JPH11111708A - Method for plasma film treatment - Google Patents

Method for plasma film treatment

Info

Publication number
JPH11111708A
JPH11111708A JP9284450A JP28445097A JPH11111708A JP H11111708 A JPH11111708 A JP H11111708A JP 9284450 A JP9284450 A JP 9284450A JP 28445097 A JP28445097 A JP 28445097A JP H11111708 A JPH11111708 A JP H11111708A
Authority
JP
Japan
Prior art keywords
temperature
plasma
film
wafer
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9284450A
Other languages
Japanese (ja)
Other versions
JP3432722B2 (en
Inventor
Shinsuke Oka
信介 岡
Risa Nakase
りさ 中瀬
Masahide Saito
正英 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP28445097A priority Critical patent/JP3432722B2/en
Publication of JPH11111708A publication Critical patent/JPH11111708A/en
Application granted granted Critical
Publication of JP3432722B2 publication Critical patent/JP3432722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the contamination of a substrate with particles, when a film treated on the substrate with plasma. SOLUTION: An SiOF film is formed on a substrate composed of a wafer W in a vacuum vessel 2 by introducing a microwave having a frequency of about 2.45 GHz to the vessel 2, and at the same time, generating plasma from a film forming gas by causing electronic cyclotron resonance by forming magnetic field of about 875 Gauss in the vessel 2. The temperature of the inside wall surface of the vessel 2 is controlled to a temperature of, for example, 80 deg.C which is higher than the temperature T0 which is reached when the plasma is generated during the course of a series of process cycles of carrying the wafer W in the vessel 2, forming the film on the wafer W, and carrying the wafer W out of the vessel 2 by forming flow passages 31 through the entire wall body of the vessel 2 and making temperature-controlled Garudane (CR) to flow through the passages 31. Therefore, the peeling off of the SiOF film formed on the surface of the wafer W from the wafer W due to thermal deformation can be suppressed, and accordingly, the contamination of the wafer W with particles is suppressed, because the internal surface of the vessel 2 is maintained at a fixed temperature independent of the generation and dissipation of the plasma.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば絶縁膜をプ
ラズマにより基板上に成膜するプラズマ成膜処理方法に
関する。
The present invention relates to a plasma film forming method for forming an insulating film on a substrate by plasma, for example.

【0002】[0002]

【従来の技術】半導体ウエハに対して成膜処理を行う方
法の一つとしてプラズマを利用する処理がある。この処
理はウエハ載置台を備えた真空容器内に処理ガスを導入
して、例えば電磁エネルギーをこの処理ガスに供給して
プラズマ化することによって行われる。電磁エネルギー
の供給の手法としては、マイクロ波と磁界との相互作用
である電子サイクロトロン共鳴(ECR)を利用する方
法や、ICP(Inductive Coupled
Plasuma)などと呼ばれている、ドーム状の容器
に巻かれたコイルから電界及び磁界を処理ガスに与える
方法などが知られている。
2. Description of the Related Art One of the methods for performing a film forming process on a semiconductor wafer is a process using plasma. This processing is performed by introducing a processing gas into a vacuum vessel provided with a wafer mounting table and supplying, for example, electromagnetic energy to the processing gas to form a plasma. As a method of supplying electromagnetic energy, a method using electron cyclotron resonance (ECR), which is an interaction between a microwave and a magnetic field, and an ICP (Inductive Coupled) are used.
There is known a method of applying an electric field and a magnetic field to a processing gas from a coil wound around a dome-shaped container, which is called “Plasma”.

【0003】ECRプラズマ処理を行なう従来のプラズ
マ処理装置の一例を、成膜処理を例にとって図6に基づ
いて説明すると、プラズマ生成室1A内に例えば2.4
5GHzのマイクロ波を導波管11を介して供給すると
同時に、例えば図6の点線の位置の磁場の強さが875
ガウスとなるように電磁コイル12により磁界を印加し
て、マイクロ波と磁界との相互作用(共鳴)でプラズマ
生成用ガス例えばArガス及びO2 ガスを高密度にプラ
ズマ化し、このプラズマにより成膜室1B内に導入され
た反応性ガス例えばSiF4 ガスやSiH4 ガスを活性
化させて活性種を形成し、載置台13上の半導体ウエハ
W(以下「ウエハW」という)表面にスパッタエッチン
グと堆積とを同時進行で施すようになっている。
An example of a conventional plasma processing apparatus for performing an ECR plasma process will be described with reference to FIG. 6 taking a film forming process as an example.
At the same time as supplying the microwave of 5 GHz through the waveguide 11, the magnetic field strength at the position indicated by the dotted line in FIG.
A magnetic field is applied by the electromagnetic coil 12 so as to be Gaussian, and a plasma generating gas, for example, an Ar gas and an O 2 gas is turned into a high density plasma by the interaction (resonance) between the microwave and the magnetic field, and a film is formed by the plasma. The reactive gas introduced into the chamber 1B, for example, a SiF 4 gas or a SiH 4 gas is activated to form active species, and the surface of the semiconductor wafer W (hereinafter referred to as “wafer W”) on the mounting table 13 is subjected to sputter etching. The deposition is performed simultaneously.

【0004】そしてこのようなプラズマ処理装置では、
例えばSiOF膜やSiO2 膜などの絶縁膜の成膜処理
を行うと成膜室1Bの内壁面などにもこれらの膜が付着
してしまうが、成膜処理が進みこの膜の膜厚がある程度
の厚さになると付着した膜が剥がれてパーティクルの原
因となる。このため例えばウエハWを12枚成膜する毎
にCF4 ガスやNF3 ガスなどのF系のクリーニングガ
スを真空容器内に導入し、このガスをプラズマにより活
性化させ、この活性種を付着した膜に反応させて除去し
ている。
In such a plasma processing apparatus,
For example, when a film forming process of an insulating film such as a SiOF film or a SiO 2 film is performed, these films also adhere to the inner wall surface of the film forming chamber 1B. When the thickness becomes too large, the adhered film is peeled off, causing particles. Therefore, for example, every time 12 wafers W are formed, an F-based cleaning gas such as CF 4 gas or NF 3 gas is introduced into the vacuum vessel, the gas is activated by plasma, and the activated species is deposited. It is removed by reacting with the film.

【0005】[0005]

【発明が解決しようとする課題】ところで真空容器内に
てプラズマが立つと、そのプラズマの熱により真空容器
の内壁面が昇温し、例えばSiF4 ガスを用いた既述の
SiOF膜の成膜プロセスでは80℃付近にまで昇温す
る。一方プラズマが消失すると前記内壁面の温度は降下
するため、ウエハを真空容器内に搬入し、成膜し、搬出
する一連のサイクルにおいて前記内壁面の温度が大きく
変化する。このため内壁面に付着したSiOF膜などの
薄膜が熱変形して内壁面から剥がれやすくなってしま
う。特にSiOF膜やSiO2 膜などの絶縁膜は密着性
が低いことからこの傾向が大きく、ウエハのパーティク
ル汚染の一因になる。
When plasma is generated in the vacuum vessel, the temperature of the inner wall of the vacuum vessel rises due to the heat of the plasma. For example, the above-described SiOF film is formed using SiF 4 gas. In the process, the temperature is raised to around 80 ° C. On the other hand, when the plasma disappears, the temperature of the inner wall surface decreases, so that the temperature of the inner wall surface greatly changes in a series of cycles in which a wafer is carried into a vacuum vessel, formed into a film, and carried out. For this reason, a thin film such as a SiOF film adhered to the inner wall surface tends to be thermally deformed and peeled off from the inner wall surface. In particular, the insulating film such as a SiOF film or a SiO 2 film has a low adhesion, and this tendency is large, which causes a particle contamination of the wafer.

【0006】本発明は、このような事情の下になされた
ものであり、その目的は基板に対してプラズマにより成
膜処理を行うにあたって基板のパーティクル汚染を抑え
ることのできる方法を提供することにある。
The present invention has been made under such circumstances, and an object of the present invention is to provide a method capable of suppressing particle contamination of a substrate when performing a film forming process on the substrate by plasma. is there.

【0007】[0007]

【課題を解決するための手段】このため本発明は、基板
を真空容器内に搬入し、次いで処理ガスをプラズマ化し
てそのプラズマにより前記基板に対して成膜処理を行
い、その後前記基板を真空容器から搬出する一連のプロ
セスサイクルを所定回数行った後、前記真空容器内に付
着している薄膜をクリ−ニングガスにより除去する方法
において、前記プロセスサイクル中における真空容器の
内壁面の温度を、プラズマが発生しているときに到達す
る内壁面の温度T0以上のほぼ一定温度により維持する
ことを特徴とする。ここで真空容器の内壁面の温度を、
温度T0以上のほぼ一定温度に維持する代わりに前記温
度T0以下でかつその近傍の一定温度に維持するように
してもよい。
According to the present invention, a substrate is loaded into a vacuum vessel, a processing gas is turned into plasma, and a film is formed on the substrate by the plasma. After performing a series of process cycles for carrying out of the container a predetermined number of times, a method of removing a thin film adhered to the inside of the vacuum container with a cleaning gas, wherein the temperature of the inner wall surface of the vacuum container during the process cycle is measured by plasma. Is maintained at a substantially constant temperature that is equal to or higher than the temperature T0 of the inner wall surface that is reached when the airflow occurs. Here, the temperature of the inner wall of the vacuum vessel is
Instead of maintaining a substantially constant temperature equal to or higher than the temperature T0, a constant temperature equal to or lower than the temperature T0 and in the vicinity thereof may be maintained.

【0008】[0008]

【発明の実施の形態】図1は本発明方法を実施するため
のプラズマ成膜処理装置の一実施の形態を示す断面図で
あり、図中2は例えばアルミニウム等により形成された
真空容器である。この真空容器2は上方に位置してプラ
ズマを発生させるプラズマ室21と、この下方に連通さ
せて連結された成膜室22とからなる。なお真空容器2
は接地されてゼロ電位となっている。
FIG. 1 is a sectional view showing an embodiment of a plasma film forming apparatus for carrying out the method of the present invention. In FIG. 1, reference numeral 2 denotes a vacuum vessel formed of, for example, aluminum or the like. . The vacuum vessel 2 includes a plasma chamber 21 located above and generating plasma, and a film forming chamber 22 connected below and connected to the plasma chamber 21. The vacuum container 2
Is grounded to zero potential.

【0009】この真空容器2の上端は開口されて、この
部分に高周波(マイクロ波)を透過する部材例えば窒化
アルミニウム(AlN)により形成された透過窓23が
気密に設けられている。この透過窓23は支持リング2
4により外周縁を気密に支持されており、この透過窓2
3と支持リング24とにより真空容器2内の真空状態を
維持するようになっている。
An upper end of the vacuum vessel 2 is opened, and a transmission window 23 made of a member that transmits a high frequency (microwave), for example, aluminum nitride (AlN) is hermetically provided in this portion. The transmission window 23 is provided on the support ring 2.
The outer peripheral edge is airtightly supported by the transmission window 2.
The vacuum state in the vacuum vessel 2 is maintained by the support ring 3 and the support ring 24.

【0010】前記真空容器2の例えば壁部全体の内部に
は、恒温剤を通流させるための温度調整用の流路31が
形成されている。また例えば成膜室22の内壁には当該
内壁の温度を検出するための例えば白金測温抵抗体等か
らなる温度検出部32が設けられており、この温度検出
部32の検出値に基づいて調整部33にて温度調整され
た恒温剤例えばガルデンが流路31に通流されるように
なっている。
For example, a flow path 31 for adjusting the temperature for allowing the thermostatic agent to flow is formed inside the vacuum vessel 2, for example, on the entire wall. Further, for example, a temperature detecting unit 32 composed of, for example, a platinum resistance temperature detector for detecting the temperature of the inner wall is provided on the inner wall of the film forming chamber 22, and the temperature is adjusted based on the detected value of the temperature detecting unit 32. The thermostatic agent, for example, Galden, whose temperature has been adjusted by the section 33, flows through the flow channel 31.

【0011】透過窓23の外側には、プラズマ室21内
に例えば2.45GHzのマイクロ波を供給するため
の、例えば矩形導波管と円筒形導波管と円錐形導波管と
を組み合わせて構成された導波管25が設けられてい
る。この導波管25の出口側端部は透過窓23の上面に
接続されており、入口側端部はプラズマ発生用の高周波
電源部26に接続されていて、高周波電源部26にて発
生したマイクロ波を導波管25で案内して透過窓23か
らプラズマ室21内へ導入し得るようになっている。
On the outside of the transmission window 23, for example, a combination of a rectangular waveguide, a cylindrical waveguide, and a conical waveguide for supplying microwaves of, eg, 2.45 GHz into the plasma chamber 21 is provided. A configured waveguide 25 is provided. The exit side end of the waveguide 25 is connected to the upper surface of the transmission window 23, and the entrance side end is connected to a high frequency power supply 26 for plasma generation. Waves can be guided through the waveguide 25 and introduced into the plasma chamber 21 through the transmission window 23.

【0012】プラズマ室21を区画する側壁の上部側に
は、例えばプラズマガスを供給するためのガスノズル4
1が周方向に沿って均等に配置して設けられると共に、
このガスノズル41には図示しないプラズマガス源が接
続されており、プラズマ室21内の上部にArガスやO
2 ガス等のプラズマガスをムラなく均等に供給し得るよ
うになっている。なお図中ガスノズル41は図面の煩雑
化を避けるため2本しか記載していないが、実際にはそ
れ以上設けている。
A gas nozzle 4 for supplying a plasma gas, for example, is provided on an upper side of a side wall defining the plasma chamber 21.
1 are arranged evenly along the circumferential direction,
A plasma gas source (not shown) is connected to the gas nozzle 41, and Ar gas or O
Plasma gas such as two gases can be supplied evenly and evenly. Although only two gas nozzles 41 are shown in the figure to avoid complication of the drawing, more gas nozzles 41 are actually provided.

【0013】一方成膜室22の上部即ちプラズマ室21
と連通している部分には、リング状の成膜ガス供給部4
2が設けられている。この成膜ガス供給部42の内周面
にはガス供給口42aが形成されていて、図示しない成
膜ガス源から当該成膜ガス供給部42に供給された例え
ばSiF4 ガス等の成膜ガスが前記ガス供給口42aか
ら噴出するようになっている。
On the other hand, the upper part of the film forming chamber 22, ie, the plasma chamber 21
A ring-shaped film-forming gas supply unit 4
2 are provided. A gas supply port 42a is formed on the inner peripheral surface of the film forming gas supply unit 42, and a film forming gas such as SiF 4 gas supplied to the film forming gas supply unit 42 from a film forming gas source (not shown). Are ejected from the gas supply port 42a.

【0014】前記プラズマ室21を区画する側壁の外周
には、これに接近させて当該プラズマ室21を囲むよう
に、例えばリング状の主電磁コイル51が配置されると
共に、成膜室22の下方側にはリング状の補助電磁コイ
ル52が配置され、これらによりプラズマ室21から成
膜室22に亘って上から下に向かう磁界例えば875ガ
ウスの磁界Bを形成し得るようになっている。
A ring-shaped main electromagnetic coil 51 is arranged on the outer periphery of the side wall that partitions the plasma chamber 21 so as to approach and surround the plasma chamber 21. On the side, a ring-shaped auxiliary electromagnetic coil 52 is arranged, so that a magnetic field B, for example, 875 gauss from the plasma chamber 21 to the film formation chamber 22 can be formed from the top to the bottom.

【0015】また成膜室22内にはウエハWを載置する
ための載置台6が、処理位置とウエハWの受け渡し位置
の間で昇降自在に設けられている。この載置台6は例え
ばアルミニウム製の本体61の上に、ヒ−タと電極とを
内蔵した誘電体プレ−ト62を設けてなり、表面は静電
チャックとして構成されている。前記電極には静電チャ
ック用の図示しない直流電源が接続されていると共に、
ウエハWにイオンを引込むためのバイアス電圧を印加す
るように高周波電源部63が接続されている。
In the film forming chamber 22, a mounting table 6 for mounting a wafer W is provided so as to be able to move up and down between a processing position and a transfer position of the wafer W. The mounting table 6 is provided with a dielectric plate 62 having a built-in heater and electrodes on a main body 61 made of, for example, aluminum, and the surface is configured as an electrostatic chuck. A DC power supply (not shown) for an electrostatic chuck is connected to the electrode,
The high-frequency power supply unit 63 is connected so as to apply a bias voltage for drawing ions into the wafer W.

【0016】次に上述のプラズマ成膜処理装置にて行わ
れる一連のプロセスサイクルについて、基板であるウエ
ハW上に例えばSiOF膜よりなる層間絶縁膜を形成す
る場合を用いて説明する。先ず真空容器2の側壁に設け
た図示しないゲ−トバルブを開いて図示しない搬送ア−
ムにより、例えば表面にアルミニウム配線が形成された
例えば8インチサイズのウエハWを図示しないロ−ドロ
ック室から搬入して載置台6上に載置する。
Next, a series of process cycles performed by the above-described plasma film forming apparatus will be described using a case where an interlayer insulating film made of, for example, an SiOF film is formed on a wafer W as a substrate. First, a gate valve (not shown) provided on the side wall of the vacuum vessel 2 is opened to open a transfer arm (not shown).
A wafer W of, eg, an 8-inch size having, for example, an aluminum wiring formed on its surface is loaded from a load lock chamber (not shown) and placed on the mounting table 6.

【0017】続いてゲ−トバルブを閉じて内部を密閉し
た後、載置台6を処理位置まで上昇させ、図示しない排
気管により内部雰囲気を排出して所定の真空度まで真空
引きし、ガスノズル41からプラズマガス例えばArガ
ス及びO2 ガスを所定の流量で導入すると共に、成膜ガ
ス供給部42から成膜ガス例えばSiF4 ガスを所定の
流量で導入する。そして真空容器2内を所定のプロセス
圧力に維持し、かつ高周波電源部63により載置台6に
13.56MHzのバイアス電圧を印加すると共に、載
置台6の表面温度を例えば200℃に設定する。
Subsequently, after closing the gate valve to seal the inside, the mounting table 6 is raised to the processing position, the internal atmosphere is exhausted by an exhaust pipe (not shown), and the interior is evacuated to a predetermined degree of vacuum. A plasma gas such as an Ar gas and an O 2 gas are introduced at a predetermined flow rate, and a film forming gas such as a SiF 4 gas is introduced from the film forming gas supply unit at a predetermined flow rate. Then, the interior of the vacuum vessel 2 is maintained at a predetermined process pressure, a 13.56 MHz bias voltage is applied to the mounting table 6 by the high frequency power supply unit 63, and the surface temperature of the mounting table 6 is set to, for example, 200 ° C.

【0018】プラズマ室21内には、高周波電源部26
からの2.45GHzの高周波(マイクロ波)Mが真空
容器2の天井部に至り、透過窓23を介してプラズマ室
21内に導入される。一方真空容器2内には主電磁コイ
ル51と補助電磁コイル52とにより磁界Bが形成さ
れ、磁界Bの強さが875ガウスとなったポイントで、
磁界とマイクロ波との相互作用により電子サイクロトロ
ン共鳴が生じ、この共鳴によりプラズマガスがプラズマ
化され、且つ高密度化される。なおプラズマガスを用い
ることによりプラズマが安定する。
In the plasma chamber 21, a high frequency power supply 26
A high frequency (microwave) M of 2.45 GHz reaches the ceiling of the vacuum vessel 2 and is introduced into the plasma chamber 21 through the transmission window 23. On the other hand, a magnetic field B is formed in the vacuum vessel 2 by the main electromagnetic coil 51 and the auxiliary electromagnetic coil 52, and at the point where the intensity of the magnetic field B becomes 875 gauss,
Electron cyclotron resonance is generated by the interaction between the magnetic field and the microwave, and the resonance converts the plasma gas into plasma and increases the density. The use of a plasma gas stabilizes the plasma.

【0019】生成したプラズマはプラズマ室21から成
膜室22に向けてプラズマ流として流れ込んでいき、こ
こに供給されているSiF4 ガスはこのプラズマ流によ
り活性化(プラズマ化)されて、活性種(プラズマ)を
形成する。一方プラズマイオンはバイアス電圧によりウ
エハWに引き込まれ、ウエハW表面のパタ−ン(凹部)
に堆積されたSiOF膜の角をプラズマイオンのスパッ
タエッチング作用により削り取って間口を広げながら、
SiOF膜が成膜されて凹部内に埋め込まれる。
The generated plasma flows from the plasma chamber 21 toward the film forming chamber 22 as a plasma flow, and the SiF 4 gas supplied here is activated (plasmaized) by the plasma flow to form active species. (Plasma) is formed. On the other hand, the plasma ions are drawn into the wafer W by the bias voltage, and the pattern (recess) on the surface of the wafer W is formed.
While shaving off the corners of the SiOF film deposited on the surface by the sputter etching action of plasma ions,
An SiOF film is formed and embedded in the recess.

【0020】続いてSiOF膜が形成された処理後のウ
エハWを前記搬送ア−ムにより真空容器2から前記ロ−
ドロック室に搬出した後、次に処理すべきウエハWを前
記ロ−ドロック室から搬入して、載置台6上に載置し
(ウエハWの交換)、再びウエハWの成膜処理を行う。
こうして成膜処理のプロセスサイクルを例えば12回行
って(12枚のウエハWに対して成膜処理を行って)、
一連のプロセスサイクルを終了する。
Subsequently, the processed wafer W having the SiOF film formed thereon is transferred from the vacuum vessel 2 to
After being carried out to the lock chamber, the next wafer W to be processed is carried in from the load lock chamber, mounted on the mounting table 6 (replacement of the wafer W), and the film formation of the wafer W is performed again.
In this way, the process cycle of the film forming process is performed, for example, 12 times (the film forming process is performed on the 12 wafers W), and
End a series of process cycles.

【0021】次いで一連のプロセスサイクルにより真空
容器2内に付着したSiOF膜のクリ−ニングを行う。
このクリ−ニングでは、ガスノズル41からクリ−ニン
グガスである例えばNF3 ガスとN2 ガスとを所定の流
量でプラズマ室21内に導入する。そして真空容器2内
を所定のプロセス圧力に維持し、成膜処理と同様にマイ
クロ波と磁界との相互作用により電子サイクロトロン共
鳴を生じさせ、この共鳴によりクリ−ニングガスの活性
種を形成する。この活性種は真空容器2内に付着してい
るSiOF膜と反応して、SiOF膜を例えばSiF4
に分解して除去する。
Next, the SiOF film deposited in the vacuum vessel 2 is cleaned by a series of process cycles.
In this cleaning, cleaning gas such as NF 3 gas and N 2 gas, for example, is introduced into the plasma chamber 21 from the gas nozzle 41 at a predetermined flow rate. Then, the inside of the vacuum vessel 2 is maintained at a predetermined process pressure, and an electron cyclotron resonance is generated by the interaction between the microwave and the magnetic field as in the case of the film forming process, and an active species of a cleaning gas is formed by the resonance. This active species reacts with the SiOF film adhering to the inside of the vacuum vessel 2 to convert the SiOF film into, for example, SiF 4.
Decompose and remove.

【0022】続いて上述の成膜処理のプロセスサイクル
で行われる真空容器2の内壁面の温度制御について、図
2により説明する。クリ−ニング終了後、温度調整され
たガルデンを流路31に通流させて真空容器2の内壁面
の温度を、プラズマが発生しているときに到達する内壁
面の温度T0以上の温度、例えばSiOF膜の成膜処理
では80℃以上の温度T1に制御する。続いてウエハW
を真空容器2に搬入して成膜処理を行い、前記一連のプ
ロセスサイクルを行うが、このプロセスサイクルの間、
真空容器2の内壁面の温度をほぼ温度T1に維持するよ
うに温度制御を行う。
Next, the temperature control of the inner wall surface of the vacuum vessel 2 performed in the process cycle of the film forming process will be described with reference to FIG. After the cleaning is completed, the temperature-controlled Galden is passed through the flow path 31 to raise the temperature of the inner wall surface of the vacuum vessel 2 to a temperature equal to or higher than the inner wall temperature T0 reached when plasma is generated, for example. In the process of forming the SiOF film, the temperature is controlled to a temperature T1 of 80 ° C. or higher. Then, wafer W
Is carried into the vacuum vessel 2 to perform a film forming process, and a series of process cycles are performed. During this process cycle,
Temperature control is performed so that the temperature of the inner wall surface of the vacuum vessel 2 is maintained at substantially the temperature T1.

【0023】この際クリ−ニングでは温度コントロ−ル
は行わないが、クリ−ニング時の内壁面の温度は成膜処
理時よりも低くなり、例えばSiOF膜のクリ−ニング
では前記温度T0以下の温度例えば70℃程度となる。
真空容器2内の温度はバイアス電力に依存するが、クリ
−ニング時はバイアス電力を印加しないので、クリ−ニ
ング時の壁面の温度が成膜時より低くなるからである。
At this time, no temperature control is performed in the cleaning, but the temperature of the inner wall surface during the cleaning is lower than that during the film forming process. For example, in the cleaning of the SiOF film, the temperature is lower than the temperature T0. The temperature is, for example, about 70 ° C.
This is because the temperature in the vacuum vessel 2 depends on the bias power, but the bias power is not applied at the time of cleaning, so that the temperature of the wall surface at the time of cleaning becomes lower than at the time of film formation.

【0024】ここで図2では、クリ−ニングは前記プロ
セスサイクルよりも時間が短く、またウエハWの搬入出
という操作がないので、内壁面の温度が成膜処理時より
も変化しにくいため、図示の便宜上クリ−ニング時の内
壁面の温度はほぼ一定になっている。またプロセスサイ
クルの開始時とクリ−ニング開始時の内壁面の温度は急
激に変化するように記載されているが、実際には徐々に
変化している。
In FIG. 2, the cleaning time is shorter than the process cycle, and the operation of loading and unloading the wafer W is not performed. For convenience of illustration, the temperature of the inner wall surface during cleaning is substantially constant. Although the temperature of the inner wall surface at the start of the process cycle and at the start of cleaning is described to change rapidly, it actually changes gradually.

【0025】このように温度制御を行うと、前記プロセ
スサイクルの間、前記内壁面の温度は常にプラズマが発
生しているときに到達する温度T0以上のほぼ一定温度
T1に制御されるので、SiOF膜の剥離が原因となる
パ−ティクルの発生が抑えられ、ウエハWのパ−ティク
ル汚染が防止される。
By performing the temperature control in this manner, during the process cycle, the temperature of the inner wall surface is constantly controlled to a substantially constant temperature T1 which is equal to or higher than the temperature T0 reached when plasma is generated. Generation of particles due to the peeling of the film is suppressed, and particle contamination of the wafer W is prevented.

【0026】ここで実際に本発明者らが内壁面の温度制
御とパ−ティクル数との関係を確認するために行った実
験例について説明する。上述の図1に示すプラズマ成膜
処理装置を用い、Arガス及びO2 ガスを夫々300s
ccm、160sccmの流量でプラズマ室21内に導
入すると共に、SiF4 ガスを120sccmの流量で
成膜室22内に導入し、高周波電力を2700W、バイ
アス電力を2700W、真空容器2内の圧力を0.4P
aとして、真空容器2の内壁面の温度を変えて、上述の
実施の形態と同様のプロセスサイクルによりSiOF膜
を8インチサイズのウエハW上に成膜し、このプロセス
サイクルの間に発生したパ−ティクルの個数を調べた。
Here, an experimental example actually conducted by the present inventors to confirm the relationship between the temperature control of the inner wall surface and the number of particles will be described. Using the plasma film forming apparatus shown in FIG. 1 described above, each of Ar gas and O 2 gas s 300s
Introducing SiF 4 gas into the film forming chamber 22 at a flow rate of 120 sccm while introducing the SiF 4 gas into the film forming chamber 22 at a flow rate of ccm and 160 sccm, and setting the high frequency power to 2700 W, the bias power to 2700 W, and the pressure in the vacuum chamber 2 to 0 .4P
As a, the temperature of the inner wall surface of the vacuum vessel 2 was changed, and a SiOF film was formed on an 8-inch wafer W by the same process cycle as in the above-described embodiment. -The number of ticicles was checked.

【0027】この際パ−ティクル数は、テンコ−ル社製
サ−フスキャン6420により測定した。この結果を図
3に示すが、ここで横軸の無制御とは内壁面の温度制御
を行わなかった場合、25℃とは内壁面の温度を25℃
に制御した場合を示している。
At this time, the number of particles was measured by Surfscan 6420 manufactured by Tencol. The results are shown in FIG. 3. Here, “no control of the horizontal axis” means that the temperature of the inner wall surface is 25 ° C. when the temperature control of the inner wall surface is not performed.
Is shown.

【0028】この結果により、内壁面の温度制御を行っ
た場合には、行わなかった場合よりもパ−ティクルの個
数は少なく、特に内壁面を80℃以上の温度に制御した
場合にはパ−ティクルの個数はかなり少なくなることが
確認された。
As a result, when the temperature of the inner wall surface is controlled, the number of particles is smaller than when the temperature is not controlled. It was confirmed that the number of ticules was considerably reduced.

【0029】このように内壁面の温度を80℃以上の温
度に制御した場合にパ−ティクルの個数が少なくなるの
は次のような理由に因るものと推察される。先ず第1に
SiOF膜の成膜処理ではプラズマが発生しているとき
の内壁面の温度は80℃程度になることが確認されてい
るが、内壁面の温度を80℃以上のほぼ一定温度に制御
すれば、プロセスサイクルの間前記内壁面の温度はプラ
ズマの発生と消失に関わらずほぼ一定となる。このため
内壁面に付着したSiOF膜の熱変形が防止され、この
熱変形によりSiOF膜に亀裂が入り、この亀裂が原因
となって当該SiOF膜が剥がれ落ちることが抑えられ
ると考えられる。
The reason why the number of particles decreases when the temperature of the inner wall surface is controlled to a temperature of 80 ° C. or higher is presumed to be due to the following reasons. First, in the SiOF film formation process, it has been confirmed that the temperature of the inner wall surface when plasma is generated is about 80 ° C., but the temperature of the inner wall surface is set to a substantially constant temperature of 80 ° C. or higher. If controlled, the temperature of the inner wall surface during the process cycle will be substantially constant regardless of the generation and disappearance of plasma. Therefore, thermal deformation of the SiOF film adhered to the inner wall surface is prevented, and it is considered that the SiOF film is prevented from cracking due to the thermal deformation and peeling off of the SiOF film due to the crack.

【0030】第2に内壁面を80℃以上にすると、Si
OF膜の内壁面に対する密着性が高められ、これにより
SiOF膜はより強固に内壁面に付着することになって
より内壁面から剥がれにくくなるので、この観点からも
プロセスサイクルの間のパ−ティクルの発生が防止され
ると考えられる。
Second, when the inner wall surface is heated to 80 ° C. or higher, Si
Since the adhesion of the OF film to the inner wall surface is enhanced, and the SiOF film adheres more firmly to the inner wall surface and is less likely to be peeled off from the inner wall surface, the particles during the process cycle are also considered from this viewpoint. Is considered to be prevented.

【0031】実際に本発明者らがSiOF膜の密着強度
の温度依存性を確認するために実験を行ったところ、図
4に示す結果が得られた。この実験では上述の図1に示
すプラズマ成膜処理装置を用い、Arガス及びO2 ガス
を夫々300sccm、160sccmの流量でプラズ
マ室21内に導入すると共に、SiF4 ガスを120s
ccmの流量で成膜室22内に導入し、高周波電力を2
700W、バイアス電力を2700W、真空容器2内の
圧力を0.4Paとして、真空容器2の内壁面の温度を
変えて、アルミニウム板上にSiOF膜を成膜し、当該
SiOF膜の密着強度をセバスチャン法によりを測定し
た。この結果により、成膜時の内壁面の温度が高い程、
SiOF膜の密着強度が大きいことが確認され、特に内
壁面の温度が80℃以上になると、密着強度は6kps
i以上になることが認められた。
When the present inventors actually conducted an experiment to confirm the temperature dependence of the adhesion strength of the SiOF film, the results shown in FIG. 4 were obtained. In this experiment, the Ar gas and the O 2 gas were introduced into the plasma chamber 21 at flow rates of 300 sccm and 160 sccm, respectively, and the SiF 4 gas was supplied for 120 s using the plasma film forming apparatus shown in FIG.
The high-frequency power is introduced into the film forming chamber 22 at a flow rate of 2 cm.
700 W, the bias power was 2700 W, the pressure in the vacuum vessel 2 was 0.4 Pa, the temperature of the inner wall surface of the vacuum vessel 2 was changed, a SiOF film was formed on an aluminum plate, and the adhesion strength of the SiOF film was measured in Sebastian. Was measured by the method. According to this result, the higher the temperature of the inner wall surface during film formation,
It was confirmed that the adhesion strength of the SiOF film was large, especially when the temperature of the inner wall surface was 80 ° C. or more, the adhesion strength was 6 kps.
It was recognized that it became i or more.

【0032】このように本実施の形態では、成膜処理の
一連のプロセスサイクルを前記温度T0以上の温度、例
えばSiOF膜の場合では80℃以上のほぼ一定の温度
で行うことが望ましいが、この際温度の上限は、例えば
真空容器2にOリングが用いられている場合には、この
Oリングの耐性を考慮して200℃以下好ましくは15
0℃以下に設定することが望ましい。
As described above, in the present embodiment, it is desirable to perform a series of process cycles of the film forming process at a temperature equal to or higher than the temperature T0, for example, at a substantially constant temperature of 80 ° C. or higher in the case of a SiOF film. In the case where an O-ring is used for the vacuum vessel 2, for example, the upper limit of the temperature is 200 ° C. or less, preferably 15 ° C. in consideration of the resistance of the O-ring.
It is desirable to set the temperature to 0 ° C. or lower.

【0033】以上において本実施の形態では、クリ−ニ
ング時にも温度制御を行い、例えばSiOF膜のクリ−
ニングでは、前記内壁面の温度を80℃以上の温度に制
御するようにしてもよい。このようにすると、クリ−ニ
ングは化学反応であって温度が高くなると反応速度が高
まるため、クリ−ニング時間が短くなり、この結果成膜
処理全体のスル−プットが向上するという効果がある。
実際に本発明者らがSiOF膜のクリ−ニングの温度依
存性を確認するために実験を行ったところ、図5に示す
結果が得られ、クリ−ニング時間は前記内壁面の温度が
高くなるにつれて短くなることが確認された。
As described above, in the present embodiment, the temperature control is also performed at the time of cleaning, and for example, the cleaning of the SiOF film is performed.
In the ning, the temperature of the inner wall surface may be controlled to a temperature of 80 ° C. or higher. In this case, the cleaning is a chemical reaction, and the reaction speed increases as the temperature increases. Therefore, the cleaning time is shortened, and as a result, the throughput of the entire film forming process is improved.
When the present inventors conducted an experiment to confirm the temperature dependency of the cleaning of the SiOF film, the result shown in FIG. 5 was obtained, and the cleaning time required the temperature of the inner wall surface to increase. It became clear that it became shorter.

【0034】この実験では上述の図1に示すプラズマ成
膜処理装置を用い、Arガス、O2ガス及びSiF4
スを夫々所定の流量で導入し、高周波電力を2700
W、バイアス電力を2700W、真空容器2内の圧力を
0.4Paとして、12枚のウエハWに対してSiOF
膜を成膜した後、クリ−ニングガスとしてNF3 ガスと
2 ガスを夫々1000sccm、500sccmの流
量で導入すると共に、高周波電力を1200W、バイア
ス電力を0W、真空容器2内の圧力を400Paとし
て、真空容器2の内壁面の温度を制御しながらクリ−ニ
ングを行い、クリ−ニング時間を測定した。
In this experiment, Ar gas, O 2 gas and SiF 4 gas were respectively introduced at a predetermined flow rate using the plasma film forming apparatus shown in FIG.
W, the bias power was 2700 W, the pressure in the vacuum vessel 2 was 0.4 Pa, and the SiOF
After the film was formed, NF 3 gas and N 2 gas were introduced as cleaning gases at flow rates of 1000 sccm and 500 sccm, respectively, with a high frequency power of 1200 W, a bias power of 0 W, and a pressure in the vacuum vessel 2 of 400 Pa. Cleaning was performed while controlling the temperature of the inner wall surface of the vacuum vessel 2, and the cleaning time was measured.

【0035】ここでクリ−ニングの終点は、SiOF膜
の分解により生じたOの活性種の発光強度を測定するこ
とにより行い、この発光強度はクリ−ニングが進行する
につれて次第に小さくなって行き、クリ−ニング終了時
にはゼロになることから、このOの活性種の発光強度が
ゼロになるまでの時間をクリ−ニング時間とした。
Here, the end point of the cleaning is determined by measuring the luminescence intensity of the active species of O generated by the decomposition of the SiOF film, and the luminescence intensity gradually decreases as the cleaning proceeds. Since the value becomes zero at the end of the cleaning, the time until the emission intensity of the O active species becomes zero is defined as the cleaning time.

【0036】このように成膜処理のプロセスサイクルと
クリ−ニングとの間を通して、真空容器2の内壁面を同
じ温度例えば成膜処理のプラズマが発生しているときに
到達する温度T0以上の温度に制御するようにすれば、
内壁面の温度がクリ−ニング時に低くなってしまうこと
がないので、プロセスサイクルを温度の安定を待つこと
無く、クリ−ニング終了後に直ちにプロセスサイクルを
開始することができ、より成膜処理全体のスル−プット
を向上させることができる。
As described above, during the process cycle of the film forming process and the cleaning, the inner wall surface of the vacuum vessel 2 is kept at the same temperature, for example, the temperature T0 or more which is reached when plasma for the film forming process is generated. If you control to
Since the temperature of the inner wall surface does not decrease during cleaning, the process cycle can be started immediately after the completion of the cleaning without waiting for the temperature to stabilize. Throughput can be improved.

【0037】さらに本実施の形態では、真空容器2の内
壁面の温度は前記温度T0以上の温度に限らず、この近
傍の温度であれば温度T0以下の温度であってもよい。
温度T0の近傍の温度であれば温度T0以下の温度であ
っても、プラズマの発生、消失に伴う内壁面の温度変化
の割合は小さく、SiOF膜の熱変形は起こりにくいと
考えられるからである。
Further, in the present embodiment, the temperature of the inner wall surface of the vacuum vessel 2 is not limited to the temperature above the temperature T0, and may be a temperature below the temperature T0 as long as the temperature is in the vicinity of this temperature.
If the temperature is close to the temperature T0, even if the temperature is equal to or lower than the temperature T0, the rate of temperature change of the inner wall surface due to generation and disappearance of plasma is small, and it is considered that thermal deformation of the SiOF film is unlikely to occur. .

【0038】以上において本発明では、流路31にガル
デンを通流させて内壁面の温度制御を行うかわりに、真
空容器2の内壁面に加熱手段を埋設して、これにより温
度制御を行うようにしてもよい。また本発明方法は、S
iOF膜の成膜処理以外にSiO2 膜、CF膜や有機絶
縁膜の成膜処理等にも適用でき、例えばSiO2 膜の成
膜処理の場合には、前記温度T0は70℃程度であるの
で、前記プロセスサイクルを70℃以上のほぼ一定温度
で行うことが望ましい。
As described above, in the present invention, instead of allowing Galden to flow through the flow path 31 to control the temperature of the inner wall surface, a heating means is buried in the inner wall surface of the vacuum vessel 2 to thereby control the temperature. It may be. Further, the method of the present invention
In addition to the iOF film forming process, the present invention can be applied to a SiO 2 film, a CF film, an organic insulating film forming process, and the like. For example, in the case of a SiO 2 film forming process, the temperature T0 is about 70 ° C. Therefore, it is desirable to carry out the process cycle at a substantially constant temperature of 70 ° C. or higher.

【0039】[0039]

【発明の効果】本発明のプラズマ処理装置によれば、基
板に対してプラズマにより成膜処理を行うに当たって、
基板のパ−ティクル汚染を抑えることができる。
According to the plasma processing apparatus of the present invention, when performing a film forming process on a substrate by plasma,
Particle contamination of the substrate can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施するためのプラズマ成膜処理
装置の一実施の形態を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a plasma film forming apparatus for carrying out a method of the present invention.

【図2】本発明方法の成膜処理のプロセスサイクルを示
す説明図である。
FIG. 2 is an explanatory diagram showing a process cycle of a film forming process of the method of the present invention.

【図3】内壁面の温度とパ−ティクル発生数との関係を
示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between the temperature of the inner wall surface and the number of generated particles.

【図4】SiOF膜の温度依存性を示す特性図である。FIG. 4 is a characteristic diagram showing the temperature dependence of the SiOF film.

【図5】クリ−ニング時間の温度依存性を示す特性図で
ある。
FIG. 5 is a characteristic diagram showing temperature dependency of a cleaning time.

【図6】従来のプラズマ処理装置を示す断面図である。FIG. 6 is a sectional view showing a conventional plasma processing apparatus.

【符号の説明】[Explanation of symbols]

2 真空容器 21 プラズマ室 22 成膜室 25 導波管 26 高周波電源部 31 流路 32 温度検出部 33 調整部 51 主電磁コイル 6 載置台 W 半導体ウエハ 2 Vacuum Vessel 21 Plasma Chamber 22 Film Formation Chamber 25 Waveguide 26 High-Frequency Power Supply 31 Flow Path 32 Temperature Detector 33 Adjuster 51 Main Electromagnetic Coil 6 Mounting Table W Semiconductor Wafer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 正英 東京都港区赤坂5丁目3番6号 東京エレ クトロン株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Masahide Saito 5-3-6 Akasaka, Minato-ku, Tokyo Inside Tokyo Electron Limited

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板を真空容器内に搬入し、次いで処理
ガスをプラズマ化してそのプラズマにより前記基板に対
して成膜処理を行い、その後前記基板を真空容器から搬
出する一連のプロセスサイクルを所定回数行った後、前
記真空容器内に付着している薄膜をクリ−ニングガスに
より除去する方法において、 前記プロセスサイクル中における真空容器の内壁面の温
度を、プラズマが発生しているときに到達する内壁面の
温度T0以上のほぼ一定温度により維持することを特徴
とするプラズマ成膜処理方法。
1. A series of process cycles in which a substrate is carried into a vacuum vessel, a process gas is turned into plasma, the film is formed on the substrate by the plasma, and then the substrate is carried out of the vacuum vessel. After performing a number of times, in a method of removing a thin film adhered in the vacuum vessel with a cleaning gas, the temperature of the inner wall surface of the vacuum vessel during the process cycle is increased when plasma is generated. A plasma film forming method, wherein the temperature is maintained at a substantially constant temperature equal to or higher than the wall temperature T0.
【請求項2】 真空容器の内壁面の温度を、温度T0以
上のほぼ一定温度に維持する代わりに前記温度T0以下
でかつその近傍の一定温度に維持することを特徴とする
請求項1記載のプラズマ成膜処理方法。
2. The method according to claim 1, wherein the temperature of the inner wall surface of the vacuum vessel is maintained at a constant temperature equal to or lower than the temperature T0, instead of being maintained at a substantially constant temperature equal to or higher than the temperature T0. Plasma film formation processing method.
JP28445097A 1997-09-30 1997-09-30 Plasma film forming method and plasma processing apparatus Expired - Fee Related JP3432722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28445097A JP3432722B2 (en) 1997-09-30 1997-09-30 Plasma film forming method and plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28445097A JP3432722B2 (en) 1997-09-30 1997-09-30 Plasma film forming method and plasma processing apparatus

Publications (2)

Publication Number Publication Date
JPH11111708A true JPH11111708A (en) 1999-04-23
JP3432722B2 JP3432722B2 (en) 2003-08-04

Family

ID=17678706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28445097A Expired - Fee Related JP3432722B2 (en) 1997-09-30 1997-09-30 Plasma film forming method and plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP3432722B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080252A1 (en) * 2001-03-28 2002-10-10 Tokyo Electron Limited Plasma processing device
WO2002080249A1 (en) * 2001-03-28 2002-10-10 Tokyo Electron Limited Plasma processing device
WO2002080254A1 (en) * 2001-03-28 2002-10-10 Tokyo Electron Limited Microwave plasma process device, plasma ignition method, plasma forming method, and plasma process method
JP2012238644A (en) * 2011-05-10 2012-12-06 Ulvac Japan Ltd ZrBO FILM FORMATION DEVICE

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080252A1 (en) * 2001-03-28 2002-10-10 Tokyo Electron Limited Plasma processing device
WO2002080249A1 (en) * 2001-03-28 2002-10-10 Tokyo Electron Limited Plasma processing device
WO2002080254A1 (en) * 2001-03-28 2002-10-10 Tokyo Electron Limited Microwave plasma process device, plasma ignition method, plasma forming method, and plasma process method
JP2002299240A (en) * 2001-03-28 2002-10-11 Tadahiro Omi Plasma processor
EP1376668A1 (en) * 2001-03-28 2004-01-02 Tokyo Electron Limited Microwave plasma process device, plasma ignition method, plasma forming method, and plasma process method
EP1376668A4 (en) * 2001-03-28 2006-02-15 Tokyo Electron Ltd Microwave plasma process device, plasma ignition method, plasma forming method, and plasma process method
US7115184B2 (en) 2001-03-28 2006-10-03 Tadahiro Ohmi Plasma processing device
US7141756B2 (en) 2001-03-28 2006-11-28 Tokyo Electron Limited Microwave plasma processing apparatus, plasma ignition method, plasma forming method, and plasma processing method
CN1311531C (en) * 2001-03-28 2007-04-18 东京毅力科创株式会社 Microwave plasma process device, plasma ignition method, plasma forming method, and plasma process method
JP2012238644A (en) * 2011-05-10 2012-12-06 Ulvac Japan Ltd ZrBO FILM FORMATION DEVICE

Also Published As

Publication number Publication date
JP3432722B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
JP7079686B2 (en) Film formation method and film formation equipment
JP4121269B2 (en) Plasma CVD apparatus and method for performing self-cleaning
US20020036066A1 (en) Method and apparatus for processing substrates
US20070000870A1 (en) Plasma processing method
JPH11162958A (en) Plasma treating device and plasma treating method
JP3204836B2 (en) Plasma processing method and plasma processing apparatus
JP3423186B2 (en) Processing method
JP5001862B2 (en) Microwave plasma processing equipment
TWI756424B (en) Method of cleaming plasma processing
JPH10144668A (en) Plasma treating method
EP1119030B1 (en) Plasma reactor
JP2003037105A (en) Plasma treatment apparatus and method
WO2021033612A1 (en) Cleaning method and microwave plasma treatment device
US20230335409A1 (en) Substrate processing method and substrate processing apparatus
KR101464867B1 (en) Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
KR20210015710A (en) Substrate processing method, substrate processing apparatus and cleaning apparatus
JP3432722B2 (en) Plasma film forming method and plasma processing apparatus
JPH0456770A (en) Method for cleaning plasma cvd device
JPH06196410A (en) Plasma treatment device
JPH11330047A (en) Etching apparatus and method thereof
KR20210097045A (en) Etching method, substrate processing apparatus, and substrate processing system
JPH08148486A (en) Plasma treatment device
US20230062105A1 (en) Film forming method and film forming apparatus
JP3699416B2 (en) Plasma processing equipment
JPH09306899A (en) Vapor phase reactor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees