WO2008001644A1 - Polarity switching circuit and feeding unit - Google Patents

Polarity switching circuit and feeding unit Download PDF

Info

Publication number
WO2008001644A1
WO2008001644A1 PCT/JP2007/062283 JP2007062283W WO2008001644A1 WO 2008001644 A1 WO2008001644 A1 WO 2008001644A1 JP 2007062283 W JP2007062283 W JP 2007062283W WO 2008001644 A1 WO2008001644 A1 WO 2008001644A1
Authority
WO
WIPO (PCT)
Prior art keywords
output terminal
switch
voltage
input terminal
switching element
Prior art date
Application number
PCT/JP2007/062283
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Matsumoto
Shoji Koise
Original Assignee
Panasonic Electric Works Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co., Ltd. filed Critical Panasonic Electric Works Co., Ltd.
Priority to JP2008522467A priority Critical patent/JP4925363B2/en
Priority to CN2007800243001A priority patent/CN101479907B/en
Publication of WO2008001644A1 publication Critical patent/WO2008001644A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • H02H11/002Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection
    • H02H11/003Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection using a field effect transistor as protecting element in one of the supply lines

Definitions

  • the present invention is connected to a DC power supply which applies a DC voltage to two feed conductors, and a polarity switching circuit for matching the polarity of this DC power supply with the polarity of the feed conductor, and this polarity switching circuit.
  • the present invention relates to a power supply unit provided with
  • Japanese Patent Laid-Open Publication No. Hei 5-30641 discloses a polarity switching circuit for connecting a DC voltage source with a correct polarity to a load operated by a DC power supply.
  • the polarity switching circuit is disposed between the feed line and the DC power supply, and includes a pair of input terminals connected to the DC power supply and a pair of output terminals connected to the load, and the polarity of the polarity of the input terminal is Even if it is unknown whether one of the input terminals is connected to the positive electrode or the negative electrode of the DC power supply, the polarity of the polarity is such that the positive electrode of the DC power supply is always connected to one of the output terminals. Are configured to switch.
  • one of the output terminals is set to the positive electrode terminal connected to the positive electrode of the load, and the other is set to the negative electrode terminal connected to the negative electrode of the load, and it is necessary to correctly connect to the load. Therefore, when connecting the DC power supply and load with the correct polarity when adding a DC power supply to the feed line, the person performing the work should connect the positive and negative sides of the feed conductor without mistaken output terminals. There is a problem that confirmation of this polarity is troublesome. On the other hand, when this polarity switching circuit is included in advance for all the loads, the characteristics of this polarity switching circuit can be used to add DC power without confirming the polarity.
  • the present invention has been made in view of the above problems, and an object of the present invention is to correct a DC power supply without checking the polarity of a power feeding system to which a load is connected. !, Polarity To provide a polarity switching circuit that can be added to the feed system.
  • the DC power supply is connected to two feed conductors connected to the load, interposed between the DC power supply and the load.
  • Positive input terminal IN + connected to the positive electrode of the DC power supply
  • a negative input terminal IN ⁇ connected to the negative electrode of the DC power supply
  • a first output terminal OUT1 connected to one of the two feed conductors
  • a second output terminal OUT2 connected to the other of the two feed conductors
  • a first switch SW1 inserted between the positive input terminal and the first output terminal; a second switch SW2 inserted between the positive input terminal and the second output terminal; the negative input terminal; With a third switch SW3 inserted between the first output terminal
  • a fourth switch SW4 inserted between the negative input terminal and the second output terminal is provided.
  • the first switch SW1 and the fourth switch SW4 become conductive when the voltage applied to the first output terminal OUT1 is higher than the voltage applied to the second output terminal, and the positive input is switched.
  • the terminal IN + (the positive electrode of the DC power supply) is connected to the first output terminal OUT1
  • the negative input terminal IN- (the negative electrode of the DC power supply) is connected to the second output terminal OUT2.
  • the second switch SW2 and the third switch SW3 become conductive when the voltage applied to the first output terminal OUT1 is smaller than the voltage applied to the second output terminal OUT2, and the positive switch An input terminal IN + (positive electrode of DC power supply) is connected to the first output terminal, and a negative input terminal IN ⁇ (negative electrode of DC power supply) is connected to the second output terminal.
  • this polarity switching circuit is prepared as a power supply unit in combination with a DC power supply, it can be incorporated into an existing power supply system together with a DC power supply that does not care about the polarity at the time of connection work.
  • the first switch includes a first switching element having a control end G, and the first switching element is between the control end and the positive input terminal. It is configured to conduct when a voltage less than a predetermined value is applied.
  • the second switch includes a second switching element having a control end G, and the second switching element receives a voltage less than a predetermined value between the control end and the positive input terminal.
  • the third switch includes a third switching element having a control end G. The third switching element has a voltage between the control end and the positive input terminal that exceeds a predetermined value.
  • the fourth switch is configured to conduct when applied, and the fourth switch includes a fourth switching element having a control end G, and the fourth switching element has a predetermined value between the control end and the positive input terminal. It is configured to conduct when an over voltage is applied.
  • the control end of the first switching element and the control end of the third switching element are both connected to the second output terminal OUT2, and the control end of the second switching element and the control of the fourth switching element Both ends are connected to the first output terminal OUT1.
  • the first switch applies a control voltage equal to or greater than the predetermined value of the positive electrode force to the control end of the first switching element and delays the control voltage for a predetermined time to apply a voltage less than the predetermined value to the control end.
  • a first delay circuit (Rl, C1) is provided.
  • the above second switch is the above second switch.
  • a second delay circuit (R2, C2) for applying a voltage less than the predetermined value to the control end after giving a control voltage of the positive value to the control end of the positive electrode and delaying the control time for a predetermined time .
  • the first switching element is made conductive to cut off the second switching element, whereby the positive electrode of the DC power supply is connected to the first output terminal.
  • the first switching element is cut off, the second switch element is turned on, and the second output is turned on.
  • the positive terminal of the DC power supply is connected to the terminal.
  • the first delay circuit and the second delay circuit operate together, but due to the delay by the first delay circuit
  • the delay time of the second delay circuit is also increased. That is, when the DC power supply is connected to the power supply system first, and the polarity of the feed conductor is not determined yet, the delay in the first delay circuit is shorter than that in the second delay circuit, so the first switching is performed.
  • the voltage applied to the control end of the element is accelerated to drop below a predetermined value, and the first switching element conducts earlier than the second switching element, and the DC power source positive electrode is applied to the first output terminal. It takes place preferentially.
  • a control voltage equal to or greater than a predetermined value is applied to the control end of the second switching device to shut off the second switching device, making the first output terminal positive.
  • the power supply conductor connected to the first output terminal can be preferentially used as the positive electrode, and standardization of the power supply system can be achieved and standardized.
  • a load can be connected to the feed system.
  • the first switching element and the second switching element are formed of FETs having parasitic capacitance between the gate and the source.
  • the source of the first switching element is coupled to the positive input terminal, the drain is connected to the first output terminal, and the source is turned on when the source voltage is higher than the gate voltage by a predetermined value, Connected to the first output terminal.
  • the first delay circuit is in series with the parasitic capacitance C1 and the parasitic capacitance.
  • a connection point between the first resistor R1 and the parasitic capacitance C1 is connected to the gate G, which is composed of a first resistor R1 inserted between the positive input terminal and the second output terminal.
  • the source of the second switching element is coupled to the positive input terminal, the drain is connected to the second output terminal, and the source voltage is turned on when the source voltage is higher than the gate voltage by a predetermined value,
  • the child IN + is connected to the second output terminal OUT2.
  • the second delay circuit (R2, C2) comprises the parasitic capacitance C2 and a second resistor R2 inserted in series with the parasitic capacitance between the positive input terminal IN + and the first output terminal OUT1.
  • a connection point between the second resistor and the parasitic capacitance is connected to the gate G. Since the resistance value of the first resistor R1 is smaller than the resistance value of the second resistor R2 and the time constant of the first delay circuit is smaller than the time constant of the second delay circuit, the delay by the first delay circuit is caused.
  • the delay time by the second delay circuit is longer than the delay time.
  • each delay circuit can be configured by utilizing the parasitic capacitance intrinsically provided by the FET, and the switching circuit having the above function can be configured with the minimum
  • a voltage divider resistor is used to protect the FET. That is, a first voltage dividing resistor is connected in series with the first resistor R1 between the positive input terminal IN + and the second output terminal, and between the first resistor R1 and the first voltage dividing resistor R11 The gate of the first switching element is connected to the connection point of Similarly, a second voltage dividing resistor is connected in series with the second resistor R2 between the positive input terminal IN + and the first output terminal, and between the second resistor R2 and the second voltage dividing resistor R21. The gate of the second switching element is connected to the connection point. With this configuration, the gate 'source voltage of the first switching element and the second switching element, which are FETs, can be divided to a predetermined value or less, and the FETs can be protected.
  • the first voltage dividing resistor R11 and the positive input terminal IN + Preferably, a zener diode is inserted, and a second zener diode is inserted between the second voltage dividing resistor R21 and the positive input terminal IN +.
  • FIG. 1 is a circuit diagram of a polarity switching circuit according to a first embodiment of the present invention.
  • FIG. 2 A block diagram showing a feeding unit incorporating the polarity switching circuit of the same.
  • FIG. 3 A schematic view showing one usage pattern of the above-mentioned power supply unit.
  • FIG. 4 A circuit diagram showing a modification of the polarity circuit of the above.
  • FIG. 5 A circuit diagram showing a modification of the polarity circuit of the above.
  • FIG. 6 is a circuit diagram showing a modification of the polarity circuit of the above.
  • FIG. 7 A circuit diagram showing a modification of the polarity circuit of the above.
  • FIG. 8 is a circuit diagram of a polarity switching circuit according to a second embodiment of the present invention.
  • FIG. 9 is a circuit diagram of a polarity switching circuit according to a third embodiment of the present invention.
  • the polarity switching circuit according to the present invention is used in a DC voltage feeding system for supplying a DC voltage to a load driven by a DC voltage, and when a DC power supply is added to the feeding system, the load is connected. It detects the polarity of the two feed conductors and matches the polarity of the DC power supply to the polarity of the feed conductors.
  • the polarity switching circuit 20 is generally incorporated in a power supply unit 40 including a DC power supply 10 as shown in FIG.
  • a plurality of feed units 40 are connected in parallel with each other to supply a DC voltage, for example, a voltage of 12 V, to the plurality of loads 2 connected to the feed conductors 1A and IB. .
  • DC power supply 10 in power supply unit 40 is connected to commercial AC power supply via switch 12, converts an AC voltage to a DC voltage, and converts the DC voltage through polarity switching circuit 20.
  • Power supply conductor 1A Supplied to IB.
  • the load 2 one that can perform information communication using this feeding conductor can be used.
  • the termination device 3 is connected to the feeding system, and the feeding unit 40 is connected to the feeding unit 40.
  • an impedance adjustment unit 30 is provided to separate the high frequency communication signal flowing to the feed conductors 1A and IB from the polarity switching circuit 20.
  • FIG. 1 shows a polarity switching circuit according to a first embodiment of the present invention, and is composed of four MOSFETs.
  • SW1 to SW4 force positive and negative input terminals IN + and IN ⁇ and first and second output terminals OUTl , And OUT2 are bridged.
  • the positive input terminal IN + is connected to the positive electrode of the DC power supply 10
  • the negative input terminal IN ⁇ is connected to the negative electrode of the DC power supply.
  • the first switch SW1 is inserted between the positive input terminal IN + and the first output terminal OUT1, and the source S is Connect to the positive input terminal IN + and connect the drain D to the first output terminal OUT1.
  • the second switch SW2 is inserted between the positive input terminal IN + and the second output terminal OUT2, and the source S is connected to the positive input terminal IN + and the drain D is connected to the second output terminal OUT2.
  • the third switch SW3 is inserted between the negative input terminal IN ⁇ and the first output terminal OUT1, and the source S is connected to the negative input terminal IN ⁇ and the drain D is connected to the first output terminal OUT1.
  • the fourth switch SW4 is inserted between the negative input terminal IN ⁇ and the second output terminal OUT2, and the source S is connected to the negative input terminal IN ⁇ and the drain D is connected to the second output terminal OUT2.
  • the switching elements that are M0SFETs that form the first switch SW1 and the second switch are P-type transistors that conduct when the source voltage is higher than the gate voltage, and the MOSFETs that form the third switch SW3 and the fourth switch SW4
  • the switching element is an N-type transistor that conducts when the gate voltage is higher than the source voltage.
  • the gate G of the switching element which is a MOSFET constituting the first switch SW1 is connected to the second output terminal OUT2 together with the gate G of the switching element of the third switch SW3.
  • the gate G of the switching element constituting the second switch SW2 is connected to the first output terminal OUT1 together with the gate G of the switching element of the fourth switch SW4.
  • the gate of each switching element is a control terminal to which a voltage for determining on / off of each switch is applied, and on / off control of each switch is performed based on the magnitude relationship between the source voltage and the gate voltage. Is done.
  • each switch inherently have parasitic capacitances C1 to C4 between the gate and the source, and the parasitic capacitances Cl and C2 at the first switch SW1 and the second switch SW2 are each 1000 pF, respectively.
  • the parasitic capacitances C3 and C4 at the third switch SW3 and the fourth switch SW4 are 300 pF respectively. This value is merely an example, and can be changed as necessary.
  • the magnitude relation between Cl, C2 and C3, C4 is also reversed between the P-type and N-type switches. is there.
  • each switching element resistors R1 to R4 are respectively connected in series with parasitic capacitances C1 to C4 to form a delay circuit, and a connection point between the resistance and the parasitic capacitance is connected to the gate of each switching element. Ru.
  • Each delay circuit changes the timing at which each switching element becomes conductive by adjusting the charge rate to the parasitic capacitance, and as described later, When the feed unit is first connected to the system, one of the first switch SW1 and the second switch is set to operate preferentially to determine the polarity of the feed conductor 1A, IB.
  • the voltage output to the first output terminal OUT1 and the second output terminal OUT2 is the current supplied from the power supply conductors 1A and IB. It is intended to match the voltage according to the polarity, and to facilitate the additional connection work of the feed unit 40 by eliminating the need for the operator to check in advance the polarity of the feed conductor.
  • the feeding conductor 1A is a positive electrode to which a voltage of +12 V is applied
  • the feeding conductor 1B is a negative electrode to which a voltage of 0 V is applied
  • the DC power supply supplies a DC voltage of 12 V. .
  • the positive voltage 12 V from the DC power supply is applied to the source S of the first switch SW1 and the second switch SW2, and the source S of the third switch SW3 and the fourth switch are both DC current source 0V is applied.
  • 12 V is applied to the first output terminal OUT1, and 0 V is applied to the second output terminal OUT2.
  • the first switch SW1 0 V from the second output terminal OUT2 becomes the gate voltage, and the relationship of gate voltage (0 V) ⁇ source voltage (12 V) is satisfied, and the first switch SW1 is turned on.
  • the second switch SW2 both the gate voltage and the source voltage become 12 V, and the on condition (gate voltage and source voltage) is not satisfied, and the switch SW2 is turned off, and the second switch SW2 is turned off.
  • both the source voltage and the gate voltage become 0 V, and are turned off because the on condition (gate voltage> source voltage) is not satisfied, and in the fourth switch SW4, the gate voltage (12 V) > The source voltage (0 V) is set, and the fourth switch SW4 turns on.
  • the positive voltage 12 V from the DC power supply is applied to the source S of the first switch SW1 and the second switch SW2, and the source S of the third switch SW3 and the fourth switch are both DC current source Is applied.
  • 0 V is applied to the first output terminal OUT1 from the feed system, and 12 V is applied to the second output terminal OUT2.
  • the switch SW1 in the first switch SW1, 12 V from the second output terminal OUT2 becomes the gate voltage, and the on condition (gate voltage and source voltage) is not satisfied, and the switch SW1 is turned off.
  • the second switch SW2 turns on as the gate voltage (OV) and the source voltage (12 V).
  • the gate voltage (12 V)> the source voltage (OV) is turned on.
  • both the gate voltage and the source voltage become OV, and the on condition (gate voltage> source voltage) is not satisfied, and it is turned off. Therefore, only the second switch SW2 and the third switch SW3 are turned on, the positive voltage 12V of the DC power is applied to the second output terminal OUT2, and the negative voltage OV of the DC power is applied to the first output terminal OUT2.
  • the DC power supply is added to the power supply system with the polarity according to the polarity of the power supply system already in operation.
  • the first output terminal OUT1 and the second output terminal OUT2 No substantial voltage is applied.
  • 12 V is applied to the gates G of the first switch SW1 and the second switch SW2 from the positive electrode input terminal IN + via the parasitic capacitances C1 and C2, charging of the parasitic capacitances Cl and C2 is started.
  • Ru Immediately after the connection, the first switch SW1 and the second switch SW2 both have a gate voltage of 12 V and a source voltage of 12 V, so the gate parasitic capacitances Cl and C2 are charged.
  • the fourth switch SW4 is turned off immediately after connection because both the gate voltage and the source voltage are 0 V, but the first switch SW1 turns on and the voltage of the first output terminal OUT1 becomes 12 V.
  • the gate voltage is 12 V
  • the on condition gate voltage and source voltage
  • the positive electrode 12V of the DC power supply is preferentially applied to the first output terminal OUT1.
  • the second switch SW2 turns on first immediately after connection, the second switch SW2 and the third switch SW3 turn on, and the first switch SW1 and the fourth switch (Ii)
  • the SW4 is turned off to give a positive voltage of 12 V to the second output terminal OUT2, and the negative electrode of OV to the first output terminal OUT1.
  • the first switch SW1 is set to turn on earlier than the second switch SW2 with a clear difference between the resistance values of the resistors R1 and R2, but the charge times of each switch are set. Between the paths, due to variations in resistance and parasitic capacitance, it is expected that there will be a difference in time constant. Therefore, using such variations, the pair of the first switch SW1 and the fourth switch SW4, and the fourth switch SW4 are used. It is determined that one of the pair of the 2nd switch SW2 and the 3rd switch SW3 is turned on preferentially to make either of the power supply conductors 1A and IB positive. After that, when adding the feed tube 40, as described above, the polarity of the feed conductors 1A and IB is determined, and the output polarity of the feed unit to be added matches the polarity of the existing feed system. Ru.
  • the time constants of the charging circuit of the first switch SW1 and the second switch SW2 are expected to differ depending on the variations of the resistors R1 and R2 and the parasitic capacitances Cl and C2. If the time constant of the charging circuit in the third switch SW3 and the fourth switch SW4 is different due to the variation in resistance and parasitic capacitance, the combination of the first switch SW1 and the fourth switch SW4, It is determined that one of the pair of the second switch SW2 and the third switch SW3 is turned on preferentially, and that one of the feed conductors 1A and IB is used as the positive electrode.
  • the first switch SW1 and the second switch SW2 are both temporarily turned on, and a voltage of 12 V is applied to the first output terminal OUT1 and the second output terminal OUT2.
  • this voltage is applied between the resistors R3 and R4 and the parasitic capacitances C3 and C4, respectively, between the negative input terminal IN-(0 V) to charge the parasitic capacitances C3 and C4 of each charging circuit.
  • the source voltage of the third switch SW3 and the fourth switch SW4 is OV of the same potential as that of the negative input terminal, the time constant of the charging circuit of the fourth switch SW4 is that of the charging circuit of the third switch SW3.
  • the charging speed to the parasitic capacitances C3 and C4 differs, and the gate voltage of the fourth switch SW4 rises faster than the third switch SW3, so that the fourth switch SW4 First turns on and determines the second output terminal OUT2 to be negative.
  • the gate voltage of the third switch SW3 is fixed at OV and becomes equal to the source voltage (OV), so that the third switch SW3 is turned off.
  • the gate voltage of the first switch SW1 is fixed to OV, the on state of the first switch SW1 is determined, and accordingly, the first output terminal OUT1 is fixed to 12 V, whereby the second switch SW2 is turned on.
  • the gate voltage is fixed at 12 V, and the second switch SW2 is turned off.
  • the positive terminal of the DC power supply is provided to the first output terminal OUT1.
  • the time constant of the charging circuit of the third switch SW3 is smaller than the time constant of the charging circuit of the fourth switch SW4, the charging speed to the parasitic capacitances C3 and C4 will be different.
  • the fourth switch SW4 and the first switch SW1 are turned off, the second switch SW2 is turned on, and the positive electrode from the DC power supply is applied to the second output terminal OUT2.
  • the time constant of the charging circuit of the first switch and the second switch, and the time constant of the charging circuit of the third switch and the fourth switch are due to variations in resistances R1 to R4 and parasitic capacitances C1 to C4.
  • the positive terminal of the DC power supply is output to the terminal OUTl.
  • 4 to 6 show modifications of the polarity switching circuit described above. In the modification of FIG.
  • the resistors R1 and R2 are connected only to the first switch SW1 and the second switch SW2, and charging is performed.
  • An example is shown in which the paths are formed and the values of R1 and R2 are different, and in the modification of FIGS. 5 and 6, the resistors R3 and R4 are connected only to the third switch SW3 and the fourth switch SW4, An example is shown in which the values of R3 and R4 are different.
  • the charging circuit is added to the corresponding switch using the parasitic capacitance of the switching element, but the present invention is not necessarily limited thereto.
  • FIG. 7 shows still another modification of the polarity switching circuit of the above-described embodiment.
  • R11, R21, R31 and R41 are connected to the resistors R1 to R4 that make up each charge circuit, respectively, and the voltage applied to the gate of each switching element is lowered. It is suppressed.
  • This configuration is useful for protecting the switching device when the output voltage of the DC power supply 10 is, for example, 24 V and exceeds the allowable gate voltage 'source voltage' of the MOSFET used as the switching device.
  • the first voltage dividing resistor R11 is connected in series with the first resistor R1 between the positive input terminal IN + and the second output terminal OUT2, and the first voltage dividing resistor R11 and the first resistor are connected.
  • the gate G of the switching element is connected to the connection point between R1.
  • the second voltage dividing resistor R21 is connected in series with the second resistor R2 between the positive input terminal IN + and the first output terminal OUT1, and the second voltage dividing resistor R21 and the second resistor
  • the gate G of the switching element is connected to the connection point between R2.
  • the third voltage dividing resistor R31 is connected in series with the third resistor R3 between the negative input terminal IN ⁇ and the second output terminal OUT2, and the third voltage dividing resistor R31 and the third voltage dividing resistor R31 are connected to each other.
  • the gate G of the switching element is connected to the connection point between the resistors R3.
  • the fourth voltage-dividing resistor R41 is connected in series with the fourth resistor R4 between the negative input terminal IN ⁇ and the first output terminal OUT1, and the fourth voltage-dividing resistor R41 and the fourth voltage-dividing resistor R41
  • the gate G of the switching element is connected to the connection point between the four resistors R4.
  • Zener diode ZD1, ZD2, ZD3 and ZD4 are connected in series to each voltage dividing resistance Rll, R21, R31 and R41 respectively. That is, the first Zener diode ZD1 is inserted between the first voltage dividing resistor R11 and the positive input terminal IN +, and the second Zener diode ZD2 is inserted between the second voltage dividing resistor R21 and the positive input terminal IN +.
  • the third Zener diode ZD3 is inserted between the third voltage dividing resistor R31 and the negative input terminal IN-, and the fourth Zener diode ZD4 is inserted between the fourth voltage dividing resistor R41 and the negative input terminal IN- Inserted between
  • FIG. 8 shows a polarity switching circuit according to a second embodiment of the present invention.
  • a bipolar transistor is used as each of the switches SW1 to SW4, and a control circuit 100 for detecting the potentials of the first output terminal OUT1 and the second output terminal OUT2 to control each switch is provided.
  • the first switch SW1 is an NPN type bipolar transistor, the collector is coupled to the positive input terminal IN + and the emitter is connected to the first output terminal OUT1, and becomes conductive when the base voltage exceeds the threshold, the positive input terminal Connect IN + to the first output terminal OUT1.
  • the second switch SW2 is an NPN type bipolar transistor, the collector is coupled to the positive input terminal IN +, the emitter is connected to the second output terminal OUT2, and the base voltage becomes higher than the threshold value. Connect terminal IN + to the second output terminal OUT2.
  • the third switch SW3 is a PNP bipolar transistor, which has a collector coupled to the negative input terminal IN-, a emitter connected to the first output terminal OUT1, and a conductor connected when the base voltage is below the threshold.
  • the fourth switch SW4 is a PNP bipolar transistor, the collector is coupled to the negative input terminal and the emitter is connected to the second output terminal OUT2, and becomes conductive when the base voltage becomes lower than the threshold value, and the negative input terminal Connect IN- to the 2nd output terminal.
  • the control circuit 100 is configured to detect the first potential applied to the first output terminal OUT1 and the second potential applied to the second output terminal OUT2 to control the respective switches SW1 to SW4. , To achieve the following functions.
  • a control voltage equal to or greater than the threshold is applied to each base of the first switch SW1 and the third switch SW3, and the second switch SW2 and the fourth switch SW Give each of the four bases a control voltage below the threshold.
  • the control circuit 100 detects a first potential applied to the first output terminal OUT1, and outputs a first detection signal when the first potential is equal to or higher than a predetermined value.
  • a second detection unit (a comparator) that detects a second potential applied to the detection means (comparator) 101 and the second output terminal OUT2, and outputs a second detection signal when the second potential is equal to or higher than a predetermined value.
  • logic means (NOR gate) 110 for giving a predetermined control voltage to the determination means (OR gate) 130 only when both of the first detection signal and the second detection signal are not simultaneously present.
  • the second detection voltage is commonly applied to the bases of the second switch SW2 and the fourth switch SW4, and is set to the above threshold value or more.
  • Judgment means 130 applies a drive voltage exceeding the threshold of the base voltage to the bases of the first switch SW1 and the third switch SW3 when receiving at least one of the control voltage and the first detection voltage.
  • the control circuit 100 includes a resistor R5, a capacitor C5, and a comparator 121, and is provided with a delay means 120. After delaying the control voltage output from the logic means (NOR gate) 110, this is determined. Output to
  • the output voltage of the DC power supply and the operating voltage in the power supply system are 12 V
  • the first detection unit 101, the second detection unit 102, the logic unit 110, the determination unit 130 These outputs are 12 V or 0 V, and in practice they can be different values in terms of circuit design.
  • the first output terminal OUT1 When the first output terminal OUT1 is connected to the positive feed conductor 1A, and the second output terminal OUT2 is connected to the negative feed conductor 1B Assuming that the voltage applied to the first output terminal OUTl is 12 V, the voltage applied to the second output terminal OUT2 is 0 V, and the reference values at the first detection means 101 and the second detection means 102 are less than 12 V, The first detection means 101 outputs a voltage signal of 12 V as the first detection signal, and the output of the second detection means 102 becomes 0 V and does not output the second detection signal. As a result, the output of the logic means 110 becomes 0 V and does not output the control voltage. Therefore, the delay unit 120 does not operate, and an output of 0 V is input to the determination unit 130.
  • the determination means 130 receives the first detection signal of 12 V from the first detection means 101 and applies a drive voltage of 12 V to the bases of the first switch SW1 and the third switch SW3. As a result, the first switch SW1 is turned on and the third switch SW3 is turned off. On the other hand, the second detection signal is not given to the bases of the second switch SW2 and the fourth switch SW4 because the output from the second detection means 102 is 0 V, and the second switch SW2 is turned off. Switch SW4 is turned on.
  • the output of the first detection means 101 is 0 V and does not output the first detection signal, and the second detection means 102 outputs a 12 V second detection signal.
  • the output of the logic means 110 is 0V
  • the control voltage is not output
  • the delay circuit 120 does not operate
  • one input of the determination means 130 is 0V. Since 0 V output from the first detection means 101 is input to the other input of the determination means 130, the determination means 130 outputs 0 V and the drive voltage is set to the first switch SW1 and the third switch SW3. Do not give to the base of. As a result, the first switch SW1 is turned off and the third switch SW3 is turned on.
  • the 12V second detection signal from the second detection means 102 is applied to the bases of the second switch SW2 and the fourth switch SW4, the second switch SW2 is turned on, and the fourth switch SW4 is turned off.
  • the second switch SW2 and the third switch SW3 are turned on, the positive input terminal IN + is connected to the second output terminal OUT2, and the negative input terminal IN- is connected to the first output terminal OUT1.
  • the DC power supply is added to the power supply system with a polarity according to the polarity of the power supply system. 3)
  • the first detection unit 101 and the second detection unit 102 both output OV and do not output the first detection signal and the second detection signal.
  • the logic means 110 outputs a control voltage of 12 V, and this output is sent to the judging means 130 via the delay circuit 120.
  • the delay means 120 delays the control voltage of 12 V and outputs it to the determination means 130, so that the output of 0 V from the delay means 120 and 0 V from the first detection means 101 are inputted to the determination means 130 first.
  • the determination means 130 outputs 0 V and does not give a drive voltage
  • the determination means 130 outputs a 12 V drive voltage.
  • the first switch SW1 is turned on and the third switch SW3 is turned off.
  • the third switch SW3 is turned off by the 0V output from the second detection means 102, and the fourth switch SW4 is turned on. Therefore, when the power supply unit is connected to the power supply system for the first time, only the first switch SW1 and the fourth switch SW4 are turned on to preferentially apply the positive electrode 12V of the DC power supply to the first output terminal OUT1. become.
  • FIG. 9 shows a polarity switching circuit according to a third embodiment of the present invention.
  • an electromagnetic relay is used as each of the switches SW1 to SW4, and a control circuit 100 similar to that of the second embodiment is provided.
  • the first switch SW1 is a normally open relay having a drive coil, and the common terminal (COM) is connected to the positive input terminal IN +, the NO contact is connected to the first output terminal, and the drive coil is When energized, the NO contact closes and connects the positive input terminal IN + to the first output terminal OUT1.
  • the second switch SW2 is a normally open relay having a drive coil, and the common terminal (COM) is connected to the positive input terminal IN +, the NO contact is connected to the second output terminal OUT2, and the drive coil is excited. , NO contact closes, connect positive input terminal IN + to second output terminal 0 UT2.
  • the third switch SW3 is a normally closed relay having a drive coil, the common terminal (COM) is connected to the negative input terminal IN ⁇ , the NC contact is connected to the first output terminal OUT1, and the drive coil is excited.
  • the NC contact opens and the negative input terminal IN- to the 1st output terminal Disconnect from OUT1.
  • the fourth switch SW4 is a normally closed relay having a drive coil, the common terminal (COM) is connected to the negative input terminal IN ⁇ , the NC contact is connected to the second output terminal OUT2, and the drive coil is excited. At the same time, the NC contact opens and disconnects the positive input terminal IN + from the second output terminal OUT2.
  • the control circuit 100 detects the first potential applied to the first output terminal OUT1, and outputs the first detection voltage when the first potential is equal to or higher than a predetermined value.
  • Detection means 101 and a second detection means 102 for detecting a second potential applied to the second output terminal OUT2 and outputting a second detection voltage when the second potential is equal to or higher than a predetermined value;
  • a logic means is provided for providing a predetermined control voltage to the determining means 130 only when both the detection signal and the second detection signal are not simultaneously present.
  • the control circuit 100 excites drive coils of the first switch SW1 and the third switch SW3 when the first potential is larger than the second potential, and the second potential is larger than the first potential.
  • Delay means 120 is provided to excite the drive coils of the first switch SW1 and the third switch SW3 with delay.
  • the second detection voltage from the second detection means 102 is applied to the exciting coil of the second switch SW2 and the fourth switch SW4, and the determination means 130 determines whether the control voltage and the first detection voltage described above are small. When it receives either one of them, it is configured to apply a drive voltage for exciting the exciting coil of the first switch SW1 and the third switch SW3, and the delay means 120 delays this control voltage and applies it to the determination means 130 R5, C5) are provided.
  • the output voltage of the DC power supply and the operating voltage in the power supply system are 12 V
  • the first detection unit 101, the second detection unit 102, the logic unit 110, the determination unit 130 These outputs are 12 V or 0 V, and in practice they can be different values in terms of circuit design.
  • the voltage applied to the first output terminal OUT1 is 12 V
  • the voltage applied to the second output terminal OUT2 Is OV and the reference value in the first detection means 101 and the second detection means 102 is less than 12 V
  • the first detection means 101 outputs a voltage of 12 V as the first detection signal
  • the second detection means 102 The output is 0 V and does not output the second detection signal.
  • the logic means 110 outputs 0 V and the delay means 120 does not operate.
  • the determination means 130 receives the 0V input from the first detection means 101 and the 0V output from the delay means 120 and applies a 12V drive voltage to the drive coils of the first switch SW1 and the third switch SW3.
  • the first detection means 101 outputs 0 V and does not output a first detection signal
  • the second detection means 102 outputs a 12 V second detection signal.
  • the logic circuit 110 outputs 0 V and does not supply the control voltage, so the delay circuit 120 does not operate. Therefore, the determination means 130 outputs 0 V and the drive coils of the first switch SW1 and the third switch SW3 are not excited.
  • the first switch SW1 and the third switch SW3 do not operate, the first output terminal OUT1 is disconnected from the positive input terminal IN +, and the negative input terminal IN- is connected to the first output terminal OUT1.
  • the drive coil of the second switch SW2 and the fourth switch SW4 is excited by the second detection signal of 12 V from the second detection means 102, the NO contact of the second switch SW2 is closed, and the NC of the fourth switch SW4.
  • the contact opens, the positive input terminal IN + is connected to the second output terminal OUT2, and the negative input terminal IN- is disconnected from the second output terminal OUT2.
  • a DC power supply is added to the power supply system with a polarity according to the polarity of the power supply system already in operation.
  • feed conductors 1A and IB are both at 0 V, and in this state, the first output of feed unit 40
  • the first output terminal OUT1 and the second output terminal OUT2 both have a voltage of 0 V
  • the first detection means 101 and the second detection means 102 have the first detection signal. And do not output the second detection signal.
  • the logic means 110 outputs a control voltage of 12 V, and this output is sent to the judging means 130 via the delay circuit 120.
  • the delay means 120 delays the control voltage of 12 V and outputs it to the determination means 130.
  • the determination means 130 initially outputs 0 V from the delay means 120 and the first detection signal of 0 V from the first detection means 101.
  • the output of the judging means 130 is 0 V and does not output the driving voltage
  • the control voltage of 12 V is inputted from the delay means 120 to the judging means 130, and the judging means 130 outputs the driving voltage of 12 V.
  • the drive coils of the first switch SW1 and the third switch SW3 are excited, the NO contact of the first switch SW1 closes, the NC contact of the third switch SW3 opens, and the positive input terminal IN + becomes the first output terminal OUT1. Connected, the negative input terminal IN- is disconnected from the first output terminal OUT2.
  • the 0 V output from the second detection means 102 does not excite the drive coils of the second switch SW2 and the fourth switch SW4, and the NO contact of the second switch SW2 is kept open.
  • the NC contact is kept closed and the negative input terminal IN- is connected to the second output terminal OUT2. Therefore, when the feed unit is connected to the feed system for the first time, the positive input terminal IN + is connected to the first output terminal OUT1, and the negative input terminal IN- is connected to the second output terminal OUT2, and the first output
  • the positive terminal 12V of the DC power supply is preferentially applied to the terminal OUT1.

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Electronic Switches (AREA)

Abstract

A polarity switching circuit capable of adding a DC power source to a feeding line with a correct polarity without requiring a check of the polarity of a feeding system connected to a load. The polarity switching circuit lies between the DC power source and the load and connects the DC power source to two feeding conductors connected to the load. Four switches are bridge-connected between two input terminals connected to the DC power source and two output terminals connected to the feeding conductors. Two switches are turned on and the remaining two switches are turned off depending on the polarity of the feeding conductor connected to the first output terminal.

Description

明 細 書  Specification
極性切換回路及び給電ユニット  Polarity switching circuit and feed unit
技術分野  Technical field
[0001] 本発明は、 2本の給電導体に直流電圧を与える直流電源へ接続され、この直流電 源の極性と給電導体の極性との整合を図るための極性切換回路、及びこの極性切 換回路を備える給電ユニットに関するものである。  [0001] The present invention is connected to a DC power supply which applies a DC voltage to two feed conductors, and a polarity switching circuit for matching the polarity of this DC power supply with the polarity of the feed conductor, and this polarity switching circuit. The present invention relates to a power supply unit provided with
背景技術  Background art
[0002] 近来、住宅やビル等の施設内において、直流電源にて動作する電気機器が多数 使用されることに伴って、 2本の給電導体で構成される一つの給電システムに複数の 電気機器を並列に接続する必要性が高くなつており、給電システムに接続される電 気機器が増加するにつれて、この給電システムに直流電源を追加することが要求さ れる。この場合は、直流電源の極性を、給電システムの極性に対応させるための極 性切換回路を使用することが望まれる。  Recently, as a large number of electric devices operated by DC power supply are used in a facility such as a house or a building, a plurality of electric devices can be connected to one power supply system including two power supply conductors. There is a growing need to connect in parallel, and as the number of electrical devices connected to the feed system increases, it is required to add DC power to the feed system. In this case, it is desirable to use a polarity switching circuit to make the polarity of the DC power supply correspond to the polarity of the feeding system.
[0003] 日本特許公開公報特開平 5— 30641号は、直流電源で動作する負荷に正しい極 性で直流電圧源を接続するための極性切換回路を開示して ヽる。この極性切換回 路は、給電ラインと直流電源との間に配置され、直流電源に接続される一対の入力 端子と、負荷に接続される一対の出力端子とを備え、入力端子の極性の極性が不明 、即ち、入力端子の一方が直流電源の正極か負極のどちらに接続されているかが不 明であっても、出力端子の一方には必ず直流電源の正極が接続されるように、極性 を切り替えるように構成されている。このため、出力端子の一方は負荷の正極に接続 される正極端子に、他方は負荷の負極に接続される負極端子と設定され、負荷に対 して正しく接続されていることが必要となる。従って、直流電源を給電ラインに追加す る場合に、直流電源と負荷とを正しい極性で接続する場合、工事を行う者は、出力端 子を間違えることなく給電導体の正極と負極側にと接続する必要があり、この極性の 確認が面倒であるという問題がある。一方、この極性切換回路が予め全ての負荷に 対して含まれている場合は、この極性切換回路の特性を活用して、極性の確認を行 わずに直流電源を追加することができる力 一般に、一つの給電システムに接続され る負荷の数はここに接続される直流電源の数より多いため、全ての負荷にこのような 極性切換回路を設けることは、システム全体のコスト上昇の要因となり、更には多種 多様な負荷を接続できるというシステムの自由度を損なうという問題がある。 [0003] Japanese Patent Laid-Open Publication No. Hei 5-30641 discloses a polarity switching circuit for connecting a DC voltage source with a correct polarity to a load operated by a DC power supply. The polarity switching circuit is disposed between the feed line and the DC power supply, and includes a pair of input terminals connected to the DC power supply and a pair of output terminals connected to the load, and the polarity of the polarity of the input terminal is Even if it is unknown whether one of the input terminals is connected to the positive electrode or the negative electrode of the DC power supply, the polarity of the polarity is such that the positive electrode of the DC power supply is always connected to one of the output terminals. Are configured to switch. Therefore, one of the output terminals is set to the positive electrode terminal connected to the positive electrode of the load, and the other is set to the negative electrode terminal connected to the negative electrode of the load, and it is necessary to correctly connect to the load. Therefore, when connecting the DC power supply and load with the correct polarity when adding a DC power supply to the feed line, the person performing the work should connect the positive and negative sides of the feed conductor without mistaken output terminals. There is a problem that confirmation of this polarity is troublesome. On the other hand, when this polarity switching circuit is included in advance for all the loads, the characteristics of this polarity switching circuit can be used to add DC power without confirming the polarity. , Connected to one feeding system Since the number of loads is greater than the number of DC power supplies connected here, providing such a polarity switching circuit for all loads causes an increase in the cost of the entire system, and also connects a wide variety of loads. There is a problem of losing the degree of freedom of the system that can
発明の開示  Disclosure of the invention
[0004] 本発明は上記の問題点に鑑みて為されたものであり、その目的とするところは、負 荷が接続されて 、る給電システムの極性を確認せずとも、直流電源を正し!、極性で 給電システムに追加することができる極性切換回路を提供することである。  The present invention has been made in view of the above problems, and an object of the present invention is to correct a DC power supply without checking the polarity of a power feeding system to which a load is connected. !, Polarity To provide a polarity switching circuit that can be added to the feed system.
本発明に係る極性切換回路は、直流電源と負荷との間に介在して、負荷に繋がる 2 本の給電導体へ直流電源を接続するものであり、  In the polarity switching circuit according to the present invention, the DC power supply is connected to two feed conductors connected to the load, interposed between the DC power supply and the load.
上記直流電源の正極に接続される正入力端子 IN +と、  Positive input terminal IN + connected to the positive electrode of the DC power supply;
上記直流電源の負極に接続される負入力端子 IN—と、  A negative input terminal IN− connected to the negative electrode of the DC power supply;
上記 2本の給電導体の一方に接続される第 1出力端子 OUT1と、  A first output terminal OUT1 connected to one of the two feed conductors;
上記 2本の給電導体の他方に接続される第 2出力端子 OUT2と、  A second output terminal OUT2 connected to the other of the two feed conductors;
上記正入力端子と上記第 1出力端子との間に挿入した第 1スィッチ SW1と、 上記正入力端子と上記第 2出力端子との間に挿入した第 2スィッチ SW2と、 上記負入力端子と上記第 1出力端子との間に挿入した第 3スィッチ SW3と  A first switch SW1 inserted between the positive input terminal and the first output terminal; a second switch SW2 inserted between the positive input terminal and the second output terminal; the negative input terminal; With a third switch SW3 inserted between the first output terminal
上記負入力端子と上記第 2出力端子との間に挿入した第 4スィッチ SW4とを備える。  A fourth switch SW4 inserted between the negative input terminal and the second output terminal is provided.
[0005] 上記第 1スィッチ SW1と第 4スィッチ SW4は、上記第 1出力端子 OUT1に印加され る電圧が上記第 2出力端子に印加される電圧よりも高い場合に導通して、上記正入 力端子 IN+ (直流電源の正極)を上記第 1出力端子 OUT1に接続すると共に、上記 負入力端子 IN- (直流電源の負極)を上記第 2出力端子 OUT2に接続するように構成 される。  The first switch SW1 and the fourth switch SW4 become conductive when the voltage applied to the first output terminal OUT1 is higher than the voltage applied to the second output terminal, and the positive input is switched. The terminal IN + (the positive electrode of the DC power supply) is connected to the first output terminal OUT1, and the negative input terminal IN- (the negative electrode of the DC power supply) is connected to the second output terminal OUT2.
[0006] 上記第 2スィッチ SW2と上記第 3スィッチ SW3は、上記第 1出力端子 OUT1に印加 される電圧が上記第 2出力端子 OUT2に印加される電圧よりも小さい場合に導通し て、上記正入力端子 IN+ (直流電源の正極)を上記第 1出力端子に接続すると共に、 上記負入力端子 IN- (直流電源の負極)を上記第 2出力端子に接続するように構成さ れる。  The second switch SW2 and the third switch SW3 become conductive when the voltage applied to the first output terminal OUT1 is smaller than the voltage applied to the second output terminal OUT2, and the positive switch An input terminal IN + (positive electrode of DC power supply) is connected to the first output terminal, and a negative input terminal IN− (negative electrode of DC power supply) is connected to the second output terminal.
[0007] 従って、 2本の給電導体へ負荷と直流電源が既に接続されている給電システムに、 新たな直流電源を追加する場合、このシステムにおける一方の給電導体が正極とさ れている場合は、この給電導体に接続される 1出力端子へ、追加の直流電源の正極 の出力が与えられ、この第 1出力端子が負極とされておれば、ここへ追加の直流電源 の負極が与えられる。即ち、本発明の極性切換回路では、第 1出力端子と第 2出力端 子が接続されている極性を認識し、この極性に直流電源の出力の極性を合致させる ことができる。このため、給電システムに直流電源を追加する際に、極性切換回路の 出力端子の極性を予め確認することなぐ極性切換回路を既存の給電システムに接 続することができて、接続工事を容易に行うことができる。 [0007] Therefore, in a feeding system in which a load and a DC power supply are already connected to two feeding conductors, When adding a new DC power supply, if one of the feed conductors in this system is the positive pole, the output of the positive pole of the additional DC power source is given to one output terminal connected to the feed conductor, If the first output terminal is a negative electrode, the negative electrode of an additional DC power source is given here. That is, in the polarity switching circuit of the present invention, the polarity in which the first output terminal and the second output terminal are connected can be recognized, and the polarity of the output of the DC power supply can be made to coincide with this polarity. Therefore, when adding a DC power supply to the power supply system, the polarity switching circuit can be connected to the existing power supply system without checking in advance the polarity of the output terminal of the polarity switching circuit, thus facilitating connection work. It can be carried out.
[0008] この極性切換回路は直流電源と組み合わせて給電ユニットとして用意しておけば、 接続工事に際して、極性を全く気にすることなぐ直流電源と共に既存の給電システ ムに組み込むことができる。  If this polarity switching circuit is prepared as a power supply unit in combination with a DC power supply, it can be incorporated into an existing power supply system together with a DC power supply that does not care about the polarity at the time of connection work.
[0009] 好ま 、実施形態にぉ 、ては、上記第 1スィッチは、制御端 Gを有する第 1スィッチ ング素子を備え、この第 1スイッチング素子はこの制御端と上記正入力端子との間に 所定値未満の電圧が印加された時に導通するように構成される。同様に、上記第 2ス イッチは、制御端 Gを有する第 2スイッチング素子を備え、この第 2スイッチング素子 はこの制御端と上記正入力端子との間に所定値未満の電圧が印加された時に導通 するように構成され、上記第 3スィッチは、制御端 Gを有する第 3スイッチング素子を 備え、この第 3スイッチング素子はこの制御端と上記正入力端子との間に所定値を超 える電圧が印加された時に導通するように構成され、上記第 4スィッチは、制御端 G を有する第 4スイッチング素子を備え、この第 4スイッチング素子はこの制御端と上記 正入力端子との間に所定値を超える電圧が印加された時に導通するように構成され る。  [0009] Preferably, in the embodiment, the first switch includes a first switching element having a control end G, and the first switching element is between the control end and the positive input terminal. It is configured to conduct when a voltage less than a predetermined value is applied. Similarly, the second switch includes a second switching element having a control end G, and the second switching element receives a voltage less than a predetermined value between the control end and the positive input terminal. The third switch includes a third switching element having a control end G. The third switching element has a voltage between the control end and the positive input terminal that exceeds a predetermined value. The fourth switch is configured to conduct when applied, and the fourth switch includes a fourth switching element having a control end G, and the fourth switching element has a predetermined value between the control end and the positive input terminal. It is configured to conduct when an over voltage is applied.
[0010] 上記第 1スイッチング素子の制御端と上記第 3スイッチング素子の制御端が共に上 記第 2出力端子 OUT2に接続され、上記第 2スイッチング素子の制御端と上記第 4ス イッチング素子の制御端が共に上記第 1出力端子 OUT1に接続される。上記第 1スィ ツチは、上記の第 1スイッチング素子の制御端に上記正極力 の上記所定値以上の 制御電圧を与えた後に所定時間遅延させて、この制御端に上記所定値未満の電圧 を与える第 1遅延回路 (Rl、 C1)を備える。上記第 2スィッチは、上記の第 2スィッチン グ素子の制御端に上記正極力 の上記所定値以上の制御電圧を与えた後に所定 時間遅延させて、この制御端に上記所定値未満の電圧を与える第 2遅延回路 (R2、 C2)を備える。 The control end of the first switching element and the control end of the third switching element are both connected to the second output terminal OUT2, and the control end of the second switching element and the control of the fourth switching element Both ends are connected to the first output terminal OUT1. The first switch applies a control voltage equal to or greater than the predetermined value of the positive electrode force to the control end of the first switching element and delays the control voltage for a predetermined time to apply a voltage less than the predetermined value to the control end. A first delay circuit (Rl, C1) is provided. The above second switch is the above second switch. A second delay circuit (R2, C2) for applying a voltage less than the predetermined value to the control end after giving a control voltage of the positive value to the control end of the positive electrode and delaying the control time for a predetermined time .
従って、上記第 1出力端子に印加される電圧が上記第 2出力端子に印加される電 圧よりも大きい時は、第 1スイッチング素子の制御端には低い電圧が印加され、第 2ス イッチング素子の制御端には高い電圧が印加される。これにより、第 1スイッチング素 子が導通して、第 2スイッチング素子を遮断させることで、第 1出力端子に直流電源の 正極が接続される。同様に、上記第 1出力端子に印加される電圧が上記第 2出力端 子に印加される電圧よりも小さい時には、第 1スイッチング素子が遮断し、第 2スィッチ 素子が導通して、第 2出力端子に直流電源の正極が接続される。  Therefore, when the voltage applied to the first output terminal is larger than the voltage applied to the second output terminal, a low voltage is applied to the control end of the first switching element, and the second switching element A high voltage is applied to the control end of. As a result, the first switching element is made conductive to cut off the second switching element, whereby the positive electrode of the DC power supply is connected to the first output terminal. Similarly, when the voltage applied to the first output terminal is smaller than the voltage applied to the second output terminal, the first switching element is cut off, the second switch element is turned on, and the second output is turned on. The positive terminal of the DC power supply is connected to the terminal.
一方、上記第 1出力端子と上記第 2出力端子にそれぞれ印加される電圧が等しい 時、上記第 1遅延回路と上記第 2遅延回路が共に動作するが、上記第 1遅延回路によ る遅延よりも上記第 2遅延回路による遅延時間が長くなるように構成される。即ち、給 電システムに最初に直流電源を接続する場合で、未だ給電導体の極性が決定され ていない場合は、第 1遅延回路での遅延が第 2遅延回路よりも短いため、第 1スィッチ ング素子の制御端に印加される電圧が所定値未満に降下するのが早められ、第 1ス イッチング素子が第 2スイッチング素子よりも早く導通して、第 1出力端子に直流電源 正極を与えることが優先的に行われる。一度、第 1出力端子に正極が印加されると、 第 2スイッチング素子の制御端には所定値以上の制御電圧が加えられて第 2スィッチ ング素子が遮断され、第 1出力端子を正極とし、第 2出力端子を負極に決定する。 このように、給電システムに始めて直流電源を接続する場合は、第 1出力端子に接 続される給電導体を優先的に正極とすることができ、給電システムの標準化が達成で き、標準化された極性に基づいて、負荷を給電システムに接続することができる。 好ましくは、上記第 1スイッチング素子及び第 2スイッチング素子がゲート ·ソース間 に寄生容量を有する FETで構成される。第 1スイッチング素子のソースが上記正入力 端に結合されると共にドレインが第 1出力端子に接続され、ソース電圧がゲート電圧よ りも所定値以上の時に導通して、上記の正入力端子を上記第 1出力端子に接続され る。この場合、上記第 1遅延回路は、上記寄生容量 C1と、この寄生容量と直列に上 記正入力端子と上記第 2出力端子との間に挿入された第 1抵抗 Rlとで構成されて、 第 1抵抗 R1と寄生容量 C1との間の接続点がゲート Gに接続される。上記第 2スィッチ ング素子のソースが上記正入力端に結合されると共にドレインが第 2出力端子に接 続され、ソース電圧がゲート電圧よりも所定値以上の時に導通して、上記の正入力端 子 IN +が上記第 2出力端子 OUT2に接続される。上記第 2遅延回路 (R2、 C2)は、 上記寄生容量 C2と、この寄生容量と直列に上記正入力端子 IN+と上記第 1出力端 子 OUT1との間に挿入された第 2抵抗 R2とで構成されて、第 2抵抗と寄生容量との 間の接続点がゲート Gに接続される。上記第 1抵抗 R1の抵抗値が第 2抵抗 R2の抵抗 値よりも小さくて、第 1遅延回路の時定数を第 2遅延回路の時定数よりも小さくすること で、上記第 1遅延回路による遅延よりも上記第 2遅延回路による遅延時間が長くなるよ うに構成される。このように、 FETが本来的に備える寄生容量を利用して各遅延回路 が構成でき、最小の部品点数で上の機能を有する切換回路が構成できる。 On the other hand, when the voltages applied to the first output terminal and the second output terminal are equal to each other, the first delay circuit and the second delay circuit operate together, but due to the delay by the first delay circuit The delay time of the second delay circuit is also increased. That is, when the DC power supply is connected to the power supply system first, and the polarity of the feed conductor is not determined yet, the delay in the first delay circuit is shorter than that in the second delay circuit, so the first switching is performed. The voltage applied to the control end of the element is accelerated to drop below a predetermined value, and the first switching element conducts earlier than the second switching element, and the DC power source positive electrode is applied to the first output terminal. It takes place preferentially. Once a positive electrode is applied to the first output terminal, a control voltage equal to or greater than a predetermined value is applied to the control end of the second switching device to shut off the second switching device, making the first output terminal positive. Determine the second output terminal as the negative electrode. As described above, when the DC power supply is connected to the power supply system for the first time, the power supply conductor connected to the first output terminal can be preferentially used as the positive electrode, and standardization of the power supply system can be achieved and standardized. Based on the polarity, a load can be connected to the feed system. Preferably, the first switching element and the second switching element are formed of FETs having parasitic capacitance between the gate and the source. The source of the first switching element is coupled to the positive input terminal, the drain is connected to the first output terminal, and the source is turned on when the source voltage is higher than the gate voltage by a predetermined value, Connected to the first output terminal. In this case, the first delay circuit is in series with the parasitic capacitance C1 and the parasitic capacitance. A connection point between the first resistor R1 and the parasitic capacitance C1 is connected to the gate G, which is composed of a first resistor R1 inserted between the positive input terminal and the second output terminal. The source of the second switching element is coupled to the positive input terminal, the drain is connected to the second output terminal, and the source voltage is turned on when the source voltage is higher than the gate voltage by a predetermined value, The child IN + is connected to the second output terminal OUT2. The second delay circuit (R2, C2) comprises the parasitic capacitance C2 and a second resistor R2 inserted in series with the parasitic capacitance between the positive input terminal IN + and the first output terminal OUT1. A connection point between the second resistor and the parasitic capacitance is connected to the gate G. Since the resistance value of the first resistor R1 is smaller than the resistance value of the second resistor R2 and the time constant of the first delay circuit is smaller than the time constant of the second delay circuit, the delay by the first delay circuit is caused. The delay time by the second delay circuit is longer than the delay time. As described above, each delay circuit can be configured by utilizing the parasitic capacitance intrinsically provided by the FET, and the switching circuit having the above function can be configured with the minimum number of parts.
また、 FETでの許容ゲート'ソース電圧を超える電圧が直流電源力も供給される場 合は、 FETを保護するための分圧抵抗が使用される。即ち、上記正入力端子 IN+と 上記第 2出力端子との間で上記第 1抵抗 R1と直列に第 1分圧抵抗が接続され、第 1抵 抗 R1と上記第 1分圧抵抗 R11との間の接続点に上記第 1スイッチング素子のゲートが 接続される。同様に、上記正入力端子 IN+と上記第 1出力端子との間で上記第 2抵抗 R2と直列に第 2分圧抵抗が接続され、第 2抵抗 R2と上記第 2分圧抵抗 R21との間の 接続点に上記第 2スイッチング素子のゲートが接続される。この構成により、 FETであ る第 1スイッチング素子及び第 2スイッチング素子のゲート'ソース電圧を所定値以下 に分圧することができ、 FETを保護することができる。  Also, if the DC power is also supplied with a voltage that exceeds the allowable gate'source voltage at the FET, a voltage divider resistor is used to protect the FET. That is, a first voltage dividing resistor is connected in series with the first resistor R1 between the positive input terminal IN + and the second output terminal, and between the first resistor R1 and the first voltage dividing resistor R11 The gate of the first switching element is connected to the connection point of Similarly, a second voltage dividing resistor is connected in series with the second resistor R2 between the positive input terminal IN + and the first output terminal, and between the second resistor R2 and the second voltage dividing resistor R21. The gate of the second switching element is connected to the connection point. With this configuration, the gate 'source voltage of the first switching element and the second switching element, which are FETs, can be divided to a predetermined value or less, and the FETs can be protected.
更に、本発明の極性切換回路の出力が誤って短絡した場合に FETの温度上昇を 押さえて FETを保護するために、上記第 1分圧抵抗 R11と上記正入力端子 IN+との間 に第 1ツエナーダイオードが挿入され、上記第 2分圧抵抗 R21と上記正入力端子 IN+ との間に第 2ツエナーダイオードが挿入することが好ましい。  Furthermore, in order to suppress the temperature rise of the FET and protect the FET when the output of the polarity switching circuit of the present invention is accidentally short circuited, the first voltage dividing resistor R11 and the positive input terminal IN + Preferably, a zener diode is inserted, and a second zener diode is inserted between the second voltage dividing resistor R21 and the positive input terminal IN +.
図面の簡単な説明 Brief description of the drawings
[図 1]本発明の第 1の実施形態に係る極性切換回路の回路図。 FIG. 1 is a circuit diagram of a polarity switching circuit according to a first embodiment of the present invention.
[図 2]同上の極性切換回路を内蔵した給電ユニットを示すブロック図。 [図 3]同上の給電ユニットの一使用形態を示す概略図。 [FIG. 2] A block diagram showing a feeding unit incorporating the polarity switching circuit of the same. [FIG. 3] A schematic view showing one usage pattern of the above-mentioned power supply unit.
[図 4]同上の極性回路の変更態様を示す回路図。  [FIG. 4] A circuit diagram showing a modification of the polarity circuit of the above.
[図 5]同上の極性回路の変更態様を示す回路図。  [FIG. 5] A circuit diagram showing a modification of the polarity circuit of the above.
[図 6]同上の極性回路の変更態様を示す回路図。  FIG. 6 is a circuit diagram showing a modification of the polarity circuit of the above.
[図 7]同上の極性回路の変更態様を示す回路図。  [FIG. 7] A circuit diagram showing a modification of the polarity circuit of the above.
[図 8]本発明の第 2の実施形態に係る極性切換回路の回路図。  FIG. 8 is a circuit diagram of a polarity switching circuit according to a second embodiment of the present invention.
[図 9]本発明の第 3の実施形態に係る極性切換回路の回路図。  FIG. 9 is a circuit diagram of a polarity switching circuit according to a third embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明に係る極性切換回路は、直流電圧で駆動される負荷に直流電圧を供給す る直流電圧給電システムに使用され、直流電源をこの給電システムに追加する場合 に、負荷が接続されている 2本の給電導体の極性を検出して、直流電源の極性を給 電導体の極性に合致させるものである。この極性切換回路 20は、通常、図 2に示す ように、直流電源 10を含む給電ユニット 40に組み込まれる。この給電ユニット 40は、 図 3に示すような給電システムにおいて、複数が互いに並列に接続されて、給電導体 1A、 IBに接続された複数の負荷 2に直流電圧、例えば、 12Vの電圧を供給する。  The polarity switching circuit according to the present invention is used in a DC voltage feeding system for supplying a DC voltage to a load driven by a DC voltage, and when a DC power supply is added to the feeding system, the load is connected. It detects the polarity of the two feed conductors and matches the polarity of the DC power supply to the polarity of the feed conductors. The polarity switching circuit 20 is generally incorporated in a power supply unit 40 including a DC power supply 10 as shown in FIG. In the feed system as shown in FIG. 3, a plurality of feed units 40 are connected in parallel with each other to supply a DC voltage, for example, a voltage of 12 V, to the plurality of loads 2 connected to the feed conductors 1A and IB. .
[0014] 給電ユニット 40中の直流電源 10は、商用 AC電源へスィッチ 12を介して接続され、 AC電圧を DC電圧に変換し、変換された DC電圧が極性切換回路 20を介して給電 導体 1A、 IBへ供給される。負荷 2としては、この給電導体を利用して情報通信を行う ことができるものが使用でき、この場合は、図 3に示すように、給電システムには終端 装置 3が接続され、給電ユニット 40には、図 2に示すように、給電導体 1A、 IBに流れ る高周波の通信信号と極性切換回路 20とを分離するインピーダンス調整部 30が設 けられる。  [0014] DC power supply 10 in power supply unit 40 is connected to commercial AC power supply via switch 12, converts an AC voltage to a DC voltage, and converts the DC voltage through polarity switching circuit 20. Power supply conductor 1A , Supplied to IB. As the load 2, one that can perform information communication using this feeding conductor can be used. In this case, as shown in FIG. 3, the termination device 3 is connected to the feeding system, and the feeding unit 40 is connected to the feeding unit 40. As shown in FIG. 2, an impedance adjustment unit 30 is provided to separate the high frequency communication signal flowing to the feed conductors 1A and IB from the polarity switching circuit 20.
<第 1の実施形態 >  First Embodiment
図 1は、本発明の第 1の実施形態に係る極性切換回路を示し、 4つの MOSFETで 構成されるスィッチ SW1〜SW4力 正負入力端子 IN +、 IN—と、第 1及び第 2出力 端子 OUTl、 OUT2との間で、ブリッジ接続される。正入力端子 IN+は、直流電源 1 0の正極に接続され、負入力端子 IN—は直流電源の負極に接続される。第 1スイツ チ SW1は、正入力端子 IN +と第 1出力端子 OUT1との間に挿入されて、ソース Sを 正入力端子 IN +に接続して、ドレイン Dを第 1出力端子 OUT1に接続する。第 2スィ ツチ SW2は、正入力端子 IN +と第 2出力端子 OUT2との間に挿入されて、ソース S を正入力端子 IN +に接続して、ドレイン Dを第 2出力端子 OUT2に接続する。第 3ス イッチ SW3は、負入力端子 IN—と第 1出力端子 OUT1との間に挿入されて、ソース S を負入力端子 IN—に接続して、ドレイン Dを第 1出力端子 OUT1に接続する。第 4ス イッチ SW4は、負入力端子 IN—と第 2出力端子 OUT2との間に挿入されて、ソース S を負入力端子 IN—に接続して、ドレイン Dを第 2出力端子 OUT2に接続する。 FIG. 1 shows a polarity switching circuit according to a first embodiment of the present invention, and is composed of four MOSFETs. SW1 to SW4 force positive and negative input terminals IN + and IN − and first and second output terminals OUTl , And OUT2 are bridged. The positive input terminal IN + is connected to the positive electrode of the DC power supply 10, and the negative input terminal IN− is connected to the negative electrode of the DC power supply. The first switch SW1 is inserted between the positive input terminal IN + and the first output terminal OUT1, and the source S is Connect to the positive input terminal IN + and connect the drain D to the first output terminal OUT1. The second switch SW2 is inserted between the positive input terminal IN + and the second output terminal OUT2, and the source S is connected to the positive input terminal IN + and the drain D is connected to the second output terminal OUT2. . The third switch SW3 is inserted between the negative input terminal IN− and the first output terminal OUT1, and the source S is connected to the negative input terminal IN− and the drain D is connected to the first output terminal OUT1. . The fourth switch SW4 is inserted between the negative input terminal IN− and the second output terminal OUT2, and the source S is connected to the negative input terminal IN− and the drain D is connected to the second output terminal OUT2. .
第 1スィッチ SW1及び第 2スィッチを構成する M0SFETであるスイッチング素子は、 ゲート電圧よりソース電圧が高い場合に、導通する P型トランジスタであり、第 3スイツ チ SW3及び第 4スィッチ SW4を構成する MOSFETであるスイッチング素子は、ゲート 電圧がソース電圧より高!ヽ場合に、導通する N型トランジスタである。  The switching elements that are M0SFETs that form the first switch SW1 and the second switch are P-type transistors that conduct when the source voltage is higher than the gate voltage, and the MOSFETs that form the third switch SW3 and the fourth switch SW4 The switching element is an N-type transistor that conducts when the gate voltage is higher than the source voltage.
第 1スィッチ SW1を構成する MOSFETであるスイッチング素子のゲート Gは、第 3 スィッチ SW3のスイッチング素子のゲート Gと共に、第 2出力端子 OUT2に接続され The gate G of the switching element which is a MOSFET constituting the first switch SW1 is connected to the second output terminal OUT2 together with the gate G of the switching element of the third switch SW3.
、第 2スィッチ SW2を構成するスイッチング素子のゲート Gは、第 4スィッチ SW4のス イッチング素子のゲート Gと共に、第 1出力端子 OUT1に接続される。各スイッチング 素子のゲートは、各スィッチのオン ·オフを決定するための電圧が印加される制御端 であり、ソース電圧とゲート電圧との大小関係に基づいて、各スィッチのオン'オフ制 御がなされる。 The gate G of the switching element constituting the second switch SW2 is connected to the first output terminal OUT1 together with the gate G of the switching element of the fourth switch SW4. The gate of each switching element is a control terminal to which a voltage for determining on / off of each switch is applied, and on / off control of each switch is performed based on the magnitude relationship between the source voltage and the gate voltage. Is done.
各スィッチを構成するスイッチング素子は、それぞれ、ゲート'ソース間に寄生容量 C1〜C4を本来的に有するもので、第 1スィッチ SW1及び第 2スィッチ SW2での寄生容 量 Cl、 C2はそれぞれ 1000pF、第 3スィッチ素子 SW3及び第 4スィッチ SW4での寄生 容量 C3、 C4はそれぞれ 300pFである。この値は、単なる例示に過ぎず、必要に応じ て変更することが可能であり、 Cl、 C2と C3、 C4の間の大小関係も P型と N型のスイツ チの間で逆転する場合もある。  The switching elements constituting each switch inherently have parasitic capacitances C1 to C4 between the gate and the source, and the parasitic capacitances Cl and C2 at the first switch SW1 and the second switch SW2 are each 1000 pF, respectively. The parasitic capacitances C3 and C4 at the third switch SW3 and the fourth switch SW4 are 300 pF respectively. This value is merely an example, and can be changed as necessary. The magnitude relation between Cl, C2 and C3, C4 is also reversed between the P-type and N-type switches. is there.
各スイッチング素子には、それぞれ抵抗 R1〜R4が寄生容量 C1〜C4と直列に接 続されて、遅延回路を形成し、抵抗と寄生容量との接続点が各スイッチング素子のゲ ートに接続される。各遅延回路は、寄生容量への充電速度を調整することで、各スィ ツチング素子が導通するタイミングを変化させるものであり、後述するように、給電シス テムへ最初に給電ユニットを接続する際に、給電導体 1A、 IBの極性を決定するた めに、第 1スィッチ SW1と第 2スィッチの一方を優先的に動作させるように設定されて いる。 In each switching element, resistors R1 to R4 are respectively connected in series with parasitic capacitances C1 to C4 to form a delay circuit, and a connection point between the resistance and the parasitic capacitance is connected to the gate of each switching element. Ru. Each delay circuit changes the timing at which each switching element becomes conductive by adjusting the charge rate to the parasitic capacitance, and as described later, When the feed unit is first connected to the system, one of the first switch SW1 and the second switch is set to operate preferentially to determine the polarity of the feed conductor 1A, IB.
本発明の極性切換回路 20は、既に稼働している給電システムに、給電ユニットを 追加する場合に、第 1出力端子 OUT1と第 2出力端子 OUT2に出力する電圧を、給 電導体 1A、 IBの極性に応じた電圧に合致させるものであり、作業者が給電導体の 極性を予め調べる必要を無くして、給電ユニット 40の追加接続作業を容易にするも のである。  In the polarity switching circuit 20 of the present invention, when adding a power supply unit to a power supply system already in operation, the voltage output to the first output terminal OUT1 and the second output terminal OUT2 is the current supplied from the power supply conductors 1A and IB. It is intended to match the voltage according to the polarity, and to facilitate the additional connection work of the feed unit 40 by eliminating the need for the operator to check in advance the polarity of the feed conductor.
以下に、既に稼働して ヽる給電システムに給電ユニットを追加した場合の極性切換 回路の動作について説明する。この説明では、給電導体 1Aが + 12Vの電圧が印加 されている正極であり、給電導体 1Bが 0Vの電圧が印加されている負極であり、直流 電源が 12Vの直流電圧を供給するものとする。  The operation of the polarity switching circuit in the case where a power supply unit is added to a power supply system already in operation will be described below. In this description, it is assumed that the feeding conductor 1A is a positive electrode to which a voltage of +12 V is applied, the feeding conductor 1B is a negative electrode to which a voltage of 0 V is applied, and the DC power supply supplies a DC voltage of 12 V. .
1)第 1出力端子 OUT1が、正極の給電導体 1Aに接続され、第 2出力端子 OUT2 が負極の給電導体 1Bに接続された場合  1) When the first output terminal OUT1 is connected to the positive feed conductor 1A, and the second output terminal OUT2 is connected to the negative feed conductor 1B
この場合、第 1スィッチ SW1と第 2スィッチ SW2のソース Sには、共に、直流電源から の正極電圧 12Vが印加され、第 3スィッチ SW3と第 4スィッチのソース Sには、共に直 流電源からの 0Vが印加される。一方、給電システムからは、第 1出力端子 OUT1に 1 2Vが印加され、第 2出力端子 OUT2に 0Vが印加される。 In this case, the positive voltage 12 V from the DC power supply is applied to the source S of the first switch SW1 and the second switch SW2, and the source S of the third switch SW3 and the fourth switch are both DC current source 0V is applied. On the other hand, from the feed system, 12 V is applied to the first output terminal OUT1, and 0 V is applied to the second output terminal OUT2.
このため、第 1スィッチ SW1では、第 2出力端子 OUT2からの 0Vがゲート電圧となつ て、ゲート電圧 (0V) <ソース電圧(12V)の関係が満たされ、第 1スィッチ SW1がォ ンし、第 2スィッチ SW2では、ゲート電圧とソース電圧が共に 12Vとなり、オン条件(ゲ ート電圧くソース電圧)が満たされずにオフとなり、第 2スィッチ SW2がオフとなる。ま た、第 3スィッチ SW3では、ソース電圧とゲート電圧が共に 0Vとなり、オン条件である (ゲート電圧〉ソース電圧)が満たされずに、オフとなり、第 4スィッチ SW4では、ゲー ト電圧(12V) >ソース電圧(0V)となって、第 4スィッチ SW4がオンする。従って、第 1 スィッチ SW1と第 4スィッチ SW4だけがオンされて、直流電源の正極電圧 12Vが第 1 出力端子 OUT1に印加され、直流電源の負極電圧 0Vが第 2出力端子 OUT2に印 加されることになり、既に稼働して ヽる給電システムの極性に応じた極性で直流電源 が給電システムに追加される。 Therefore, in the first switch SW1, 0 V from the second output terminal OUT2 becomes the gate voltage, and the relationship of gate voltage (0 V) <source voltage (12 V) is satisfied, and the first switch SW1 is turned on. In the second switch SW2, both the gate voltage and the source voltage become 12 V, and the on condition (gate voltage and source voltage) is not satisfied, and the switch SW2 is turned off, and the second switch SW2 is turned off. In addition, in the third switch SW3, both the source voltage and the gate voltage become 0 V, and are turned off because the on condition (gate voltage> source voltage) is not satisfied, and in the fourth switch SW4, the gate voltage (12 V) > The source voltage (0 V) is set, and the fourth switch SW4 turns on. Therefore, only the first switch SW1 and the fourth switch SW4 are turned on, the positive voltage 12V of the DC power is applied to the first output terminal OUT1, and the negative voltage 0V of the DC power is applied to the second output OUT2. The DC power supply with the polarity according to the polarity of the power supply system already in operation. Is added to the feed system.
2)第 1出力端子 OUT1が、負極の給電導体 1Bに接続され、第 2出力端子 OUT2 が正極の給電導体 1Bに接続された場合  2) When the first output terminal OUT1 is connected to the negative feed conductor 1B, and the second output terminal OUT2 is connected to the positive feed conductor 1B
この場合、第 1スィッチ SW1と第 2スィッチ SW2のソース Sには、共に、直流電源から の正極電圧 12Vが印加され、第 3スィッチ SW3と第 4スィッチのソース Sには、共に直 流電源からの OVが印加される。一方、給電システムからは第 1出力端子 OUT1には 0Vが印加され、第 2出力端子 OUT2には 12Vが印加される。 In this case, the positive voltage 12 V from the DC power supply is applied to the source S of the first switch SW1 and the second switch SW2, and the source S of the third switch SW3 and the fourth switch are both DC current source Is applied. On the other hand, 0 V is applied to the first output terminal OUT1 from the feed system, and 12 V is applied to the second output terminal OUT2.
このため、第 1スィッチ SW1では、第 2出力端子 OUT2からの 12Vがゲート電圧となり 、オン条件 (ゲート電圧くソース電圧)が満たされずに、オフする。第 2スィッチ SW2 では、ゲート電圧(OV)くソース電圧(12V)となって、オンする。また、第 3スィッチ S W3では、ゲート電圧(12V) >ソース電圧(OV)となってオンする。第 4スィッチ SW4 では、ゲート電圧とソース電圧が共に OVとなって、オン条件(ゲート電圧 >ソース電 圧)が満たされずに、オフする。従って、第 2スィッチ SW2と第 3スィッチ SW3だけが オンされて、直流電源の正極電圧 12Vが第 2出力端子 OUT2に印加され、直流電源 の負極電圧 OVが第 1出力端子 OUT2に印加されることになり、既に稼働している給 電システムの極性に応じた極性で直流電源が給電システムに追加される。 Therefore, in the first switch SW1, 12 V from the second output terminal OUT2 becomes the gate voltage, and the on condition (gate voltage and source voltage) is not satisfied, and the switch SW1 is turned off. The second switch SW2 turns on as the gate voltage (OV) and the source voltage (12 V). In the third switch SW3, the gate voltage (12 V)> the source voltage (OV) is turned on. In the fourth switch SW4, both the gate voltage and the source voltage become OV, and the on condition (gate voltage> source voltage) is not satisfied, and it is turned off. Therefore, only the second switch SW2 and the third switch SW3 are turned on, the positive voltage 12V of the DC power is applied to the second output terminal OUT2, and the negative voltage OV of the DC power is applied to the first output terminal OUT2. The DC power supply is added to the power supply system with the polarity according to the polarity of the power supply system already in operation.
3)最初に給電ユニットを給電システムに接続する場合  3) When connecting the feed unit to the feed system first
この場合、給電導体 1A、 IBは共に OVであり、この状態で給電ユニット 40の第 1出力 端子 OUT1と第 2出力端子 OUT2を給電導体に接続すると、第 1出力端子 OUT1 及び第 2出力端子 OUT2には、実質的な電圧が印加されない。接続直後は、第 1ス イッチ SW1、第 2スィッチ SW2の各ゲート Gへ、正極入力端子 IN +から寄生容量 C1 、 C2を介して 12Vが印加され、各寄生容量 Cl、 C2の充電が開始される。接続直後 においては、第 1スィッチ SW1及び第 2スィッチ SW2は共にゲート電圧が 12V及びソ ース電圧が 12Vとなるため、共にオフされている力 寄生容量 Cl、 C2への充電に伴 つて、ゲート電圧が 12Vよりも低くなると、オンされる。ここで、各スィッチにおける各充 電回路は、寄生容量 Cl、 C2とこれに接続される抵抗 Rl、 R2とで構成されており、 R l = lkQ , R2を 2k Ωとして第 1スィッチの充電回路の時定数を第 2スィッチよりも早く している。このため、第 1スィッチ SWのゲート電圧の低下が第 2スィッチよりも早くなる ことで、第 1スィッチが早くオンする。この結果、第 1出力端子 OUT1には直流電源か らの 12Vが印加されることになり、これに伴って、第 2スィッチ SW2のゲートが 12Vに 固定され、第 2スィッチ SWのオフが確定される。第 3スィッチ SW3は接続直後からゲ ート電圧及びソース電圧が共に OVに固定されるため、オフが維持される。一方、第 4 スィッチ SW4は、接続直後ではゲート電圧及びソース電圧が共に 0Vであるため、ォ フして 、るが、第 1スィッチ SW1がオンして第 1出力端子 OUT1の電圧が 12Vとなる ことに伴って、ゲート電圧が 12Vとなることで、オン条件 (ゲート電圧くソース電圧)が 満たされて、オンされる。従って、始めて給電ユニットを給電システムに接続する場合 は、第 1出力端子 OUT1が優先的に直流電源の正極 12Vが印加されることになる。 尚、抵抗 Rl、 R2の関係を R1 <R2であれば、接続直後で第 2スィッチ SW2が先に オンし、第 2スィッチ SW2と第 3スィッチ SW3がオンし、第 1スィッチ SW1と第 4スイツ チ SW4がオフして、第 2出力端子 OUT2に 12Vの正極を与え、第 1出力端子 OUT1 に OVの負極が与えられることになる。 In this case, when the feed conductors 1A and IB are both OV and the first output terminal OUT1 and the second output terminal OUT2 of the feed unit 40 are connected to the feed conductor in this state, the first output terminal OUT1 and the second output terminal OUT2 No substantial voltage is applied. Immediately after connection, 12 V is applied to the gates G of the first switch SW1 and the second switch SW2 from the positive electrode input terminal IN + via the parasitic capacitances C1 and C2, charging of the parasitic capacitances Cl and C2 is started. Ru. Immediately after the connection, the first switch SW1 and the second switch SW2 both have a gate voltage of 12 V and a source voltage of 12 V, so the gate parasitic capacitances Cl and C2 are charged. It turns on when the voltage drops below 12V. Here, each charging circuit in each switch is composed of parasitic capacitances Cl and C2 and resistors Rl and R2 connected thereto, and Rl = lkQ, R2 is 2 kΩ, and the charging circuit for the first switch is The time constant of is faster than the second switch. For this reason, the gate voltage of the first switch SW drops faster than the second switch. The first switch turns on early. As a result, 12 V from the DC power supply is applied to the first output terminal OUT1, and accordingly, the gate of the second switch SW2 is fixed at 12 V, and the off state of the second switch SW is determined. Ru. Since the gate voltage and the source voltage are both fixed at OV immediately after connection, the third switch SW3 is kept off. On the other hand, the fourth switch SW4 is turned off immediately after connection because both the gate voltage and the source voltage are 0 V, but the first switch SW1 turns on and the voltage of the first output terminal OUT1 becomes 12 V. When the gate voltage is 12 V, the on condition (gate voltage and source voltage) is satisfied and turned on. Therefore, when the power supply unit is connected to the power supply system for the first time, the positive electrode 12V of the DC power supply is preferentially applied to the first output terminal OUT1. If the relationship between the resistors R1 and R2 is R1 <R2, the second switch SW2 turns on first immediately after connection, the second switch SW2 and the third switch SW3 turn on, and the first switch SW1 and the fourth switch (Ii) The SW4 is turned off to give a positive voltage of 12 V to the second output terminal OUT2, and the negative electrode of OV to the first output terminal OUT1.
この実施形態では、抵抗 R1と R2との抵抗値に明白な差を付けて、第 1スィッチ SW 1を第 2スィッチ SW2よりも早くオンさせるように設定して 、るが、各スィッチの充電回 路の間には、抵抗や寄生容量のばらつきにより、時定数の差があることが予想される ため、このようなばらつきを利用して、第 1スィッチ SW1と第 4スィッチ SW4の組と、第 2スィッチ SW2と第 3スィッチ SW3との組との何れか一方が優先的にオンされて、給 電導体 1A、 IBのどちらか一方を正極とすることが決定される。その後に、給電ュ-ッ ト 40を追加する場合は、上述したように、給電導体 1A、 IBの極性が判断されて、追 加する給電ユニットの出力極性が既存の給電システムの極性に合致される。  In this embodiment, the first switch SW1 is set to turn on earlier than the second switch SW2 with a clear difference between the resistance values of the resistors R1 and R2, but the charge times of each switch are set. Between the paths, due to variations in resistance and parasitic capacitance, it is expected that there will be a difference in time constant. Therefore, using such variations, the pair of the first switch SW1 and the fourth switch SW4, and the fourth switch SW4 are used. It is determined that one of the pair of the 2nd switch SW2 and the 3rd switch SW3 is turned on preferentially to make either of the power supply conductors 1A and IB positive. After that, when adding the feed tube 40, as described above, the polarity of the feed conductors 1A and IB is determined, and the output polarity of the feed unit to be added matches the polarity of the existing feed system. Ru.
ところで、第 1スィッチ SW1と第 2スィッチ SW2の充電回路の時定数は、抵抗 Rl、 R 2、寄生容量 Cl、 C2のばらつきによって、異なることが予想される力 万一、両方の 時定数が一致する場合は、第 3スィッチ SW3と第 4スィッチ SW4での充電回路の時 定数が同様に、抵抗と寄生容量のばらつきによって、異なることで、第 1スィッチ SW1 と第 4スィッチ SW4の組と、第 2スィッチ SW2と第 3スィッチ SW3との組との何れか一 方が優先的にオンされて、給電導体 1A、 IBのどちらか一方を正極とすることが決定 される。 即ち、給電ユニットの接続後に、第 1スィッチ SW1と第 2スィッチ SW2が一時的に 何れもオン状態となって、第 1出力端子 OUT1及び第 2出力端子 OUT2とに 12Vの 電圧が印加されるような場合は、この電圧がそれぞれ、抵抗 R3、 R4と寄生容量 C3、 C4とへ負入力端子 IN— (0V)との間で印加されて、各充電回路の寄生容量 C3、 C4 を充電することになる。この場合、第 3スィッチ SW3及び第 4スィッチ SW4のソース電 圧は負入力端子と同電位の OVであることから、第 4スィッチ SW4の充電回路の時定 数が第 3スィッチ SW3の充電回路の時定数よりも小さければければ、寄生容量 C3、 C4への充電速度が異なり、第 4スィッチ SW4のゲート電圧が OV力 の上昇速度が 第 3スィッチ SW3よりも早くなることで、第 4スィッチ SW4が先にオンとなり、第 2出力 端子 OUT2を負極に決定する。この結果、第 3スィッチ SW3のゲート電圧が OVに固 定され、ソース電圧(OV)と等しくなることで、第 3スィッチ SW3がオフされる。同時に 第 1スィッチ SW1のゲート電圧が OVに固定されることで、第 1スィッチ SW1のオンが 確定され、これに伴って第 1出力端子 OUT1が 12Vに固定されることで、第 2スィッチ SW2のゲート電圧が 12Vに固定されて、第 2スィッチ SW2のオフが確定する。これに より、第 1出力端子 OUT1へは直流電源力 の正極が与えられる。同様に、第 3スィ ツチ SW3の充電回路の時定数が第 4スィッチ SW4の充電回路の時定数よりも小さけ ればければ、寄生容量 C3、 C4への充電速度が異なることで、第 3スィッチ SW3がォ ンとなり、これに伴って、第 4スィッチ SW4と第 1スィッチ SW1がオフされ、第 2スイツ チ SW2がオンとなって、第 2出力端子 OUT2に直流電源からの正極が与えられる。 このように、第 1スィッチと第 2スィッチとの充電回路の時定数や、第 3スィッチと第 4 スィッチの充電回路の時定数には、抵抗 R1〜R4、寄生容量 C1〜C4のばらつきに より、差が生じることが予想されるため、その差異によって、直流電源の正極を第 1出 力端子 OUT1と第 2出力端子 OUT2との何れか一方へ優先的に割り当てることが可 能である。しかしながら、本実施形態においては、一貫した安定動作を与える意味で 、 R1く R2とする力、、或いは、 Rl =R2で R3 >R4 (R3 = 2K Ω、 R4 = lk Ω )として、 第 1出力端子 OUTlに直流電源の正極を出力するようにしている。勿論、 R1 >R2 或いは、 R1 =R2で R3<R4として、第 2出力端子 OUT2に直流電源の正極を出力 するようにしてちょい。 図 4〜図 6は、上述の極性切換回路の変更態様を示すもので、図 4の変更態様で は、第 1スィッチ SW1及び第 2スィッチ SW2のみに、抵抗 Rl、 R2を接続して充電回 路を形成して、 R1と R2の値を異なえた例を示し、図 5及び図 6の変更態様では、第 3 スィッチ SW3と第 4スィッチ SW4のみに、抵抗 R3、 R4を接続して充電回路を形成し て、 R3と R4の値を異なえた例を示す。 By the way, the time constants of the charging circuit of the first switch SW1 and the second switch SW2 are expected to differ depending on the variations of the resistors R1 and R2 and the parasitic capacitances Cl and C2. If the time constant of the charging circuit in the third switch SW3 and the fourth switch SW4 is different due to the variation in resistance and parasitic capacitance, the combination of the first switch SW1 and the fourth switch SW4, It is determined that one of the pair of the second switch SW2 and the third switch SW3 is turned on preferentially, and that one of the feed conductors 1A and IB is used as the positive electrode. That is, after the connection of the power supply unit, the first switch SW1 and the second switch SW2 are both temporarily turned on, and a voltage of 12 V is applied to the first output terminal OUT1 and the second output terminal OUT2. In this case, this voltage is applied between the resistors R3 and R4 and the parasitic capacitances C3 and C4, respectively, between the negative input terminal IN-(0 V) to charge the parasitic capacitances C3 and C4 of each charging circuit. become. In this case, since the source voltage of the third switch SW3 and the fourth switch SW4 is OV of the same potential as that of the negative input terminal, the time constant of the charging circuit of the fourth switch SW4 is that of the charging circuit of the third switch SW3. If it is smaller than the time constant, the charging speed to the parasitic capacitances C3 and C4 differs, and the gate voltage of the fourth switch SW4 rises faster than the third switch SW3, so that the fourth switch SW4 First turns on and determines the second output terminal OUT2 to be negative. As a result, the gate voltage of the third switch SW3 is fixed at OV and becomes equal to the source voltage (OV), so that the third switch SW3 is turned off. At the same time, by fixing the gate voltage of the first switch SW1 to OV, the on state of the first switch SW1 is determined, and accordingly, the first output terminal OUT1 is fixed to 12 V, whereby the second switch SW2 is turned on. The gate voltage is fixed at 12 V, and the second switch SW2 is turned off. As a result, the positive terminal of the DC power supply is provided to the first output terminal OUT1. Similarly, if the time constant of the charging circuit of the third switch SW3 is smaller than the time constant of the charging circuit of the fourth switch SW4, the charging speed to the parasitic capacitances C3 and C4 will be different. The fourth switch SW4 and the first switch SW1 are turned off, the second switch SW2 is turned on, and the positive electrode from the DC power supply is applied to the second output terminal OUT2. . As described above, the time constant of the charging circuit of the first switch and the second switch, and the time constant of the charging circuit of the third switch and the fourth switch, are due to variations in resistances R1 to R4 and parasitic capacitances C1 to C4. Since a difference is expected to occur, it is possible to preferentially assign the positive electrode of the DC power supply to one of the first output terminal OUT1 and the second output terminal OUT2 due to the difference. However, in the present embodiment, in order to provide a consistent and stable operation, the first output is obtained as R1 or R2 or R1 = R2 and R3> R4 (R3 = 2K Ω, R4 = lk Ω). The positive terminal of the DC power supply is output to the terminal OUTl. Of course, if R1> R2 or R1 = R2 and R3 <R4, then the positive terminal of the DC power supply is output to the second output terminal OUT2. 4 to 6 show modifications of the polarity switching circuit described above. In the modification of FIG. 4, the resistors R1 and R2 are connected only to the first switch SW1 and the second switch SW2, and charging is performed. An example is shown in which the paths are formed and the values of R1 and R2 are different, and in the modification of FIGS. 5 and 6, the resistors R3 and R4 are connected only to the third switch SW3 and the fourth switch SW4, An example is shown in which the values of R3 and R4 are different.
尚、上記の実施形態及び変更態様では、スイッチング素子の寄生容量を利用して 対応するスィッチへ充電回路を付加した例を示したが、本発明は必ずしもこれのみに 限定されるものではなぐ例えば、インダクタと抵抗との組み合わせで充電回路を形 成するようにしてちょい。  In the above embodiment and modifications, an example is shown in which the charging circuit is added to the corresponding switch using the parasitic capacitance of the switching element, but the present invention is not necessarily limited thereto. For example, Make sure to form a charging circuit with a combination of inductor and resistor.
図 7は、上述の実施形態の極性切換回路の更に他の変更態様を示す。この変更態 様では、各充電回路を構成する抵抗 R1〜R4に対してそれぞれ、分圧抵抗を Rll、 R2 1、 R31、 R41を接続して、各スイッチング素子のゲートに印加される電圧を低く抑え ている。この構成は、直流電源 10の出力電圧力 例えば、 24Vであり、スイッチング 素子として使用する MOSFETでの許容ゲート'ソース電圧を超える場合に、スィッチン グ素子を保護するために有用である。  FIG. 7 shows still another modification of the polarity switching circuit of the above-described embodiment. In this modification, R11, R21, R31 and R41 are connected to the resistors R1 to R4 that make up each charge circuit, respectively, and the voltage applied to the gate of each switching element is lowered. It is suppressed. This configuration is useful for protecting the switching device when the output voltage of the DC power supply 10 is, for example, 24 V and exceeds the allowable gate voltage 'source voltage' of the MOSFET used as the switching device.
以下、各分圧抵抗の具体的な接続関係を説明する。第 1スィッチ SW1では、第 1分 圧抵抗 R11が、正入力端子 IN +と第 2出力端子 OUT2との間で、第 1抵抗 R1と直列に 接続され、第 1分圧抵抗 R11と第 1抵抗 R1の間の接続点にスイッチング素子のゲート Gが接続される。第 2スィッチ SW2では、第 2分圧抵抗 R21が、正入力端子 IN+と第 1 出力端子 OUT1との間で、第 2抵抗 R2と直列に接続され、第 2分圧抵抗 R21と第 2抵 抗 R2の間の接続点にスイッチング素子のゲート Gが接続される。第 3スィッチ SW3で は、第 3分圧抵抗 R31が、負入力端子 IN—と第 2出力端子 OUT2との間で、第 3抵抗 R3と直列に接続され、第 3分圧抵抗 R31と第 3抵抗 R3の間の接続点にスイッチング 素子のゲート Gが接続される。第 4スィッチ SW4では、第 4分圧抵抗 R41が、負入力端 子 IN—と第 1出力端子 OUT1との間で、第 4抵抗 R4と直列に接続され、第 4分圧抵 抗 R41と第 4抵抗 R4の間の接続点にスイッチング素子のゲート Gが接続される。  Hereinafter, specific connection relationships of the voltage dividing resistors will be described. In the first switch SW1, the first voltage dividing resistor R11 is connected in series with the first resistor R1 between the positive input terminal IN + and the second output terminal OUT2, and the first voltage dividing resistor R11 and the first resistor are connected. The gate G of the switching element is connected to the connection point between R1. In the second switch SW2, the second voltage dividing resistor R21 is connected in series with the second resistor R2 between the positive input terminal IN + and the first output terminal OUT1, and the second voltage dividing resistor R21 and the second resistor The gate G of the switching element is connected to the connection point between R2. In the third switch SW3, the third voltage dividing resistor R31 is connected in series with the third resistor R3 between the negative input terminal IN− and the second output terminal OUT2, and the third voltage dividing resistor R31 and the third voltage dividing resistor R31 are connected to each other. The gate G of the switching element is connected to the connection point between the resistors R3. In the fourth switch SW4, the fourth voltage-dividing resistor R41 is connected in series with the fourth resistor R4 between the negative input terminal IN− and the first output terminal OUT1, and the fourth voltage-dividing resistor R41 and the fourth voltage-dividing resistor R41 The gate G of the switching element is connected to the connection point between the four resistors R4.
更に、この変更態様では、第 1出力端子 OUT1と第 2出力端子 OUT2の間で短絡が 生じた場合に、各スイッチング素子に流れる電流を制限してスイッチング素子を破壊 から保護するために、各分圧抵抗 Rll、 R21、 R31、 R41にそれぞれ、ツエナーダイォ ード ZD1、 ZD2、 ZD3、 ZD4を直列に接続している。即ち、第 1ツエナーダイオード ZD1 が、第 1分圧抵抗 R11と正入力端子 IN+との間に挿入され、第 2ツエナーダイオード ZD 2が、第 2分圧抵抗 R21と正入力端子 IN+との間に挿入され、第 3ツエナーダイオード ZD3が、第 3分圧抵抗 R31と負入力端子 IN—との間に挿入され、第 4ツエナーダイォ ード ZD4が、第 4分圧抵抗 R41と負入力端子 IN—との間に挿入される。 Furthermore, in this modification, when a short circuit occurs between the first output terminal OUT1 and the second output terminal OUT2, the current flowing to each switching element is limited to destroy the switching element. In order to protect from this, Zener diode ZD1, ZD2, ZD3 and ZD4 are connected in series to each voltage dividing resistance Rll, R21, R31 and R41 respectively. That is, the first Zener diode ZD1 is inserted between the first voltage dividing resistor R11 and the positive input terminal IN +, and the second Zener diode ZD2 is inserted between the second voltage dividing resistor R21 and the positive input terminal IN +. The third Zener diode ZD3 is inserted between the third voltage dividing resistor R31 and the negative input terminal IN-, and the fourth Zener diode ZD4 is inserted between the fourth voltage dividing resistor R41 and the negative input terminal IN- Inserted between
<第 2の実施形態 > Second Embodiment
図 8は、本発明の第 2の実施形態に係る極性切換回路を示す。この実施形態では 各スィッチ SW1〜SW4として、バイポーラトランジスタを使用し、第 1出力端子 OUT1及 び第 2出力端子 OUT2の電位を検出して各スィッチを制御する制御回路 100を備え る。  FIG. 8 shows a polarity switching circuit according to a second embodiment of the present invention. In this embodiment, a bipolar transistor is used as each of the switches SW1 to SW4, and a control circuit 100 for detecting the potentials of the first output terminal OUT1 and the second output terminal OUT2 to control each switch is provided.
第 1スィッチ SW1は NPN型バイポーラトランジスタであり、コレクタが正入力端 IN+に 結合されると共にェミッタが第 1出力端子 OUT1に接続され、ベース電圧が閾値以上 となった時に導通して、正入力端子 IN+を第 1出力端子 OUT1に接続する。第 2スィ ツチ SW2は NPN型バイポーラトランジスタであり、コレクタが正入力端 IN+に結合され ると共にェミッタが第 2出力端子 OUT2に接続され、ベース電圧が閾値以上となった 時に導通して、正入力端子 IN+を上記第 2出力端子 OUT2に接続する。第 3スィッチ S W3は PNP型バイポーラトランジスタであり、コレクタが負入力端 IN-に結合されると共 にェミッタが第 1出力端子 OUT1に接続され、ベース電圧が閾値未満となった時に導 通して、負入力端子 IN-を第 1出力端子 OUT1に接続する。第 4スィッチ SW4は PNP 型バイポーラトランジスタであり、コレクタが負入力端に結合されると共にェミッタが第 2出力端子 OUT2に接続され、ベース電圧が閾値未満となった時に導通して、負入 力端子 IN-を第 2出力端子に接続する。  The first switch SW1 is an NPN type bipolar transistor, the collector is coupled to the positive input terminal IN + and the emitter is connected to the first output terminal OUT1, and becomes conductive when the base voltage exceeds the threshold, the positive input terminal Connect IN + to the first output terminal OUT1. The second switch SW2 is an NPN type bipolar transistor, the collector is coupled to the positive input terminal IN +, the emitter is connected to the second output terminal OUT2, and the base voltage becomes higher than the threshold value. Connect terminal IN + to the second output terminal OUT2. The third switch SW3 is a PNP bipolar transistor, which has a collector coupled to the negative input terminal IN-, a emitter connected to the first output terminal OUT1, and a conductor connected when the base voltage is below the threshold. , Connect negative input terminal IN- to 1st output terminal OUT1. The fourth switch SW4 is a PNP bipolar transistor, the collector is coupled to the negative input terminal and the emitter is connected to the second output terminal OUT2, and becomes conductive when the base voltage becomes lower than the threshold value, and the negative input terminal Connect IN- to the 2nd output terminal.
制御回路 100は、第 1出力端子 OUT1に印加される第 1電位と、第 2出力端子 OU T2に印加される第 2電位とを検出して各スィッチ SW1〜SW4を制御する様に構成さ れ、以下の機能を達成する。  The control circuit 100 is configured to detect the first potential applied to the first output terminal OUT1 and the second potential applied to the second output terminal OUT2 to control the respective switches SW1 to SW4. , To achieve the following functions.
0第 1電位が第 2電位よりも大きい場合に、第 1スィッチ SW1と第 3スィッチ SW3の各 ベースに閾値以上の制御電圧を与えるとともに、第 2スィッチ SW2と第 4スィッチ SW 4の各ベースに閾値未満の制御電圧を与える。 When the first potential is greater than the second potential, a control voltage equal to or greater than the threshold is applied to each base of the first switch SW1 and the third switch SW3, and the second switch SW2 and the fourth switch SW Give each of the four bases a control voltage below the threshold.
ii)第 1電位が第 2電位よりも小さい場合に、第 1スィッチ SW1と第 3スィッチ SW3の 各 ベースに閾値未満の制御電圧を与えると共に、第 2スィッチ SW2と第 4スィッチ SW 4 の各ベースに閾値以上の制御電圧を与える。 ii) When the first potential is smaller than the second potential, a control voltage less than the threshold is applied to the bases of the first switch SW1 and the third switch SW3, and the bases of the second switch SW2 and the fourth switch SW 4 Control voltage above the threshold.
iii)第 1電位と第 2電位とが同電位の場合に、第 1スィッチ SW1と第 3スィッチ SW3の 各ベースに閾値未満の制御電圧を与えるとともに、第 2スィッチ SW2と第 4スィッチ ング SW4の各ベースに閾値未満の制御電圧を与える。 iii) When the first potential and the second potential are the same potential, a control voltage less than the threshold is applied to the bases of the first switch SW1 and the third switch SW3, and the second switch SW2 and the fourth switch SW4 Each base is given a control voltage below the threshold.
この機能を実現するため、制御回路 100は、第 1出力端子 OUT1に印加される第 1 電位を検出して、第 1電位が所定値以上の場合は、第 1検知信号を出力する第 1検 知手段 (コンパレータ) 101と、第 2出力端子 OUT2に印加される第 2電位を検出して 、第 2電位が所定値以上の場合は、第 2検知信号を出力する第 2検知手段 (コンパレ ータ) 102と、第 1検知信号と第 2検知信号の両方が同時に存在しない時のみに、所 定の制御電圧を判定手段(ORゲート) 130に与える論理手段 (NORゲート) 110とを 備える。第 2検知電圧は、第 2スィッチ SW2と第 4スィッチ SW4の各ベースへ共通して 与えられるもので、上記の閾値以上と設定される。  In order to realize this function, the control circuit 100 detects a first potential applied to the first output terminal OUT1, and outputs a first detection signal when the first potential is equal to or higher than a predetermined value. A second detection unit (a comparator) that detects a second potential applied to the detection means (comparator) 101 and the second output terminal OUT2, and outputs a second detection signal when the second potential is equal to or higher than a predetermined value. And 102) logic means (NOR gate) 110 for giving a predetermined control voltage to the determination means (OR gate) 130 only when both of the first detection signal and the second detection signal are not simultaneously present. The second detection voltage is commonly applied to the bases of the second switch SW2 and the fourth switch SW4, and is set to the above threshold value or more.
判定手段 130は、上記の制御電圧と第 1検知電圧との少なくも一方を受けた時に、 ベース電圧の閾値を超える駆動電圧を上記第 1スィッチ SW1と第 3スィッチ SW3のべ ースに与えるように構成される。  Judgment means 130 applies a drive voltage exceeding the threshold of the base voltage to the bases of the first switch SW1 and the third switch SW3 when receiving at least one of the control voltage and the first detection voltage. Configured
この制御回路 100には、抵抗 R5、コンデンサ C5、コンパレータ 121で構成され遅延 手段 120が設けられ、論理手段 (NORゲート) 110から出力される制御電圧を遅延さ せた後に、これを判定手段 130へ出力する。  The control circuit 100 includes a resistor R5, a capacitor C5, and a comparator 121, and is provided with a delay means 120. After delaying the control voltage output from the logic means (NOR gate) 110, this is determined. Output to
本実施形態に係る極性切換回路の動作を以下に説明する。この説明では、理解を 容易とするために、便宜上、直流電源の出力電圧及び給電システムでの動作電圧を 12Vとし、第 1検知手段 101や第 2検知手段 102や論理手段 110や判定手段 130か らの出力を、 12Vまたは 0Vとするものであり、実際は回路設計の観点力 異なる値と することができる。  The operation of the polarity switching circuit according to the present embodiment will be described below. In this description, for the sake of convenience, the output voltage of the DC power supply and the operating voltage in the power supply system are 12 V, and the first detection unit 101, the second detection unit 102, the logic unit 110, the determination unit 130 These outputs are 12 V or 0 V, and in practice they can be different values in terms of circuit design.
1)第 1出力端子 OUT1が、正極の給電導体 1Aに接続され、第 2出力端子 OUT2 が負極の給電導体 1Bに接続された場合 第 1出力端子 OUTlに印加される電圧が 12V、第 2出力端子 OUT2に印加される電圧 が 0Vであり、第 1検知手段 101、第 2検知手段 102での基準値が 12V未満とすると、 第 1検知手段 101は、第 1検知信号として 12Vの電圧信号を出力し、第 2検知手段 1 02の出力が 0Vとなり第 2検知信号を出力しない。この結果、論理手段 110の出力が 0Vとなり、制御電圧を出力しない。このため、遅延手段 120は動作せず、 0Vの出力 が判定手段 130に入力される。判定手段 130は、第 1検知手段 101からの 12Vの第 1検知信号を受けて、 12Vの駆動電圧を第 1スィッチ SW1と第 3スィッチ SW3のベース に与える。これによつて、第 1スィッチ SW1がオンし、第 3スィッチ SW3がオフされる。 一方、第 2スィッチ SW2と第 4スィッチ SW4のベースには、第 2検知手段 102からの出 力が 0Vであるため、第 2検知信号が与えられず、第 2スィッチ SW2がオフし、第 4スィ ツチ SW4がオンとなる。この結果、第 1スィッチ SW1と第 4スィッチ SW4のみがオンとな り、正入力端子 IN+が第 1出力端子 OUT1に接続され、負入力端子 IN-が第 2出力端 子 OUT2に接続され、既に稼働して ヽる給電システムの極性に応じた極性で直流電 源が給電システムに追加される。 1) When the first output terminal OUT1 is connected to the positive feed conductor 1A, and the second output terminal OUT2 is connected to the negative feed conductor 1B Assuming that the voltage applied to the first output terminal OUTl is 12 V, the voltage applied to the second output terminal OUT2 is 0 V, and the reference values at the first detection means 101 and the second detection means 102 are less than 12 V, The first detection means 101 outputs a voltage signal of 12 V as the first detection signal, and the output of the second detection means 102 becomes 0 V and does not output the second detection signal. As a result, the output of the logic means 110 becomes 0 V and does not output the control voltage. Therefore, the delay unit 120 does not operate, and an output of 0 V is input to the determination unit 130. The determination means 130 receives the first detection signal of 12 V from the first detection means 101 and applies a drive voltage of 12 V to the bases of the first switch SW1 and the third switch SW3. As a result, the first switch SW1 is turned on and the third switch SW3 is turned off. On the other hand, the second detection signal is not given to the bases of the second switch SW2 and the fourth switch SW4 because the output from the second detection means 102 is 0 V, and the second switch SW2 is turned off. Switch SW4 is turned on. As a result, only the first switch SW1 and the fourth switch SW4 are turned on, the positive input terminal IN + is connected to the first output terminal OUT1, the negative input terminal IN- is connected to the second output terminal OUT2, DC power is added to the feed system with a polarity that corresponds to the polarity of the feed system that is active.
2)第 1出力端子 OUT1が、負極の給電導体 1Bに接続され、第 2出力端子 OUT2 が正極の給電導体 1Bに接続された場合  2) When the first output terminal OUT1 is connected to the negative feed conductor 1B, and the second output terminal OUT2 is connected to the positive feed conductor 1B
第 1検知手段 101の出力が 0Vで第 1検知信号を出力せず、第 2検知手段 102は 12V の第 2検知信号を出力する。この場合、論理手段 110の出力は 0Vであり、制御電圧 が出力されず、遅延回路 120が動作せず、判定手段 130の一方の入力は 0Vである 。判定手段 130の他方の入力には、第 1検知手段 101から出力される 0Vが入力され ているため、判定手段 130は 0Vを出力して、駆動電圧を第 1スィッチ SW1と第 3スイツ チ SW3のベースに与えない。この結果、第 1スィッチ SW1がオフし、第 3スィッチ SW3 がオンされる。一方、第 2検知手段 102からの 12Vの第 2検知信号が第 2スィッチ SW2 と第 4スィッチ SW4のベースに与えられ、第 2スィッチ SW2がオンし、第 4スィッチ SW4 がオフする。この結果、第 2スィッチ SW2と第 3スィッチ SW3のみがオンとなり、正入力 端子 IN+が第 2出力端子 OUT2に接続され、負入力端子 IN-が第 1出力端子 OUT1 に接続され、既に稼働して ヽる給電システムの極性に応じた極性で直流電源が給電 システムに追カ卩される。 3)最初に給電ユニットを給電システムに接続する場合 The output of the first detection means 101 is 0 V and does not output the first detection signal, and the second detection means 102 outputs a 12 V second detection signal. In this case, the output of the logic means 110 is 0V, the control voltage is not output, the delay circuit 120 does not operate, and one input of the determination means 130 is 0V. Since 0 V output from the first detection means 101 is input to the other input of the determination means 130, the determination means 130 outputs 0 V and the drive voltage is set to the first switch SW1 and the third switch SW3. Do not give to the base of. As a result, the first switch SW1 is turned off and the third switch SW3 is turned on. On the other hand, the 12V second detection signal from the second detection means 102 is applied to the bases of the second switch SW2 and the fourth switch SW4, the second switch SW2 is turned on, and the fourth switch SW4 is turned off. As a result, only the second switch SW2 and the third switch SW3 are turned on, the positive input terminal IN + is connected to the second output terminal OUT2, and the negative input terminal IN- is connected to the first output terminal OUT1. The DC power supply is added to the power supply system with a polarity according to the polarity of the power supply system. 3) When connecting the feed unit to the feed system first
この場合、給電導体 1A、 IBは共に OVであり、この状態で給電ユニット 40の第 1出力 端子 OUT1と第 2出力端子 OUT2を給電導体に接続すると、第 1出力端子 OUT1 及び第 2出力端子 OUT2は共に OVの電圧となり、第 1検知手段 101と第 2検知手段 1 02は共に OVを出力し、第 1検知信号と第 2検知信号を出力しない。その結果、論理 手段 110は 12Vの制御電圧を出力し、この出力が遅延回路 120を介して、判定手段 130に送られる。遅延手段 120は 12Vの制御電圧を遅延させて判定手段 130に出 力する結果、判定手段 130には、最初、遅延手段 120から 0Vの出力と、第 1検知手 段 101から 0Vが入力され、判定手段 130は 0Vを出力して駆動電圧を与えないが、 その後に、遅延手段 120から 12Vの制御電圧が判定手段 130に入力されると、判定 手段 130は 12Vの駆動電圧を出力する。その結果、第 1スィッチ SW1がオンされ、第 3スィッチ SW3がオフされる。一方、第 2検知手段 102からの 0V出力により、第 3スイツ チ SW3がオフされ、第 4スィッチ SW4がオンとされる。従って、始めて給電ユニットを給 電システムに接続する場合は、第 1スィッチ SW1と第 4スィッチ SW4のみがオンとされて 、第 1出力端子 OUT1へ優先的に直流電源の正極 12Vが印加されることになる。 <第 3の実施形態 > In this case, when the feed conductors 1A and IB are both OV and the first output terminal OUT1 and the second output terminal OUT2 of the feed unit 40 are connected to the feed conductor in this state, the first output terminal OUT1 and the second output terminal OUT2 The first detection unit 101 and the second detection unit 102 both output OV and do not output the first detection signal and the second detection signal. As a result, the logic means 110 outputs a control voltage of 12 V, and this output is sent to the judging means 130 via the delay circuit 120. The delay means 120 delays the control voltage of 12 V and outputs it to the determination means 130, so that the output of 0 V from the delay means 120 and 0 V from the first detection means 101 are inputted to the determination means 130 first. Although the determination means 130 outputs 0 V and does not give a drive voltage, when the control voltage of 12 V is input from the delay means 120 to the determination means 130, the determination means 130 outputs a 12 V drive voltage. As a result, the first switch SW1 is turned on and the third switch SW3 is turned off. On the other hand, the third switch SW3 is turned off by the 0V output from the second detection means 102, and the fourth switch SW4 is turned on. Therefore, when the power supply unit is connected to the power supply system for the first time, only the first switch SW1 and the fourth switch SW4 are turned on to preferentially apply the positive electrode 12V of the DC power supply to the first output terminal OUT1. become. Third Embodiment
図 9は、本発明の第 3の実施形態に係る極性切換回路を示す。この実施形態では 各スィッチ SW1〜SW4として、電磁リレーを使用し、第 2の実施形態と同様の制御回路 100を備える。  FIG. 9 shows a polarity switching circuit according to a third embodiment of the present invention. In this embodiment, an electromagnetic relay is used as each of the switches SW1 to SW4, and a control circuit 100 similar to that of the second embodiment is provided.
第 1スィッチ SW1は駆動コイルを有する常開のリレーであり、共通端子 (COM)が上 記の正入力端子 IN +に接続され、 NO接点が上記の第 1出力端子に接続され、駆動 コイルが励磁された時に、 NO接点が閉じて、正入力端子 IN+を第 1出力端子 OUT1 に接続する。第 2スィッチ SW2は駆動コイルを有する常開のリレーであり、共通端子( COM)が正入力端子 IN +に接続され、 NO接点が第 2出力端子 OUT2に接続され、 駆動コイルが励磁された時に、 NO接点が閉じて、正入力端子 IN+を第 2出力端子 0 UT2に接続する。第 3スィッチ SW3は駆動コイルを有する常閉のリレーであり、共通端 子 (COM)が負入力端子 IN—に接続され、 NC接点が第 1出力端子 OUT1に接続さ れ、駆動コイルが励磁された時に、 NC接点が開いて負入力端子 IN-を第 1出力端子 OUT1から切断する。第 4スィッチ SW4は駆動コイルを有する常閉のリレーであり、共 通端子 (COM)が負入力端子 IN—に接続され、 NC接点が第 2出力端子 OUT2に接 続され、駆動コイルが励磁された時に、 NC接点が開いて、正入力端子 IN+を第 2出 力端子 OUT2から切断する。 The first switch SW1 is a normally open relay having a drive coil, and the common terminal (COM) is connected to the positive input terminal IN +, the NO contact is connected to the first output terminal, and the drive coil is When energized, the NO contact closes and connects the positive input terminal IN + to the first output terminal OUT1. The second switch SW2 is a normally open relay having a drive coil, and the common terminal (COM) is connected to the positive input terminal IN +, the NO contact is connected to the second output terminal OUT2, and the drive coil is excited. , NO contact closes, connect positive input terminal IN + to second output terminal 0 UT2. The third switch SW3 is a normally closed relay having a drive coil, the common terminal (COM) is connected to the negative input terminal IN−, the NC contact is connected to the first output terminal OUT1, and the drive coil is excited. When open, the NC contact opens and the negative input terminal IN- to the 1st output terminal Disconnect from OUT1. The fourth switch SW4 is a normally closed relay having a drive coil, the common terminal (COM) is connected to the negative input terminal IN−, the NC contact is connected to the second output terminal OUT2, and the drive coil is excited. At the same time, the NC contact opens and disconnects the positive input terminal IN + from the second output terminal OUT2.
制御回路 100は、第 2の実施形態と同様に、第 1出力端子 OUT1に印加される第 1 電位を検出して、第 1電位が所定以上の場合は、第 1検知電圧を出力する第 1検知 手段 101と、第 2出力端子 OUT2に印加される第 2電位を検出して、第 2電位が所定 以上の場合は、第 2の検知電圧を出力する第 2の検知手段 102と、第 1検知信号と第 2の検知信号の両方が同時に存在しない時のみに、所定の制御電圧を判定手段 13 0に与える論理手段とを備える。この制御回路 100は、第 1電位が第 2電位よりも大き い場合に、第 1スィッチ SW1と第 3スィッチ SW3の駆動コイルを励磁し、第 1電位より第 2電位が大き 、場合に、第 2スィッチ SW2と第 4スィッチ SW4の駆動コイルを励磁する 。更に、この制御回路 100には、第 1電位と第 2電位とが同電位の場合に、第 1出力 端子 OUT1及び第 2出力端子 OUT2をそれぞれ給電導体 1A、 IBに接続した時点より 所定の時間遅延させて、第 1スィッチ SW1と第 3スィッチ SW3の駆動コイルを励磁する 遅延手段 120が設けられる。第 2の検知手段 102からの第 2の検知電圧は、第 2スイツ チ SW2と第 4スィッチ SW4の励磁コイルに印加され、判定手段 130は、制御電圧と上 記の第 1検知電圧との少なくも一方を受けた時に、第 1スィッチ SW1及び第 3スィッチ SW3の励磁コイルを励磁させる駆動電圧を与えるように構成され、遅延手段 120は、 この制御電圧を遅延させて判定手段 130に与える回路 (R5、 C5)を備える。  As in the second embodiment, the control circuit 100 detects the first potential applied to the first output terminal OUT1, and outputs the first detection voltage when the first potential is equal to or higher than a predetermined value. Detection means 101 and a second detection means 102 for detecting a second potential applied to the second output terminal OUT2 and outputting a second detection voltage when the second potential is equal to or higher than a predetermined value; A logic means is provided for providing a predetermined control voltage to the determining means 130 only when both the detection signal and the second detection signal are not simultaneously present. The control circuit 100 excites drive coils of the first switch SW1 and the third switch SW3 when the first potential is larger than the second potential, and the second potential is larger than the first potential. Energize the drive coil of 2nd switch SW2 and 4th switch SW4. Furthermore, in the control circuit 100, when the first potential and the second potential are the same potential, a predetermined time has elapsed since the first output terminal OUT1 and the second output terminal OUT2 are connected to the feed conductors 1A and IB, respectively. Delay means 120 is provided to excite the drive coils of the first switch SW1 and the third switch SW3 with delay. The second detection voltage from the second detection means 102 is applied to the exciting coil of the second switch SW2 and the fourth switch SW4, and the determination means 130 determines whether the control voltage and the first detection voltage described above are small. When it receives either one of them, it is configured to apply a drive voltage for exciting the exciting coil of the first switch SW1 and the third switch SW3, and the delay means 120 delays this control voltage and applies it to the determination means 130 R5, C5) are provided.
本実施形態に係る極性切換回路の動作を以下に説明する。この説明では、理解を 容易とするために、便宜上、直流電源の出力電圧及び給電システムでの動作電圧を 12Vとし、第 1検知手段 101や第 2検知手段 102や論理手段 110や判定手段 130か らの出力を、 12Vまたは 0Vとするものであり、実際は回路設計の観点力 異なる値と することができる。  The operation of the polarity switching circuit according to the present embodiment will be described below. In this description, for the sake of convenience, the output voltage of the DC power supply and the operating voltage in the power supply system are 12 V, and the first detection unit 101, the second detection unit 102, the logic unit 110, the determination unit 130 These outputs are 12 V or 0 V, and in practice they can be different values in terms of circuit design.
1)第 1出力端子 OUT1が、正極の給電導体 1Aに接続され、第 2出力端子 OUT2 が負極の給電導体 1Bに接続された場合  1) When the first output terminal OUT1 is connected to the positive feed conductor 1A, and the second output terminal OUT2 is connected to the negative feed conductor 1B
第 1出力端子 OUT1に印加される電圧が 12V、第 2出力端子 OUT2に印加される電圧 が OVであり、第 1検知手段 101、第 2検知手段 102での基準値が 12V未満とすると、 第 1検知手段 101は、第 1検知信号として 12Vの電圧を出力し、第 2検知手段 102は 出力が 0Vとなって、第 2検知信号を出力しない。この結果、論理手段 110は 0Vを出 力し、遅延手段 120は動作しない。判定手段 130は、第 1検知手段 101からの 0Vの 入力と遅延手段 120からの 0Vの出力を受けて 12Vの駆動電圧を第 1スィッチ SW1と 第 3スィッチ SW3の駆動コイルに与える。これによつて、第 1スィッチ SW1の NO接点が 閉じると共に、第 3スィッチ SW3の NC接点が開いて、正入力端子 IN+が第 1出力端子 OUT1に接続され、負入力端子 IN-が第 1出力端子 OUT1から切断される。一方、第 2スィッチ SW2と第 3スィッチ SW3の各駆動コイルは、第 2検知手段 102からの出力が 0Vであるため、励磁されず、第 2スィッチ SW2の NO接点は開いたまま、第 4スィッチ S W4の NC接点は閉じた状態に維持され、負入力端子 IN-が第 2出力端子 OUT2に接 続される。この結果、既に稼働している給電システムの極性に応じた極性で直流電源 が給電システムに追加される。 The voltage applied to the first output terminal OUT1 is 12 V, and the voltage applied to the second output terminal OUT2 Is OV and the reference value in the first detection means 101 and the second detection means 102 is less than 12 V, the first detection means 101 outputs a voltage of 12 V as the first detection signal, and the second detection means 102 The output is 0 V and does not output the second detection signal. As a result, the logic means 110 outputs 0 V and the delay means 120 does not operate. The determination means 130 receives the 0V input from the first detection means 101 and the 0V output from the delay means 120 and applies a 12V drive voltage to the drive coils of the first switch SW1 and the third switch SW3. As a result, the NO contact of the first switch SW1 is closed and the NC contact of the third switch SW3 is opened, the positive input terminal IN + is connected to the first output terminal OUT1, and the negative input terminal IN- is the first output. Disconnected from terminal OUT1. On the other hand, the drive coils of the second switch SW2 and the third switch SW3 are not excited because the output from the second detection means 102 is 0 V, and the fourth switch is left open while the NO contact of the second switch SW2 is open. The NC contact of SW4 is kept closed and the negative input terminal IN- is connected to the second output terminal OUT2. As a result, a DC power supply is added to the feed system with a polarity according to the polarity of the feed system already in operation.
2)第 1出力端子 OUT1が、負極の給電導体 1Bに接続され、第 2出力端子 OUT2 が正極の給電導体 1Bに接続された場合  2) When the first output terminal OUT1 is connected to the negative feed conductor 1B, and the second output terminal OUT2 is connected to the positive feed conductor 1B
第 1検知手段 101は 0Vを出力して、第 1検知信号を出力せず、第 2検知手段 102は 1 2Vの第 2検知信号を出力する。これに伴って、論理手段 110は 0Vを出力し、制御電 圧を与えないため、遅延回路 120が動作しない。従って、判定手段 130は 0Vを出力 して、第 1スィッチ SW1と第 3スィッチ SW3の駆動コイルが励磁されな 、。 The first detection means 101 outputs 0 V and does not output a first detection signal, and the second detection means 102 outputs a 12 V second detection signal. Along with this, the logic circuit 110 outputs 0 V and does not supply the control voltage, so the delay circuit 120 does not operate. Therefore, the determination means 130 outputs 0 V and the drive coils of the first switch SW1 and the third switch SW3 are not excited.
この結果、第 1スィッチ SW1及び第 3スィッチ SW3は動作せず、第 1出力端子 OUT1が 正入力端子 IN+が切断され、負入力端子 IN—が第 1出力端子 OUT1に接続される。 一方、第 2検知手段 102からの 12Vの第 2検知信号によって、第 2スィッチ SW2と第 4ス イッチ SW4の駆動コイルが励磁され、第 2スィッチ SW2の NO接点が閉じ、第 4スィッチ SW4の NC接点が開くことで、正入力端子 IN+が第 2出力端子 OUT2に接続され、負 入力端子 IN-が第 2出力端子 OUT2から切断される。この結果、既に稼働している給 電システムの極性に応じた極性で直流電源が給電システムに追加される。 As a result, the first switch SW1 and the third switch SW3 do not operate, the first output terminal OUT1 is disconnected from the positive input terminal IN +, and the negative input terminal IN- is connected to the first output terminal OUT1. On the other hand, the drive coil of the second switch SW2 and the fourth switch SW4 is excited by the second detection signal of 12 V from the second detection means 102, the NO contact of the second switch SW2 is closed, and the NC of the fourth switch SW4. When the contact opens, the positive input terminal IN + is connected to the second output terminal OUT2, and the negative input terminal IN- is disconnected from the second output terminal OUT2. As a result, a DC power supply is added to the power supply system with a polarity according to the polarity of the power supply system already in operation.
3)最初に給電ユニットを給電システムに接続する場合  3) When connecting the feed unit to the feed system first
この場合、給電導体 1A、 IBは共に 0Vであり、この状態で給電ユニット 40の第 1出力 端子 OUT1と第 2出力端子 OUT2を給電導体に接続すると、第 1出力端子 OUT1 及び第 2出力端子 OUT2は共に 0Vの電圧となり、第 1検知手段 101と第 2検知手段 1 02は第 1検知信号と第 2検知信号を出力しない。その結果、論理手段 110は 12Vの 制御電圧を出力し、この出力が遅延回路 120を介して、判定手段 130に送られる。 遅延手段 120は 12Vの制御電圧を遅延させて判定手段 130に出力する結果、判定 手段 130には、最初、遅延手段 120から 0V出力と、第 1検知手段 101から 0Vの第 1 検知信号とが入力され、判定手段 130の出力は 0Vで駆動電圧を出力しないが、そ の後に、遅延手段 120から 12Vの制御電圧が判定手段 130に入力されて、判定手 段 130は 12Vの駆動電圧を出力する。その結果、第 1スィッチ SW1と第 3スィッチ SW3 の駆動コイルが励磁され、第 1スィッチ SW1の NO接点が閉じ、第 3スィッチ SW3の NC 接点が開き、正入力端子 IN+が第 1出力端子 OUT1に接続され、負入力端子 IN-が 第 1出力端子 OUT2から切断される。 In this case, feed conductors 1A and IB are both at 0 V, and in this state, the first output of feed unit 40 When the terminal OUT1 and the second output terminal OUT2 are connected to the feed conductor, the first output terminal OUT1 and the second output terminal OUT2 both have a voltage of 0 V, and the first detection means 101 and the second detection means 102 have the first detection signal. And do not output the second detection signal. As a result, the logic means 110 outputs a control voltage of 12 V, and this output is sent to the judging means 130 via the delay circuit 120. The delay means 120 delays the control voltage of 12 V and outputs it to the determination means 130. As a result, the determination means 130 initially outputs 0 V from the delay means 120 and the first detection signal of 0 V from the first detection means 101. Although the output of the judging means 130 is 0 V and does not output the driving voltage, the control voltage of 12 V is inputted from the delay means 120 to the judging means 130, and the judging means 130 outputs the driving voltage of 12 V. Do. As a result, the drive coils of the first switch SW1 and the third switch SW3 are excited, the NO contact of the first switch SW1 closes, the NC contact of the third switch SW3 opens, and the positive input terminal IN + becomes the first output terminal OUT1. Connected, the negative input terminal IN- is disconnected from the first output terminal OUT2.
一方、第 2検知手段 102からの 0Vの出力によって、第 2スィッチ SW2と第 4スィッチ S W4の駆動コイルは励磁されず、第 2スィッチ SW2の NO接点は開いたまま、第 4スイツ チ SW4の NC接点は閉じた状態に維持され、負入力端子 IN-が第 2出力端子 OUT2に 接続される。従って、始めて給電ユニットを給電システムに接続する場合は、正入力 端子 IN +が第 1出力端子 OUT1に接続されると共に、負入力端子 IN-が第 2出力端 子 OUT2に接続され、第 1出力端子 OUT1へ優先的に直流電源の正極 12Vが印加 されること〖こなる。  On the other hand, the 0 V output from the second detection means 102 does not excite the drive coils of the second switch SW2 and the fourth switch SW4, and the NO contact of the second switch SW2 is kept open. The NC contact is kept closed and the negative input terminal IN- is connected to the second output terminal OUT2. Therefore, when the feed unit is connected to the feed system for the first time, the positive input terminal IN + is connected to the first output terminal OUT1, and the negative input terminal IN- is connected to the second output terminal OUT2, and the first output The positive terminal 12V of the DC power supply is preferentially applied to the terminal OUT1.

Claims

請求の範囲 The scope of the claims
[1] 直流電源と負荷との間に介在して、負荷に繋がる 2本の給電導体へ直流電源を接続 するための極'性切換回路であって、  [1] A pole switching circuit for connecting a DC power supply to two feed conductors connected between the DC power supply and the load and connected to the load,
上記直流電源の正極に接続される正入力端子 IN +と、  Positive input terminal IN + connected to the positive electrode of the DC power supply;
上記直流電源の負極に接続される負入力端子 IN—と、  A negative input terminal IN− connected to the negative electrode of the DC power supply;
上記 2本の給電導体の一方に接続される第 1出力端子 OUT1と、  A first output terminal OUT1 connected to one of the two feed conductors;
上記 2本の給電導体の他方に接続される第 2出力端子 OUT2と、  A second output terminal OUT2 connected to the other of the two feed conductors;
上記正入力端子と上記第 1出力端子との間に挿入した第 1スィッチ SW1と、 上記正入力端子と上記第 2出力端子との間に挿入した第 2スィッチ SW2と、 上記負入力端子と上記第 1出力端子との間に挿入した第 3スィッチ SW3と 上記負入力端子と上記第 2出力端子との間に挿入した第 4スィッチ SW4と、 で構成され、  A first switch SW1 inserted between the positive input terminal and the first output terminal; a second switch SW2 inserted between the positive input terminal and the second output terminal; the negative input terminal; A third switch SW3 inserted between the first output terminal and a fourth switch SW4 inserted between the negative input terminal and the second output terminal;
上記第 1スィッチ SW1と第 4スィッチ SW4は、上記第 1出力端子 OUT1に印加され る電圧が上記第 2出力端子に印加される電圧よりも高い場合に導通して、上記正入 力端子 IN+を上記第 1出力端子 OUT1に接続すると共に、上記負入力端子 IN-を上 記第 2出力端子 OUT2に接続するように構成され、  The first switch SW1 and the fourth switch SW4 conduct when the voltage applied to the first output terminal OUT1 is higher than the voltage applied to the second output terminal, and the positive input terminal IN + The first output terminal OUT1 is connected, and the negative input terminal IN- is connected to the second output terminal OUT2 above.
上記第 2スィッチ SW2と上記第 3スィッチ SW3は、上記第 1出力端子 OUT1に印加 される電圧が上記第 2出力端子 OUT2に印加される電圧よりも小さい場合に導通し て、上記正入力端子 IN+を上記第 1出力端子に接続すると共に、上記負入力端子 IN -を上記第 2出力端子に接続するように構成されたことを特徴とする極性切換回路。  The second switch SW2 and the third switch SW3 become conductive when the voltage applied to the first output terminal OUT1 is smaller than the voltage applied to the second output terminal OUT2, and the positive input terminal IN + A polarity switching circuit characterized in that it is connected to the first output terminal and to connect the negative input terminal IN- to the second output terminal.
[2] 上記第 1スィッチは、制御端 Gを有する第 1スイッチング素子を備え、この第 1スイツ チング素子はこの制御端と上記正入力端子との間に所定値未満の電圧が印加され た時に導通し、 [2] The first switch includes a first switching element having a control end G. The first switching element receives a voltage less than a predetermined value between the control end and the positive input terminal. Conduct,
上記第 2スィッチは、制御端 Gを有する第 2スイッチング素子を備え、この第 2スイツ チング素子はこの制御端と上記正入力端子との間に所定値未満の電圧が印加され た時に導通し、  The second switch includes a second switching element having a control end G, and the second switching element conducts when a voltage less than a predetermined value is applied between the control end and the positive input terminal,
上記第 3スィッチは、制御端 Gを有する第 3スイッチング素子を備え、この第 3スイツ チング素子はこの制御端と上記正入力端子との間に所定値を超える電圧が印加され た時に導通し、 The third switch includes a third switching element having a control end G. The third switching element receives a voltage exceeding a predetermined value between the control end and the positive input terminal. When it
上記第 4スィッチは、制御端 Gを有する第 4スイッチング素子を備え、この第 4スイツ チング素子はこの制御端と上記正入力端子との間に所定値を超える電圧が印加され た時に導通し、  The fourth switch includes a fourth switching element having a control end G. The fourth switching element conducts when a voltage exceeding a predetermined value is applied between the control end and the positive input terminal,
上記第 1スイッチング素子の制御端と上記第 3スイッチング素子の制御端が共に上 記第 2出力端子 OUT2に接続され、  The control end of the first switching element and the control end of the third switching element are both connected to the second output terminal OUT2,
上記第 2スイッチング素子の制御端と上記第 4スイッチング素子の制御端が共に上 記第 1出力端子 OUT1に接続され、  The control end of the second switching element and the control end of the fourth switching element are both connected to the first output terminal OUT1,
上記第 1スィッチは、上記の第 1スイッチング素子の制御端に上記正極力 の上記 所定値以上の制御電圧を与えた後に所定時間遅延させて、この制御端に上記所定 値未満の電圧を与える第 1遅延回路 (Rl、 C1)を備え、  The first switch applies a control voltage equal to or greater than the predetermined value of the positive electrode force to the control end of the first switching element and delays the control voltage for a predetermined time to apply a voltage less than the predetermined value to the control end. 1 delay circuit (Rl, C1),
上記第 2スィッチは、上記の第 2スイッチング素子の制御端に上記正極力 の上記 所定値以上の制御電圧を与えた後に所定時間遅延させて、この制御端に上記所定 値未満の電圧を与える第 2遅延回路 (R2、 C2)を備え、  The second switch applies a control voltage equal to or greater than the predetermined value of the positive electrode force to the control end of the second switching element and delays the control voltage for a predetermined time to apply a voltage less than the predetermined value to the control end. Equipped with two delay circuits (R2, C2),
上記第 1出力端子に印加される電圧が上記第 2出力端子に印加される電圧よりも大 きい時に、上記第 1遅延回路が動作して、上記第 2遅延回路は動作せず、  When the voltage applied to the first output terminal is larger than the voltage applied to the second output terminal, the first delay circuit operates and the second delay circuit does not operate.
上記第 1出力端子に印加される電圧が上記第 2出力端子に印加される電圧よりも小 さい時に、上記第 2遅延回路が動作して、上記第 1遅延回路は動作せず、  When the voltage applied to the first output terminal is smaller than the voltage applied to the second output terminal, the second delay circuit operates and the first delay circuit does not operate,
上記第 1出力端子と上記第 2出力端子にそれぞれ印加される電圧が等しい時に、 上記第 1遅延回路と上記第 2遅延回路が共に動作するが、上記第 1遅延回路による 遅延よりも上記第 2遅延回路による遅延時間が長くなるように構成されたことを特徴と する請求項 1に記載の極性切換回路。  Although the first delay circuit and the second delay circuit operate together when the voltage applied to the first output terminal and the voltage applied to the second output terminal are equal, the second delay circuit operates in conjunction with the second delay circuit. The polarity switching circuit according to claim 1, wherein the delay time by the delay circuit is increased.
上記第 1スイッチング素子はゲート'ソース間に寄生容量を有する FETであり、ソース が上記正入力端に結合されると共にドレインが第 1出力端子に接続され、ソース電圧 がゲート電圧よりも所定値以上の時に導通して、上記の正入力端子を上記第 1出力 端子に接続し、 The first switching element is an FET having a parasitic capacitance between gate and source, the source is coupled to the positive input terminal, the drain is connected to the first output terminal, and the source voltage is a predetermined value or more than the gate voltage. At the same time, connect the positive input terminal above to the first output terminal above,
上記第 1遅延回路は、上記寄生容量 C1と、この寄生容量と直列に上記正入力端子と 上記第 2出力端子との間に挿入された第 1抵抗 R1とで構成されて、第 1抵抗 R1と寄 生容量 CIとの間の接続点がゲート Gに接続され、 The first delay circuit includes the parasitic capacitance C1 and a first resistor R1 inserted in series with the parasitic capacitance between the positive input terminal and the second output terminal. To The connection point with the raw capacity CI is connected to the gate G,
上記第 2スイッチング素子はゲート'ソース間に寄生容量を有する FETであり、ソース が上記正入力端に結合されると共にドレインが第 2出力端子に接続され、ソース電圧 がゲート電圧よりも所定値以上の時に導通して、上記の正入力端子 IN +を上記第 2 出力端子 OUT2に接続し、  The second switching element is an FET having a parasitic capacitance between the gate and the source, the source is coupled to the positive input terminal, the drain is connected to the second output terminal, and the source voltage is a predetermined value or more than the gate voltage. At the same time, connect the positive input terminal IN + to the second output terminal OUT2,
上記第 2遅延回路 (R2、 C2)は、上記寄生容量 C2と、この寄生容量と直列に上記正 入力端子 IN +と上記第 1出力端子 OUT1との間に挿入された第 2抵抗 R2とで構成 されて、第 2抵抗と寄生容量との間の接続点がゲート Gに接続され、  The second delay circuit (R2, C2) includes the parasitic capacitance C2 and a second resistor R2 inserted between the positive input terminal IN + and the first output terminal OUT1 in series with the parasitic capacitance. The connection point between the second resistor and the parasitic capacitance is connected to the gate G,
上記第 1抵抗 R1の抵抗値が第 2抵抗 R2の抵抗値よりも小さくて、第 1遅延回路の時 定数を第 2遅延回路の時定数よりも小さくしたことを特徴とする請求項 2に記載の極性 切換回路。  The resistance value of the first resistor R1 is smaller than the resistance value of the second resistor R2, and the time constant of the first delay circuit is smaller than the time constant of the second delay circuit. Polarity switching circuit.
[4] 上記正入力端子 IN+と上記第 2出力端子との間で上記第 1抵抗 R1と直列に第 1分圧 抵抗が接続され、第 1抵抗 R1と上記第 1分圧抵抗 R11との間の接続点に上記第 1スィ ツチング素子のゲートが接続され、  [4] A first voltage dividing resistor is connected in series with the first resistor R1 between the positive input terminal IN + and the second output terminal, and between the first resistor R1 and the first voltage dividing resistor R11 The gate of the first switching element is connected to the connection point of
上記正入力端子 IN+と上記第 1出力端子との間で上記第 2抵抗 R2と直列に第 2分圧 抵抗が接続され、第 2抵抗 R2と上記第 2分圧抵抗 R21との間の接続点に上記第 2スィ ツチング素子のゲートが接続されたことを特徴とする請求項 3に記載の極性切換回路  A second voltage dividing resistor is connected in series with the second resistor R2 between the positive input terminal IN + and the first output terminal, and a connection point between the second resistor R2 and the second voltage dividing resistor R21. 4. The polarity switching circuit according to claim 3, wherein the second switching element is connected to the gate of the second switching element.
[5] 上記第 1分圧抵抗 R11と上記正入力端子 IN+との間に第 1ツエナーダイオードが挿入 され、 [5] A first Zener diode is inserted between the first voltage dividing resistor R11 and the positive input terminal IN +,
上記第 2分圧抵抗 R21と上記正入力端子 IN+との間に第 2ツエナーダイオードが挿入 されたことを特徴とする請求項 4に記載の極性切換回路。  The polarity switching circuit according to claim 4, wherein a second Zener diode is inserted between the second voltage dividing resistor R21 and the positive input terminal IN +.
[6] 請求項 1〜5の何れかに記載の極性切換回路と、上記の直流電源とを備えた直流電 圧給電ユニット。 [6] A direct current voltage supply unit comprising the polarity switching circuit according to any one of claims 1 to 5 and the above direct current power supply.
[7] 上記直流電源は、交流電源に接続されて交流電力を直流電力に変換するように構 成され、交流電源との接続をオン'オフする電源スィッチが備えられたことを特徴とす る請求項 6に記載の直流電圧給電ユニット。  [7] The DC power supply is characterized in that it is connected to the AC power supply and configured to convert AC power into DC power, and is provided with a power switch for turning on and off the connection with the AC power supply. The direct current voltage supply unit according to claim 6.
PCT/JP2007/062283 2006-06-27 2007-06-19 Polarity switching circuit and feeding unit WO2008001644A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008522467A JP4925363B2 (en) 2006-06-27 2007-06-19 Polarity switching circuit and power supply unit
CN2007800243001A CN101479907B (en) 2006-06-27 2007-06-19 Polarity switching circuit and feeding unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-176654 2006-06-27
JP2006176654 2006-06-27

Publications (1)

Publication Number Publication Date
WO2008001644A1 true WO2008001644A1 (en) 2008-01-03

Family

ID=38845412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062283 WO2008001644A1 (en) 2006-06-27 2007-06-19 Polarity switching circuit and feeding unit

Country Status (3)

Country Link
JP (1) JP4925363B2 (en)
CN (1) CN101479907B (en)
WO (1) WO2008001644A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447279A (en) * 2010-09-29 2012-05-09 富晶电子股份有限公司 Polarity switching circuit for charger
EP2639917A3 (en) * 2012-02-03 2017-12-06 Samsung Electronics Co., Ltd Dc power supply apparatus
JP2018153089A (en) * 2013-03-12 2018-09-27 アセンシア・ディアベティス・ケア・ホールディングス・アーゲー Reverse battery protection for device supplied with power by battery
CN109088391A (en) * 2018-09-18 2018-12-25 Tcl-罗格朗国际电工(惠州)有限公司 Short-circuit protection circuit and nonstandard POE charger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329963B (en) * 2016-07-05 2019-05-28 濮阳市立圆汽车电器有限公司 A kind of power supply bridge-type switching device
CN109910650B (en) * 2019-04-03 2021-09-17 上海歌尔泰克机器人有限公司 Contact charging device and unmanned aerial vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104410U (en) * 1980-12-18 1982-06-28
JPH0739076A (en) * 1993-07-22 1995-02-07 Brother Ind Ltd Nonpolar charger
JPH07271460A (en) * 1994-03-31 1995-10-20 Aiphone Co Ltd Dc power source feeding circuit
JPH09135529A (en) * 1995-11-08 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Dc power supply system
JPH11127178A (en) * 1997-10-24 1999-05-11 Matsushita Electric Works Ltd Feeder for signal transmission system
JPH11332094A (en) * 1998-05-08 1999-11-30 Advanced Circuit Technologies:Kk Automatic switching circuit for applying power to load at normal polarity regardless of connecting polarity of power supply
JP2007174812A (en) * 2005-12-22 2007-07-05 Matsushita Electric Works Ltd Power feeding device and system and terminating device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125551A (en) * 1988-11-04 1990-05-14 Sony Corp Data packet transmission method
JPH0530641A (en) * 1991-07-22 1993-02-05 Fujitsu General Ltd Polarity switching circuit for power supply voltage

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104410U (en) * 1980-12-18 1982-06-28
JPH0739076A (en) * 1993-07-22 1995-02-07 Brother Ind Ltd Nonpolar charger
JPH07271460A (en) * 1994-03-31 1995-10-20 Aiphone Co Ltd Dc power source feeding circuit
JPH09135529A (en) * 1995-11-08 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Dc power supply system
JPH11127178A (en) * 1997-10-24 1999-05-11 Matsushita Electric Works Ltd Feeder for signal transmission system
JPH11332094A (en) * 1998-05-08 1999-11-30 Advanced Circuit Technologies:Kk Automatic switching circuit for applying power to load at normal polarity regardless of connecting polarity of power supply
JP2007174812A (en) * 2005-12-22 2007-07-05 Matsushita Electric Works Ltd Power feeding device and system and terminating device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447279A (en) * 2010-09-29 2012-05-09 富晶电子股份有限公司 Polarity switching circuit for charger
EP2639917A3 (en) * 2012-02-03 2017-12-06 Samsung Electronics Co., Ltd Dc power supply apparatus
JP2018153089A (en) * 2013-03-12 2018-09-27 アセンシア・ディアベティス・ケア・ホールディングス・アーゲー Reverse battery protection for device supplied with power by battery
CN109088391A (en) * 2018-09-18 2018-12-25 Tcl-罗格朗国际电工(惠州)有限公司 Short-circuit protection circuit and nonstandard POE charger
CN109088391B (en) * 2018-09-18 2023-10-17 罗格朗智能电气(惠州)有限公司 Short-circuit protection circuit and nonstandard POE power supply

Also Published As

Publication number Publication date
CN101479907B (en) 2011-07-13
CN101479907A (en) 2009-07-08
JPWO2008001644A1 (en) 2009-11-26
JP4925363B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
US11646569B2 (en) Secondary battery protection circuit, secondary battery protection apparatus and battery pack
JP6057506B2 (en) Power topology with battery charging and discharge current protection capabilities
JP6607927B2 (en) Control of power supply voltage for high side gate driver
US8067859B2 (en) Reverse polarity protection for MOSFETs
JP3471321B2 (en) Charge / discharge control circuit and rechargeable power supply
TWI261967B (en) Rush current limiting circuit for a PFM control charge pump
JP2019503038A (en) Method and apparatus for connecting a plurality of battery cells in series or in parallel
CN107390117B (en) Switch high-voltage sampling circuit for electric vehicle
EP0294880A2 (en) Differential amplifier and current sensing circuit including such an amplifier
KR20170099672A (en) Battery protection circuit
WO2008001644A1 (en) Polarity switching circuit and feeding unit
US7714544B2 (en) Switching device for bi-directionally equalizing charge between energy accumulators and corresponding methods
KR101784740B1 (en) Battery protection circuit and battery pack including same
US20060164778A1 (en) Inrush current limiting circuit
US6172485B1 (en) Power supply monitoring integrated circuit device and battery pack
JP2002233063A (en) Excessive charge protection circuit
CN101202466A (en) Charging apparatus
US10164628B2 (en) Switch box
US20220368148A1 (en) Error Detecting Method of Charging Switch Unit and Battery System Using the Same
US6326819B1 (en) Current buffer for gate drive
JPH08103027A (en) Detector for battery pack state
CN111971564A (en) Voltage detection circuit for vehicle
JPH06284594A (en) Chargeable power supply apparatus
KR20210041282A (en) Charge/discharge switch control method and battery system whrer the method is applied
JP2000299925A (en) Power supply control device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780024300.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745502

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522467

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07745502

Country of ref document: EP

Kind code of ref document: A1