JP5301366B2 - Method for producing conductive titanium oxide and method for producing conductive composition - Google Patents

Method for producing conductive titanium oxide and method for producing conductive composition Download PDF

Info

Publication number
JP5301366B2
JP5301366B2 JP2009147159A JP2009147159A JP5301366B2 JP 5301366 B2 JP5301366 B2 JP 5301366B2 JP 2009147159 A JP2009147159 A JP 2009147159A JP 2009147159 A JP2009147159 A JP 2009147159A JP 5301366 B2 JP5301366 B2 JP 5301366B2
Authority
JP
Japan
Prior art keywords
niobium
columnar particles
conductive
titanium oxide
axis diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009147159A
Other languages
Japanese (ja)
Other versions
JP2011001239A (en
Inventor
陽一 高岡
誠司 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2009147159A priority Critical patent/JP5301366B2/en
Publication of JP2011001239A publication Critical patent/JP2011001239A/en
Application granted granted Critical
Publication of JP5301366B2 publication Critical patent/JP5301366B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、導電性が高く、安全性に優れた導電酸化チタン及びその製造方法に関する。   The present invention relates to a conductive titanium oxide having high conductivity and excellent safety, and a method for producing the same.

二酸化チタンは顔料として広く用いられており、二酸化チタンに導電性処理を施すと、顔料の機能を併せ持つ導電性フィラーとなる。この導電性フィラーを塗料に配合して、絶縁性材料に塗布すれば、絶縁性材料に導電性と意匠性、隠ペイ性等とを付与できるので、例えば、プラスチック組成物用の導電性プライマー等に応用されている。このような導電性フィラーとしては、従来より、アンチモンをドープした酸化スズからなる導電層を被覆した導電性酸化チタンが用いられてきた(特許文献1)。しかし、近年、アンチモンの毒性が問題となり、二酸化チタン柱状粒子の表面に、リンをドープした酸化スズからなる導電層を被覆した導電性酸化チタン(特許文献2)、ニオブをドープした導電性酸化チタン(特許文献3)、あるいは、ニオブをドープした二酸化チタンからなる導電層を被覆した導電性酸化チタン(特許文献4)等が提案されている。   Titanium dioxide is widely used as a pigment, and when a conductive treatment is applied to titanium dioxide, it becomes a conductive filler having the function of a pigment. If this conductive filler is blended into a paint and applied to an insulating material, the insulating material can be provided with conductivity, design, concealment, etc., for example, a conductive primer for plastic compositions, etc. Has been applied. As such a conductive filler, conventionally, conductive titanium oxide coated with a conductive layer made of tin oxide doped with antimony has been used (Patent Document 1). However, in recent years, toxicity of antimony has become a problem, and conductive titanium oxide in which the surface of titanium dioxide columnar particles is coated with a conductive layer made of tin oxide doped with phosphorus (Patent Document 2), conductive titanium oxide doped with niobium (Patent Document 3), or conductive titanium oxide (Patent Document 4) that covers a conductive layer made of titanium dioxide doped with niobium has been proposed.

特開昭61−141616号公報JP 61-141616 A 国際公開WO2007/102490パンフレットInternational Publication WO2007 / 102490 Pamphlet 特開2007−320821号公報JP 2007-320821 A 特開2008−4332号公報JP 2008-4332 A

本発明では、より一層の導電性が優れた、安全性の高い導電性酸化チタンを提供する。   In the present invention, a highly safe conductive titanium oxide having further improved conductivity is provided.

本発明者らが、鋭意研究を重ねた結果、特定の大きさを有する二酸化チタン柱状粒子に、ニオブをドープした導電性酸化チタンは、導電性が優れていることを見出し、本発明を完成させた。   As a result of intensive studies by the present inventors, it was found that conductive titanium oxide doped with niobium in titanium dioxide columnar particles having a specific size has excellent conductivity, and completed the present invention. It was.

即ち、重量平均長軸径が7.0〜15.0μmの範囲にあり、重量平均短軸径が0.25〜1.0μmの範囲にある二酸化チタン柱状粒子に、ニオブがドープされた導電性酸化チタンである。   That is, a conductive material in which titanium dioxide columnar particles having a weight average major axis diameter of 7.0 to 15.0 μm and a weight average minor axis diameter of 0.25 to 1.0 μm are doped with niobium. Titanium oxide.

本発明により、導電性に優れ、安全性が高い導電性組成物が得られる。   According to the present invention, a conductive composition having excellent conductivity and high safety can be obtained.

本発明は、導電性酸化チタンであって、重量平均長軸径が7.0〜15.0μmの範囲にあり、重量平均短軸径が0.25〜1.0μmの範囲にある二酸化チタン柱状粒子に、ニオブがドープされていることを特徴とする。本発明では、基体の柱状粒子が大きく、導電性組成物中で導電性酸化チタン同士が接触し易いので、電気の導通経路を確保し易くなるため、優れた導電性が得られる。また、ドーパントして用いるニオブは安全性が高く、更に、発色性が低いので、二酸化チタンの有する白色度を大きく損ねることがなく、調色が行い易い等顔料としても優れた特性を保持している。   The present invention is a conductive titanium oxide having a weight average major axis diameter in the range of 7.0 to 15.0 μm and a weight average minor axis diameter in the range of 0.25 to 1.0 μm. The particles are doped with niobium. In the present invention, since the columnar particles of the substrate are large and the conductive titanium oxides are easily brought into contact with each other in the conductive composition, it is easy to secure an electrical conduction path, so that excellent conductivity is obtained. In addition, niobium used as a dopant is highly safe and has low color developability, so it does not significantly impair the whiteness of titanium dioxide and maintains excellent properties as a pigment such as easy toning. Yes.

本願では、「柱状粒子」は長軸径が短軸径より大きいものであり、棒状粒子、針状粒子、紡錘状粒子、繊維状粒子等が包含される。重量平均長軸径及び重量平均短軸径は、電子顕微鏡法により、100個以上の柱状粒子の長軸径、短軸径を測定し、柱状粒子を角柱相当として、下記の式よって算出されたものである。その好ましい重量平均長軸径は、8.0〜14.0μmの範囲であり、より好ましくは9.0〜13.0μmの範囲である。一方、重量平均短軸径は、0.3〜0.8μmの範囲が好ましい。軸比(重量平均長軸径/重量平均短軸径)は1より大きければ特に制限を受けないが、3以上であれば、所望の導電性が得られ易いので好ましく、より好ましくは5〜40の範囲であり、更に好ましくは10〜40の範囲である。また、粒度分布については、長軸径が大きい柱状粒子が多く含まれていることが好ましく、長軸径が小さい柱状粒子が少ない方が好ましい。このような粒度分布は、特定の長軸径を有する柱状粒子の含有量で表すことができる。具体的には、10μm以上の長軸径を有する柱状粒子が全体の15重量%以上含まれていれば好ましく、長軸径が5.0μm以下の柱状粒子の含有量が40重量%以下であれば好ましい。それぞれのより好ましい範囲は、25重量%以上、30重量%以下であり、更に好ましい範囲は35重量%以上、20重量%以下である。
重量平均長軸径=Σ(Ln・Ln・Dn)/Σ(Ln・Dn
重量平均短軸径=Σ(Dn・Ln・Dn)/Σ(Ln・Dn
(上記式中のnは計測した個々の粒子の番号を表し、Lnは第n番目の粒子の長軸径、Dnは第n番目の粒子の短軸径を表す。)
In the present application, the “columnar particles” have a major axis diameter larger than the minor axis diameter, and include rod-shaped particles, needle-shaped particles, spindle-shaped particles, fibrous particles, and the like. The weight average major axis diameter and the weight average minor axis diameter were calculated by the following formulas by measuring the major axis diameter and minor axis diameter of 100 or more columnar particles by electron microscopy, and assuming that the columnar particles correspond to prismatic particles. Is. The preferable weight average major axis diameter is in the range of 8.0 to 14.0 μm, and more preferably in the range of 9.0 to 13.0 μm. On the other hand, the weight average minor axis diameter is preferably in the range of 0.3 to 0.8 μm. The axial ratio (weight average major axis diameter / weight average minor axis diameter) is not particularly limited as long as it is larger than 1, but it is preferably 3 or more because desired conductivity is easily obtained, and more preferably 5 to 40. More preferably, it is the range of 10-40. As for the particle size distribution, it is preferable that many columnar particles having a large long axis diameter are contained, and it is preferable that there are few columnar particles having a small long axis diameter. Such a particle size distribution can be represented by the content of columnar particles having a specific major axis diameter. Specifically, it is preferable that columnar particles having a major axis diameter of 10 μm or more are contained in an amount of 15% by weight or more of the whole, and the content of columnar particles having a major axis diameter of 5.0 μm or less is 40% by weight or less. It is preferable. A more preferable range of each is 25% by weight or more and 30% by weight or less, and a further preferable range is 35% by weight or more and 20% by weight or less.
Weight average major axis diameter = Σ (Ln · Ln · Dn 2 ) / Σ (Ln · Dn 2 )
Weight average minor axis diameter = Σ (Dn · Ln · Dn 2 ) / Σ ( Ln · Dn 2 )
(In the above formula, n represents the number of each measured particle, Ln represents the major axis diameter of the nth particle, and Dn represents the minor axis diameter of the nth particle.)

ニオブのドープ量は、柱状粒子に含まれるTiに対し、Nbとして0.1モル%以上であると、優れた導電性が得られるので好ましい。ドープ量が15重量%を超えても、更なる導電性の向上は認められず、却って白色度の大幅な低下を招くので、0.1〜15重量%の範囲とするのがより好ましい。ニオブのドープ量がこの範囲にあれば、ハンター表色系による粉体色の白色度(L値)が65以上となる。更に好ましいドープ量は、0.1〜10重量%の範囲である。本発明では、後述するように、還元焼成温度を調整することで、おそらくは、ニオブを柱状粒子の表面近傍で、高濃度にドープさせることができ、この場合、0.1〜3モル%の比較的少ないドープ量でも、粉体抵抗値が10Ωcm未満の高い導電性酸化チタンとなる。尚、ニオブが「ドープされる」とは、ニオブが柱状粒子のTiサイトの一部を置換する等して、柱状粒子の結晶格子中に固溶された状態にあるものを言う。 The doping amount of niobium is preferably 0.1 mol% or more as Nb with respect to Ti contained in the columnar particles because excellent conductivity can be obtained. Even if the doping amount exceeds 15% by weight, no further improvement in conductivity is observed, and on the contrary, the whiteness is significantly reduced. Therefore, the range of 0.1 to 15% by weight is more preferable. If the niobium doping amount is within this range, the whiteness (L value) of the powder color by the Hunter color system will be 65 or more. A more preferable dope amount is in the range of 0.1 to 10% by weight. In the present invention, as will be described later, by adjusting the reduction firing temperature, niobium can possibly be doped at a high concentration in the vicinity of the surface of the columnar particles, and in this case, a comparison of 0.1 to 3 mol% is possible. Even with a small amount of doping, a highly conductive titanium oxide having a powder resistance value of less than 10 3 Ωcm is obtained. Here, niobium is “doped” means that niobium is in a solid solution state in the crystal lattice of the columnar particles, for example, by replacing part of the Ti sites of the columnar particles.

基体の柱状粒子には、ニオブがドープされるので、少なくとも結晶性二酸化チタンを含む必要があるが、一部に非晶質にものが含まれていても良い。しかし、結晶性が高い方が、前記のようにニオブを表面近傍で高濃度にドープさせる等、ニオブのドープ様態を制御し易いので好ましく、結晶性二酸化チタンを99重量%以上含んでいれば更に好ましい。   Since the columnar particles of the substrate are doped with niobium, it is necessary to contain at least crystalline titanium dioxide, but some of them may be amorphous. However, it is preferable that the crystallinity is high because the doping state of niobium is easily controlled, such as doping with niobium at a high concentration in the vicinity of the surface as described above, and it is more preferable that the crystalline titanium dioxide is contained by 99% by weight or more. preferable.

本発明の導電性酸化チタンには、導電性を阻害しない範囲であるなら、その表面に有機化合物、無機化合物が被覆されていても良い。無機化合物としては、アルミニウム、ケイ素、ジルコニウム、チタンの酸化物や含水酸化物が、有機化合物としては、カップリング剤、シリコーンオイル、界面活性剤、ポリオール、アルカノールアミン等が挙げられる。これらの被覆種は、1種を用いても良く、あるいは、2種以上を積層して被覆したり、混合物として被覆することもできる。   The surface of the conductive titanium oxide of the present invention may be coated with an organic compound or an inorganic compound as long as the conductivity is not impaired. Examples of inorganic compounds include oxides and hydrated oxides of aluminum, silicon, zirconium, and titanium, and examples of organic compounds include coupling agents, silicone oils, surfactants, polyols, and alkanolamines. These coating species may be used alone, or two or more may be laminated and coated, or may be coated as a mixture.

次に、本発明は、導電性酸化チタンの製造方法であって、表面にニオブ化合物を担持した二酸化チタン柱状粒子を還元剤の存在下で焼成することを特徴とする。柱状粒子は公知の方法によって得ることができ、例えば、重量平均長軸径が7.0〜15.0μmの範囲にあり、重量平均短軸径が0.25〜1.0μmの範囲にある柱状粒子を得るのであれば、前記特許文献2に開示される方法を用いる。前記特許文献2に開示される方法とは、即ち、2以上の軸比を有し、その粒子の重量平均長軸径が3.0〜7.0μmの範囲の二酸化チタン核晶の存在下、チタン化合物、アルカリ金属化合物及びオキシリン化合物を焼成する方法である。あるいは、前記の重量平均長軸径、重量平均短軸径を有する市販の二酸化チタン柱状粒子を用いても良い。担持させるニオブ化合物には制限は無いが、ニオブの酸化物及び/又は含水酸化物であれば、ニオブが柱状粒子にドープされ易く好ましい。   Next, the present invention is a method for producing conductive titanium oxide, characterized by firing titanium dioxide columnar particles carrying a niobium compound on the surface in the presence of a reducing agent. The columnar particles can be obtained by a known method. For example, the columnar particles have a weight average major axis diameter in the range of 7.0 to 15.0 μm and a weight average minor axis diameter in the range of 0.25 to 1.0 μm. If particles are obtained, the method disclosed in Patent Document 2 is used. The method disclosed in Patent Document 2, that is, in the presence of titanium dioxide nuclei having an axial ratio of 2 or more and a weight average major axis diameter of the particles in the range of 3.0 to 7.0 μm, In this method, a titanium compound, an alkali metal compound and an oxyphosphorus compound are baked. Alternatively, commercially available titanium dioxide columnar particles having the weight average major axis diameter and the weight average minor axis diameter may be used. Although there is no restriction | limiting in the niobium compound to carry | support, If it is an oxide and / or a hydrous oxide of niobium, niobium is easy to dope into columnar particle | grains and it is preferable.

柱状粒子表面にニオブ化合物を担持させるには、先ず、二酸化チタン柱状粒子を含む媒液を調整する。媒液には、水又はアルコール等の有機溶媒、あるいはそれらの混合物を用いることができ、工業的には水又は水を主成分とする水性媒液を用いるのが好ましい。柱状粒子を媒液に添加した後、柱状粒子の凝集状態に応じて、縦型サンドミル、横型サンドミル等を用いて湿式粉砕を行っても良い。また、水性媒液のpHを9以上に調整すると、柱状粒子が水中に安定して分散するので好ましい。必要に応じて、例えば、ヘキサメタリン酸ナトリウム、ピロリン酸ナトリウム等のリン酸化合物、ケイ酸ナトリウム、ケイ酸カリウム等のケイ酸化合物等の分散剤を用いても良い。水性媒液中の柱状粒子の固形分濃度は、50〜800g/リットルの範囲であり、好ましくは100〜500g/リットルの範囲である。   In order to support the niobium compound on the columnar particle surface, first, a liquid medium containing titanium dioxide columnar particles is prepared. As the medium, water, an organic solvent such as alcohol, or a mixture thereof can be used, and industrially, it is preferable to use water or an aqueous medium mainly composed of water. After adding the columnar particles to the medium, wet pulverization may be performed using a vertical sand mill, a horizontal sand mill or the like according to the aggregation state of the columnar particles. Moreover, it is preferable to adjust the pH of the aqueous medium to 9 or more because the columnar particles are stably dispersed in water. If necessary, a dispersant such as a phosphoric acid compound such as sodium hexametaphosphate and sodium pyrophosphate, and a silicate compound such as sodium silicate and potassium silicate may be used. The solid content concentration of the columnar particles in the aqueous medium is in the range of 50 to 800 g / liter, preferably in the range of 100 to 500 g / liter.

調製した媒液中で、加水分解性ニオブ化合物を加水分解する。加水分解性ニオブ化合物としては、塩化ニオブ、オキシ塩化ニオブなどの塩類、ペンタメトキシニオブなどのアルコキシド類、金属ニオブ、酸化ニオブ、水酸化ニオブなどを過酸化水素で溶解させたペルオキソニオブ類が挙げられ、加水分解の方法は、中和加水分解、加熱加水分解等を適宜選択する。加熱加水分解を用いる場合、加熱温度は70℃以上であれば、加水分解が進み易く好ましく、100℃以下とすると耐圧容器等特殊な装置を要しないので、工業的に好ましい。中和加水分解を用いる場合は、加水分解性ニオブ化合物を媒液に添加した後、中和剤を添加したり、あるいは、加水分解性ニオブ化合物と中和剤とを同時に添加することもできる。中和剤としては、塩基性化合物であれば、アルカリ金属、アルカリ土類金属等の水酸化物や炭酸塩等、アンモニア等のアンモニウム化合物、アミン類等が、酸性化合物であれば、硫酸、塩酸等の無機酸、酢酸、ギ酸等の有機酸等が挙げられる。   The hydrolyzable niobium compound is hydrolyzed in the prepared medium. Examples of hydrolyzable niobium compounds include salts such as niobium chloride and niobium oxychloride, alkoxides such as pentamethoxyniobium, and peroxoniobium obtained by dissolving metal niobium, niobium oxide, niobium hydroxide, etc. with hydrogen peroxide. The method of hydrolysis is appropriately selected from neutralization hydrolysis, heat hydrolysis and the like. When heating hydrolysis is used, it is preferable that the heating temperature is 70 ° C. or higher because hydrolysis easily proceeds, and if it is 100 ° C. or lower, a special apparatus such as a pressure vessel is not required, which is industrially preferable. When neutralization hydrolysis is used, after adding the hydrolyzable niobium compound to the medium, a neutralizer can be added, or the hydrolyzable niobium compound and the neutralizer can be added simultaneously. As the neutralizing agent, if it is a basic compound, hydroxides or carbonates such as alkali metals and alkaline earth metals, ammonium compounds such as ammonia, amines, etc., if acidic compounds, sulfuric acid, hydrochloric acid And inorganic acids such as acetic acid and formic acid.

ニオブ化合物を担持させた後、媒液から柱状粒子を固液分離し、必要に応じて乾燥、乾式粉砕を行う。固液分離には、例えば、フィルタープレス、ロールプレス等を用いることができる。乾燥には、例えば、バンド式ヒーター、バッチ式ヒーター等を用いることができる。乾式粉砕には、例えば、ハンマーミル、ピンミル等の衝撃粉砕機、解砕機等に摩砕粉砕機、ジェットミル等の気流粉砕機、スプレードライヤー等の噴霧乾燥機等を用いることができる。   After loading the niobium compound, the columnar particles are solid-liquid separated from the medium, and dried and dry pulverized as necessary. For solid-liquid separation, for example, a filter press, a roll press, or the like can be used. For example, a band heater, a batch heater, or the like can be used for drying. For the dry pulverization, for example, an impact pulverizer such as a hammer mill or a pin mill, a pulverizer or the like, a grinding pulverizer, an airflow pulverizer such as a jet mill, or a spray dryer such as a spray dryer can be used.

固液分離した柱状粒子は、還元材の存在下で焼成することで、柱状粒子中にニオブがドープされる。還元剤には、水素、アンモニア、ヒドラジン及びその水和物、ヒドラジン系化合物(塩酸ヒドラジン、硫酸ヒドラジン等)、低次無機酸素酸(亜硫酸、亜硝酸、次亜硝酸、亜リン酸、亜リン酸等)及びその水化物(亜硫酸水素等)又はそれらの塩(ナトリウム等のアルカリ金属塩)、水素化合物(水素化ホウ素ナトリウム等)等を用いることができる。中でも水素は還元力が高いので好ましく、水素を用いる場合は、安全性のために窒素、炭酸、アルゴン等の不活性ガスとの混合ガスとして用いるのが好ましい。焼成温度は500℃以上であれば、ニオブがドープされ易いので好ましく、1000℃を超えても更なる効果が得られ難く、得られた導電性酸化チタンの焼結を防ぐために、500〜1000℃の範囲とするのがより好ましい。本発明においては、ニオブのドープ量を0.1〜3モル%の範囲とし、焼成温度を500〜800℃の範囲にすると、おそらくは、ニオブが柱状粒子の中心部まで十分に拡散せず、表面近傍で高濃度にドープするので、前記の少ないドープ量でも、優れた導電性を有する導電性酸化チタンが得られる。焼成機器には、ロータリーキルン、トンネルキルン等の公知のものを用いることができる。焼成後、得られた導電性酸化チタンが焼結、凝集していれば、必要に応じてフレーククラッシャ、ハンマーミル、ピンミル、バンタムミル、ジェットミルなどを用いて粉砕しても良い。   The columnar particles subjected to solid-liquid separation are fired in the presence of a reducing material, so that niobium is doped into the columnar particles. Reducing agents include hydrogen, ammonia, hydrazine and its hydrates, hydrazine compounds (hydrazine hydrochloride, hydrazine sulfate, etc.), low-order inorganic oxygen acids (sulfurous acid, nitrous acid, hyponitrous acid, phosphorous acid, phosphorous acid) Etc.) and hydrates thereof (such as hydrogen sulfite) or salts thereof (alkali metal salts such as sodium), hydrogen compounds (such as sodium borohydride), and the like can be used. Among these, hydrogen is preferable because of its high reducing power, and when hydrogen is used, it is preferably used as a mixed gas with an inert gas such as nitrogen, carbonic acid, and argon for safety. If the firing temperature is 500 ° C. or higher, niobium is easily doped, and even if it exceeds 1000 ° C., it is difficult to obtain further effects. In order to prevent sintering of the obtained conductive titanium oxide, 500 to 1000 ° C. It is more preferable to set the range. In the present invention, if the doping amount of niobium is in the range of 0.1 to 3 mol% and the firing temperature is in the range of 500 to 800 ° C., the niobium probably does not sufficiently diffuse to the center of the columnar particles, and the surface Conductive titanium oxide having excellent conductivity can be obtained even with the small doping amount because the doping is performed in the vicinity at a high concentration. As the baking equipment, known devices such as a rotary kiln and a tunnel kiln can be used. If the obtained conductive titanium oxide is sintered and agglomerated after firing, it may be pulverized using a flake crusher, hammer mill, pin mill, bantam mill, jet mill or the like, if necessary.

次いで、本発明は、導電性組成物であって、前記導電性酸化チタンを含むことを特徴とする。導電性組成物しては、例えば、導電性塗料組成物、導電性プラスチック組成物等が挙げられる。本発明には、前記導電性酸化チタンが、固形成分100重量部に対し、10〜200重量部の範囲で配合されるのが好ましく、20〜250重量部の範囲であれば更に好ましい。   Next, the present invention is a conductive composition, characterized by including the conductive titanium oxide. Examples of the conductive composition include a conductive coating composition and a conductive plastic composition. In the present invention, the conductive titanium oxide is preferably blended in the range of 10 to 200 parts by weight and more preferably in the range of 20 to 250 parts by weight with respect to 100 parts by weight of the solid component.

導電性塗料組成物の場合、少なくともバインダーと溶媒が配合されているのが好ましい。バインダーとしては、例えば、アルキド樹脂、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、アミノ樹脂、フッ素樹脂、変性シリコーン樹脂、ウレタン系樹脂、ビニル系樹脂等が挙げられる。溶媒としては、アルコール、エステル、エーテル、ケトン、芳香族、脂肪族炭化水素等の非水溶媒、あるいは水や、これらの混合溶媒が挙げられる。導電性塗料の様態は、溶解型、エマルジョン型、コロイダルディスパージョン型等、特に制限は受けない。更に、着色材、充填材、分散剤、可塑剤、硬化助剤、ドライヤー、消泡剤、増粘剤、乳化剤、フロー調整剤、紫外線吸収剤、防カビ剤等から選ばれる少なくとも1種が配合しても良い。   In the case of a conductive coating composition, it is preferable that at least a binder and a solvent are blended. Examples of the binder include alkyd resins, acrylic resins, polyester resins, epoxy resins, amino resins, fluorine resins, modified silicone resins, urethane resins, vinyl resins, and the like. Examples of the solvent include nonaqueous solvents such as alcohols, esters, ethers, ketones, aromatics and aliphatic hydrocarbons, water, and mixed solvents thereof. The state of the conductive paint is not particularly limited, such as a dissolution type, an emulsion type, and a colloidal dispersion type. Furthermore, at least one selected from coloring agents, fillers, dispersants, plasticizers, curing aids, dryers, antifoaming agents, thickeners, emulsifiers, flow regulators, ultraviolet absorbers, antifungal agents and the like is incorporated. You may do it.

導電性プラスチック組成物であれば、用いるプラスチック樹脂としては、例えば、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン等)、ポリ塩化ビニル樹脂、ポリスチレン樹脂、メタクリル樹脂、ABS樹脂、AS樹脂、ポリ塩化ビニリデン樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリアセタール樹脂等の熱可塑性樹脂や、エポキシ樹脂、不飽和ポリエステル樹脂、メラミン樹脂、ポリウレタン樹脂、シリコーン樹脂等の熱硬化性樹脂等が挙げられる。また、必要に応じて、着色材、充填材、安定剤、分散剤、滑剤、酸化防止剤、紫外線吸収剤、難燃剤等から選ばれる少なくとも1種を配合することもできる。   In the case of a conductive plastic composition, examples of the plastic resin used include polyolefin resins (polyethylene, polypropylene, etc.), polyvinyl chloride resins, polystyrene resins, methacrylic resins, ABS resins, AS resins, polyvinylidene chloride resins, and polycarbonate resins. And thermoplastic resins such as polyethylene terephthalate resin and polyacetal resin, and thermosetting resins such as epoxy resin, unsaturated polyester resin, melamine resin, polyurethane resin, and silicone resin. Moreover, at least 1 sort (s) chosen from a coloring material, a filler, a stabilizer, a dispersing agent, a lubricant, antioxidant, a ultraviolet absorber, a flame retardant etc. can also be mix | blended as needed.

以下に本発明の実施例を示すが、これらは本発明を限定するものではない。   Examples of the present invention are shown below, but these do not limit the present invention.

実施例1
二酸化チタン柱状粒子(重量平均長軸径:9.7μm、重量平均短軸径:0.51μm、長軸径が5μm未満の粒子の含有量:8.9重量%、長軸径が10μm以上の粒子の含有量:46.6重量%)を、水中に分散させて、TiO濃度が16g/リットルの水性スラリーとした。このスラリーに、柱状粒子に含まれるTiに対し、Nbとして1モル%に相当する塩化ニオブのエタノール溶液を添加した。塩化ニオブ溶液を添加後、スラリーを加熱して95℃の温度に昇温し、95℃の温度を維持しながら2時間かけて加水分解を行い、ニオブの含水酸化物を柱状粒子の表面に担持させた。その後、濾過、水洗し、80℃の温度で16時間乾燥して乾燥物を得た。前記の乾燥物を、還元剤として水素を25%含む窒素との混合ガスを用い、還元性雰囲気中で、電気炉にて700℃の温度で3時間焼成を行い、本発明の導電性二酸化チタン(試料A)を得た。
Example 1
Titanium dioxide columnar particles (weight average major axis diameter: 9.7 μm, weight average minor axis diameter: 0.51 μm, content of particles whose major axis diameter is less than 5 μm: 8.9 wt%, major axis diameter is 10 μm or more Particle content: 46.6% by weight) was dispersed in water to obtain an aqueous slurry having a TiO 2 concentration of 16 g / liter. To this slurry, an ethanol solution of niobium chloride corresponding to 1 mol% as Nb was added to Ti contained in the columnar particles. After adding the niobium chloride solution, the slurry is heated to a temperature of 95 ° C. and hydrolyzed over 2 hours while maintaining the temperature of 95 ° C. to support the hydrous oxide of niobium on the surface of the columnar particles I let you. Thereafter, it was filtered, washed with water, and dried at 80 ° C. for 16 hours to obtain a dried product. The dried product was calcined in a reducing atmosphere at 700 ° C. for 3 hours in a reducing atmosphere using a mixed gas of nitrogen containing 25% hydrogen as a reducing agent, and the conductive titanium dioxide of the present invention. (Sample A) was obtained.

実施例2
実施例1において、塩化ニオブの添加量をNbとして7.5モル%相当とした以外は実施例1と同様にして、本発明の導電性二酸化チタン(試料B)を得た。
Example 2
In Example 1, conductive titanium dioxide (sample B) of the present invention was obtained in the same manner as in Example 1 except that the amount of niobium chloride added was equivalent to 7.5 mol% as Nb.

比較例1
実施例1において、柱状粒子に替えて市販の二酸化チタン球状粒子(CR−EL(石原産業製)、平均粒子径:0.25μm)を用いた以外は実施例1と同様にして、比較対象の導電性二酸化チタン(試料C)を得た。
Comparative Example 1
In Example 1, instead of the columnar particles, commercially available titanium dioxide spherical particles (CR-EL (manufactured by Ishihara Sangyo), average particle size: 0.25 μm) were used in the same manner as in Example 1 for comparison. Conductive titanium dioxide (Sample C) was obtained.

評価1:粉体抵抗値の評価
実施例1、2及び比較例1で得られた導電性酸化チタン(試料A〜C)1gを4MPaの圧力で円柱状(18mmφ)に成形し、直流抵抗をデジタルマルチメーター(Model 3457A型:ヒューレットパッカード製)を用いて測定し、下式により粉体抵抗値を算出した。結果を表1に示す。粉体抵抗値が小さい程、導電性が優れている。
粉体抵抗値=測定値×円柱の断面積/円柱の厚み
Evaluation 1: Evaluation of powder resistance value 1 g of conductive titanium oxide (samples A to C) obtained in Examples 1 and 2 and Comparative Example 1 was molded into a cylindrical shape (18 mmφ) at a pressure of 4 MPa, and the direct current resistance was reduced. Measurement was performed using a digital multimeter (Model 3457A type: manufactured by Hewlett Packard), and the powder resistance value was calculated by the following equation. The results are shown in Table 1. The smaller the powder resistance value, the better the conductivity.
Powder resistance value = Measured value × Cylinder cross-sectional area / Cylinder thickness

評価2:粉体色の評価
実施例1、2及び比較例1で得られた導電性酸化チタン(試料A〜C)を、外径35mmの専用のガラスセルに充填し、成形物のハンター表色系によるL値、b値を白色度計(NW−1型:日本電色工業製)を用いて測定した。結果を表1に示す。L値が高い程白色性が優れている。
Evaluation 2: Evaluation of powder color Conductive titanium oxides (samples A to C) obtained in Examples 1 and 2 and Comparative Example 1 were filled in a dedicated glass cell having an outer diameter of 35 mm, and a hunter table of molded products The L value and b value according to the color system were measured using a whiteness meter (NW-1 type: manufactured by Nippon Denshoku Industries Co., Ltd.). The results are shown in Table 1. The higher the L value, the better the whiteness.

本発明の導電性酸化チタンは、導電性が高く、白色度も比較的高いことが判る。   It can be seen that the conductive titanium oxide of the present invention has high conductivity and relatively high whiteness.

Figure 0005301366
Figure 0005301366

本発明は、導電性組成物に、特に導電性プライマーに有用である。   The present invention is useful for conductive compositions, particularly for conductive primers.

Claims (3)

(1)2以上の軸比を有し、その重量平均長軸径が3.0〜7.0μmの範囲の二酸化チタン核晶の存在下、チタン化合物、アルカリ金属化合物及びオキシリン化合物を焼成し、重量平均長軸径が7.0〜15.0μmの範囲にあり、重量平均短軸径が0.25〜1.0μmの範囲にある二酸化チタン柱状粒子を得る工程、
(2)得られた二酸化チタン柱状粒子を含む媒液中で加水分解性ニオブ化合物を加水分解して、ニオブ化合物を前記柱状粒子の表面に担持させた後、還元剤の存在下で焼成して、前記柱状粒子にニオブをドープする工程を含む導電性酸化チタンの製造方法。
(1) Firing a titanium compound, an alkali metal compound, and an oxylin compound in the presence of a titanium dioxide nucleus crystal having an axial ratio of 2 or more and a weight average major axis diameter of 3.0 to 7.0 μm, A step of obtaining titanium dioxide columnar particles having a weight average major axis diameter of 7.0 to 15.0 μm and a weight average minor axis diameter of 0.25 to 1.0 μm;
(2) The hydrolyzable niobium compound is hydrolyzed in a liquid medium containing the obtained titanium dioxide columnar particles, the niobium compound is supported on the surface of the columnar particles, and then fired in the presence of a reducing agent. A method for producing conductive titanium oxide , comprising a step of doping niobium into the columnar particles .
ニオブ化合物の担持量が前記柱状粒子に含まれるTiに対し、Nbとして0.1〜3モル%の範囲にあり、焼成温度が500〜800℃の範囲にある請求項記載の導電性酸化チタンの製造方法。 To Ti of the amount of supported niobium compound is included in the columnar particles, in the range of 0.1 to 3 mol% Nb, conductive titanium oxide according to claim 1, wherein the firing temperature is in the range of 500 to 800 ° C. Manufacturing method. 請求項1記載の方法で導電性酸化チタンを得る工程、得られた導電性酸化チタンをバインダーと溶媒に配合するか、又は、プラスチック樹脂に配合する工程を含む導電性組成物の製造方法。A method for producing a conductive composition, comprising: obtaining a conductive titanium oxide by the method according to claim 1; and blending the obtained conductive titanium oxide in a binder and a solvent, or blending in a plastic resin.
JP2009147159A 2009-06-22 2009-06-22 Method for producing conductive titanium oxide and method for producing conductive composition Expired - Fee Related JP5301366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009147159A JP5301366B2 (en) 2009-06-22 2009-06-22 Method for producing conductive titanium oxide and method for producing conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009147159A JP5301366B2 (en) 2009-06-22 2009-06-22 Method for producing conductive titanium oxide and method for producing conductive composition

Publications (2)

Publication Number Publication Date
JP2011001239A JP2011001239A (en) 2011-01-06
JP5301366B2 true JP5301366B2 (en) 2013-09-25

Family

ID=43559538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009147159A Expired - Fee Related JP5301366B2 (en) 2009-06-22 2009-06-22 Method for producing conductive titanium oxide and method for producing conductive composition

Country Status (1)

Country Link
JP (1) JP5301366B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6049281B2 (en) * 2012-03-28 2016-12-21 大阪瓦斯株式会社 Highly conductive titanium oxide structure
JP6789490B2 (en) * 2016-04-27 2020-11-25 株式会社Flosfia Fuel cell separator and its manufacturing method
EP3544791A1 (en) * 2016-11-22 2019-10-02 Merck Patent GmbH Additive for laser-markable and laser-weldable polymer materials
JP7403346B2 (en) * 2020-02-21 2023-12-22 チタン工業株式会社 Charge adjustment powder with excellent ability to maintain charged charge and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141616A (en) * 1984-12-11 1986-06-28 Ishihara Sangyo Kaisha Ltd Electrically conductive titanium dioxide fine powder, and production thereof
US8227083B2 (en) * 2006-03-07 2012-07-24 Ishihara Sangyo Kaisha, Ltd. Conductive titanium oxide comprising titanium oxide of columnar shape and specific dimensions, and processes for producing thereof
JP4739120B2 (en) * 2006-06-02 2011-08-03 日揮触媒化成株式会社 Conductive titanium oxide and method for producing the same
JP5054330B2 (en) * 2006-06-21 2012-10-24 三井金属鉱業株式会社 Conductive particles, conductive powder composed of the conductive particles, method for producing the same, and conductive ink obtained using the conductive powder

Also Published As

Publication number Publication date
JP2011001239A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
TWI423929B (en) Titanium oxide, electroconductive titanium oxide and method for preparing the same
JP5301366B2 (en) Method for producing conductive titanium oxide and method for producing conductive composition
JP5942659B2 (en) Method for producing nickel oxide fine powder and method for producing nickel hydroxide powder for raw material for producing nickel oxide fine powder
EP3031944A1 (en) Slurry for thermal spraying
CN111132931B (en) Method for producing aluminum hydroxide-coated silicon carbide particle powder, and method for producing dispersion containing the powder and dispersion medium
KR101629112B1 (en) Nickel oxide micropowder and method for producing same
JP2011190164A (en) Composite containing tin oxide and tin compound with oxygen deficiency and production method thereof
JP4801617B2 (en) Conductive zinc oxide particles and method for producing the same
JP2020080317A (en) Silver particle dispersion
CN104263056B (en) The preparation method of tin-antiomony oxide organic nano slurry
JP4877518B2 (en) Conductive tin oxide sol and method for producing the same
JP5388742B2 (en) Method for producing nickel oxide-stabilized zirconia composite oxide
JP2007137759A (en) Barium titanate particulate powder and dispersion
CN111453769A (en) Organic additive for controlling particle size of nano zirconia powder
WO2016140305A1 (en) Barium titanate particle powder, and dispersion and coating film containing said powder
JP5682768B2 (en) Hydrophobic organic solvent dispersion of colloidal particles of surface-modified anhydrous zinc antimonate, coating composition using the same, and coated member
JP2011225395A (en) Nickel oxide fine powder, and method for producing the same
JP4722412B2 (en) Conductive tin oxide powder, method for producing the same, conductive paste and conductive paint
JP6195524B2 (en) Hydrophobic silica powder and method for producing the same
WO2018047841A1 (en) Microparticulate composite metal hydroxide, calcined product thereof, method for production thereof, and resin composition thereof
JP2009274897A (en) Zirconium oxide hydrate particle, and dispersion and disperse film using the same
JP4193036B2 (en) Method for producing conductive tin oxide
TWI702188B (en) Barium titanate fine particle powder, dispersion and coating
Singlard et al. Aqueous suspensions of glass silicate dielectric powders for ink-jet printing applications
US20120128577A1 (en) Metal oxide synthesis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

R151 Written notification of patent or utility model registration

Ref document number: 5301366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees