WO2007148747A1 - Conductive particle, conductive powder consisting thereof, process for producing the same, and conductive ink obtained using the conductive powder - Google Patents

Conductive particle, conductive powder consisting thereof, process for producing the same, and conductive ink obtained using the conductive powder Download PDF

Info

Publication number
WO2007148747A1
WO2007148747A1 PCT/JP2007/062480 JP2007062480W WO2007148747A1 WO 2007148747 A1 WO2007148747 A1 WO 2007148747A1 JP 2007062480 W JP2007062480 W JP 2007062480W WO 2007148747 A1 WO2007148747 A1 WO 2007148747A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
tio
powder
particles
conductive powder
Prior art date
Application number
PCT/JP2007/062480
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiko Sakaue
Koichi Kawaratani
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Publication of WO2007148747A1 publication Critical patent/WO2007148747A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to conductive particles, conductive powder composed of the conductive particles, a manufacturing method thereof, and a conductive ink obtained using the conductive powder.
  • the present invention relates to conductive particles that can reduce the variation in resistance of the obtained conductive film even when the dispersion time when manufacturing conductive ink or the like is increased by using titanium oxide as the core material of the conductive particles.
  • titanium oxide or the like is used as a filler material when dealing with light colors, and carbon is used when providing conductivity.
  • Black or the like is used as a filler material and is widely used.
  • conductive inks and conductive paints are expected to expand in the future because they are easy to use because they can form a conductive film only where needed.
  • Patent Document 1 discloses an oxide doped with niobium and / or tantalum on a platelet-like or needle-like substrate made of mica, silica, titanium oxide, alumina or the like. A conductive pigment having tin or titanium dioxide as a conductive layer is disclosed. On the other hand, the present inventors have already applied for conductive particles coated with tin oxide using titanium dioxide as a core material.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-147729
  • the conductive particles having concealability and conductivity while maintaining a bright color by providing a conductive layer using tin oxide on the surface of the core material, which is an already filed invention.
  • the coating film obtained by using this film exhibits a surface resistance of 1.0 to 10 6 ⁇ / muzzle.
  • the conductive particles are used in paints or the like, if they are vigorously stirred in order to obtain a uniform mixed state, or if they are stirred for a long time including repeated stirring, then the conductive film obtained thereafter has a resistance that should be originally obtained. There was a problem that the value increased and the desired effect could not be obtained. Therefore, there has been a demand for conductive powder that can be used in conductive paints and conductive inks that suppress fluctuations in resistance.
  • the conductive particles according to the present invention can adjust the resistance value of the conductive film obtained by adjusting the composition of the conductive layer, and is excellent in dispersibility due to the granular shape. It has both a little aggregation! /, Easy to obtain a smooth conductive film, and! /, Characteristics.
  • the conductive particles according to the present invention the conductive powder composed of the conductive particles, the manufacturing method thereof, and the conductive ink obtained using the conductive powder will be described.
  • Conductive particle according to the present invention is a granular conductive particle having a conductive layer on the surface of the core material particle, the core material particle is TiO, the particle
  • the conductive layer preferably has a thickness of 2 nm to 15 nm.
  • the Nb content of the conductive layer is 100 wt% of the total TiO content of the conductive particles
  • the conductive powder according to the present invention is a conductive powder composed of the conductive particles, and the primary particle diameter of the conductive particles is 0.05. It is characterized by being 111 to 1.0 m! [0013]
  • the conductive powder has a median diameter D of 3 am or less on a volume basis.
  • the electrically conductive powder is also preferably a specific surface area of force Slm 2 / g ⁇ 22m 2 / g.
  • the conductive powder has a ratio [(specific surface area of conductive particles) / (specific surface area of core material particles)] of the specific surface area of the core material particles to the specific surface area of the obtained conductive particles. More preferably, it is 0 to 2.0.
  • a method for producing a conductive powder according to the present invention includes the following steps A to E.
  • A Dispersing TiO powder in water to obtain a TiO suspension.
  • Titanium salt and niobium salt are added to the TiO suspension and dissolved to prepare a reaction solution.
  • reaction solution is prepared in a neutral to alkaline region and coated with an Nb-doped TiO precursor.
  • the particle diameter of the TiO powder used in the step A is 0.05 m to 1.0 m;
  • the TiO concentration in the slag is 20g / L to 500g / L! /.
  • the titanium salt in the step B is one or more selected from the water-soluble Ti salt titanyl sulfate, titanium chloride, titanium sulfate, and titanium fluoride, and the Ti concentration power wt% to 30wt% It is also preferable.
  • the niobium salt in the step B is one or more selected from niobium chloride, niobium fluoride and niobium iodide, and the Nb concentration is 0.02 mol / L to 0.5 mol / L. Is also preferred.
  • the pH after adjustment in Step C is 7 to 11; one or two or more selected from Na OH, KOH, Na 2 CO 3 and ammonia are used for pH adjustment.
  • the firing atmosphere in the step E is also preferably an air atmosphere.
  • Conductive ink according to the present invention uses the conductive powder as a pigment.
  • Conductive film according to the present invention The conductive film according to the present invention is obtained using the conductive ink.
  • the conductive particles according to the present invention use TiO as a material common to the core material and the conductive layer.
  • the boundary between the core material and the conductive layer becomes unclear, so that the core material and the conductive layer can be prevented from peeling off.
  • the conductive layer is formed with a uniform thickness, the conductive film obtained from the conductive paint using the conductive particles exhibits stable conductivity.
  • the surface resistance can be set within the target range by adjusting the Nb doping amount.
  • the conductive particles are granular, the conductive particles are excellent in dispersibility in the paint, and since there is little aggregation, a smooth conductive film can be obtained. Films and plastics using the conductive powder thus obtained as a filler have a light appearance and are conductive, and the conductivity is set to the optimum range according to the application. It becomes.
  • the conductive particles according to the present invention are granular conductive particles having a conductive layer on a core material particle surface, wherein the core material particles are TiO. So
  • Nb is used as a doping material for TiO to obtain good conductivity.
  • Nb present in the conductive layer is not clear. It is known that Ta oxide, which is an element close to Nb in the periodic table, also exhibits good conductivity in the same way as Nb oxide. Therefore, it is considered that the same effect can be obtained even if Ta is used as a substitute for Nb.
  • conductive particles obtained because granular TiO is used as the core material are also provided.
  • the conductive layer is composed of Nb-doped TiO, the conductive layer and core material
  • the interface with the particles is unclear.
  • the interface between the conductive layer and the core material is unclear because TiO, which is the common material for the core material and the conductive layer, is used.
  • Nb-doped TiO precursor coated TiO particles are baked in the atmosphere to form conductive particles.
  • the TiO precursor is changed to TiO by firing and becomes a sintered state.
  • a Nb concentration gradient can be created from the conductive layer to the core material layer.
  • the thickness of the conductive layer is preferably 2 nm to 15 nm.
  • the Nb content of the conductive layer is preferably 100 wt% of the TiO content in the conductive particles.
  • the force that is the thickness of the conductive layer referred to here Since the conductive particles according to the present invention have an unclear interface between the core material and the conductive layer, the mass of the conductive particles and the core material used for the formation thereof TiO mass and doped Nb content
  • the thickness and composition of the conductive layer need only be adjusted according to the electrical characteristics required for the finally formed conductive film.
  • the general required range is the surface resistance value of 1.0 to 10 The above range is preferred because it is 6 ⁇ / pocket to 3.0 ⁇ 10 " ⁇ / pocket, and a more preferable thickness of the conductive layer taking into account manufacturing shading and the like. Is 3 nm ⁇ ;! Onm, and the more preferable Nb content is the TiO content of the entire conductive particles.
  • the conductive powder according to the present invention is a conductive powder composed of the conductive particles, and the primary particle diameter of the conductive particles is 0. ⁇ ⁇ ⁇ m ⁇ ; 1. O ⁇ m. If the intended use of the conductive powder according to the present invention is to impart conductivity to organic insulators such as conductive ink, such as paints and plastic films, uniform dispersibility and conductivity It is required to be in a form that can achieve both. Then, considering the required shape of the powder from this required characteristic, it is disclosed in Patent Document 1 for conductivity! /, And such flaky flakes are preferred! / .
  • the shape of the particles is granular, and specifically, those having an isotropic shape such as a spherical shape or a pseudo-spherical shape are preferred.
  • the content is the same for inks or paints in which scale-like or needle-like particles having a non-particulate shape are dispersed, the viscosity will increase, and the uniformity of the coating will not be obtained. It will end up.
  • the conductive particles have a granular shape and the primary particle diameter is larger than 0.05 m.
  • the primary particle diameter of the conductive particles exceeds 1.0 m, the surface smoothness of the conductive film is inferior regardless of the shape of the particles, and at the same time, the gaps between the particles become large and good concealment is achieved.
  • the coating thickness must be taken into consideration.
  • the primary particle diameter of the conductive particles is more preferably 0.1 111 to 0.5 ⁇ m.
  • the conductive powder has a median diameter D of 3 m or less on a volume basis.
  • the median diameter D is more preferably 0 ⁇ 2 ⁇ 111-1.5 111 on a volume basis, particularly for conductive ink applications that require strong control of coating thickness.
  • the electrically conductive powder is preferably a specific surface area force S lm 2 / g ⁇ 22m 2 / g .
  • TiO used as the core material is originally a material with a large specific surface area.
  • a liquid phase reaction is employed. That is, the characteristics of the conductive particles obtained are influenced by the particle size and surface condition of the TiO particles used as the core material.
  • the conductive particles and conductive powder according to the present invention exhibit stable characteristics is the fact preferably has a specific surface area of lm 2 / g ⁇ 22m 2 / g.
  • a 17m 2 / g, further preferably /, range is 7m 2 / g ⁇ 15m 2 / g .
  • the conductive powder has a ratio [(specific surface area of conductive particles) / (specific surface area of core material particles)] of the specific surface area of the core material particles to the specific surface area of the obtained conductive particles. More preferably, it is 0 to 2.0.
  • the liquid phase reaction is employed in forming the conductive layer by the manufacturing method of the present invention. Therefore, it is necessary to keep the surface as smooth as possible in order to exhibit the force conductivity that has an uneven shape when the surface is observed microscopically. There is a point. Therefore, if the ratio of the specific surface area of the core material particles to the specific surface area of the obtained conductive particles [(specific surface area of conductive particles) / (specific surface area of core material particles)] is 1.0 to 2.0 Stable conductivity can be ensured.
  • Manufacturing method of conductive powder according to the present invention includes the following steps A to E.
  • Step A is a step in which TiO powder is dispersed in water to obtain a TiO suspension.
  • the purpose is to release and uniformly disperse. And the TiO powder used here
  • Particle size is 0 ⁇ 05 ⁇ ⁇ to 1.
  • ⁇ ⁇ ⁇ , and TiO concentration in suspension is 20 g / L to 500 g / L
  • the mass of the conductive layer to be formed is not small compared to the mass of the core material, but considering that the conductive layer is formed on the outer layer of the core material having a large specific surface area, it is necessary to strictly consider it as an increase in particle size It can be considered that the particle size of the core material prepared here is almost the same as the particle size of the conductive particles. Therefore, the particle diameter of the core material can be made to substantially match the particle diameter of the target conductive particles.
  • the range of the particle diameter is determined in consideration of the viscosity of the ink obtained by using the above-described conductive powder and the concealability of the coating film.
  • the TiO concentration (slurry concentration) in the suspension mainly depends on the productivity and conductive particles.
  • the upper limit of the slurry concentration is preferably 500 g / L, and the more preferable upper limit concentration is 300 g / L.
  • the lower limit of 20 g / L is also the slurry concentration that can maintain industrial productivity.
  • step B the titanium salt and niobium salt are added to the TiO suspension obtained in step A and dissolved.
  • the titanium salt used is a water-soluble Ti salt.
  • Ti concentration is the core material The concentration is set so that the thickness of the conductive layer formed on the surface is optimal. That is, a high concentration may be used when forming a thick conductive layer, and a low concentration may be used when forming a thin conductive layer.
  • the niobium salt is one or more selected from niobium chloride, niobium fluoride, niobium iodide and the like, and the Nb concentration may be 0.02 mol / L to 0.5 mol / L.
  • the niobium salt used here may be any niobium salt as long as it is water-soluble, as can titanium salts, such as niobium chloride, niobium fluoride, and niobium iodide.
  • the Nb concentration is set to a concentration that optimizes the amount of doping to the conductive layer formed on the surface of the core material. That is, when the amount of doping is increased, the concentration is high, and when the amount of doping is decreased, the concentration is low.
  • step C the reaction liquid prepared in step B is adjusted to a neutral to alkaline region to precipitate Nb-doped TiO precursor (mainly hydroxide), and Nb-doped TiO precursor coating TiO
  • Nb-doped TiO precursor mainly hydroxide
  • One or more selected from the above may be used for pH adjustment. Since this step is a reaction in the form of a suspension, it is better to add a stirring operation.
  • step C attention is paid to the time required to complete the addition of the alkali. Specifically, it is preferably 10 minutes to 90 minutes. In the example described later, it takes 70 minutes.
  • the situation in which Step B and Step C are simultaneously progressed that is, if titanium salt, niobium salt and alkali are simultaneously added to the suspension in which the core material is dispersed, it will be in the reaction solution. Unevenness in the contact state between titanium salt and niobium salt and alkali, resulting in a uniform TiO precursor shape
  • the TiO precursor which is a conductive layer formed on the core material surface, is in a porous state.
  • Step D the suspension obtained in Step C is subjected to solid-liquid separation, and the separated Nb-doped TiO precursor core is separated. The TiO powder is dried to obtain Nb-doped TiO precursor-coated TiO powder.
  • Purification, filtration and drying may be performed.
  • step E the Nb-doped TiO precursor-coated TiO powder cake obtained in step D was crushed.
  • Form of the conductive ink according to the present invention uses the conductive powder as a pigment, and the viscosity is optimally prepared according to the application. . Since the conductive ink obtained here uses a granular conductive powder, the solid content of the conductive particles as the ink is higher than when a scaly or acicular conductive powder is used. . Therefore, even if the conductive film thickness to be formed is the same, the amount of ink to be used is reduced, and the influence on the environment due to a small amount of organic solvent is reduced.
  • the use of the conductive powder according to the present invention is not limited to the conductive ink, but can also be used for the purpose of imparting conductivity to the above-described conductive paint and plastic.
  • Example 1 a conductive film formed using the conductive powder formed according to the present invention is listed as Example 1, and for comparison, a conductive powder having a conductive layer formed using tin oxide is shown. The conductive film formed using this was listed as Comparative Example 1.
  • Titanium salt solution Use titanyl sulfate to adjust the Ti content to 5 wt%
  • Niobium salt solution Prepare by dissolving 3 g of niobium pentachloride in 100 ml of concentrated hydrochloric acid.
  • pH adjustment solution Sodium hydroxide 25wt% aqueous solution
  • Pure water 1 Add 100 g of TiO powder with a primary particle size of 0.115 111 to 5 L and suspend the TiO powder dispersed.
  • a turbid liquid was obtained.
  • 400 g of a titanium salt solution and 20 ml of a niobium salt solution were added to obtain a reaction solution.
  • the reaction solution thus obtained was heated to 60 ° C., and 350 mL of pH adjusting solution was added over 70 minutes.
  • the suspension obtained here is further stirred for 30 minutes and then washed by the repulping method.
  • the solid is separated by suction filtration using a Nutsche, dried, and quasi-solidified powder.
  • the dried and quasi-solidified powder was pulverized using a force mill and fired in an air atmosphere at 700 ° C for 1 hour to form a TiO conductive layer in which TiO powder was doped with TiO powder.
  • Particle size 0.15 111 (SEM observation image power at a magnification of 60,000 times, average of 50 arbitrarily selected particle sizes)
  • a) Obtain the mass of the coating part from the mass of the obtained conductive powder and the mass of the core material used.b) Divide the coating mass by the density of titanium oxide, and then harm the surface area of the core material obtained above. Thus, the coat thickness (conductive layer thickness: nm) is obtained.
  • the conductive layer thickness is about 8 nm, and the TiO content of the entire conductive particles is 100 wt%.
  • the mass thickness of the conductor layer is 25 wt%
  • the Nb doping amount is 0.2 wt% when the total TiO content of the conductive particles is 100 wt%, and when the TiO content of the conductive layer is 100 wt%. 0. 8
  • Conductive powder 7.41g and acrylic resin (Dianar LR-167, manufactured by Mitsubishi Rayon Co., Ltd.) 6.41g and toluene-butanol mixture as solvent to form conductive film in a 50cc container The mixture was mixed so that the content of the conductive particles later became 70%.
  • the coating film was formed on a PET film using a bar coater (# 10).
  • the coating film was dried in a hot air circulation oven set at 80 ° C. for 30 minutes, and then surface resistance was evaluated using Hiresta IP manufactured by Mitsubishi Chemical Corporation. The results are shown in Table 1.
  • the surface resistance value of the conductive film formed using conductive ink 5 with a dispersion time of 5 hours is only 33 times the surface resistance value of the conductive film formed using conductive ink 1 with a dispersion time of 1 hour. The effect of increasing the dispersion time was small and good.
  • a liquid was obtained.
  • 930 g of sodium stannate trihydrate was added, and pure water was added so that the total liquid volume became 8 L.
  • the reaction solution thus obtained was heated to 70 ° C. and maintained for 60 minutes, and 1.6 L of 20% sulfuric acid was added over 90 minutes.
  • the suspension obtained here is stirred for another 30 minutes and then maintained and washed by the repulp method. Finally, it is filtered by suction using a Nutsche to separate and dry the solid, and SnO is added to TiO.
  • a coated powder was obtained.
  • the dried and pseudo-solidified powder was pulverized using a force mill, and baked for 1 hour in a reducing atmosphere (2% H — N) at 700 ° C.
  • Core material is 10.0 m 2 / g
  • conductive powder is 25. lmVg
  • the thickness of the conductive layer was determined by the following calculation.
  • the conductive layer thickness is about 8 nm, and the mass thickness of the conductor layer is derived in terms of SnO.
  • the total amount of Ti was 35wt% with respect to 100wt% of Ti particles.
  • the surface resistance was evaluated in the same manner as in Example 1. The results are shown in Fig. 1 and Table 1.
  • the surface resistance of the conductive film formed using Ink 5 'with a dispersion time of 5 hours increased to 120, 000 times the surface resistance of the conductive film formed using Ink 1' with a dispersion time of 1 hour. And about 5 times that of the conductive film formed using the ink 5 obtained in the example.
  • the conductive ink obtained using the conductive powder composed of the conductive particles of Example 1 according to the present invention has a dispersion time as compared with Comparative Example 1. As a result, the conductivity was stable!
  • FIG. 1 is a diagram showing the surface resistance of a conductive film obtained by changing the dispersion time of conductive ink.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Conductive Materials (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

A conductive powder that has hiding capability while being of bright color and is a filler which in the use as conductive ink or conductive paint, even when the dispersion time is prolonged or when the dispersion operation is repeated, ensures a low deterioration in the surface resistance of coating film obtained. Accordingly, the core material and the conductive layer consist of the common material of TiO2. The TiO2 layer constructing the conductive layer is doped with Nb to thereby not only impart conductivity but also form a Nb diffusion layer, so that there is produced a conductive particle wherein the phenomenon of peel between the core material and the conductive layer is suppressed. From the conductive particle, there is produced a conductive powder.

Description

明 細 書  Specification
導電性粒子及びその導電性粒子で構成された導電性粉体とその製造方 法並びに該導電性粉体を用いて得られる導電性インク  Conductive particles, conductive powder composed of the conductive particles, method for producing the same, and conductive ink obtained using the conductive powder
技術分野  Technical field
[0001] 本件発明は、導電性粒子及びその導電性粒子で構成された導電性粉体とその製 造方法並びに該導電性粉体を用いて得られる導電性インクに関する。特に導電性粒 子のコア材に酸化チタンを用い、導電性インク等を製造する際の分散時間を長く取 つても、得られる導電膜の抵抗の変動を小さくできる導電性粒子に関する。  The present invention relates to conductive particles, conductive powder composed of the conductive particles, a manufacturing method thereof, and a conductive ink obtained using the conductive powder. In particular, the present invention relates to conductive particles that can reduce the variation in resistance of the obtained conductive film even when the dispersion time when manufacturing conductive ink or the like is increased by using titanium oxide as the core material of the conductive particles.
背景技術  Background
[0002] プラスチックフィルムや塗装の分野で隠蔽性を要求される用途に於いて、明色で対 応する場合には酸化チタンなどがフィラー材として用いられ、導電性を具備させる場 合にはカーボンブラックなどがフィラー材として用いられ、広く普及している。特に導 電性インクや導電性塗料は必要な部分にのみ導電膜を形成できることなどから使い 勝手が良ぐ今後の用途拡大が期待されている。  [0002] In applications that require concealability in the field of plastic film and coating, titanium oxide or the like is used as a filler material when dealing with light colors, and carbon is used when providing conductivity. Black or the like is used as a filler material and is widely used. In particular, conductive inks and conductive paints are expected to expand in the future because they are easy to use because they can form a conductive film only where needed.
[0003] ところ力 導電性を付与する目的でカーボンブラックを用いた場合には塗膜が黒色 となってしまい、その使用範囲が制限されてしまうのである。しかし、明色が得られる 隠蔽用素材の代表である酸化チタンをフイラ一として用いると導電性の面で不満なも のとなつてしまう。そこで、上記不具合を改善する技術として特許文献 1には、雲母、 シリカ、酸化チタン、アルミナなどを素材とする血小板状又は針状の基質上に、ニォ ブおよび/又はタンタルでドープ処理された酸化錫又は二酸化チタンを導電層とし て有する導電性顔料が開示されている。一方、本件発明者等は既に二酸化チタンを コア材として酸化スズをコートした導電性粒子を出願済みである。  [0003] However, when carbon black is used for the purpose of imparting force conductivity, the coating film becomes black, and its use range is limited. However, if titanium oxide, which is a typical concealment material that can provide a bright color, is used as a filler, it will be unsatisfactory in terms of conductivity. Therefore, as a technique for improving the above-mentioned problem, Patent Document 1 discloses an oxide doped with niobium and / or tantalum on a platelet-like or needle-like substrate made of mica, silica, titanium oxide, alumina or the like. A conductive pigment having tin or titanium dioxide as a conductive layer is disclosed. On the other hand, the present inventors have already applied for conductive particles coated with tin oxide using titanium dioxide as a core material.
[0004] 特許文献 1:特開平 10— 147729号公報  [0004] Patent Document 1: Japanese Patent Laid-Open No. 10-147729
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 上述した、既に出願済みの発明であるところの、コア材の表面に酸化スズを用いた 導電層を設けることにより明色を維持したまま隠蔽性と導電性を有する導電性粒子を 用いて得られる塗膜は 1. 0 Χ 106 Ω /口台の表面抵抗を示す。ところが、該導電性 粒子を塗料等に使用する際に均一な混合状態を得ようとして強攪拌したり、繰り返し の攪拌を含め長時間攪拌すると、その後に得られる導電膜では本来得られるべき抵 抗値が上昇してしまい、所期の効果が得られないという問題があった。よって抵抗値 の変動を抑制した導電性塗料や導電性インクに用いうる導電性粉体への要求が存 在していたのである。 [0005] As described above, the conductive particles having concealability and conductivity while maintaining a bright color by providing a conductive layer using tin oxide on the surface of the core material, which is an already filed invention. The coating film obtained by using this film exhibits a surface resistance of 1.0 to 10 6 Ω / muzzle. However, when the conductive particles are used in paints or the like, if they are vigorously stirred in order to obtain a uniform mixed state, or if they are stirred for a long time including repeated stirring, then the conductive film obtained thereafter has a resistance that should be originally obtained. There was a problem that the value increased and the desired effect could not be obtained. Therefore, there has been a demand for conductive powder that can be used in conductive paints and conductive inks that suppress fluctuations in resistance.
課題を解決するための手段  Means for solving the problem
[0006] そこで、本件出願人等は、今一度導電性粒子について鋭意研究し、前述の抵抗値 の上昇はコア材と導電層との剥離現象に起因していることを突き止めたのである。す なわち、導電層がコア材から剥離しにくぐ更に導電層が一様な厚みで形成されてい ることにより、導電性塗料から得られた導電膜が安定した導電性を確保できる導電性 粒子を完成したのである。  [0006] Therefore, the present applicants once again conducted intensive research on conductive particles, and found that the increase in the resistance value was caused by a peeling phenomenon between the core material and the conductive layer. In other words, it is difficult for the conductive layer to be peeled off from the core material, and the conductive layer is formed with a uniform thickness, so that the conductive film obtained from the conductive paint can ensure stable conductivity. Was completed.
[0007] 更に、本件発明に係る導電性粒子は、導電層の組成を調整することにより得られる 導電膜の抵抗値を調整でき、そして形状が粒状であることに起因して分散性に優れ 、凝集の少な!/、平滑な導電膜を得やすレ、と!/、う特徴をも併せ持つものである。  [0007] Furthermore, the conductive particles according to the present invention can adjust the resistance value of the conductive film obtained by adjusting the composition of the conductive layer, and is excellent in dispersibility due to the granular shape. It has both a little aggregation! /, Easy to obtain a smooth conductive film, and! /, Characteristics.
[0008] 以下、本件発明に係る導電性粒子及びその導電性粒子で構成された導電性粉体 とその製造方法並びに該導電性粉体を用いて得られた導電性インクについて述べる [0008] Hereinafter, the conductive particles according to the present invention, the conductive powder composed of the conductive particles, the manufacturing method thereof, and the conductive ink obtained using the conductive powder will be described.
Yes
[0009] 本件発明に係る導電性粒子: 本件発明に係る導電性粒子は、コア材粒子表面に導 電層を有する粒状の導電性粒子であって、前記コア材粒子が TiOであり、その粒子  [0009] Conductive particle according to the present invention: The conductive particle according to the present invention is a granular conductive particle having a conductive layer on the surface of the core material particle, the core material particle is TiO, the particle
2  2
表面に Nbをドープした TiO導電層を備えることを特徴としている。  It features a TiO conductive layer doped with Nb on the surface.
2  2
[0010] 本件発明に係る導電性粒子において、前記導電層の厚さが 2nm〜15nmであるこ とが好ましい。  [0010] In the conductive particles according to the present invention, the conductive layer preferably has a thickness of 2 nm to 15 nm.
[0011] そして、前記導電層の Nb含有率が導電性粒子全体の TiO量を 100wt%としたと  [0011] And, if the Nb content of the conductive layer is 100 wt% of the total TiO content of the conductive particles,
2  2
き、 0· 05wt%〜5wt%であることが好ましい。  And 0 · 05 wt% to 5 wt%.
[0012] 本件発明に係る導電性粉体: 本件発明に係る導電性粉体は、前記導電性粒子で 構成された導電性粉体であって、前記導電性粒子の一次粒子径が 0. 05 111〜1. 0 mであることを特徴として!/、る。 [0013] 前記導電性粉体は、メディアン径 D が体積基準で 3 a m以下であることも好ましレ、 Conductive powder according to the present invention: The conductive powder according to the present invention is a conductive powder composed of the conductive particles, and the primary particle diameter of the conductive particles is 0.05. It is characterized by being 111 to 1.0 m! [0013] Preferably, the conductive powder has a median diameter D of 3 am or less on a volume basis.
50  50
 Yes
[0014] 前記導電性粉体は、比表面積力 Slm2/g〜22m2/gであることも好ましい。 [0014] The electrically conductive powder is also preferably a specific surface area of force Slm 2 / g~22m 2 / g.
[0015] 前記導電性粉体は、コア材粒子の比表面積と得られた導電性粒子の比表面積の 比〔(導電性粒子の比表面積)/ (コア材粒子の比表面積)〕が 1. 0〜2. 0であること もより好ましい。 [0015] The conductive powder has a ratio [(specific surface area of conductive particles) / (specific surface area of core material particles)] of the specific surface area of the core material particles to the specific surface area of the obtained conductive particles. More preferably, it is 0 to 2.0.
[0016] 本件発明に係る導電性粉体の製造方法: 本件発明に係る導電性粉体の製造方法 は、以下の工程 A〜Eを備えることを特徴としている。  [0016] A method for producing a conductive powder according to the present invention: A method for producing a conductive powder according to the present invention includes the following steps A to E.
A:TiO粉末を水に分散させ、 TiO懸濁液を得る工程。  A: Dispersing TiO powder in water to obtain a TiO suspension.
2 2  twenty two
B :前記 TiO懸濁液にチタン塩とニオブ塩とを添加し、溶解することで反応用液を  B: Titanium salt and niobium salt are added to the TiO suspension and dissolved to prepare a reaction solution.
2  2
得る工程。  Obtaining step.
C :前記反応用液を、中性〜アルカリ性領域に調製し、 Nbドープ TiO前駆体コート  C: The reaction solution is prepared in a neutral to alkaline region and coated with an Nb-doped TiO precursor.
2  2
TiO粒子を含む懸濁液を得る工程。  Obtaining a suspension containing TiO particles.
2  2
D :前記懸濁液を固液分離し、分取した Nbドープ TiO前駆体コート TiO粉を乾燥  D: Solid suspension is separated from the suspension, and the separated Nb-doped TiO precursor-coated TiO powder is dried.
2 2 し、 Nbドープ TiO前駆体コート TiO粉を得る工程。  2 2 and obtaining Nb-doped TiO precursor-coated TiO powder.
2 2  twenty two
E :乾燥により疑似固化した Nbドープ TiO前駆体コート TiO粉を解砕した後に焼  E: Nb-doped TiO precursor-coated TiO powder quasi-solidified by drying
2 2  twenty two
成して導電性粉体を得る工程。  The process which obtains conductive powder.
[0017] 前記工程 Aで用いる TiO粉末の粒子径が 0. 05 m〜; 1. 0 mであり、懸濁液中 [0017] The particle diameter of the TiO powder used in the step A is 0.05 m to 1.0 m;
2  2
の TiO濃度が 20g/L〜500g/Lであることも好まし!/、。  It is also preferable that the TiO concentration in the slag is 20g / L to 500g / L! /.
2  2
[0018] 前記工程 Bにおけるチタン塩は水溶性 Ti塩である硫酸チタニル、塩化チタン、硫酸 チタン、フッ化チタンから選択された 1種又は 2種以上であり、 Ti濃度力 wt%〜30w t%であることも好ましい。  [0018] The titanium salt in the step B is one or more selected from the water-soluble Ti salt titanyl sulfate, titanium chloride, titanium sulfate, and titanium fluoride, and the Ti concentration power wt% to 30wt% It is also preferable.
[0019] 前記工程 Bにおけるニオブ塩は塩化ニオブ、フッ化ニオブ、ヨウ化ニオブから選択 された 1種又は 2種以上であり、 Nb濃度が 0. 02mol/L〜0. 5mol/Lであることも 好ましい。 [0019] The niobium salt in the step B is one or more selected from niobium chloride, niobium fluoride and niobium iodide, and the Nb concentration is 0.02 mol / L to 0.5 mol / L. Is also preferred.
[0020] 前記工程 Cにおける調整後の pHが 7〜; 11の中性〜アルカリ性領域であって、 Na OH、 KOH、 Na CO 、アンモニアから選択された 1種又は 2種以上を pH調整に用  [0020] The pH after adjustment in Step C is 7 to 11; one or two or more selected from Na OH, KOH, Na 2 CO 3 and ammonia are used for pH adjustment.
2 3  twenty three
いることも好ましい。 [0021] 前記工程 Eにおける焼成雰囲気が大気雰囲気であることも好ましい。 It is also preferable. [0021] The firing atmosphere in the step E is also preferably an air atmosphere.
[0022] 本件発明に係る導電性インク: 本件発明に係る導電性インクは前記導電性粉体を 顔料として用いたものである。  [0022] Conductive ink according to the present invention: The conductive ink according to the present invention uses the conductive powder as a pigment.
[0023] 本件発明に係る導電膜: 本件発明に係る導電膜は前記導電性インクを用いて得ら れたものである。 Conductive film according to the present invention: The conductive film according to the present invention is obtained using the conductive ink.
発明の効果  The invention's effect
[0024] 本件発明に係る導電性粒子は、コア材と導電層に共通した素材として TiOを用い  [0024] The conductive particles according to the present invention use TiO as a material common to the core material and the conductive layer.
2 たものであり、これによりコア材と導電層の境界が不明瞭になり、よってコア材と導電 層の剥離が防止できたものとなるのである。更に、導電層が一様な厚みで形成されて いることにより、この導電性粒子を用いた導電性塗料から得られる導電膜は安定した 導電性を呈する。また、 Nbドープ量の調整により表面抵抗値も狙いの範囲内に作り 込みが可能となる。また、導電性粒子が粒状であることにより塗料中での分散性に優 れ、凝集が少ないことから平滑な導電膜が得られる。このようにして得られた導電性 粉体をフイラ一として用いた塗膜やプラスチックは外観は明色のままで導電性を有し 、導電性はその用途に応じた最適範囲に設定されたものとなる。  As a result, the boundary between the core material and the conductive layer becomes unclear, so that the core material and the conductive layer can be prevented from peeling off. Furthermore, since the conductive layer is formed with a uniform thickness, the conductive film obtained from the conductive paint using the conductive particles exhibits stable conductivity. In addition, the surface resistance can be set within the target range by adjusting the Nb doping amount. Further, since the conductive particles are granular, the conductive particles are excellent in dispersibility in the paint, and since there is little aggregation, a smooth conductive film can be obtained. Films and plastics using the conductive powder thus obtained as a filler have a light appearance and are conductive, and the conductivity is set to the optimum range according to the application. It becomes.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 本件発明に係る導電性粒子の形態: 本件発明に係る導電性粒子は、コア材粒子表 面に導電層を有する粒状の導電性粒子であって、前記コア材粒子が TiOであり、そ [0025] Form of conductive particles according to the present invention: The conductive particles according to the present invention are granular conductive particles having a conductive layer on a core material particle surface, wherein the core material particles are TiO. So
2 の粒子表面に Nbをドープした TiO導電層を備えるものである。  2 has a TiO conductive layer doped with Nb on the particle surface.
2  2
[0026] 本件特許出願では、 Nbを TiOに対するドープ材として用いて良好な導電性を得  [0026] In the present patent application, Nb is used as a doping material for TiO to obtain good conductivity.
2  2
ているが、導電層内に存在する Nbの形態は明らかではない。そして、 Nbと周期律表 上近い元素である Taの酸化物も Nbの酸化物と同様に良好な導電性を示すことが知 られている。したがって、 Nbの代替として Taを用いても同等の効果が得られるものと 考えられる。  However, the form of Nb present in the conductive layer is not clear. It is known that Ta oxide, which is an element close to Nb in the periodic table, also exhibits good conductivity in the same way as Nb oxide. Therefore, it is considered that the same effect can be obtained even if Ta is used as a substitute for Nb.
[0027] そして、本件発明ではコア材として粒状の TiOを用いるため得られる導電性粒子も  [0027] In the present invention, conductive particles obtained because granular TiO is used as the core material are also provided.
2  2
粒状となり、導電層を Nbをドープした TiOで構成しているため当該導電層とコア材  Because it is granular and the conductive layer is composed of Nb-doped TiO, the conductive layer and core material
2  2
粒子との界面が不明瞭になることも特徴の 1つと言える。導電層とコア材との界面が 不明瞭となるのは、コア材と導電層との素材に共通の TiOを用いているからである。 前述のように、 Nbドープ TiO前駆体コート TiO粒子を大気中で焼成して導電性粒 One of the features is that the interface with the particles is unclear. The interface between the conductive layer and the core material is unclear because TiO, which is the common material for the core material and the conductive layer, is used. As mentioned above, Nb-doped TiO precursor coated TiO particles are baked in the atmosphere to form conductive particles.
2 2  twenty two
子を得るのであるが、焼成によって TiO前駆体が TiOに変化し焼結状態となってコ  The TiO precursor is changed to TiO by firing and becomes a sintered state.
2 2  twenty two
ァ材と導電層との密着は強固になり、界面は不明瞭になるのである。そして、この焼 成時に導電層を形成する TiOへの Nbのドープが進行し、この Nbがコア材である Ti  The adhesion between the filler material and the conductive layer becomes strong, and the interface becomes unclear. Then, Nb doping into TiO that forms the conductive layer during this firing proceeds, and this Nb is the core material Ti
2  2
O側に拡散することにより、導電層からコア材層にかけて Nbの濃度勾配ができると By diffusing to the O side, a Nb concentration gradient can be created from the conductive layer to the core material layer.
2 2
考えられる。  Conceivable.
[0028] 本件発明に係る導電性粒子において、前記導電層の厚さが 2nm〜1 5nmであるこ と力 S好ましく、前記導電層の Nb含有率が導電性粒子内の TiO量を 100wt%とした  [0028] In the conductive particles according to the present invention, the thickness of the conductive layer is preferably 2 nm to 15 nm. The Nb content of the conductive layer is preferably 100 wt% of the TiO content in the conductive particles.
2  2
とき、 0. 05wt%〜5wt%であることが好ましい。ここで言っている導電層の厚さであ る力 本件発明に係る導電性粒子はコア材と導電層との界面が不明瞭であるため、 導電性粒子の質量とその形成に用いたコア材用 TiOの質量及びドープされた Nb量  Is preferably 0.05 wt% to 5 wt%. The force that is the thickness of the conductive layer referred to here Since the conductive particles according to the present invention have an unclear interface between the core material and the conductive layer, the mass of the conductive particles and the core material used for the formation thereof TiO mass and doped Nb content
2  2
を計算基礎とし、比表面積を用いて算出している。  Is calculated using the specific surface area.
[0029] 上記導電層の厚さ及び組成は最終的に形成される導電膜に要求される電気特性 によって調整すれば済むものではある力 一般的な要求範囲が表面抵抗値で 1 . 0 Χ 106 Ω /口台〜 3. 0 Χ 10"^ /口台であることから、上記範囲を好ましいとしてい るのである。そして、製造のしゃすさなどを考慮に入れた導電層のより好ましい厚さは 3nm〜; ! Onmであり、 Nb含有率のより好ましい含有率は導電性粒子全体の TiO量 [0029] The thickness and composition of the conductive layer need only be adjusted according to the electrical characteristics required for the finally formed conductive film. The general required range is the surface resistance value of 1.0 to 10 The above range is preferred because it is 6 Ω / pocket to 3.0 Χ 10 "^ / pocket, and a more preferable thickness of the conductive layer taking into account manufacturing shading and the like. Is 3 nm ~;! Onm, and the more preferable Nb content is the TiO content of the entire conductive particles.
2 を 100wt%としたとき、 0. lwt%〜3. Owt%である。  When 2 is 100 wt%, it is 0.1 wt% to 3. Owt%.
[0030] 本件発明に係る導電性粉体の形態: 本件発明に係る導電性粉体は、前記導電性 粒子で構成された導電性粉体であって、前記導電性粒子の一次粒子径が 0. Ο δ μ m〜; 1 . O ^ mである。本件発明に係る導電性粉体の用途が導電性インクをはじめと する有機絶縁体、例えば塗料やプラスチックフィルムなどに導電性を付与することを 目的としているものであれば、均一分散性と導電性とを両立できる形態であることが 要求されるのである。そして、粉体の形状をこの要求特性から考察すると、導電性に 対しては特許文献 1に開示されて!/、るような鱗片状のフレークが好まし!/、とされて!/、る 。しかしながらフレークは均一分散性に欠けるため、強攪拌や長時間攪拌による強分 散処理を適用すると導電層の剥離やフレーク自身の破壊が起こり、結果として所期 の特性を得る為の工程設計が困難になってしまうのである。 [0031] また、分散性を向上させるためには粒子の形状は粒状であり、具体的には球状、疑 似球状など等方的形状を呈したものが好ましいとされている。これに対し、形状が非 粒状の鱗片状や針状の粒子を分散させたインクや塗料では含有量を同一とした場合 には粘度が上昇してしまい、塗膜の均一性が得られに《なってしまうのである。この 観点から、導電性粒子の形状は粒状であり、その一次粒子径は 0. 05 mよりも大き いことが好ましい。そして、導電性粒子の一次粒子径が 1. 0 mを超えると、如何に 形状が粒状であっても導電膜の表面平滑性が劣ってしまうと同時に粒子間の隙間が 大きくなり、良好な隠蔽性を得る為には充填率を大きくしても塗膜厚さを考慮しなけ ればならなくなってしまう。また、より好ましい導電性粒子の一次粒子径は 0. 1 111〜 0. 5 μ mであ 。 Form of conductive powder according to the present invention: The conductive powder according to the present invention is a conductive powder composed of the conductive particles, and the primary particle diameter of the conductive particles is 0. Ο δ μm ~; 1. O ^ m. If the intended use of the conductive powder according to the present invention is to impart conductivity to organic insulators such as conductive ink, such as paints and plastic films, uniform dispersibility and conductivity It is required to be in a form that can achieve both. Then, considering the required shape of the powder from this required characteristic, it is disclosed in Patent Document 1 for conductivity! /, And such flaky flakes are preferred! / . However, flakes lack uniform dispersibility, and applying strong dispersion treatment with strong stirring or long-time stirring causes peeling of the conductive layer or destruction of the flakes themselves, resulting in difficulty in process design to obtain the desired characteristics. It will become. [0031] In order to improve dispersibility, the shape of the particles is granular, and specifically, those having an isotropic shape such as a spherical shape or a pseudo-spherical shape are preferred. On the other hand, if the content is the same for inks or paints in which scale-like or needle-like particles having a non-particulate shape are dispersed, the viscosity will increase, and the uniformity of the coating will not be obtained. It will end up. From this point of view, it is preferable that the conductive particles have a granular shape and the primary particle diameter is larger than 0.05 m. When the primary particle diameter of the conductive particles exceeds 1.0 m, the surface smoothness of the conductive film is inferior regardless of the shape of the particles, and at the same time, the gaps between the particles become large and good concealment is achieved. In order to obtain the properties, even if the filling rate is increased, the coating thickness must be taken into consideration. Further, the primary particle diameter of the conductive particles is more preferably 0.1 111 to 0.5 μm.
[0032] そして、前記導電性粉体は、メディアン径 D が体積基準で 3 m以下であることが  [0032] The conductive powder has a median diameter D of 3 m or less on a volume basis.
50  50
好ましい。前述のように粒子径がインクや塗料の粘度に与える影響は無視することは できない。即ち粒子径範囲のみではなぐ粒子径の分布にも配慮が必要なのである。 そして、この観点によれば特に塗膜厚みの管理要求の強い導電性インク用途に対し てより好ましいメディアン径 D は体積基準で 0· 2 ^ 111- 1. 5 111である。  preferable. As mentioned above, the effect of particle size on the viscosity of inks and paints cannot be ignored. In other words, it is necessary to consider the distribution of particle diameters not only in the particle diameter range. According to this point of view, the median diameter D is more preferably 0 · 2 ^ 111-1.5 111 on a volume basis, particularly for conductive ink applications that require strong control of coating thickness.
50  50
[0033] 前記導電性粉体は、比表面積力 S lm2/g〜22m2/gであることが好ましい。コア材 として用いる TiOは元来比表面積が大きな素材であり、よって後述する本件発明に [0033] The electrically conductive powder is preferably a specific surface area force S lm 2 / g~22m 2 / g . TiO used as the core material is originally a material with a large specific surface area.
2  2
おける製造方法で導電層を形成するに当たっては液相反応を採用している。即ち、 得られる導電性粒子の特性はコア材として用いる TiO粒子の粒度や表面状態の影  In forming a conductive layer by the manufacturing method in this case, a liquid phase reaction is employed. That is, the characteristics of the conductive particles obtained are influenced by the particle size and surface condition of the TiO particles used as the core material.
2  2
響を大きく受けてしまうのである。従って、本件発明に係る導電性粒子及び導電性粉 体が安定した特性を発揮するためには比表面積が lm2/g〜22m2/gであることが 好ましいのである。そして比表面積のより好ましい範囲は 5m2/g〜; 17m2/gであり、 更に好まし!/、範囲は 7m2/g〜 15m2/gである。 The sound is greatly affected. Thus, since the conductive particles and conductive powder according to the present invention exhibit stable characteristics is the fact preferably has a specific surface area of lm 2 / g~22m 2 / g. The more preferable range of the specific surface area of 5 m 2 / g to;! A 17m 2 / g, further preferably /, range is 7m 2 / g~ 15m 2 / g .
[0034] 前記導電性粉体は、コア材粒子の比表面積と得られた導電性粒子の比表面積の 比〔(導電性粒子の比表面積)/ (コア材粒子の比表面積)〕が 1. 0〜2. 0であること が更に好ましい。前述のように、本件発明における製造方法で導電層を形成するに 当たっては液相反応を採用している。従って、ミクロ的に表面を観察すると凹凸形状 を有するものとなる力 導電性を発揮するためにはなるべく平滑な表面状態を保つ必 要がある。従って、コア材粒子の比表面積と得られた導電性粒子の比表面積の比〔( 導電性粒子の比表面積)/ (コア材粒子の比表面積)〕が 1. 0〜2. 0であれば安定し た導電性を確保することができるのである。 [0034] The conductive powder has a ratio [(specific surface area of conductive particles) / (specific surface area of core material particles)] of the specific surface area of the core material particles to the specific surface area of the obtained conductive particles. More preferably, it is 0 to 2.0. As described above, the liquid phase reaction is employed in forming the conductive layer by the manufacturing method of the present invention. Therefore, it is necessary to keep the surface as smooth as possible in order to exhibit the force conductivity that has an uneven shape when the surface is observed microscopically. There is a point. Therefore, if the ratio of the specific surface area of the core material particles to the specific surface area of the obtained conductive particles [(specific surface area of conductive particles) / (specific surface area of core material particles)] is 1.0 to 2.0 Stable conductivity can be ensured.
[0035] 本件発明に係る導電性粉体の製造形態: 本件発明に係る導電性粉体の製造方法 は、以下の工程 A〜工程 Eを備える。 [0035] Manufacturing method of conductive powder according to the present invention: The method for manufacturing a conductive powder according to the present invention includes the following steps A to E.
[0036] 工程 Aは TiO粉末を水に分散させ、 TiO懸濁液を得る工程であり、コア材の凝集 [0036] Step A is a step in which TiO powder is dispersed in water to obtain a TiO suspension.
2 2  twenty two
を解除し、均一に分散させることを目的としている。そして、ここで用いる TiO粉末の  The purpose is to release and uniformly disperse. And the TiO powder used here
2 粒子径は 0· 05 μ ΐη〜1. Ο μ ΐηであり、懸濁液中の Ti〇濃度が 20g/L〜500g/L  2 Particle size is 0 · 05 μ ΐη to 1. Ο μ ΐη, and TiO concentration in suspension is 20 g / L to 500 g / L
2  2
であることが好ましい。形成される導電層の質量はコア材の質量と比較して小さくは 無いが、導電層が比表面積の大きなコア材の外層に形成されることを考えると粒径の 増加として厳密に考える必要性は小さぐここで調製したコア材の粒子径はほぼその まま導電性粒子の粒子径になると考えて良い。従って、コア材の粒子径は目的とする 導電性粒子の粒子径にほぼ一致させることができる。そして、粒子径の範囲は前述 の導電性粉体を用いて得られるインクなどの粘度、塗膜の隠蔽性を考慮して定める のである。また、懸濁液中の TiO濃度 (スラリー濃度)は主に生産性と導電性粒子の  It is preferable that The mass of the conductive layer to be formed is not small compared to the mass of the core material, but considering that the conductive layer is formed on the outer layer of the core material having a large specific surface area, it is necessary to strictly consider it as an increase in particle size It can be considered that the particle size of the core material prepared here is almost the same as the particle size of the conductive particles. Therefore, the particle diameter of the core material can be made to substantially match the particle diameter of the target conductive particles. The range of the particle diameter is determined in consideration of the viscosity of the ink obtained by using the above-described conductive powder and the concealability of the coating film. In addition, the TiO concentration (slurry concentration) in the suspension mainly depends on the productivity and conductive particles.
2  2
特性を考慮して決定されるのである。例えばスラリー濃度が高すぎると粒子同士が凝 集しやすくなつて分散性が悪化し、スラリー濃度が低すぎるとコア材と導電層との密 着性が低下する傾向が生じる。この観点からスラリー濃度の上限は 500g/Lとするこ と力 S好ましく、より好ましい上限濃度は 300g/Lである。そして下限である 20g/Lは 工業的生産性を維持できるスラリー濃度でもある。  It is determined in consideration of the characteristics. For example, if the slurry concentration is too high, the particles tend to aggregate and the dispersibility deteriorates. If the slurry concentration is too low, the adhesion between the core material and the conductive layer tends to decrease. From this viewpoint, the upper limit of the slurry concentration is preferably 500 g / L, and the more preferable upper limit concentration is 300 g / L. The lower limit of 20 g / L is also the slurry concentration that can maintain industrial productivity.
[0037] 工程 Bは工程 Aで得られた TiO懸濁液にチタン塩とニオブ塩とを添加し、溶解する [0037] In step B, the titanium salt and niobium salt are added to the TiO suspension obtained in step A and dissolved.
2  2
ことで反応用液を準備する工程であり、コア材表面に形成される導電膜の膜厚及び Nbドープ量を設定する工程である。具体的に使用するチタン塩は水溶性 Ti塩である 硫酸チタニル、塩化チタン、硫酸チタン、フッ化チタンなどから選択された 1種又は 2 種以上であり Ti濃度を lwt%〜30wt%とすれば良い。このチタン塩の添加量はスラ リー濃度に対して設定されるものとなるため wt%で管理するのが好ましいのである。 ここで用いるチタン塩は水溶性であればどのようなものでも良ぐ硫酸チタニル、塩化 チタン、硫酸チタン、フッ化チタンなどを用いることができる。そして、 Ti濃度はコア材 表面に形成される導電層厚みが最適になる濃度に設定するのである。即ち、厚い導 電層を形成する場合には高濃度に、薄い導電層を形成する場合には低濃度にすれ ば良い。 This is a step of preparing a reaction solution, and is a step of setting the film thickness and Nb doping amount of the conductive film formed on the surface of the core material. Specifically, the titanium salt used is a water-soluble Ti salt. One or more selected from titanyl sulfate, titanium chloride, titanium sulfate, titanium fluoride, etc. If the Ti concentration is 1 wt% to 30 wt% good. Since the addition amount of the titanium salt is set with respect to the slurry concentration, it is preferable to control it with wt%. Any titanium salt may be used as long as it is water-soluble, and titanyl sulfate, titanium chloride, titanium sulfate, titanium fluoride, etc. can be used. And Ti concentration is the core material The concentration is set so that the thickness of the conductive layer formed on the surface is optimal. That is, a high concentration may be used when forming a thick conductive layer, and a low concentration may be used when forming a thin conductive layer.
[0038] そしてニオブ塩は塩化ニオブ、フッ化ニオブ、ヨウ化ニオブなどから選択された 1種 又は 2種以上であり Nb濃度を 0. 02mol/L〜0. 5mol/Lとすれば良い。ここで用 V、るニオブ塩はチタン塩同様水溶性であればどのようなものでも良ぐ塩化ニオブ、 フッ化ニオブ、ヨウ化ニオブなどを用いることができる。そして、 Nb濃度はコア材表面 に形成される導電層へのドープ量が最適になる濃度に設定するのである。即ち、ドー プ量を多くする場合には高濃度に、ドープ量を少なくする場合には低濃度にすれば 良い。  [0038] The niobium salt is one or more selected from niobium chloride, niobium fluoride, niobium iodide and the like, and the Nb concentration may be 0.02 mol / L to 0.5 mol / L. The niobium salt used here may be any niobium salt as long as it is water-soluble, as can titanium salts, such as niobium chloride, niobium fluoride, and niobium iodide. The Nb concentration is set to a concentration that optimizes the amount of doping to the conductive layer formed on the surface of the core material. That is, when the amount of doping is increased, the concentration is high, and when the amount of doping is decreased, the concentration is low.
[0039] 工程 Cは工程 Bで準備した反応用液を中性〜アルカリ性領域に調整して Nbがドー プされた TiO前駆体(主に水酸化物)を析出させ、 Nbドープ TiO前駆体コート TiO  [0039] In step C, the reaction liquid prepared in step B is adjusted to a neutral to alkaline region to precipitate Nb-doped TiO precursor (mainly hydroxide), and Nb-doped TiO precursor coating TiO
2 2 2 粒子を含む懸濁液を得る工程であり、コア材の TiO表面に均一な Nbドープ TiO前  This is a process to obtain a suspension containing 2 2 2 particles, and the uniform Nb-doped TiO
2 2 駆体の析出膜を形成する工程である。具体的には調製後の pHを 7〜; 11の中性〜ァ ルカリ性領域とするために、 NaOH、 KOH、 Na CO又はアンモニアなどの強アル力  2 2 This is the process of forming the precursor film. Specifically, in order to make the pH after preparation 7 to; 11 neutral to alkaline region, strong alcohol such as NaOH, KOH, Na 2 CO or ammonia
2 3  twenty three
リから選択された 1種又は 2種以上を pH調整に用いれば良い。この工程は懸濁液の 形態における反応となるため、攪拌操作を加えた方が良い。  One or more selected from the above may be used for pH adjustment. Since this step is a reaction in the form of a suspension, it is better to add a stirring operation.
[0040] この工程 Cではアルカリの添加を完結させるまでに要する時間に留意し、具体的に は 10分〜 90分とするのが好ましい。後述する実施例では 70分をかけている。例えば 、端的な例として工程 Bと工程 Cとを同時進行させた状況、即ちコア材を分散させた 懸濁液にチタン塩、ニオブ塩及びアルカリを同時に添加してしまうと反応液中におけ るチタン塩やニオブ塩とアルカリの接触状態にムラが生じ、均一な TiO前駆体の形 [0040] In this step C, attention is paid to the time required to complete the addition of the alkali. Specifically, it is preferably 10 minutes to 90 minutes. In the example described later, it takes 70 minutes. For example, as a simple example, the situation in which Step B and Step C are simultaneously progressed, that is, if titanium salt, niobium salt and alkali are simultaneously added to the suspension in which the core material is dispersed, it will be in the reaction solution. Unevenness in the contact state between titanium salt and niobium salt and alkali, resulting in a uniform TiO precursor shape
2  2
成が困難となる。  It becomes difficult to complete.
[0041] そして、コア材を分散させた懸濁液に先にアルカリを添加した後、チタン塩、ニオブ 塩を添加するとコア材表面に形成される導電層である TiO前駆体がポーラスな状態  [0041] Then, after adding an alkali to the suspension in which the core material is dispersed, and adding a titanium salt or niobium salt, the TiO precursor, which is a conductive layer formed on the core material surface, is in a porous state.
2  2
で形成されて脆いものとなり、導電性粉末を導電性塗料に用いた場合、導電性に劣 つたものとなる。  When the conductive powder is used for the conductive paint, it becomes inferior in conductivity.
[0042] 工程 Dは工程 Cで得られた懸濁液を固液分離し、分取した Nbドープ TiO前駆体コ ート TiO粉を乾燥し、 Nbドープ TiO前駆体コート TiO粉を得る工程で、定法の洗[0042] In Step D, the suspension obtained in Step C is subjected to solid-liquid separation, and the separated Nb-doped TiO precursor core is separated. The TiO powder is dried to obtain Nb-doped TiO precursor-coated TiO powder.
2 2 2 2 2 2
浄、濾過、乾燥を行えばよい。  Purification, filtration and drying may be performed.
[0043] 工程 Eは工程 Dで得られた、 Nbドープ TiO前駆体コート TiO粉ケーキを解砕した  [0043] In step E, the Nb-doped TiO precursor-coated TiO powder cake obtained in step D was crushed.
2 2  twenty two
後に大気雰囲気で焼成して導電性粉体を得る工程であり、工程 Bで形成された Nbド ープ TiO前駆体層を酸化物とする工程である。この工程において Nbは TiOへドー  This is a step of later firing in an air atmosphere to obtain conductive powder, and a step of using the Nb doped TiO precursor layer formed in Step B as an oxide. In this process, Nb is added to TiO
2 2 プされ、所期の特性を発揮することになる。粉体の解砕にはフォースミル等、常法の 解砕設備を使用できる。そして焼成に際しての雰囲気である力 本件発明では大気 雰囲気としている。これは TiO前駆体層の主成分が水酸化チタンであり、加熱による  2 2 and will exhibit the desired characteristics. Conventional crushing equipment such as a force mill can be used to crush the powder. And the force which is the atmosphere at the time of baking In this invention, it is set as air atmosphere. This is because the main component of the TiO precursor layer is titanium hydroxide.
2  2
脱水反応が進行すれば十分な効果が発揮されると考えているからである。  This is because if the dehydration reaction proceeds, it is considered that a sufficient effect is exhibited.
[0044] 本件発明に係る導電性インクの形態: 本件発明に係る導電性インクは前記導電性 粉体を顔料として用いたものであり、粘度も用途に応じて最適に調製されたものであ る。ここで得られる導電性インクは粒状の導電性粉体を用いることから、鱗片状又は 針状の導電性粉体を用いた場合と比べ、インクとしての導電性粒子固形分が高いも のとなる。従って、形成しょうとする導電膜厚さ同じであっても使用するインク量は少 なぐ有機溶剤などによる環境への影響も低減されたものなのである。そして、本件発 明に係る導電性粉体の用途は導電性インクに限定されるものではなぐ前述の導電 性塗料やプラスチックの導電性付与の目的にも用いることが出来る。  [0044] Form of the conductive ink according to the present invention: The conductive ink according to the present invention uses the conductive powder as a pigment, and the viscosity is optimally prepared according to the application. . Since the conductive ink obtained here uses a granular conductive powder, the solid content of the conductive particles as the ink is higher than when a scaly or acicular conductive powder is used. . Therefore, even if the conductive film thickness to be formed is the same, the amount of ink to be used is reduced, and the influence on the environment due to a small amount of organic solvent is reduced. The use of the conductive powder according to the present invention is not limited to the conductive ink, but can also be used for the purpose of imparting conductivity to the above-described conductive paint and plastic.
[0045] 以下に実施例及び比較例を示すが、本件発明はこれらに限定されて解釈されるも のではな!/、。実施例及び比較例で調製した導電性粉体や導電性インクの調製方法 に関しては以下に述べる実施例及び比較例にて個別に説明する力 表 1に導電性ィ ンクの分散時間と導電膜の表面抵抗データの結果を示す。図 1はそれをグラフ化し たものである。表 1では、本件発明に基づき形成した導電性粉体を用いて形成した導 電膜を実施例 1として掲載し、そして比較用には酸化スズを用いて導電層を形成した 導電性粉体を用いて形成した導電膜を比較例 1として掲載した。  [0045] Examples and comparative examples are shown below, but the present invention should not be construed as being limited to these! /. Regarding the methods for preparing the conductive powders and conductive inks prepared in the examples and comparative examples, the forces described individually in the examples and comparative examples described below are shown in Table 1. The result of surface resistance data is shown. Figure 1 is a graph of this. In Table 1, a conductive film formed using the conductive powder formed according to the present invention is listed as Example 1, and for comparison, a conductive powder having a conductive layer formed using tin oxide is shown. The conductive film formed using this was listed as Comparative Example 1.
[0046] [表 1] 表 面 抵 抗 (Ω /口)  [0046] [Table 1] Surface resistance (Ω / port)
分散時間(Hr)  Dispersion time (Hr)
実施例  Example
比較例 実施例 Comparative example Example
[0047] <実施例 1〉 <Example 1>
[0048] [導電性粉体の調製] [0048] [Preparation of conductive powder]
1.使用薬品の調整  1. Adjustment of chemicals used
チタン塩溶液:硫酸チタニルを使用して Ti分として 5wt%に調整  Titanium salt solution: Use titanyl sulfate to adjust the Ti content to 5 wt%
ニオブ塩溶液: 100mlの濃塩酸に五塩化ニオブ 3gを溶解して調整  Niobium salt solution: Prepare by dissolving 3 g of niobium pentachloride in 100 ml of concentrated hydrochloric acid.
pH調整用溶液:水酸化ナトリウム 25wt%の水溶液  pH adjustment solution: Sodium hydroxide 25wt% aqueous solution
[0049] 2.導電層の形成 [0049] 2. Formation of conductive layer
純水 1. 5Lに一次粒子径 0. 15 111の TiO粉 100gを加え、 TiO粉が分散した懸  Pure water 1. Add 100 g of TiO powder with a primary particle size of 0.115 111 to 5 L and suspend the TiO powder dispersed.
2 2  twenty two
濁液を得た。この懸濁液にチタン塩溶液 400gと、ニオブ塩溶液 20mlを加え反応用 液とした。このようにして得られた反応用液を 60°Cまで昇温し、 pH調整用溶液 350m Lを 70分間かけて添加した。ここで得られた懸濁液を更に 30分間攪拌して維持後リ パルプ法にて洗浄し、最終的にヌッチェを用い吸引濾過して固形物を分取して乾燥 し、疑似固化した粉体を得た。  A turbid liquid was obtained. To this suspension, 400 g of a titanium salt solution and 20 ml of a niobium salt solution were added to obtain a reaction solution. The reaction solution thus obtained was heated to 60 ° C., and 350 mL of pH adjusting solution was added over 70 minutes. The suspension obtained here is further stirred for 30 minutes and then washed by the repulping method. Finally, the solid is separated by suction filtration using a Nutsche, dried, and quasi-solidified powder. Got.
[0050] 3. 導電性粉体の形成 [0050] 3. Formation of conductive powder
次に、乾燥して疑似固化した粉体をフォースミルを用いて解砕し、これを 700°Cの 大気雰囲気中で 1時間焼成し、 TiO粉に Nbドープした TiO導電層を形成した導電  Next, the dried and quasi-solidified powder was pulverized using a force mill and fired in an air atmosphere at 700 ° C for 1 hour to form a TiO conductive layer in which TiO powder was doped with TiO powder.
2 2  twenty two
性粉体を得た。  Powder was obtained.
[0051] 4. 導電性粉体の評価  [0051] 4. Evaluation of conductive powder
粒子径: 0. 15 111 (倍率 60, 000倍の SEM観察像力、ら任意に選択した 50点の粒 子径の平均)  Particle size: 0.15 111 (SEM observation image power at a magnification of 60,000 times, average of 50 arbitrarily selected particle sizes)
D : 0. 6〃111 (200111しのサンプノレ容器 ίこ試料約 0. lgを禾平り取り、 0. 2g/Lのへ D: 0.6〃111 (200111 Sampnore container)
50 50
キサメタリン酸ソーダ 10mLを混合後純水 90mLを添加し、超音波分散機(日本精機 (株)製 US— 300T)を用いて 10分間分散し、サンプル懸濁液を調製した。当該サン プル懸濁液を (株)堀場製作所製 LA— 920を用い、レーザー回折散乱法にて求めら れる累積体積が 50%になった時点における粒子径)  After mixing 10 mL of sodium oxametaphosphate, 90 mL of pure water was added and dispersed for 10 minutes using an ultrasonic dispersing machine (US-300T manufactured by Nippon Seiki Co., Ltd.) to prepare a sample suspension. Using the sample suspension LA-920 manufactured by Horiba, Ltd., the particle size when the cumulative volume determined by the laser diffraction scattering method reached 50%)
比表面積:コア材は 10. 0m2/g、導電性粉末は 11. 6m2/g (BET法で測定) L値 : 96. 9 (色差測定器(コニ力ミノルタ(株)製 CM— 3500d)で色調を測定) [0052] 次に、導電層の厚さは以下の手順で計算により求めた。 Specific surface area: Core material: 10.0 m 2 / g, conductive powder: 11.6 m 2 / g (measured by BET method) L value: 96.9 (color difference measuring device (CM- 3500d, manufactured by Koni Minolta Co., Ltd.) ) To measure color tone) [0052] Next, the thickness of the conductive layer was calculated by the following procedure.
a)得られた導電性粉末の質量と用いたコア材の質量からコート部分の質量を求め b)コート質量を酸化チタンの密度で割り、更に上記で得られているコア材の表面積 で害 IJることによりコート厚さ(導電層厚さ: nm)を求める。  a) Obtain the mass of the coating part from the mass of the obtained conductive powder and the mass of the core material used.b) Divide the coating mass by the density of titanium oxide, and then harm the surface area of the core material obtained above. Thus, the coat thickness (conductive layer thickness: nm) is obtained.
c)導電性粉末に含まれる Nbの分析値から Nbドープ量(%)を求める。  c) Obtain the Nb doping amount (%) from the analytical value of Nb contained in the conductive powder.
この結果、導電層厚さは 8nm程度であって導電性粒子全体の TiO量 100wt%に  As a result, the conductive layer thickness is about 8 nm, and the TiO content of the entire conductive particles is 100 wt%.
2  2
対しての導体層の質量厚さは 25wt%であり、 Nbドープ量は導電性粒子全体の TiO 量を 100wt%としたときは 0. 2wt%、導電層の TiO量を 100wt%としたときは 0. 8 On the other hand, the mass thickness of the conductor layer is 25 wt%, and the Nb doping amount is 0.2 wt% when the total TiO content of the conductive particles is 100 wt%, and when the TiO content of the conductive layer is 100 wt%. 0. 8
2 2 twenty two
Wt %であった。  Wt%.
[0053] [導電性インクの調製]  [Preparation of conductive ink]
1. 容量 50ccの容器中で導電性粉末 7. 41gとアクリル樹脂(三菱レーヨン (株)製 ダイヤナール LR— 167) 6. 41g、そして溶剤としてトルエンーブタノール混合液を使 用し、導電膜形成後の導電粒子含有率が 70%となるよう混合した。  1. Conductive powder 7.41g and acrylic resin (Dianar LR-167, manufactured by Mitsubishi Rayon Co., Ltd.) 6.41g and toluene-butanol mixture as solvent to form conductive film in a 50cc container The mixture was mixed so that the content of the conductive particles later became 70%.
[0054] 2. 次に、前記混合物中へガラスビーズを加え、ペイントシェーカーを用いて、 1時 間、 2時間、 3時間、 4時間、 5時間の分散処理を行い導電性インク 1〜導電性インク 5 を得た。  [0054] 2. Next, glass beads are added to the mixture, and dispersion treatment is performed for 1 hour, 2 hours, 3 hours, 4 hours, and 5 hours using a paint shaker. Ink 5 was obtained.
[0055] [塗膜の形成]  [0055] [Formation of coating film]
上記導電性インク 1〜導電性インク 5を使用し PETフィルム上にバーコ一ター( # 1 0)を用いて塗膜を形成した。  Using the conductive inks 1 to 5, the coating film was formed on a PET film using a bar coater (# 10).
[0056] [評価結果]  [0056] [Evaluation results]
前記塗膜を 80°Cに設定した熱風循環型オーブンで 30分間乾燥後、三菱化学 (株 )製ハイレスタ IPを使用して表面抵抗の評価を行った。結果は表 1に示したとおりであ る。分散時間を 5時間とした導電性インク 5を用いて形成した導電膜の表面抵抗値は 分散時間 1時間の導電性インク 1を用いて形成した導電膜の表面抵抗値の 33倍に 過ぎず、分散時間の長時間化の影響は小さく良好であった。  The coating film was dried in a hot air circulation oven set at 80 ° C. for 30 minutes, and then surface resistance was evaluated using Hiresta IP manufactured by Mitsubishi Chemical Corporation. The results are shown in Table 1. The surface resistance value of the conductive film formed using conductive ink 5 with a dispersion time of 5 hours is only 33 times the surface resistance value of the conductive film formed using conductive ink 1 with a dispersion time of 1 hour. The effect of increasing the dispersion time was small and good.
<比較例 1〉  <Comparative Example 1>
[0057] [導電性粉体の調製] 1.導電層の形成 [0057] [Preparation of conductive powder] 1. Formation of conductive layer
純水 5Lに実施例 1で用いたと同様の TiO粉 900gを加え、 TiO粉が分散した懸濁  Suspension in which 900 g of TiO powder similar to that used in Example 1 was added to 5 L of pure water and TiO powder was dispersed
2 2  twenty two
液を得た。この懸濁液にスズ酸ナトリウム三水塩 930gを加え、全体の液量が 8Lにな るよう純水を加えた。このようにして得られた反応用液を 70°Cまで昇温して 60分間維 持後、 20%硫酸 1. 6Lを 90分間かけて添加した。ここで得られた懸濁液を更に 30分 間攪拌して維持後リパルプ法にて洗浄し、最終的にヌッチェを用い吸引濾過して固 形物を分取して乾燥し、 TiOに SnOをコートした粉体を得た。  A liquid was obtained. To this suspension, 930 g of sodium stannate trihydrate was added, and pure water was added so that the total liquid volume became 8 L. The reaction solution thus obtained was heated to 70 ° C. and maintained for 60 minutes, and 1.6 L of 20% sulfuric acid was added over 90 minutes. The suspension obtained here is stirred for another 30 minutes and then maintained and washed by the repulp method. Finally, it is filtered by suction using a Nutsche to separate and dry the solid, and SnO is added to TiO. A coated powder was obtained.
2 2  twenty two
[0058] 2. 導電性粉体の形成  [0058] 2. Formation of conductive powder
次に、乾燥して疑似固化した粉体をフォースミルを用いて解砕し、これを 700°Cの 還元雰囲気(2%H — N )中で 1時間焼成した。  Next, the dried and pseudo-solidified powder was pulverized using a force mill, and baked for 1 hour in a reducing atmosphere (2% H — N) at 700 ° C.
2 2  twenty two
[0059] 3. 導電性粉体の評価  [0059] 3. Evaluation of conductive powder
以下の項目については実施例 1と同様の評価方法を用いた。  For the following items, the same evaluation method as in Example 1 was used.
粒子径: 0· Ι δ β ϊη  Particle size: 0 · Ι δ β ϊη
D : 0. δ ^ ιη  D: 0. δ ^ ιη
50  50
比表面積:コア材は 10. 0m2/g、導電性粉末は 25. lmVg Specific surface area: Core material is 10.0 m 2 / g, conductive powder is 25. lmVg
L値: 85. 3  L value: 85.3
[0060] 次に、導電層の厚さは以下の計算により求めた。  [0060] Next, the thickness of the conductive layer was determined by the following calculation.
a)得られた導電性粉末の質量とコア材に用いた TiO量から導電層の質量厚さをを  a) Determine the mass thickness of the conductive layer from the mass of the obtained conductive powder and the amount of TiO used for the core material.
2  2
求める。  Ask.
b)コート質量を酸化スズの密度で割り、更に上記で得られているコア材の表面積で 害 IJることによりコート厚さ(導電層厚さ: nm)を求める。  b) Divide the coat mass by the density of tin oxide, and further determine the coat thickness (conductive layer thickness: nm) by damaging the surface area of the core material obtained above.
c)導電性粉末中の Sn品位を SnO質量に換算し、 SnOコート部分の質量厚さ(%  c) Convert the Sn quality in the conductive powder into SnO mass, and the SnO coat mass thickness (%
2 2  twenty two
)を求める。  )
この結果、導電層厚さは 8nm程度であって、導体層の質量厚さは SnO換算で導  As a result, the conductive layer thickness is about 8 nm, and the mass thickness of the conductor layer is derived in terms of SnO.
2 電性粒子全体の Ti〇量 100wt%に対して 35wt%であった。  2 The total amount of Ti was 35wt% with respect to 100wt% of Ti particles.
2  2
[0061] [導電性インクの調製]  [0061] [Preparation of conductive ink]
実施例 1と同様の操作にて分散処理を行い導電性インク 1 '〜導電性インク 5 'を得 た。 [0062] [塗膜の形成] Dispersion treatment was performed in the same manner as in Example 1 to obtain conductive ink 1 ′ to conductive ink 5 ′. [0062] [Formation of coating film]
実施例 1と同様に行った。  The same operation as in Example 1 was performed.
[0063] [評価結果] [0063] [Evaluation results]
実施例 1と同様にして表面抵抗の評価を行った。結果は図 1、表 1に示したとおりで ある。分散時間を 5時間としたインク 5'を用いて形成した導電膜の表面抵抗値は分 散時間 1時間のインク 1 'を用いて形成した導電膜の表面抵抗値の 120、 000倍に上 昇し、実施例で得られたインク 5を用いて形成した導電膜と比較しても約 5倍であった The surface resistance was evaluated in the same manner as in Example 1. The results are shown in Fig. 1 and Table 1. The surface resistance of the conductive film formed using Ink 5 'with a dispersion time of 5 hours increased to 120, 000 times the surface resistance of the conductive film formed using Ink 1' with a dispersion time of 1 hour. And about 5 times that of the conductive film formed using the ink 5 obtained in the example.
Yes
[0064] [実施例と比較例との対比]  [0064] [Contrast between Example and Comparative Example]
表 1を参照しつつ、実施例及び比較例にて得られた各データを参照して、実施例と 比較例との対比を行う。  With reference to Table 1, the data obtained in the examples and comparative examples are referred to, and the examples and comparative examples are compared.
[0065] 表 1から理解できるように、本件発明に係る実施例 1の導電性粒子で構成された導 電性粉体を用いて得られた導電性インクは、比較例 1に対して分散時間の影響が小 さぐ導電性が安定して!/、るとレ、う結果が得られた。  [0065] As can be seen from Table 1, the conductive ink obtained using the conductive powder composed of the conductive particles of Example 1 according to the present invention has a dispersion time as compared with Comparative Example 1. As a result, the conductivity was stable!
産業上の利用可能性  Industrial applicability
[0066] 本件発明に係る導電性粒子の集合体である導電性粉体をフイラ一として用いた導 電性インク、導電性塗料又は導電性を付与したプラスチックは明色でありながら隠蔽 性を備え、安定した導電性を備えるものとなる。 [0066] Conductive ink, conductive paint or conductive plastic using conductive powder, which is an aggregate of conductive particles according to the present invention, as a filler is light-colored and has concealing properties. , Having stable conductivity.
図面の簡単な説明  Brief Description of Drawings
[0067] [図 1]導電性インクの分散時間を変えて得られた導電膜の表面抵抗を示す図である。  FIG. 1 is a diagram showing the surface resistance of a conductive film obtained by changing the dispersion time of conductive ink.

Claims

請求の範囲 The scope of the claims
[1] コア材粒子表面に導電層を有する粒状の導電性粒子であって、  [1] Granular conductive particles having a conductive layer on the surface of the core material particles,
前記コア材粒子が TiOであり、その粒子表面に Nbをドープした TiO導電層を備  The core material particle is TiO, and a TiO conductive layer doped with Nb is provided on the particle surface.
2 2  twenty two
えることを特徴とする粒状の導電性粒子。  A granular conductive particle characterized by the above.
[2] 前記導電層の厚さが 2nm〜; 15nmである請求項 1に記載の導電性粒子。  [2] The conductive particle according to [1], wherein the thickness of the conductive layer is 2 nm to 15 nm.
[3] 前記導電層の Nb含有率は、導電性粒子全体の TiO量を 100wt%としたとき、 0. 0  [3] The Nb content of the conductive layer is 0.0 when the TiO content of the entire conductive particles is 100 wt%.
2  2
5wt%〜5wt%である請求項 1又は請求項 2に記載の導電性粒子。  The conductive particles according to claim 1 or 2, wherein the conductive particles are 5 wt% to 5 wt%.
[4] 請求項 1〜請求項 3の!/、ずれかに記載の導電性粒子で構成された導電性粉体であ つて、 [4] A conductive powder composed of the conductive particles according to any one of claims 1 to 3 of claim 1;
前記導電性粒子の一次粒子径が 0· Οδ , ΐη-Ι . 0 mであることを特徴とする導 電性粉体。  Conductive powder characterized in that the primary particle size of the conductive particles is 0 · Οδ, ΐη-Ι.0 m.
[5] メディアン径 D が体積基準で 3 in以下である請求項 4に記載の導電性粉体。  5. The conductive powder according to claim 4, wherein the median diameter D is 3 in or less on a volume basis.
50  50
[6] 比表面積力 Slm2/g〜22m2/gである請求項 4又は請求項 5に記載の導電性粉体。 [6] The specific surface area force Slm 2 / g~22m 2 / g and electrically conductive powder according to claim 4 or claim 5.
[7] コア材粒子の比表面積と得られた導電性粒子の比表面積の比〔(導電性粒子の比表 面積)/ (コア材粒子の比表面積)〕が 1. 0〜2. 0である請求項 4〜請求項 6のいず れかに記載の導電性粉体。 [7] The ratio of the specific surface area of the core material particles to the specific surface area of the obtained conductive particles [(specific surface area of the conductive particles) / (specific surface area of the core material particles)] is 1.0 to 2.0 7. The conductive powder according to any one of claims 4 to 6.
[8] 導電性粉体の製造方法であって、 [8] A method for producing conductive powder, comprising:
以下の工程 A〜Eを備えることを特徴とする請求項 4〜請求項 7のいずれかに記載 の導電性粉体の製造方法。  The method for producing a conductive powder according to any one of claims 4 to 7, further comprising the following steps A to E.
A:TiO粉末を水に分散させ、 TiO懸濁液を得る工程。  A: Dispersing TiO powder in water to obtain a TiO suspension.
2 2  twenty two
B :前記 TiO懸濁液にチタン塩とニオブ塩とを添加し、溶解することで反応用液を  B: Titanium salt and niobium salt are added to the TiO suspension and dissolved to prepare a reaction solution.
2  2
得る工程。  Obtaining step.
C :前記反応用液を、中性〜アルカリ性領域に調製して Nbドープ TiO前駆体コー  C: The reaction solution is prepared in a neutral to alkaline region to prepare an Nb-doped TiO precursor coating.
2 ト TiO粒子を含む懸濁液を得る工程。  2 G A step of obtaining a suspension containing TiO particles.
2  2
D :前記懸濁液を固液分離し、分取した Nbドープ TiO前駆体コート TiO粉を乾燥  D: Solid suspension is separated from the suspension, and the separated Nb-doped TiO precursor-coated TiO powder is dried.
2 2 し、 Nbドープ TiO前駆体コート TiO粉を得る工程。  2 2 and obtaining Nb-doped TiO precursor-coated TiO powder.
2 2  twenty two
E :乾燥により疑似固化した Nbドープ TiO前駆体コート TiO粉を解砕した後に焼  E: Nb-doped TiO precursor-coated TiO powder quasi-solidified by drying
2 2  twenty two
成して導電性粉体を得る工程。 The process which obtains conductive powder.
[9] 前記工程 Aで用いる TiO粉末の粒子径が 0. 05 m〜; 1. 0 mであり、懸濁液中の [9] The particle diameter of the TiO powder used in the step A is 0.05 m to 1.0 m,
2  2
TiO濃度力 ¾0g/L〜500g/Lである請求項 8に記載の導電性粉体の製造方法。  9. The method for producing a conductive powder according to claim 8, wherein the TiO concentration power is ¾0 g / L to 500 g / L.
2  2
[10] 前記工程 Bにおけるチタン塩は水溶性 Ti塩である硫酸チタニル、塩化チタン、硫酸 チタン、フッ化チタンから選択された 1種又は 2種以上であり Ti濃度が lwt%〜30wt %である請求項 8又は請求項 9に記載の導電性粉体の製造方法。  [10] The titanium salt in step B is one or more selected from the water-soluble Ti salt titanyl sulfate, titanium chloride, titanium sulfate, and titanium fluoride, and the Ti concentration is 1 wt% to 30 wt%. The method for producing a conductive powder according to claim 8 or 9.
[11] 前記工程 Bにおけるニオブ塩は塩化ニオブ、フッ化ニオブ、ヨウ化ニオブから選択さ れた 1種又は 2種以上であり Nb濃度が 0. 02mol/L〜0. 5mol/Lである請求項 8 〜請求項 10のいずれかに記載の導電性粉体の製造方法。  [11] The niobium salt in step B is one or more selected from niobium chloride, niobium fluoride and niobium iodide, and the Nb concentration is from 0.02 mol / L to 0.5 mol / L. Item 11. A method for producing a conductive powder according to any one of Items 8 to 10.
[12] 前記工程 Cにおける調製後の pHが 7〜; 11の中性〜アルカリ領域であって、 NaOH、 KOH、 Na CO 、アンモニアから選択された 1種又は 2種以上を pH調整に用いる請  [12] The pH after preparation in Step C is 7 to 11; the neutral to alkaline region of 11; one or more selected from NaOH, KOH, Na 2 CO 3 and ammonia are used for pH adjustment.
2 3  twenty three
求項 8〜請求項 11のいずれかに記載の導電性粉体の製造方法。  A method for producing a conductive powder according to any one of claims 8 to 11.
[13] 前記工程 Eにおける焼成雰囲気が大気雰囲気である請求項 8〜請求項 12のいずれ 力、に記載の導電性粉体の製造方法。 [13] The process for producing conductive powder according to any one of claims 8 to 12, wherein the firing atmosphere in the step E is an air atmosphere.
[14] 請求項 4〜請求項 7のいずれかに記載の導電性粉体を顔料として用いて得られる導 電十生インク。 [14] A conductive lifetime ink obtained by using the conductive powder according to any one of claims 4 to 7 as a pigment.
[15] 請求項 14に記載の導電性インクを用いて得られる導電膜。  [15] A conductive film obtained using the conductive ink according to claim 14.
PCT/JP2007/062480 2006-06-21 2007-06-21 Conductive particle, conductive powder consisting thereof, process for producing the same, and conductive ink obtained using the conductive powder WO2007148747A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-171181 2006-06-21
JP2006171181A JP5054330B2 (en) 2006-06-21 2006-06-21 Conductive particles, conductive powder composed of the conductive particles, method for producing the same, and conductive ink obtained using the conductive powder

Publications (1)

Publication Number Publication Date
WO2007148747A1 true WO2007148747A1 (en) 2007-12-27

Family

ID=38833485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062480 WO2007148747A1 (en) 2006-06-21 2007-06-21 Conductive particle, conductive powder consisting thereof, process for producing the same, and conductive ink obtained using the conductive powder

Country Status (3)

Country Link
JP (1) JP5054330B2 (en)
TW (1) TW200809876A (en)
WO (1) WO2007148747A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115103889A (en) * 2020-02-21 2022-09-23 钛工业株式会社 Charge control powder having excellent ability to maintain charged charge, and method for producing same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301366B2 (en) * 2009-06-22 2013-09-25 石原産業株式会社 Method for producing conductive titanium oxide and method for producing conductive composition
JP5512306B2 (en) * 2010-01-29 2014-06-04 日本化学工業株式会社 Method for producing conductive particles
JP6249723B2 (en) * 2013-11-07 2017-12-20 三井金属鉱業株式会社 Conductive particles and method for producing the same
JP6577327B2 (en) * 2015-10-16 2019-09-18 三井金属鉱業株式会社 Conductive particles and conductive composition containing the same
US11618221B2 (en) 2016-11-22 2023-04-04 Merck Patent Gmbh Additive for laser-markable and laser-weldable polymer materials
JP6910160B2 (en) * 2017-02-28 2021-07-28 チタン工業株式会社 Charge adjustment powder and its manufacturing method
CN112119128B (en) * 2018-05-16 2022-03-01 默克专利股份有限公司 Laser additives and their use in polymeric materials
JP7132033B2 (en) * 2018-08-24 2022-09-06 チタン工業株式会社 Charge adjustment powder and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143430A (en) * 1980-04-11 1981-11-09 Fuji Photo Film Co Ltd Photographic sensitive material with improved antistatic property
JPH09296100A (en) * 1996-03-08 1997-11-18 Unitika Ltd Aqueous polyester resin dispersion and production thereof
JPH10147729A (en) * 1996-11-16 1998-06-02 Merck Patent Gmbh Conductive pigment
JPH11203656A (en) * 1998-01-06 1999-07-30 Konica Corp Magnetic recording medium and silver halide photographic sensitive material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143430A (en) * 1980-04-11 1981-11-09 Fuji Photo Film Co Ltd Photographic sensitive material with improved antistatic property
JPH09296100A (en) * 1996-03-08 1997-11-18 Unitika Ltd Aqueous polyester resin dispersion and production thereof
JPH10147729A (en) * 1996-11-16 1998-06-02 Merck Patent Gmbh Conductive pigment
JPH11203656A (en) * 1998-01-06 1999-07-30 Konica Corp Magnetic recording medium and silver halide photographic sensitive material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115103889A (en) * 2020-02-21 2022-09-23 钛工业株式会社 Charge control powder having excellent ability to maintain charged charge, and method for producing same
EP4108635A4 (en) * 2020-02-21 2024-03-13 Titan Kogyo Kabushiki Kaisha Charging-adjustment powder having excellent ability to maintain applied charge, and method for producing said powder

Also Published As

Publication number Publication date
JP5054330B2 (en) 2012-10-24
TW200809876A (en) 2008-02-16
JP2008004332A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
WO2007148747A1 (en) Conductive particle, conductive powder consisting thereof, process for producing the same, and conductive ink obtained using the conductive powder
US9023472B2 (en) Aqueous ink pigment, aqueous ink composition containing the same, and images or printed matter thereof
TWI523813B (en) Tin oxide particles and the method for preparing the same
KR100394889B1 (en) Needle-shaped electrically conductive tin oxide fine particles and preparation method thereof
JP4801617B2 (en) Conductive zinc oxide particles and method for producing the same
JP2019183109A (en) Redispersible composition containing cellulose fiber and non-cellulose granulated material
JP5809966B2 (en) White conductive powder, conductive mixed powder, dispersion, paint, and film composition
TW201245046A (en) Fluorine-doped tin-oxide particles and manufacturing method therefor
WO2004089829A1 (en) Composite indium oxide particle, method for producing same, conductive coating material, conductive coating film, and conductive sheet
WO2019198429A1 (en) Redispersible composition containing cellulose fibers and non-cellulose powder granules
JP4540091B2 (en) Conductive powder and method for producing the same
JP4976052B2 (en) Cobalt-containing black pigment
CN105722903B (en) Composite pigment
JP4906027B2 (en) Composite indium oxide particles and method for producing the same, and conductive paint, conductive coating film and conductive sheet
JP4722412B2 (en) Conductive tin oxide powder, method for producing the same, conductive paste and conductive paint
JP4688708B2 (en) Black composite oxide particles, production method thereof, black paste and black matrix
JP3515625B2 (en) Needle-like conductive tin oxide fine powder and method for producing the same
JP2011054508A (en) White conductive powder
JP4553345B2 (en) Conductive powder
JP5080840B2 (en) Black complex oxide particles, black slurry, black paste, and black matrix
JP4682074B2 (en) Composite oxide particles exhibiting black color
JP5416532B2 (en) Acicular tin oxide fine powder and method for producing the same
JP2004143022A (en) Tin-containing indium oxide particle and its production method, conductive coating film, and conductive sheet
JP5285725B2 (en) Conductive powder
JP2005108735A (en) Conductive powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07845207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07845207

Country of ref document: EP

Kind code of ref document: A1