignite and maintain the plasma power to a plasma power value for performing the predetermined process. There is provided a plasma processing method characterized by including a process execution step for performing the predetermined process by changing. The predetermined process may be a film forming process or an etching process.
[0017] 本発明によれば、各プロセス条件を完全に整える時点より僅かに前の時点力 処 理ガスを先行して供給することにより遅延時間の発生を防止することができるため、ス ループットを大幅に向上させることができる。 [0017] According to the present invention, it is possible to prevent the occurrence of a delay time by supplying the time force processing gas slightly before the time point at which each process condition is completely adjusted. It can be greatly improved.
[0018] 好適な一実施形態において、前記プラズマ着火工程における前記処理ガスの供給 の開始と同時に、前記処理実行工程における前記処理ガスの供給流量と同じ流量 で前記処理ガスを供給する。 In a preferred embodiment, the processing gas is supplied at the same flow rate as the supply flow rate of the processing gas in the processing execution step simultaneously with the start of the supply of the processing gas in the plasma ignition step.
[0019] 好適な一実施形態において、前記処理実行工程におけるプラズマ電力の値の変 更は、前記処理容器内の圧力が前記所定の処理を行うためのプロセス圧力に達した 時に行われる。 [0019] In a preferred embodiment, the value of the plasma power in the process execution step is changed when the pressure in the process container reaches a process pressure for performing the predetermined process.
[0020] 好適な一実施形態にぉ 、て、前記プラズマ着火工程におけるプラズマ電力は、前 記処理実行工程におけるプラズマ電力よりも低 ヽ。プラズマ着火時に投入されるブラ ズマ電力を低くすることにより、不活性ガス (例えば Arガス)由来のプラズマにより処 理空間に面する部材 (例えばアルミナ製の天板)カ^パッタされることを防止すること ができる。これにより、プラズマ処理が成膜処理の場合には、成膜された膜中に不純 物(例えばアルミニウム)が含まれることを抑制することができる。  In a preferred embodiment, the plasma power in the plasma ignition step is lower than the plasma power in the processing execution step. By reducing the plasma power input at the time of plasma ignition, it is possible to prevent the material facing the processing space (for example, the top plate made of alumina) from being covered by the plasma derived from inert gas (for example, Ar gas). can do. Thereby, when the plasma treatment is a film formation treatment, it can be suppressed that impurities (for example, aluminum) are contained in the formed film.
[0021] 前記着火圧力設定工程における前記処理容器内の圧力は、前記処理実行工程に おける前記処理容器内の圧力よりも高い。  [0021] The pressure in the processing container in the ignition pressure setting step is higher than the pressure in the processing container in the processing execution step.
[0022] また、本発明は、被処理体に対して所定の処理ガスと不活性ガスとを用いてプラズ マの存在下で所定の処理を行うプラズマ処理装置にぉ 、て、前記被処理体を載置 する載置台が内部に設けられた処理容器と、前記処理容器内の雰囲気を排気する ための真空ポンプと圧力制御弁とを有する排気系と、前記処理容器内へ前記処理ガ スと不活性ガスとを供給するガス供給手段と、前記処理容器内にプラズマを形成する プラズマ形成手段と、前記処理容器内へ不活性ガスの供給を開始して前記処理容 器内の圧力をプラズマが着火できるような圧力に設定する着火圧力設定工程と、前 記処理容器内への前記処理ガスの供給を開始すると共に、前記処理ガスの分圧の 増大によってプラズマが着火不能になる前にプラズマを着火するプラズマ着火工程 と、前記処理容器内の圧力を前記所定の処理を行うためのプロセス圧力に変化させ る圧力調整工程と、前記プラズマを着火して維持するために供給して 、るプラズマ電 力を前記所定の処理を行うためのプラズマ電力の値に変更して前記所定の処理を 行う処理実行工程と、が順次実行されるように、少なくとも前記排気系、前記ガス供給 手段および前記プラズマ形成手段の動作を制御する制御手段と、を備えたことを特 徴とするプラズマ処理装置を提供する。 [0022] Further, the present invention provides a plasma processing apparatus that performs a predetermined process in the presence of a plasma using a predetermined processing gas and an inert gas with respect to the target object. Placed A processing container provided with a mounting table, an exhaust system having a vacuum pump and a pressure control valve for exhausting the atmosphere in the processing container, the processing gas and an inert gas into the processing container Gas supply means for supplying the plasma, plasma forming means for forming plasma in the processing container, and supply of an inert gas into the processing container is started so that the plasma can ignite the pressure in the processing container An ignition pressure setting step for setting the pressure to a suitable pressure, and plasma for starting the supply of the processing gas into the processing container and igniting the plasma before the plasma cannot be ignited due to an increase in the partial pressure of the processing gas. An ignition step, a pressure adjusting step for changing the pressure in the processing container to a process pressure for performing the predetermined processing, and a plasma supplied to ignite and maintain the plasma. At least the exhaust system, the gas supply means, and the plasma so that the process execution step of performing the predetermined process by changing the electric power to the value of the plasma power for performing the predetermined process is sequentially performed. And a control means for controlling the operation of the forming means.
更に本発明は、被処理体を載置する載置台が内部に設けられた処理容器と、前記 処理容器内の雰囲気を排気するための真空ポンプと圧力制御弁とを有する排気系と 、前記処理容器内へ処理ガスと不活性ガスとを供給するガス供給手段と、前記処理 容器内にプラズマを立てるプラズマ形成手段と、を備えるとともに前記処理容器内へ 不活性ガスと処理ガスとを供給してプラズマの存在下にて被処理体に対して所定の 処理を施すように構成されたプラズマ処理装置を制御するプログラムを記憶する記憶 媒体であって、前記プログラムが、前記処理容器内へ不活性ガスの供給を開始して 前記処理容器内の圧力をプラズマが着火できるような圧力に設定する着火圧力設定 工程と、前記処理容器内への前記処理ガスの供給を開始すると共に、前記処理ガス の分圧の増大によってプラズマが着火不能になる前にプラズマを着火するプラズマ 着火工程と、前記処理容器内の圧力を前記所定の処理を行うためのプロセス圧力に 変化させる圧力調整工程と、前記プラズマを着火して維持するために供給して 、るプ ラズマ電力を前記所定の処理を行うためのプラズマ電力の値に変更して前記所定の 処理を行う処理実行工程と、が実行されるように前記プラズマ処理装置を制御するよ うに構成されて 、ることを特徴とする記憶媒体を提供する。 図面の簡単な説明 Furthermore, the present invention provides a processing container provided with a mounting table on which a workpiece is placed, an exhaust system having a vacuum pump and a pressure control valve for exhausting the atmosphere in the processing container, and the processing A gas supply means for supplying a processing gas and an inert gas into the container; and a plasma forming means for generating plasma in the processing container; and supplying the inert gas and the processing gas into the processing container. A storage medium for storing a program for controlling a plasma processing apparatus configured to perform a predetermined process on an object to be processed in the presence of plasma, the program being an inert gas in the processing container And starting the supply of the processing gas to set the pressure in the processing vessel to a pressure at which plasma can be ignited, and starting the supply of the processing gas into the processing vessel, A plasma ignition step of igniting the plasma before the plasma becomes unignitable due to an increase in the partial pressure of the physical gas, and a pressure adjusting step of changing the pressure in the processing vessel to a process pressure for performing the predetermined processing, A process execution step of supplying the plasma to ignite and maintain it, changing plasma power to a value of plasma power for performing the predetermined process, and performing the predetermined process; Thus, a storage medium is provided which is configured to control the plasma processing apparatus. Brief Description of Drawings
[0024] [図 1]本発明によるプラズマ処理装置の一実施形態の構成を示す概略断面図である  FIG. 1 is a schematic cross-sectional view showing a configuration of an embodiment of a plasma processing apparatus according to the present invention.
[図 2]本発明によるプラズマ処理方法の一実施形態を説明するタイミングチャートであ る。 FIG. 2 is a timing chart for explaining an embodiment of the plasma processing method according to the present invention.
[図 3]本発明によるプラズマ処理方法の一実施形態を説明するフローチャートである  FIG. 3 is a flowchart illustrating an embodiment of a plasma processing method according to the present invention.
[図 4]本発明によるプラズマ処理方法の第 1の変形例を説明するタイミングチャートで ある。 FIG. 4 is a timing chart for explaining a first modification of the plasma processing method according to the present invention.
[図 5]本発明によるプラズマ処理方法の第 2の変形例を説明するタイミングチャートで ある。  FIG. 5 is a timing chart for explaining a second modification of the plasma processing method according to the present invention.
[図 6]本発明によるプラズマ処理方法の第 3の変形例を説明するタイミングチャートで ある。  FIG. 6 is a timing chart for explaining a third modification of the plasma processing method according to the present invention.
[図 7]処理実行工程における経過時問と CF膜の堆積膜厚との関係を示すグラフであ る。  FIG. 7 is a graph showing the relationship between the elapsed time in the process execution process and the deposited film thickness of the CF film.
[図 8]従来の一般的なプラズマ処理装置の構成を示す概略断面図である。  FIG. 8 is a schematic cross-sectional view showing a configuration of a conventional general plasma processing apparatus.
[図 9]従来のプラズマ成膜方法の一例を説明するタイミングチャートである。  FIG. 9 is a timing chart illustrating an example of a conventional plasma film forming method.
[図 10]第 4工程における経過時間と CF膜の堆積膜厚との関係を示すグラフである。 発明を実施するための最良の形態  FIG. 10 is a graph showing the relationship between the elapsed time in the fourth step and the deposited film thickness of the CF film. BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下に、本発明に係るプラズマ処理方法及び装置の実施形態につ!ヽて添付図面 を参照して説明する。本発明によるプラズマ処理装置の一実施形態の構成を示す概 略断面図である。ここでは、 Arガスと C Fガスとを用いたプラズマ処理により CF膜を Hereinafter, embodiments of a plasma processing method and apparatus according to the present invention will be described with reference to the accompanying drawings. 1 is a schematic cross-sectional view showing a configuration of an embodiment of a plasma processing apparatus according to the present invention. Here, a CF film is formed by plasma treatment using Ar gas and CF gas.
5 8  5 8
形成する場合について説明する。  The case of forming will be described.
[0026] プラズマ処理装置 40は、全体として筒体状の処理容器 42を有している。処理容器[0026] The plasma processing apparatus 40 has a cylindrical processing vessel 42 as a whole. Processing container
42の側壁や底壁はアルミニウム等の導体により形成されている。処理容器 42の内部 に密閉された処理空間 Sが画成され、この処理空間 Sにプラズマが形成される。処理 容器 42は電気的に接地されている。 The side walls and bottom wall of 42 are formed of a conductor such as aluminum. A sealed processing space S is defined inside the processing container 42, and plasma is formed in the processing space S. The processing vessel 42 is electrically grounded.
[0027] 処理容器 42内には扁平円板形の載置台 44が収容されている。載置台 44の上面 には、被処理体、例えば直径が 300mmサイズの半導体ウェハ Wが載置される。載 置台 44は、例えばアルミナ等のセラミックにより形成されている。載置台 44は、アルミ -ゥム製の支柱 46を介して容器底壁に支持されて 、る。 [0027] A flat disk-shaped mounting table 44 is accommodated in the processing container 42. Upper surface of mounting table 44 A workpiece, for example, a semiconductor wafer W having a diameter of 300 mm is placed on the substrate. The mounting table 44 is made of ceramic such as alumina. The mounting table 44 is supported on the bottom wall of the container via an aluminum-made column 46.
[0028] 載置台 44の上部には薄い静電チャック 50が設けられている。静電チャック 50の内 部には、電極として網目状に配設された導体線が設けられている。この導体線は配 線 52を介して直流電源 54に接続されており、導体線に直流電圧を印加することによ り、載置台 44上すなわち静電チャック 50上に載置されたウェハ Wが静電吸着される 。配線 52には、所定周波数例えば 13. 56MHzのバイアス電力を静電チャック 50の 導体線へ印加するためにバイアス高周波電源 56が接続されている。載置台 44内に は、抵抗加熱ヒータからなる加熱手段 58が設けられており、ウェハ Wを必要に応じて カロ熱することがでさる。 A thin electrostatic chuck 50 is provided on the mounting table 44. Inside the electrostatic chuck 50, conductor wires arranged in a mesh shape as electrodes are provided. This conductor wire is connected to a DC power supply 54 via a wiring 52. By applying a DC voltage to the conductor wire, the wafer W placed on the mounting table 44, that is, on the electrostatic chuck 50 is removed. It is electrostatically attracted. A bias high-frequency power source 56 is connected to the wiring 52 in order to apply a bias power of a predetermined frequency, for example, 13.56 MHz to the conductor wire of the electrostatic chuck 50. In the mounting table 44, a heating means 58 composed of a resistance heater is provided, and the wafer W can be heated by heat if necessary.
[0029] 載置台 44には、ウェハ Wの搬出入時にウェハ Wを昇降させる複数例えば 3本の図 示しない昇降ピンが設けられている。処理容器 42の側壁には、処理容器 42に対して ウエノ、 Wを搬入及び搬出する時に開閉するゲートバルブ 60が設けられている。容器 底壁には、排気口 62が設けられている。  The mounting table 44 is provided with a plurality of elevating pins (not shown), for example, three that raise and lower the wafer W when the wafer W is carried in and out. On the side wall of the processing vessel 42, a gate valve 60 is provided that opens and closes when the Ueno and W are carried into and out of the processing vessel 42. An exhaust port 62 is provided in the bottom wall of the container.
[0030] 排気口 62には、処理容器 42内の雰囲気を排気、例えば真空排気するために排気 系 64が接続されて ヽる。排気系 64は排気口 62に接続された排気通路 66を有して いる。排気通路 66の上流部には、例えばバッフルバルブよりなる圧力制御弁 68が介 設されており、排気通路 66の下流部には真空ポンプ 70が介設されている。処理容 器 42の側壁には例えばキャパシタンスマノメータよりなる圧力検出器 74が設けられ ており、この圧力検出器 74により測定した処理容器 42内の圧力に基づいて圧力制 御弁 68の開度がフィードバック制御される。  [0030] An exhaust system 64 is connected to the exhaust port 62 in order to exhaust, for example, vacuum exhaust the atmosphere in the processing container 42. The exhaust system 64 has an exhaust passage 66 connected to the exhaust port 62. A pressure control valve 68 made of, for example, a baffle valve is interposed in the upstream portion of the exhaust passage 66, and a vacuum pump 70 is interposed in the downstream portion of the exhaust passage 66. A pressure detector 74 made of, for example, a capacitance manometer is provided on the side wall of the processing container 42, and the opening degree of the pressure control valve 68 is fed back based on the pressure in the processing container 42 measured by the pressure detector 74. Be controlled.
[0031] 処理容器 42の天井部開口には、 Al O等のセラミック材または石英力もなるマイク  [0031] A ceramic material such as Al 2 O or a microphone having a quartz force is provided in the opening of the ceiling of the processing vessel 42.
2 3  twenty three
口波透過性の天板 76が Oリング等のシール部材 78を介して気密に装着されている。 天板 76の厚さは耐圧性を考慮して例えば 20mm程度とされる。  A mouth wave permeable top plate 76 is airtightly attached through a seal member 78 such as an O-ring. The thickness of the top plate 76 is, for example, about 20 mm in consideration of pressure resistance.
[0032] 処理容器 42内でプラズマを生成するために、天板 76の上面側にプラズマ形成手 段 80が設けられている。プラズマ形成手段 80は、載置台 44に対向するように天板 7 6の上面に設けられた円板形の平面アンテナ部材 82を有している。平面アンテナ部 材 82上に遅波材 84が設けられている。遅波材 84は、高誘電率材料力もなり、その 内部を伝播するマイクロ波の波長を短縮する。遅波材 84の全面は、中空円筒状容 器の形態の導電性の導波箱 86により覆われている。平面アンテナ部材 82は導波箱 86の底板を構成する。 In order to generate plasma in the processing vessel 42, a plasma forming means 80 is provided on the upper surface side of the top plate 76. The plasma forming means 80 has a disk-shaped planar antenna member 82 provided on the upper surface of the top plate 76 so as to face the mounting table 44. Planar antenna section A slow wave material 84 is provided on the material 82. The slow wave material 84 also has a high dielectric constant material force, and shortens the wavelength of the microwave propagating therein. The entire surface of the slow wave member 84 is covered with a conductive waveguide box 86 in the form of a hollow cylindrical container. The planar antenna member 82 constitutes the bottom plate of the waveguide box 86.
[0033] 導波箱 86及び平面アンテナ部材 82の周辺部は共に処理容器 42に電気的に導通 している。導波箱 86の上部の中心部には、同軸導波管 88の外側導体 88Aが接続さ れている。同軸導波管 88の中心導体 88Bは、遅波材 84の中心の貫通孔を通って平 面アンテナ部材 82の中心部に接続される。同軸導波管 88は、モード変換器 90及び その途中に整合器(図示せず)を有する導波管 92を介して所定周波数例えば例え ば 2. 45GHzのマイクロ波発生器 94に接続されており、平面アンテナ部材 82へマイ クロ波を伝搬する。  The peripheral portions of the waveguide box 86 and the planar antenna member 82 are both electrically connected to the processing container 42. The outer conductor 88A of the coaxial waveguide 88 is connected to the central portion of the upper portion of the waveguide box 86. The central conductor 88B of the coaxial waveguide 88 is connected to the central portion of the planar antenna member 82 through the through hole at the center of the slow wave member 84. The coaxial waveguide 88 is connected to a microwave generator 94 having a predetermined frequency, for example, 2.45 GHz, through a waveguide 92 having a mode converter 90 and a matching unit (not shown) in the middle thereof. Then, the microwave is propagated to the planar antenna member 82.
[0034] 平面アンテナ部材 82は、導体板例えば例えば表面が銀メツキされた銅板或いはァ ルミ板力 なる。平面アンテナ部材 82には、細長い貫通穴の形態の多数のマイクロ 波放射用のスロット 96が形成されている。スロット 96は、例えば、同心円状、渦巻状、 或いは放射状に配置することができる。  The planar antenna member 82 is a conductor plate, for example, a copper plate or aluminum plate force with a silver-plated surface. The planar antenna member 82 is formed with a number of microwave radiation slots 96 in the form of elongated through holes. The slots 96 can be arranged, for example, concentrically, spirally, or radially.
[0035] 処理容器 42の中に処理に必要な各種のガスを供給するガス供給手段 98が設けら れている。ガス供給手段 98は、処理容器 42内の載置台 44の上方に配置されたシャ ヮーヘッド部 100を有している。シャワーヘッド部 100は、多数のガス噴射孔 102が 形成された複数の石英製の管状体を格子状に組み合わせて構成することができる。 これに代えて、シャワーヘッド部 100は、その下面に多数のガス噴射孔が形成された 箱形容器の形態とすることができる。  A gas supply means 98 for supplying various gases necessary for processing is provided in the processing container 42. The gas supply means 98 has a shower head portion 100 disposed above the mounting table 44 in the processing container 42. The shower head unit 100 can be configured by combining a plurality of quartz tubular bodies in which a large number of gas injection holes 102 are formed in a lattice shape. Alternatively, the shower head unit 100 can be in the form of a box-shaped container having a number of gas injection holes formed on the lower surface thereof.
[0036] シャワーヘッド部 100には、ガス流路 104が接続されている。ガス流路 104はその 基端側で複数ここでは 2つの分岐路に分岐しており、各分岐路にはそれぞれガス源 104A、 104Bが接続されている。一方のガス源 104Aには、プラズマ用ガスとして不 活性ガスが貯留されて ヽる。例示された実施形態にぉ 、ては不活性ガスとして Arガ スが用いられている力 これに限定されず、 Heガス、 Neガス、 Nガス等の他の不活  A gas flow path 104 is connected to the shower head unit 100. A plurality of gas flow paths 104 are branched into two branch paths here on the base end side, and gas sources 104A and 104B are connected to the respective branch paths. One gas source 104A stores an inert gas as a plasma gas. In the illustrated embodiment, the force in which Ar gas is used as an inert gas is not limited to this, and other inert gases such as He gas, Ne gas, and N gas are used.
2  2
性ガスを用いることもできる。他方のガス源 104Bには、処理ガスとして成膜ガスが貯 留されている。例示された実施形態においては成膜ガスとして CF系ガス、具体的に はじ Fガスが用いられている力 これに限定されず、他の CF系ガスを用いてもよい。A sex gas can also be used. The other gas source 104B stores a film forming gas as a processing gas. In the illustrated embodiment, a CF gas as a film forming gas, specifically, Replacing force using F gas Not limited to this, other CF gas may be used.
5 8 5 8
尚、実際には、ガス供給手段 98は Nガス等の不活性ガスの供給源も含んでいる力  In practice, the gas supply means 98 includes a supply source of an inert gas such as N gas.
2  2
これは図示を省略している。  This is not shown in the figure.
[0037] 上記 2つの分岐路には、それぞれに流れるガス流量を制御する流量制御器 106A 、 106Bがそれぞれ介設されており、さらに各流量制御器 106A、 106Bの上流側と 下流側とにはそれぞれ開閉弁 108A、 108Bが介設されている。これにより、各ガスを 必要に応じて流量制御しつつシャワーヘッド部 100に供給することができる。  [0037] The two branch paths are respectively provided with flow controllers 106A and 106B for controlling the flow rate of the gas flowing therethrough, and further on the upstream side and the downstream side of each of the flow controllers 106A and 106B. On-off valves 108A and 108B are interposed, respectively. Thus, each gas can be supplied to the shower head unit 100 while controlling the flow rate as necessary.
[0038] プラズマ処理装置 40の全体の動作は、例えばマイクロコンピュータ等力 なる制御 手段 110により制御される。コンピュータの制御動作のためのプログラムはフレキシブ ルディスク、 CD (Compact Disc)、 HDD (Hard Disk Drive)またはフラッシュメモリ等 の記憶媒体 112に記憶されている。制御手段 110からの指令により、各処理ガスの 供給及び流量制御、マイクロ波の供給及び電力制御(プラズマ電力の制御)、並びに プロセス温度及びプロセス圧力の制御等が行われる。  [0038] The overall operation of the plasma processing apparatus 40 is controlled by a control means 110 having, for example, a microcomputer equal power. A program for controlling the computer is stored in a storage medium 112 such as a flexible disk, CD (Compact Disc), HDD (Hard Disk Drive), or flash memory. In accordance with commands from the control means 110, supply of each processing gas and flow control, supply of microwaves and power control (control of plasma power), control of process temperature and process pressure, and the like are performed.
[0039] 次に、上記のプラズマ処理装置 40を用いて行なわれるプラズマ処理方法について 説明する。まず、処理の全体の概要について説明する。まず、開放されたゲートバル ブ 60を介して半導体ウェハ Wを搬送アーム(図示せず)により処理容器 42内に搬入 して、図示しない昇降ピンを上下動させることによりウェハ Wを載置台 44の上面の載 置面に載置し、そして、ウェハ Wを静電チャック 50により静電吸着する。  Next, a plasma processing method performed using the plasma processing apparatus 40 will be described. First, an overview of the entire process will be described. First, the semiconductor wafer W is loaded into the processing container 42 by the transfer arm (not shown) through the opened gate valve 60, and the upper and lower pins (not shown) are moved up and down to move the wafer W to the upper surface of the mounting table 44. Then, the wafer W is electrostatically adsorbed by the electrostatic chuck 50.
[0040] 載置台 44に内蔵された加熱手段 58により、必要に応じてウェハ Wの温度が制御さ れる。処置容器 42内には、ガス供給手段 98からガス流路 104を介して Arガス及び Z又は C Fガスが図 2のタイミングチャートに記載された流量でシャワーヘッド部 10  [0040] The temperature of the wafer W is controlled as necessary by the heating means 58 built in the mounting table 44. In the treatment container 42, the Ar gas and Z or C F gas are supplied from the gas supply means 98 through the gas flow path 104 at the flow rates described in the timing chart of FIG.
5 8  5 8
0に供給され、そこから処理容器 42内へ噴射される。処理容器 42内の圧力は、排気 系 64の真空ポンプ 70の駆動および圧力制御弁 68の開度調節を介して、図 2タイミン グチャートに記載された圧力に制御される。プラズマ形成手段 80のマイクロ波発生器 94には図 2のタイミングチャートに記載された出力のマイクロ波を発生し、発生したマ イク口波は導波管 92及び同軸導波管 88を介して平面アンテナ部材 82に供給され、 処理容器 42内の処理空間 Sに遅波材 84によって波長が短くされたマイクロ波が導 入される。すると、マイクロ波のエネルギにより処理空間 S内のガスがプラズマ化され、 このとき発生する活性種によってウェハ wの表面に膜が堆積する。 0 is supplied and injected into the processing container 42 from there. The pressure in the processing vessel 42 is controlled to the pressure described in the timing chart of FIG. 2 through driving of the vacuum pump 70 of the exhaust system 64 and adjusting the opening of the pressure control valve 68. The microwave generator 94 of the plasma forming means 80 generates microwaves having the output shown in the timing chart of FIG. 2 and the generated microphone mouth wave is planarized through the waveguide 92 and the coaxial waveguide 88. The microwave whose wavelength is shortened by the slow wave material 84 is introduced into the processing space S in the processing container 42 after being supplied to the antenna member 82. Then, the gas in the processing space S is turned into plasma by the microwave energy, A film is deposited on the surface of the wafer w by the active species generated at this time.
[0041] 次に、図 2のタイミングチャート及び図 3のフローチャートを参照して、本発明に基づ くプラズマ成膜方法の各工程について詳細に説明する。図 2において、(A)は、 Ar ガスの供給流量、(B)は C Fガスの供給流量、(C)は処理容器内の圧力、(D)はプ Next, each step of the plasma film forming method according to the present invention will be described in detail with reference to the timing chart of FIG. 2 and the flowchart of FIG. In Fig. 2, (A) is the Ar gas supply flow rate, (B) is the CF gas supply flow rate, (C) is the pressure inside the processing vessel, and (D) is the pre-flow rate.
5 8  5 8
ラズマ電力(プラズマを生成するためのマイクロ波電力を意味する。以下同じ)を示し ている。ここでは、特に、従来方法において生じる遅延時間 T1 (図 7参照)を抑制す ることにより、スループットの向上を図るようにしている。  Razma power (meaning microwave power to generate plasma; the same applies hereinafter). Here, in particular, throughput is improved by suppressing the delay time T1 (see Fig. 7) that occurs in the conventional method.
[0042] まず、未処理のウエノ、 Wを処理容器 42内へ搬入してこれを載置台 44上に載置し( S 1)、処理容器 42内を密閉し、処理容器 42内を減圧する(S2)。圧力調整を行い(S 3)、処理容器 42内の圧力がプラズマの着火が可能となる圧力(減圧)に到達したら、 Arガスの供給を開始するとともに、引き続き処理容器内をプラズマの着火が可能とな る減圧に維持する(S4 :着火圧力設定工程)。この時の Arガスの流量は、例えば 50 〜3000sccmの範囲内とすることができ、ここでは 250sccmとしている。ここでの Ar ガス流量は、後述の処理実行工程のときの流量と同じにする。  [0042] First, untreated Ueno and W are loaded into the processing container 42 and placed on the mounting table 44 (S1), the processing container 42 is sealed, and the processing container 42 is depressurized. (S2). When the pressure is adjusted (S 3) and the pressure in the processing vessel 42 reaches a pressure (decompression) at which plasma can be ignited, the Ar gas supply is started and the plasma inside the processing vessel can continue to be ignited. (S4: ignition pressure setting process). At this time, the flow rate of Ar gas can be set within a range of 50 to 3000 sccm, for example, and is 250 sccm here. The Ar gas flow rate here is the same as the flow rate in the process execution step described later.
[0043] プラズマの着火が可能となる圧力は、使用するガスの種類によって異なる力 Arガ スの場合は、 5〜: LOOOOmTorrの範囲内である。ここでは、着火の確実性を考慮して 処理容器 42内の圧力を 500mTorrとしている。着火圧力設定工程 (S4)の時間は例 えば 1 sec程度である。  [0043] The pressure at which the plasma can be ignited varies depending on the type of gas used. For Ar gas, the pressure is in the range of 5 to: LOOOOmTorr. Here, the pressure in the processing vessel 42 is set to 500 mTorr in consideration of the certainty of ignition. The time for the ignition pressure setting step (S4) is, for example, about 1 sec.
[0044] 次に、処理容器 42内の圧力を上記値に維持した状態で、処理ガスである C Fガス  [0044] Next, in a state where the pressure in the processing container 42 is maintained at the above value, the CF gas as the processing gas is used.
5 8 の供給を開始すると共に、プラズマの着火を行う(S5 :プラズマ着火工程)。この場合 (DC Fガスの流量は、例えば 10〜1000sccmの範囲内とすることができ、ここでは 2  The supply of 5 8 is started and plasma is ignited (S5: plasma ignition process). In this case (the flow rate of DC F gas can be in the range of 10 to 1000 sccm, for example,
5 8  5 8
OOsccmとしている。ここでの C Fガスの流量は、後述の処理実行工程のときの流量  OOsccm. The flow rate of CF gas here is the flow rate in the process execution process described later.
5 8  5 8
と同じにする。ここでプラズマの着火のために用いるプラズマ電力は可能な限り低く することが好ましい。その理由は、後述するように、 Arスパッタによる天板 76等のブラ ズマに晒される部材表面のエッチングを抑制するためである。プラズマを着火するた めに必要なプラズマ電力すなわちマイクロ波電力の下限値は、ガス種および容器内 圧力によって異なる。本実施形態の場合、プラズマを着火するために必要なプラズマ 電力の下限値は 1000W (ワット)程度である力 ここでは確実な着火のため下限値よ りやや^:さ ヽ 1500Wとして!/ヽる。 Same as. Here, the plasma power used for plasma ignition is preferably as low as possible. The reason is to suppress etching of the surface of the member exposed to the plasma such as the top plate 76 by Ar sputtering, as will be described later. The lower limit of the plasma power, that is, the microwave power required to ignite the plasma depends on the gas type and the pressure in the container. In the case of this embodiment, the lower limit of the plasma power required to ignite the plasma is about 1000 W (watts). Riyaya ^: Sa と し て 1500W!
[0045] プラズマ着火工程 (S5)の時間は、プラズマが着火してプラズマが安定するまでに 必要な最小時間、例えば 2sec程度とされる。なお、図 2の(B)及び (D)に示すように 、ここでは C Fガスの供給開始とプラズマ電力の供給開始とを同時に行うようにした [0045] The time of the plasma ignition step (S5) is set to a minimum time required for the plasma to ignite and stabilize, for example, about 2 seconds. In addition, as shown in FIGS. 2B and 2D, here, the supply of CF gas and the supply of plasma power are started simultaneously.
5 8  5 8
力 これに限定されない。例えば C Fガスの供給を先に開始して、その後プラズマ電  Power It is not limited to this. For example, the supply of CF gas is started first, and then the plasma
5 8  5 8
力の供給を開始してもよぐ或いは、その逆でもよい。いずれにしても、 2sec程度の 短い時間内で、 C Fガスの供給及びプラズマ電力の供給を開始する。なお、処理容  The power supply may be started or vice versa. In any case, supply of CF gas and supply of plasma power are started within a short time of about 2 seconds. Processing capacity
5 8  5 8
器 42内における C Fガスの分圧が所定値例えば lOmTorr以上になるとプラズマの  When the partial pressure of CF gas in the vessel 42 exceeds a predetermined value, for example, lOmTorr,
5 8  5 8
着火が不能となるので、プラズマ着火不能になる前にプラズマ電力の供給を開始す ることが必要である。  Since ignition becomes impossible, it is necessary to start supplying plasma power before plasma ignition becomes impossible.
[0046] 次に、上記各ガスの流量及びプラズマ電力をそれぞれそのまま維持した状態で、 処理容器 42内の圧力を、プロセス圧力(ウェハ Wに CF膜を堆積させるときの処理容 器内圧力を意味する。以下同じ。)まで低下させる(S6 :圧力調整工程)。ここでのプ ロセス圧力は、例えば 10〜1000mTorrの範囲内とすることができ、ここでは 48mTo rr (6. 4Pa)としている。圧力調整工程の時間は、プラズマ着火工程の圧力力 プロ セス圧力への圧力変更に必要な時間であり、例えば 3sec程度である。  [0046] Next, in the state where the flow rate of each gas and the plasma power are maintained as they are, the pressure in the processing container 42 is set to the process pressure (the pressure in the processing container when the CF film is deposited on the wafer W). (S6: Pressure adjustment process). The process pressure here can be in the range of 10 to 1000 mTorr, for example, and here it is 48 mTorr (6.4 Pa). The time of the pressure adjustment process is the time required to change the pressure to the process pressure of the plasma ignition process, for example, about 3 seconds.
処理容器 42内の圧力がプロセス圧力に到達したならば、各ガスの流量をそれぞれ 維持した状態で、プラズマ電力をプロセス電力(ウェハ Wに CF膜を堆積させるときの プラズマ電力を意味する。以下同じ。)まで上昇させて、ウェハ W上への CF膜の堆積 (成膜)を開始する(S7:処理実行工程)。  If the pressure in the processing vessel 42 reaches the process pressure, the plasma power is the process power (meaning the plasma power when the CF film is deposited on the wafer W. The same applies hereinafter) while maintaining the flow rate of each gas. )) To start the deposition (film formation) of the CF film on the wafer W (S7: process execution step).
[0047] このときのプラズマ電力すなわちプロセス電力は、例えば 1000〜6000Wの範囲 内とすることができ、ここでは 3000Wとしている。この処理実行工程 S 7に先行して C  [0047] At this time, the plasma power, that is, the process power, can be set within a range of 1000 to 6000 W, for example, 3000 W here. Prior to this process execution step S7, C
5 Five
Fガスが処理容器 42内に供給されているため、プラズマ電力を上昇させると直ぐにAs F gas is supplied into the processing vessel 42, as soon as the plasma power is raised,
8 8
成膜が開始され、遅延時間 T1 (図 10参照)は生じない。従って、スループットを向上 させることがでさる。  Deposition is started and the delay time T1 (see Fig. 10) does not occur. Therefore, the throughput can be improved.
[0048] 処理実行工程 S7の時間は、 CF膜の目標膜厚に依存して決定される。成膜処理が 完了したならば (S8)、処理済みのウェハ Wを処理容器 42の外側へ搬出する(S9)。 そして、未処理のウェハ Wが存在するならば(S10の NO)、上記ステップ S1へ戻つ て、前述した各工程を繰り返し行い、全てのウェハの処理を完了させる(S10の YES[0048] The time of the process execution step S7 is determined depending on the target film thickness of the CF film. When the film forming process is completed (S8), the processed wafer W is carried out of the processing container 42 (S9). If there is an unprocessed wafer W (NO in S10), the process returns to step S1. Repeat the above steps to complete the processing of all wafers (YES in S10)
) o ) o
[0049] 上述の実施形態では、 CF膜の堆積のためのプロセス条件が完全に整う時点(すな わち処理実行工程の開始時点)より前カゝら C Fガスの供給を開始しているため、従  [0049] In the above-described embodiment, the supply of the CF gas is started before the time point at which the process conditions for the deposition of the CF film are completely adjusted (that is, the start time of the processing execution step). , Obedience
5 8  5 8
来技術において生じていた遅延時間が発生せず、このため一枚あたりのウェハ処理 時間が大幅に短縮されるため、スループットを大幅に向上させることができる。  The delay time that has occurred in the conventional technology does not occur, so the wafer processing time per sheet is greatly shortened, and the throughput can be greatly improved.
[0050] 図 9に示す従来方法の場合には、第 1〜第 3工程に要する時間である 15secに加 えて、遅延時間 Tl (5sec)が存在したので、 CF膜の堆積が始まるまに 20sec程度も 必要であった。これに対して、上記実施形態においては、 CF膜の堆積が始まるまで の所要時間は 6sec ( = 1 + 2 + 3)程度であり大幅に短縮できて 、る。  [0050] In the case of the conventional method shown in FIG. 9, in addition to the 15 seconds required for the first to third steps, there was a delay time Tl (5 seconds), so 20 seconds until the CF film deposition started. A degree was also necessary. On the other hand, in the above embodiment, the time required for the CF film deposition to start is about 6 seconds (= 1 + 2 + 3), which can be greatly shortened.
[0051] 上記より理解できるように、 C Fガスの先行供給時間は、プラズマ着火工程及び圧  [0051] As can be understood from the above, the preceding supply time of CF gas depends on the plasma ignition process and pressure.
5 8  5 8
力調整工程の時間の和、すなわち 5secである。この先行供給時間が長すぎると、プ ラズマ電力をプロセス電力に上昇させる前に、膜の堆積が始まるおそれがある。処理 実行工程におけるプロセス条件と異なる条件下で堆積した膜は、膜質が劣る。膜質 の劣る膜の堆積を防止するためには、処理容器 42の容量および C Fガスの流量に  The sum of the time of the force adjustment process, that is, 5 seconds. If this pre-feed time is too long, film deposition may begin before the plasma power is raised to process power. A film deposited under a condition different from the process condition in the processing execution step is inferior in film quality. In order to prevent the deposition of films with poor film quality, the capacity of the processing vessel 42 and the flow rate of CF gas must be adjusted.
5 8  5 8
も依存するが、 C Fガスの先行供給時間は遅延時間 T1の 2倍程度より短くすること  However, the advance supply time of CF gas should be shorter than twice the delay time T1.
5 8  5 8
が好ましい。  Is preferred.
[0052] また圧力調整工程の時間が短ぐプラズマ着火工程及び圧力調整工程の所要時 間の和が遅延時間 T1以下である場合には、図 4及び図 5の変形例 1及び変形例 2に 示すように(図 5の変形例 2では途中に待ち工程を加えている)、プラズマ着火工程の 開始力も圧力調整工程の終了までの時間を遅延時間 T1よりも短くすることができる。 この場合であっても、処理実行工程の開始時点において C Fガスが既に供給されて  [0052] Also, if the sum of the required times of the plasma ignition process and the pressure adjustment process, which requires a short time for the pressure adjustment process, is equal to or less than the delay time T1, the modifications 1 and 2 in FIGS. As shown (in the modified example 2 in FIG. 5, a waiting process is added halfway), the starting force of the plasma ignition process and the time until the end of the pressure adjustment process can be made shorter than the delay time T1. Even in this case, CF gas has already been supplied at the start of the process execution process.
5 8  5 8
いるので、従来における成膜方法(図 9参照)よりも遅延時間を短縮することができる  Therefore, the delay time can be shortened compared to the conventional film formation method (see Fig. 9).
[0053] 図 2の実施形態及び図 6に示す変形例 3のように、プラズマ着火工程の開始力 圧 力調整工程の終了までの時間(図 6の変形例では途中に待ち工程をカ卩えている)を 遅延時間 T1と同じにすることが好ましい。これにより処理実行工程の開始力も膜の堆 積が始まるまでの遅延時間を実質的に零にすることができ、さらに、上述のような膜 質の劣る CF膜が処理実行工程に先立ってウェハ上に堆積する恐れもない。この場 合、プラズマ着火工程の開始力 圧力調整工程の終了までの期間が成膜の生じな Vヽインキュベーションタイムとなる。 [0053] As shown in the embodiment of FIG. 2 and the modified example 3 shown in FIG. Is preferably the same as the delay time T1. As a result, the starting force of the process execution process can substantially reduce the delay time until the deposition of the film starts. There is no risk of inferior CF film depositing on the wafer prior to the process. In this case, the starting time of the plasma ignition process and the period until the end of the pressure adjustment process is the V ヽ incubation time during which no film is formed.
[0054] 以下に、本発明に基づく C Fガスの先行供給の効果を確認するための実験につ [0054] The following is an experiment for confirming the effect of the prior supply of CF gas based on the present invention.
5 8  5 8
いて説明する。比較例においては、プラズマ着火工程と圧力調整工程においては C  And explain. In the comparative example, in the plasma ignition process and the pressure adjustment process, C
5 Five
Fガスを供給しないで、処理実行工程の開始時点に C Fガスの供給を開始した。まThe supply of CF gas was started at the start of the process execution process without supplying F gas. Ma
8 5 8 8 5 8
た、本発明の実施例においては、プラズマ着火工程の開始以降であって処理実行 工程の開始時点の 5sec前に C Fガスの供給を開始した。 C Fガスおよび Arガスの  In the example of the present invention, the supply of CF gas was started after the start of the plasma ignition process and 5 seconds before the start of the process execution process. CF gas and Ar gas
5 8 5 8  5 8 5 8
流量、処理容器内圧力およびプラズマ電力の値は図 2のタイミングチャートに記載し たものと同じとした。実験結果を図 7のグラフに示す。図 7のグラフは、処理実行工程 の開始時点(プラズマ電力を 3000Wに上昇させた時点)からの経過時間と、ウェハ 上に堆積している膜の全膜厚との関係を示しており、線 Aが比較例、線 Bが実施例を 示している。  The flow rate, pressure in the processing vessel, and plasma power were the same as those described in the timing chart of Fig. 2. The experimental results are shown in the graph of Fig. 7. The graph in Fig. 7 shows the relationship between the elapsed time from the start of the process execution process (when the plasma power is increased to 3000 W) and the total film thickness of the film deposited on the wafer. A shows a comparative example, and line B shows an example.
[0055] 比較例 (線 A)では、処理実行工程の開始時点にぉ 、て 14 A程度の膜が既に堆積 しており、その後 2秒の間の膜厚増加は僅かであった。これに対して実施例 (線 B)で は、処理実行工程の開始時点における膜厚は 4 Aであり、その後、 lsec経過する毎 に膜厚はは 17 A、 42 Aと急激に増加した。すなわち、実施例においては、処理実行 工程の開始直後から、遅延時間 T1 (図 10参照)無しに、膜の堆積が開始することが 確認された。  In the comparative example (line A), a film of about 14 A had already been deposited at the start of the process execution step, and the film thickness increase for 2 seconds was slight after that. In contrast, in the example (line B), the film thickness at the start of the process execution process was 4 A, and thereafter the film thickness increased rapidly to 17 A and 42 A each time lsec passed. That is, in the example, it was confirmed that the film deposition started immediately after the start of the process execution step without the delay time T1 (see FIG. 10).
[0056] なお、経過時間「0」の時点で既に実施例および比較例共に膜の堆積が認められ、 またその膜厚は実施例では 4A程度であり、比較例の 14A程度よりかなり小さ力つた 。この膜は、処理容器 42の内壁面等に形成したあった CF膜よりなるプリコート膜が処 理実行工程より前の工程で発生する Arスパッタにより剥がされてウェハ上に堆積した ものである。実施例の方が膜厚が小さい理由は、 C Fガスを先行供給しているため  [0056] At the time when the elapsed time was "0", film deposition was already observed in both the example and the comparative example, and the film thickness was about 4A in the example, which was considerably smaller than about 14A of the comparative example. . In this film, a precoat film made of a CF film formed on the inner wall surface of the processing vessel 42 is peeled off by Ar sputtering generated in a process prior to the process execution process and deposited on the wafer. The reason why the film thickness is smaller in the example is because the CF gas is supplied in advance.
5 8  5 8
Arプラズマのエネルギーが C Fガスに与えられ、これにより Arスパッタ量が低減した  Ar plasma energy is given to CF gas, which reduces the amount of Ar sputtering.
5 8  5 8
ためである。  Because.
[0057] ところで、前述した実施形態にお!、ては、プラズマを着火する時のプラズマ電力を、 従来方法における 2500W (図 6参照)よりもかなり低い 1500W程度としているので、 アルミナ製の天板 76が Arスパッタされることを抑制することができる。このため、ゥェ ハ W上に堆積する CF膜中に A1成分が取り込まれることを抑制することができる。実 際に実験を行ったところ、従来方法で成膜した CF膜中のアルミニウムの濃度を「100 」とすると、本発明方法で成膜した CF膜中のアルミニウムの濃度を「0. 94〜5. 8」程 度まで低減することができた。 By the way, in the embodiment described above, the plasma power when igniting the plasma is set to about 1500 W, which is considerably lower than 2500 W in the conventional method (see FIG. 6). Ar top sputtering made of alumina can be prevented from being sputtered. For this reason, it is possible to suppress the incorporation of the A1 component into the CF film deposited on wafer W. As a result of an actual experiment, when the aluminum concentration in the CF film formed by the conventional method is “100”, the aluminum concentration in the CF film formed by the method of the present invention is 0.94-5. It was reduced to about 8 ”.
尚、上記実施形態では、成膜される膜は CF膜であった力 これに限定されるもので はなぐ任意の種類の膜例えば SiCO膜、 SiN膜または SiO膜であってもよい。また  In the above embodiment, the film to be formed is a CF film. The film is not limited to this, but may be any kind of film, such as a SiCO film, a SiN film, or a SiO film. Also
2  2
、プラズマ処理の種類は、成膜処理に限定されず、他のプラズマ処理、例えばエッチ ング処理、アツシング処理またはクリーニング処理であってもよい。被処理体は、半導 体ウェハに限定されるものではなぐ他の種類の被処理体例えばガラス基板、 LCD 基板またはセラミック基板であってもよ 、。  The type of the plasma treatment is not limited to the film formation process, and may be another plasma process such as an etching process, an ashing process, or a cleaning process. The target object is not limited to a semiconductor wafer, but may be another type of target object such as a glass substrate, an LCD substrate, or a ceramic substrate.

Claims

請求の範囲 The scope of the claims
[1] 真空引き可能になされた処理容器内へ不活性ガスと処理ガスとを供給してプラズマ の存在下にて被処理体に対して所定の処理を施すプラズマ処理方法において、 前記処理容器内へ不活性ガスの供給を開始して前記処理容器内の圧力をプラズ マが着火できるような圧力に設定する着火圧力設定工程と、  [1] In the plasma processing method of supplying an inert gas and a processing gas into a processing container that can be evacuated and performing a predetermined processing on the target object in the presence of plasma, An ignition pressure setting step for starting the supply of inert gas to set the pressure in the processing container to a pressure at which the plasma can be ignited;
前記処理容器内への前記処理ガスの供給を開始すると共に、前記処理ガスの分 圧の増大によってプラズマが着火不能になる前にプラズマを着火するプラズマ着火 工程と、  A plasma ignition step of starting the supply of the processing gas into the processing container and igniting the plasma before the plasma becomes non-ignitable due to an increase in the partial pressure of the processing gas;
前記処理容器内の圧力を前記所定の処理を行うためのプロセス圧力に変化させる 圧力調整工程と、  A pressure adjusting step of changing the pressure in the processing container to a process pressure for performing the predetermined processing;
前記プラズマを着火して維持するために供給して 、るプラズマ電力を前記所定の 処理を行うためのプラズマ電力の値に変更して前記所定の処理を行う処理実行工程 と、  A process execution step of supplying the plasma power to ignite and maintain, changing the plasma power to a value of plasma power for performing the predetermined process, and performing the predetermined process;
を有することを特徴とするプラズマ処理方法。  A plasma processing method comprising:
[2] 前記プラズマ着火工程における前記処理ガスの供給の開始と同時に、前記処理実 行工程における前記処理ガスの供給流量と同じ流量で前記処理ガスを供給すること を特徴とする請求項 1に記載のプラズマ処理方法。  [2] The processing gas is supplied at the same flow rate as the processing gas supply flow rate in the processing execution step simultaneously with the start of the supply of the processing gas in the plasma ignition step. Plasma processing method.
[3] 前記処理実行工程におけるプラズマ電力の値の変更は、前記処理容器内の圧力 が前記所定の処理を行うためのプロセス圧力に達した時に行われることを特徴とする 請求項 1に記載のプラズマ処理方法。 [3] The value of the plasma power in the processing execution step is performed when the pressure in the processing container reaches a process pressure for performing the predetermined processing. Plasma processing method.
[4] 前記プラズマ着火工程におけるプラズマ電力は、前記処理実行工程におけるブラ ズマ電力よりも低 、ことをことを特徴とする請求項 1に記載のプラズマ処理方法。 4. The plasma processing method according to claim 1, wherein plasma power in the plasma ignition step is lower than plasma power in the processing execution step.
[5] 前記着火圧力設定工程における前記処理容器内の圧力は、前記処理実行工程に おける前記処理容器内の圧力よりも高いことを特徴とする請求項 1に記載のプラズマ 処理方法。 5. The plasma processing method according to claim 1, wherein the pressure in the processing container in the ignition pressure setting step is higher than the pressure in the processing container in the processing execution step.
[6] 前記所定の処理は、成膜処理又はエッチング処理であることを特徴とする請求項 1 に記載のプラズマ処理方法。  6. The plasma processing method according to claim 1, wherein the predetermined process is a film forming process or an etching process.
[7] 被処理体に対して所定の処理ガスと不活性ガスとを用いてプラズマの存在下で所 定の処理を行うプラズマ処理装置にぉ 、て、 [7] Place the target object in the presence of plasma using a predetermined process gas and inert gas. In plasma processing equipment that performs regular processing,
前記被処理体を載置する載置台が内部に設けられた処理容器と、  A processing container in which a mounting table for mounting the object to be processed is provided;
前記処理容器内の雰囲気を排気するための真空ポンプと圧力制御弁とを有する排 気系と、  An exhaust system having a vacuum pump and a pressure control valve for exhausting the atmosphere in the processing vessel;
前記処理容器内へ前記処理ガスと不活性ガスとを供給するガス供給手段と、 前記処理容器内にプラズマを形成するプラズマ形成手段と、  Gas supply means for supplying the processing gas and inert gas into the processing container; plasma forming means for forming plasma in the processing container;
前記処理容器内へ不活性ガスの供給を開始して前記処理容器内の圧力をプラズ マが着火できるような圧力に設定する着火圧力設定工程と、前記処理容器内への前 記処理ガスの供給を開始すると共に、前記処理ガスの分圧の増大によってプラズマ が着火不能になる前にプラズマを着火するプラズマ着火工程と、前記処理容器内の 圧力を前記所定の処理を行うためのプロセス圧力に変化させる圧力調整工程と、前 記プラズマを着火して維持するために供給して 、るプラズマ電力を前記所定の処理 を行うためのプラズマ電力の値に変更して前記所定の処理を行う処理実行工程と、 が順次実行されるように、少なくとも前記排気系、前記ガス供給手段および前記ブラ ズマ形成手段の動作を制御する制御手段と、  An ignition pressure setting step for starting supply of an inert gas into the processing container and setting the pressure in the processing container to a pressure at which plasma can be ignited; and supply of the processing gas into the processing container A plasma ignition step of igniting the plasma before the plasma becomes non-ignitable due to an increase in the partial pressure of the processing gas, and the pressure in the processing container is changed to a process pressure for performing the predetermined processing And a process execution step of performing the predetermined process by changing the plasma power supplied to ignite and maintain the plasma and changing the plasma power to a value of the plasma power for performing the predetermined process. And a control means for controlling operations of at least the exhaust system, the gas supply means, and the plasma forming means, so that
を備えたことを特徴とするプラズマ処理装置。 A plasma processing apparatus comprising:
被処理体を載置する載置台が内部に設けられた処理容器と、前記処理容器内の 雰囲気を排気するための真空ポンプと圧力制御弁とを有する排気系と、前記処理容 器内へ処理ガスと不活性ガスとを供給するガス供給手段と、前記処理容器内にブラ ズマを立てるプラズマ形成手段と、を備えるとともに前記処理容器内へ不活性ガスと 処理ガスとを供給してプラズマの存在下にて被処理体に対して所定の処理を施すよ うに構成されたプラズマ処理装置を制御するプログラムを記憶する記憶媒体であって 前記プログラムが、  A processing container provided with a mounting table on which a workpiece is mounted, an exhaust system having a vacuum pump and a pressure control valve for exhausting the atmosphere in the processing container, and processing into the processing container A gas supply means for supplying a gas and an inert gas; and a plasma forming means for raising a plasma in the processing container, and the presence of plasma by supplying the inert gas and the processing gas into the processing container. A storage medium for storing a program for controlling a plasma processing apparatus configured to perform predetermined processing on an object to be processed below,
前記処理容器内へ不活性ガスの供給を開始して前記処理容器内の圧力をプラズ マが着火できるような圧力に設定する着火圧力設定工程と、  An ignition pressure setting step of starting supply of an inert gas into the processing container and setting the pressure in the processing container to a pressure at which a plasma can be ignited;
前記処理容器内への前記処理ガスの供給を開始すると共に、前記処理ガスの分 圧の増大によってプラズマが着火不能になる前にプラズマを着火するプラズマ着火 工程と、 Plasma ignition for starting the supply of the processing gas into the processing container and igniting the plasma before the plasma becomes non-ignitable due to an increase in the partial pressure of the processing gas Process,
前記処理容器内の圧力を前記所定の処理を行うためのプロセス圧力に変化させる 圧力調整工程と、  A pressure adjusting step of changing the pressure in the processing container to a process pressure for performing the predetermined processing;
前記プラズマを着火して維持するために供給して 、るプラズマ電力を前記所定の 処理を行うためのプラズマ電力の値に変更して前記所定の処理を行う処理実行工程 と、  A process execution step of supplying the plasma power to ignite and maintain, changing the plasma power to a value of plasma power for performing the predetermined process, and performing the predetermined process;
が実行されるように前記プラズマ処理装置を制御するように構成されて 、ることを特 徴とする記憶媒体。 A storage medium characterized by being configured to control the plasma processing apparatus so that is executed.
PCT/JP2007/063013 2006-06-28 2007-06-28 Plasma processing method and equipment WO2008001853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-178786 2006-06-28
JP2006178786A JP2008010598A (en) 2006-06-28 2006-06-28 Method and device for plasma process

Publications (1)

Publication Number Publication Date
WO2008001853A1 true WO2008001853A1 (en) 2008-01-03

Family

ID=38845617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063013 WO2008001853A1 (en) 2006-06-28 2007-06-28 Plasma processing method and equipment

Country Status (3)

Country Link
JP (1) JP2008010598A (en)
TW (1) TW200809963A (en)
WO (1) WO2008001853A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6479562B2 (en) * 2015-05-07 2019-03-06 東京エレクトロン株式会社 Method of generating processing condition of plasma processing apparatus and plasma processing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135213A (en) * 2004-11-09 2006-05-25 Tokyo Electron Ltd Plasma processing method and film forming method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135213A (en) * 2004-11-09 2006-05-25 Tokyo Electron Ltd Plasma processing method and film forming method

Also Published As

Publication number Publication date
JP2008010598A (en) 2008-01-17
TW200809963A (en) 2008-02-16

Similar Documents

Publication Publication Date Title
TWI463561B (en) Processing device and processing method
TWI469238B (en) Plasma etching treatment device and plasma etching treatment method
KR102112880B1 (en) Etching method for substrate to be processed and plasma-etching device
US8419859B2 (en) Method of cleaning plasma-treating apparatus, plasma-treating apparatus where the cleaning method is practiced, and memory medium memorizing program executing the cleaning method
WO2000001007A1 (en) Plasma processing method
TW200823992A (en) Etching method, etching device, computer program, and recording medium
US12018375B2 (en) Flim forming method of carbon-containing film by microwave plasma
JPWO2006106665A1 (en) Method for nitriding substrate and method for forming insulating film
JPH08115901A (en) Plasma processing method and plasma processor
US20210327719A1 (en) Method for processing workpiece
TW202002014A (en) Method and apparatus for processing substrate
KR101464867B1 (en) Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
JP7422540B2 (en) Film-forming method and film-forming equipment
JP7178935B2 (en) Method and apparatus for forming graphene structures
KR20080019061A (en) Film-forming and cleaning method
WO2008001853A1 (en) Plasma processing method and equipment
US20230167547A1 (en) Pre-coating method and processing apparatus
JPH10284291A (en) Plasma processing device and method
WO2021024823A1 (en) Plasma processing device
WO2022168648A1 (en) Substrate processing method and substrate processing device
US20230420294A1 (en) Substrate processing method and substrate processing apparatus
JP2019102508A (en) Method and apparatus for forming boron-based film
WO2022107611A1 (en) Film forming method and film forming device
KR20220035853A (en) Etching method and substrate processing apparatus
JPH11111708A (en) Method for plasma film treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767806

Country of ref document: EP

Kind code of ref document: A1