WO2007148649A1 - Organic electroluminescent device, process for producing organic electroluminescent device, illuminator, and display - Google Patents

Organic electroluminescent device, process for producing organic electroluminescent device, illuminator, and display Download PDF

Info

Publication number
WO2007148649A1
WO2007148649A1 PCT/JP2007/062225 JP2007062225W WO2007148649A1 WO 2007148649 A1 WO2007148649 A1 WO 2007148649A1 JP 2007062225 W JP2007062225 W JP 2007062225W WO 2007148649 A1 WO2007148649 A1 WO 2007148649A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
group
light
compound
Prior art date
Application number
PCT/JP2007/062225
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuo Tanaka
Hideo Taka
Rie Katakura
Hiroshi Kita
Hiroto Itoh
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006171161A external-priority patent/JP5228288B2/en
Priority claimed from JP2006186477A external-priority patent/JP2008016648A/en
Priority claimed from JP2006222251A external-priority patent/JP2008047428A/en
Priority claimed from JP2006335663A external-priority patent/JP2008034786A/en
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Publication of WO2007148649A1 publication Critical patent/WO2007148649A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • ORGANIC ELECTRIC LIGHT EMITTING ELEMENT METHOD FOR PRODUCING ORGANIC ELECTRIC LIGHT EMITTING ELEMENT, LIGHTING DEVICE, AND DISPLAY DEVICE
  • the present invention relates to an organic electoluminescence device, a method for manufacturing an organic electroluminescence device, an illumination device, and a display device.
  • the laminating process reduces the load on the stack and reduces the adhesion of the laminating surface.
  • the luminous efficiency is high, and no dark spots are generated.
  • the present invention relates to a manufacturing method thereof, and an illumination device and a display device using the organic electret luminescence element.
  • the present invention relates to an organic electroluminescent device and a method for manufacturing the same, and to an organic electroluminescent device formed by bonding an electrode substrate after forming an organic layer on the electrode substrate, and a method for manufacturing the organic electroluminescent device.
  • An organic electoluminescence device (hereinafter also referred to as an organic EL device) is an all-solid device composed of a film of an organic material having a thickness of about 0. Lm between electrodes. This technology is expected as next-generation flat display and illumination because light emission can be achieved at a relatively low voltage of about 2 to 20V.
  • organic EL devices that use phosphorescence which was recently discovered, can achieve a light emission efficiency that is approximately four times that of previous methods that use fluorescence.
  • research and development of light-emitting element layer configurations and electrodes are being carried out around the world.
  • the structure of the organic EL element is simple as an organic layer is sandwiched between a transparent electrode and a counter electrode, and the number of parts is overwhelming compared to a liquid crystal display that is a typical flat display.
  • the manufacturing cost should be kept low, but at the present time, liquid crystal displays are largely drained in terms of performance and cost. Poor productivity is thought to be a factor in cost.
  • Most of the organic ELs currently commercialized! Are manufactured by a so-called vapor deposition method in which a low molecular material is deposited on a substrate to form a film.
  • This vapor deposition method is very efficient in terms of efficiency and life because it can be applied to low-molecular compounds that are easy to purify and high-purity materials are easy to obtain.
  • the other hand for example, for performing a vapor deposition under high vacuum conditions of 10- 4 Pa or less, joined by constraints apparatus for forming, in fact can not be applied to a substrate power of small area, further comprising when a plurality of layers stacked formation
  • the disadvantage is that the membrane is time consuming and the throughput is low.
  • lighting applications are problematic when applied to large-area electronic displays, and OLED is one of the reasons that is not practical for such applications.
  • a polymer system can form an organic layer by a coating process, it is advantageous in terms of large area, uneven light emission, etc., and in terms of cost, but the purity is difficult to increase, and the light emission performance is superior to a vapor deposition system. The disadvantage is that it does not.
  • the counter electrode is formed after the organic layer is formed.
  • the counter electrode is already formed.
  • the bonding method in which the electrode film is formed first is preferable.
  • the bonding method is an effective technical means for innovatively improving productivity.
  • the bonding surface when bonded is not necessarily in close contact at the molecular level.
  • the carrier moves smoothly to the line, and the bonding surface is peeled off.
  • Problems such as failure of function are listed.
  • peeling of the joint surface may be a major manufacturing problem in the roll roll method.
  • Patent Document 1 a technology that improves the adhesion between layers by making both bonding layers made of the same material (see, for example, Patent Document 1), and two bonding surfaces were produced by a wet method.
  • Patent Document 2 a technique for bonding a film that has not been completely dried (see, for example, Patent Document 2) has been introduced, both of them have insufficient adhesion at the joint surface, which is a fundamental solution. There is not.
  • the bonding method can be an innovative method that is good both in terms of performance and manufacturing process, as long as the defects on the joint surface are improved.
  • a system using a polymer material can form an organic compound layer of an organic EL element by a coating process, it can be manufactured by a coating process such as spin coating, ink jet, printing, and spraying.
  • the last counter electrode to be deposited can be prepared in advance.
  • the organic layer can be easily laminated if the bonding surfaces are made of organic layers, and the like.
  • (1) and (2) are the driving force for dramatically improving productivity, and if the technology is completed, it is possible to significantly reduce the manufacturing cost, which was the biggest problem of organic EL. It seems that On the other hand, the technology of the roll-to-roll method is disclosed even in a method other than the bonding method.
  • the bonding method is an effective technical means for innovatively improving productivity.
  • organic EL devices fabricated using this method have problems in performance and are still in the process of being developed because no accurate breakthrough has been found.
  • the peeling of the joint surface is the same as in the roll-to-roll method, and there is a winding process.
  • V the element is destroyed during use, V, and if it becomes a fatal defect, there is a problem.
  • Adhering the surroundings contributes to reducing the adverse effects of moisture and oxygen during driving of the element and improving the light emission lifetime, but it is a technical means that can fundamentally solve the above-mentioned peeling of the joint surface. There is a problem of ecstatic ⁇ .
  • the power that is a non-flexible light emitting element that is made of glass as a substrate is the all-solid-state organic EL element as described above.
  • a major feature is that it can be applied to flexible substrates such as films (so-called flexible displays).
  • the flexible substrate has insufficient gas noria, which delays its practical application.
  • a counter electrode usually a cathode, specifically A1, Ca, Ba, etc.
  • the organic layer already formed is damaged, the emission characteristics and lifetime of the organic EL element will be greatly degraded. There is a problem that.
  • a solvent (poor solvent) outside the solubility range of the solubility parameter of the lower layer main material may be removed from the upper layer.
  • a technique in which a material is dissolved in a mixed solvent of a solvent (good solvent) and a poor solvent within the solubility range of the solubility parameter, and the solubility is lowered for example, see Patent Document 10).
  • the transparent electrode and the counter electrode are formed first.
  • the transparent electrode and the counter electrode can be formed in advance by a method most suitable in terms of performance and productivity, respectively.
  • the invention (D) has been made based on such a background.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-203675
  • Patent Document 2 Japanese Patent Laid-Open No. 9-306667
  • Patent Document 3 Japanese Patent Laid-Open No. 9 7736
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-79300
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-103401
  • Patent Document 6 Japanese Patent Laid-Open No. 2005-327677
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2005-243411
  • Patent Document 8 Japanese Unexamined Patent Application Publication No. 2005-183013
  • Patent Document 9 Japanese Unexamined Patent Application Publication No. 2002-299061
  • Patent Document 10 Japanese Patent Application Laid-Open No. 2005-259523
  • the objects of the inventions (A) and (C) are to improve the adhesion at the bonding surface of the organic EL device produced by the bonding method, the bonding surface does not peel off, and the carrier moves.
  • An object of the present invention is to provide an organic EL element that is enhanced and has high emission luminance and emission lifetime, a manufacturing method thereof, and a lighting device and a display apparatus using the organic EL element.
  • the object of the invention (B) is to provide a production method for producing an organic-electric-luminescence device having high luminous efficiency and a long lifetime at a low cost, and the organic method produced by the production method is provided. It is an object to provide an electroluminescence device, an illumination device, and a display device.
  • the object of the invention (D) is to produce an organic electoluminescence that is formed by forming an organic layer including a light emitting layer on at least one of a pair of counter electrodes, and then bonding the counter electrodes to each other.
  • an organic electoluminescence device having a high durability with a high bonding strength on a bonding surface and a good light emitting performance and life is provided.
  • An organic electoluminescence device having a plurality of organic layers between an anode and a cathode, wherein at least a first organic layer containing an organic compound having a reactive substituent is formed on one electrode. One layer is formed, at least one second organic layer is formed on the other electrode, and the first organic layer and the second organic layer are bonded to face each other. Mouth luminescence element.
  • At least one of the plurality of organic layers contains a phosphorescent light-emitting compound.
  • A is represented by the following general formula (a), a linking group having at least one selected from the group of linking groups consisting of 1 O and S force, or a plurality of combinations of the linking groups
  • R and R ′ each represent a hydrogen atom or a substituent, and n represents an integer of 1 or more.
  • the first organic layer and the second organic layer have the same composition, and the bond is formed below the glass transition temperature (Tg) of the first organic layer and the second organic layer.
  • Tg glass transition temperature
  • the total thickness T (EM) (nm) of the light emitting layer satisfies the following relational expression (1), at least one of the light emitting layers has a phosphorescent light emitting material, and at least one of the organic layers has The manufacturing method of the organic electoluminescence device characterized by having the process formed by bonding of the layer A and the layer B.
  • the layer A and the layer B each contain a compound having the same structure as a main component. 15. A method for producing an organic electoluminescence device as described in 13 or 14 above.
  • a display device comprising the organic-electric-luminescence element as described in 20 above.
  • a first electrode substrate having at least n (n ⁇ 0) organic layers, and at least m layers (m
  • the organic layer contains at least one S phosphorescent compound of the organic layer
  • the surface roughness (Ra) of the two laminated surfaces is in the range of 0.05 to: LOnm, and the ratio of the surface roughness of the two laminated surfaces is within 0.5 to 2.0
  • Organic compound having reactive substituents on at least one of two laminated surfaces to be bonded 25.
  • a first electrode substrate having at least n (n ⁇ 0) organic layers, and at least m layers (m
  • + n ⁇ 1) is a method for producing an organic electroluminescent device, wherein a second electrode substrate having an organic layer facing each other is bonded, wherein at least one of the organic layers contains a phosphorescent light-emitting compound,
  • the surface roughness (Ra) of two opposing laminated surfaces is in the range of 0.05 to 1 Onm, and the ratio of the surface roughness of the two laminated surfaces is within 0.5 to 2.0.
  • the manufacturing method of the organic electoluminescence device characterized by these.
  • a display device comprising the organic electoluminescence element according to any one of 23 to 28 above.
  • a phosphorescent light-emitting compound is formed on at least one of the organic layers (m + n ⁇ l).
  • a method for producing an organic electoluminescence device characterized in that the phosphorescent light-emitting compound is contained in one and the peel strength of the bonded surface is lONZm or more.
  • Fig. 1 is a schematic diagram showing an example of a display device that also has organic EL element power.
  • FIG. 2 is a schematic diagram of a display unit.
  • FIG. 3 is a schematic diagram of a pixel.
  • FIG. 4 is a schematic view of a lighting device.
  • FIG. 5 is a cross-sectional view of the lighting device. Explanation of symbols
  • the invention (A) described in claims 1 to 12 is the above-mentioned defect when an organic EL device is obtained by a bonding method, that is, the bonded bonding surface is not necessarily adhered at the molecular level.
  • the present invention provides an organic EL device that solves the problems such as the carrier movement not smoothly moving to the line and the bonded surface peeling off and immediately becoming unable to function as a light emitting device.
  • bonding is synonymous with bonding.
  • At least one first organic layer containing an organic compound having a reactive substituent is formed on the other electrode (eg, anode), and at least one second organic layer is formed on the first organic layer.
  • the organic EL element is formed by laminating the layer and the second organic layer facing each other.
  • the second organic layer may also contain an organic compound having a reactive substituent.
  • the organic EL element is formed by bonding the first organic layer and the second organic layer to face each other, the first organic layer and the second organic layer are made to face each other and contact each other.
  • energy such as electron beam, ultraviolet irradiation, or heat may be applied.
  • a bond may be formed by using, as a polymerization initiator, a cation radical or a cation radical generated in the light emitting layer when the light emitting element is energized.
  • the organic compounds having reactive substituents that form a bond may be different from each other even if they are the same compound. It may be.
  • the bond to be formed is preferably a covalent bond.
  • the reactive substituent in the organic compound having a reactive substituent represents a substituent capable of causing an organic chemical reaction that forms a new bond between two or more substituents.
  • the organic compound having a group include polymerizable monomers.
  • Specific examples of reactive substituents include the substituents shown in Chemical Formula 1 and trichlorosilane, and groups capable of cycloaddition reactions such as photo2 + 2 reaction and Diels-Alder reaction. It is not limited to.
  • first organic layer and the second organic layer to be bonded may have the same or different functions.
  • a cathode made of aluminum or the like is formed on a support (for example, a glass substrate) by vacuum deposition or the like, and, for example, an electron transport material layer is applied thereon or It is formed by vapor deposition.
  • a member on the anode side for example, a hole transport layer and a light emitting layer are sequentially formed on a glass substrate on which a thin film such as ITO is formed as an anode by coating or vapor deposition.
  • the laminated surface to be bonded may be any layer of each functional layer of the organic EL element, but the laminated surfaces to be bonded are preferably organic layers. Bonding between organic layers is preferred because it is easy to bond and adhere, and is difficult to peel off after bonding, and since it is easy to adjust the surface roughness in the case of an organic layer.
  • Tg glass transition temperature
  • the glass transition temperature (Tg: ° C) was measured by sealing a layer sample of about 10 mg in an aluminum pan for measurement and attaching it to a differential calorimeter (eg, DuPont V4. OB2000 type DSC). Measure by raising the temperature from 25 ° C to 20 ° CZ.
  • Tg ° C
  • emission unevenness due to non-uniformity in the plane of carrier movement due to defects in the bonded laminated surface is a phosphorescence emission method that has a light emitting region inside the emission layer rather than a fluorescence emission method that emits light at the organic layer interface. Is relatively less likely to appear, especially when the relative thickness ratio of the entire organic layer of the light-emitting layer is increased, or when the film thickness of the light-emitting layer is increased, or when the light-emitting layers are joined to each other. Since the phosphorescent light emitting method containing a phosphorescent light emitting compound can reduce unevenness of light emission to the extent that it does not cause any inconvenience, the manufacturing method by bonding of the present invention is suitable for the phosphorescent light emitting method.
  • each organic layer of the organic EL element is formed on one electrode and on the other electrode, for example, a cathode side member, Then, it is laminated and formed as a positive electrode member, but there is no particular limitation on the method of forming the organic thin film for forming each functional layer of these organic EL elements.
  • vapor deposition methods in which a low molecular material is vapor-deposited, but these vapor deposition methods are also used relatively frequently in polymer materials.
  • the method of producing the organic layer by a coating (wet) process such as spin coating, ink jet, printing, spraying, etc. may be misaligned.
  • the necessary materials are prepared in a solution and applied in a thin film, so that multiple organic materials can be mixed precisely (for example, the preparation of a dopant for a light-emitting host material is possible).
  • the preparation of a dopant for a light-emitting host material is possible.
  • a film substrate on which a counter electrode is formed in advance is prepared, continuous production by a roll-to-roll method is possible and organic layers can be easily bonded.
  • the organic layers is formed by a wet method. Furthermore, it is more preferable that at least one of the first organic layer and the second organic layer is formed by a wet method.
  • the organic layer is preferably at least three layers.
  • the pressurizing and heating means for adhering and bonding the cathode side member and the anode side member are not particularly limited as long as they can be pressurized or pressurized without being mixed with bubbles. Can be used. For example, in between the cathode-side member and the anode-side member, under reduced pressure, e.g., 0. 1 X 10- 2 ⁇ 1 . 0 X 10- & under vacuum environment to the extent a pressing force 0. IMPa a pressure of about Crimp and adhere.
  • a press machine including a pressing unit and a gantry can be used as a joining jig, and a method in which the cathode side member and the anode side member are sandwiched and pressed between the pressing unit and the gantry can be used.
  • the pressure is usually 0.5 to: LOONZcm 2 , preferably 5 to 50 NZcm, and the pressurization time is usually about 0.1 to 300 seconds.
  • the pressure is usually 1 to 200 N / cm 2 , preferably 5 to 100 NZcm 2
  • the conveyance speed is usually 0.1 to 200 mmZ seconds, preferably 0.5 ⁇ : If it is about LOOmmZ seconds, it can be adhered without bubbles and the like.
  • the heating temperature is usually in the range of 60 to 200 ° C, preferably 100 to 150 ° C.
  • actinic rays or the like can be used at the time of bonding.
  • actinic rays include electron beams and ultraviolet rays
  • ultraviolet light sources include ultraviolet lamps (for example, low pressure, medium pressure, high pressure mercury lamps having an operating pressure of 0.5 kPa to lMPa), xenon lamps, tungsten A lamp, a halogen lamp or the like is used, and ultraviolet rays having an intensity of about 5000 to 8000 ⁇ WZcm 2 are preferably irradiated.
  • the amount of energy required for curing ranges from 0.02 to 20 kjZcm 2 .
  • the bonded interface is bonded at the molecular level, and thus it is found that forming a covalent bond between the interfaces after bonding is a very effective means. It was.
  • Patent Document 5 A technique for covalently connecting the layers of organic EL is disclosed in Patent Document 5, but in the present invention, this technique is applied as means for interfacial adhesion in the bonding method.
  • an organic compound having a reactive substituent is contained in at least one of the laminated surfaces to be bonded.
  • Such substituents cause chemical changes due to active species generated inside the device and heat at the time of bonding, and form a covalent bond to improve adhesion at the molecular level between the bonded organic layers.
  • a phosphorescent light emitting compound is mixed with the light emitting host in a mass ratio of about 1 to 20%. Is considered to be effective in terms of luminous efficiency, and phosphorescent light emission is used in the present invention. In such a case, it is preferable to use a luminescent host in combination. For such a chemical change, a chemical reaction between the luminescent host material and a phosphorescent luminescent compound having reactivity thereto may be used.
  • the chemical change of the phosphorescent light emitting compound is caused by (condensation with the light emitting host).
  • a chemical reaction with a luminescent host that uses a reaction e.g., polymerization
  • the phosphorescent luminescent compound emits a reactive substituent that can react with a specific reactive group. It is preferably introduced into the host.
  • the phosphorescent light-emitting compound when the phosphorescent light-emitting compound is substituted with a hydroxyl group (—OH), select a material with an isocyanate group (—NCO) or isothiocyanate group (—NCS) introduced as the light-emitting host. If the vinyl group is substituted on the phosphorescent light emitting compound, a light emitting host having a radically polymerizable bur group introduced thereto is selected.
  • At least one material substituted with a vinyl group is present in both the phosphorescent light-emitting compound and the light-emitting host in the same layer, and the light-emitting element is formed.
  • a chain-like and Z- or network-like polymer is formed by using a cation radical or a cationic radical generated in the light emitting layer as a polymerization initiator.
  • the surface layer of the cathode side member is an electron transport layer and the surface layer of the anode side member is a light emitting layer, for example, an electron transport layer having a reactive substituent such as a vinyl group, and -Polymerization is performed between the layers by bonding the members each having a light-emitting host or a light-emitting layer containing a dopant material having a reactive substituent such as a ruthel group, and adhesion between the bonded organic layers is improved. improves.
  • a hole transport layer containing a hole transport material having a reactive group may be used. Oh ,.
  • At least one of the two laminated surfaces to be bonded contains an organic compound having a reactive substituent, and at least one of the two laminated surfaces to be bonded has a reactive substituent. If it contains an organic compound and, on the other hand, a material having a group that reacts with it, it can strengthen the adhesion by reacting with each other, eliminate peeling of the joint surface, and facilitate carrier movement. it can. [0140] In addition, it is preferable to have an organic compound having a reactive substituent on both of the laminated surfaces to be bonded, because the adhesion of the laminated surfaces can be further enhanced.
  • a phosphorescent light emitting compound or a light emitting host, a hole transport material, an electron transport material and the like are bonded.
  • each organic layer contains at least one material substituted with a carbon-carbon double bond-containing substituent such as a vinyl group, a vinyl ether group, or the like
  • the light emitting element is generated in the light emitting layer by energization.
  • a normal polymerization initiator can be used together with an organic compound having a reactive substituent.
  • Examples of the reactive species generated inside the device and the reactive substituents that cause a chemical change due to Joule heat during driving include the following groups including the above-described groups.
  • A is a linking group having at least one selected from the following general formula (a), a linking group consisting of -O and -S force, or a plurality of the linking groups. It represents a divalent linking group represented by a combination, and B represents a hydrogen atom or a substituent.
  • R and R ⁇ each represents a hydrogen atom or a substituent, and n represents an integer of 1 or more.
  • the substituents represented by R and R 'each include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tbutyl group, a pentyl group, a hexyl group, an octyl group, Decyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, bur group, aryl group, 1 propylene group).
  • alkyl group for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tbutyl group, a pentyl group, a hexyl group, an octyl group, Decyl group, tride
  • -L group 2 butur group, 1,3 butagel group, 2 pentyl group, isopropenyl group, etc.
  • alkyl group for example, etulyl group, pronorgyl group, etc.
  • aromatic hydrocarbon group Also called aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azuleyl group, acenaphthenyl group, fluorene group, etc.
  • aromatic heterocyclic group for example, furyl group, chael group, pyridyl group, pyridazyl group, pyrimidyl group, pyradyl group, Triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (One of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom.
  • Heterocyclic groups eg pyrrolidyl, imidazolidyl, morpholyl, oxazolidyl etc.
  • alkoxy groups eg methoxy, ethoxy, propyloxy, pentyloxy, Hexyloxy group, octyloxy group, dodecyloxy group, etc.
  • cycloalkoxy group for example, Clopentyloxy group, cyclohexyloxy group, etc.
  • aryloxy group eg, phenoxy group, naphthyloxy group, etc.
  • alkylthio group eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group
  • cycloalkylthio group eg, cyclopentylthio group, cyclohexy
  • n is a force that represents an integer greater than or equal to 1. Its upper limit is 5.
  • a substituent containing a carbon-carbon double bond more preferably a vinyl group, a allyl group, or a vinyl ether group.
  • the organic compound having a reactive substituent preferably has two or more reactive substituents.
  • a cross-linking reaction with a reactive substituent is used for adhesion at the time of bonding
  • heat, active light, or the like can be used.
  • heating in the range of 60 to 200 ° C for 1 second to 5 hours, if it is actinic light, for example, the above-mentioned ultraviolet light source can also be used, and the intensity is about 5000-8000 ⁇ W / cm 2 If irradiated with ultraviolet rays, a range of 0.02 to 20 kj / cm 2 is used.
  • JP-A-5-271166 describes a bifunctional triphenylamine derivative having two bur groups in the molecule. It is disclosed that a dimensionally cross-linked polymer is formed.
  • Japanese Patent Application Laid-Open No. 2001-297882 discloses a technique of adding a material having two or more bur groups to a plurality of layers. In this case, the polymerization reaction is performed before the organic layer is laminated on the cathode.
  • JP-A-2003-73666 AIBN, which is a radical generator, is added to a mixture of comonomer having a vinyl group in the same manner as a material having a vinyl group at the end of a phosphorescent light-emitting compound to form a film.
  • a production method for allowing the polymerization reaction to proceed is disclosed.
  • JP-A-2003-86371 describes a production method in which a Diels-Alder reaction is caused between two molecules in the same layer to crosslink.
  • the double bond is measured after the analysis area is secured, but there are several methods for measuring the double bond.
  • microscopic infrared spectroscopic analysis, Raman spectroscopic analysis, or a double bond is labeled with a labeling reagent that reacts specifically with a double bond and has a specific element, and an electron beam probe microanalyzer
  • X Preferred examples include a method of measuring the distribution of the labeling element with a line photoelectron spectrometer, an auger electron spectrometer, a time-of-flight secondary ion mass spectrometer, and the like.
  • the present invention provides a manufacturing method for manufacturing an organic electroluminescent device having a high luminous efficiency and a long lifetime at a low cost, and the organic electroluminescent device manufactured by the manufacturing method.
  • An element, a lighting device, and a display device could be provided.
  • the invention (B) is a method for producing an organic electroluminescent device with an organic electroluminescence element on a support substrate as described in claim 13.
  • the film thickness T (EM) (nm) of the light emitting layer ) Satisfies the following relational expression (1), at least one of the light emitting layers has a phosphorescent light emitting material, and at least one layer of the organic layer is formed by bonding layers A and B This is a feature.
  • the film thickness T (EM) of the light emitting layer of the invention (B) according to the invention described in claims 13 to 22 represents the following relational expression (1).
  • the film thickness T of at least one light emitting layer of the organic EL element of the present invention is determined.
  • (EM) must satisfy the relational expression (1).
  • the organic EL device of the present invention has a reduced emission starting voltage, an improved power saving effect, a reduced non-emission point of the emission layer, and uneven emission. From the viewpoint of obtaining a sufficient effect of reducing the occurrence of the above, it is preferable to satisfy the relational expression represented by the following relational expression (2).
  • the organic layer of the invention (B) according to the invention described in claims 13 to 22 has three or more organic layers, and at least one layer of the organic layer is preferable. Is formed by bonding with the layer A and the layer B, and it is preferable that the layer A and the layer B each contain a compound having the same structure as the main component.
  • any of the forces of the layer A and the layer B includes a phosphorescent material to improve the device characteristics of the organic EL device of the present invention.
  • the phosphorescent light emitting material will be described in detail in the constituent layers of the organic EL element described later.
  • layer B is a light-emitting film, and at least one light-emitting layer is formed by laminating the layer A and the layer B, for example, ITO described later
  • layer B is provided on a cathode side substrate (also referred to as cathode side member) such as layers A and A1 on the anode side substrate (also referred to as anode side member) (layer A is the cathode side substrate)
  • layer B which may be provided on top, may be provided on the anode side substrate ⁇ )
  • the thickness of layer A on the anode side substrate and the thickness of layer B on the cathode side substrate both exceed 20 nm, and the total light emitting layer thickness T (EM) force Onm ⁇ T (EM) ⁇ lOOnm It is preferable to satisfy the relational expression.
  • the bonding all the layers necessary for the configuration of the organic EL element are formed in advance (for example, an anode side substrate, Therefore, the film formation of the transparent electrode (the anode side substrate such as ITO) and the counter electrode (the cathode side substrate such as A1) is performed first.
  • the transparent electrode the anode side substrate such as ITO
  • the counter electrode the cathode side substrate such as A1
  • the transparent electrode and the counter electrode can be formed in advance by a method most suitable in terms of performance and productivity, respectively.
  • the phosphorescence method unlike the fluorescence method, has a light emitting region inside the light emitting layer, and this phenomenon is relatively difficult to occur.
  • increasing the thickness ratio increasing the thickness of the light-emitting layer, or using two light-emitting layers that join the light-emitting layers together, light emission unevenness can be suppressed to the extent that there is no weakness even under microscopic observation. I found that it was possible.
  • the constituent layer of the organic EL element using the bonding method (particularly, the formation of the organic layer (organic compound layer)) is a very effective means for solving such problems.
  • the organic EL element has high luminous efficiency and long life.
  • the thickness of the light emitting layer of the element was found to be an important factor.
  • the method of manufacturing an organic EL element according to the invention (B) according to claims 13 to 22 includes a layer A and a cathode substrate provided with at least one organic layer as a constituent layer on the anode substrate side. It is characterized in that an organic EL element is manufactured through a process of bonding with layer B provided on the side.
  • the constituent layer of the organic EL element will be described in detail in the constituent layer of the organic EL element described later.
  • an anode Z hole injection layer Z hole transport Layer Z light-emitting layer Z electron transport layer Z electron injection layer An organic EL device consisting of a Z cathode will be described as an example.
  • the layer formed by bonding layers A and B is a hole injection layer, a positive layer Any of a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer may be used.
  • each layer of the organic layer other than the bonding method there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method) as described above, but a homogeneous film can be obtained.
  • film formation by a coating method such as a spin coating method, an ink jet method, or a printing method is preferable from the viewpoint that pinholes are not easily generated.
  • liquid medium for dissolving or dispersing the organic EL material used for forming the organic layer examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, and dichlorobenzene.
  • Halogenated hydrocarbons such as toluene, xylene, mesitylene, cyclohexylbenzene, and other aromatic hydrocarbons, cyclohexane, decalin, Aliphatic hydrocarbons decane, D MF, it is possible to use an organic solvent such as DMSO.
  • a dispersion method it can disperse
  • the invention (C) according to claims 23 to 31 is the above-mentioned disadvantage when an organic EL element is obtained by a bonding method, that is, the bonded surface is not necessarily at the molecular level.
  • This provides a method for manufacturing an organic EL device that solves the problems such as non-adherence and as a result, carrier movement does not move smoothly, and the bonding surface peels off and immediately does not function as a light emitting device. .
  • a cathode made of aluminum or the like is formed on a support (for example, a glass substrate) by vacuum deposition or the like, and an electron transport material layer is applied thereon or by evaporation or the like.
  • a hole transport layer and a light emitting layer are sequentially formed by coating or vapor deposition on a glass substrate formed with a thin film such as ITO as an anode.
  • An organic EL element is obtained by adhering these two members on the cathode side and the anode side to each other with the organic layers (the electron transport layer and the light emitting layer), and in the present invention. It is characterized in that the surface roughness of the two organic layers to be bonded is kept in a predetermined relationship.
  • the present invention provides a method for manufacturing an organic EL device having a high emission efficiency and an improved emission lifetime.
  • the organic EL device according to the invention (C) according to claims 23 to 31 includes at least a first electrode substrate having at least n layers (n ⁇ 0) organic layers, m layer (m + n ⁇ 1)
  • the organic layer contains at least one light-emitting light emitting compound of the organic layer
  • the surface roughness of the two facing stacked layers is (Ra) is in the range of 0.05 to: LOnm, respectively, and the ratio of the surface roughness of the two laminated surfaces is within the range of 0.5 to 2.0.
  • the laminated surface to be bonded may be any layer of each functional layer of the organic EL element, but the laminated surfaces to be bonded are preferably organic layers. Bonding of the organic layer is preferred because it is easy to bond and adhere, and is difficult to peel off after bonding, and in the case of an organic layer, it is easy to adjust the surface roughness.
  • light emission irregularity due to non-uniformity in the plane of carrier movement due to defects in the bonded laminated surface is a phosphorescent light emitting method with a light emitting region inside the light emitting layer rather than a fluorescent light emitting method that emits light at the organic layer interface. It is relatively less likely to appear, especially when the relative film thickness ratio of the entire organic layer of the light emitting layer is increased or when the thickness of the light emitting layer is increased, or when the light emitting layers are joined together. For example, when two layers are used, a phosphorescent light-emitting method that contains a phosphorescent light-emitting compound is sufficient to prevent uneven light emission.
  • the manufacturing method by bonding according to the present invention is suitable for the phosphorescence emission method.
  • the surface roughness of the organic layer to be bonded is adjusted by adjusting the viscosity of the organic material solution, the coating temperature, etc.
  • a method for adjusting the surface roughness that does not depend on the film formation method involves so-called typing, in which the organic layer is pressed (heated) with a metal roll having a specific surface roughness. It is possible to do this.
  • a metal roll having a predetermined surface roughness (Ra) is applied to a temperature of 50 to 150 ° C, a linear pressure of 150 to 1,500 NZcm, and a linear velocity of about 0.1 to 30 mZ seconds.
  • Ra surface roughness
  • An embodiment in which a pressure-bonding process is performed is mentioned. If the linear pressure is 150 NZcm or more, a uniform and faithful response can be obtained. In particular, 400 NZcm or more is preferable. Also, if it is less than 1500NZcm, the organic layer itself will not break (crack or crack).
  • the temperature is 50 to 150 ° C., there is no modification of the surface of the organic film and no significant deformation of the film.
  • the surfaces of the two organic layers to be bonded to each other have a centerline surface roughness (Ra) of 0. 05 ⁇ : LOnm And the ratio of the surface roughness of the two laminated surfaces is adjusted to be within the range of 0.5 to 2.0.
  • the centerline average surface roughness Ra (nm) of the surface in the invention (C) according to claims 23 to 31 is a value obtained according to JIS B601 (1994). Yes, it represents a minute uneven state in a minute area.
  • a value obtained by an atomic force microscope (AFM) is used.
  • Atomic Force Microscopy is a piezo scanner that uses a SPI3800N probe station and SPA400 multifunctional unit manufactured by Seiko Instruments Inc. Set on the upper horizontal sample stage, approach the cantilever to the sample surface, reach the region where the atomic force works, scan in the XY direction, and the unevenness of the sample at that time of the piezo in the Z direction Capture by displacement. Use a piezo scanner that can scan XY20 m and Z2 m.
  • the cantilever is a silicon cantilever SI-DF20 manufactured by Seiko Instruments Inc., which has a resonance frequency of 120 to 150 kHz and a panel constant of 12 to 20 NZm, and is measured in DFM mode (Dynamic Force Mode). Measurement area Measure 2m square with 1 (or2) field of view and scanning frequency 1Hz.
  • the centerline average roughness (Ra) is determined by extracting the portion of the measured length L in the direction of the centerline from the obtained roughness curve.
  • the surface to be bonded is a smooth surface with minute irregularities, and the surface roughness between the opposing organic layers is not so large that the adhesion between the layers is improved.
  • the bonded joint surface is difficult to peel off.
  • each organic layer of the organic EL element is formed on the first electrode substrate and on the second electrode substrate, respectively.
  • Cathode side The material and the member for the anode are laminated and formed, but there is no particular limitation on the method for forming the organic thin film for forming each functional layer of these organic EL elements.
  • V-type vapor deposition methods in which a low molecular material is vapor-deposited to form a film.
  • a method of manufacturing a relatively frequently used organic compound layer by a coating (wet) process such as spin coating, ink jet, printing, spraying, etc. may be displaced! /.
  • the necessary materials are prepared into a solution to form a thin film. Because it is coated, it is possible to precisely mix a plurality of organic materials (for example, to adjust dopants to the light-emitting host material, etc.), and to prevent uneven light emission even if the device has a large area. And a wet process is preferred. In addition, if a film substrate with a counter electrode formed in advance is prepared, the wet process is preferred because it can be continuously produced in a roll-to-roll system and the organic layer can be easily bonded.
  • the organic layers formed on the respective members on the cathode side and the anode side have the above-mentioned surface roughness. After being prepared, each organic layer is faced and bonded to form an organic EL element.
  • the pressurizing and heating means for closely adhering and bonding the cathode side member and the anode side member are not particularly limited as long as they can be pressurized or pressurized without being mixed with bubbles. It can be used.
  • under reduced pressure for example, 0. 1 X 10 -1. 0 X 10- & degree of pressure of about pressing force 0. IMPa in a reduced pressure environment Crimp and stick with
  • a press machine including a pressing unit and a gantry can be used, and a method in which the cathode side member and the anode side member are sandwiched between the pressing unit and the gantry can be used.
  • the pressure is usually 0.5 to: LOONZcm 2 , preferably 5 to 50 NZcm, and the pressurization time is usually about 0.1 to 300 seconds.
  • the pressure is usually 1 to 200 N / cm 2 , preferably 5 to 100 NZcm 2 , and the conveyance speed is usually 0.1 to 200 mmZ seconds, preferably 0.5. ⁇ : If it is about LOOmmZ seconds, it is possible to adhere without bubble mixing.
  • the heating temperature is usually in the range of 60 to 200 ° C, preferably 100 to 150 ° C. .
  • actinic rays or the like can be used at the time of bonding.
  • actinic rays include electron beams and ultraviolet rays
  • ultraviolet light sources include ultraviolet lamps (for example, low pressure, medium pressure, and high pressure mercury lamps having an operating pressure of 0.5 kPa to lMPa), xenon lamps, tungsten lamps, A halogen lamp or the like is used, and ultraviolet rays having an intensity of about 5000 to 8000 ⁇ WZcm 2 are preferably irradiated.
  • the amount of energy required for curing ranges from 0.02 to 20 kjZcm2.
  • the bonded interface is bonded at the molecular level so that it is shared between the interfaces after bonding. We found that forming a bond is a very effective means.
  • Such a substituent improves the adhesion at the molecular level between the bonded organic layers by causing a chemical change due to the active species generated inside the device and the heat at the time of bonding, and forming a covalent bond.
  • the light emitting layer of an organic EL element usually uses phosphorescent light emission.
  • a phosphorescent material phosphorescent dopant
  • a mass ratio of 1 to 20 with respect to a light emitting host it is said that mixing in the order of about% is effective from the viewpoint of luminous efficiency.
  • the chemical change of the phosphorescent light emitting material changes with the light emitting host.
  • a chemical reaction with a luminescent host that may utilize a reaction (condensation or polymerization, etc.) it emits a reactive substituent that can react with a specific reactive group substituted on the phosphorescent material. Preferred to introduce to the host.
  • a phosphorescent material is substituted with a hydroxyl group (one OH)
  • a material into which an isocyanate group (-NCO) or an isothiocyanate group (-NCS) is introduced is selected as the light-emitting host.
  • a bur group is substituted in the phosphor luminescent material
  • a luminescent host in which a vinyl group capable of radical polymerization is introduced is selected.
  • At least one material having a bur group substituted on both the phosphorescent light emitting material and the light emitting host is present in the same layer to emit light.
  • chain-like and Z- or net-like polymers are formed by using as a polymerization initiator a key-on radical or a cation radical generated in the light-emitting layer.
  • the surface layer of the cathode side member is an electron transport layer and the surface layer of the anode side member is a light emitting layer, for example, an electron transport layer having a reactive substituent such as a vinyl group, and -By laminating members each having a light-emitting host or a light-emitting layer containing a dopant material having a reactive substituent such as a ruthel group, polymerization is performed between the layers, and adhesion between the bonded organic layers is improved. improves.
  • a hole transport layer containing a hole transport material having a reactive group may be used. Oh ,.
  • At least one of the two laminated surfaces to be bonded contains an organic compound having a reactive substituent, and at least one of the two laminated surfaces to be bonded has a reactive substituent. If it contains an organic compound and a material having a group that reacts with the other, it can strengthen the adhesion by reacting with each other, eliminate peeling of the joint surface, and facilitate carrier movement. I can do it.
  • a phosphorescent compound in a preferred embodiment of the invention (C) according to claims 23 to 31, a phosphorescent compound, a light emitting host, a hole transport material, an electron transport material, etc.
  • the light-emitting element is energized to use a cation radical or a cation radical generated in the light emitting layer as a polymerization initiator. Chain and Z or network polymers can be formed, and the polymerization within the layer makes the light-emitting device more robust than the initial state, and while energized (driven), It is also possible to realize a light-emitting element that gradually increases in durability.
  • Examples of the reactive species generated inside the device and reactive substituents that cause a chemical change due to Joule heat during driving include the following groups including the above-described groups.
  • Japanese Patent Application Laid-Open No. 5-271166 describes a bifunctional triphenylamine derivative having two bur groups in the molecule, and the compound is formed into a three-dimensional film by irradiation with ultraviolet rays. It is disclosed that a crosslinked polymer is formed. Also, JP-A-2001-297882 has disclosed a technique for adding a material having two or more vinyl groups to a plurality of layers, and in this case, the polymerization reaction is performed before the cathode is laminated. At the time of layer formation, UV and heat irradiation is used.
  • JP 2003-73666 AIBN, a radical generator, is added to a mixture of comonomers having a bur group in the same manner as a material having a vinyl group at the end of a phosphorescent dornonto, and a polymerization reaction proceeds during film formation.
  • the manufacturing method to be used is disclosed.
  • JP-A-2003-86371 describes a production method in which a Diels-Alder reaction is caused between two molecules in the same layer to crosslink.
  • problems with the bonding method include defects such as bonding strength and uniformity at the bonding surface.
  • defects such as bonding strength and uniformity at the bonding surface.
  • organic layers are joined together
  • the carrier movement at the bonding interface is not uniform over the entire surface, and it is easy to carry the carrier locally, and it is difficult for the part to flow and the part is easily formed.
  • the phosphorescence method differs from the fluorescence method in that it has a light emitting region inside the light emitting layer, and this phenomenon is relatively difficult to occur.
  • increasing the thickness ratio increasing the thickness of the light-emitting layer, or using two light-emitting layers that join the light-emitting layers together, light emission unevenness can be suppressed to the extent that there is no weakness even under microscopic observation. I found that it was possible.
  • Japanese Unexamined Patent Application Publication No. 2004-103401 discloses a technique for connecting organic EL layers with a covalent bond.
  • the technical idea of this patent is a technique for forming a covalent bond at the interface of an organic layer during or after film formation in a sequential film formation method, which is a similar technique, but in the present invention, a bonding method.
  • a bonding method As a means of interfacial adhesion in Japan, it is a new discovery to apply this technology as a role like a fastener, and it is not a technology that can be easily imagined.
  • a cathode made of aluminum or the like is formed on a support (for example, a glass substrate) by vacuum deposition or the like, and an electron transport material layer is applied thereon or by evaporation or the like.
  • a hole transport layer and a light emitting layer are sequentially formed by coating or vapor deposition on a glass substrate formed with a thin film such as ITO as an anode.
  • An organic EL device is obtained by adhering these two members on the cathode side and the anode side to each other with the organic layers (the electron transport layer and the light-emitting layer), and in the present invention. It is characterized in that the peel strength of the bonded surface of the two organic layers to be bonded is a specific value lONZm or more.
  • the present invention provides a method for manufacturing an organic EL device having high emission efficiency and improved emission lifetime.
  • the invention (D) includes a first electrode substrate having at least n (n ⁇ 0) organic layers, and at least m layers (m ⁇ 0).
  • a first electrode substrate having at least n (n ⁇ 0) organic layers, and at least m layers (m ⁇ 0).
  • m + n ⁇ l contains a phosphorescent light-emitting compound and bonded. It is an organic EL device characterized by a surface peel strength of lONZm or higher.
  • the bonding surface may be any layer of each functional layer of the organic EL element.
  • An organic layer is preferred. Bonding between organic layers is preferred because it is easy to bond and adhere and is difficult to peel off after bonding.
  • light emission unevenness due to nonuniformity in the plane of carrier movement due to defects in the bonding surface is caused by phosphorescence emission method having a light emitting region inside the light emitting layer rather than fluorescence emission method emitting light at the organic layer interface. It is relatively less likely to appear, especially when the relative film thickness ratio of the entire organic layer of the light emitting layer is increased or when the thickness of the light emitting layer is increased, or when the light emitting layers are joined together. Since the phosphorescent light-emitting method containing a phosphorescent light-emitting compound, such as when forming a layer, can reduce unevenness in light emission, the manufacturing method by bonding of the present invention is suitable for the phosphorescent light-emitting method.
  • the peel hardness of the bonded surface can be measured by various measuring methods.
  • the SAICAS trowel or SAICAS NN-04 model manufactured by Winples is used. can do.
  • the SAICAS method uses a sharp cutting edge (single crystal diamond, sintered alloy) to measure the horizontal load required to move at a constant speed in the horizontal direction while keeping the vertical load in a constant direction. This is a technique, and the peel strength of the thin film can be measured.
  • each organic layer of the organic EL element is formed on the first electrode substrate and on the second electrode substrate.
  • the organic layer is formed as a member on the cathode side and a member for the anode, respectively.
  • the method for forming the organic layer for forming each functional layer of these organic EL elements is not particularly limited.
  • actinic rays or the like can also be used.
  • actinic rays include electron beams and ultraviolet rays
  • ultraviolet light sources include ultraviolet lamps (for example, low pressure, medium pressure, and high pressure mercury lamps having an operating pressure of 0.5 kPa to lMPa), xenon lamps, tungsten lamps, A halogen lamp or the like is used, and ultraviolet rays having an intensity of about 5000 to 8000 ⁇ WZcm 2 are preferably irradiated.
  • the amount of energy required for curing ranges from 0.02 to 20 kjZcm2.
  • the bonded surfaces are bonded to each other after bonding in order to bring them into close contact at the molecular level. We have found that forming a bond is a very effective means.
  • a technique for covalently connecting the layers of organic EL is disclosed in Japanese Patent Application Laid-Open No. 2004-103401. In the present invention, this technique is applied as means for interfacial adhesion in the bonding method.
  • an organic compound having a reactive substituent is contained in both organic layers on the bonding surface.
  • Such a substituent improves the adhesion at the molecular level between the bonded organic layers by causing a chemical change due to the active species generated inside the element and the heat at the time of bonding, and forming a covalent bond.
  • the light-emitting layer of an organic EL element usually uses phosphorescent light emission.
  • a phosphorescent material phosphorescent dopant
  • a mass ratio of 1 to 20 with respect to the light-emitting host it is said that mixing in the order of about% is effective from the viewpoint of luminous efficiency.
  • the chemical change of the phosphorescent light emitting material changes with the light emitting host.
  • a chemical reaction with a luminescent host that may utilize a reaction (condensation or polymerization, etc.) it emits a reactive substituent that can react with a specific reactive group substituted on the phosphorescent material. Preferred to introduce to the host.
  • a phosphorescent material is substituted with a hydroxyl group (one OH)
  • a material having an isocyanate group (-NCO) or an isothiocyanate group (-NCS) introduced is selected as the light-emitting host.
  • a bur group is substituted in the phosphor luminescent material
  • a luminescent host in which a vinyl group capable of radical polymerization is introduced is selected.
  • the most preferable aspect is that in the embodiment, a material in which a vinyl group is substituted on both the phosphorescent light emitting material and the light emitting host is used. At least one type is present in the same layer, and when the light-emitting element is energized, a chain or network polymer is formed by using a photo-on radical or a cation radical generated in the light-emitting layer as a polymerization initiator. It is to let you.
  • the surface layer of the cathode side member is an electron transport layer and the surface layer of the anode side member is a light emitting layer, for example, an electron transport layer having a reactive substituent such as a vinyl group, and -By laminating members each having a light-emitting host or a light-emitting layer containing a dopant material having a reactive substituent such as a ruthel group, polymerization is performed between the layers, and adhesion between the bonded organic layers is improved. improves.
  • the outermost layer of the cathode side substrate is a light emitting layer, and the anode side substrate Similarly, when the outermost layer is a hole transport layer, a hole transport layer containing a hole transport material having a reactive group may be used.
  • At least one of the organic layers to be bonded contains an organic compound having a reactive substituent, and the organic compound having a reactive substituent in at least one of the two organic layers to be bonded If a material having a group that reacts with the other is contained, the adhesion can be strengthened by reacting with each other, peeling of the joint surface can be eliminated, and carrier movement can be facilitated. .
  • both of the organic layers to be bonded have a material having a reactive substituent because the adhesion of the laminated surface can be further enhanced.
  • the phosphorescent compound, the light emitting host, the hole transport material, and the electron transport material are used.
  • the light-on radical or cation radical generated in the light-emitting layer is started by energizing the light-emitting element. It can be used as an agent to form a chain or network polymer, and polymerization within the layer makes the light-emitting element more robust than the initial state, and is energized (driven) In the meantime, it is also possible to realize a light-emitting element that gradually increases in durability.
  • Examples of the reactive species generated inside the device and the reactive substituents that cause a chemical change by Joule heat during driving include the following groups including the above-described groups.
  • heat and activity Light rays can be used. In the case of heating, it is 1 second to 5 hours in the range of 60 to 200 ° C, and if it is an actinic ray, for example, the above ultraviolet light source can also be used, and an ultraviolet ray having an intensity of about 5000 to 8000 WZcm 2 Should be irradiated. The amount of energy required for the reaction range from 0. 02 ⁇ 20kj / cm 2 is used.
  • Japanese Patent Application Laid-Open No. 5-271166 describes a bifunctional triphenylamine derivative having two vinyl groups in the molecule. It is disclosed that a crosslinked polymer is formed. Also, JP-A-2001-297882 has disclosed a technique for adding a material having two or more vinyl groups to a plurality of layers, and in this case, the polymerization reaction is performed before the cathode is laminated. At the time of layer formation, UV and heat irradiation is used.
  • JP 2003-73666 AIBN, a radical generator, is added to a mixture of comonomers having a bur group in the same manner as a material having a vinyl group at the end of a phosphorescent dornonto, and a polymerization reaction proceeds during film formation.
  • the manufacturing method to be used is disclosed.
  • JP-A-2003-86371 describes a production method in which a Diels-Alder reaction is caused between two molecules in the same layer to crosslink.
  • the constituent layers of the organic EL device of the present invention will be described.
  • preferred specific examples of the layer structure of the organic EL element are shown below, but the present invention is not limited thereto.
  • the emission maximum wavelength of the blue light emitting layer is 430 to 480 nm.
  • the green light-emitting layer that is preferred is a monochromatic light-emitting layer that has a maximum emission wavelength of 510 to 550 nm, and the red light-emitting layer that has a maximum emission wavelength of 600 to 640 nm.
  • An apparatus is preferred.
  • a white light emitting layer may be formed by laminating at least three of these light emitting layers.
  • a non-light emitting intermediate layer may be provided between the light emitting layers.
  • the organic EL element of the present invention is preferably a white light emitting layer, and an illumination device using these is preferable.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from an electrode, an electron transport layer, or a hole transport layer, and the light emitting portion is within the layer of the light emitting layer. It may be the interface between the light emitting layer and the adjacent layer.
  • the total film thickness of the light emitting layer is not particularly limited, but it is possible to prevent the application of a high voltage unnecessary for the film homogeneity and light emission, and to improve the stability of the emission color with respect to the driving current. Therefore, it is preferable to adjust in the range of 2 nm to 5 ⁇ m, more preferably in the range of 2 to 200 nm, and particularly preferably in the range of 10 to 20 nm.
  • a light-emitting dopant or a host compound described later is formed by a known thin film method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an inkjet method. Can be formed.
  • the light emitting layer of the organic EL device of the present invention preferably contains a light emitting host compound and at least one kind of light emitting dopant (phosphorescent light emitting compound or fluorescent dopant).
  • the host compound used in the present invention will be described.
  • the host compound is a compound having a mass ratio of 20% or more in the light-emitting layer and a phosphorous compound at room temperature (25 ° C).
  • Photoluminescence phosphorescence Defined as a compound with a quantum yield of less than 0.1.
  • the phosphorescence quantum yield is less than 0.01.
  • the mass ratio in the layer is preferably 20% or more.
  • the host compound a known host compound may be used alone or in combination of two or more kinds. May be used. By using multiple types of host compounds, it is possible to adjust the movement of electric charges, and the organic EL element can be made highly efficient. In addition, by using a plurality of types of light emitting dopants described later, it becomes possible to mix different light emission, and thus any light emission color can be obtained.
  • the host compound a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
  • host compounds that can be preferably used include, for example, force rubazole derivatives, triarylamine derivatives, aromatic borane derivatives (triarylborane derivatives), nitrogen-containing heterocyclic compounds, thiophene derivatives, Those having a basic skeleton such as a furan derivative, an oligoarylene compound, or a carboline (azacarbazole) derivative or diaza-powered rubazole derivative (here, diaza-powered rubazole derivative is a force of a carboline derivative.
  • force rubazole derivatives triarylamine derivatives, aromatic borane derivatives (triarylborane derivatives), nitrogen-containing heterocyclic compounds, thiophene derivatives, Those having a basic skeleton such as a furan derivative, an oligoarylene compound, or a carboline (azacarbazole) derivative or diaza-powered rubazole derivative (here, diaza-powered rubazole derivative is a force of a carboline derivative.
  • the light-emitting host used in the present invention may be a conventionally known low-molecular compound or a high-molecular compound having a repeating unit, and a low-molecular compound having a polymerizable group such as a vinyl group or an epoxy group. (Vapor deposition polymerizable light-emitting host).
  • a reactive substituent hydroxyl group, isocyanate group, isothiocyanate group or A host compound introduced with a beryl group or the like
  • a reactive substituent hydroxyl group, isocyanate group, isothiocyanate group or A host compound introduced with a beryl group or the like
  • Typical examples of host compounds into which reactive substituents are introduced include the following.
  • the light-emitting host used in the invention (B) described in claims 13 to 22 will be described.
  • the light-emitting host used in the invention (B) according to claims 13 to 22 can be a conventionally known low molecular compound or a polymer compound having a repeating unit. Such a low molecular compound having a polymerizable group (evaporation polymerizable light-emitting host) may be used.
  • Known host compounds that may be used in combination have a hole transporting ability and an electron transporting ability, prevent emission of longer wavelengths, and have a high Tg (glass transition temperature). Compounds are preferred.
  • the reactive host compound a compound having a reactive group shown below in a conventionally known host compound is also preferably used.
  • the light-emitting dopant according to the present invention will be described.
  • a fluorescent dopant also referred to as a fluorescent compound
  • a phosphorescent light-emitting compound can be used. From the viewpoint of obtaining an organic EL device with higher luminous efficiency.
  • a light emitting dopant also referred to simply as a light emitting material
  • the phosphorescent light emitting compound is contained at the same time containing the above-mentioned host compound. It is preferable to contain.
  • the phosphorescent light-emitting compound according to the present invention will be described.
  • the phosphorescent light-emitting compound according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C).
  • Photoquantum yield force A force defined as a compound of 0.01 or more at 25 ° C.
  • a preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in the fourth edition of Experimental Chemistry Course 7, Spectroscopy II, page 398 (1992 edition, Maruzen).
  • the phosphorescence quantum yield in a solution can be measured using various solvents, but the phosphorescent light-emitting compound according to the present invention can be measured with any of the above-mentioned phosphorescence quantum yields (0.01 or more). ) Will be achieved!
  • the energy transfer type is to transfer the energy to the phosphorescent light emitting compound to obtain the light emission of the phosphorescent light emitting compound power.
  • the energy of the excited state of the phosphorescent light-emitting compound is such that carrier recombination occurs on the phosphorescent light-emitting compound and light is emitted from the phosphorescent light-emitting compound. Is required to be lower than the excited state energy of the host compound.
  • the phosphorescent light-emitting compound can be appropriately selected from known materials used for the light-emitting layer of the organic EL device.
  • the phosphorescent light emitting compound according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex system). Compounds), rare earth complexes, and most preferred are iridium compounds.
  • Rh-1 Rh-2 Rh-3 Typical examples of phosphorescent light-emitting compounds that are preferably used in the present invention and in which a crosslinkable reactive group is introduced into a complex compound are shown below. It is not limited to these.
  • the reactive phosphorescent dopant shown below is preferably used for forming the light emitting layer.
  • the invention (B) according to claims 13 to 22, the invention is not limited to these. .
  • the reactive phosphorescent dopant a compound obtained by substituting a reactive group that may be possessed by the above-mentioned reactive host compound in a conventionally known phosphorescent compound is also preferably used. .
  • phosphorescent dopant also referred to as phosphorescent compound, phosphorescent light-emitting compound, etc.
  • the invention (B) of claims 13 to 22 light emission from an excited triplet is possible.
  • a dendrimer-type phosphorescent organometallic complex represented by the following general formula (D1) may be used. it can.
  • dendron represents a tree-like molecule represented by the following general formula (E), n represents an integer greater than 0, m is greater than 0 and less than n Represents an integer.
  • P represents a phosphorescent organometallic complex that becomes a core.
  • Ar represents a trivalent group derived from an aromatic hydrocarbon ring or an aromatic heterocyclic ring. Represents an aromatic heterocycle, and X represents a single bond or a divalent linking group that binds to the phosphorescent organometallic complex P, which serves as the core.
  • n represents the number of branches (also called a generation number).
  • the aromatic hydrocarbon ring represented by Ar includes a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, and a chrysene.
  • these rings may further have a substituent represented by R in the general formula (A).
  • examples of the aromatic heterocycle represented by Ar include a furan ring and a thio group.
  • these rings may further have an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, as a substituent which may have a substituent.
  • an alkyl group for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, as a substituent which may have a substituent.
  • the divalent linking group represented by! /, X in the general formula (E) includes hydrocarbon groups such as an alkylene group, an alkylene group, an alkylene group, and an arylene group.
  • hydrocarbon groups such as an alkylene group, an alkylene group, an alkylene group, and an arylene group.
  • the alkylene group, the alkene group, the alkynylene group, and the arylene group each of them may contain a hetero atom (for example, a nitrogen atom, a sulfur atom, a silicon atom, etc.).
  • Even a divalent linking group derived from a compound having an aromatic heterocycle also called a heteroaromatic compound
  • a compound having an aromatic heterocycle also called a heteroaromatic compound
  • It may be a chalcogen atom such as oxygen or sulfur.
  • it may be a group that meets and links heteroatoms such as an alkylimino group, a dialkylsilane diyl group, or a diarylgermandyl group.
  • the invention described in claims 13 to 22 (B) can be a cyclodextrin derivative represented by the following general formula (D).
  • the cyclodextrin derivative is a general term for compounds having a structure in which a plurality of D-darcoviranose groups are cyclized by 1, 4 glycosidic bonds.
  • the primary and secondary hydroxyl groups present in the molecule may be substituted with substituents.
  • R represents a substituent
  • Z represents a residue of a phosphorescent compound
  • the substituent represented by R in the general formula (E) may be a substituent that the aromatic hydrocarbon ring represented by Ar may have. Synonymous with group.
  • the phosphorescent compound used as the residue of the phosphorescent compound represented by Z the phosphorescent compound (also called a phosphorescent dopant) is used. , U) can be used.
  • the invention (B) described in claims 13 to 22 will be described as a calixarene derivative used as a kind of such phosphorescent dopant.
  • the calixarene derivative used in the invention (B) according to claims 13 to 22 is an alkylene group or a phenol derivative as represented by the following general formula (A). This is a general term for compounds having a cyclic structure bonded by an oxyalkylene group, and the phenolic hydroxyl group in the molecule may be substituted with a substituent.
  • the divalent linking groups represented by A and L include the divalent linking group represented by X in the general formula (E). It is synonymous.
  • examples of the divalent linking group represented by A and L include, for example, a force rubazole ring, a carboline ring, a diaza force rubazole ring (also referred to as a monoazacarboline ring, and carbon atoms constituting the carboline ring). One of these is replaced with a nitrogen atom), triazole ring, pyrrole ring, pyridine ring, pyrazine ring, quinoxaline ring, thiophene ring, oxadiazole ring, dibenzofuran ring, dibenzothiophene ring, indole ring, etc.
  • Aromatic heterocycle group force such as Aromatic heterocycle force selected A divalent group or the like derived can be used.
  • the aromatic hydrocarbon ring represented by Ar may have a substituent.
  • A represents CH or N
  • R represents a hydrogen atom, a methyl group or an acetyl group
  • n represents an integer of 1 to 6.
  • the crown ether derivative used in the invention (B) according to claims 13 to 22 is represented by the following general formula (B) or general formula (C), respectively: Cyclic polyether, which is a generic name for compounds that have polydentate ligands with the entire ring as a multidentate ligand, and have a function of inclusion with metal ions or organic ions, and part or all of them are nitrogen, instead of oxygen atoms, It may be substituted with sulfur.
  • Ch represents an oxygen atom or a sulfur atom.
  • m represents an integer of 1 to 9
  • n represents an integer of 1 to 3
  • Z represents a residue of a fluorescent compound or a phosphorescent compound.
  • the divalent linking group represented by L is a divalent group represented by A and L in the general formula (A). It is synonymous with the linking group.
  • the phosphorescent compound used as the residue of the phosphorescent compound represented by Z is the phosphorous described later.
  • examples thereof include compounds described in Photochemical Compounds (also referred to as phosphorescent dopants).
  • crown ether derivatives represented by the above general formulas (B) and (C) each have a substituent R which the calixarene derivative represented by the above general formula (A) has, and Moyo! /
  • CE-1 and CE-2 A represents CH or N
  • N represents an integer of 1-9.
  • the phosphorescent compound used in the invention (B) according to claims 13 to 22 is: For example, Organic Letter, vol3, No. 16, p2579-2581 (2001), Inorganic Chemistry, No. 30, No. 8, pp. 1685-1687 (1991), Am. Chem. So c., 123 ⁇ , 4304 Page (2001), Inorganic Chemistry, No. 40, No. 7, 1 704-1711 (2001), Inorganic Chemistry, No. 41, No. 12, 3055-3066 (2002), New Journal of Chemistry., Vol. 26, page 1171 (2002), and further by applying methods such as references described in these documents.
  • Examples include iridium complexes represented by the formula (IV) described in 2-8860.
  • fluorescent dopants used in the present invention include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, Examples thereof include rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • the fluorescent dopant that can be suitably used in the invention (B) according to claims 13 to 22 includes cyclodextrin derivatives represented by the above general formula (D)! Thus, there are those having a fluorescent compound residue in place of the residue of the phosphorescent compound represented by Z.
  • Examples of the fluorescent dopant that can be used in the invention (B) according to claims 13 to 22 include the above general formula (B) and general formula (C).
  • the crown ether derivative represented by each instead of the phosphorescent compound residue represented by Z, fluorescence A compound is mentioned using the residue of a chemical compound.
  • fluorescent compound specific examples of the dye, the fluorescent compound or the fluorescent dopant described in the fluorescent dopant (also referred to as fluorescent compound) are described. Is mentioned.
  • the injection layer is provided as necessary, and includes an electron injection layer and a hole injection layer, and as described above, exists between the anode and the light emitting layer or hole transport layer and between the cathode and the light emitting layer or electron transport layer. Hey.
  • the injection layer is a layer provided between the electrode and the organic layer in order to reduce the drive voltage and improve the luminance of the light emission.
  • ES Co., Ltd. Chapter 2“ Chapter 2 Electrode Materials ”(pages 123-166) in detail, the hole injection layer (anode buffer layer) and electron injection layer (cathode buffer layer) There is.
  • anode buffer layer hole injection layer
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like.
  • Metal buffer layer typified by aluminum or titanium
  • alkali metal compound buffer layer typified by lithium fluoride
  • alkaline earth metal compound buffer layer typified by magnesium fluoride
  • acid typified by acid aluminum
  • the buffer layer (injection layer) is preferably a very thin film, although the film thickness is preferably in the range of 0.1 nm to 5 m, although it depends on the desired material.
  • the blocking layer is provided as necessary in addition to the basic component layer of the organic compound thin film as described above. It is what For example, it is described in JP-A-11 204258, 11-204359, and “Organic EL device and the forefront of its industrialization” (published by NTS Corporation on November 30, 1998). There is a hole blocking layer.
  • the hole blocking layer has the function of an electron transporting layer, and has the function of transporting electrons while having the capability of transporting holes, and is a hole blocking material force that transports electrons. By blocking holes, the recombination probability of electrons and holes can be improved. Further, the structure of the electron transport layer described later can be used as a hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the hole blocking layer preferably contains the azacarbazole derivative mentioned as the above-mentioned host compound.
  • the light emitting layer having the longest emission maximum wavelength is closest to the anode among all the light emitting layers.
  • 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more with respect to the host compound of the shortest wave emitting layer. Better!/,.
  • the ionic potential is defined by the energy required to release an electron at the HOMO (highest occupied molecular orbital) level of a compound to the vacuum level, and can be obtained by, for example, the following method .
  • Gaussian98 (Gaussian98, Revision A. ⁇ 1.4, MJ Frisch, et al, Lraussian, Inc., Pittsburg h PA, 2002.)
  • the ionization potential can be calculated by rounding off the second decimal place of the value (eV unit converted value) calculated by structural optimization using B3LYPZ6-31G * as a keyword. The reason why this calculated value is effective is that there is a high correlation between the calculated value obtained by this method and the experimental value.
  • the ion potential can also be obtained by direct measurement with photoelectron spectroscopy. It can.
  • a method known as ultraviolet photoelectron spectroscopy using a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. can be suitably used.
  • the electron blocking layer has the function of a hole transport layer in a broad sense, and has a function of transporting holes while having a material force that is extremely small to transport electrons, and transports holes.
  • the probability of recombination of electrons and holes can be improved.
  • the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the film thicknesses of the hole blocking layer and the electron transport layer according to the present invention are preferably 3 to LOONm, and more preferably 5 to 30 nm.
  • the hole transport layer is a hole transport material having a function of transporting holes.
  • a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either injection / transport of holes, electron barrier properties! /, Or deviation, and may be either organic or inorganic.
  • triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, violazoline derivatives and pyrazolone derivatives, fluorenedamine derivatives, arylene amine derivatives, amino substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-1,4'-daminophenol; N, N' —Diphenol N, N '— Bis (3-methylphenol) 1 [1, 1' — Biphenyl] 1, 4, 4 '— Diamine (TPD); 2, 2-bis (4-dione p-tolylaminophenol) propane; 1, 1-bis (4-di-p-tri) N, N, N ′, N ′ —tetra-l-tolyl-l, 4,4′-diaminobiphenyl; 1,1-bis (4-di-l-tol-aminol-phenyl) 4-phenyl Hexane; Bis (4-dimethylamino-2-methylphenol) phenylmethane; Bis (4-di- ⁇ -tolylaminophenol) phenolmethane; ⁇ , N '— Diphenyl ⁇
  • No. 5,061,569 for example, 4, 4 ′ bis [ ⁇ - (1- Naphtil) [Feramino] Bifurle (NPD), three triamine units described in JP-A-4 308688 are connected in a starburst type 4, 4 ', ⁇ "— Tris [? ⁇ -(3-methylphenol) ⁇ phenolamino] triphenylamine (MTD ⁇ ) and the like.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as vertical-type Si and p-type SiC can be used as the hole injection material and the hole transport material.
  • the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method. Can be formed.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method.
  • a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method.
  • a p-type high hole transport layer doped with impurities can be used.
  • the following reactive hole transport materials are also preferably used, but in the invention (B) according to claims 13 to 22, these materials can be used. It is not limited to.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material
  • any material known in the art may be used as long as it has a function of transmitting electrons injected from the negative electrode to the light emitting layer.
  • any one of the compounds can be selected and used, such as -to-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, rubodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and Anthrone derivatives, oxadiazole derivatives and the like can be mentioned.
  • thiadiazole derivatives in which the oxygen atom of the oxaziazole ring is substituted with a sulfur atom and quinoxaline derivatives having a quinoxaline ring known as an electron-withdrawing group can also be used as the electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5, 7-dive mouth) 8 quinolinol) aluminum, tris (2methyl 8quinolinol) aluminum, tris (5-methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • the central metals of these metal complexes are In, Mg, Metal complexes replacing Cu, Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • metal free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylvirazine derivative exemplified as the material for the light-emitting layer can also be used as an electron transport material, and, like the hole injection layer and the hole transport layer, inorganic semiconductors such as n-type Si and n-type SiC Can also be used as an electron transporting material.
  • the electron transport layer is obtained by thin-filming the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can be formed.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • n-type high electron transport layer doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140. No. 1, 2001-102175, Appl. Phys., 95, 5773 (2004) and the like.
  • Examples of the electron transporting material having a reactive substituent include the following.
  • the reactive electron transport material a compound obtained by substituting a reactive group that may be possessed by the above-described reactive host compound in a conventionally known electron transport material is also preferably used.
  • condensation polymer used in the invention (B) according to claims 13 to 22 include, but are not limited to, compounds represented by the following general formula (1).
  • [Ar] n represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring having n substitutable sites.
  • Z represents a fluorescent compound residue or a phosphorescent compound residue, and m of n replaceable sites of Ar are linked via K.
  • K represents a divalent linking group or a single bond.
  • n represents a number from 1 to 3
  • m represents a number from l to n.
  • L is a divalent linking group selected from the linking group group 1 described below.
  • the aromatic hydrocarbon ring represented by Ar is a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene.
  • Ring triphenylene ring, o-terfel ring, m-terfel ring, p-terfel ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring , Pentaphen ring, picene ring, pyrene ring, bianthrene ring, anthraanthrene ring and the like.
  • these rings may further have a substituent represented by R in the general formula (A).
  • examples of the aromatic heterocycle represented by Ar include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, and a pyrazine ring.
  • these rings may further have an aromatic hydrocarbon ring represented by Ar in the general formula (E), or may have a substituent! /, .
  • the divalent linking group represented by K has the same meaning as the divalent linking group represented by A in the general formula (1).
  • the residue of the fluorescent compound represented by Z and the phosphorescent compound residue are the fluorescent compound represented by Z in the general formula (1), respectively. Residue and phosphorescent compound residue are synonymous with each other.
  • the divalent linking group represented by L is selected from the following linking group group 1.
  • the alkyl groups represented by R to R include, for example,
  • Examples include til, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, octyl, dodecyl, tridecyl, tetradecyl, pentadecyl and the like. These may further have a substituent represented by R in the general formula (A).
  • Examples of the aromatic hydrocarbon group represented by 14 include a phenyl group, a p-chlorophenyl group, a mesityl group, a tolyl group, a xylyl group, a naphthyl group, an anthryl group, an azulenyl group, an acenaphthyl group, Examples thereof include a fluorenyl group, a phenanthryl group, an indenyl group, a pyrenyl group, a biphenylyl group, and the like.
  • these groups may further have an aromatic hydrocarbon ring represented by Ar, or may have a substituent.
  • a material having a large work function (4 eV or more) metal, alloy, electrically conductive compound and a mixture thereof is preferably used as the anode formed on the first electrode substrate. It is done.
  • electrode materials include metals such as Au, conductive transparent materials such as Cul, indium tinoxide (ITO), SnO, and ZnO.
  • IDIXO lan O-ZnO
  • other amorphous materials that can produce transparent conductive films are also available.
  • these electrode materials can be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern of the desired shape can be formed by a single photolithography method. The pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • a wet film forming method such as a printing method or a coating method can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ or less.
  • the film thickness is a force depending on the material.
  • a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof are used as an electrode material. What to do is used.
  • electrode materials include sodium, sodium monopotassium alloy, magnesium, lithium, magnesium Z copper mixture, magnesium Z silver mixture, magnesium Z aluminum mixture, magnesium Z aluminum mixture, aluminum Z acid aluminum (Al 2 O 3) mixture, indium, lithium
  • Examples include aluminum mixtures and rare earth metals.
  • a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this, for example, magnesium Z silver Mixture, Magnesium Z Aluminum mixture, Magnesium Z Indium mixture, Aluminum Z Oxide Aluminum (Al 2 O 3) mixture, Lithium Z Aluminum mixture, Aluminum etc. are suitable
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • the transparent conductive material described in the description of the anode is formed thereon, whereby a transparent or translucent cathode is manufactured. Togashi.
  • the support substrate (hereinafter also referred to as a substrate, a substrate, a substrate, or a support) according to the organic EL device of the present invention is not particularly limited in the type of glass, plastic, and the like, and is transparent or opaque. May be.
  • the support substrate is preferably transparent.
  • the transparent support substrate preferably used include glass, quartz, and a transparent resin film.
  • the support substrate is a resin film that can give the organic EL element flexible and can be formed by roll-to-roll.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellose diacetate, senorelose triacetate, sanolose acetate butyrate, senore mouth.
  • Cellulose esters such as Sacetate Propionate (CAP), Cellulose Acetate Phthalate (TAC), Cellulose Nitrate or their derivatives, Polysalt vinylidene, Polybulal alcohol, Polyethylenebutal alcohol, Syndiotactic polystyrene , Polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyetherketoneimide, polyamide, fluorine resin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (JSR) or Abel (Mitsui Chemicals) t And the like.
  • CAP Sacetate Propionate
  • TAC Cellulose Acetate Phthalate
  • Polysalt vinylidene Polybulal alcohol
  • Polyethylenebutal alcohol Syndiotactic polystyrene
  • Polycarbonate norbornene resin
  • polymethylpentene
  • the water vapor permeability measured by a method in accordance with JIS K 7129-1992, in which an inorganic film, an organic film, or both of them are coated on the surface of the resin film, is acceptable. It is more preferable that the film is a non-reactive film with a temperature of 25 ⁇ 0.5 ° C and a relative humidity (90 ⁇ 2)% RH of 0.01 g / (m 2 '24h) or less. compliant measured oxygen permeability in a way that 10 111 3 7 (111 2 '2411' ⁇ 111) or less, the water vapor permeability of 10 3 g / (m 2 ⁇ 24h) or less of a high Roh rear film in Is preferred to be.
  • any material that has a function of suppressing intrusion of elements such as moisture and oxygen that cause deterioration of the element may be used.
  • silicon oxide, silicon dioxide, silicon nitride or the like can be used.
  • the film in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and layers that have organic material strength.
  • the method of forming the barrier film is not particularly limited, for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure Power capable of using a plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, etc.
  • a method using an atmospheric pressure plasma polymerization method as described in JP-A No. 2004-68143 is particularly preferable. .
  • Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, non-transparent resin substrates, ceramic substrates, and the like.
  • the external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted outside the organic EL element Z the number of electrons flown through the organic EL element X 100
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • Examples of the sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support base with an adhesive.
  • the sealing member may be in the form of a concave plate or a flat plate as long as it is arranged so as to cover the display area of the organic EL element.
  • transparency and electrical insulation are not particularly limited. Specific examples include a glass plate, a polymer plate 'film, a metal plate' film, and the like.
  • Examples of the glass plate include soda lime glass, norlium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
  • Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • Examples of the metal plate include one having at least one metal or alloy power selected from a group force consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the element can be made into a thin film.
  • the polymer film water vapor as measured by JIS K 7126- 1987 oxygen permeability 10- 4 «11 3 7 (111 2 '24h'atm) below, in compliance with JIS K 7129- 1992 method permeability force SlO- 3 gZ (m 2 - 24h ) or less, in particular 10- 5 gZ (m 2 - 24h ) ⁇ is preferably be of less. Further, it is more preferable oxygen permeability even 10- 6 cm 3 / (m 2 '24h'atm) or less. Sand blasting and chemical etching are used to process the sealing member into a concave shape.
  • adhesives include photo-curing and thermosetting adhesives having a reactive vinyl group of acrylic acid-based oligomers and methacrylic acid-based oligomers, and moisture-curing adhesives such as 2 cyanoacrylates. Can be mentioned. In addition, heat- and chemical-curing types (two-component mixing) such as epoxy type can be mentioned. Also, hot-melt type polyamide, polyester And polyolefin. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned. In addition, since the organic EL element may be deteriorated by heat treatment, it is preferable that the adhesive can be cured from room temperature to 80 ° C. In addition, a desiccant may be dispersed in the adhesive. The adhesive can be applied to the sealing part using a commercially available dispenser or printing like screen printing.
  • the electrode and the organic layer may be coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer may be formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, etc. can be used.
  • an inert gas such as nitrogen or argon or an inert liquid such as fluorinated hydrocarbon or silicon oil is used in the gas phase and the liquid phase. It is preferable to inject.
  • a vacuum can also be used.
  • a hygroscopic compound can be enclosed inside. Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, and acid medium), sulfuric acid, and the like.
  • Salts eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.
  • metal halides eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, (Norium iodide, magnesium iodide, etc.
  • perchloric acids for example, barium perchlorate, magnesium perchlorate, etc.
  • anhydrous salts are preferred for sulfates, metal halides, and perchloric acids. Used for.
  • a protective film or a protective plate may be provided outside.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate 'film, metal plate' film, etc. that are used for the sealing can be used. It is preferable to use a polymer film.
  • a desired electrode material for example, a thin film having a material force for an anode
  • a suitable support substrate by a method such as vapor deposition or sputtering so that the film thickness is 1 ⁇ m or less, preferably 10 to 200 nm.
  • an anode is produced and used as an anode substrate.
  • organic layers such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic EL element materials, are formed as an organic material thin film in this order. Any of these layers may be formed on the anode substrate side.
  • the anode side member is produced by forming the hole transport layer.
  • this organic compound thin film there are a vapor deposition method and a wet process (spin coating method, casting method, ink jet method, printing method) as described above. From the viewpoint of difficulty in forming holes, the vacuum deposition method, spin coating method, inkjet method, and printing method are particularly preferable. Different film forming methods may be applied for each layer.
  • another thin film having a cathode material force is also formed on the second supporting substrate by the same method: vapor deposition, sputtering or the like so as to have a film thickness of Lm or less, preferably 10 to 200 nm.
  • a cathode substrate is prepared.
  • each layer to be formed on the subsequent cathode side of the hole transport layer formed on the anode substrate thereon in the order reverse to the above for example, an electron transport layer, a hole blocking layer, A cathode side member is fabricated by sequentially forming a light emitting layer.
  • any of the vapor deposition method and the wet process spin coating method, casting method, ink jet method, printing method may be used as described above.
  • the deposition conditions may differ force generally boat temperature 50 to 450 ° C by the species and the like of the compound used, the degree of vacuum 10- 6 to 10-2 Pa Steamed It is desirable to select a deposition rate of 0.01 to 50 nm Z seconds, substrate temperature—50 to 300 ° C., film thickness of 0.1 to 5 ⁇ m, and preferably 5 to 200 nm! /.
  • the surface layer formed on the anode side substrate and the cathode side substrate has a surface roughness (Ra), It is adjusted as described in claim 23.
  • surface roughness (Ra) 0.
  • Lnm is passed through a metal roller (linear pressure: 500 NZcm, temperature: 60 ° C) to give the same surface roughness as the metal roll surface.
  • the hole transport layer (anode-side member) and the light-emitting layer (cathode-side member), the surface roughness of which has been adjusted in step 1 are opposed to each other and adhered and bonded using a joining jig.
  • the anode-side substrate on which the organic layer is formed in this way, and the hole transport layer (anode-side member) and the light-emitting layer (cathode-side member) of the cathode-side substrate are opposed to each other. Adhere and bond with a jig.
  • the joining jig may be a stamper-like jig that can be pressed with a uniform pressure with both substrates facing each other, and a base, and the pressure can be set by, for example, a vacuum laminator. used to crimp a pressing force 0. IMPa under vacuum environment l X 10- 2 Pa, tight adhesion both organic layer and fixed lamination.
  • a luminescent host or phosphorescent light-emitting compound, or a hole transport material in the hole transport layer (layers to be bonded, functional materials contained in the layer) are chemically treated.
  • an active light such as ultraviolet light may be used.
  • the positive hole transport layer is provided on the anode substrate, and the light emitting layer and subsequent layers are provided on the cathode substrate.
  • the light emitting layer is provided on both sides, and the light emitting layers are in close contact (or crosslinked). ). Other combinations are acceptable.
  • the organic EL element emits light inside the layer, which has a higher refractive index than air (refractive index is about 1.7 to 2.1). It is said that only 15% to 20% of the generated light can be extracted. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection, so that light is totally reflected between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the element.
  • these methods can be used in combination with the organic EL device of the present invention.
  • the method of forming can be used suitably.
  • a medium having a low refractive index for example, a layer of air mouth gel, porous silica, magnesium fluoride, fluorine-based polymer, or the like having a thickness longer than the wavelength of light is interposed between the transparent electrode and the transparent substrate.
  • the light extracted from the transparent electrode has a higher extraction efficiency as the refractive index of the medium is lower.
  • the refractive index of the transparent substrate is generally about 1.5 to 1.7
  • the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • a method of introducing a diffraction grating into an interface or any medium that causes total reflection is based on light. There is a feature that the effect of improving the extraction efficiency is high.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction. Of these, light that cannot be emitted due to total reflection between layers, etc. is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). They are trying to take it out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so a general one-dimensional diffraction grating having a periodic refractive index distribution only in one direction diffracts only light traveling in a specific direction. The light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency increases.
  • the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. .
  • the period of the diffraction grating is preferably about 1Z2 to about 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL device of the present invention is processed so as to provide a microlens array structure on the light extraction side of the substrate, or is combined with a so-called condensing sheet, for example, in a specific direction, for example, the front surface of the device light emitting surface.
  • Luminance can be increased by focusing in the direction.
  • a quadrangular pyramid with a side of 30 ⁇ m and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10: LOO m. If it is smaller than this, the effect of diffraction is generated, and if it is too large, the thickness becomes too thick, which is not preferable.
  • the light condensing sheet for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device can be used.
  • a sheet for example, manufactured by Sumitomo 3EM A brightness enhancement film (BEF) or the like can be used.
  • BEF brightness enhancement film
  • the shape of the prism sheet for example, the base material may be formed with stripes having a vertex angle of 90 degrees and a pitch of 50 111, a shape with rounded vertex angles, and a random pitch. It may be a changed shape or other shapes.
  • a light diffusing plate 'film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as a display device and various light sources.
  • various light sources For example, home lighting, interior lighting, backlights for watches and liquid crystals, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sensors
  • the present invention is not limited to this, and it can be effectively used as a knock light for a liquid crystal display device combined with a color filter, or as a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation.
  • a metal mask In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or in the production of an element that may be patterned on the entire layer, a conventionally known method Method can be used.
  • the display device of the present invention is multicolor or white Used for color display devices.
  • a shadow mask is provided only when the light emitting layer is formed.
  • the method is not limited, but the vapor deposition method, the ink jet method, and the printing method are preferable.
  • patterning using a shadow mask is preferable.
  • a DC voltage is applied to the thus obtained multicolor or white display device, light emission can be observed by applying a voltage of about 2V to 40V with the anode as + and the cathode as one polarity.
  • the applied AC waveform may be arbitrary.
  • the lighting device of the present invention will be described.
  • the organic EL device of the present invention may be used as a kind of lamp for illumination or exposure light source, or a projection device for projecting an image, or directly viewing a still image or a moving image. It may be used as a knocklight for a type of display device (display).
  • the driving method of the liquid crystal may be either a simple matrix (passive matrix) method or an active matrix method. If it is a backlight in a liquid crystal display device, the light emitting material used for the light emitting layer is not particularly limited, and any light emitting material is selected from the light emitting materials so as to conform to the wavelength range corresponding to the CF (color filter) characteristics. Or in combination with the light extraction and Z or condensing sheet or the like.
  • the organic EL element of the present invention is combined with a CF (color filter) and arranged in accordance with the CF (color filter) pattern to arrange the element and the driving transistor circuit, thereby extracting the organic EL element power.
  • Blue light having an emission maximum in the range of 430 to 480 nm
  • green light having an emission maximum in the wavelength range of 510 to 550 nm
  • red filter having a light emission maximum in the wavelength range of 600 to 640 nm
  • various light-emitting light sources and lighting devices such as household lighting, interior lighting, and a kind of lamp such as an exposure light source, backlights for liquid crystal display devices, etc. It is also useful for display devices.
  • backlights such as watches, signboard advertisements, traffic lights, light sources such as optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processing machines, light sources for optical sensors, etc.
  • light sources for optical communication processing machines such as light sources for optical sensors, etc.
  • Example Sample 1 the sample 1 of Comparative Example obtained above was irradiated with ultraviolet light for 120 seconds to produce Example Sample 1.
  • the residual amount of Exemplified Compound 48 in the organic phase was determined by a method of measuring the residual amount of the bur group of Exemplified Compound 48.
  • the distribution of the double bond of the vinyl group was determined by the following means. [0517]
  • FTIR-8300 Fourier transform infrared spectrometer
  • a 100 mm x 100 mm x 100 ⁇ m polyethylene terephthalate film substrate 1 is attached to a commercially available spin coater, and a solution in which the exemplified compound 48 (50 mg), which is an organic compound having a reactive substituent, is dissolved in 10 ml of 1,2 dichloroethane is used. Then, spin coating (film thickness: about 40 nm) was performed under conditions of 1000 rpm and 30 seconds, and vacuum drying was performed at 25 ° C. for 1 hour to produce an organic layer 1 containing Exemplified Compound 4-8 on the film substrate 1.
  • Example Sample 2 was irradiated with ultraviolet light from the polyethylene terephthalate film substrate 1 side for 120 seconds to prepare Example Sample 2.
  • the unreacted exemplified compound 48 in the thin film was determined by a method of measuring the distribution of vinyl groups in the exemplified compound 48.
  • the presence of the double bond of the bur group Can be sought.
  • 100mm X 100mm XI. 1mm glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, then attached to a commercially available spin coater, and exemplified compound 1-ll (50mg) Using a solution in which 10 ml of 1,2 dichloroethane is dissolved, spin-coat (film thickness of about 40 nm) under conditions of 1000 rpm for 30 seconds, and vacuum-dried at 25 ° C for 1 hour to have reactive substituents Organic layer 1 containing exemplary compound 111, which is an organic compound, was produced on a glass substrate.
  • Example Sample 3 [0531] ⁇ Preparation of Example Sample 3> Next, Comparative Example Sample 3 obtained above was heated at 150 ° C. for 1 hour to produce Example Sample 3.
  • Example Sample 3 The produced Comparative Example Sample 3 and Example Sample 3 were immersed in 50 ml of tetrahydrofuran, and after sufficiently stirring, the glass substrate was removed, and the solvent of the resulting solution force was distilled off. When the residue was analyzed with a time-of-flight secondary ion mass spectrometer (TOF-SIMS), Compound 1 11 and Compound 4 11 reacted only from the residue of the solution in which Example Sample 3 was immersed. A peak with a molecular weight of 1248 corresponding to the molecular weight of reactant A was detected.
  • TOF-SIMS time-of-flight secondary ion mass spectrometer
  • This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving the following compound BCP (60 mg) in 10 ml of toluene was spin-coated (film thickness: about 40 nm) under conditions of 1000 rpm and 30 seconds to obtain an organic layer 1
  • the anode side part which has a layer was produced.
  • Organic EL element 11 was prepared in the same manner as organic EL element 1-1, except that the compounds used in the organic layer of the anode side portion and the cathode portion were replaced with the compounds shown in Table 3.
  • the peel strength of the organic EL element was measured by the SAICAS method using a SAICAS NN-04 model manufactured by Daibra-Wintes.
  • the SAICAS method uses a sharp cutting edge (single crystal diamond, sintered alloy) to measure the horizontal load required to move at a constant speed in the horizontal direction while maintaining a constant vertical load.
  • the measurement conditions are as follows.
  • Measurement conditions A diamond lmm wide blade is used. Shear angle is 45 °
  • a 1mm glass substrate is ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, and then fixed to a substrate holder of a commercially available vacuum deposition device.
  • This substrate was attached to a commercially available spin coater, and a solution in which BCP (20 mg) was dissolved in 10 ml of toluene was used.
  • Spin coating (film thickness about lOnm) at 60 ° C for 1 hour under conditions of 1000 rpm and 30 seconds It vacuum-dried, provided the electron carrying layer, and produced the cathode side site
  • ITO indium tin oxide
  • a glass substrate of 100mm X 100mm X I. 1mm as the anode
  • this transparent support substrate with ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol and dried with dry nitrogen gas. UV ozone cleaning was performed for 5 minutes.
  • This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 41 (60 mg) in 10 ml of toluene was spin-coated (film thickness of about 40 nm) and ultraviolet light under conditions of 1000 rpm and 30 seconds. After irradiation for 30 seconds, vacuum drying was performed at 60 ° C. for 1 hour to form a hole transport layer.
  • organic EL device 2-1 In the production of the organic EL device 2-1, the compounds used in the electron transport layer, the light emitting layer, and the hole transport layer were replaced with the compounds shown in Table 4, and the organic EL device 2-1.
  • Organic EL devices 2-2 and 2-3 were fabricated using the same method.
  • the organic EL devices 2-1 to 2-3 produced as follows were evaluated, and the results are shown in Table 4.
  • the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C.
  • a spectral radiance meter CS-1000 manufactured by Ko-Force Minolta was used in the same manner.
  • a 1mm glass substrate is ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, and then fixed to a substrate holder of a commercially available vacuum deposition device.
  • This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 3-2 (20 mg) in 10 ml of toluene was spin-coated (film thickness: about 10 nm), ultraviolet light under conditions of 1000 rpm and 30 seconds. After being irradiated for 30 seconds, it was vacuum dried at 60 ° C. for 1 hour to provide an electron transport layer.
  • ITO substrate 100 mm X 100 mm X I. 1 mm thick ITO (indium tin oxide) filmed on lOOnm substrate ( ⁇ Techno Glass Co., Ltd. ⁇ 45)
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 4 1 (60 mg) in 10 ml of toluene was spin-coated (film thickness of about 40 nm) and ultraviolet light under conditions of 1000 rpm and 30 seconds. After irradiation for 30 seconds, vacuum drying was performed at 60 ° C. for 1 hour to form a hole transport layer.
  • Organic EL device 3-1 except that the compounds used in the electron transport layer, the light emitting layer, and the hole transport layer were replaced with the compounds shown in Table 5 in the production of organic EL device 3-1.
  • Organic EL devices 3-2 and 3-3 were fabricated using the same method.
  • the heating boat containing BCP was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0. InmZ seconds to provide an electron transport layer having a thickness of about lOnm. Further, the heating boat containing CBP and Ir-9 was energized and heated, and co-deposited on the hole transport layer at a deposition rate of 0.2 nmZ seconds and 0.012 nmZ seconds, respectively, A light emitting layer was provided, and a cathode side portion was prepared.
  • the ITO transparent electrode was provided after patterning was performed on a substrate ( ⁇ Techno Glass Co., Ltd. ⁇ 45) obtained by depositing ITO (indium tin oxide) on a 100 mm X 100 mm XI .1 mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This transparent support substrate is fixed to the substrate holder of a commercially available vacuum evaporation system, and a resistance heating boat made of molybdenum a N
  • organic EL device 4-1 Same as organic EL device 4-1, except that the compounds used in the electron transport layer, light emitting layer, and hole transport layer were replaced with the compounds shown in Table 6 in the preparation of organic EL device 41.
  • the organic EL devices 4-2 and 4-3 were fabricated by this method.
  • each of the organic EL devices 4-1 to 4-3 is a device after applying 5.0 mAZcm 2 constant current for 100 hours at 23 ° C in a dry nitrogen gas atmosphere. — 6
  • Blue light emitting organic EL device As the blue light-emitting organic EL element, the organic EL element 3-3 produced in Example 6 was used, and a blue light-emitting organic EL element 5-1B (blue) was obtained.
  • a green light-emitting organic EL element 5-1G (green) was prepared in the same manner as in the production of the organic EL element 3-3 of Example 6 except that 2-7 was changed to 2-1.
  • a red light emitting organic EL element 5-1R (red) was produced in the same manner as in the production of the organic EL element 3-3 of Example 6 except that 2-7 was changed to 2-5.
  • a wiring section including a plurality of scanning lines 5 and data lines 6 on the same substrate, and a plurality of juxtaposed pixels 3 (emission color is a pixel in a red region, a pixel in a green region, a pixel in a blue region, etc.)
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material force, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions ( Details are not shown).
  • the plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5. Then, an image data signal is received from the data line 6 and light is emitted according to the received image data. In this way, a full color display device was fabricated by juxtaposing the red, green, and blue pixels appropriately.
  • Example 6 In the same manner as in Example 6 except that the organic EL device 3-3 was changed to a mixture of 2-7, 2-1, and 2-5, and the white light emitting organic EL device 6 — 1W (white) was produced.
  • the non-light-emitting surface was covered with a glass case to obtain a lighting device.
  • the lighting device emits white light with high luminous efficiency and long emission life It could be used as a thin lighting device.
  • a 1mm glass substrate is ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, and then fixed to a substrate holder of a commercially available vacuum deposition device.
  • This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving (t—Bu) PBD (20 mg) in 80 ml of toluene was spin-coated at 1000 rpm for 30 seconds, and vacuumed at 60 ° C for 1 hour. It dried and provided the electron carrying layer and produced the cathode side site
  • ITO substrate 100 mm X 100 mm X I. 1 mm thick ITO (indium tin oxide) filmed on lOOnm substrate ( ⁇ Techno Glass Co., Ltd. ⁇ 45)
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This substrate was attached to a commercially available spin coater, and poly (3,4 ethylene dioxythiophene) -polystyrene sulfonate (PEDOT / PSS ⁇ Bayer, Baytron P A1 40 83) was made up to 70% with pure water.
  • the diluted solution was formed into a film by spin coating at 3000 rpm for 30 seconds, and then dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
  • This substrate was transferred to a nitrogen atmosphere, and a solution obtained by dissolving Exemplified Compound 4 14 (50 mg) in 10 ml of toluene on the first hole transport layer was spin-coated under conditions of 1000 rpm and 30 seconds. After irradiation with ultraviolet light for 30 seconds, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.
  • Organic EL device 3e-1 was prepared except that the compounds used in the electron transport layer, the light emitting layer, and the second hole transport layer were replaced with the compounds shown in Table 7 in the production of organic EL device 3e-1.
  • Organic EL devices 3e-2 and 3e-3 were fabricated using the same method as l.
  • This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 3-2 (20 mg) in 10 ml of toluene was spin-coated (film thickness about lOnm), ultraviolet light under conditions of 1000 rpm and 30 seconds. After being irradiated for 30 seconds, it was vacuum dried at 60 ° C. for 1 hour to provide an electron transport layer.
  • ITO substrate 100 mm X 100 mm X I. 1 mm thick ITO (indium tin oxide) filmed on lOOnm substrate ( ⁇ Techno Glass Co., Ltd. ⁇ 45)
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 4 1 (60 mg) in 10 ml of toluene was spin-coated (film thickness of about 40 nm) and ultraviolet light under conditions of 1000 rpm and 30 seconds. After irradiation for 30 seconds, vacuum drying was performed at 60 ° C. for 1 hour to form a hole transport layer.
  • organic EL element 4e-1 The same method as for organic EL element 4e-1, except that the compounds used in the electron transport layer, the light emitting layer, and the hole transport layer were replaced with the compounds shown in Table 8 in the preparation of organic EL element 4e-1.
  • Organic EL devices 4e-2 and 4e-3 were fabricated by the above method.
  • a 1 mm glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaned for 5 minutes. This substrate is fixed to the substrate holder of a commercially available vacuum evaporation system, 200 mg of aluminum is put into one of the resistance heating boats made of molybdenum, 200 mg of lithium fluoride is put into another resistance heating boat made of molybdenum, and Put 200 mg of BCP in a separate resistance heating boat made of molybdenum, put 200 mg of CBP as a host compound in another resistance heating boat made of molybdenum, put Ir 9 mg in another molybdenum resistance heating boat, and put it in a vacuum evaporation system. Attached.
  • the heating boat containing BCP was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0. InmZ seconds to provide an electron transport layer having a thickness of about lOnm. Further, the heating boat containing CBP and Ir-9 was energized and heated, and co-deposited on the hole transport layer at a deposition rate of 0.2 nmZ seconds and 0.012 nmZ seconds, respectively, Emissive layer is provided, cathode A side site was created.
  • the ITO transparent electrode was provided after patterning was performed on a substrate ( ⁇ Techno Glass Co., Ltd. ⁇ 45) obtained by depositing ITO (indium tin oxide) on a 100 mm X 100 mm XI .1 mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This transparent support substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus, 200 mg of molybdenum resistance heating boat cocoon a-NPD was added, and it was attached to the vacuum vapor deposition apparatus.
  • each of the organic EL elements 5e-l to 5e-3 is 23 ° C under a dry nitrogen gas atmosphere 5.
  • organic EL elements 5e-4 to 5e-6 The elements after applying OmAZcm 2 constant current for 100 hours were designated as organic EL elements 5e-4 to 5e-6.
  • the organic EL element 4e-3 prepared in Example 11 was used, and a blue light emitting organic EL element 6e-IB (blue) was obtained.
  • a green light-emitting organic EL element 6e-1G (green) was produced in the same manner as in the production of the organic EL element 4e-3 of Example 11 except that 2-7 was changed to 2-1.
  • a red light-emitting organic EL element 6e-1R (red) was produced in the same manner as in the production of the organic EL element 4e-3 of Example 11 except that 2-7 was changed to 2-5.
  • a wiring section including a plurality of scanning lines 5 and data lines 6 on the same substrate, and a plurality of juxtaposed pixels 3 (emission color is a pixel in a red region, a pixel in a green region, a pixel in a blue region, etc.)
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material force, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions ( Details are not shown).
  • the plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5. Then, an image data signal is received from the data line 6 and light is emitted according to the received image data. In this way, a full color display device was fabricated by juxtaposing the red, green, and blue pixels appropriately.
  • the non-light-emitting surface was covered with a glass case to obtain a lighting device.
  • the illuminating device could be used as a thin illuminating device that emits white light with high luminous efficiency and long emission life.
  • the anode side substrate lb— 1—A and the cathode side substrate lb—1—B were prepared as follows, and then the anode side substrate lb—1—A and the cathode side substrate lb—1—B.
  • the organic electoluminescence device lb-1 (1) was fabricated by pasting together.
  • the ITO transparent electrode was provided after patterning was performed on a substrate (NH Techno Glass, NA45) on which ITO (Indium Toxide) was deposited on a 100 mm X 100 mm XI .1 mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • the transparent support substrate provided with the first hole transport layer is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, and on the other hand, as a material for forming the second hole transport layer on a resistance heating boat made of molybdenum, 4, 4'-Bis [N- (1-naphthyl) -N-phenolamino] biphenyl (OC-2: a-NPD) 200mg is put in a separate molybdenum resistance heating boat as a host compound.
  • the heating boat containing OC-6 and PD-1 was heated by energization, and co-deposited on the hole transport layer at a deposition rate of 0.2 nmZ seconds and 0.012 nmZ seconds, respectively.
  • a light-emitting layer with a thickness of 25 nm was provided, and an anode side substrate lb-1A was produced.
  • the substrate temperature during vapor deposition was room temperature.
  • a 1 mm glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • the heating boat containing OC-6 and PD-1 was heated by energization, and co-deposited on the electron transport layer at a deposition rate of 0.2 nmZ second and 0.012 nm / second, respectively.
  • a light-emitting layer with a thickness of 25 nm was provided, and a cathode side substrate lb-1-B was produced.
  • the substrate temperature during vapor deposition is room temperature.
  • Organic EL elements lb-1 (1) were manufactured in the same manner except that the manufacturing method was different, and organic EL elements lb 1 (2) to lb-1 (5) were respectively manufactured.
  • the thickness of each light emitting layer of the anode side substrate lb-1 A and the cathode side substrate lb-1 B was changed to the thickness shown in Table 10 at all.
  • the elements lb-2 to Lb-14 were produced.
  • color unevenness and driving voltage also simply referred to as voltage
  • FIG. 4 shows a schematic diagram of the lighting device, and the organic EL element 101 is covered with a glass cover 102. Note that the glass cover was sealed with a glove box in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere (in a high purity nitrogen gas atmosphere with a purity of 99.999% or more).
  • FIG. 5 shows a cross-sectional view of the lighting device. In FIG. 5, 105 denotes a cathode, 106 denotes an organic EL layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • the voltage at the start of light emission was measured at a temperature of 23 ° C. in a dry nitrogen gas atmosphere.
  • the voltage at the start of light emission was measured when the luminance was 50 cd / m 2 or more.
  • a spectral radiance meter CS-1000 manufactured by Koryo Minolta Sensing was used for the luminance measurement.
  • the driving voltage is expressed as a relative value when the value of the organic EL element lb-1 (1) is 100.
  • the organic EL element power of the present invention shows good characteristics for both the non-emission point and the color unevenness.
  • the thickness of the light emitting layer is 40 nm or less, non- It is clear that the emission point and emission unevenness occur, and that if the emission layer thickness exceeds lOOnm, the emission start voltage increases and the organic EL device cannot perform sufficiently.
  • the anode side substrate 2b—1—A and the cathode side substrate 2b—1—B were respectively prepared as follows, and then the anode side substrate 2b—1—A and the cathode side substrate 2b—1—B.
  • the organic electoluminescence device 2b-1 was produced by pasting together.
  • the ITO transparent electrode was provided after patterning was performed on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which ITO (indium oxide) was deposited on a 100 mm X 100 mm X I. 1 mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • a second hole transport layer having a film thickness of 30 nm composed of a polymer film of MO-10 was provided by heat treatment. Furthermore, a solution of 30 mg OC-6 and 1.5 mg PD-1 dissolved in 3 ml of toluene was formed on the second hole transport layer by spin coating under conditions of 1500 rpm and 30 seconds. 15 The substrate was dried at 0 ° C. for 1 hour, provided with a light emitting layer having a thickness of 25 nm, and an anode side substrate 2b-1-A was produced.
  • a 1 mm glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This was fixed to a substrate holder of a commercially available vacuum deposition apparatus. Attached to the vacuum evaporation system and the vacuum chamber is 4 X 10— 4 The pressure was reduced to Pa. An aluminum-magnesium alloy lOnm was deposited on the substrate to form a negative electrode.
  • MO-52 polymer (number average molecular weight 71,000), prepared by radical polymerization of MO-52 using peroxybenzoyl as an initiator, was dissolved in 3 ml of dichroic benzene.
  • a film was formed by spin coating under conditions of 1000 rpm and 30 seconds, and dried at 150 ° C. for 1 hour to provide an electron transport layer having a thickness of 50 nm.
  • a solution of 30 mg OC-6 and 1.5 mg PD-1 dissolved in 3 ml of toluene was formed by spin coating at 1500 rpm for 30 seconds.
  • the substrate was dried at 150 ° C. for 1 hour, a light emitting layer having a film thickness of 25 nm was provided, and a cathode side substrate 2b-1-B was produced.
  • the substrate temperature during vapor deposition was room temperature.
  • Organic EL device lb-1 in Example 15 1 As in the production of (1), the anode side substrate 2b— 1—A and the cathode side substrate 2b—1—B were bonded together, and the organic EL device 2b—1 was made.
  • the ITO transparent electrode was provided after patterning was performed on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which ITO (indium oxide) was deposited on a 100 mm X 100 mm X I. 1 mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • PEDOTZPSS Bayer, Baytron P Al 4083 polystyrene sulfonate
  • the transparent support substrate provided with the first hole transport layer is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, and on the other hand, as a material for forming the second hole transport layer on a resistance heating boat made of molybdenum, 200 mg of OC-1 is put into another resistance heating boat made of molybdenum, 200 mg of OC 6 as a host compound, 50 mg of PD-1 is put into an additional IJ molybdenum resistance heating hot water bath, and 200 mg of OC-18 is put into vacuum. Attached to the vapor deposition equipment.
  • the heating boat containing OC- 1 The second hole transport layer having a film thickness of 30 nm was provided by heating by energization and depositing on the first hole transport layer at a deposition rate of 0. InmZ seconds.
  • the heating boat containing OC-6 and PD-1 was heated by energization, and co-evaporated on the second hole transport layer at a deposition rate of 0.2 nmZ second and 0.012 nm / second, respectively. Then, a light emitting layer with a thickness of 50 nm was provided, and then heated by energizing the heating boat containing OC-18, and deposited on the light emitting layer at a deposition rate of 0. InmZ seconds. An electron transport layer was provided. Finally, lithium fluoride 0.5 nm and then aluminum lOnm were vapor-deposited to form a cathode, and an organic EL device 2b-2 was produced.
  • the external extraction quantum efficiency, emission lifetime, and driving voltage also simply referred to as voltage
  • the light emission point and color unevenness were measured and evaluated. Measurements of drive voltage, non-light emission point, and color unevenness were performed in exactly the same manner as in Example 15.
  • the external extraction quantum efficiency, the light emission lifetime, and the driving voltage are expressed as relative values when the organic EL element lb-1 (1) is 100.
  • the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C. The measurement was performed using a spectral radiation luminance meter CS-1000 (manufactured by Coforce Minolta Sensing).
  • a blue light-emitting organic EL device 2b-1B (blue) was prepared in the same manner as in the production of the organic EL device 2b-1 of Example 16, except that PD-1 was changed to PD-12.
  • the organic EL element 2b-1 produced in Example 16 was used as the green light-emitting organic EL element.
  • a red light-emitting organic EL device 2b-1R (red) was produced in the same manner as in the organic EL device 2b-1 of Example 16, except that PD-1 was changed to PD-6.
  • a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 arranged in parallel on the same substrate (light emitting color is a pixel in a red region, a pixel in a green region, a pixel in a blue region, etc.)
  • the scanning line 5 and the plurality of data lines 6 in the wiring part are each made of a conductive material, and the scanning line 5 and the data line 6 are orthogonal to each other in a lattice shape.
  • the pixel 3 is connected at the orthogonal position (details are not shown).
  • the plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is received from a scanning line 5. When applied, it receives an image data signal from the data line 6 and emits light according to the received image data. In this way, a full-color display device was produced by appropriately juxtaposing the red, green, and blue pixels.
  • the PD-1 used for the anode side substrate 2b-1A and the cathode side substrate 2b-1 B is PD-1, PD-6,
  • a white light-emitting organic EL device 2b-1W (white) was produced in the same manner except that PD-12 was used.
  • the non-light emitting surface was covered with a glass case in the same manner as in Example 15 to obtain a lighting device.
  • the illuminating device could be used as a thin illuminating device that emits white light with high luminous efficiency and long emission life.
  • 100 mm X 100 mm X I. 1 mm glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, attached to a commercially available spin coater, and ⁇ -NPD (60 mg) was added.
  • ⁇ -NPD 60 mg was added.
  • a sample a was obtained by spin coating (film thickness: about 40 nm) under conditions of 1000 rpm and 30 sec.
  • a 100mm X 100mm X 1.1mm glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, and then a substrate for a commercial vacuum deposition apparatus.
  • Fixed to a holder 200 mg of a-NPD was placed in a molybdenum resistance heating boat and attached to a vacuum evaporation system. After pressure in the vacuum tank was reduced to 4 X 10- 4 Pa, a- NP D of containing and heated by supplying an electric current to the boat, deposited on a transparent supporting substrate at a deposition rate of 0. InmZsec (thickness 40 nm), a sample got b.
  • a 1mm glass substrate is ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, and then fixed to a substrate holder of a commercially available vacuum deposition device.
  • This substrate was attached to a commercially available spin coater, and a solution in which BCP (20 mg) was dissolved in 10 ml of toluene was used.
  • Spin coating (film thickness: about 10 nm) at 60 ° C for 1 hour under conditions of 1000 rpm and 30 sec. It dried and provided the electron carrying layer, and produced the cathode side member.
  • ITO substrate 100 mm X 100 mm X I. 1 mm thick ITO (indium tin oxide) filmed on lOOnm substrate ( ⁇ Techno Glass Co., Ltd. ⁇ 45)
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 4 1 (60 mg) in 10 ml of toluene was spin-coated (film thickness: about 40 nm) and ultraviolet light was used under conditions of 1000 rpm and 30 sec. After irradiation for 2 seconds, it was vacuum-dried at 60 ° C for 1 hour to form a hole transport layer.
  • the prepared cathode-side member and anode-side member were each pressed with a metal roller having a specific surface roughness under the conditions of Example 19 to obtain members having a surface roughness (Ra) shown in Table 13.
  • the electron transport layer of the cathode-side member and the light-emitting layer of the anode-side member obtained in this way are respectively provided.
  • Overlay Re are opposed, with a joining jig and pressed by the pressing force 0.
  • IMPa under a reduced pressure environment of 1 X 10- 2 Pa, adhesion, fixing, for 1 hour heat treatment at 100 ° C, the finished The device was sealed (using an epoxy adhesive) to produce an organic EL device 2c-1.

Abstract

An organic EL device which is free from separation at a bonding interface obtained by laminating and gives a high carrier mobility, a luminance, and a luminescent life. The organic EL device is characterized in that: (A) it comprises an anode, a cathode, and organic layers disposed therebetween, one of the electrodes has, formed thereon, a first organic layer comprising an organic compound having a reactive substituent, and the other electrode has a second organic layer formed thereon, the first and second organic layers having been laminated face to face to produce the device; (B) the film thickness (T) (EM) (nm) of a luminescent layer satisfies a given relationship, the luminescent layer comprises a phosphorescent material, and at least one of the organic layers is formed by laminating; (C) one of the organic layers comprises a phosphorescent compound, the two bonding surfaces of the organic layers to be laminated have a surface roughness (Ra) of 0.05-10 nm, and the ratio of the surface roughness between the two laminating surfaces is 0.5-2.0; and (D) at least one of the organic layers comprises a phosphorescent compound and the laminated surfaces have a peel strength of 10 N/m or higher.

Description

明 細 書  Specification
有機エレクト口ルミネッセンス素子、有機エレクト口ルミネッセンス素子の製 造方法、照明装置及びディスプレイ装置  ORGANIC ELECTRIC LIGHT EMITTING ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTRIC LIGHT EMITTING ELEMENT, LIGHTING DEVICE, AND DISPLAY DEVICE
技術分野  Technical field
[0001] 本発明は、有機エレクト口ルミネッセンス素子、有機エレクト口ルミネッセンス素子の 製造方法、照明装置及びディスプレイ装置に関する。  TECHNICAL FIELD [0001] The present invention relates to an organic electoluminescence device, a method for manufacturing an organic electroluminescence device, an illumination device, and a display device.
[0002] また、貼り合せ工程により、積層の負荷を減らし、かつ、貼り合せ面の密着性の低下 を招くことがなぐ発光効率が高くダークスポットの発生がない、長寿命な有機エレクト 口ルミネッセンス素子並びにその製造方法、および該有機エレクト口ルミネッセンス素 子を用いた照明装置および表示装置に関するものである。  [0002] In addition, the laminating process reduces the load on the stack and reduces the adhesion of the laminating surface. The luminous efficiency is high, and no dark spots are generated. In addition, the present invention relates to a manufacturing method thereof, and an illumination device and a display device using the organic electret luminescence element.
[0003] 更に、本発明は有機エレクト口ルミネッセンス素子及びその製造方法に関し、電極 基板上に有機層を形成したのち、電極基板を貼り合わせして形成する有機エレクト口 ルミネッセンス素子及びその製造方法に関する。  Furthermore, the present invention relates to an organic electroluminescent device and a method for manufacturing the same, and to an organic electroluminescent device formed by bonding an electrode substrate after forming an organic layer on the electrode substrate, and a method for manufacturing the organic electroluminescent device.
背景技術  Background
[0004] 有機エレクト口ルミネッセンス素子(以後、有機 EL素子ともいう)は電極と電極の間 を厚さわずか 0.: L m程度の有機材料の膜で構成する全固体素子であり、なお且つ その発光が 2〜20V程度の比較的低 、電圧で達成できることから、次世代の平面デ イスプレイや照明として期待されている技術である。  [0004] An organic electoluminescence device (hereinafter also referred to as an organic EL device) is an all-solid device composed of a film of an organic material having a thickness of about 0. Lm between electrodes. This technology is expected as next-generation flat display and illumination because light emission can be achieved at a relatively low voltage of about 2 to 20V.
[0005] 更に最近発見されたリン光発光を利用する有機 EL素子では、以前の蛍光発光を 利用するそれに比べ原理的に約 4倍の発光効率が実現可能であることから、その材 料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている  [0005] In addition, organic EL devices that use phosphorescence, which was recently discovered, can achieve a light emission efficiency that is approximately four times that of previous methods that use fluorescence. At the beginning, research and development of light-emitting element layer configurations and electrodes are being carried out around the world.
[0006] また、有機 EL素子の構成の特徴は透明電極と対向電極に有機層が挟まれただけ の単純なものであり、平面ディスプレイの代表である液晶ディスプレイに比べ、部品点 数が圧倒的に少ないため、製造コストも低く抑えられるはずであるが、現状では必ず しもそうではなぐ性能的にもコスト的にも液晶ディスプレイに大きく水をあけられてい る。コストに対しては、生産性の悪さがその要因と考えられる。 [0007] 現在商品化されて!/ヽる有機 ELの殆どは、低分子材料を基板上に蒸着して成膜す る、所謂蒸着法で製造されている。この蒸着法は精製が容易で高純度材料が得やす い低分子化合物に適用することができること、更に積層構造を作るのが容易なことか ら、効率、寿命という面で非常に優れているが、反面、例えば、 10— 4Pa以下という高 真空条件下で蒸着を行うため、成膜する装置に制約が加わり、実際には小さい面積 の基板にし力適用できず、更に複数層積層するとなると成膜に時間が力かりスルー プットが低いことが欠点である。特に照明用途ゃ大面積の電子ディスプレイに適用す る場合は問題となり、有機 ELがそのようなアプリケーションに実用されていない 1つの 原因となっている。 [0006] In addition, the structure of the organic EL element is simple as an organic layer is sandwiched between a transparent electrode and a counter electrode, and the number of parts is overwhelming compared to a liquid crystal display that is a typical flat display. However, the manufacturing cost should be kept low, but at the present time, liquid crystal displays are largely drained in terms of performance and cost. Poor productivity is thought to be a factor in cost. [0007] Most of the organic ELs currently commercialized! Are manufactured by a so-called vapor deposition method in which a low molecular material is deposited on a substrate to form a film. This vapor deposition method is very efficient in terms of efficiency and life because it can be applied to low-molecular compounds that are easy to purify and high-purity materials are easy to obtain. , the other hand, for example, for performing a vapor deposition under high vacuum conditions of 10- 4 Pa or less, joined by constraints apparatus for forming, in fact can not be applied to a substrate power of small area, further comprising when a plurality of layers stacked formation The disadvantage is that the membrane is time consuming and the throughput is low. In particular, lighting applications are problematic when applied to large-area electronic displays, and OLED is one of the reasons that is not practical for such applications.
[0008] また、高分子系は塗布プロセスにより有機層の形成が可能であるが、大面積化、発 光ムラ等、またコスト面で有利だが、純度が上げにくいこと、発光性能は蒸着系に及 ばないことが欠点である。  [0008] Although a polymer system can form an organic layer by a coating process, it is advantageous in terms of large area, uneven light emission, etc., and in terms of cost, but the purity is difficult to increase, and the light emission performance is superior to a vapor deposition system. The disadvantage is that it does not.
[0009] また、製造方式自体に着目してみると、(A)電極基板上に薄膜を逐次形成して行く 方法 (逐次成膜法)、(B)電極基板上と対向電極基板の 2つに適宜薄膜を形成した 後に貼合する方法 (貼合法)とがあり、貼合法の利点としては、(1)逐次製膜法では 最後に成膜する対向電極を予め準備しておけること、(2)基板にフィルムを用いるこ とでロールッゥロール方式での連続生産が可能になること、(3)接合面を有機層同士 にすれば有機層の積層が容易にできることなどが挙げられる。特に(1)や (2)は生産 性を飛躍的に改善する原動力になり、有機 EL素子の製造コストを大幅に低減するこ とも可能になると思われる。  [0009] Further, focusing on the manufacturing method itself, (A) a method of sequentially forming a thin film on an electrode substrate (sequential film formation method), (B) two methods, an electrode substrate and a counter electrode substrate. There is a method of bonding after forming a thin film appropriately (bonding method). The advantages of the bonding method are as follows: (1) In the sequential film forming method, the counter electrode to be finally formed can be prepared in advance ( 2) Use of a film for the substrate enables continuous production by a roll-to-roll system, and (3) The organic layers can be easily laminated if the bonding surfaces are made of organic layers. In particular, (1) and (2) will be the driving force for dramatically improving productivity, and it will be possible to significantly reduce the manufacturing cost of organic EL devices.
[0010] また、通常適用されている逐次成膜法では、有機層の成膜後に対向電極が成膜さ れるが、例えば、仕事関数の小さい金属を用いる陰極の場合、既に成膜されている 有機層にダメージを与え、有機 EL素子の発光特性や発光寿命などが大きく劣化し てしまうという問題点もあり、電極の成膜が一番の最初に行われる貼合法はこの観点 からも好ましい。  [0010] Further, in the sequential film forming method that is usually applied, the counter electrode is formed after the organic layer is formed. For example, in the case of a cathode using a metal having a small work function, the counter electrode is already formed. There is also a problem that the organic layer is damaged, and the light emitting characteristics and life of the organic EL element are greatly deteriorated. From this viewpoint, the bonding method in which the electrode film is formed first is preferable.
[0011] このように、貼合方式は生産性を革新的に改善する有効な技術手段ではあるが、 現在のところ貼合した時の接合面が必ずしも分子レベルで密着しておらず、結果とし てキャリア移動がスムーズに行へなくなること、また接合面が剥離し、発光素子として 機能しなくなるなどの問題点が挙げられている。特に、接合面の剥離はロールッゥロ ール方式では製造上大きな問題となる恐れがある。 [0011] As described above, the bonding method is an effective technical means for innovatively improving productivity. However, at present, the bonding surface when bonded is not necessarily in close contact at the molecular level. As a result, the carrier moves smoothly to the line, and the bonding surface is peeled off. Problems such as failure of function are listed. In particular, peeling of the joint surface may be a major manufacturing problem in the roll roll method.
[0012] このような観点力も貼合時の接合不良を改善する技術がいくつか開示されている。  [0012] Several techniques for improving the bonding failure at the time of pasting have been disclosed.
例えば、両方の接合層を同じ材料で構成されたものにすることで、層間の密着性を 向上させる技術 (例えば、特許文献 1参照。)が、また 2つの接合面を湿式法で作製し た完全に乾燥していない状態の膜を貼合する技術 (例えば、特許文献 2参照。)が紹 介されているが、両方とも接合面での密着性は不十分であり、根本的な解決とはなつ ていない。  For example, a technology that improves the adhesion between layers by making both bonding layers made of the same material (see, for example, Patent Document 1), and two bonding surfaces were produced by a wet method. Although a technique for bonding a film that has not been completely dried (see, for example, Patent Document 2) has been introduced, both of them have insufficient adhesion at the joint surface, which is a fundamental solution. There is not.
[0013] その他、接合面には高分子バインダーを存在させ、且つ素子周囲を接着または融 着することで接合面の密着性を向上させる技術 (例えば、特許文献 3参照。)が、また 同様の技術思想を発光層を転写法で作る技術と組み合わせ、リン光発光にも適用で きることが記載されている (例えば、特許文献 4参照。 )0し力しながら、周囲を接着す ることは素子駆動中の水分や酸素の悪影響を低減し、発光寿命を向上させること〖こ は寄与するが、前記接合面剥離を根本的に解決できる技術手段ではない。 [0013] In addition, a technique (for example, see Patent Document 3) that improves the adhesiveness of the bonding surface by allowing a polymer binder to be present on the bonding surface and bonding or fusing around the element is also similar. technology combined to make a light-emitting layer in the transfer method of the technical idea, even phosphorescent discloses that that can be applied (e.g., see Patent Document 4.) with 0 tooth force, the Rukoto be bonded around Although reducing the adverse effects of moisture and oxygen during device driving and improving the light emission lifetime contributes, it is not a technical means that can fundamentally solve the above-mentioned peeling of the joint surface.
[0014] また、有機 EL素子の層間を共有結合でつなぎ、層間の密着を向上させる技術が開 示されている(例えば、特許文献 5参照。 ) 0この技術思想は逐次成膜法において膜 を成膜する時、またはその後で有機層界面に共有結合を形成させる技術であり、貼 合法における界面接着の手段ではな 、。 [0014] Further, connected by covalent bonds interlayer of organic EL elements, techniques for improving the adhesion between the layers is shown open (e.g., Patent Document 5 reference.) The film in 0 this technical idea sequential deposition method This is a technique for forming a covalent bond at the interface of the organic layer during or after film formation, and not a means of interfacial adhesion in the bonding method.
[0015] 貼合法は前記接合面での不具合さえ改善してやれば、性能的にも製造プロセス的 にも良好な革新的な方法になりうるものである。  [0015] The bonding method can be an innovative method that is good both in terms of performance and manufacturing process, as long as the defects on the joint surface are improved.
[0016] 発明(A)、(C)はこれらの背景に基づきなされたものである。  Inventions (A) and (C) have been made based on these backgrounds.
[0017] また、高分子材料を用いる系は有機 EL素子の有機化合物層を塗布プロセスにより 形成が可能であるが、例えば、スピンコート、インクジェット、印刷、スプレーといった 塗布プロセスにより製造することができる。  [0017] Although a system using a polymer material can form an organic compound layer of an organic EL element by a coating process, it can be manufactured by a coating process such as spin coating, ink jet, printing, and spraying.
[0018] これは、大気圧下で製造することができるため低コストィ匕が可能であると同時に、有 機 EL素子の有機層を成膜する際には、必要な材料 (高分子材料および Zまたは低 分子材料)を溶液調製して薄膜塗布するため、複数の有機材料を精密に混合できる (例えば、発光ホスト材料に対するドーパント等の調整がしゃすい等)ことから、素子 を大面積ィ匕しても発光ムラができにくいという特徴がり、製造コストの面でも非常に有 利であるが、一般的な製造工程において有機層を成膜した後に形成される対抗電極 は、蒸着またはスパッタリングなどの真空プロセスでの生産になるため、結局そのェ 程がボトルネックとなり、革新的な生産プロセスにはなり得て 、な!/、。 [0018] This is possible because it can be manufactured under atmospheric pressure, so that it can be manufactured at a low cost. At the same time, it is necessary to use organic materials for organic EL elements when forming organic layers. (Or, low molecular weight materials) are prepared as a solution and applied in a thin film, so multiple organic materials can be mixed precisely (for example, the adjustment of dopants to the light-emitting host material, etc.) Although it is characterized by the fact that uneven light emission is difficult to occur even with a large area, and is very advantageous in terms of manufacturing cost, the counter electrode formed after forming an organic layer in a general manufacturing process is Since it is produced by vacuum processes such as vapor deposition or sputtering, this process eventually becomes a bottleneck and can be an innovative production process.
[0019] また、前記蒸着系とは対照的に、高分子材料の純度が上げられないこと、積層が難 しいことなど、発光性能上は蒸着系に及ばないのが実状であり、殆ど実用には供され て ヽな 、と 、う問題点もある。  [0019] Further, in contrast to the above-described vapor deposition system, the fact is that the purity of the polymer material cannot be increased and lamination is difficult. There is also the problem of being cunning.
[0020] 上記は、主に材料に起因する製造方式の違いであるが、素子を形成する方法自体 に着目してみると、  [0020] The above is the difference in the manufacturing method mainly due to the material, but focusing on the method of forming the element itself,
(a)電極基板上に薄膜を逐次形成して行く方法 (逐次成膜法)と、  (a) a method of sequentially forming a thin film on an electrode substrate (sequential film formation method);
(b)電極基板上と対抗電極基板の 2つに適宜薄膜を形成した後に貼合する方法( 貼合法)とがある。  (b) There is a method (bonding method) in which a thin film is appropriately formed on an electrode substrate and a counter electrode substrate and then bonded.
[0021] 貼合法の利点は、  [0021] The advantage of the bonding method is
(1)逐次成膜法では最後に成膜する対抗電極を予め準備しておけること、 (1) In the sequential deposition method, the last counter electrode to be deposited can be prepared in advance.
(2)基板にフィルムを用いることでロール toロール方式での連続生産が可能になる こと、 (2) Use of a film for the substrate enables continuous production in a roll-to-roll system.
(3)接合面を有機層同士にすれば有機層の積層が容易にできること、 等が挙げられる。  (3) The organic layer can be easily laminated if the bonding surfaces are made of organic layers, and the like.
[0022] 特に(1)や (2)は生産性を飛躍的に改善する原動力になり、もし技術が完成すれ ば有機 ELの最大の問題点であった製造コストを大幅に低減することも可能になると 思われる。一方、ロール toロール方式は貼合方式以外でもその技術が開示されてい る。  [0022] In particular, (1) and (2) are the driving force for dramatically improving productivity, and if the technology is completed, it is possible to significantly reduce the manufacturing cost, which was the biggest problem of organic EL. It seems that On the other hand, the technology of the roll-to-roll method is disclosed even in a method other than the bonding method.
[0023] 例えば、正孔輸送材料をリボン状にリールに巻かれた電極基板上にインクジェット 法により連続で成膜する方法が記載 (例えば、特許文献 6参照。)されているが、この 場合も前記高分子塗布方式で記載したように対抗電極の形成が、結局真空プロセス になってしまうために、ロール toロール方式のメリットが大幅に目減りしてしまい実質 それほど生産性が向上しな 、と 、う問題点がある。  [0023] For example, a method of continuously forming a hole transport material on an electrode substrate wound in a ribbon shape on a reel by an inkjet method has been described (for example, see Patent Document 6). As described in the polymer coating method, since the formation of the counter electrode eventually becomes a vacuum process, the merit of the roll-to-roll method is greatly diminished, and the productivity is not substantially improved. There are problems.
[0024] このように、貼合方式は生産性を革新的に改善する有効な技術手段ではあるが、 現在のところ、この方式で作製された有機 EL素子は、性能上の問題を抱え、また、 的確なブレークスルーが見つかっておらず、発展途上にあるといった状態である。 [0024] As described above, the bonding method is an effective technical means for innovatively improving productivity. At present, organic EL devices fabricated using this method have problems in performance and are still in the process of being developed because no accurate breakthrough has been found.
[0025] その理由はいくつかあるが、原理的に考えてみると貼合した時の接合面が必ずしも 分子レベルで密着しておらず結果としてキャリア移動がスムーズでない、さらに、接合 面が剥離しやすぐ発光素子として機能しなくなる場合がある等の問題点あると予想 される。 [0025] There are several reasons for this, but considering the principle, the bonding surface when bonded is not necessarily in close contact at the molecular level, and as a result, carrier movement is not smooth, and the bonding surface peels off. It is expected that there will be problems such as the fact that it will soon not function as a light emitting element.
[0026] 特に接合面の剥離は、ロール toロール方式では変わらず巻き取り工程が存在する ために、その時に剥離がおきやすぐ製造上大きな問題となるし、基板をフィルムや プラスチック基材などの可撓性基材にした際には使用時に素子が破壊されてしまうと V、う致命的な欠陥になってしまうと 、う問題点が挙げられる。  [0026] In particular, the peeling of the joint surface is the same as in the roll-to-roll method, and there is a winding process. When a flexible substrate is used, if the element is destroyed during use, V, and if it becomes a fatal defect, there is a problem.
[0027] このような観点力も貼合時の接合不良を改善する技術がいくつか開示されている。 [0027] Some techniques for improving the bonding failure at the time of bonding are also disclosed.
[0028] 例えば、両方の接合層を同じ材料で構成されたものにすることで、層間の密着性を 向上させる技術 (例えば、特許文献 1参照。)や、 2つの接合面を湿式法で作製した 完全に乾燥していない状態の膜を貼合する技術 (例えば、特許文献 2参照。)が紹介 されて 、るが、両方とも接合面での密着性は不十分であり根本的な解決とはなって いない。 [0028] For example, by making both the bonding layers made of the same material, a technique for improving the adhesion between the layers (for example, see Patent Document 1) and two bonding surfaces are produced by a wet method. However, both of them have introduced a technology for bonding a film that is not completely dry (see, for example, Patent Document 2). It is not.
[0029] その他にも、接合面には高分子ノインダーを存在させ、かつ、素子周囲を接着また は融着することで接合面の密着性を向上させる技術 (例えば、特許文献 3参照。)が 、同様の技術思想を、発光層を転写法で作る技術と組み合わせ、リン光発光にも適 用できることが記載 (例えば、特許文献 4参照。)されている。  [0029] In addition, there is a technique (for example, refer to Patent Document 3) in which a polymer noinder is present on the bonding surface, and the adhesion of the bonding surface is improved by bonding or fusing around the element. It is described that the same technical idea can be applied to phosphorescence emission by combining with a technique for forming a light emitting layer by a transfer method (see, for example, Patent Document 4).
[0030] 周囲を接着することは、素子駆動中の水分や酸素の悪影響を低減し発光寿命を向 上させることには寄与するが、前記接合面剥離を根本的に解決できる技術手段とは なりえて ヽな ヽという問題点がある。  [0030] Adhering the surroundings contributes to reducing the adverse effects of moisture and oxygen during driving of the element and improving the light emission lifetime, but it is a technical means that can fundamentally solve the above-mentioned peeling of the joint surface. There is a problem of ecstatic ヽ.
[0031] また、薄膜界面の剥離は、貼合法だけの問題ではな!、。  [0031] Further, peeling of the thin film interface is not a problem only by the bonding method! ,.
[0032] 現在商品化されて!/ヽる有機 EL素子は、全てガラスが基板になって ヽる可撓性のな い発光素子である力 前記の如ぐ全固体素子である有機 EL素子はフィルムなどの 可撓性のある基板への適用が可能 (いわゆる、フレキシブルディスプレイの実現)で あることが、大きな特徴である。 [0033] 現状では、可撓性基材のガスノリア性が不十分なことが、その実用化を遅らせて 、 ると言われているが、それ以外の課題として、有機層と対抗電極層との剥離も大きな 課題である。 [0032] The organic EL elements that are currently commercialized! / The power that is a non-flexible light emitting element that is made of glass as a substrate is the all-solid-state organic EL element as described above. A major feature is that it can be applied to flexible substrates such as films (so-called flexible displays). [0033] At present, it is said that the flexible substrate has insufficient gas noria, which delays its practical application. However, as another problem, there is a problem between the organic layer and the counter electrode layer. Peeling is also a major issue.
[0034] この課題は現状が可撓性のない素子であるため、顕在化した課題としてあまり取り 上げられていないが、原理上有機物と対抗電極を形成する金属との接着性は低ぐ 根本的な問題である。  [0034] Since this is an inflexible element at present, this issue has not been taken up as an obvious issue. However, in principle, the adhesion between the organic substance and the metal forming the counter electrode is low. It is a serious problem.
[0035] また、通常適用されている逐次成膜法では、発光層やキャリア輸送 ·注入層などの 有機層を成膜した後に、対抗電極 (通常は陰極、具体的には A1や Ca、 Baなどの仕 事関数の小さい金属)を成膜することになるが、その時、すでに成膜されている有機 層にダメージを与えてしまうと有機 EL素子の発光特性や発光寿命などが大きく劣化 してしまうという問題点がある。  [0035] Further, in the sequential deposition method that is usually applied, after forming an organic layer such as a light emitting layer and a carrier transport / injection layer, a counter electrode (usually a cathode, specifically A1, Ca, Ba, etc.) is formed. However, if the organic layer already formed is damaged, the emission characteristics and lifetime of the organic EL element will be greatly degraded. There is a problem that.
[0036] つまり、対抗電極と有機層界面の密着性を上げるために対抗電極を強 ヽエネルギ 一状態で成膜することは不可能であり、実質上、真空蒸着や、穏和な条件下でのス ノ ッタリングで成膜するしかすべがない状況である。  In other words, it is impossible to form the counter electrode in a strong energy state in order to increase the adhesion between the counter electrode and the organic layer interface. There is no choice but to deposit the film by means of notching.
[0037] この問題点を解決する手段として、最も対抗電極に近い有機層の上に、半導体材 料や金属カゝらなる緩衝層を設ける技術 (例えば、特許文献 7及び特許文献 8参照。 ) が開示されている。  [0037] As a means for solving this problem, a technique of providing a buffer layer made of a semiconductor material or a metal cover on an organic layer closest to the counter electrode (see, for example, Patent Document 7 and Patent Document 8). Is disclosed.
[0038] 確かにこのような緩衝層を間に入れることで、対抗電極成膜時のダメージを低減す ることは可能ではある力 製造プロセス的には負荷が増えることになり、生産性の面か ら決して好まし!/ヽものではな!/、。  [0038] Certainly, it is possible to reduce the damage at the time of film formation of the counter electrode by interposing such a buffer layer in between. This increases the load in the manufacturing process and increases the productivity. I never liked it!
[0039] 一方で、リン光発光を用いた有機 EL素子の発光の高効率化、長寿命化の対策とし て、素子構造の多層化があげられるが、塗布法では、有機層の上層の塗布液溶媒に より下層の膜表面の溶解が生じてしまい下層の膜に乱れが生じることがあるため、複 数の有機層を積層して形成するのが極めて困難であった。 [0039] On the other hand, as a measure for improving the light emission efficiency and extending the life of organic EL elements using phosphorescence, multilayering of the element structure can be mentioned. In the coating method, the upper layer of the organic layer is applied. Since the lower layer film surface may be dissolved by the liquid solvent and the lower layer film may be disturbed, it is extremely difficult to form a stack of a plurality of organic layers.
[0040] これに対し、下層の主材料の、溶解度パラメータの可溶範囲外の溶媒に上層の材 料を溶解させ、下層薄膜表面を乱れさせること無ぐ積層する技術が開示されている[0040] On the other hand, a technique of laminating without dissolving the upper layer material in a solvent outside the solubility range of the solubility parameter of the main material of the lower layer without disturbing the surface of the lower layer thin film is disclosed.
(例えば、特許文献 9参照。)。 (For example, see Patent Document 9).
[0041] また、下層の主材料の、溶解度パラメータの可溶範囲外の溶媒 (貧溶媒)を上層の 材料を溶解度パラメータの可溶範囲内の溶媒 (良溶媒)と貧溶媒の混合溶媒に溶解 させ、溶解度を落として積層する技術が開示されている (例えば、特許文献 10参照) [0041] In addition, a solvent (poor solvent) outside the solubility range of the solubility parameter of the lower layer main material may be removed from the upper layer. Disclosed is a technique in which a material is dissolved in a mixed solvent of a solvent (good solvent) and a poor solvent within the solubility range of the solubility parameter, and the solubility is lowered (for example, see Patent Document 10).
[0042] し力しながら、燐光発光を用いた有機 EL素子に最適な発光層の前後に、正孔輸 送層や電子輸送層などの機能層を持つ、有機層を 3層以上有する素子においては、 前述の方法により製造しょうとすると、有機 EL素子材料の制約が飛躍的に増大し、 任意の有機 EL材料に対して適用が困難であり、本来の多層化のメリットが失われて しまうという課題がある。 [0042] In an element having three or more organic layers having functional layers such as a hole transport layer and an electron transport layer before and after a light emitting layer optimal for an organic EL element using phosphorescence, If the above method is used for manufacturing, the restrictions on the organic EL element material will increase drastically, making it difficult to apply to any organic EL material, and the benefits of multi-layering will be lost. There are challenges.
[0043] 発明(B)は以上の如き背景に基づきなされたものである。 [0043] The invention (B) has been made based on the background as described above.
[0044] また、製造プロセスの生産性の観点から、貼合法の製造プロセスを考えてみる。 [0044] Considering the manufacturing process of the bonding method from the viewpoint of the productivity of the manufacturing process.
[0045] 貼合は必要な層を全部成膜した後に行われるため、透明電極や対向電極の成膜 は一番最初に行われることになる。 [0045] Since the bonding is performed after forming all necessary layers, the transparent electrode and the counter electrode are formed first.
[0046] 金属や金属酸化物を成膜する際は、性能のよ!ヽ膜とするために堆積させる時また は製膜後に高いエネルギーを印加することが望まれるが、貼合法はそれを可能にす るひとつの手段であると考えることもできる。 [0046] When forming a film of metal or metal oxide, it is desirable to apply high energy during deposition or after film formation in order to form a film, but this is possible with the bonding method It can also be considered as a means of achieving this.
[0047] つまり、貼合する際の接合面を有機層同士にするとすれば、透明電極と対向電極 はそれぞれ性能や生産性の面で最も相応しい方法で予め成膜しておくことができる [0047] In other words, if the bonding surfaces for bonding are organic layers, the transparent electrode and the counter electrode can be formed in advance by a method most suitable in terms of performance and productivity, respectively.
[0048] その上に適宜有機層を積層して、最後に貼合すれば、前記接合面での不具合さえ 改善してやれば、性能的にも製造プロセス的にも良好な革新的な方法になりうるもの である。 [0048] If an organic layer is appropriately laminated thereon and pasted at the end, it can be an innovative method that is good in terms of performance and manufacturing process as long as the defect on the joint surface is improved. Is.
[0049] 発明(D)はこのような背景に基づきなされたものである。  [0049] The invention (D) has been made based on such a background.
特許文献 1:特開 2002 - 203675号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-203675
特許文献 2:特開平 9 - 306667号公報  Patent Document 2: Japanese Patent Laid-Open No. 9-306667
特許文献 3:特開平 9 7736号公報  Patent Document 3: Japanese Patent Laid-Open No. 9 7736
特許文献 4:特開 2004 - 79300号公報  Patent Document 4: Japanese Unexamined Patent Application Publication No. 2004-79300
特許文献 5:特開 2004 - 103401号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2004-103401
特許文献 6:特開 2005 - 327677号公報 特許文献 7:特開 2005 - 243411号公報 Patent Document 6: Japanese Patent Laid-Open No. 2005-327677 Patent Document 7: Japanese Unexamined Patent Application Publication No. 2005-243411
特許文献 8 :特開 2005— 183013号公報  Patent Document 8: Japanese Unexamined Patent Application Publication No. 2005-183013
特許文献 9:特開 2002— 299061号公報  Patent Document 9: Japanese Unexamined Patent Application Publication No. 2002-299061
特許文献 10:特開 2005 - 259523号公報  Patent Document 10: Japanese Patent Application Laid-Open No. 2005-259523
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0050] 従って、発明 (A)及び (C)の目的は、貼合法によって作製された有機 EL素子の接 合面での密着性を改善し、接合面が剥離することがなぐ且つキャリア移動が高めら れ、高い発光輝度及び発光寿命が得られる有機 EL素子、及びその製造方法、また 該有機 EL素子用いた照明装置、ディスプレイ装置を提供することにある。  [0050] Therefore, the objects of the inventions (A) and (C) are to improve the adhesion at the bonding surface of the organic EL device produced by the bonding method, the bonding surface does not peel off, and the carrier moves. An object of the present invention is to provide an organic EL element that is enhanced and has high emission luminance and emission lifetime, a manufacturing method thereof, and a lighting device and a display apparatus using the organic EL element.
[0051] また、発明(B)の目的は、発光効率が高く長寿命である有機エレクト口ルミネッセン ス素子を低コストで製造する製造方法を提供し、且つ、該製造方法により作製された 、有機エレクト口ルミネッセンス素子、照明装置及びディスプレイ装置を提供すること である。  [0051] Further, the object of the invention (B) is to provide a production method for producing an organic-electric-luminescence device having high luminous efficiency and a long lifetime at a low cost, and the organic method produced by the production method is provided. It is an object to provide an electroluminescence device, an illumination device, and a display device.
[0052] また、発明(D)の目的は、一対の対向電極の少なくとも一方に発光層を含む有機 層を形成した後、互 ヽの対向電極を貼合して形成する有機エレクト口ルミネッセンス の製造方法において、貼合面の接着強度が高ぐ高耐久性で、発光性能や発光寿 命の良好な有機エレクト口ルミネッセンス素子を提供するものである。  [0052] In addition, the object of the invention (D) is to produce an organic electoluminescence that is formed by forming an organic layer including a light emitting layer on at least one of a pair of counter electrodes, and then bonding the counter electrodes to each other. In the method, an organic electoluminescence device having a high durability with a high bonding strength on a bonding surface and a good light emitting performance and life is provided.
課題を解決するための手段  Means for solving the problem
[0053] 発明(A)の上記目的は、下記 1〜12の手段により達成される。  [0053] The above object of the invention (A) is achieved by the following means 1 to 12.
[0054] 1.陽極と陰極との間に複数の有機層を有する有機エレクト口ルミネッセンス素子で あって、一方の電極上に反応性置換基を有する有機化合物を含有する第 1の有機 層を少なくとも 1層形成し、他方の電極上に第 2の有機層を少なくとも 1層形成し、第 1 の有機層と第 2の有機層を互いに対向させて貼り合わせて作製したことを特徴とする 有機エレクト口ルミネッセンス素子。  [0054] 1. An organic electoluminescence device having a plurality of organic layers between an anode and a cathode, wherein at least a first organic layer containing an organic compound having a reactive substituent is formed on one electrode. One layer is formed, at least one second organic layer is formed on the other electrode, and the first organic layer and the second organic layer are bonded to face each other. Mouth luminescence element.
[0055] 2.前記第 2の有機層に反応性置換基を有する有機化合物を含有することを特徴と する前記 1に記載の有機エレクト口ルミネッセンス素子。  [0055] 2. The organic electroluminescent device according to 1 above, wherein the second organic layer contains an organic compound having a reactive substituent.
[0056] 3.前記複数の有機層のうち少なくとも 1層がリン光性発光化合物を含有することを 特徴とする前記 1または 2に記載の有機エレクト口ルミネッセンス素子。 [0056] 3. At least one of the plurality of organic layers contains a phosphorescent light-emitting compound. 3. The organic electroluminescence device according to 1 or 2 above, wherein
[0057] 4.前記反応性置換基が下記置換基群から選ばれる反応性置換基であることを特 徴とする前記 1〜3のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 [0057] 4. The organic electroluminescent device according to any one of 1 to 3 above, wherein the reactive substituent is a reactive substituent selected from the following substituent group.
[0058] [化 1] Rc Rll
Figure imgf000010_0001
[0058] [Chemical 1] Rc Rll
Figure imgf000010_0001
O  O
— NCO — NCS 一 ^  — NCO — NCS One ^
O  O
Figure imgf000010_0002
Figure imgf000010_0002
[0059] (上記反応性置換基において、 Aは下記一般式 (a)、 一 O 及び S 力らなる連結 基群から選択される少なくとも 1つを有する連結基、または該連結基の複数の組み合 わせで表される 2価の連結基を表し、 Bは水素原子または置換基を表す。 ) [0059] (In the reactive substituent, A is represented by the following general formula (a), a linking group having at least one selected from the group of linking groups consisting of 1 O and S force, or a plurality of combinations of the linking groups) Represents a divalent linking group represented by a combination, and B represents a hydrogen atom or a substituent.
[0060] [化 2] 一般式 (a)  [0060] [Chemical formula 2] General formula (a)
[0061] (式中、 R、 R' は各々水素原子または置換基を表し、 nは 1以上の整数を表す。 ) [In the formula, R and R ′ each represent a hydrogen atom or a substituent, and n represents an integer of 1 or more.]
5.前記第 1の有機層と第 2の有機層を互いに対向させて貼り合わせ、反応性置換 基を有する有機化合物間で結合を形成させたことを特徴とする前記 1〜4のいずれ 力 1項に記載の有機エレクト口ルミネッセンス素子。  5. The force according to any one of 1 to 4 above, wherein the first organic layer and the second organic layer are bonded to face each other to form a bond between the organic compounds having a reactive substituent 1 The organic electoluminescence device according to item.
[0062] 6.前記第 1の有機層と第 2の有機層との界面で前記結合を形成させたことを特徴と する前記 1〜5のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 [0062] 6. The organic electroluminescent device according to any one of 1 to 5 above, wherein the bond is formed at an interface between the first organic layer and the second organic layer.
[0063] 7.前記結合が共有結合であることを特徴とする前記 5または 6に記載の有機エレク トロノレミネッセンス素子。 [0063] 7. The organic electr as described in 5 or 6 above, wherein the bond is a covalent bond Tronoreminence element.
[0064] 8.前記第 1の有機層と第 2の有機層が同一の組成を有し、結合が、第 1の有機層 及び第 2の有機層のガラス転移温度 (Tg)以下で形成されることを特徴とする請求の 範囲第 5項〜第 7項のいずれか 1項に記載の有機エレクト口ルミネッセンス素子。  [0064] 8. The first organic layer and the second organic layer have the same composition, and the bond is formed below the glass transition temperature (Tg) of the first organic layer and the second organic layer. The organic-electric-mouth luminescence element according to any one of claims 5 to 7, wherein:
[0065] 9.前記有機層の少なくとも 1層が湿式法で形成されたことを特徴とする前記 1〜8 のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。  [0065] 9. The organic electroluminescent device according to any one of 1 to 8, wherein at least one of the organic layers is formed by a wet method.
[0066] 10.陽極と陰極との間に複数の有機層を有する前記 1〜9のいずれ力 1項に記載 の有機エレクト口ルミネッセンス素子の製造方法であって、一方の電極上に第 1の有 機層を少なくとも 1層形成する工程、他方の電極上に第 2の有機層を少なくとも 1層形 成する工程、更に第 1の有機層と第 2の有機層を互いに対向させて貼り合わせるェ 程とを有することを特徴とする有機エレクト口ルミネッセンス素子の製造方法。  [0066] 10. The method of manufacturing an organic electoluminescence device according to any one of 1 to 9 above, wherein the organic electroluminescence device has a plurality of organic layers between an anode and a cathode, Forming at least one organic layer, forming at least one second organic layer on the other electrode, and bonding the first organic layer and the second organic layer opposite to each other. The manufacturing method of the organic electoluminescence device characterized by having.
[0067] 11.前記 1〜9のいずれか 1項に記載の有機エレクト口ルミネッセンス素子を用いた ことを特徴とする照明装置。 [0067] 11. An illuminating device using the organic electoluminescence element according to any one of 1 to 9 above.
[0068] 12.前記 1〜9のいずれか 1項に記載の有機エレクト口ルミネッセンス素子を用いた ことを特徴とするディスプレイ装置。 [0068] 12. A display device using the organic-electric-luminescence element according to any one of 1 to 9.
[0069] また、発明(B)の上記目的は下記の構成 13〜22により達成された。 [0069] Further, the above object of the invention (B) has been achieved by the following structures 13 to 22.
[0070] 13.支持基板上に少なくとも陽極、陰極を有し、該陽極と該陰極間に少なくとも一 層の発光層を含む有機層を有する有機エレクト口ルミネッセンス素子の製造方法に おいて、 [0070] 13. In a method for producing an organic electoluminescence device having at least an anode and a cathode on a support substrate, and an organic layer including at least one light emitting layer between the anode and the cathode.
該発光層の総膜厚 T(EM) (nm)が下記関係式(1)を満たし、前記発光層の少なく とも一層がリン光発光材料を有し、且つ、該有機層の少なくとも 1層が、層 Aと層 Bとの 貼合により形成する工程を有することを特徴とする有機エレクト口ルミネッセンス素子 の製造方法。  The total thickness T (EM) (nm) of the light emitting layer satisfies the following relational expression (1), at least one of the light emitting layers has a phosphorescent light emitting material, and at least one of the organic layers has The manufacturing method of the organic electoluminescence device characterized by having the process formed by bonding of the layer A and the layer B.
[0071] 関係式 (1) [0071] Relational expression (1)
40nm<T(EM)≤ lOOnm  40nm <T (EM) ≤ lOOnm
14.前記有機層が三層以上であることを特徴とする前記 13に記載の有機エレクト 口ルミネッセンス素子の製造方法。  14. The method for producing an organic electroluminescent device according to 13, wherein the organic layer has three or more layers.
[0072] 15.前記層 A、前記層 Bが、各々主成分として同一構造の化合物を含有しているこ とを特徴とする前記 13または 14に記載の有機エレクト口ルミネッセンス素子の製造方 法。 [0072] 15. The layer A and the layer B each contain a compound having the same structure as a main component. 15. A method for producing an organic electoluminescence device as described in 13 or 14 above.
[0073] 16.前記層 Aまたは前記層 Bのいずれかがリン光発光材料を含むことを特徴とする 前記 13〜15のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子の製造方法  [0073] 16. The method for producing an organic electoluminescence device according to any one of the above 13 to 15, wherein either the layer A or the layer B contains a phosphorescent material.
[0074] 17.前記層 A及び前記層 Bが各々リン光発光材料を含むことを特徴とする前記 13 〜 15のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。 [0074] 17. The method of producing an organic electoluminescence device according to any one of items 13 to 15, wherein the layer A and the layer B each contain a phosphorescent material.
[0075] 18.前記層 A及び前記層 Bが同一のリン光発光材料を含む層であることを特徴とす る前記 17に記載の有機エレクト口ルミネッセンス素子の製造方法。  [0075] 18. The method of producing an organic electroluminescent device according to 17 above, wherein the layer A and the layer B are layers containing the same phosphorescent material.
[0076] 19.前記リン光発光材料が、イリジウム錯体または白金錯体であることを特徴とする 前記 13〜18のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子の製造方法  [0076] 19. The method for producing an organic electroluminescent device according to any one of 13 to 18, wherein the phosphorescent material is an iridium complex or a platinum complex.
[0077] 20.前記 13〜19のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子の製 造方法により作製されたことを特徴とする有機エレクト口ルミネッセンス素子。 [0077] 20. An organic electoluminescence device produced by the method for producing an organic electroluminescence device according to any one of the items 13 to 19, described above.
[0078] 21.前記 20に記載の有機エレクト口ルミネッセンス素子を具備することを特徴とする 照明装置。 [0078] 21. An illumination device comprising the organic-electric-mouth luminescence element as described in 20 above.
[0079] 22.前記 20に記載の有機エレクト口ルミネッセンス素子を具備することを特徴とする ディスプレイ装置。  [0079] 22. A display device comprising the organic-electric-luminescence element as described in 20 above.
[0080] また、発明(C)の上記目的は以下の 23〜31の構成により達成される。  [0080] The above object of the invention (C) is achieved by the following configurations 23 to 31.
[0081] 23.少なくとも n層 (n≥0)の有機層を有する第 1の電極基板と、少なくとも m層(m  [0081] 23. A first electrode substrate having at least n (n≥0) organic layers, and at least m layers (m
+n≥ 1)の有機層を有する第 2の電極基板を対向させて貼り合わせ作製する有機レ タトロルミネッセンス素子において、前記有機層の少なくとも一つ力 Sリン光性発光化合 物を含有し、対向する 2つの積層面の表面粗さ(Ra)がそれぞれ 0. 05〜: LOnmの範 囲にあり、 2つの積層面表面の、表面粗さの比率が 0. 5〜2. 0以内であることを特徴 とする有機エレクト口ルミネッセンス素子。  + n≥1) In an organic letter-light-emitting element produced by bonding a second electrode substrate having an organic layer facing each other, the organic layer contains at least one S phosphorescent compound of the organic layer, The surface roughness (Ra) of the two laminated surfaces is in the range of 0.05 to: LOnm, and the ratio of the surface roughness of the two laminated surfaces is within 0.5 to 2.0 An organic-elect mouth luminescence device characterized by
[0082] 24.貼り合わせる 2つの積層面が互いに有機層であることを特徴とする前記 23に 記載の有機エレクト口ルミネッセンス素子。  [0082] 24. The organic electroluminescent device according to 23 above, wherein the two laminated surfaces to be bonded together are organic layers.
[0083] 25.貼り合せる 2つの積層面の少なくとも一方に反応性置換基を有する有機化合 物を含有することを特徴とする前記 23または 24に記載の有機エレクト口ルミネッセン ス素子。 [0083] 25. Organic compound having reactive substituents on at least one of two laminated surfaces to be bonded 25. The organic electroluminescent mouth luminescence device as described in 23 or 24 above, which contains a product.
[0084] 26.貼り合せる積層面の両方に反応性置換基を有する有機化合物を含有すること を特徴とする前記 23〜25のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子  [0084] 26. The organic electroluminescent device according to any one of 23 to 25 above, which contains an organic compound having a reactive substituent on both of the laminated surfaces to be bonded.
[0085] 27.反応性置換基が下記一般式で表されることを特徴とする前記 25または 26に記 載の有機エレクト口ルミネッセンス素子。 [0085] 27. The organic electoluminescence device as described in 25 or 26 above, wherein the reactive substituent is represented by the following general formula.
[0086] [化 3] ^ ~≡ — NH2 —OH [0086] [Chemical 3] ^ ~ ≡ — NH 2 —OH
Figure imgf000013_0001
Figure imgf000013_0001
[0087] 28.有機層の積層方法が湿式方法であることを特徴とする前記 23〜27のいずれ 力 1項に記載の有機エレクト口ルミネッセンス素子。 [0087] 28. The organic electroluminescent device according to any one of 23 to 27 above, wherein the organic layer is laminated by a wet method.
[0088] 29.少なくとも n層 (n≥0)の有機層を有する第 1の電極基板と、少なくとも m層(m [0088] 29. a first electrode substrate having at least n (n≥0) organic layers, and at least m layers (m
+n≥ 1)の有機層を有する第 2の電極基板を対向させて貼り合わせる、有機エレクト 口ルミネッセンス素子の製造方法であって、前記有機層の少なくとも一つがリン光性 発光化合物を含有し、対向する 2つの積層面の表面粗さ (Ra)がそれぞれ 0. 05〜1 Onmの範囲にあり、 2つの積層面表面の、表面粗さの比率が 0. 5〜2. 0以内である ことを特徴とする有機エレクト口ルミネッセンス素子の製造方法。  + n≥1) is a method for producing an organic electroluminescent device, wherein a second electrode substrate having an organic layer facing each other is bonded, wherein at least one of the organic layers contains a phosphorescent light-emitting compound, The surface roughness (Ra) of two opposing laminated surfaces is in the range of 0.05 to 1 Onm, and the ratio of the surface roughness of the two laminated surfaces is within 0.5 to 2.0. The manufacturing method of the organic electoluminescence device characterized by these.
[0089] 30.前記 23〜28の!、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子を備え たことを特徴とする照明装置。  [0089] 30. An illuminating device comprising the organic-electric-luminescence element according to 23 to 28!
[0090] 31.前記 23〜28のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子を備え たことを特徴とするディスプレイ装置。  [0090] 31. A display device comprising the organic electoluminescence element according to any one of 23 to 28 above.
[0091] 更に、発明(D)の目的は、以下 32〜40の構成により解決することができた。  Further, the object of the invention (D) could be solved by the following configurations 32 to 40.
[0092] 32.少なくとも n層 (n≥0)の有機層を有する第 1の電極基板と、少なくとも m層(m ≥0)の有機層を有する第 2の電極基板を貼り合わせて形成された有機エレクト口ルミ ネッセンス素子において、前記有機層(m+n≥l)の少なくとも 1つにりん光性発光化 合物を含有し、貼り合せた面の剥離強度が lONZm以上であることを特徴とする有 機エレクト口ルミネッセンス素子。 [0092] 32. A first electrode substrate having at least n (n≥0) organic layers, and at least m layers (m In an organic electoluminescence element formed by laminating a second electrode substrate having an organic layer of ≥0), a phosphorescent light-emitting compound is formed on at least one of the organic layers (m + n≥l). An organic electoluminescence element characterized in that the peel strength of the bonded surface is lONZm or more.
[0093] 33.貼り合せる面が互いに有機層であることを特徴とする前記 32に記載の有機ェ レクト口ルミネッセンス素子。  [0093] 33. The organic electroluminescent device according to 32 above, wherein the surfaces to be bonded together are organic layers.
[0094] 34.貼り合せる面の少なくとも一方に反応性置換基を有する有機化合物を含有す ることを特徴とする前記 32または 33に記載の有機エレクト口ルミネッセンス素子。  [0094] 34. The organic electroluminescent device according to 32 or 33 above, which contains an organic compound having a reactive substituent on at least one of the surfaces to be bonded.
[0095] 35.貼り合せる面の両方に反応性置換基を有する有機化合物を含有することを特 徴とする前記 32〜34の何れ力 1項の記載の有機エレクト口ルミネッセンス素子。  [0095] 35. The organic electroluminescent device according to any one of 32 to 34 above, which contains an organic compound having a reactive substituent on both surfaces to be bonded.
[0096] 36.反応性置換基が下記一般式(1)で表されることを特徴とする前記 34または 35 に記載の有機エレクト口ルミネッセンス素子。  [0096] 36. The organic electroluminescent device according to 34 or 35, wherein the reactive substituent is represented by the following general formula (1):
[0097] [化 4]  [0097] [Chemical 4]
Figure imgf000014_0001
Figure imgf000014_0001
[0098] 37.有機層の形成方法が湿式方法であることを特徴とする前記 32〜36の何れか 1 項に記載の有機エレクト口ルミネッセンス素子。 [0098] 37. The organic electoluminescence device according to any one of 32 to 36 above, wherein the organic layer is formed by a wet method.
[0099] 38.前記 32〜37の何れ力 1項に記載の有機エレクト口ルミネッセンス素子を製造 する有機エレクト口ルミネッセンス素子の製造方法にぉ 、て、前記有機層の少なくとも[0099] 38. In the method of manufacturing an organic electoluminescence device for producing an organic electroluminescence device according to any one of 32 to 37, at least of the organic layer.
1つにりん光性発光化合物を含有し、貼り合せた面の剥離強度が lONZm以上であ ることを特徴とする有機エレクト口ルミネッセンス素子の製造方法。 A method for producing an organic electoluminescence device, characterized in that the phosphorescent light-emitting compound is contained in one and the peel strength of the bonded surface is lONZm or more.
[0100] 39.前記 32〜37の何れ力 1項に記載の有機エレクト口ルミネッセンス素子を備えた ことを特徴とする照明装置。 [0101] 40.前記 32〜37の何れ力 1項に記載の有機エレクト口ルミネッセンス素子を備えた ことを特徴とするディスプレイ装置。 [0100] 39. An illuminating device comprising the organic electoluminescence element according to any one of 32 to 37 above. [0101] 40. A display device comprising the organic electoluminescence element according to any one of 32 to 37 above.
発明の効果  The invention's effect
[0102] (A)請求の範囲第 1項〜第 12項に記載された発明により、貼合法によって作製さ れた有機 EL素子の接合面での密着性を改善し、接合面が剥離することがなぐ且つ キャリア移動が高められ、高い発光輝度及び発光寿命が得られる有機 EL素子、及 びその製造方法、また該有機 EL素子用いた照明装置、ディスプレイ装置を提供する ことができた。  [0102] (A) The invention described in claims 1 to 12 improves the adhesion at the bonding surface of the organic EL element produced by the bonding method, and the bonding surface peels off. It was possible to provide an organic EL element capable of achieving high light emission luminance and light emission lifetime, and a manufacturing method thereof, and an illumination device and a display device using the organic EL element.
[0103] (B)請求の範囲第 13項〜第 22項に記載された発明により、発光効率が高く長寿 命である有機エレクト口ルミネッセンス素子を低コストで製造する製造方法を提供し、 且つ、該製造方法により作製された、有機エレクト口ルミネッセンス素子、照明装置及 びディスプレイ装置を提供することができた。  [0103] (B) According to the invention described in claims 13 to 22, there is provided a production method for producing an organic electoluminescence device having high luminous efficiency and long life at low cost, and It was possible to provide an organic electoluminescence element, a lighting device, and a display device manufactured by the manufacturing method.
[0104] (C)請求の範囲第 23項〜第 31項に記載された発明により、貼合法によって、発光 効率が高くなる有機エレクト口ルミネッセンス (EL)素子用材料、該有機 EL素子用材 料を用いた有機 EL素子、照明装置および表示装置を提供することができた。さらに 、長寿命となる有機 EL素子用材料、該有機 EL素子用材料を用いた有機 EL素子、 照明装置およびディスプレイ装置を提供することができた。  [0104] (C) According to the invention described in claims 23 to 31, an organic electoluminescence (EL) element material whose luminous efficiency is increased by a bonding method, and the organic EL element material We were able to provide the organic EL elements, lighting devices and display devices used. Furthermore, it was possible to provide an organic EL element material having a long life, an organic EL element using the organic EL element material, an illumination device, and a display device.
[0105] (D)請求の範囲第 32項〜第 40項に記載された発明により、製造が容易で、接着 面の強度を高くすることができ、耐久性に優れ、発光性能や発光寿命に優れた有機 EL素子を提供することができた。さらに、接着面の強度を高くし、長寿命となる有機 E L素子用材料、該有機 EL素子用材料を用いた有機 EL素子、照明装置および表示 装置を提供することができた。  [0105] (D) According to the invention described in claims 32 to 40, the manufacturing is easy, the strength of the adhesive surface can be increased, the durability is excellent, and the light emission performance and the light emission lifetime are improved. We were able to provide excellent organic EL devices. Furthermore, it was possible to provide a material for an organic EL element having a high adhesive surface strength and a long life, an organic EL element using the material for an organic EL element, a lighting device, and a display device.
図面の簡単な説明  Brief Description of Drawings
[0106] [図 1]有機 EL素子力も構成される表示装置の一例を示した模式図である。  [0106] Fig. 1 is a schematic diagram showing an example of a display device that also has organic EL element power.
[図 2]表示部の模式図である。  FIG. 2 is a schematic diagram of a display unit.
[図 3]画素の模式図である。  FIG. 3 is a schematic diagram of a pixel.
[図 4]照明装置の概略図である。  FIG. 4 is a schematic view of a lighting device.
[図 5]照明装置の断面図である。 符号の説明 FIG. 5 is a cross-sectional view of the lighting device. Explanation of symbols
[0107] 1 ディスプレイ  [0107] 1 display
3 画素  3 pixels
5 走査線  5 scan lines
6 データ線  6 Data line
7 電源ライン  7 Power line
10 有機 EL素子  10 Organic EL devices
11 スイッチングトランジスタ  11 Switching transistor
12 馬区動トランジスタ  12 Ma District Motion Transistor
13 コンデンサ  13 Capacitor
A 表示部  A Display section
B 制御部  B Control unit
107 透明電極つきガラス基板  107 Glass substrate with transparent electrode
106 有機 EL層  106 OLED layer
105 陰極  105 cathode
102 ガラスカバー  102 Glass cover
108 窒素ガス  108 nitrogen gas
109 捕水剤  109 Water catcher
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0108] 以下、本発明を実施するための最良の形態について説明するが、本発明は、これ により限定されるものではない。 [0108] Hereinafter, the best mode for carrying out the present invention will be described, but the present invention is not limited thereto.
[0109] 先ず、以下、請求の範囲第 1項〜第 12項に記載の発明 (A)を実施するための最 良の形態について説明する。 First, a best mode for carrying out the invention (A) described in claims 1 to 12 will be described below.
[0110] 請求の範囲第 1項〜第 12項に記載の発明 (A)は、有機 EL素子を貼合法によって 得るときの上記欠点、即ち、貼合した接合面が必ずしも分子レベルで密着しておらず 結果としてキャリア移動がスムーズに行へなくなる、また接合面が剥離しやすぐ発光 素子として機能しなくなるなどの問題点を解決した有機 EL素子を提供するものであ る。なお、本発明で接合は貼り合わせることと同義である。 [0111] 請求の範囲第 1項〜第 12項に記載の発明 (A)においては、陽極と陰極との間に複 数の有機層を有する有機 EL素子の一方の電極 (例えば、陰極)上に反応性置換基 を有する有機化合物を含有する第 1の有機層を少なくとも 1層形成し、他方の電極( 例えば、陽極)上に第 2の有機層を少なくとも 1層形成し、第 1の有機層と第 2の有機 層を互いに対向させて貼り合わせて有機 EL素子を形成する。第 2の有機層にも反応 性置換基を有する有機化合物を含有せしめても構わない。第 1の有機層と第 2の有 機層を互いに対向させて貼り合わせて有機 EL素子を形成する際には、第 1の有機 層と第 2の有機層を互いに対向させて接触させた後、反応性置換基を有する有機化 合物同士で結合を形成、好ましくは貼り合わせた接着層界面で結合を形成させるた めに、電子線、紫外線照射、または熱などのエネルギーを加えてもよぐまたは発光 素子を通電することにより発光層内で発生するァ-オンラジカルまたはカチオンラジ カルを重合開始剤として利用し、結合を形成させてもょ ヽ。 [0110] The invention (A) described in claims 1 to 12 is the above-mentioned defect when an organic EL device is obtained by a bonding method, that is, the bonded bonding surface is not necessarily adhered at the molecular level. As a result, the present invention provides an organic EL device that solves the problems such as the carrier movement not smoothly moving to the line and the bonded surface peeling off and immediately becoming unable to function as a light emitting device. In the present invention, bonding is synonymous with bonding. [0111] In the invention (A) according to claims 1 to 12, on one electrode (for example, cathode) of an organic EL device having a plurality of organic layers between an anode and a cathode. At least one first organic layer containing an organic compound having a reactive substituent is formed on the other electrode (eg, anode), and at least one second organic layer is formed on the first organic layer. The organic EL element is formed by laminating the layer and the second organic layer facing each other. The second organic layer may also contain an organic compound having a reactive substituent. When the organic EL element is formed by bonding the first organic layer and the second organic layer to face each other, the first organic layer and the second organic layer are made to face each other and contact each other. In order to form a bond between organic compounds having reactive substituents, and preferably to form a bond at the bonded adhesive layer interface, energy such as electron beam, ultraviolet irradiation, or heat may be applied. Alternatively, a bond may be formed by using, as a polymerization initiator, a cation radical or a cation radical generated in the light emitting layer when the light emitting element is energized.
[0112] また、請求の範囲第 1項〜第 12項に記載の発明(A)においては結合を形成する 反応性置換基を有する有機化合物は、同一の化合物同士であっても、異なる化合物 間であってもよい。形成される結合としては、好ましくは共有結合である。  [0112] Further, in the invention (A) according to claims 1 to 12, the organic compounds having reactive substituents that form a bond may be different from each other even if they are the same compound. It may be. The bond to be formed is preferably a covalent bond.
[0113] ここで、反応性置換基を有する有機化合物における反応性置換基とは、 2つ以上 の置換基間で新たな結合を形成する有機化学反応が起こり得る置換基を表し、反応 性置換基を有する有機化合物としては重合性のモノマーなどが挙げられる。また反 応性置換基の具体例としては、化 1に示した置換基やトリクロロシラン、また光 2 + 2反 応、 Diels— Alder反応のような環化付加反応が可能な基が挙げられる力 これに限 つたものではない。  [0113] Here, the reactive substituent in the organic compound having a reactive substituent represents a substituent capable of causing an organic chemical reaction that forms a new bond between two or more substituents. Examples of the organic compound having a group include polymerizable monomers. Specific examples of reactive substituents include the substituents shown in Chemical Formula 1 and trichlorosilane, and groups capable of cycloaddition reactions such as photo2 + 2 reaction and Diels-Alder reaction. It is not limited to.
[0114] また、貼り合わせる第 1の有機層と第 2有機層は、機能として同じでも異なっていて ちょい。  [0114] Also, the first organic layer and the second organic layer to be bonded may have the same or different functions.
[0115] 陰極側の部材として、例えば、支持体 (例えば、ガラス基板)上にアルミニウム等か らなる陰極を真空蒸着等により形成し、この上に、例えば、電子輸送材料層を塗布あ るいは蒸着等により形成する。一方、陽極側の部材として、例えば、 ITO等の薄膜を 陽極として形成したガラス基板上に、例えば、正孔輸送層、発光層をこれも塗布ある いは蒸着等により順次形成する。陰極側及び陽極側のこれら二つの部材を互いに有 機層同士 (前記電子輸送層と発光層)、密着、貼合することで有機 EL素子が得られ る。 [0115] As a member on the cathode side, for example, a cathode made of aluminum or the like is formed on a support (for example, a glass substrate) by vacuum deposition or the like, and, for example, an electron transport material layer is applied thereon or It is formed by vapor deposition. On the other hand, as a member on the anode side, for example, a hole transport layer and a light emitting layer are sequentially formed on a glass substrate on which a thin film such as ITO is formed as an anode by coating or vapor deposition. These two members on the cathode side and anode side An organic EL device can be obtained by bonding and bonding the mechanical layers (the electron transport layer and the light emitting layer).
[0116] 接合される積層面は有機 EL素子各機能層のどの層間でもよいが、貼り合わせる積 層面は互いに有機層であることが好ましい。貼合、密着が容易、且つ貼合後、剥離し にくいこと、また有機層の場合表面粗さの調整が容易であること等から、有機層同士 の貼合が好ましい。  [0116] The laminated surface to be bonded may be any layer of each functional layer of the organic EL element, but the laminated surfaces to be bonded are preferably organic layers. Bonding between organic layers is preferred because it is easy to bond and adhere, and is difficult to peel off after bonding, and since it is easy to adjust the surface roughness in the case of an organic layer.
[0117] 貼合しようとする有機層のガラス転移温度 (Tg :°C)以下で反応させるのが好ましぐ 貼合しようとする有機層のが異なつている場合にはガラス転移温度の低 、有機層の Tg以下で実施することが好ま U、。  [0117] It is preferable to react at or below the glass transition temperature (Tg: ° C) of the organic layer to be bonded. When the organic layer to be bonded is different, the glass transition temperature is low. U, preferably conducted below the Tg of the organic layer.
[0118] 尚、上記ガラス転移温度 (Tg :°C)は、層サンプル約 lOmgを測定用のアルミニウム 製パンに封入して示差熱量計 (例えばデュポン社製,V4. OB2000型 DSC)に装着 し、 25°Cから 20°CZ分の速度で昇温させて測定する。  [0118] The glass transition temperature (Tg: ° C) was measured by sealing a layer sample of about 10 mg in an aluminum pan for measurement and attaching it to a differential calorimeter (eg, DuPont V4. OB2000 type DSC). Measure by raising the temperature from 25 ° C to 20 ° CZ.
[0119] また、接合した積層面の不具合によるキャリア移動の面内での不均一による発光ム ラは、有機層界面で発光する蛍光発光方式よりも発光層内部に発光領域を持つリン 光発光方式の方が比較的現れにくいこと、特に発光層の有機層全体における相対 的な膜厚比率を上げた時や発光層の膜厚を厚くした時、また発光層同士を接合する 発光層 2層とした時など、リン光性発光化合物を含有するリン光発光方式は発光ムラ をわ力もないくらいにできるため、本発明の貼合による作製方法はリン光発光方式に 適している。  [0119] In addition, emission unevenness due to non-uniformity in the plane of carrier movement due to defects in the bonded laminated surface is a phosphorescence emission method that has a light emitting region inside the emission layer rather than a fluorescence emission method that emits light at the organic layer interface. Is relatively less likely to appear, especially when the relative thickness ratio of the entire organic layer of the light-emitting layer is increased, or when the film thickness of the light-emitting layer is increased, or when the light-emitting layers are joined to each other. Since the phosphorescent light emitting method containing a phosphorescent light emitting compound can reduce unevenness of light emission to the extent that it does not cause any inconvenience, the manufacturing method by bonding of the present invention is suitable for the phosphorescent light emitting method.
[0120] 請求の範囲第 1項〜第 12項に記載の発明 (A)において、有機 EL素子各有機層を 一方の電極上に、また他方の電極上にそれぞれ、例えば、陰極側の部材、そして陽 極用の部材として積層、形成するが、これら有機 EL素子各機能層を形成する有機薄 膜の形成方法にっ 、ては特に限定はな 、。  [0120] In the invention (A) according to claims 1 to 12, each organic layer of the organic EL element is formed on one electrode and on the other electrode, for example, a cathode side member, Then, it is laminated and formed as a positive electrode member, but there is no particular limitation on the method of forming the organic thin film for forming each functional layer of these organic EL elements.
[0121] 現在上巿されて ヽる有機 EL素子形成の殆どが低分子材料を蒸着して成膜する、 所謂蒸着法であるが、これら蒸着による方法、また高分子系材料において比較的よく 用いられる有機層をスピンコート、インクジェット、印刷、スプレーといった塗布 (湿式) プロセスにより製造する方法等、 、ずれであってもよ 、。  [0121] Almost all of the organic EL device formations currently being promoted are so-called vapor deposition methods in which a low molecular material is vapor-deposited, but these vapor deposition methods are also used relatively frequently in polymer materials. The method of producing the organic layer by a coating (wet) process such as spin coating, ink jet, printing, spraying, etc. may be misaligned.
[0122] し力しながら、大気圧下で製造することができるため低コストィ匕が可能であると同時 に、必要な材料 (高分子材料及び Zまたは低分子材料)を溶液に調製して薄膜塗布 するため、複数の有機材料を精密に混合できる (例えば、発光ホスト材料に対するド 一パント等の調製がしゃすい等)こと、また素子を大面積ィ匕しても発光ムラができにく いという特徴があり、湿式法が好ましい。また、対向電極を予め成膜したフィルム基板 を準備しておけば、ロールッゥロール方式での連続生産が可能であること可能である こと、有機層の貼合も容易にできることなどから、本発明においては、有機層の少なく とも 1層は湿式法で形成されることが好ましい。更に前記第 1の有機層、または第 2の 有機層の少なくとも一方が湿式法で形成されることがより好ましい。また、本発明にお いては、有機層は少なくとも 3層であることが好ましい。 [0122] At the same time, it can be manufactured under atmospheric pressure and at a low cost. In addition, the necessary materials (polymeric material and Z or low molecular weight material) are prepared in a solution and applied in a thin film, so that multiple organic materials can be mixed precisely (for example, the preparation of a dopant for a light-emitting host material is possible). In addition, there is a feature that light emission unevenness is difficult to occur even when the device has a large area, and a wet method is preferable. In addition, if a film substrate on which a counter electrode is formed in advance is prepared, continuous production by a roll-to-roll method is possible and organic layers can be easily bonded. In this case, it is preferable that at least one of the organic layers is formed by a wet method. Furthermore, it is more preferable that at least one of the first organic layer and the second organic layer is formed by a wet method. In the present invention, the organic layer is preferably at least three layers.
[0123] 有機 EL素子の製造プロセスにおいて、金属や金属酸ィ匕物による電極を成膜する 際は、性能のよい膜とするため高いエネルギーを印加することが望まれるが、有機層 を逐次積層するやり方では最後に電極層を形成するため、有機薄膜のダメージが懸 念され、実質上、真空蒸着や穏和な条件下でのスパッタリングで成膜するしかすべが ない状況であるが、この点、貼合法においては予めこれを行った後、各有機層の積 層が行われるため、逐次有機層が形成される逐次法に比べ、既に成膜されている有 機層にダメージを与えることがなく(有機 EL素子の発光特性や発光寿命などが大きく 劣化してしまう)、また性能のよい電極膜を形成でき好ましいものである。  [0123] When forming an electrode made of metal or metal oxide in the process of manufacturing an organic EL element, it is desirable to apply high energy in order to obtain a film with good performance. In this method, the electrode layer is formed at the end, so damage to the organic thin film is a concern, and in reality, it is only possible to form the film by vacuum evaporation or sputtering under mild conditions. In the bonding method, after this is performed in advance, the layers of each organic layer are stacked, so there is no damage to the organic layer that has already been formed, compared to the sequential method in which the sequential organic layer is formed. (The light emission characteristics and lifetime of the organic EL element are greatly deteriorated), and an electrode film with good performance can be formed.
[0124] 陰極側部材と陽極側部材を密着、貼合するための加圧、加熱手段としては、気泡 等が混入せずに加圧または加圧'加熱処理できるものであれば特に制限はなく用い ることができる。例えば、陰極側部材と陽極側部材を間に挟んで、減圧下、例えば、 0 . 1 X 10— 2〜1. 0 X 10— &程度の減圧環境下で押圧力 0. IMPa程度の圧力で圧着 し、密着させる。 [0124] The pressurizing and heating means for adhering and bonding the cathode side member and the anode side member are not particularly limited as long as they can be pressurized or pressurized without being mixed with bubbles. Can be used. For example, in between the cathode-side member and the anode-side member, under reduced pressure, e.g., 0. 1 X 10- 2 ~1 . 0 X 10- & under vacuum environment to the extent a pressing force 0. IMPa a pressure of about Crimp and adhere.
[0125] また、接合用の治具として押圧手段と架台とからなるプレス機を用いることができ、 陰極側部材と陽極側部材を押圧手段と架台間に挟み密着させる方法を用いることも できる。この場合、圧力としては、通常 0. 5〜: LOONZcm2、好ましくは 5〜50NZcm また加圧時間は通常 0. 1〜300秒程度とすればよい。 [0125] In addition, a press machine including a pressing unit and a gantry can be used as a joining jig, and a method in which the cathode side member and the anode side member are sandwiched and pressed between the pressing unit and the gantry can be used. In this case, the pressure is usually 0.5 to: LOONZcm 2 , preferably 5 to 50 NZcm, and the pressurization time is usually about 0.1 to 300 seconds.
[0126] また、ラミネーター等、圧力ロールを用い密着させる場合は、通常 l〜200N/cm2 、好ましくは 5〜100NZcm2の圧力、搬送速度が通常 0. l〜200mmZ秒、好ましく は 0. 5〜: LOOmmZ秒程度であれば気泡等が混入せず密着が可能である。 [0126] When using a pressure roll such as a laminator, the pressure is usually 1 to 200 N / cm 2 , preferably 5 to 100 NZcm 2 , and the conveyance speed is usually 0.1 to 200 mmZ seconds, preferably 0.5 ~: If it is about LOOmmZ seconds, it can be adhered without bubbles and the like.
[0127] また、貼合時にはいずれの場合にも圧力とともに加温してもよぐ温度をかける場合[0127] In addition, when applying a temperature that can be heated together with pressure in any case during bonding
、加熱温度は通常 60〜200°C、好ましくは 100〜150°Cの範囲である。 The heating temperature is usually in the range of 60 to 200 ° C, preferably 100 to 150 ° C.
[0128] また、貼合時には活性光線等も利用できる。活性光線としては、電子線、紫外線等 があり、紫外線の光源としては、紫外線ランプ (例えば、 0. 5kPa〜lMPaまでの動 作圧力を有する低圧、中圧、高圧水銀ランプ)、キセノンランプ、タングステンランプ、 ハロゲンランプ等が用いられ、 5000〜8000 μ WZcm2程度の強度を有する紫外線 が好ましく照射される。硬化に要するエネルギー量としては、 0. 02〜20kjZcm2の 範囲が用いられる。 [0128] In addition, actinic rays or the like can be used at the time of bonding. Examples of actinic rays include electron beams and ultraviolet rays, and examples of ultraviolet light sources include ultraviolet lamps (for example, low pressure, medium pressure, high pressure mercury lamps having an operating pressure of 0.5 kPa to lMPa), xenon lamps, tungsten A lamp, a halogen lamp or the like is used, and ultraviolet rays having an intensity of about 5000 to 8000 μWZcm 2 are preferably irradiated. The amount of energy required for curing ranges from 0.02 to 20 kjZcm 2 .
[0129] なお、陰極側部材の基板及び Zまたは陽極側部材の基板を余熱させておけば生 産性が向上するので好ましい。  [0129] It is preferable to preheat the substrate of the cathode side member and the substrate of Z or the anode side member because the productivity is improved.
[0130] 〈接合界面の共有結合形成〉 [0130] <Covalent bond formation at bonding interface>
また、本発明の好ましい態様においては、上記貼合された接合界面について、これ を分子レベルで密着させるため、接合後に界面間に共有結合を形成させることが非 常に有効な手段であることを見出した。  Further, in a preferred embodiment of the present invention, the bonded interface is bonded at the molecular level, and thus it is found that forming a covalent bond between the interfaces after bonding is a very effective means. It was.
[0131] 有機 ELの層間を共有結合でつなぐ技術は、前記特許文献 5に開示されているが、 本発明では貼合法における界面接着の手段としてこの技術を適用する。 [0131] A technique for covalently connecting the layers of organic EL is disclosed in Patent Document 5, but in the present invention, this technique is applied as means for interfacial adhesion in the bonding method.
[0132] 即ち、貼り合わせる積層面の少なくとも一方に反応性置換基を有する有機化合物 を含有させる。このような置換基は素子内部で発生する活性種や貼合時の熱により 化学変化を起こし共有結合の形成により、貼合された有機層間の分子レベルでの密 着性を向上させる。 That is, an organic compound having a reactive substituent is contained in at least one of the laminated surfaces to be bonded. Such substituents cause chemical changes due to active species generated inside the device and heat at the time of bonding, and form a covalent bond to improve adhesion at the molecular level between the bonded organic layers.
[0133] また、これらの反応性置換基を有する有機化合物を含有させると、駆動のジュール 熱 (つまり電流が素子内を流れることにより)で化合物間の反応 (化学変化)が進むた め、その結果として分子レベルの密着性が向上、発光性能や発光寿命などが改善さ れると ヽぅ新し ヽ現象にっ 、ても発見した。  [0133] In addition, when an organic compound having these reactive substituents is contained, a reaction (chemical change) between the compounds proceeds due to driving Joule heat (that is, when current flows in the element). As a result, we have discovered that even if the adhesion at the molecular level is improved and the light emission performance and the light emission lifetime are improved, it is a new phenomenon.
[0134] 有機 EL素子の発光層は、通常リン光性の発光を利用する、所謂「リン光素子」では 、リン光性発光化合物を発光ホストに対し質量比で 1〜20%程度混合することが発 光効率の観点力 有効であるとされており、本発明にお 、てリン光性の発光を利用 する場合には発光ホストを併用することが好ましぐこのような化学変化は該発光ホス ト材料とこれに反応性を持つリン光性発光化合物との化学反応を利用してもよい。 [0134] In the so-called "phosphorescent device" in which the light emitting layer of the organic EL device normally utilizes phosphorescent light emission, a phosphorescent light emitting compound is mixed with the light emitting host in a mass ratio of about 1 to 20%. Is considered to be effective in terms of luminous efficiency, and phosphorescent light emission is used in the present invention. In such a case, it is preferable to use a luminescent host in combination. For such a chemical change, a chemical reaction between the luminescent host material and a phosphorescent luminescent compound having reactivity thereto may be used.
[0135] 例えば、発光層同士を貼合する場合、また発光層カ^ン光性発光化合物と発光ホ ストとで構成されるとき、リン光性発光化合物の化学変化は発光ホストとの (縮合や重 合等)反応を利用してもよぐ発光ホストとの化学反応を利用する場合、リン光性発光 化合物に置換している特定の反応性基と反応を起こしうる反応性置換基を発光ホス トに導入することが好ましい。  [0135] For example, when the light emitting layers are bonded to each other or when the light emitting layer is composed of a light emitting compound and a light emitting host, the chemical change of the phosphorescent light emitting compound is caused by (condensation with the light emitting host). When a chemical reaction with a luminescent host that uses a reaction (e.g., polymerization) is used, the phosphorescent luminescent compound emits a reactive substituent that can react with a specific reactive group. It is preferably introduced into the host.
[0136] 例えば、リン光性発光化合物に水酸基(— OH)が置換している場合、発光ホストに はイソシアナート基(-NCO)や、イソチオシアナート基(-NCS)を導入した材料を 選択する、あるいはリン光性発光化合物にビニル基が置換している場合、それとラジ カル重合可能なビュル基を導入した発光ホストを選択する。  [0136] For example, when the phosphorescent light-emitting compound is substituted with a hydroxyl group (—OH), select a material with an isocyanate group (—NCO) or isothiocyanate group (—NCS) introduced as the light-emitting host. If the vinyl group is substituted on the phosphorescent light emitting compound, a light emitting host having a radically polymerizable bur group introduced thereto is selected.
[0137] また、本発明にお 、て最も好ま 、態様では、リン光性発光化合物また発光ホスト の両方にビニル基が置換した材料を少なくとも 1種ずつ同一層中に存在させ、その 発光素子を通電により、発光層内で発生するァ-オンラジカルまたはカチオンラジカ ルを重合開始剤として利用し、鎖状及び Zまたは網目状のポリマーを形成させること である。  [0137] In the present invention, most preferably, in an embodiment, at least one material substituted with a vinyl group is present in both the phosphorescent light-emitting compound and the light-emitting host in the same layer, and the light-emitting element is formed. By energization, a chain-like and Z- or network-like polymer is formed by using a cation radical or a cationic radical generated in the light emitting layer as a polymerization initiator.
[0138] また、陰極側部材の表面層が電子輸送層であり、陽極側部材の表面層が発光層の 場合でも、例えば、ビニル基等の反応性置換基を持つ電子輸送層、及び同じくビ- ル基等の反応性置換基を持つ発光ホストまたはドーパント材料を含有する発光層を それぞれ有する部材を貼合することで、層間において重合が行われ、貼合された有 機層間の密着性が向上する。陰極側基板の最表層が発光層であり、陽極側基板の 最表層が正孔輸送層である場合も同様に、反応性基を持つ正孔輸送材料を含有し た正孔輸送層を用いればょ 、。  [0138] Even when the surface layer of the cathode side member is an electron transport layer and the surface layer of the anode side member is a light emitting layer, for example, an electron transport layer having a reactive substituent such as a vinyl group, and -Polymerization is performed between the layers by bonding the members each having a light-emitting host or a light-emitting layer containing a dopant material having a reactive substituent such as a ruthel group, and adhesion between the bonded organic layers is improved. improves. Similarly, when the outermost layer of the cathode side substrate is a light emitting layer and the outermost layer of the anode side substrate is a hole transport layer, a hole transport layer containing a hole transport material having a reactive group may be used. Oh ,.
[0139] 従って、貼合する 2つの積層面の少なくとも一方には反応性置換基を有する有機 化合物を含有することが好ましぐ貼合する 2つの積層面の少なくとも一方に反応性 置換基を有する有機化合物を含有し、他方にこれと反応する基を有する材料を含有 していれば、互いに反応することで密着を強化でき、接合面の剥離をなくし、またキヤ リア移動を容易ならしめることができる。 [0140] また、貼り合わせる積層面の両方に反応性置換基を有する有機化合物を有する場 合がより積層面の密着を強化でき好ましい。 Accordingly, it is preferable that at least one of the two laminated surfaces to be bonded contains an organic compound having a reactive substituent, and at least one of the two laminated surfaces to be bonded has a reactive substituent. If it contains an organic compound and, on the other hand, a material having a group that reacts with it, it can strengthen the adhesion by reacting with each other, eliminate peeling of the joint surface, and facilitate carrier movement. it can. [0140] In addition, it is preferable to have an organic compound having a reactive substituent on both of the laminated surfaces to be bonded, because the adhesion of the laminated surfaces can be further enhanced.
[0141] また、請求の範囲第 1項〜第 12項に記載の発明 (A)の好ましい態様においては、 リン光性発光化合物また発光ホスト、正孔輸送材料、電子輸送材料等、貼合される 各有機層中にビニル基ゃァリル基、ビニルエーテル基など炭素 炭素 2重結合を含 む置換基が置換した材料を少なくとも 1種存在させることで、その発光素子を通電に より発光層内で発生するァ-オンラジカルまたはカチオンラジカルを重合開始剤とし て利用し、鎖状及び Zまたは網目状のポリマーを形成させることができ、層内での重 合により発光素子は最初の状態よりもより堅牢性が増強されたものとなり、通電 (駆動 )するうちに次第に耐久性が増す発光素子を実現することも可能である。勿論、通常 の重合開始剤を、反応性置換基を有する有機化合物と共に用いることもできる。  [0141] Further, in a preferred embodiment of the invention (A) according to claims 1 to 12, a phosphorescent light emitting compound or a light emitting host, a hole transport material, an electron transport material and the like are bonded. When each organic layer contains at least one material substituted with a carbon-carbon double bond-containing substituent such as a vinyl group, a vinyl ether group, or the like, the light emitting element is generated in the light emitting layer by energization. Can be used as a polymerization initiator to form chain and Z or network polymers, and the light emitting device is more robust than the initial state due to polymerization within the layer. Thus, it is possible to realize a light emitting element that gradually increases in durability while being energized (driven). Of course, a normal polymerization initiator can be used together with an organic compound having a reactive substituent.
[0142] このような、素子内部で発生する活性種や、駆動時のジュール熱によって化学変化 を起超す反応性置換基としては、前記の基も含め以下のような基が挙げられる。  [0142] Examples of the reactive species generated inside the device and the reactive substituents that cause a chemical change due to Joule heat during driving include the following groups including the above-described groups.
[0143] [化 5]  [0143] [Chemical 5]
OH — SH OH — SH
Figure imgf000022_0001
Figure imgf000022_0001
[0144] 上記反応性置換基において、 Aは下記一般式 (a)、—O 及び—S 力らなる連 結基群から選択される少なくとも 1つを有する連結基、または該連結基の複数の組み 合わせで表される 2価の連結基を表し、 Bは水素原子または置換基を表す。 [0144] In the above reactive substituent, A is a linking group having at least one selected from the following general formula (a), a linking group consisting of -O and -S force, or a plurality of the linking groups. It represents a divalent linking group represented by a combination, and B represents a hydrogen atom or a substituent.
[0145] [化 6] 一般式 (a> [0145] [Chemical 6] General formula (a>
R  R
R'  R '
[0146] 式中、 R、R^ は各々水素原子または置換基を表し、 nは 1以上の整数を表す。 [0146] In the formula, R and R ^ each represents a hydrogen atom or a substituent, and n represents an integer of 1 or more.
[0147] R、 R' 各々表される置換基としては、アルキル基 (例えば、メチル基、ェチル基、プ 口ピル基、イソプロピル基、 t ブチル基、ペンチル基、へキシル基、ォクチル基、ドデ シル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基 (例え ば、シクロペンチル基、シクロへキシル基等)、ァルケ-ル基 (例えば、ビュル基、ァリ ル基、 1 プロぺ-ル基、 2 ブテュル基、 1, 3 ブタジェ-ル基、 2 ペンテ-ル基 、イソプロぺニル基等)、アルキ-ル基 (例えば、ェチュル基、プロノルギル基等)、芳 香族炭化水素基 (芳香族炭素環基、ァリール基等ともいい、例えば、フ ニル基、 p ークロロフヱ-ル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、ァ ズレ-ル基、ァセナフテニル基、フルォレ -ル基、フエナントリル基、インデュル基、ピ レニル基、ビフヱ-リル基等)、芳香族複素環基 (例えば、フリル基、チェ-ル基、ピリ ジル基、ピリダジ -ル基、ピリミジ -ル基、ピラジュル基、トリアジニル基、イミダゾリル 基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、 ジァザカルバゾリル基 (前記カルボリニル基のカルボリン環を構成する任意の炭素原 子の一つが窒素原子で置き換わったものを示す)、フタラジュル基等)、複素環基 (例 えば、ピロリジル基、イミダゾリジル基、モルホリル基、ォキサゾリジル基等)、アルコキ シ基 (例えば、メトキシ基、エトキシ基、プロピルォキシ基、ペンチルォキシ基、へキシ ルォキシ基、ォクチルォキシ基、ドデシルォキシ基等)、シクロアルコキシ基 (例えば、 シクロペンチルォキシ基、シクロへキシルォキシ基等)、ァリールォキシ基 (例えば、フ エノキシ基、ナフチルォキシ基等)、アルキルチオ基 (例えば、メチルチオ基、ェチル チォ基、プロピルチオ基、ペンチルチオ基、へキシルチオ基、ォクチルチオ基、ドデ シルチオ基等)、シクロアルキルチオ基 (例えば、シクロペンチルチオ基、シクロへキ シルチオ基等)、ァリールチオ基 (例えば、フエ二ルチオ基、ナフチルチオ基等)、ァ ルコキシカルボ-ル基(例えば、メチルォキシカルボ-ル基、ェチルォキシカルボ- ル基、ブチルォキシカルボ-ル基、ォクチルォキシカルボ-ル基、ドデシルォキシ力 ルポ-ル基等)、ァリールォキシカルボ-ル基(例えば、フエ-ルォキシカルボ-ル基 、ナフチルォキシカルボ-ル基等)、ァシル基 (例えば、ァセチル基、ェチルカルボ- ル基、プロピルカルボ-ル基、ペンチルカルボ-ル基、シクロへキシルカルボニル基[0147] The substituents represented by R and R 'each include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tbutyl group, a pentyl group, a hexyl group, an octyl group, Decyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, bur group, aryl group, 1 propylene group). -L group, 2 butur group, 1,3 butagel group, 2 pentyl group, isopropenyl group, etc.), alkyl group (for example, etulyl group, pronorgyl group, etc.), aromatic hydrocarbon group (Also called aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azuleyl group, acenaphthenyl group, fluorene group, etc. -Lu, Hue Enthryl group, indur group, pyrenyl group, bif ヱ -ryl group, etc.), aromatic heterocyclic group (for example, furyl group, chael group, pyridyl group, pyridazyl group, pyrimidyl group, pyradyl group, Triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (One of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom. ), Heterocyclic groups (eg pyrrolidyl, imidazolidyl, morpholyl, oxazolidyl etc.), alkoxy groups (eg methoxy, ethoxy, propyloxy, pentyloxy, Hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (for example, Clopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group) Group, dodecylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, Methyloxycarbonyl group, ethyloxycarbo- Group, butyoxycarbonyl group, octyloxycarbol group, dodecyloxy group, etc.), aryloxyl group (for example, phenylcarboxyl group, naphthyloxy group) Carboyl group, etc.), acyl group (for example, acetyl group, ethyl carbonyl group, propyl carbo yl group, pentyl carbo ol group, cyclohexyl carbonyl group)
、ォクチルカルボ-ル基、 2—ェチルへキシルカルボ-ル基、ドデシルカルポ-ル基 、フエ-ルカルポ-ル基、ナフチルカルボ-ル基、ピリジルカルボ-ル基等)、ァシル ォキシ基(例えば、ァセチルォキシ基、ェチルカルボ-ルォキシ基、ブチルカルボ- ルォキシ基、ォクチルカルボ-ルォキシ基、ドデシルカルボ-ルォキシ基、フエ-ル カルボニルォキシ基等)、力ルバモイル基 (例えば、ァミノカルボニル基、メチルァミノ カルボ-ル基、ジメチルァミノカルボ-ル基、プロピルァミノカルボ-ル基、ペンチル ァミノカルボ-ル基、シクロへキシルァミノカルボ-ル基、ォクチルァミノカルボ-ル基 、 2—ェチルへキシルァミノカルボ-ル基、ドデシルァミノカルボ-ル基、フエ-ルアミ ノカルボ-ル基、ナフチルァミノカルボ-ル基、 2—ピリジルァミノカルボ-ル基等)、 ハロゲン原子 (例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基 (例 えば、フルォロメチル基、トリフルォロメチル基、ペンタフルォロェチル基、ペンタフル オロフェ-ル基等)、シァノ基、ヒドロキシ基、メルカプト基等が挙げられる。 , Octyl carbo yl group, 2-ethyl hexyl carbo yl group, dodecyl carbo ol group, phenol carbo ol group, naphthyl carbo ol group, pyridyl carbo ol group, etc.), acyl oxy group (for example, acetyl oxy group, Ethylcarboxoxy group, butylcarboxoxy group, octylcarboxoxy group, dodecylcarboxoxy group, phenylcarbonyloxy group, etc.), strong rubamoyl group (for example, aminocarbonyl group, methylaminocarboxyl group, dimethylamino group) Minocarbol group, propylaminocarbol group, pentylaminocarbol group, cyclohexylaminocarbol group, octylaminocarbol group, 2-ethylhexylaminocarbol group , Dodecylaminocarbol group, phenylaminocarbol group, naphthylaminocarbol group, 2-pyridylaminocarbol Group), halogen atom (eg, fluorine atom, chlorine atom, bromine atom, etc.), fluorinated hydrocarbon group (eg, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenol group) Etc.), cyano group, hydroxy group, mercapto group and the like.
[0148] nは 1以上の整数を表す力 その上限は 5である。 [0148] n is a force that represents an integer greater than or equal to 1. Its upper limit is 5.
[0149] 上記の反応性置換基の中で、炭素 炭素 2重結合を含む置換基、より好ましくはビ ニル基ゃァリル基、ビニルエーテル基が挙げられる。更に、反応性置換基を有する 有機化合物は 2つ以上の反応性置換基を有していることが好ましい。  [0149] Among the reactive substituents described above, a substituent containing a carbon-carbon double bond, more preferably a vinyl group, a allyl group, or a vinyl ether group. Furthermore, the organic compound having a reactive substituent preferably has two or more reactive substituents.
[0150] 貼合時に密着に反応性置換基による架橋反応を用いる場合、熱、また活性光線等 が利用できる。加熱の場合、 60〜200°Cの範囲で 1秒〜 5時間、また活性光線であ れば、例えば、前記の紫外光源が同じく用いることができ、 5000-8000 μ W/cm2 程度の強度を有する紫外線を照射すればょ 、。反応に要するエネルギー量としては 、 0. 02〜20kj/cm2の範囲が用いられる。 [0150] When a cross-linking reaction with a reactive substituent is used for adhesion at the time of bonding, heat, active light, or the like can be used. In the case of heating, in the range of 60 to 200 ° C for 1 second to 5 hours, if it is actinic light, for example, the above-mentioned ultraviolet light source can also be used, and the intensity is about 5000-8000 μW / cm 2 If irradiated with ultraviolet rays, As the amount of energy required for the reaction, a range of 0.02 to 20 kj / cm 2 is used.
[0151] 類似する従来技術は今までに例を見な 、が、近!/、技術として成膜した後に高分子 量ィ匕するという公知文献としては以下のようなものがあり、その架橋反応は本発明に 利用できる。 [0152] 例えば、特開平 5— 271166号公報には、分子内にビュル基を 2つ有する 2官能性 のトリフエ-ルァミン誘導体が記載されており、その化合物を成膜した後に紫外線照 射により 3次元架橋されたポリマーが形成されることが開示されている。また、特開 20 01— 297882号公報には、 2つ以上のビュル基を有する材料を複数の層に添加す る技術が開示されており、この場合重合反応は陰極を積層する前の有機層成膜時点 で紫外線や熱の照射で行っている。また、特開 2003— 73666号公報においては、 リン光性発光化合物の末端にビニル基を有する材料と同様にビニル基を有するコモ ノマーの混合物にラジカル発生剤である AIBNを添加して成膜時に重合反応を進行 させる製造方法が開示されている。更に特開 2003— 86371号公報には、同一層内 の 2分子間でディールスアルダー反応を起こさせて架橋させる製造方法が記載され ている。 [0151] Although similar prior art has been considered as an example so far, there is the following as a publicly known document that high molecular weight is generated after film formation as a technology, and its crosslinking reaction is as follows. Can be used in the present invention. [0152] For example, JP-A-5-271166 describes a bifunctional triphenylamine derivative having two bur groups in the molecule. It is disclosed that a dimensionally cross-linked polymer is formed. Japanese Patent Application Laid-Open No. 2001-297882 discloses a technique of adding a material having two or more bur groups to a plurality of layers. In this case, the polymerization reaction is performed before the organic layer is laminated on the cathode. At the time of film formation, irradiation is performed with ultraviolet rays or heat. In JP-A-2003-73666, AIBN, which is a radical generator, is added to a mixture of comonomer having a vinyl group in the same manner as a material having a vinyl group at the end of a phosphorescent light-emitting compound to form a film. A production method for allowing the polymerization reaction to proceed is disclosed. Further, JP-A-2003-86371 describes a production method in which a Diels-Alder reaction is caused between two molecules in the same layer to crosslink.
[0153] 有機接合面反応進行の確認は、例えば、反応性置換基を有する有機化合物がビ -ル基置換のモノマーの場合、ビュル基の 2重結合の分布を以下の様な分析手法で 測定することによって知ることが可能である。  [0153] Confirmation of the progress of the organic interface reaction is, for example, when the organic compound having a reactive substituent is a monomer having a beryl group substitution, and measuring the distribution of double bonds in the bull group using the following analytical method: It is possible to know by doing.
[0154] まず、一般的な微小領域分析手法にて分析が可能な程度の分析面積を確保する 必要があるが、そのためには薄膜を斜めに切削するのが有効な手段である。斜めに 切削することで表面に垂直に断面を作成した場合と比較して、 1/cos θ ( Θは表面 法線力も切削面の角度を引いた値)だけ面積が拡大される。  [0154] First, it is necessary to secure an analysis area that can be analyzed by a general microregion analysis method. For that purpose, it is an effective means to cut the thin film obliquely. The area is enlarged by 1 / cos θ (Θ is the value obtained by subtracting the angle of the cutting surface from the surface normal force) compared to the case where the cross section is created perpendicular to the surface by cutting diagonally.
[0155] 一例を挙げれば当業界で一般的に用いられているウルトラミクロトームを用いてガラ スナイフの刃を傾けて切削する方法や、ダイブラ ·ウィンテス社製サイカス NN04型を 用いて斜めに切削した面を作成する方法を挙げることができる。  [0155] To give an example, a method of tilting a glass knife using an ultramicrotome commonly used in the industry, or a surface cut obliquely using a Dybla-Wintes Cycus NN04 model You can mention how to create.
[0156] 分析面積が確保できた後に 2重結合を計測することとなるが、 2重結合を計測する 手段はいくつか考えられる。例えば、顕微赤外分光分析やラマン分光分析、あるい は 2重結合に特異的に反応し、且つ特異な元素を有する標識試薬にて 2重結合を標 識化し、電子線プローブマイクロアナライザー、 X線光電子分光装置、オージ 電子 分光装置、飛行時間型 2次イオン質量分析装置などで標識元素の分布を計測する 方法を好ましく挙げることができる。  [0156] The double bond is measured after the analysis area is secured, but there are several methods for measuring the double bond. For example, microscopic infrared spectroscopic analysis, Raman spectroscopic analysis, or a double bond is labeled with a labeling reagent that reacts specifically with a double bond and has a specific element, and an electron beam probe microanalyzer, X Preferred examples include a method of measuring the distribution of the labeling element with a line photoelectron spectrometer, an auger electron spectrometer, a time-of-flight secondary ion mass spectrometer, and the like.
[0157] 次に、請求の範囲第 13項〜第 22項に記載の発明(B)を実施するための最良の形 態について説明する。 [0157] Next, the best mode for carrying out the invention (B) described in claims 13 to 22 Explain the state.
[0158] 請求の範囲第 13項〜第 22項に記載の発明(B)〖こ係わる有機エレクト口ルミネッセ ンス素子の製造方法においては、請求の範囲第 13項〜第 19項のいずれか 1項に記 載の構成を有することにより、発光効率が高く長寿命である有機エレクト口ルミネッセ ンス素子を低コストで製造する製造方法を提供し、且つ、該製造方法により作製され た、有機エレクト口ルミネッセンス素子、照明装置及びディスプレイ装置を提供するこ とができた。  [0158] The invention according to Claims 13 to 22 (B) In the method of manufacturing an organic electroluminescent device according to any one of Claims 13 to 19, any one of Claims 13 to 19 Therefore, the present invention provides a manufacturing method for manufacturing an organic electroluminescent device having a high luminous efficiency and a long lifetime at a low cost, and the organic electroluminescent device manufactured by the manufacturing method. An element, a lighting device, and a display device could be provided.
[0159] 次に、請求の範囲第 13項〜第 22項に記載の発明(B)に係る各構成要素の詳細 について、順次説明する。  Next, details of each component according to the invention (B) described in claims 13 to 22 will be sequentially described.
[0160] 《有機エレクト口ルミネッセンス素子の製造方法》 [0160] <Method for producing organic electoluminescence device>
請求の範囲第 13項〜第 22項に記載の発明(B)〖こ係わる有機エレクト口ルミネッセ ンス素子の製造方法にっ 、て説明する。  The invention (B) described in claims 13 to 22 will be described with respect to the manufacturing method of the organic electroluminescence device related to this invention.
[0161] 請求の範囲第 13項〜第 22項に記載の発明(B)〖こ係わる有機エレクト口ルミネッセ ンス素子の製造方法は、請求の範囲第 13項に記載のように、支持基板上に少なくと も陽極、陰極を有し、該陽極と該陰極間に少なくとも一層の発光層を含む有機層を 有する有機エレクト口ルミネッセンス素子の製造方法において、該発光層の膜厚 T(E M) (nm)が下記関係式(1)を満たし、前記発光層の少なくとも一層がリン光発光材 料を有し、且つ、該有機層の少なくとも 1層力 層 Aと層 Bとの貼合により形成されるこ とが特徴である。  [0161] The invention (B) according to claims 13 to 22 of the invention (B) is a method for producing an organic electroluminescent device with an organic electroluminescence element on a support substrate as described in claim 13. In the method for producing an organic electoluminescence device having at least an anode and a cathode and an organic layer including at least one light emitting layer between the anode and the cathode, the film thickness T (EM) (nm) of the light emitting layer ) Satisfies the following relational expression (1), at least one of the light emitting layers has a phosphorescent light emitting material, and at least one layer of the organic layer is formed by bonding layers A and B This is a feature.
[0162] 《発光層の膜厚 T(EM)》  [0162] <Light emitting layer thickness T (EM)>
請求の範囲第 13項〜第 22項に記載の発明(B)〖こ係る有機エレクト口ルミネッセン ス素子の発光層の膜厚 T(EM)は、下記関係式(1)を示す。  The film thickness T (EM) of the light emitting layer of the invention (B) according to the invention described in claims 13 to 22 represents the following relational expression (1).
[0163] 請求の範囲第 13項〜第 22項に係わる発明(B)に記載の効果を得る為には、本発 明の有機 EL素子の、構成層の少なくともひとつの発光層の膜厚 T(EM)が関係式( 1)を満たさなければならないが、更に、本発明の有機 EL素子の、発光開始電圧の 低減、省電力効果アップ、また、発光層の非発光点の低減、発光ムラ等の発生削減 効果を充分に得る観点からは、下記の関係式 (2)で表される関係式を満たすことが 好ましい。 [0164] 関係式(1) [0163] In order to obtain the effects described in the invention (B) according to claims 13 to 22, the film thickness T of at least one light emitting layer of the organic EL element of the present invention is determined. (EM) must satisfy the relational expression (1). Furthermore, the organic EL device of the present invention has a reduced emission starting voltage, an improved power saving effect, a reduced non-emission point of the emission layer, and uneven emission. From the viewpoint of obtaining a sufficient effect of reducing the occurrence of the above, it is preferable to satisfy the relational expression represented by the following relational expression (2). [0164] Relational expression (1)
40nm<T(EM)≤ lOOnm  40nm <T (EM) ≤ lOOnm
関係式 (2)  Relational expression (2)
45nm<T(EM)≤ lOOnm  45nm <T (EM) ≤ lOOnm
《有機層の構成》  <Structure of organic layer>
請求の範囲第 13項〜第 22項に記載の発明(B)〖こ係る有機エレクト口ルミネッセン ス素子の有機層は、三層以上であることが好ましぐまた、該有機層の少なくとも 1層 は、前記層 A、前記層 Bとの貼合により形成されるが、層 A、層 Bは、各々主成分とし て同一構造の化合物を含有して 、ることが好ま U、。  It is preferable that the organic layer of the invention (B) according to the invention described in claims 13 to 22 has three or more organic layers, and at least one layer of the organic layer is preferable. Is formed by bonding with the layer A and the layer B, and it is preferable that the layer A and the layer B each contain a compound having the same structure as the main component.
[0165] また、前記層 Aまたは前記層 Bのいずれ力がリン光発光材料を含むことが、本発明 の有機 EL素子の、素子特性向上の観点力も好ましい。尚、前記リン光発光材料につ いても後述する有機 EL素子の構成層のところで詳細に説明する。 [0165] In addition, it is preferable that any of the forces of the layer A and the layer B includes a phosphorescent material to improve the device characteristics of the organic EL device of the present invention. The phosphorescent light emitting material will be described in detail in the constituent layers of the organic EL element described later.
[0166] 《有機層の構成と総発光層の膜厚 T(EM)》 [0166] << Structure of Organic Layer and Film Thickness of Total Light-Emitting Layer T (EM) >>
特に、層 Aが発光膜であり、層 Bが発光膜であり、該層 Aと該層 Bとの貼合により、少 なくともひとつの発光層が形成される場合、例えば、後述する ITO等の陽極側基板( 陽極側部材ともいう)上に層 A、 A1等の陰極側基板 (陰極側部材ともいう)上に、層 B が設けられるような場合(尚、層 Aは、陰極側基板上に設けられても良ぐ層 Bは、陽 極側基板上に設けられてもよ ヽ)、  In particular, when layer A is a light-emitting film, layer B is a light-emitting film, and at least one light-emitting layer is formed by laminating the layer A and the layer B, for example, ITO described later When layer B is provided on a cathode side substrate (also referred to as cathode side member) such as layers A and A1 on the anode side substrate (also referred to as anode side member) (layer A is the cathode side substrate) Layer B, which may be provided on top, may be provided on the anode side substrate ヽ),
陽極側基板上の層 Aの膜厚、陰極側基板上の層 Bの膜厚が共に、 20nmを超え、 且つ、総発光層の膜厚 T(EM)力 Onm<T(EM)≤ lOOnmの関係式を満たすこ とが好ましい。  The thickness of layer A on the anode side substrate and the thickness of layer B on the cathode side substrate both exceed 20 nm, and the total light emitting layer thickness T (EM) force Onm <T (EM) ≤ lOOnm It is preferable to satisfy the relational expression.
[0167] また、発光ムラの観点から、有機層(有機化合物層ともいう)の膜厚を T(org)、総発 光層の膜厚を T(EM)とした時には、発光ムラを抑制する観点から、  [0167] From the viewpoint of light emission unevenness, when the film thickness of the organic layer (also referred to as an organic compound layer) is T (org) and the film thickness of the total light emission layer is T (EM), the light emission unevenness is suppressed. From the point of view
0. 3≤T(EM) /T(org)≤0. 8の関係式を満たすことが好ましい。  It is preferable that the relational expression of 0.3≤T (EM) / T (org) ≤0.8 is satisfied.
[0168] 《貼合法 (単に貼合とも!ヽぅ)による有機 EL素子の構成層形成》 [0168] «Formation of organic EL element component layers by bonding method (simply bonding! ヽ ぅ)»
請求の範囲第 13項〜 22項に記載の発明(B)に係る、貼合による有機 EL素子の 構成層の形成プロセスについて説明する。  The process for forming the constituent layers of the organic EL element by bonding according to the invention (B) described in claims 13 to 22 will be described.
[0169] 貼合は、有機 EL素子の構成に必要な層を、予め全部成膜 (例えば、陽極側基板、 陰極側基板等である)した後に行われるため、透明電極 (ITO等の陽極側基板)や対 抗電極 (A1等の陰極側基板)の成膜は一番の最初に行われることになる。 [0169] For the bonding, all the layers necessary for the configuration of the organic EL element are formed in advance (for example, an anode side substrate, Therefore, the film formation of the transparent electrode (the anode side substrate such as ITO) and the counter electrode (the cathode side substrate such as A1) is performed first.
[0170] 金属や金属酸ィ匕物を成膜する際は、性能のよい膜とするために堆積させる時また は成膜後に高いエネルギーを印加することが望まれるが、貼合法はそれを可能にす るひとつの手段であると考えることもできる。 [0170] When a metal or metal oxide film is formed, it is desirable to apply high energy when depositing or after film formation in order to obtain a film with good performance. It can also be considered as a means of achieving this.
[0171] つまり、貼合する際の接合面を有機層同士にするとすれば、透明電極と対抗電極 はそれぞれ性能や生産性の面で最も相応しい方法で予め成膜しておくことができる [0171] In other words, if the bonding surface when bonding is made of organic layers, the transparent electrode and the counter electrode can be formed in advance by a method most suitable in terms of performance and productivity, respectively.
[0172] その上に、適宜有機層を積層して貼合すれば、前記接合面での不具合さえ改善し てやれば、性能的にも製造プロセス的にも良好な革新的な方法である。 [0172] If an organic layer is laminated and bonded as appropriate, it is an innovative method that is good in terms of performance and manufacturing process as long as the defect on the joint surface is improved.
[0173] 《リン光方式の適合性》  [0173] Compatibility of phosphorescence method
貼合法の問題点として、先に接合面での不具合を挙げた。この問題に対し鋭意検 討した結果、例えば有機層同士を接合する際には、その接合界面でのキャリア移動 が面全体に均一ではなく局所的にキャリアが流れやすい部分と流れにくい部分がで きやすいことがわ力つてきた。  As a problem of the bonding method, the problem on the joint surface was mentioned earlier. As a result of diligent investigation of this problem, for example, when organic layers are bonded to each other, the carrier movement at the bonding interface is not uniform over the entire surface, and it is easy to create a portion where carriers can flow locally and a portion where flow is difficult. I've come to power.
[0174] 特に、有機層界面で発光する蛍光方式はその挙動が顕著であり、発光ムラが起こり やすいことがわかった。  [0174] In particular, it has been found that the fluorescence method of emitting light at the interface of the organic layer has a remarkable behavior and is likely to cause uneven light emission.
[0175] 一方、リン光方式は、蛍光方式とは異なり、発光層内部に発光領域を持っためか、 比較的このような現象がおきづらぐ特に、発光層の有機層全体における相対的な膜 厚比率を上げた時や、発光層の膜厚を厚くした時、また、発光層同士を接合する発 光層 2層とした時などは、顕微鏡観察でもわ力もないくらい発光ムラを抑えることが可 能であることがわかった。  [0175] On the other hand, the phosphorescence method, unlike the fluorescence method, has a light emitting region inside the light emitting layer, and this phenomenon is relatively difficult to occur. When increasing the thickness ratio, increasing the thickness of the light-emitting layer, or using two light-emitting layers that join the light-emitting layers together, light emission unevenness can be suppressed to the extent that there is no weakness even under microscopic observation. I found that it was possible.
[0176] これは、貼合法の最大の難点である、接合界面でのキャリア移動が遅くなるという現 象を、逆に有効活用した技術であり、今までに類を見ない画期的な発見であると言え る。  [0176] This is a technology that effectively utilizes the phenomenon of slow carrier movement at the bonding interface, which is the biggest difficulty of the bonding method, and is an unprecedented breakthrough discovery. It can be said that.
[0177] 貼合法を用いる有機 EL素子の構成層 (特に有機層 (有機化合物層)の形成)は、こ のような問題を解決する大変有効な手段となる。  [0177] The constituent layer of the organic EL element using the bonding method (particularly, the formation of the organic layer (organic compound layer)) is a very effective means for solving such problems.
[0178] 検討した結果、我々は発光効率が高く長寿命である有機 EL素子を与える要因とし て、前述の「りん光発光の使用、素子の多層化 (機能を分離するため複数の有機層 を有すること)」と同時に、該素子の発光層の膜厚が重要な因子であることを見出した [0178] As a result of our investigation, we have determined that the organic EL element has high luminous efficiency and long life. At the same time as the above-mentioned “use of phosphorescence emission, multilayering of elements (having a plurality of organic layers for separating functions)”, the thickness of the light emitting layer of the element was found to be an important factor. The
[0179] 特に、発光層の有機層全体における相対的な膜厚比率を上げた時や、発光層の 膜厚を厚くした時、また、発光層同士を接合する、即ち、 2層の発光層を 1層の発光 層にした時などは、顕微鏡観察でもわ力もないくらい発光ムラを抑え、発行効率の高 い有機 EL素子を製造することが可能であることがわ力つた。 [0179] In particular, when the relative film thickness ratio of the entire organic layer of the light-emitting layer is increased, or when the film thickness of the light-emitting layer is increased, the light-emitting layers are joined together, that is, two light-emitting layers. When using a single light-emitting layer, it was found that it was possible to produce an organic EL device with high emission efficiency by suppressing light emission unevenness to the extent that there was no weakness even under microscopic observation.
[0180] 《貼合以外の有機層の形成方法》  [0180] <Method for forming organic layer other than bonding>
請求の範囲第 13項〜第 22項に記載の発明(B)に係わる有機 EL素子の製造方法 は、構成層である有機層の少なくとも 1層を陽極基板側に設けられた層 Aと陰極基板 側に設けられた層 Bとを貼合する工程を経て有機 EL素子が製造されることが特徴で ある。  The method of manufacturing an organic EL element according to the invention (B) according to claims 13 to 22 includes a layer A and a cathode substrate provided with at least one organic layer as a constituent layer on the anode substrate side. It is characterized in that an organic EL element is manufactured through a process of bonding with layer B provided on the side.
[0181] 有機 EL素子の構成層としては、後述する有機 EL素子の構成層のところで、詳細 に説明するが、例えば、有機 EL素子の構成例として、陽極 Z正孔注入層 Z正孔輸 送層 Z発光層 Z電子輸送層 Z電子注入層 Z陰極からなる有機 EL素子を例にとつ て説明すると、層 Aと層 Bとの貼合により形成される層は、正孔注入層、正孔輸送層、 発光層、電子輸送層、電子注入層のいずれでもよい。  [0181] The constituent layer of the organic EL element will be described in detail in the constituent layer of the organic EL element described later. For example, as a constituent example of the organic EL element, an anode Z hole injection layer Z hole transport Layer Z light-emitting layer Z electron transport layer Z electron injection layer An organic EL device consisting of a Z cathode will be described as an example. The layer formed by bonding layers A and B is a hole injection layer, a positive layer Any of a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer may be used.
[0182] また、貼合により形成される有機層以外は、従来公知の塗布方法や蒸着、スパッタ リング等の方法を適宜用いることができ、もちろん、適宜、貼合法を併用することも可 能である。  [0182] In addition to the organic layer formed by bonding, conventionally known methods such as coating methods, vapor deposition, and sputtering can be used as appropriate. Of course, a bonding method can be used in combination as appropriate. is there.
[0183] 貼合方法以外の有機層各層の形成方法としては、前記の如く蒸着法、ウエットプロ セス (スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が 得られやすぐ且つ、ピンホールが生成しにくい等の点から、本発明においてはスピ ンコート法、インクジェット法、印刷法等の塗布法による成膜が好ましい。  [0183] As a method for forming each layer of the organic layer other than the bonding method, there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method) as described above, but a homogeneous film can be obtained. In the present invention, film formation by a coating method such as a spin coating method, an ink jet method, or a printing method is preferable from the viewpoint that pinholes are not easily generated.
[0184] 有機層の形成に用いられる有機 EL材料を溶解または分散する液媒体としては、例 えば、メチルェチルケトン、シクロへキサノン等のケトン類、酢酸ェチル等の脂肪酸ェ ステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチ レン、シクロへキシルベンゼン等の芳香族炭化水素類、シクロへキサン、デカリン、ド デカン等の脂肪族炭化水素類、 DMF、 DMSO等の有機溶媒を用いることができる 。また分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により 分散することができる。 [0184] Examples of the liquid medium for dissolving or dispersing the organic EL material used for forming the organic layer include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, and dichlorobenzene. Halogenated hydrocarbons such as toluene, xylene, mesitylene, cyclohexylbenzene, and other aromatic hydrocarbons, cyclohexane, decalin, Aliphatic hydrocarbons decane, D MF, it is possible to use an organic solvent such as DMSO. Moreover, as a dispersion method, it can disperse | distribute by dispersion methods, such as an ultrasonic wave, high shear force dispersion | distribution, and media dispersion | distribution.
[0185] 次いで、請求の範囲第 23項〜第 31項に記載の発明(C)を実施するための最良の 形態について説明する。  [0185] Next, the best mode for carrying out the invention (C) described in claims 23 to 31 will be described.
[0186] 請求の範囲第 23項〜第 31項に記載の発明(C)は、有機 EL素子を貼合法によつ て得るときの上記欠点、即ち、貼合した接合面が必ずしも分子レベルで密着しておら ず結果としてキャリア移動がスムーズに行へなくなる、また、接合面が剥離しやすぐ 発光素子として機能しなくなるなどの問題点を解決した有機 EL素子の製造方法を提 供するものである。  [0186] The invention (C) according to claims 23 to 31 is the above-mentioned disadvantage when an organic EL element is obtained by a bonding method, that is, the bonded surface is not necessarily at the molecular level. This provides a method for manufacturing an organic EL device that solves the problems such as non-adherence and as a result, carrier movement does not move smoothly, and the bonding surface peels off and immediately does not function as a light emitting device. .
[0187] 請求の範囲第 23項〜第 31項に記載の発明(C)においては、第 1の電極基板 (例 えば陰極)に有機層を設けた部材と、第 2の電極基板 (例えば陽極)上に有機層を設 けた部材、をそれぞれ作製し、有機層同士を対向させ、部材同士を貼合して有機 EL 素子を形成する。  [0187] In the invention (C) according to claims 23 to 31, a member provided with an organic layer on a first electrode substrate (for example, a cathode) and a second electrode substrate (for example, an anode) ) Each member having an organic layer formed thereon is prepared, the organic layers are opposed to each other, and the members are bonded together to form an organic EL element.
[0188] 陰極側の部材として、例えば、支持体 (例えばガラス基板)上にアルミニウム等から なる陰極を真空蒸着等により形成し、この上に例えば電子輸送材料層を塗布或!ヽは 蒸着等により形成する。  [0188] As a member on the cathode side, for example, a cathode made of aluminum or the like is formed on a support (for example, a glass substrate) by vacuum deposition or the like, and an electron transport material layer is applied thereon or by evaporation or the like. Form.
[0189] 一方、陽極側の部材として、例えば ITO等の薄膜を陽極として形成したガラス基板 上に、例えば正孔輸送層、発光層を、これも塗布或いは蒸着等により順次形成する。  [0189] On the other hand, as a member on the anode side, for example, a hole transport layer and a light emitting layer are sequentially formed by coating or vapor deposition on a glass substrate formed with a thin film such as ITO as an anode.
[0190] 陰極側及び陽極側のこれら二つの部材を互いに有機層同士 (前記電子輸送層と 発光層)、密着、貼合することで有機 EL素子が得られるが、本発明においては、互い に貼合される二つの有機層の表面粗さを所定の関係に保つことに特徴がある。  [0190] An organic EL element is obtained by adhering these two members on the cathode side and the anode side to each other with the organic layers (the electron transport layer and the light emitting layer), and in the present invention. It is characterized in that the surface roughness of the two organic layers to be bonded is kept in a predetermined relationship.
[0191] これにより、前記の接合面が剥離しやすぐ発光素子として機能しなくなる、また貼 合した接合面における分子レベルでの密着が弱いためキャリア移動がスムーズでな いこと等の問題が解決された発光効率が高い、発光寿命の改善された有機 EL素子 の製造方法を提供するものである。  [0191] This solves the problems such as the above-mentioned bonding surface peels off and does not function as a light emitting element immediately, and the carrier movement is not smooth due to weak adhesion at the molecular level at the bonded bonding surface. The present invention provides a method for manufacturing an organic EL device having a high emission efficiency and an improved emission lifetime.
[0192] 請求の範囲第 23項〜第 31項に記載の発明(C)に係わる有機 EL素子は、少なくと も n層 (n≥0)の有機層を有する第 1の電極基板と、少なくとも m層 (m+n≥ 1)の有 機層を有する第 2の電極基板を対向させて貼り合わせ作製する有機 EL素子におい て、前記有機層の少なくとも一つカ^ン光性発光化合物を含有し、対向する 2つの積 層面の表面粗さ(Ra)がそれぞれ 0. 05〜: LOnmの範囲にあり、 2つの積層面の表面 の表面粗さの比率が 0. 5〜2. 0以内とする有機 EL素子である。 [0192] The organic EL device according to the invention (C) according to claims 23 to 31 includes at least a first electrode substrate having at least n layers (n≥0) organic layers, m layer (m + n≥ 1) In an organic EL device produced by bonding a second electrode substrate having an organic layer facing each other, the organic layer contains at least one light-emitting light emitting compound of the organic layer, and the surface roughness of the two facing stacked layers is (Ra) is in the range of 0.05 to: LOnm, respectively, and the ratio of the surface roughness of the two laminated surfaces is within the range of 0.5 to 2.0.
[0193] 接合される積層面は有機 EL素子各機能層のどの層間でもよいが、貼り合せる積層 面は互いに有機層であることが好ましい。貼合、密着が容易、且つ、貼合後、剥離し にくいこと、また、有機層の場合表面粗さの調整が容易であること等から、有機層同 士の貼合が好ましい。 [0193] The laminated surface to be bonded may be any layer of each functional layer of the organic EL element, but the laminated surfaces to be bonded are preferably organic layers. Bonding of the organic layer is preferred because it is easy to bond and adhere, and is difficult to peel off after bonding, and in the case of an organic layer, it is easy to adjust the surface roughness.
[0194] また、接合した積層面の不具合によるキャリア移動の面内での不均一による発光ム ラは、有機層界面で発光する蛍光発光方式よりも発光層内部に発光領域をもつリン 光発光方式の方が、比較的現れにくいこと、特に、発光層の有機層全体における相 対的な膜厚比率を上げた時や発光層の膜厚を厚くした時、また、発光層同士を接合 する発光層 2層とした時など、リン光性発光化合物を含有するリン光発光方式は発光 ムラをわからないくらいにで  [0194] In addition, light emission irregularity due to non-uniformity in the plane of carrier movement due to defects in the bonded laminated surface is a phosphorescent light emitting method with a light emitting region inside the light emitting layer rather than a fluorescent light emitting method that emits light at the organic layer interface. It is relatively less likely to appear, especially when the relative film thickness ratio of the entire organic layer of the light emitting layer is increased or when the thickness of the light emitting layer is increased, or when the light emitting layers are joined together. For example, when two layers are used, a phosphorescent light-emitting method that contains a phosphorescent light-emitting compound is sufficient to prevent uneven light emission.
きるため、本発明の貼合による作製方法はリン光発光方式に適している。  Therefore, the manufacturing method by bonding according to the present invention is suitable for the phosphorescence emission method.
[0195] 貼合される有機層の表面粗さは、例えば、スピンコート等、塗布法により有機層を形 成する場合には、有機材料溶液の粘度、塗布温度等を調整すること等によって調整 することが出来るが、成膜法によらない表面粗さの調整法には、有機層を固有の表 面粗さをもった金属製ロール等で圧着 (加熱)する所謂型付けがあり、容易にこれを 行うことが可能である。 [0195] When the organic layer is formed by a coating method such as spin coating, the surface roughness of the organic layer to be bonded is adjusted by adjusting the viscosity of the organic material solution, the coating temperature, etc. However, a method for adjusting the surface roughness that does not depend on the film formation method involves so-called typing, in which the organic layer is pressed (heated) with a metal roll having a specific surface roughness. It is possible to do this.
[0196] 型付けの方法としては、表面が所定の表面粗さ (Ra)をもつ金属ロールに、温度 50 〜150°C、線圧 150〜1500NZcm、また、線速 0. l〜30mZ秒程度で圧着処理 する態様が挙げられる。線圧が 150NZcm以上であれば均一、忠実な応答が得ら れる。特に 400NZcm以上が好ましい。また、 1500NZcm以下であれば有機層自 体の破壊 (割れや亀裂)を生じることがな 、。  [0196] As a method of molding, a metal roll having a predetermined surface roughness (Ra) is applied to a temperature of 50 to 150 ° C, a linear pressure of 150 to 1,500 NZcm, and a linear velocity of about 0.1 to 30 mZ seconds. An embodiment in which a pressure-bonding process is performed is mentioned. If the linear pressure is 150 NZcm or more, a uniform and faithful response can be obtained. In particular, 400 NZcm or more is preferable. Also, if it is less than 1500NZcm, the organic layer itself will not break (crack or crack).
[0197] また、温度 50〜150°Cであれば有機膜表面の変性、また大きな膜の変形も無い。 Further, when the temperature is 50 to 150 ° C., there is no modification of the surface of the organic film and no significant deformation of the film.
[0198] 請求の範囲第 23項〜第 31項に記載の発明(C)においては、それぞれ貼合される 対向する二つの有機層表面は、中心線表面粗さ (Ra)で、それぞれ 0. 05〜: LOnm の範囲にあり、且つ、 2つの積層面表面の、表面粗さの比率が 0. 5〜2. 0以内であ るように調整される。 [0198] In the invention (C) according to claims 23 to 31, the surfaces of the two organic layers to be bonded to each other have a centerline surface roughness (Ra) of 0. 05 ~: LOnm And the ratio of the surface roughness of the two laminated surfaces is adjusted to be within the range of 0.5 to 2.0.
[0199] 請求の範囲第 23項〜第 31項に記載の発明(C)でいう、表面の中心線平均表面粗 さ Ra (nm)とは、 JIS B601 (1994)に準じて求めた値であり、微小面積における微 小な凹凸状態を表すもので、本発明では、原子間力顕微鏡 (AFM)で求めた値を用 いる。  [0199] The centerline average surface roughness Ra (nm) of the surface in the invention (C) according to claims 23 to 31 is a value obtained according to JIS B601 (1994). Yes, it represents a minute uneven state in a minute area. In the present invention, a value obtained by an atomic force microscope (AFM) is used.
[0200] 原子間力顕微鏡(Atomic Force Microscopy: AFM)は、セイコーインスツルメ ンッ社製 SPI3800Nプローブステーションおよび SPA400多機能型ユニットを使用 し、約 lcm角の大きさに切り取った試料を、ピエゾスキャナー上の水平な試料台上に セットし、カンチレバーを試料表面にアプローチし、原子間力が働く領域に達したとこ ろで、 XY方向にスキャンし、その際の試料の凹凸を Z方向のピエゾの変位でとらえる 。ピエゾスキャナ一は、 XY20 m、 Z2 mが走査可能なものを使用する。カンチレ バーは、セイコーインスツルメンッ社製シリコンカンチレバー SI— DF20で、共振周波 数 120〜150kHz、パネ定数 12〜20NZmのものを用い、 DFMモード(Dynamic Force Mode)で測定する。測定領域 2 m角を、 1 (or2)視野、走査周波数 1Hz で測定する。  [0200] Atomic Force Microscopy (AFM) is a piezo scanner that uses a SPI3800N probe station and SPA400 multifunctional unit manufactured by Seiko Instruments Inc. Set on the upper horizontal sample stage, approach the cantilever to the sample surface, reach the region where the atomic force works, scan in the XY direction, and the unevenness of the sample at that time of the piezo in the Z direction Capture by displacement. Use a piezo scanner that can scan XY20 m and Z2 m. The cantilever is a silicon cantilever SI-DF20 manufactured by Seiko Instruments Inc., which has a resonance frequency of 120 to 150 kHz and a panel constant of 12 to 20 NZm, and is measured in DFM mode (Dynamic Force Mode). Measurement area Measure 2m square with 1 (or2) field of view and scanning frequency 1Hz.
[0201] 中心線平均粗さ (Ra)は、得られた粗さ曲線から、その中心線の方向に測定長さ L の部分を抜き取り、この抜き取り部分の中心線の方向を X軸、縦倍率の方向(X軸に 垂直)を Y軸とし、粗さ曲線を Y=F (X)とおいたとき、  [0201] The centerline average roughness (Ra) is determined by extracting the portion of the measured length L in the direction of the centerline from the obtained roughness curve. When the direction of (perpendicular to the X axis) is the Y axis and the roughness curve is Y = F (X),
[0202] [数 1]  [0202] [Equation 1]
Ra J L o I F(X) I dX Ra J L o IF (X) I dX
[0203] で与えられる値と定義されている。 It is defined as the value given in [0203].
[0204] このように貼り合わせる面が微少な凹凸を有する平滑な表面であり、相対向する有 機層同士の表面粗さに余り大きな乖離がな 、ようにすることで層間の密着性が向上 し、貼合された接合面が剥離しにくいものとなる。  [0204] In this way, the surface to be bonded is a smooth surface with minute irregularities, and the surface roughness between the opposing organic layers is not so large that the adhesion between the layers is improved. In addition, the bonded joint surface is difficult to peel off.
[0205] 請求の範囲第 23項〜第 31項に記載の発明(C)において、有機 EL素子各有機層 を、第 1の電極基板上に、また第 2の電極基板上に、それぞれ、例えば、陰極側の部 材、そして、陽極用の部材として、積層、形成するが、これら有機 EL素子各機能層を 形成する有機薄膜の形成方法につ!ヽては、特に限定はな ヽ。 [0205] In the invention (C) according to claims 23 to 31, each organic layer of the organic EL element is formed on the first electrode substrate and on the second electrode substrate, respectively. , Cathode side The material and the member for the anode are laminated and formed, but there is no particular limitation on the method for forming the organic thin film for forming each functional layer of these organic EL elements.
[0206] 現在上巿されて ヽる有機 EL素子の殆どが、低分子材料を蒸着して成膜する、 Vヽゎ ゆる蒸着法であるが、これら蒸着による方法、また、高分子系材料において比較的よ く用いられる有機化合物層をスピンコート、インクジェット、印刷、スプレーといった塗 布 (湿式)プロセスにより製造する方法等、 、ずれであってもよ!/、。  [0206] Most of the organic EL devices currently being promoted are V-type vapor deposition methods in which a low molecular material is vapor-deposited to form a film. A method of manufacturing a relatively frequently used organic compound layer by a coating (wet) process such as spin coating, ink jet, printing, spraying, etc. may be displaced! /.
[0207] し力しながら、大気圧下で製造することができるため低コストィ匕が可能であると同時 に、必要な材料 (高分子材料および Zまたは低分子材料)を溶液に調製して薄膜塗 布するため、複数の有機材料を精密に混合できる (例えば、発光ホスト材料に対する ドーパント等の調整がしゃすい等)こと、また、素子を大面積ィ匕しても発光ムラができ にくいという特徴があり、湿式プロセスが好ましい。また、対抗電極を予め成膜したフ イルム基板を準備しておけば、ロールッゥロール方式での連続生産が可能であること 、有機層の貼合も容易にできることなど力も湿式プロセスが好ま 、。  [0207] While being able to manufacture under atmospheric pressure, low cost is possible, and at the same time, the necessary materials (polymer material and Z or low molecular material) are prepared into a solution to form a thin film. Because it is coated, it is possible to precisely mix a plurality of organic materials (for example, to adjust dopants to the light-emitting host material, etc.), and to prevent uneven light emission even if the device has a large area. And a wet process is preferred. In addition, if a film substrate with a counter electrode formed in advance is prepared, the wet process is preferred because it can be continuously produced in a roll-to-roll system and the organic layer can be easily bonded.
[0208] 有機 EL素子の製造プロセスにおいて、金属や、金属酸化物による電極を成膜する 際は、性能のよい膜とするため、高いエネルギーを印加することが望まれる力 有機 層を逐次積層するやり方では、最後に電極層を形成するため、有機薄膜のダメージ が懸念され、実質上、真空蒸着や、穏和な条件下でのスパッタリングで成膜するしか すべがない状況であるが、この点、貼合法においては、予めこれを行った後、各有機 層の積層が行われるため、逐次有機層が形成される逐次法に比べ、すでに成膜され て ヽる有機層にダメージを与えることがなく(有機 EL素子の発光特性や発光寿命な どが大きく劣化してしまう)、また性能のよい電極膜を形成でき好ましいものである。  [0208] When forming an electrode made of metal or metal oxide in the process of manufacturing an organic EL element, force is required to apply high energy in order to make a film with good performance. In the method, since the electrode layer is formed last, there is a concern about the damage of the organic thin film, and it is practically the situation that the film can only be formed by vacuum evaporation or sputtering under mild conditions. In the bonding method, since this is performed in advance, each organic layer is laminated, so that the organic layer that has already been formed is not damaged as compared with the sequential method in which the sequential organic layer is formed. (The emission characteristics and emission lifetime of the organic EL element are greatly deteriorated.) It is also preferable because a high performance electrode film can be formed.
[0209] 請求の範囲第 23項〜第 31項に記載の発明(C)にお 、ては、陰極側及び陽極側 のそれぞれの部材上に形成された有機層は、それぞれ前記の表面粗さをもつよう〖こ 調製された後、それぞれの有機層が対向され貼合されて、有機 EL素子は形成され る。  [0209] In the invention (C) according to claims 23 to 31, the organic layers formed on the respective members on the cathode side and the anode side have the above-mentioned surface roughness. After being prepared, each organic layer is faced and bonded to form an organic EL element.
[0210] 陰極側部材と陽極側部材を密着、貼合するための加圧、加熱手段としては、気泡 等が混入せずに加圧または加圧'加熱処理できるものであれば特に制限はなく用い ることがでさる。 [0211] 例えば、陰極側部材と陽極側部材を間に挟んで、減圧下、例えば、 0. 1 X 10 -1 . 0 X 10— &程度の減圧環境下で押圧力 0. IMPa程度の圧力で圧着し密着させる [0210] The pressurizing and heating means for closely adhering and bonding the cathode side member and the anode side member are not particularly limited as long as they can be pressurized or pressurized without being mixed with bubbles. It can be used. [0211] For example, in between the cathode-side member and the anode-side member, under reduced pressure, for example, 0. 1 X 10 -1. 0 X 10- & degree of pressure of about pressing force 0. IMPa in a reduced pressure environment Crimp and stick with
[0212] また、接合用の治具として、押圧手段と架台とからなるプレス機を用いることができ、 陰極側部材と陽極側部材を押圧手段と架台間に挟み密着させる方法を用いることも できる。この場合、圧力としては、通常 0. 5〜: LOONZcm2、好ましくは 5〜50NZcm また、加圧時間は通常 0. 1〜300秒程度とすればよい。 [0212] Further, as a joining jig, a press machine including a pressing unit and a gantry can be used, and a method in which the cathode side member and the anode side member are sandwiched between the pressing unit and the gantry can be used. . In this case, the pressure is usually 0.5 to: LOONZcm 2 , preferably 5 to 50 NZcm, and the pressurization time is usually about 0.1 to 300 seconds.
[0213] また、ラミネーター等、圧力ロールを用い密着させる場合は、通常 l〜200N/cm2 、好ましくは 5〜100NZcm2の圧力、搬送速度が通常 0. l〜200mmZ秒、好ましく は 0. 5〜: LOOmmZ秒程度であれば気泡等が混入せず密着が可能である。 [0213] When using a pressure roll such as a laminator, the pressure is usually 1 to 200 N / cm 2 , preferably 5 to 100 NZcm 2 , and the conveyance speed is usually 0.1 to 200 mmZ seconds, preferably 0.5. ~: If it is about LOOmmZ seconds, it is possible to adhere without bubble mixing.
[0214] また、貼合時には、いずれの場合にも、圧力とともに加温してもよぐ温度をかける 場合、加熱温度は通常 60〜200°C、好ましくは 100〜150°Cの範囲である。  [0214] Also, in any case, when applying a temperature that can be heated together with pressure in any case, the heating temperature is usually in the range of 60 to 200 ° C, preferably 100 to 150 ° C. .
[0215] また、貼合時には活性光線等も利用できる。活性光線としては、電子線、紫外線等 があり、紫外線の光源としては、紫外線ランプ (例えば 0. 5kPa〜lMPaまでの動作 圧力を有する低圧、中圧、高圧水銀ランプ)、キセノンランプ、タングステンランプ、ハ ロゲンランプ等が用いられ、 5000〜8000 μ WZcm2程度の強度を有する紫外線が 好ましく照射される。硬化に要するエネルギー量としては 0. 02〜20kjZcm2の範囲 が用いられる。 [0215] In addition, actinic rays or the like can be used at the time of bonding. Examples of actinic rays include electron beams and ultraviolet rays, and examples of ultraviolet light sources include ultraviolet lamps (for example, low pressure, medium pressure, and high pressure mercury lamps having an operating pressure of 0.5 kPa to lMPa), xenon lamps, tungsten lamps, A halogen lamp or the like is used, and ultraviolet rays having an intensity of about 5000 to 8000 μWZcm 2 are preferably irradiated. The amount of energy required for curing ranges from 0.02 to 20 kjZcm2.
[0216] なお、陰極側部材の基板及び Z又は陽極側部材の基板を余熱させておけば生産 性が向上するので好ましい。  [0216] It is preferable to preheat the substrate of the cathode side member and the substrate of Z or the anode side member because the productivity is improved.
[0217] 〈接合界面の共有結合形成〉 <Covalent bond formation at bonding interface>
又、請求の範囲第 23項〜第 31項に記載された発明(C)の好ましい態様において は、上記貼合された接合界面について、これを分子レベルで密着させるため、接合 後に界面間に共有結合を形成させることが、非常に有効な手段であることをみいだし た。  In the preferred embodiment of the invention (C) described in claims 23 to 31, the bonded interface is bonded at the molecular level so that it is shared between the interfaces after bonding. We found that forming a bond is a very effective means.
[0218] 有機 ELの層間を共有結合でつなぐ技術は、前記特許文献 5に開示されているが、 本発明では、貼合法における界面接着の手段としてこの技術を適用する。  [0218] A technique for connecting organic EL layers by covalent bonding is disclosed in Patent Document 5, but in the present invention, this technique is applied as means for interfacial adhesion in the bonding method.
[0219] 即ち、貼り合わせる積層面の両方に反応性置換基を有する有機化合物を含有させ る。 [0219] That is, an organic compound having a reactive substituent is included in both of the laminated surfaces to be bonded. The
そのような置換基は、素子内部で発生する活性種や、貼合時の熱により化学変化を 起こし共有結合の形成により、貼合された有機層間の分子レベルでの密着性を向上 させる。  Such a substituent improves the adhesion at the molecular level between the bonded organic layers by causing a chemical change due to the active species generated inside the device and the heat at the time of bonding, and forming a covalent bond.
[0220] また、これらの反応性置換基を有する有機化合物を含有させると、駆動のジュール 熱 (つまり電流が素子内を流れることにより)化合物間の反応 (化学変化)が進むため 、その結果として分子レベルの密着性が向上、発光性能や発光寿命などが改善され ると 、う新し 、現象にっ 、ても発見した。  [0220] In addition, when an organic compound having these reactive substituents is contained, a reaction (chemical change) between the compounds proceeds due to driving Joule heat (that is, when an electric current flows in the device). We have discovered even new phenomena when adhesion at the molecular level is improved and luminous performance and lifetime are improved.
[0221] 有機 EL素子の発光層は、通常、リン光性の発光を利用する、いわゆる「リン光素子 」では、リン光発光材料 (リン光ドーパント)を発光ホストに対し質量比で 1〜20%程度 混合することが発光効率の観点力 有効であるとされており、本発明においてリン光 性の発光を利用する場合には、発光ホストを併用することが好ましぐこのような化学 変化は、該発光ホスト材料と、これに反応性をもつリン光発光材料 (リン光ドーパント) との化学反応を利用してもょ 、。  [0221] The light emitting layer of an organic EL element usually uses phosphorescent light emission. In so-called "phosphorescent elements", a phosphorescent material (phosphorescent dopant) is used in a mass ratio of 1 to 20 with respect to a light emitting host. It is said that mixing in the order of about% is effective from the viewpoint of luminous efficiency. In the case of using phosphorescent light emission in the present invention, it is preferable to use a luminescent host together. Utilizing a chemical reaction between the light emitting host material and a phosphorescent light emitting material (phosphorescent dopant) having reactivity therewith.
[0222] 例えば、発光層同士を貼合する場合、また発光層カ^ン光ドーパントと発光ホストと で構成されるとき、リン光発光材料 (リン光ドーパント)の化学変化は、発光ホストとの( 縮合や重合等)反応を利用してもよぐ発光ホストとの化学反応を利用する場合、リン 光発光材料に置換している特定の反応性基と反応を起こしうる反応性置換基を発光 ホストに導入することが好まし 、。  [0222] For example, when the light emitting layers are bonded to each other, or when the light emitting layer is composed of a light dopant and a light emitting host, the chemical change of the phosphorescent light emitting material (phosphorescent dopant) changes with the light emitting host. When using a chemical reaction with a luminescent host that may utilize a reaction (condensation or polymerization, etc.), it emits a reactive substituent that can react with a specific reactive group substituted on the phosphorescent material. Preferred to introduce to the host.
[0223] 例えば、リン光発光材料に水酸基(一 OH)が置換している場合、発光ホストにはィ ソシアナート基(-NCO)や、イソチオシアナート基(-NCS)を導入した材料を選択 する、或いは、リン発光材料にビュル基が置換している場合、それとラジカル重合可 能なビニル基を導入した発光ホストを選択する。  [0223] For example, when a phosphorescent material is substituted with a hydroxyl group (one OH), a material into which an isocyanate group (-NCO) or an isothiocyanate group (-NCS) is introduced is selected as the light-emitting host. Alternatively, when a bur group is substituted in the phosphor luminescent material, a luminescent host in which a vinyl group capable of radical polymerization is introduced is selected.
[0224] また、本発明にお 、て最も好ま 、態様では、リン光発光材料また発光ホスト、の両 方にビュル基が置換した材料を少なくとも 1種ずつ、同一層中に存在させ、その発光 素子を通電により、発光層内で発生するァ-オンラジカルまたはカチオンラジカルを 重合開始剤として利用し、鎖状および Zまたは網目状のポリマーを形成させることで ある。 [0225] また、陰極側部材の表面層が電子輸送層であり、陽極側部材の表面層が発光層の 場合でも、例えば、ビニル基等の反応性置換基をもつ電子輸送層、及び同じくビ- ル基等の反応性置換基をもつ発光ホストまたはドーパント材料を含有する発光層を それぞれ有する部材を貼合することで、層間において重合が行われ、貼合された有 機層間の密着性が向上する。陰極側基板の最表層が、発光層であり、陽極側基板 の最表層が正孔輸送層である場合も同様に、反応性基をもつ正孔輸送材料を含有 した正孔輸送層を用いればょ 、。 [0224] In the present invention, in the most preferred embodiment, at least one material having a bur group substituted on both the phosphorescent light emitting material and the light emitting host is present in the same layer to emit light. When the device is energized, chain-like and Z- or net-like polymers are formed by using as a polymerization initiator a key-on radical or a cation radical generated in the light-emitting layer. [0225] Even when the surface layer of the cathode side member is an electron transport layer and the surface layer of the anode side member is a light emitting layer, for example, an electron transport layer having a reactive substituent such as a vinyl group, and -By laminating members each having a light-emitting host or a light-emitting layer containing a dopant material having a reactive substituent such as a ruthel group, polymerization is performed between the layers, and adhesion between the bonded organic layers is improved. improves. Similarly, when the outermost layer of the cathode side substrate is a light emitting layer and the outermost layer of the anode side substrate is a hole transport layer, a hole transport layer containing a hole transport material having a reactive group may be used. Oh ,.
[0226] 従って、貼合する 2つの積層面の少なくとも一方には反応性置換基を有する有機 化合物を含有することが好ましぐ貼合する 2つの積層面の少なくとも一方に反応性 置換基を有する有機化合物を含有し、他方にこれと反応する基を有する材料を含有 していれば、互いに反応することで密着を強化でき、接合面の剥離をなくし、また、キ ャリア移動を容易ならしめることが出来る。  Accordingly, it is preferable that at least one of the two laminated surfaces to be bonded contains an organic compound having a reactive substituent, and at least one of the two laminated surfaces to be bonded has a reactive substituent. If it contains an organic compound and a material having a group that reacts with the other, it can strengthen the adhesion by reacting with each other, eliminate peeling of the joint surface, and facilitate carrier movement. I can do it.
[0227] また、貼り合せる積層面の両方に反応性置換基を有する材料を有する場合がより 積層面の密着を強化でき好まし 、。  [0227] In addition, it is preferable to have a material having a reactive substituent on both of the laminated surfaces to be bonded because the adhesion of the laminated surface can be further enhanced.
[0228] また、請求の範囲第 23項〜第 31項に記載の発明(C)の好ましい態様においては 、リン光性発光性化合物また発光ホスト、正孔輸送材料、電子輸送材料等、貼合され る各有機層中にビュル基が置換した材料を少なくとも 1種存在させることで、その発 光素子を通電により、発光層内で発生するァ-オンラジカルまたはカチオンラジカル を重合開始剤として利用し、鎖状および Zまたは網目状のポリマーを形成させること ができ、層内での重合により、発光素子は、最初の状態よりもより堅牢性が増強され たものとなり、通電 (駆動)するうちに次第に耐久性が増す発光素子を実現することも 可能である。  [0228] Further, in a preferred embodiment of the invention (C) according to claims 23 to 31, a phosphorescent compound, a light emitting host, a hole transport material, an electron transport material, etc. By making at least one material substituted with a bulu group present in each organic layer, the light-emitting element is energized to use a cation radical or a cation radical generated in the light emitting layer as a polymerization initiator. Chain and Z or network polymers can be formed, and the polymerization within the layer makes the light-emitting device more robust than the initial state, and while energized (driven), It is also possible to realize a light-emitting element that gradually increases in durability.
[0229] このような、素子内部で発生する活性種や、駆動時のジュール熱によって化学変化 を起超す反応性置換基としては、前記の基も含め以下のような基が挙げられる。  [0229] Examples of the reactive species generated inside the device and reactive substituents that cause a chemical change due to Joule heat during driving include the following groups including the above-described groups.
[0230] [化 7] -^5^ ~~ = —NH, —OH — SH [0230] [Chemical 7] -^ 5 ^ ~~ = —NH, —OH — SH
Figure imgf000037_0001
Figure imgf000037_0001
[0231] 貼合時に、密着に、反応性置換基による架橋反応を用いる場合、熱、また、活性光 線等が利用できる。加熱の場合、 60〜200°Cの範囲で 1秒〜 5時間、また、活性光 線であれば、例えば、前記の紫外光源が同じく用いることができ、 5000〜8000 W Zcm2程度の強度を有する紫外線を照射すればょ 、。反応に要するエネルギー量と しては 0. 02〜20kjZcm2の範囲が用いられる。 [0231] When a cross-linking reaction using a reactive substituent is used for adhesion at the time of bonding, heat, active light rays, or the like can be used. In the case of heating, it is 1 second to 5 hours in the range of 60 to 200 ° C, and if it is an active light beam, for example, the above-mentioned ultraviolet light source can also be used, and the intensity is about 5000 to 8000 W Zcm 2. If you irradiate with ultraviolet rays. The amount of energy required for the reaction is in the range of 0.02 to 20 kjZcm2.
[0232] 類似する従来技術は、今までに例を見ないが、近い技術として、成膜した後に高分 子量ィ匕するという公知文献としては以下のようなものがあり、その架橋反応は本発明 に利用できる。  [0232] Although there is no example of a similar conventional technique so far, as a close technique, there is the following known literature that increases the molecular weight after film formation, and the crosslinking reaction is as follows. It can be used in the present invention.
[0233] 例えば、特開平 5— 271166号には、分子内にビュル基を 2つ有する 2官能性のトリ フエニルァミン誘導体が記載されており、その化合物を成膜した後に紫外線照射によ り 3次元架橋されたポリマーが形成されることが開示されている。また、特開 2001— 2 97882号〖こは、 2つ以上のビニル基を有する材料を複数の層に添加する技術が開 示されており、この場合、重合反応は陰極を積層する前の有機層成膜時点で紫外線 や熱の照射で行っている。また、特開 2003— 73666号においてはリン光ドーノント の末端にビニル基を有する材料と同様にビュル基を有するコモノマーの混合物にラ ジカル発生剤である AIBNを添加して成膜時に重合反応を進行させる製造方法が開 示されている。更に、特開 2003— 86371号には、同一層内の 2分子間でディールス アルダー反応を起こさせて架橋させる製造方法が記載されている。  [0233] For example, Japanese Patent Application Laid-Open No. 5-271166 describes a bifunctional triphenylamine derivative having two bur groups in the molecule, and the compound is formed into a three-dimensional film by irradiation with ultraviolet rays. It is disclosed that a crosslinked polymer is formed. Also, JP-A-2001-297882 has disclosed a technique for adding a material having two or more vinyl groups to a plurality of layers, and in this case, the polymerization reaction is performed before the cathode is laminated. At the time of layer formation, UV and heat irradiation is used. In JP 2003-73666, AIBN, a radical generator, is added to a mixture of comonomers having a bur group in the same manner as a material having a vinyl group at the end of a phosphorescent dornonto, and a polymerization reaction proceeds during film formation. The manufacturing method to be used is disclosed. Furthermore, JP-A-2003-86371 describes a production method in which a Diels-Alder reaction is caused between two molecules in the same layer to crosslink.
[0234] 次に、請求の範囲第 32項〜第 40項に記載の発明(D)について詳細に説明する。 [0234] Next, the invention (D) according to claims 32 to 40 will be described in detail.
[0235] 先に述べた様に、貼合法の問題点として、接合面での接合強度や均一性といった 不具合が挙げられた。この問題に対し鋭意検討した結果、例えば有機層同士を接合 する際には、その接合界面でのキャリア移動が面全体に均一ではなく局所的にキヤリ ァが流れやす 、部分と流れにく 、部分ができやす 、ことがわ力つてきた。 [0235] As described above, problems with the bonding method include defects such as bonding strength and uniformity at the bonding surface. As a result of diligent investigation on this problem, for example, organic layers are joined together In this case, the carrier movement at the bonding interface is not uniform over the entire surface, and it is easy to carry the carrier locally, and it is difficult for the part to flow and the part is easily formed.
[0236] 特に、有機層界面で発光する蛍光方式はその挙動が顕著であり、発光ムラが起こり やすいことがわかった。  [0236] In particular, it has been found that the fluorescence method of emitting light at the interface of the organic layer has a remarkable behavior and easily causes uneven light emission.
[0237] 一方、リン光方式は、蛍光方式とは異なり、発光層内部に発光領域を持っためか、 比較的このような現象が起き難ぐ特に、発光層の有機層全体における相対的な膜 厚比率を上げた時や、発光層の膜厚を厚くした時、また、発光層同士を接合する発 光層 2層とした時などは、顕微鏡観察でもわ力もないくらい発光ムラを抑えることが可 能であることがわかった。  [0237] On the other hand, the phosphorescence method differs from the fluorescence method in that it has a light emitting region inside the light emitting layer, and this phenomenon is relatively difficult to occur. When increasing the thickness ratio, increasing the thickness of the light-emitting layer, or using two light-emitting layers that join the light-emitting layers together, light emission unevenness can be suppressed to the extent that there is no weakness even under microscopic observation. I found that it was possible.
[0238] これは、貼合法の最大の難点である、接合界面でのキャリア移動が遅くなるという現 象を、逆に有効活用した技術であり、今までに類を見ない画期的な発見であると言え る。  [0238] This is a technology that makes effective use of the phenomenon of slow carrier movement at the bonding interface, which is the biggest difficulty of the bonding method, and is a groundbreaking discovery that has never been seen before. It can be said that.
[0239] 接合界面を分子レベルで密着させるための手段として、本発明者らはさまざまな方 法を検討した。  [0239] As a means for bringing the bonding interface into close contact at the molecular level, the present inventors have studied various methods.
[0240] その中で、接合した後に界面間に共有結合を形成させることが、非常に有効な手 段であることがわ力つた。  [0240] Among them, forming a covalent bond between the interfaces after bonding has proved to be a very effective means.
[0241] 有機 ELの層間を共有結合でつなぐ技術が特開 2004— 103401号公報に開示さ れている。この特許の技術思想は、逐次成膜法において、膜を成膜する時またはそ の後で有機層界面に共有結合を形成させる技術であり、類似の技術ではあるが、本 発明では、貼合法における界面接着の手段として、いわばファスナーのような役割と してこの技術を適用することが新しい発見であり、前記特許力 容易に想像される技 術ではない。  [0241] Japanese Unexamined Patent Application Publication No. 2004-103401 discloses a technique for connecting organic EL layers with a covalent bond. The technical idea of this patent is a technique for forming a covalent bond at the interface of an organic layer during or after film formation in a sequential film formation method, which is a similar technique, but in the present invention, a bonding method. As a means of interfacial adhesion in Japan, it is a new discovery to apply this technology as a role like a fastener, and it is not a technology that can be easily imagined.
[0242] また、共有結合を形成させるために、接合する 2つの層の界面に、ある特殊な反応 性置換基を存在させると、発光素子を駆動させながら (つまり電流が素子内を流れる ことにより)共有結合を形成し、その結果として分子レベルの密着性が得られ、発光 性能や発光寿命などが改善されると ヽぅ新し ヽ現象を発見した。  [0242] In addition, when a special reactive substituent is present at the interface between two layers to be bonded in order to form a covalent bond, the light emitting element is driven (that is, when current flows in the element). ) We found a new phenomenon when a covalent bond was formed, and as a result, adhesion at the molecular level was obtained, and the luminescence performance and luminescence lifetime were improved.
[0243] 以下、請求の範囲第 32項〜第 40項に記載の発明(D)を実施するための最良の形 態について説明する。 [0244] 請求の範囲第 32項〜第 40項に記載の発明(D)は、有機 EL素子を貼合法によつ て得るときの上記欠点、即ち、貼合した接合面が必ずしも分子レベルで密着しておら ず結果としてキャリア移動がスムーズに行へなくなる、また、接合面が剥離しやすぐ 発光素子として機能しなくなるなどの問題点を解決した有機 EL素子の製造方法を提 供するものである。 [0243] Hereinafter, the best mode for carrying out the invention (D) described in claims 32 to 40 will be described. [0244] In the invention (D) according to claims 32 to 40, the above-mentioned disadvantage when the organic EL element is obtained by the bonding method, ie, the bonded bonding surface is not necessarily at the molecular level. This provides a method for manufacturing an organic EL device that solves the problems such as non-adherence and as a result, carrier movement does not move smoothly, and the bonding surface peels off and immediately does not function as a light emitting device. .
[0245] 請求の範囲第 32項〜第 40項に記載の発明(D)においては、第 1の電極基板 (例 えば陰極)に有機層を設けた部材と、第 2の電極基板 (例えば陽極)上に有機層を設 けた部材、をそれぞれ作製し、有機層同士を対向させ、部材同士を貼合して有機 EL 素子を形成する。  [0245] In the invention (D) according to claims 32 to 40, a member in which an organic layer is provided on a first electrode substrate (for example, a cathode) and a second electrode substrate (for example, an anode) ) Each member having an organic layer formed thereon is prepared, the organic layers are opposed to each other, and the members are bonded together to form an organic EL element.
[0246] 陰極側の部材として、例えば、支持体 (例えばガラス基板)上にアルミニウム等から なる陰極を真空蒸着等により形成し、この上に例えば電子輸送材料層を塗布或!ヽは 蒸着等により形成する。  [0246] As a member on the cathode side, for example, a cathode made of aluminum or the like is formed on a support (for example, a glass substrate) by vacuum deposition or the like, and an electron transport material layer is applied thereon or by evaporation or the like. Form.
[0247] 一方、陽極側の部材として、例えば ITO等の薄膜を陽極として形成したガラス基板 上に、例えば正孔輸送層、発光層を、これも塗布或いは蒸着等により順次形成する。  [0247] On the other hand, as a member on the anode side, for example, a hole transport layer and a light emitting layer are sequentially formed by coating or vapor deposition on a glass substrate formed with a thin film such as ITO as an anode.
[0248] 陰極側及び陽極側のこれら二つの部材を互いに有機層同士 (前記電子輸送層と 発光層)、密着、貼合することで有機 EL素子が得られるが、本発明においては、互い に貼合される二つの有機層の貼り合せた面の剥離強度を特定の値 lONZm以上と することに特徴がある。  [0248] An organic EL device is obtained by adhering these two members on the cathode side and the anode side to each other with the organic layers (the electron transport layer and the light-emitting layer), and in the present invention. It is characterized in that the peel strength of the bonded surface of the two organic layers to be bonded is a specific value lONZm or more.
[0249] これにより、前記の貼り合せ面が剥離しやすぐ発光素子として機能しなくなる、また 貝占り合せ面における分子レベルでの密着が弱いためキャリア移動がスムーズでない こと等の問題が解決された発光効率が高い、発光寿命の改善された有機 EL素子の 製造方法を提供するものである。  [0249] This solves the problem that the bonded surface does not function as a light emitting element as soon as it is peeled off, and the carrier movement is not smooth due to weak adhesion at the molecular level on the shell-occupying surface. In addition, the present invention provides a method for manufacturing an organic EL device having high emission efficiency and improved emission lifetime.
[0250] 請求の範囲第 32項〜第 40項に記載の発明(D)は、少なくとも n層 (n≥0)の有機 層を有する第 1の電極基板と、少なくとも m層(m≥0)の有機層を有する第 2の電極 基板を貼り合わせて形成された有機 EL素子において、前記有機層(m+n≥l)の少 なくとも 1つにりん光性発光化合物を含有し、貼り合せ面の剥離強度が lONZm以上 であることを特徴とする有機 EL素子である。  [0250] The invention (D) according to claims 32 to 40 includes a first electrode substrate having at least n (n≥0) organic layers, and at least m layers (m≥0). In an organic EL device formed by bonding a second electrode substrate having a plurality of organic layers, at least one of the organic layers (m + n≥l) contains a phosphorescent light-emitting compound and bonded. It is an organic EL device characterized by a surface peel strength of lONZm or higher.
[0251] 貼り合せ面は有機 EL素子各機能層のどの層間でもよいが、貼り合せ面は互いに 有機層であることが好ましい。貼合、密着が容易、且つ、貼合後、剥離しにくいこと、 等から、有機層同士の貼合が好ましい。 [0251] The bonding surface may be any layer of each functional layer of the organic EL element. An organic layer is preferred. Bonding between organic layers is preferred because it is easy to bond and adhere and is difficult to peel off after bonding.
[0252] また、貼り合せ面の不具合によるキャリア移動の面内での不均一による発光ムラは 、有機層界面で発光する蛍光発光方式よりも発光層内部に発光領域を持つリン光発 光方式の方が、比較的現れにくいこと、特に、発光層の有機層全体における相対的 な膜厚比率を上げた時や発光層の膜厚を厚くした時、また、発光層同士を接合する 発光層 2層とした時など、リン光性発光化合物を含有するリン光発光方式は発光ムラ をわ力もないくらいにできるため、本発明の貼合による作製方法はリン光発光方式に 適している。  [0252] In addition, light emission unevenness due to nonuniformity in the plane of carrier movement due to defects in the bonding surface is caused by phosphorescence emission method having a light emitting region inside the light emitting layer rather than fluorescence emission method emitting light at the organic layer interface. It is relatively less likely to appear, especially when the relative film thickness ratio of the entire organic layer of the light emitting layer is increased or when the thickness of the light emitting layer is increased, or when the light emitting layers are joined together. Since the phosphorescent light-emitting method containing a phosphorescent light-emitting compound, such as when forming a layer, can reduce unevenness in light emission, the manufacturing method by bonding of the present invention is suitable for the phosphorescent light-emitting method.
[0253] 貼り合せ面の剥離硬度の測定は、種々の測定方法で測定することが可能であるが 、例えば、 SAICAS法〖こて、ダイプラ 'ウィンテス社製の SAICAS NN— 04型を用 いて測定することができる。 SAICAS法とは,鋭利な切刃(単結晶ダイヤモンド,焼結 合金)を用いて,垂直荷重を一定方向に保った状態で,水平方向に定速で動かすた めに必要な水平荷重を測定する手法であり、薄膜の剥離強度の測定が可能となる。  [0253] The peel hardness of the bonded surface can be measured by various measuring methods. For example, the SAICAS trowel or SAICAS NN-04 model manufactured by Winples is used. can do. The SAICAS method uses a sharp cutting edge (single crystal diamond, sintered alloy) to measure the horizontal load required to move at a constant speed in the horizontal direction while keeping the vertical load in a constant direction. This is a technique, and the peel strength of the thin film can be measured.
[0254] 請求の範囲第 32項〜第 40項に記載の発明(D)にお 、て、有機 EL素子の各有機 層を、第 1の電極基板上に、また第 2の電極基板上に、それぞれ、陰極側の部材、そ して、陽極用の部材として、有機層を形成するが、これら有機 EL素子各機能層を形 成する有機層の形成方法については、特に限定はない。  [0254] In the invention (D) according to claims 32 to 40, each organic layer of the organic EL element is formed on the first electrode substrate and on the second electrode substrate. The organic layer is formed as a member on the cathode side and a member for the anode, respectively. However, the method for forming the organic layer for forming each functional layer of these organic EL elements is not particularly limited.
[0255] 現在上巿されて ヽる有機 EL素子の殆どが、低分子材料を蒸着して成膜する、 Vヽゎ ゆる蒸着法であるが、これら蒸着による方法、また、高分子系材料において比較的よ く用いられる有機化合物層をスピンコート、インクジェット、印刷、スプレーコートといつ た塗布 (湿式)プロセスにより製造する方法等、 、ずれであってもよ!/、。  [0255] Most of the organic EL devices currently being promoted are V-type vapor deposition methods, in which low molecular weight materials are vapor-deposited, but these vapor deposition methods and polymer materials are also used. The method of manufacturing a relatively commonly used organic compound layer by spin coating, ink jet, printing, spray coating and any other application (wet) process may be misaligned! /.
[0256] し力しながら、大気圧下で製造することができるため低コストィ匕が可能であると同時 に、必要な材料 (高分子材料および Zまたは低分子材料)を溶液に調製して薄膜塗 布するため、複数の有機材料を精密に混合できる (例えば、発光ホスト材料に対する ドーパント等の調製がしゃすい等)こと、また、素子を大面積ィ匕しても発光ムラができ にくいという特徴があり、湿式プロセスが好ましい。また、対向電極を予め成膜したフ イルム基板を準備しておけば、ロールッゥロール方式での連続生産が可能であること 、有機層の貼合も容易にできることなど力も湿式プロセスが好ま 、。 [0256] It can be manufactured under atmospheric pressure and can be manufactured at a low cost, and at the same time, the necessary materials (polymer material and Z or low molecular material) are prepared into a solution to form a thin film. Because it is coated, it is possible to precisely mix a plurality of organic materials (for example, it is difficult to prepare dopants for the light emitting host material, etc.), and light emission unevenness is difficult even if the device has a large area. And a wet process is preferred. In addition, if a film substrate with a counter electrode formed in advance is prepared, roll-to-roll continuous production is possible. Wet process is preferred because of its ability to easily bond organic layers.
[0257] 有機 EL素子の製造プロセスにおいて、金属や、金属酸化物による電極を成膜する 際は、性能のよい膜とするため、高いエネルギーを印加することが望まれる力 有機 層を逐次積層するやり方では、最後に電極層を形成するため、有機薄膜のダメージ が懸念され、実質上、真空蒸着や、穏和な条件下でのスパッタリングで成膜するしか すべがない状況である力 この点、貼合法においては、予め電極層の形成を行った 後、各有機層の積層が行われるため、逐次有機層が形成される逐次法に比べ、すで に成膜されて ヽる有機層にダメージを与えることがなく(有機 EL素子の発光特性や 発光寿命などが大きく劣化してしまう)、また性能のよい電極膜を形成でき好ましいも のである。 [0257] When forming an electrode made of metal or metal oxide in the process of manufacturing an organic EL element, force is required to apply high energy in order to make a film with good performance. In the method, since the electrode layer is formed last, there is a concern about the damage of the organic thin film, and the force that can only be formed by vacuum deposition or sputtering under mild conditions. In the legal method, after the electrode layer is formed in advance, each organic layer is laminated, so that the organic layer that has already been formed is damaged compared to the sequential method in which the organic layer is sequentially formed. This is preferable because the electrode film is not given (the emission characteristics and lifetime of the organic EL element are greatly deteriorated), and a high-performance electrode film can be formed.
[0258] また、貼合時には活性光線等も利用できる。活性光線としては、電子線、紫外線等 があり、紫外線の光源としては、紫外線ランプ (例えば 0. 5kPa〜lMPaまでの動作 圧力を有する低圧、中圧、高圧水銀ランプ)、キセノンランプ、タングステンランプ、ハ ロゲンランプ等が用いられ、 5000〜8000 μ WZcm2程度の強度を有する紫外線が 好ましく照射される。硬化に要するエネルギー量としては 0. 02〜20kjZcm2の範囲 が用いられる。 [0258] At the time of bonding, actinic rays or the like can also be used. Examples of actinic rays include electron beams and ultraviolet rays, and examples of ultraviolet light sources include ultraviolet lamps (for example, low pressure, medium pressure, and high pressure mercury lamps having an operating pressure of 0.5 kPa to lMPa), xenon lamps, tungsten lamps, A halogen lamp or the like is used, and ultraviolet rays having an intensity of about 5000 to 8000 μWZcm 2 are preferably irradiated. The amount of energy required for curing ranges from 0.02 to 20 kjZcm2.
[0259] 〈接合面の共有結合形成〉  <Covalent bond formation at joint surface>
又、請求の範囲第 32項〜第 40項に記載の発明(D)の好ましい態様においては、 上記貼合された接合面について、これを分子レベルで密着させるため、接合後に界 面間に共有結合を形成させることが、非常に有効な手段であることを見出した。  In a preferred embodiment of the invention (D) according to claims 32 to 40, the bonded surfaces are bonded to each other after bonding in order to bring them into close contact at the molecular level. We have found that forming a bond is a very effective means.
[0260] 有機 ELの層間を共有結合でつなぐ技術は、特開 2004— 103401号公報に開示 されているが、本発明では、貼合法における界面接着の手段としてこの技術を適用 する。  [0260] A technique for covalently connecting the layers of organic EL is disclosed in Japanese Patent Application Laid-Open No. 2004-103401. In the present invention, this technique is applied as means for interfacial adhesion in the bonding method.
[0261] 即ち、貼り合せ面の両方の有機層に反応性置換基を有する有機化合物を含有さ せる。そのような置換基は、素子内部で発生する活性種や、貼合時の熱により化学 変化を起こし共有結合の形成により、貼合された有機層間の分子レベルでの密着性 を向上させる。  That is, an organic compound having a reactive substituent is contained in both organic layers on the bonding surface. Such a substituent improves the adhesion at the molecular level between the bonded organic layers by causing a chemical change due to the active species generated inside the element and the heat at the time of bonding, and forming a covalent bond.
[0262] また、これらの反応性置換基を有する有機化合物を含有させると、駆動のジュール 熱 (つまり電流が素子内を流れることにより)化合物間の反応 (化学変化)が進むため 、その結果として分子レベルの密着性が向上、発光性能や発光寿命などが改善され ると 、う新し 、現象にっ 、ても発見した。 [0262] In addition, when an organic compound having these reactive substituents is contained, the driving Joule Since the reaction (chemical change) between the compounds proceeds due to heat (that is, when current flows in the device), as a result, adhesion at the molecular level is improved, and luminous performance and luminous lifetime are improved. I also discovered the phenomenon.
[0263] 有機 EL素子の発光層は、通常、リン光性の発光を利用する、いわゆる「リン光素子 」では、リン光発光材料 (リン光ドーパント)を発光ホストに対し質量比で 1〜20%程度 混合することが発光効率の観点力 有効であるとされており、本発明においてリン光 性の発光を利用する場合には、発光ホストを併用することが好ましぐこのような化学 変化は、該発光ホスト材料と、これに反応性を持つリン光発光材料 (リン光ドーパント) との化学反応を利用してもょ 、。  [0263] The light-emitting layer of an organic EL element usually uses phosphorescent light emission. In so-called "phosphorescent elements", a phosphorescent material (phosphorescent dopant) is used in a mass ratio of 1 to 20 with respect to the light-emitting host. It is said that mixing in the order of about% is effective from the viewpoint of luminous efficiency. In the case of using phosphorescent light emission in the present invention, it is preferable to use a luminescent host together. Utilizing a chemical reaction between the luminescent host material and a phosphorescent material (phosphorescent dopant) that is reactive to the luminescent host material.
[0264] 例えば、発光層同士を貼合する場合、また発光層カ^ン光ドーパントと発光ホストと で構成されるとき、リン光発光材料 (リン光ドーパント)の化学変化は、発光ホストとの( 縮合や重合等)反応を利用してもよぐ発光ホストとの化学反応を利用する場合、リン 光発光材料に置換している特定の反応性基と反応を起こしうる反応性置換基を発光 ホストに導入することが好まし 、。  [0264] For example, when the light emitting layers are bonded to each other, or when the light emitting layer is composed of a light dopant and a light emitting host, the chemical change of the phosphorescent light emitting material (phosphorescent dopant) changes with the light emitting host. When using a chemical reaction with a luminescent host that may utilize a reaction (condensation or polymerization, etc.), it emits a reactive substituent that can react with a specific reactive group substituted on the phosphorescent material. Preferred to introduce to the host.
[0265] 例えば、リン光発光材料に水酸基(一 OH)が置換している場合、発光ホストにはィ ソシアナート基(-NCO)や、イソチオシアナート基(-NCS)を導入した材料を選択 する、或いは、リン発光材料にビュル基が置換している場合、それとラジカル重合可 能なビニル基を導入した発光ホストを選択する。  [0265] For example, when a phosphorescent material is substituted with a hydroxyl group (one OH), a material having an isocyanate group (-NCO) or an isothiocyanate group (-NCS) introduced is selected as the light-emitting host. Alternatively, when a bur group is substituted in the phosphor luminescent material, a luminescent host in which a vinyl group capable of radical polymerization is introduced is selected.
[0266] また、請求の範囲第 32項〜第 40項に記載の発明(D)にお 、て最も好ま 、態様 では、リン光発光材料また発光ホスト、の両方にビニル基が置換した材料を少なくとも 1種ずつ、同一層中に存在させ、その発光素子を通電により、発光層内で発生する ァ-オンラジカルまたはカチオンラジカルを重合開始剤として利用し、鎖状または網 目状のポリマーを形成させることである。  [0266] Further, in the invention (D) according to claims 32 to 40, the most preferable aspect is that in the embodiment, a material in which a vinyl group is substituted on both the phosphorescent light emitting material and the light emitting host is used. At least one type is present in the same layer, and when the light-emitting element is energized, a chain or network polymer is formed by using a photo-on radical or a cation radical generated in the light-emitting layer as a polymerization initiator. It is to let you.
[0267] また、陰極側部材の表面層が電子輸送層であり、陽極側部材の表面層が発光層の 場合でも、例えば、ビニル基等の反応性置換基をもつ電子輸送層、及び同じくビ- ル基等の反応性置換基をもつ発光ホストまたはドーパント材料を含有する発光層を それぞれ有する部材を貼合することで、層間において重合が行われ、貼合された有 機層間の密着性が向上する。陰極側基板の最表層が、発光層であり、陽極側基板 の最表層が正孔輸送層である場合も同様に、反応性基をもつ正孔輸送材料を含有 した正孔輸送層を用いればょ 、。 [0267] Even when the surface layer of the cathode side member is an electron transport layer and the surface layer of the anode side member is a light emitting layer, for example, an electron transport layer having a reactive substituent such as a vinyl group, and -By laminating members each having a light-emitting host or a light-emitting layer containing a dopant material having a reactive substituent such as a ruthel group, polymerization is performed between the layers, and adhesion between the bonded organic layers is improved. improves. The outermost layer of the cathode side substrate is a light emitting layer, and the anode side substrate Similarly, when the outermost layer is a hole transport layer, a hole transport layer containing a hole transport material having a reactive group may be used.
[0268] 従って、貼合する有機層の少なくとも一方には反応性置換基を有する有機化合物 を含有することが好ましぐ貼合する 2つの有機層の少なくとも一方に反応性置換基 を有する有機化合物を含有し、他方にこれと反応する基を有する材料を含有して ヽ れば、互いに反応することで密着を強化でき、接合面の剥離をなくし、また、キャリア 移動を容易ならしめることが出来る。  Accordingly, it is preferable that at least one of the organic layers to be bonded contains an organic compound having a reactive substituent, and the organic compound having a reactive substituent in at least one of the two organic layers to be bonded If a material having a group that reacts with the other is contained, the adhesion can be strengthened by reacting with each other, peeling of the joint surface can be eliminated, and carrier movement can be facilitated. .
[0269] また、貼り合せる有機層の両方に反応性置換基を有する材料を有する場合がより 積層面の密着を強化でき好まし 、。  [0269] In addition, it is preferable that both of the organic layers to be bonded have a material having a reactive substituent because the adhesion of the laminated surface can be further enhanced.
[0270] また、請求の範囲第 32項〜第 40項に記載の発明(D)の好ま 、態様にぉ 、ては 、リン光性発光性化合物また発光ホスト、正孔輸送材料、電子輸送材料等、貼合され る各有機層中にビュル基が置換した材料を少なくとも 1種存在させることで、その発 光素子を通電により、発光層内で発生するァ-オンラジカルまたはカチオンラジカル を重合開始剤として利用し、鎖状または網目状のポリマーを形成させることができ、 層内での重合により、発光素子は、最初の状態よりもより堅牢性が増強されたものと なり、通電 (駆動)するうちに次第に耐久性が増す発光素子を実現することも可能で ある。  [0270] Further, in the preferred embodiment of the invention (D) according to claims 32 to 40, the phosphorescent compound, the light emitting host, the hole transport material, and the electron transport material are used. When at least one material substituted with a bur group is present in each organic layer to be bonded, etc., polymerization of the light-on radical or cation radical generated in the light-emitting layer is started by energizing the light-emitting element. It can be used as an agent to form a chain or network polymer, and polymerization within the layer makes the light-emitting element more robust than the initial state, and is energized (driven) In the meantime, it is also possible to realize a light-emitting element that gradually increases in durability.
[0271] このような、素子内部で発生する活性種や、駆動時のジュール熱によって化学変化 を起超す反応性置換基としては、前記の基も含め以下のような基が挙げられる。  [0271] Examples of the reactive species generated inside the device and the reactive substituents that cause a chemical change by Joule heat during driving include the following groups including the above-described groups.
[0272] [化 8] [0272] [Chemical 8]
Figure imgf000043_0001
Figure imgf000043_0001
[0273] 貼合時や貼合後に、反応性置換基による架橋反応を用いる場合、熱、また、活性 光線等が利用できる。加熱の場合、 60〜200°Cの範囲で 1秒〜 5時間、また、活性 光線であれば、例えば、前記の紫外光源が同じく用いることができ、 5000〜8000 WZcm2程度の強度を有する紫外線を照射すればよ ヽ。反応に要するエネルギー 量としては 0. 02〜20kj/cm2の範囲が用いられる。 [0273] When a crosslinking reaction with a reactive substituent is used during or after bonding, heat and activity Light rays can be used. In the case of heating, it is 1 second to 5 hours in the range of 60 to 200 ° C, and if it is an actinic ray, for example, the above ultraviolet light source can also be used, and an ultraviolet ray having an intensity of about 5000 to 8000 WZcm 2 Should be irradiated. The amount of energy required for the reaction range from 0. 02~20kj / cm 2 is used.
[0274] 類似する従来技術は、今までに例を見ないが、近い技術として、成膜した後に高分 子量ィ匕するという公知文献としては以下のようなものがあり、その架橋反応は本発明 に利用できる。 [0274] A similar conventional technique has not been seen so far, but as a close technique, there is the following known literature that increases the molecular weight after film formation, and the crosslinking reaction is as follows. It can be used in the present invention.
[0275] 例えば、特開平 5— 271166号には、分子内にビニル基を 2つ有する 2官能性のトリ フエニルァミン誘導体が記載されており、その化合物を成膜した後に紫外線照射によ り 3次元架橋されたポリマーが形成されることが開示されている。また、特開 2001— 2 97882号〖こは、 2つ以上のビニル基を有する材料を複数の層に添加する技術が開 示されており、この場合、重合反応は陰極を積層する前の有機層成膜時点で紫外線 や熱の照射で行っている。また、特開 2003— 73666号においてはリン光ドーノント の末端にビニル基を有する材料と同様にビュル基を有するコモノマーの混合物にラ ジカル発生剤である AIBNを添加して成膜時に重合反応を進行させる製造方法が開 示されている。更に、特開 2003— 86371号には、同一層内の 2分子間でディールス アルダー反応を起こさせて架橋させる製造方法が記載されている。  [0275] For example, Japanese Patent Application Laid-Open No. 5-271166 describes a bifunctional triphenylamine derivative having two vinyl groups in the molecule. It is disclosed that a crosslinked polymer is formed. Also, JP-A-2001-297882 has disclosed a technique for adding a material having two or more vinyl groups to a plurality of layers, and in this case, the polymerization reaction is performed before the cathode is laminated. At the time of layer formation, UV and heat irradiation is used. In JP 2003-73666, AIBN, a radical generator, is added to a mixture of comonomers having a bur group in the same manner as a material having a vinyl group at the end of a phosphorescent dornonto, and a polymerization reaction proceeds during film formation. The manufacturing method to be used is disclosed. Furthermore, JP-A-2003-86371 describes a production method in which a Diels-Alder reaction is caused between two molecules in the same layer to crosslink.
[0276] 《有機 EL素子の構成層》  [0276] <Structure layers of organic EL elements>
本発明の有機 EL素子の構成層について説明する。本発明において、有機 EL素 子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。  The constituent layers of the organic EL device of the present invention will be described. In the present invention, preferred specific examples of the layer structure of the organic EL element are shown below, but the present invention is not limited thereto.
[0277] (i)陽極 Z発光層 Z電子輸送層 Z陰極  [0277] (i) Anode Z light emitting layer Z electron transport layer Z cathode
(ii)陽極 Z正孔輸送層 Z発光層 Z電子輸送層 Z陰極  (ii) Anode Z hole transport layer Z light emitting layer Z electron transport layer Z cathode
(iii)陽極 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極  (iii) Anode Z hole transport layer Z light emitting layer Z hole blocking layer Z electron transport layer Z cathode
(iv)陽極 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極  (iv) Anode Z hole transport layer Z light emitting layer Z hole blocking layer Z electron transport layer Z cathode buffer layer Z cathode
(v)陽極 Z陽極バッファ一層 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極  (v) Anode Z anode buffer layer Z hole transport layer Z light emitting layer Z hole blocking layer Z electron transport layer Z cathode buffer layer Z cathode
本発明の有機 EL素子にお!、ては、青色発光層の発光極大波長は 430〜480nm にあるものが好ましぐ緑色発光層は発光極大波長が 510〜550nm、赤色発光層は 発光極大波長が 600〜640nmの範囲にある単色発光層であることが好ましぐこれ らを用いた表示装置であることが好ましい。また、これらの少なくとも 3層の発光層を 積層して白色発光層としたものであってもよい。更に、発光層間には非発光性の中 間層を有していてもよい。本発明の有機 EL素子としては白色発光層であることが好 ましぐこれらを用いた照明装置であることが好ましい。 In the organic EL device of the present invention, the emission maximum wavelength of the blue light emitting layer is 430 to 480 nm. The green light-emitting layer that is preferred is a monochromatic light-emitting layer that has a maximum emission wavelength of 510 to 550 nm, and the red light-emitting layer that has a maximum emission wavelength of 600 to 640 nm. An apparatus is preferred. Further, a white light emitting layer may be formed by laminating at least three of these light emitting layers. Further, a non-light emitting intermediate layer may be provided between the light emitting layers. The organic EL element of the present invention is preferably a white light emitting layer, and an illumination device using these is preferable.
[0278] 本発明の有機 EL素子を構成する各層につ ヽて説明する。  [0278] Each layer constituting the organic EL device of the present invention will be described.
[0279] 《発光層》  [0279] <Light emitting layer>
本発明に係る発光層は、電極または電子輸送層、正孔輸送層カゝら注入されてくる 電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であつ ても発光層と隣接層との界面であってもよ 、。  The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from an electrode, an electron transport layer, or a hole transport layer, and the light emitting portion is within the layer of the light emitting layer. It may be the interface between the light emitting layer and the adjacent layer.
[0280] 発光層の膜厚の総和は特に制限はないが、膜の均質性や発光時に不必要な高電 圧を印加するのを防止し、且つ駆動電流に対する発光色の安定性向上の観点から、 2nm〜5 μ mの範囲に調整することが好ましぐ更に好ましくは 2〜200nmの範囲に 調整され、特に好ましくは 10〜20nmの範囲である。  [0280] The total film thickness of the light emitting layer is not particularly limited, but it is possible to prevent the application of a high voltage unnecessary for the film homogeneity and light emission, and to improve the stability of the emission color with respect to the driving current. Therefore, it is preferable to adjust in the range of 2 nm to 5 μm, more preferably in the range of 2 to 200 nm, and particularly preferably in the range of 10 to 20 nm.
[0281] 発光層の作製には、後述する発光ドーパントやホストイ匕合物を、例えば、真空蒸着 法、スピンコート法、キャスト法、 LB法、インクジェット法等の公知の薄膜ィ匕法により製 膜して形成することができる。  [0281] For the production of the light-emitting layer, a light-emitting dopant or a host compound described later is formed by a known thin film method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an inkjet method. Can be formed.
[0282] 本発明の有機 EL素子の発光層には、発光ホストイ匕合物と発光ドーパント (リン光性 発光化合物や蛍光ドーパント)の少なくとも 1種類とを含有することが好ましい。  [0282] The light emitting layer of the organic EL device of the present invention preferably contains a light emitting host compound and at least one kind of light emitting dopant (phosphorescent light emitting compound or fluorescent dopant).
[0283] (ホストイ匕合物 (発光ホストともいう))  [0283] (Host compound (also called light-emitting host))
本発明に用いられるホストイ匕合物にっ 、て説明する。  The host compound used in the present invention will be described.
[0284] ここで、本発明においてホストイ匕合物とは、発光層に含有される化合物の内でその 層中での質量比が 20%以上であり、且つ室温(25°C)において、リン光発光のリン光 量子収率が 0. 1未満の化合物と定義される。好ましくはリン光量子収率が 0. 01未満 である。また、発光層に含有される化合物の中で、その層中での質量比が 20%以上 であることが好ましい。  [0284] Here, in the present invention, the host compound is a compound having a mass ratio of 20% or more in the light-emitting layer and a phosphorous compound at room temperature (25 ° C). Photoluminescence phosphorescence Defined as a compound with a quantum yield of less than 0.1. Preferably, the phosphorescence quantum yield is less than 0.01. Further, among the compounds contained in the light emitting layer, the mass ratio in the layer is preferably 20% or more.
[0285] ホストイ匕合物としては公知のホストイ匕合物を単独で用いてもよぐまたは複数種併用 して用いてもよい。ホストイ匕合物を複数種用いることで、電荷の移動を調整することが 可能であり、有機 EL素子を高効率ィ匕することができる。また、後述する発光ドーパン トを複数種用いることで異なる発光を混ぜることが可能となり、これにより任意の発光 色を得ることができる。ホストイ匕合物としては正孔輸送能、電子輸送能を有しつつ、且 つ発光の長波長化を防ぎ、なお且つ高 Tg (ガラス転移温度)である化合物が好まし い。 [0285] As the host compound, a known host compound may be used alone or in combination of two or more kinds. May be used. By using multiple types of host compounds, it is possible to adjust the movement of electric charges, and the organic EL element can be made highly efficient. In addition, by using a plurality of types of light emitting dopants described later, it becomes possible to mix different light emission, and thus any light emission color can be obtained. As the host compound, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
[0286] 好ましく用いることのできるホストイ匕合物の具体例としては、例えば、力ルバゾール 誘導体、トリアリールァミン誘導体、芳香族ボラン誘導体 (トリアリールボラン誘導体)、 含窒素複素環化合物、チォフェン誘導体、フラン誘導体、オリゴァリーレンィ匕合物等 の基本骨格を有するもの、またはカルボリン(ァザカルバゾール)誘導体や、ジァザ力 ルバゾール誘導体 (ここで、ジァザ力ルバゾール誘導体とは、カルボリン誘導体の力 ルボリン環  [0286] Specific examples of host compounds that can be preferably used include, for example, force rubazole derivatives, triarylamine derivatives, aromatic borane derivatives (triarylborane derivatives), nitrogen-containing heterocyclic compounds, thiophene derivatives, Those having a basic skeleton such as a furan derivative, an oligoarylene compound, or a carboline (azacarbazole) derivative or diaza-powered rubazole derivative (here, diaza-powered rubazole derivative is a force of a carboline derivative.
を構成する炭化水素環の少なくとも 1つの炭素原子が窒素原子で置換されているも のを表す。)等が挙げられ、また以下の文献に記載されている化合物が挙げられる。  Represents a hydrocarbon ring in which at least one carbon atom is substituted with a nitrogen atom. Etc.) and the compounds described in the following documents.
[0287] 特開 2001— 257076号公報、同 2002— 308855号公報、同 2001— 313179号 公報、同 2002— 319491号公報、同 2001— 357977号公報、同 2002— 334786 号公報、同 2002— 8860号公報、同 2002— 334787号公報、同 2002— 15871号 公報、同 2002— 334788号公報、同 2002— 43056号公報、同 2002— 334789 号公報、同 2002— 75645号公報、同 2002— 338579号公報、同 2002— 10544 5号公報、同 2002— 343568号公報、同 2002— 141173号公報、同 2002— 352 957号公報、同 2002— 203683号公報、同 2002— 363227号公報、同 2002— 2 31453号公報、同 2003— 3165号公報、同 2002— 234888号公報、同 2003— 2 7048号公報、同 2002— 255934号公報、同 2002— 260861号公報、同 2002— 280183号公報、同 2002— 299060号公報、同 2002— 302516号公報、同 2002 — 305083号公報、同 2002— 305084号公報、同 2002— 308837号公報等。  [0287] JP 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357977, 2002-334786, 2002-8860 No., 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 Gazette, 2002-10544-5, 2002-343568, 2002-141173, 2002-352 957, 2002-203683, 2002-363227, 2002-2 31453, 2003-3165, 2002-234888, 2003-2 7048, 2002-255934, 2002-260861, 2002-280183, 2002- No. 299060, No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, etc.
[0288] また、本発明に用いられる発光ホストとしては、従来公知の低分子化合物でも繰り 返し単位を持つ高分子化合物でもよく、またビニル基やエポキシ基のような重合性基 を有する低分子化合物 (蒸着重合性発光ホスト)でもよ ヽ。 [0289] また、前記のように貼合後に積層面の密着を強化し、また層内での耐久性を向上さ せるため、反応性置換基 (水酸基、イソシアナ一ト基、イソチオシアナート基またビ- ル基等)を導入したホストイ匕合物を用いることができる。 [0288] The light-emitting host used in the present invention may be a conventionally known low-molecular compound or a high-molecular compound having a repeating unit, and a low-molecular compound having a polymerizable group such as a vinyl group or an epoxy group. (Vapor deposition polymerizable light-emitting host). [0289] In addition, as described above, in order to enhance the adhesion of the laminated surface after bonding and to improve the durability in the layer, a reactive substituent (hydroxyl group, isocyanate group, isothiocyanate group or A host compound introduced with a beryl group or the like) can be used.
[0290] 反応性置換基を導入したホストイ匕合物の例として、代表的には以下のものが挙げら れる。  [0290] Typical examples of host compounds into which reactive substituents are introduced include the following.
[0291] [化 9]  [0291] [Chemical 9]
Figure imgf000047_0001
Figure imgf000047_0001
[0292] [化 10] [0292] [Chemical 10]
Figure imgf000048_0001
Figure imgf000048_0001
[0293] [化 11] [0293] [Chemical 11]
Figure imgf000049_0001
Figure imgf000049_0001
[0294] [化 12] [0294] [Chemical 12]
Figure imgf000050_0001
Figure imgf000050_0001
[0295] [化 13] 1 -24 [0295] [Chemical 13] 1 -24
Figure imgf000051_0001
また、請求の範囲第 13項〜第 22項に記載の発明(B)に用いられる発光ホストにつ いて述べる。請求の範囲第 13項〜第 22項に記載の発明(B)に用いられる発光ホス トは、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよぐビ 二ル基ゃエポキシ基のような重合性基を有する低分子化合物 (蒸着重合性発光ホス ト)でも良い。 [0297] 併用してもよい公知のホストイ匕合物としては、正孔輸送能、電子輸送能を有しつつ 、且つ発光の長波長化を防ぎ、なお且つ高 Tg (ガラス転移温度)である化合物が好 ましい。
Figure imgf000051_0001
The light-emitting host used in the invention (B) described in claims 13 to 22 will be described. The light-emitting host used in the invention (B) according to claims 13 to 22 can be a conventionally known low molecular compound or a polymer compound having a repeating unit. Such a low molecular compound having a polymerizable group (evaporation polymerizable light-emitting host) may be used. [0297] Known host compounds that may be used in combination have a hole transporting ability and an electron transporting ability, prevent emission of longer wavelengths, and have a high Tg (glass transition temperature). Compounds are preferred.
[0298] 公知のホストイ匕合物の具体例としては、前記同様、以下の文献に記載されている化 合物が挙げられる。  [0298] Specific examples of known host compound compounds include compounds described in the following documents, as described above.
[0299] 特開 2001— 257076号公報、同 2002— 308855号公報、同 2001— 313179号 公報、同 2002— 319491号公報、同 2001— 357977号公報、同 2002— 334786 号公報、同 2002— 8860号公報、同 2002— 334787号公報、同 2002— 15871号 公報、同 2002— 334788号公報、同 2002— 43056号公報、同 2002— 334789 号公報、同 2002— 75645号公報、同 2002— 338579号公報、同 2002— 10544 5号公報、同 2002— 343568号公報、同 2002— 141173号公報、同 2002— 352 957号公報、同 2002— 203683号公報、同 2002— 363227号公報、同 2002— 2 31453号公報、同 2003— 3165号公報、同 2002— 234888号公報、同 2003— 2 7048号公報、同 2002— 255934号公報、同 2002— 260861号公報、同 2002— 280183号公報、同 2002— 299060号公報、同 2002— 302516号公報、同 2002 — 305083号公報、同 2002— 305084号公報、同 2002— 308837号公報等。  [0299] JP 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357977, 2002-334786, 2002-8860 No., 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 Gazette, 2002-10544-5, 2002-343568, 2002-141173, 2002-352 957, 2002-203683, 2002-363227, 2002-2 31453, 2003-3165, 2002-234888, 2003-2 7048, 2002-255934, 2002-260861, 2002-280183, 2002- No. 299060, No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, etc.
[0300] 以下、請求の範囲第 13項〜第 22項に記載の発明(B)に係わる有機 EL素子の発 光層のホストイ匕合物として好ましく用いられる化合物の具体例を挙げるが、これらに 限定されない。  [0300] Specific examples of compounds preferably used as the host compound in the light emitting layer of the organic EL device according to the invention (B) described in claims 13 to 22 are given below. It is not limited.
[0301] [化 14] [0301] [Chemical 14]
Figure imgf000053_0001
化 15]
Figure imgf000053_0001
15]
Figure imgf000053_0002
また、請求の範囲第 13項〜第 22項に記載の発明(B)において、発光層の形成に は、下記に示す反応性ホストイ匕合物が好ましく用いられるが、本発明はこれらに限定 されない。
Figure imgf000053_0002
In the invention (B) described in claims 13 to 22, the following reactive host compounds are preferably used for forming the light emitting layer, but the present invention is not limited to these. Not.
[0304] [化 16]  [0304] [Chemical 16]
MO -20 MO— 21 MO -22 MO -20 MO— 21 MO -22
Figure imgf000054_0001
Figure imgf000054_0001
[0305] [化 17] MO— 30 O -31 MO— 32 [0305] [Chemical 17] MO— 30 O -31 MO— 32
Figure imgf000055_0001
Figure imgf000055_0001
[0306] [化 18] [0306] [Chemical 18]
MO— 35 MO -36 MO— 37 MO— 38 MO—35 MO—36 MO—37 MO—38
Figure imgf000056_0001
Figure imgf000056_0001
[0307] また、反応性ホストイ匕合物としては、従来公知のホストイ匕合物に下記に示す反応性 基を有する化合物も好ましく用いられる。 [0307] As the reactive host compound, a compound having a reactive group shown below in a conventionally known host compound is also preferably used.
[0308] [化 19] へ -NH2 -OH — SH [0308] [Chemical 19] To -NH 2 -OH — SH
Figure imgf000057_0001
Figure imgf000057_0001
[0309] (発光ドーパント) [0309] (Luminescent dopant)
本発明に係る発光ドーパントにっ 、て説明する。  The light-emitting dopant according to the present invention will be described.
[0310] 本発明に係る発光ドーパントとしては、蛍光ドーパント (蛍光性ィ匕合物ともいう)、リン 光性発光化合物を用いることができるが、より発光効率の高い有機 EL素子を得る観 点からは、本発明の有機 EL素子の発光層や発光ユニットに使用される発光ドーパン ト(単に、発光材料ということもある)としては、上記のホストイ匕合物を含有すると同時に リン光性発光化合物を含有することが好ましい。  [0310] As the light-emitting dopant according to the present invention, a fluorescent dopant (also referred to as a fluorescent compound) or a phosphorescent light-emitting compound can be used. From the viewpoint of obtaining an organic EL device with higher luminous efficiency. As a light emitting dopant (also referred to simply as a light emitting material) used in the light emitting layer or light emitting unit of the organic EL device of the present invention, the phosphorescent light emitting compound is contained at the same time containing the above-mentioned host compound. It is preferable to contain.
[0311] (リン光性発光化合物)  [0311] (Phosphorescent compound)
本発明に係るリン光性発光化合物につ 、て説明する。  The phosphorescent light-emitting compound according to the present invention will be described.
[0312] 本発明に係るリン光性発光化合物は、励起三重項からの発光が観測される化合物 であり、具体的には、室温(25°C)にてリン光発光する化合物であり、リン光量子収率 力 25°Cにおいて 0. 01以上の化合物であると定義される力 好ましいリン光量子収 率は 0. 1以上である。  [0312] The phosphorescent light-emitting compound according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C). Photoquantum yield force A force defined as a compound of 0.01 or more at 25 ° C. A preferable phosphorescence quantum yield is 0.1 or more.
[0313] 上記リン光量子収率は、第 4版実験化学講座 7の分光 IIの 398頁(1992年版、丸 善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用 いて測定できるが、本発明に係るリン光性発光化合物は、任意の溶媒のいずれかに ぉ 、て上記リン光量子収率 (0. 01以上)が達成されればよ!、。  [0313] The phosphorescent quantum yield can be measured by the method described in the fourth edition of Experimental Chemistry Course 7, Spectroscopy II, page 398 (1992 edition, Maruzen). The phosphorescence quantum yield in a solution can be measured using various solvents, but the phosphorescent light-emitting compound according to the present invention can be measured with any of the above-mentioned phosphorescence quantum yields (0.01 or more). ) Will be achieved!
[0314] リン光性発光化合物の発光は原理としては 2種挙げられ、 1つはキャリアが輸送され るホストイ匕合物上でキャリアの再結合が起こってホストイ匕合物の励起状態が生成し、 このエネルギーをリン光性発光化合物に移動させることでリン光性発光化合物力 の 発光を得るというエネルギー移動型、もう 1つはリン光性発光化合物がキャリアトラップ となり、リン光性発光化合物上でキャリアの再結合が起こり、リン光性発光化合物から の発光が得られるというキャリアトラップ型である力 いずれの場合においても、リン光 性発光化合物の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよ りも低いことが条件である。 [0314] There are two types of light emission of phosphorescent light-emitting compounds in principle. One is the recombination of carriers on the host compound to which carriers are transported, and the excited state of the host compound is generated. The energy transfer type is to transfer the energy to the phosphorescent light emitting compound to obtain the light emission of the phosphorescent light emitting compound power. In this case, the energy of the excited state of the phosphorescent light-emitting compound is such that carrier recombination occurs on the phosphorescent light-emitting compound and light is emitted from the phosphorescent light-emitting compound. Is required to be lower than the excited state energy of the host compound.
[0315] リン光性発光化合物は、有機 EL素子の発光層に使用される公知のものの中から適 宜選択して用いることができる。本発明に係るリン光性発光化合物としては、好ましく は元素の周期表で 8〜 10族の金属を含有する錯体系化合物であり、更に好ましくは イリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土 類錯体であり、中でも最も好ま ヽのはイリジウム化合物である。  [0315] The phosphorescent light-emitting compound can be appropriately selected from known materials used for the light-emitting layer of the organic EL device. The phosphorescent light emitting compound according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex system). Compounds), rare earth complexes, and most preferred are iridium compounds.
[0316] 以下に、リン光性発光化合物として用いられる化合物の具体例を示すが、本発明 はこれらに限定されない。これらの化合物は、例えば、 Inorg. Chem. 40卷、 1704 〜 1711に記載の方法等により合成できる。  [0316] Specific examples of the compound used as the phosphorescent light emitting compound are shown below, but the present invention is not limited thereto. These compounds can be synthesized, for example, by the method described in Inorg. Chem. 40 卷, 1704 to 1711.
[0317] [化 20] [0317] [Chemical 20]
Figure imgf000059_0001
Figure imgf000059_0001
[0318] [化 21] [0318] [Chemical 21]
Figure imgf000060_0001
Figure imgf000060_0001
[0319] [化 22] [0319] [Chemical 22]
Figure imgf000061_0001
Figure imgf000061_0001
[0320] [化 23] [0320] [Chemical 23]
Figure imgf000061_0002
Figure imgf000061_0002
[0321] [化 24] [0321] [Chemical 24]
Figure imgf000062_0001
Figure imgf000062_0001
[0322] [化 25]  [0322] [Chemical 25]
Pd-1 Pd-2 Pd 3
Figure imgf000062_0002
Pd-1 Pd-2 Pd 3
Figure imgf000062_0002
[0323] [化 26]  [0323] [Chemical 26]
Rh-1 Rh-2 Rh-3
Figure imgf000062_0003
[0324] また、本発明において好ましく用いられる、錯体化合物中に架橋性の反応性基を 導入したリン光性発光化合物の代表例を以下に挙げる。これらに限定されない。
Rh-1 Rh-2 Rh-3
Figure imgf000062_0003
[0324] Typical examples of phosphorescent light-emitting compounds that are preferably used in the present invention and in which a crosslinkable reactive group is introduced into a complex compound are shown below. It is not limited to these.
[0325] [化 27] [0325] [Chemical 27]
Figure imgf000063_0001
Figure imgf000063_0001
[0326] [化 28] [0326] [Chemical 28]
Figure imgf000064_0001
Figure imgf000064_0001
[0327] [化 29]
Figure imgf000065_0001
[0327] [Chemical 29]
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000066_0001
[0329] [化 31]
Figure imgf000067_0001
[0329] [Chemical 31]
Figure imgf000067_0001
[0330] また、請求の範囲第 13項〜第 22項に記載の発明(B)に好適に用いられるリン光 性発光化合物 (リン光ドーパント)の具体例を示すが、これらに限定されない。同じぐ 例えば、 Inorg. Chem. 40卷、 1704〜1711に記載の方法等により合成できる。 [0330] Specific examples of the phosphorescent light-emitting compound (phosphorescent dopant) suitably used in the invention (B) according to claims 13 to 22 are shown, but the invention is not limited thereto. For example, it can be synthesized by the method described in Inorg. Chem. 40 卷, 1704-1711.
[0331] [化 32] [0331] [Chemical 32]
PD-1 PD-2 PD-3 PD-1 PD-2 PD-3
Figure imgf000068_0001
3]
Figure imgf000068_0001
3]
Figure imgf000069_0001
Figure imgf000069_0001
[0333] また、発光層の形成には、下記に示す反応性リン光ドーパントが好ましく用いられる 1S 請求の範囲第 13項〜第 22項に記載の発明(B)においてはこれらに限定されな い。 [0333] In addition, the reactive phosphorescent dopant shown below is preferably used for forming the light emitting layer. In the invention (B) according to claims 13 to 22, the invention is not limited to these. .
[0334] [化 34] [0334] [Chemical 34]
Figure imgf000070_0001
Figure imgf000070_0001
[0335] [化 35] [0335] [Chemical 35]
Figure imgf000071_0001
Figure imgf000071_0001
[0336] また、反応性リン光ドーパントとしては、従来公知のリン光性化合物に、上記の反応 性ホストイ匕合物が有してもよい反応性基が置換したィ匕合物も好ましく用いられる。 [0336] Further, as the reactive phosphorescent dopant, a compound obtained by substituting a reactive group that may be possessed by the above-mentioned reactive host compound in a conventionally known phosphorescent compound is also preferably used. .
[0337] 請求の範囲第 13項〜第 22項に記載の発明(B)に係るリン光ドーパント(りん光性 化合物、リン光性発光化合物等ともいう)としては、励起三重項からの発光が青色で ある、いわゆる、青色発光ドーパントとして下記のような青色発光性オルトメタル錯体 が好ましく用いられる。 [0337] As the phosphorescent dopant (also referred to as phosphorescent compound, phosphorescent light-emitting compound, etc.) according to the invention (B) of claims 13 to 22, light emission from an excited triplet is possible. The blue light-emitting ortho metal complex shown below as a blue light-emitting dopant, which is blue. Is preferably used.
[0338] 《デンドリマー型リン光発光性有機金属錯体》  [0338] Dendrimer-type phosphorescent organometallic complex
また、請求の範囲第 13項〜第 22項に記載の発明(B)に係るリン光ドーパントとして は、下記一般式 (D1)で表されるデンドリマー型リン光発光性有機金属錯体を用いる ことができる。  In addition, as the phosphorescent dopant according to the invention (B) described in claims 13 to 22, a dendrimer-type phosphorescent organometallic complex represented by the following general formula (D1) may be used. it can.
[0339] 一般式 (D1) [0339] General formula (D1)
P—[ (デンドロン) m]n  P— [(Dendron) m] n
一般式 (D1)において、デンドロンは、下記一般式 (E)で表される榭木状分子を表 し、 nは、 0を超える整数を表し、 mは、 0を超え、且つ、 n未満の整数を表す。 Pは、コ ァ (核)となる、リン光発光性有機金属錯体を表す。  In the general formula (D1), dendron represents a tree-like molecule represented by the following general formula (E), n represents an integer greater than 0, m is greater than 0 and less than n Represents an integer. P represents a phosphorescent organometallic complex that becomes a core.
[0340] 一般式 (E)  [0340] General formula (E)
[0341] [化 36] 一般式 (E)
Figure imgf000072_0001
[0341] [Chemical 36] General formula (E)
Figure imgf000072_0001
[0342] 一般式 (E)にお 、て Arは、芳香族炭化水素環または芳香族複素環から導出され る三価の基を表す。芳香族複素環を表し、 Xは、前記コア (核)となる、リン光発光性 有機金属錯体 Pと結合する単結合または二価の連結基を表す。 nは、分岐回数 (世 代数ともいう)を表す。 In the general formula (E), Ar represents a trivalent group derived from an aromatic hydrocarbon ring or an aromatic heterocyclic ring. Represents an aromatic heterocycle, and X represents a single bond or a divalent linking group that binds to the phosphorescent organometallic complex P, which serves as the core. n represents the number of branches (also called a generation number).
[0343] 一般式 (E)にお 、て、 Arで表される芳香族炭化水素環としては、ベンゼン環、ビフ ェニル環、ナフタレン環、ァズレン環、アントラセン環、フエナントレン環、ピレン環、ク リセン環、ナフタセン環、トリフエ-レン環、 o—テルフエ-ル環、 m—テルフエ-ル環、 p—テルフエ-ル環、ァセナフテン環、コロネン環、フルオレン環、フルオラントレン環 、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ビラ ントレン環、アンスラアントレン環等が挙げられる。尚、これらの環は、更に、上記一般 式 (A)において、 Rで表される置換基を有していてもよい。  [0343] In the general formula (E), the aromatic hydrocarbon ring represented by Ar includes a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, and a chrysene. Ring, naphthacene ring, triphenylene ring, o-terfel ring, m-terfel ring, p-terfel ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring Perylene ring, pentaphen ring, picene ring, pyrene ring, bianthrene ring, anthraanthrene ring, and the like. In addition, these rings may further have a substituent represented by R in the general formula (A).
[0344] 一般式 (E)において、 Arで表される芳香族複素環としては、例えば、フラン環、チ ォフェン環、ォキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピ ラジン環、トリアジン環、ベンゾイミダゾール環、ォキサジァゾール環、トリァゾール環、 イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベン ゾイミダゾール環、ベンゾチアゾール環、ベンゾォキサゾール環、キノキサリン環、キ ナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、 力ルバゾール環、カルボリン環、ジァザ力ルバゾール環(カルボリン環を構成する炭 化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げ られる。 [0344] In the general formula (E), examples of the aromatic heterocycle represented by Ar include a furan ring and a thio group. Ophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, indazole ring, Benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, force rubazole ring, carboline ring, diaza force rubazole ring (carboline) A ring in which one of the carbon atoms of the hydrocarbon ring constituting the ring is further substituted with a nitrogen atom).
尚、これらの環は、更に、置換基を有していてもよぐ置換基としては、アルキル基( 例えば、メチル基、ェチル基、プロピル基、イソプロピル基、 tert—ブチル基、ペンチ ル基、へキシル基、ォクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデ シル基等)、シクロアルキル基 (例えば、シクロペンチル基、シクロへキシル基等)、ァ ルケニル基 (例えば、ビニル基、ァリル基等)、アルキニル基 (例えば、ェチニル基、 プロパルギル基等)、ァリール基 (例えば、フ 二ル基、ナフチル基等)、芳香族複素 環基 (例えば、フリル基、チェニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピ ラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリ二 ル基、カルバゾリル基、カルボリニル基、ジァザカルバゾリル基(前記カルボリ-ル基 のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを 示す)、フタラジュル基等)、複素環基 (例えば、ピロリジル基、イミダゾリジル基、モル ホリル基、ォキサゾリジル基等)、アルコキシ基 (例えば、メトキシ基、エトキシ基、プロ ピルォキシ基、ペンチルォキシ基、へキシルォキシ基、ォクチルォキシ基、ドデシル ォキシ基等)、シクロアルコキシ基 (例えば、シクロペンチルォキシ基、シクロへキシル ォキシ基等)、ァリールォキシ基 (例えば、フエノキシ基、ナフチルォキシ基等)、アル キルチオ基(例えば、メチルチオ基、ェチルチオ基、プロピルチオ基、ペンチルチオ 基、へキシルチオ基、ォクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基( 例えば、シクロペンチルチオ基、シクロへキシルチオ基等)、ァリールチオ基 (例えば 、フエ-ルチオ基、ナフチルチオ基等)、アルコキシカルボ-ル基 (例えば、メチルォ キシカルボニル基、ェチルォキシカルボニル基、ブチルォキシカルボニル基、ォクチ ルォキシカルボ-ル基、ドデシルォキシカルボ-ル基等)、ァリールォキシカルボ- ル基(例えば、フエ-ルォキシカルボ-ル基、ナフチルォキシカルボ-ル基等)、スル ファモイル基(例えば、アミノスルホ -ル基、メチルアミノスルホ -ル基、ジメチルァミノ スルホ-ル基、ブチルアミノスルホ -ル基、へキシルアミノスルホ -ル基、シクロへキ シルアミノスルホ -ル基、ォクチルアミノスルホ -ル基、ドデシルアミノスルホ-ル基、 フエ-ルアミノスルホ -ル基、ナフチルアミノスルホ -ル基、 2—ピリジルアミノスルホ- ル基等)、ァシル基(例えば、ァセチル基、ェチルカルボ-ル基、プロピルカルボ-ル 基、ペンチルカルボ-ル基、シクロへキシルカルボ-ル基、ォクチルカルポ-ル基、 2 ェチルへキシルカルボ-ル基、ドデシルカルポ-ル基、フエ-ルカルポ-ル基、ナ フチルカルボニル基、ピリジルカルボニル基等)、ァシルォキシ基 (例えば、ァセチル ォキシ基、ェチルカルボニルォキシ基、ブチルカルボニルォキシ基、ォクチルカルボ -ルォキシ基、ドデシルカルボ-ルォキシ基、フエ-ルカルポ-ルォキシ基等)、アミ ド基(例えば、メチルカルボ-ルァミノ基、ェチルカルボ-ルァミノ基、ジメチルカルボ -ルァミノ基、プロピルカルボ-ルァミノ基、ペンチルカルボ-ルァミノ基、シクロへキ シルカルボ-ルァミノ基、 2—ェチルへキシルカルボ-ルァミノ基、ォクチルカルボ- ルァミノ基、ドデシルカルポ-ルァミノ基、フエ-ルカルポ-ルァミノ基、ナフチルカル ボニルァミノ基等)、力ルバモイル基 (例えば、ァミノカルボ-ル基、メチルァミノカルボ -ル基、ジメチルァミノカルボ-ル基、プロピルアミノカルボ-ル基、ペンチルァミノ力 ルポ-ル基、シクロへキシルァミノカルボ-ル基、ォクチルァミノカルボ-ル基、 2—ェ チルへキシルァミノカルボ-ル基、ドデシルァミノカルボ-ル基、フエ-ルァミノカルボ -ル基、ナフチルァミノカルボ-ル基、 2—ピリジルァミノカルボニル基等)、ウレイド基 (例えば、メチルウレイド基、ェチルウレイド基、ペンチルゥレイド基、シクロへキシルゥ レイド基、ォクチルゥレイド基、ドデシルウレイド基、フ ニルウレイド基ナフチルゥレイ ド基、 2—ピリジルアミノウレイド基等)、スルフィエル基 (例えば、メチルスルフィエル基 、ェチルスルフィ-ル基、ブチルスルフィ-ル基、シクロへキシルスルフィ-ル基、 2— ェチルへキシルスルフィ-ル基、ドデシルスルフィ-ル基、フエ-ルスルフィ-ル基、 ナフチルスルフィエル基、 2—ピリジルスルフィエル基等)、アルキルスルホ -ル基(例 えば、メチルスルホ -ル基、ェチルスルホ -ル基、ブチルスルホ -ル基、シクロへキシ ルスルホ-ル基、 2—ェチルへキシルスルホ -ル基、ドデシルスルホ -ル基等)、ァリ 一ルスルホ -ル基またはへテロアリールスルホ -ル基(例えば、フエ-ルスルホ-ル 基、ナフチルスルホニル基、 2—ピリジルスルホニル基等)、アミノ基 (例えば、アミノ基 、ェチルァミノ基、ジメチルァミノ基、ブチルァミノ基、シクロペンチルァミノ基、 2—ェ チルへキシルァミノ基、ドデシルァミノ基、ァ-リノ基、ナフチルァミノ基、 2—ピリジル アミノ基等)、ハロゲン原子 (例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭 化水素基(例えば、フルォロメチル基、トリフルォロメチル基、ペンタフルォロェチル 基、ペンタフルオロフェ-ル基等)、シァノ基、ニトロ基、ヒドロキシ基、メルカプト基、シ リル基 (例えば、トリメチルシリル基、トリイソプロビルシリル基、トリフエ-ルシリル基、フ ェニルジェチルシリル基等)等が挙げられる。尚、これらの置換基は、上記の置換基 によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して 環を形成していてもよい。 In addition, these rings may further have an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, as a substituent which may have a substituent. Hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group, etc.) ), Alkynyl group (eg, ethynyl group, propargyl group, etc.), aryl group (eg, furyl group, naphthyl group, etc.), aromatic heterocyclic group (eg, furyl group, chenyl group, pyridyl group, pyridazinyl group, Pyrimidinyl, pyrazinyl, triazinyl, imidazolyl, pyrazolyl, thiazolyl, quinazolyl, carbazolyl, carbolinyl Group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolyl group is replaced by a nitrogen atom), phthaladyl group, etc.), heterocyclic group (for example, pyrrolidyl Group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (eg, methoxy group, ethoxy group, propoxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (eg, , Cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group) Group, dodecylthio group, etc.), cycloalkyl Thio group (for example, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (for example, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (for example, methyloxycarbonyl group, ethyloxycarbonyl group, etc.) , Butoxycarbonyl group, octyl Oxycarbonyl groups, dodecyloxycarbonyl groups, etc.), aryloxycarbonyl groups (eg, phenylcarboxyl groups, naphthyloxycarbox groups, etc.), sulfamoyl groups (eg, aminosulfo groups) -Methyl group, methylaminosulfol group, dimethylaminosulfol group, butylaminosulfol group, hexylaminosulfol group, cyclohexylaminosulfol group, octylaminosulfol group, Dodecylaminosulfol group, phenolaminosulfol group, naphthylaminosulfol group, 2-pyridylaminosulfol group, etc.), isyl group (eg, acetyl group, ethylcarbol group, propylcarbol group, Pentyl carbonate group, cyclohexyl carboxyl group, octyl carboxyl group, 2-ethyl hexyl carbonate group, dodecyl carbonate group, phenol Group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbo-loxy group, dodecylcarbo-loxy group, Phenyl carbonate, etc.), amide groups (for example, methyl carbolumino group, ethyl carbolumino group, dimethyl carbolumino group, propyl carbolumino group, pentyl carbolumino group, cyclohexyl carbolumino group) 2-ethylhexylcarbolamino group, octylcarbolamino group, dodecylcarbolamino group, phenylcarbolamino group, naphthylcarbonylamino group, etc.), strong rubamoyl group (for example, aminocarbol group, methylaminocarbol group) Group, dimethylaminocarbol group, propylene Ruaminocarbol group, pentylamino group, cyclohexylaminocarbol group, octylaminocarbol group, 2-ethylhexylaminocarbol group, dodecylaminocarbole group Group, phenolaminocarbol group, naphthylaminocarbole group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, Octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), sulfier group (for example, methylsulfuryl group, ethylsulfuryl group, butylsulfuryl group, cyclohexylsulfuryl group, 2 — Ethylhexylsulfyl group, dodecylsulfyl group, phenylsulfyl group, Butyl sulfiel group, 2-pyridyl sulfiel group, etc.), alkyl sulfol group (for example, methyl sulfol group, ethyl sulfol group, butyl sulfol group, cyclohexyl group) Arylsulfol group, 2-ethylhexylsulfol group, dodecylsulfol group, etc.), arylsulfol group or heteroarylsulfol group (eg, phenylsulfol group, naphthylsulfonyl group) 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, arlino group, naphthylamino group, 2-pyridylamino group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom, etc.), fluorinated hydrocarbon group (eg, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, penta Fluorophenol group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, And triisopropylpropylsilyl group, triphenylsilyl group, phenyljetylsilyl group, etc.). These substituents may be further substituted with the above substituents. In addition, a plurality of these substituents may be bonded to each other to form a ring.
[0346] 一般式 (E)にお!/、て、 Xで表される二価の連結基としては、アルキレン基、ァルケ- レン基、アルキ-レン基、ァリーレン基などの炭化水素基のほか、前記アルキレン基、 前記ァルケ-レン基、前記アルキニレン基、前記ァリーレン基中、各々ヘテロ原子( 例えば、窒素原子、硫黄原子、珪素原子等)を含むものであってもよぐまた、チオフ ェン—2, 5—ジィル基や、ピラジン—2, 3—ジィル基のような、芳香族複素環を有す る化合物(ヘテロ芳香族化合物ともいう)に由来する二価の連結基であってもよいし、 酸素や硫黄などのカルコゲン原子であってもよい。また、アルキルイミノ基、ジアルキ ルシランジィル基ゃジァリールゲルマンジィル基のような、ヘテロ原子を会して連結 する基でもよ 、。 [0346] The divalent linking group represented by! /, X in the general formula (E) includes hydrocarbon groups such as an alkylene group, an alkylene group, an alkylene group, and an arylene group. In the alkylene group, the alkene group, the alkynylene group, and the arylene group, each of them may contain a hetero atom (for example, a nitrogen atom, a sulfur atom, a silicon atom, etc.). Even a divalent linking group derived from a compound having an aromatic heterocycle (also called a heteroaromatic compound) such as a —2, 5-diyl group or a pyrazine-2,3-diyl group. It may be a chalcogen atom such as oxygen or sulfur. In addition, it may be a group that meets and links heteroatoms such as an alkylimino group, a dialkylsilane diyl group, or a diarylgermandyl group.
[0347] 以下、一般式 (D1)で表されるデンドリマーの具体例を示すが、請求の範囲第 13項 [0347] Specific examples of the dendrimer represented by the general formula (D1) are shown below.
〜第 22項に記載の発明(B)においてはこれらに限定されない。 However, the invention (B) described in Item 22 is not limited thereto.
[0348] [化 37] [0348] [Chemical 37]
Figure imgf000076_0001
Figure imgf000076_0002
Figure imgf000076_0001
Figure imgf000076_0002
D- 1  D- 1
[0349] 《シクロデキストリン誘導体》 [0349] <Cyclodextrin derivative>
請求の範囲第 13項〜第 22項に記載の発明(B)〖こ係るリン光ドーパントとしては、 下記一般式 (D)で表されるシクロデキストリン誘導体を用いることができる。ここで、シ クロデキストリン誘導体とは、複数の D—ダルコビラノース基がひ 1、 4グリコシド結合 によって環化した構造を有する化合物の総称。分子内に存在する 1級と 2級の水酸 基は置換基で置換されて 、て構わな 、。  The invention described in claims 13 to 22 (B) can be a cyclodextrin derivative represented by the following general formula (D). The cyclodextrin derivative is a general term for compounds having a structure in which a plurality of D-darcoviranose groups are cyclized by 1, 4 glycosidic bonds. The primary and secondary hydroxyl groups present in the molecule may be substituted with substituents.
[0350] [化 38]  [0350] [Chemical 38]
Figure imgf000076_0003
Figure imgf000076_0003
[0351] 一般式 (D)にお 、て、 Rは置換基を表し、 Zはリン光性ィ匕合物の残基を表す。 [0351] In the general formula (D), R represents a substituent, and Z represents a residue of a phosphorescent compound.
[0352] 一般式 (D)にお 、て、 Rで表される置換基は、上記一般式 (E)にお 、て、 Arで表さ れる芳香族炭化水素環が有してもよい置換基と同義である。 [0353] 一般式 (D)にお 、て、 Zで表されるリン光性ィ匕合物の残基として用いられるリン光性 化合物としては、リン光性ィ匕合物(リン光ドーパントとも 、う)を用いることができる。 [0352] In the general formula (D), the substituent represented by R in the general formula (E) may be a substituent that the aromatic hydrocarbon ring represented by Ar may have. Synonymous with group. [0353] In the general formula (D), as the phosphorescent compound used as the residue of the phosphorescent compound represented by Z, the phosphorescent compound (also called a phosphorescent dopant) is used. , U) can be used.
[0354] 以下、請求の範囲第 13項〜第 22項に記載の発明(B)に用いられるシクロデキスト リン誘導体の好まし ヽ具体例を示すが、これらに限定されな!ヽ。  [0354] Preferred examples of the cyclodextrin derivatives used in the invention (B) according to claims 13 to 22 are shown below, but not limited thereto.
[0355] [化 39]  [0355] [Chemical 39]
Figure imgf000077_0001
Figure imgf000077_0001
CD— 1 CD— 2  CD— 1 CD— 2
[0356] 尚、 CD—1、 2において、 Acは、各々ァセチル基を表す。 [0356] In CD-1 and CD2, Ac represents a acetyl group.
[0357] 《カリックスァレーン誘導体》  [0357] 《Calixarene derivative》
請求の範囲第 13項〜第 22項に記載の発明(B)〖こ係るリン光ドーパントの一種とし て用いられるカリックスァレーン誘導体にっ 、て説明する。  The invention (B) described in claims 13 to 22 will be described as a calixarene derivative used as a kind of such phosphorescent dopant.
[0358] 請求の範囲第 13項〜第 22項に記載の発明(B)に用いられるカリックスァレーン誘 導体とは、下記一般式 (A)で表されるように、フエノール誘導体をアルキレン基または ォキシアルキレン基で結合した環状構造を有する化合物の総称を表し、また、分子 内のフエノール性水酸基は置換基で置換されて ヽて構わな ヽ。  [0358] The calixarene derivative used in the invention (B) according to claims 13 to 22 is an alkylene group or a phenol derivative as represented by the following general formula (A). This is a general term for compounds having a cyclic structure bonded by an oxyalkylene group, and the phenolic hydroxyl group in the molecule may be substituted with a substituent.
[0359] [化 40] —般式 (A) [0359] [Chemical 40] —General formula (A)
Figure imgf000078_0001
Figure imgf000078_0001
[0360] 一般式 (A)にお 、て、 A、 Lで、各々表される二価の連結基としては、一般式 (E)に おいて、 Xで表される二価の連結基と同義である。 [0360] In the general formula (A), the divalent linking groups represented by A and L, respectively, include the divalent linking group represented by X in the general formula (E). It is synonymous.
[0361] 更に、 A、 Lで各々表される二価の連結基としては、例えば、力ルバゾール環、カル ボリン環、ジァザ力ルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成 する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す)、トリァゾー ル環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チォフェン環、ォキサジ ァゾール環、ジベンゾフラン環、ジベンゾチォフェン環、インドール環等のような芳香 族複素環群力 選択される芳香族複素環力 導出される二価の基等を用いることが 出来る。  [0361] Furthermore, examples of the divalent linking group represented by A and L include, for example, a force rubazole ring, a carboline ring, a diaza force rubazole ring (also referred to as a monoazacarboline ring, and carbon atoms constituting the carboline ring). One of these is replaced with a nitrogen atom), triazole ring, pyrrole ring, pyridine ring, pyrazine ring, quinoxaline ring, thiophene ring, oxadiazole ring, dibenzofuran ring, dibenzothiophene ring, indole ring, etc. Aromatic heterocycle group force such as Aromatic heterocycle force selected A divalent group or the like derived can be used.
[0362] また、更に、一般式 (E)にお 、て、 Arで表される芳香族炭化水素環が有してもょ 、 置換基を有してもよい。  [0362] Further, in the general formula (E), the aromatic hydrocarbon ring represented by Ar may have a substituent.
[0363] 以下に、請求の範囲第 13項〜第 22項に記載の発明(B)に用いられるカリックスァ レーン誘導体の具体例を挙げる力 これらに限定されな 、。  [0363] The ability to list specific examples of calixarene derivatives used in the invention (B) according to claims 13 to 22 below is not limited to these.
[0364] [化 41] [0364] [Chemical 41]
Figure imgf000079_0001
Figure imgf000079_0001
[0365] CA- 1にお!/ヽて、 Aは、 CHまたは Nを表し、 Rは、水素原子、メチル基またはァセ チル基を表し、 nは、 1〜6の整数を表す。 [0365] In CA-1, A represents CH or N, R represents a hydrogen atom, a methyl group or an acetyl group, and n represents an integer of 1 to 6.
[0366] 《クラウンエーテル誘導体》  [0366] <Crown ether derivative>
請求の範囲第 13項〜第 22項に記載の発明(B)〖こ係るリン光ドーパントの一種とし て用いられるクラウンエーテル誘導体にっ 、て説明する。  The invention according to claims 13 to 22 (B), a crown ether derivative used as a kind of phosphorescent dopant, will be described.
[0367] 請求の範囲第 13項〜第 22項に記載の発明(B)に用いられるクラウンエーテル誘 導体とは、下記一般式 (B)または一般式 (C)で各々表されるように、環状ポリエーテ ルであって、環全体が多座配位子となり、金属イオンや有機イオンと包接する機能を 持つ化合物の総称を表し、且つ、酸素原子の代わりにその一部、または全てが窒素 、硫黄で置換されても良い。  [0367] The crown ether derivative used in the invention (B) according to claims 13 to 22 is represented by the following general formula (B) or general formula (C), respectively: Cyclic polyether, which is a generic name for compounds that have polydentate ligands with the entire ring as a multidentate ligand, and have a function of inclusion with metal ions or organic ions, and part or all of them are nitrogen, instead of oxygen atoms, It may be substituted with sulfur.
[0368] [化 42] 一般式 (B) —般式 (C)
Figure imgf000079_0002
[0369] 一般式 (B)、一般式 (C)の各々にお 、て、 Lは、単結合または二価の連結基を表し
[0368] [Chemical Formula 42] General Formula (B) — General Formula (C)
Figure imgf000079_0002
[0369] In each of the general formulas (B) and (C), L represents a single bond or a divalent linking group.
、 Chは、酸素原子または硫黄原子を表す。 mは、 1〜9の整数、 nは、 1〜3の整数を 表し、 Zは、蛍光性化合物の残基またはリン光性化合物の残基を表す。 Ch represents an oxygen atom or a sulfur atom. m represents an integer of 1 to 9, n represents an integer of 1 to 3, and Z represents a residue of a fluorescent compound or a phosphorescent compound.
[0370] 一般式 (B)、一般式 (C)の各々にお 、て、 Lで表される二価の連結基は、上記一般 式 (A)の A、 Lで各々表される二価の連結基と同義である。 [0370] In each of the general formulas (B) and (C), the divalent linking group represented by L is a divalent group represented by A and L in the general formula (A). It is synonymous with the linking group.
[0371] 一般式 (B)、一般式 (C)の各々にお 、て、 Zで表されるリン光性化合物の残基とし て用いられるリン光性ィ匕合物としては、後述するリン光性ィ匕合物(リン光ドーパントとも いう)に記載の化合物等が挙げられる。 [0371] In each of the general formulas (B) and (C), the phosphorescent compound used as the residue of the phosphorescent compound represented by Z is the phosphorous described later. Examples thereof include compounds described in Photochemical Compounds (also referred to as phosphorescent dopants).
[0372] また、上記一般式 (B)、 (C)で各々表されるクラウンエーテル誘導体は、上記一般 式 (A)で表されるカリックスァレーン誘導体が有する置換基 Rを有して 、てもよ!/、。 [0372] Further, the crown ether derivatives represented by the above general formulas (B) and (C) each have a substituent R which the calixarene derivative represented by the above general formula (A) has, and Moyo! /
[0373] 以下、請求の範囲第 13項〜第 22項に記載の発明(B)に用いられるクラウンエーテ ル誘導体の具体例を挙げるがこれらに限定されない。 [0373] Specific examples of the crown ether derivative used in the invention (B) according to claims 13 to 22 are listed below, but the invention is not limited thereto.
[0374] [化 43] [0374] [Chemical 43]
Figure imgf000080_0001
Figure imgf000080_0001
Figure imgf000080_0002
Figure imgf000080_0002
[0375] 上記の具体例である、 CE— 1、 CE— 2の各々において、 Aは、 CHまたは Nを表し[0375] In each of the above specific examples, CE-1 and CE-2, A represents CH or N
、 nは、 1〜9の整数を表す。 , N represents an integer of 1-9.
[0376] 請求の範囲第 13項〜第 22項に記載の発明(B)に用いられるリン光性ィ匕合物は、 例えば Organic Letter誌、 vol3、 No. 16、 p2579~2581 (2001)、 Inorganic Chemistry,第 30卷、第 8号、 1685〜1687ページ(1991年)、 Am. Chem. So c. , 123卷、 4304ページ(2001年)、 Inorganic Chemistry,第 40卷、第 7号、 1 704〜1711ページ(2001年)、 Inorganic Chemistry,第 41卷、第 12号、 3055 〜3066ページ(2002年)、 New Journal of Chemistry. ,第 26卷、 1171ぺー ジ(2002年)、更に、これらの文献中に記載の参考文献等の方法を適用することによ り合成できる。 [0376] The phosphorescent compound used in the invention (B) according to claims 13 to 22 is: For example, Organic Letter, vol3, No. 16, p2579-2581 (2001), Inorganic Chemistry, No. 30, No. 8, pp. 1685-1687 (1991), Am. Chem. So c., 123 卷, 4304 Page (2001), Inorganic Chemistry, No. 40, No. 7, 1 704-1711 (2001), Inorganic Chemistry, No. 41, No. 12, 3055-3066 (2002), New Journal of Chemistry., Vol. 26, page 1171 (2002), and further by applying methods such as references described in these documents.
[0377] このま力にも、 f列えば、、 J. Am. Chem. Soc. 123卷 4304〜4312頁(2001年)、 国際公開第 00Z70655号パンフレット、同第 02Z15645号パンフレツ K特開 200 [0377] This time, too, if f row, J. Am. Chem. Soc. 123-4304-412 (2001), International Publication No. 00Z70655 pamphlet, 02Z15645 Pamphlet K JP 200
1— 247859号公報、同 2001— 345183号公報、同 2002— 117978号公報、同 2 002— 170684号公報、同 2002— 203678号公報、同 2002— 235076号公報、 同 2002— 302671号公報、同 2002— 324679号公報、同 2002— 332291号公報 、同 2002— 332292号公報、同 2002— 338588号公報等に記載の一般式であげ られるイリジウム錯体、あるいは、具体的例として挙げられるイリジウム錯体、特開 2001-247859, 2001-345183, 2002-117978, 2002-170684, 2002-203678, 2002-235076, 2002-302671, No. 2002-324679, No. 2002-332291, No. 2002-332292, No. 2002-338588, etc. Open 200
2— 8860号公報記載の式 (IV)で表されるイリジウム錯体等が挙げられる。 Examples include iridium complexes represented by the formula (IV) described in 2-8860.
[0378] (蛍光ドーパント (蛍光性化合物とも!、う) ) [0378] (Fluorescent dopant (also fluorescent compounds!))
本発明において用いられる、蛍光ドーパント(蛍光性ィ匕合物)としては、クマリン系色 素、ピラン系色素、シァニン系色素、クロコニゥム系色素、スクァリウム系色素、ォキソ ベンツアントラセン系色素、フルォレセイン系色素、ローダミン系色素、ピリリウム系色 素、ペリレン系色素、スチルベン系色素、ポリチォフェン系色素、または希土類錯体 系蛍光体等が挙げられる。  Examples of fluorescent dopants (fluorescent compounds) used in the present invention include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, Examples thereof include rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
[0379] また、請求の範囲第 13項〜第 22項に記載の発明(B)に好適に用いることのできる 蛍光ドーパントとしては、上記一般式 (D)で表されるシクロデキストリン誘導体にお!ヽ て、 Zで表されるリン光性ィ匕合物の残基の代わりに、蛍光性化合物残基を有するもの が挙げられる。  [0379] The fluorescent dopant that can be suitably used in the invention (B) according to claims 13 to 22 includes cyclodextrin derivatives represented by the above general formula (D)! Thus, there are those having a fluorescent compound residue in place of the residue of the phosphorescent compound represented by Z.
[0380] また、請求の範囲第 13項〜第 22項に記載の発明(B)に用いることのできる蛍光ド 一パントの例としては、上記一般式 (B)、上記一般式 (C)の各々で表されるクラウン エーテル誘導体において、 Zで表されるリン光発光性ィ匕合物残基の代わりに、蛍光 性ィ匕合物の残基を用いて化合物が挙げられる。 [0380] Examples of the fluorescent dopant that can be used in the invention (B) according to claims 13 to 22 include the above general formula (B) and general formula (C). In the crown ether derivative represented by each, instead of the phosphorescent compound residue represented by Z, fluorescence A compound is mentioned using the residue of a chemical compound.
[0381] ここで、蛍光性ィ匕合物としては、上記の蛍光ドーパント (蛍光性ィ匕合物とも 、う)に記 載の色素、蛍光性ィヒ合物または蛍光性ドーパントの具体例等が挙げられる。  [0381] Here, as the fluorescent compound, specific examples of the dye, the fluorescent compound or the fluorescent dopant described in the fluorescent dopant (also referred to as fluorescent compound) are described. Is mentioned.
[0382] 次に、本発明の有機 EL素子の構成層として用いられる、注入層、阻止層、電子輸 送層等について説明する。 Next, an injection layer, a blocking layer, an electron transport layer, and the like used as a constituent layer of the organic EL element of the present invention will be described.
[0383] 《注入層:電子注入層、正孔注入層》 [0383] <Injection layer: electron injection layer, hole injection layer>
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と 発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在 させてちょい。  The injection layer is provided as necessary, and includes an electron injection layer and a hole injection layer, and as described above, exists between the anode and the light emitting layer or hole transport layer and between the cathode and the light emitting layer or electron transport layer. Hey.
[0384] 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業化最前線( 1998年 11月 30日ェヌ'ティー ·ェ ス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。  [0384] The injection layer is a layer provided between the electrode and the organic layer in order to reduce the drive voltage and improve the luminance of the light emission. (Published by ES Co., Ltd.) ”, Chapter 2“ Chapter 2 Electrode Materials ”(pages 123-166) in detail, the hole injection layer (anode buffer layer) and electron injection layer (cathode buffer layer) There is.
[0385] 陽極バッファ一層(正孔注入層)は、特開平 9— 45479号公報、同 9 260062号 公報、同 8— 288069号公報等にもその詳細が記載されており、具体例として、銅フ タロシアニンに代表されるフタロシアニンバッファ一層、酸ィ匕バナジウムに代表される 酸化物バッファ一層、アモルファスカーボンバッファ一層、ポリア-リン(ェメラルディ ン)やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる  [0385] The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9260062, JP-A-8-288069 and the like. A phthalocyanine buffer layer represented by phthalocyanine, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyarene (emeraldine) or polythiophene. Etc.
[0386] 陰極バッファ一層(電子注入層)は、特開平 6— 325871号公報、同 9— 17574号 公報、同 10— 74586号公報等にもその詳細が記載されており、具体的にはストロン チウムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表される アルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金 属化合物バッファ一層、酸ィヒアルミニウムに代表される酸ィヒ物バッファ一層等が挙げ られる。上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよる がその膜厚は 0. lnm〜5 mの範囲が好ましい。 [0386] The details of the cathode buffer layer (electron injection layer) are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Metal buffer layer typified by aluminum or titanium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, acid typified by acid aluminum One thing buffer. The buffer layer (injection layer) is preferably a very thin film, although the film thickness is preferably in the range of 0.1 nm to 5 m, although it depends on the desired material.
[0387] 《阻止層:正孔阻止層、電子阻止層》  [0387] <Blocking layer: hole blocking layer, electron blocking layer>
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けら れるものである。例えば、特開平 11 204258号公報、同 11— 204359号公報、及 び「有機 EL素子とその工業化最前線( 1998年 11月 30日ェヌ'ティー ·エス社発行) 」の 237頁等に記載されて 、る正孔阻止(ホールブロック)層がある。 The blocking layer is provided as necessary in addition to the basic component layer of the organic compound thin film as described above. It is what For example, it is described in JP-A-11 204258, 11-204359, and “Organic EL device and the forefront of its industrialization” (published by NTS Corporation on November 30, 1998). There is a hole blocking layer.
[0388] 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有 しつつ正孔を輸送する能力が著しく小さい正孔阻止材料力 なり、電子を輸送しつ つ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、 後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用い ることがでさる。 [0388] In a broad sense, the hole blocking layer has the function of an electron transporting layer, and has the function of transporting electrons while having the capability of transporting holes, and is a hole blocking material force that transports electrons. By blocking holes, the recombination probability of electrons and holes can be improved. Further, the structure of the electron transport layer described later can be used as a hole blocking layer according to the present invention, if necessary.
[0389] 本発明の有機 EL素子の正孔阻止層は、発光層に隣接して設けられていることが好 ましい。  [0389] The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
[0390] 正孔阻止層には、前述のホストイ匕合物として挙げたァザカルバゾール誘導体を含 有することが好ましい。  [0390] The hole blocking layer preferably contains the azacarbazole derivative mentioned as the above-mentioned host compound.
[0391] また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、そ の発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好 ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔 阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻止層に 含有される化合物の 50質量%以上が、前記最短波発光層のホスト化合物に対しそ のイオン化ポテンシャルが 0. 3eV以上大き!/、ことが好まし!/、。  [0391] Further, in the present invention, when a plurality of light emitting layers having different emission colors are provided, it is preferable that the light emitting layer having the longest emission maximum wavelength is closest to the anode among all the light emitting layers. In such a case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the anode. Furthermore, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more with respect to the host compound of the shortest wave emitting layer. Better!/,.
[0392] イオンィ匕ポテンシャルは化合物の HOMO (最高被占分子軌道)レベルにある電子 を真空準位に放出するのに必要なエネルギーで定義され、例えば、下記に示すよう な方法により求めることができる。  [0392] The ionic potential is defined by the energy required to release an electron at the HOMO (highest occupied molecular orbital) level of a compound to the vacuum level, and can be obtained by, for example, the following method .
[0393] (1)米国 Gaussian社製の分子軌道計算用ソフトウェアである Gaussian98 (Gauss ian98、 Revision A. 丄 1. 4, M. J. Frisch, et al, Lraussian, Inc. , Pittsburg h PA, 2002. )を用い、キーワードとして B3LYPZ6— 31G *を用いて構造最適 化を行うことにより算出した値 (eV単位換算値)の小数点第 2位を四捨五入した値とし てイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手 法で求めた計算値と実験値の相関が高いためである。  [0393] (1) Gaussian98 (Gaussian98, Revision A. 丄 1.4, MJ Frisch, et al, Lraussian, Inc., Pittsburg h PA, 2002.) The ionization potential can be calculated by rounding off the second decimal place of the value (eV unit converted value) calculated by structural optimization using B3LYPZ6-31G * as a keyword. The reason why this calculated value is effective is that there is a high correlation between the calculated value obtained by this method and the experimental value.
[0394] (2)イオンィ匕ポテンシャルは光電子分光法で直接測定する方法により求めることも できる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC— 1」を 用いて、あるいは紫外光電子分光として知られて 、る方法を好適に用いることができ る。 [0394] (2) The ion potential can also be obtained by direct measurement with photoelectron spectroscopy. it can. For example, a method known as ultraviolet photoelectron spectroscopy using a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. can be suitably used.
[0395] 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機 能を有しつつ電子を輸送する能力が著しく小さい材料力 なり、正孔を輸送しつつ電 子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述 する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明 に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは 3〜: LOOnmであり、更に 好ましくは 5〜30nmである。  [0395] On the other hand, the electron blocking layer has the function of a hole transport layer in a broad sense, and has a function of transporting holes while having a material force that is extremely small to transport electrons, and transports holes. However, by blocking electrons, the probability of recombination of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed. The film thicknesses of the hole blocking layer and the electron transport layer according to the present invention are preferably 3 to LOONm, and more preferably 5 to 30 nm.
[0396] 《正孔輸送層》  [0396] << Hole Transport Layer >>
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料力 なり、広い意味で 正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数 層設けることができる。  The hole transport layer is a hole transport material having a function of transporting holes. In a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
[0397] 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性の!/、ずれかを有す るものであり、有機物、無機物のいずれであってもよい。例えば、トリァゾール誘導体 、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ビラ ゾリン誘導体及びピラゾロン誘導体、フ -レンジァミン誘導体、ァリールァミン誘導 体、ァミノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、 フルォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリ ン系共重合体、また導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げら れる。  [0397] The hole transport material has either injection / transport of holes, electron barrier properties! /, Or deviation, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, violazoline derivatives and pyrazolone derivatives, fluorenedamine derivatives, arylene amine derivatives, amino substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
[0398] 正孔輸送材料としては上記のものを使用することができる力 ボルフイリンィ匕合物、 芳香族第 3級ァミン化合物及びスチリルアミン化合物、特に芳香族第 3級アミンィ匕合 物を用いることが好ましい。  [0398] The ability to use the above-mentioned materials as the hole transport material [0398] The use of borfilin compounds, aromatic tertiary amine compounds and styrylamine compounds, particularly aromatic tertiary amine compounds. preferable.
[0399] 芳香族第 3級アミンィ匕合物及びスチリルアミンィ匕合物の代表例としては、 N, N, N ' , N' —テトラフエニル一 4, 4' —ジァミノフエ-ル; N, N' —ジフエ-ル一 N, N ' —ビス(3—メチルフエ-ル)一〔1, 1' —ビフエ-ル〕一 4, 4' —ジァミン(TPD) ; 2, 2—ビス(4—ジ一 p—トリルァミノフエ-ル)プロパン; 1, 1—ビス(4—ジ一 p—トリ ルァミノフエ-ル)シクロへキサン; N, N, N' , N' —テトラ一 ρ トリル一 4, 4' - ジアミノビフエ-ル; 1 , 1 ビス(4 ジ一 ρ トリルァミノフエ-ル) 4 フエ-ルシク 口へキサン;ビス(4 -ジメチルァミノ 2 メチルフエ-ル)フエニルメタン;ビス(4 -ジ —ρ トリルァミノフエ-ル)フエ-ルメタン; Ν, N' —ジフエ-ル一 Ν, N' —ジ(4— メトキシフエ-ル) 4, 4' ージアミノビフエニル; Ν, Ν, Ν' , N' —テトラフエ-ル —4, 4' ージアミノジフエ-ルエーテル; 4, 4' ビス(ジフエ-ルァミノ)クオ一ドリフ ェ -ル; Ν, Ν, Ν トリ(ρ トリル)ァミン; 4— (ジ— ρ トリルァミノ)— 4' —〔4— (ジ —ρ トリルァミノ)スチリル〕スチルベン; 4— Ν, Ν ジフエ-ルァミノ—(2 ジフエ- ルビ-ル)ベンゼン; 3—メトキシ一 4' — Ν, Ν ジフエニルアミノスチルベンゼン; Ν フエ-ルカルバゾール、更には米国特許第 5, 061 , 569号明細書に記載されて いる 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' ビス〔Ν—(1ーナ フチル) Ν フエ-ルァミノ〕ビフヱ-ル(NPD)、特開平 4 308688号公報に記 載されているトリフエ-ルァミンユニットが 3つスターバースト型に連結された 4, 4' , Α" —トリス〔?^— (3—メチルフエ-ル) Ν フエ-ルァミノ〕トリフエ-ルァミン(MTD ΑΤΑ)等が挙げられる。 [0399] Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-1,4'-daminophenol; N, N' —Diphenol N, N '— Bis (3-methylphenol) 1 [1, 1' — Biphenyl] 1, 4, 4 '— Diamine (TPD); 2, 2-bis (4-dione p-tolylaminophenol) propane; 1, 1-bis (4-di-p-tri) N, N, N ′, N ′ —tetra-l-tolyl-l, 4,4′-diaminobiphenyl; 1,1-bis (4-di-l-tol-aminol-phenyl) 4-phenyl Hexane; Bis (4-dimethylamino-2-methylphenol) phenylmethane; Bis (4-di-ρ-tolylaminophenol) phenolmethane; Ν, N '— Diphenyl 一, N' — Di (4-methoxyphenol) 4,4'-diaminobiphenyl; Ν, Ν, Ν ', N' —tetraphenyl —4,4'-diaminodiphenyl ether; 4,4 ′ bis (diphenylamino) quadryl; —, Ν, ト リ Tri (ρ-triyl) amine; 4— (Di-ρ-triylamino) — 4 ′ — [4 -— (Di—ρ-triylamino) styryl] stilbene; 4-— Ν, Ν Diphenylamine (2-Diphenyl) Ruby) benzene; 3-methoxy 1 4 '— Ν, Ν diphenylaminostilbenzene; Phenolcarbazole and, further, those having two condensed aromatic rings described in US Pat. No. 5,061,569, for example, 4, 4 ′ bis [Ν- (1- Naphtil) [Feramino] Bifurle (NPD), three triamine units described in JP-A-4 308688 are connected in a starburst type 4, 4 ', Α "— Tris [? ^-(3-methylphenol) Νphenolamino] triphenylamine (MTDΑΤΑ) and the like.
[0400] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。また、 Ρ型— Si、 p型— SiC等の無機化合物も正 孔注入材料、正孔輸送材料として使用することができる。  [0400] Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. Also, inorganic compounds such as vertical-type Si and p-type SiC can be used as the hole injection material and the hole transport material.
[0401] また、特開平 11— 251067号公報、 J. Huang et. al.著文献 (Applied Physic s Letters 80 (2002) , p. 139)に記載されているような、所謂 p型正孔輸送材料 を用いることもできる。本発明においては、より高効率の発光素子が得られることから これらの材料を用いることが好まし!/、。  [0401] Also, so-called p-type hole transport as described in JP-A-11-251067 and J. Huang et. Al. (Applied Physics Letters 80 (2002), p. 139). Materials can also be used. In the present invention, it is preferable to use these materials because a light emitting element with higher efficiency can be obtained!
[0402] 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャス ト法、インクジェット法を含む印刷法、 LB法等の公知の方法により、薄膜ィ匕することに より形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は 5〜5 μ m程度、好ましくは 5〜200nmである。この正孔輸送層は上記材料の 1種ま たは 2種以上力もなる一層構造であってもよ 、。  [0402] The hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method. Can be formed. Although there is no restriction | limiting in particular about the film thickness of a positive hole transport layer, Usually, about 5-5 micrometers, Preferably it is 5-200 nm. This hole transport layer may have a single layer structure having one or more of the above materials.
[0403] また、不純物をドープした p性の高 、正孔輸送層を用いることもできる。その例とし ては、特開平 4— 297076号公報、特開 2000— 196140号公報、同 2001— 1021[0403] Also, a p-type high hole transport layer doped with impurities can be used. As an example JP-A-4-297076, JP-A-2000-196140, 2001-1021.
75号公報、 J. Appl. Phys. , 95, 5773 (2004)等に記載されたもの力 S挙げ、られる。 No. 75, J. Appl. Phys., 95, 5773 (2004), etc.
[0404] 本発明においては、このような p性の高い正孔輸送層を用いることがより低消費電 力の素子を作製することができるため好ましい。 [0404] In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.
[0405] 正孔輸送層につ!/ヽても同様に正孔輸送材料分子中に反応性置換基を導入したも のが用いることができ、反応性置換基を有する特に好ましい正孔輸送材料としては以 下のものが挙げられる。 [0405] Even if it is connected to the hole transport layer, it is possible to use a material in which a reactive substituent is introduced into the hole transport material molecule, and a particularly preferable hole transport material having a reactive substituent. Examples include the following.
[0406] [化 44] [0406] [Chemical 44]
[ f^ [LOW] [f ^ [LOW]
Figure imgf000087_0001
Figure imgf000087_0001
Figure imgf000088_0001
Figure imgf000088_0001
[0408] [化 46] [0408] [Chem 46]
—13 -13
Figure imgf000089_0001
]
Figure imgf000089_0001
]
Figure imgf000090_0001
Figure imgf000090_0001
[0410] また、以下に、請求の範囲第 13項〜第 22項に記載の発明(B)に係わる有機 EL素 子の正孔輸送層の形成に好ましく用いられる化合物の具体例を挙げる。し力しながら これらに限定されない。 [0410] Specific examples of the compounds preferably used for forming the hole transport layer of the organic EL device according to the invention (B) described in claims 13 to 22 are given below. However, it is not limited to these.
[0411] [化 48]
Figure imgf000091_0001
[0411] [Chemical 48]
Figure imgf000091_0001
[0412] また、正孔輸送層の形成には、下記に示す反応性正孔輸送材料も好ましく用いら れるが、請求の範囲第 13項〜第 22項に記載の発明(B)においてはこれらに限定さ れない。 [0412] For forming the hole transport layer, the following reactive hole transport materials are also preferably used, but in the invention (B) according to claims 13 to 22, these materials can be used. It is not limited to.
[0413] [化 49] [0413] [Chemical 49]
Figure imgf000092_0001
Figure imgf000092_0001
[0414] [化 50] [0414] [Chemical 50]
Figure imgf000093_0001
Figure imgf000093_0001
[0415] [化 51] MO— 13 MO— 14 [0415] [Chemical 51] MO— 13 MO— 14
Figure imgf000094_0001
Figure imgf000094_0001
[0416] 《電子輸送層》 [0416] 《Electron transport layer》
本発明において、電子輸送層とは電子を輸送する機能を有する材料からなり、広 い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層ま たは複数層設けることができる。  In the present invention, the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
[0417] 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣 接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料を兼ねる)としては、陰 極より注入された電子を発光層に伝達する機能を有していればよぐその材料として は従来公知の化合物の中から任意のものを選択して用いることができ、例えば、 -ト 口置換フルオレン誘導体、ジフヱ-ルキノン誘導体、チォピランジオキシド誘導体、力 ルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導 体、ォキサジァゾール誘導体等が挙げられる。更に上記ォキサジァゾール誘導体に ぉ 、て、ォキサジァゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導 体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も電子 輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、また はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 [0417] Conventionally, in the case of a single electron transport layer and multiple layers, it is adjacent to the light emitting layer on the cathode side As an electron transport material (also serving as a hole blocking material) used for the electron transport layer in contact with the electron transport layer, any material known in the art may be used as long as it has a function of transmitting electrons injected from the negative electrode to the light emitting layer. Any one of the compounds can be selected and used, such as -to-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, rubodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and Anthrone derivatives, oxadiazole derivatives and the like can be mentioned. Furthermore, thiadiazole derivatives in which the oxygen atom of the oxaziazole ring is substituted with a sulfur atom, and quinoxaline derivatives having a quinoxaline ring known as an electron-withdrawing group can also be used as the electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
[0418] また 8 キノリノール誘導体の金属錯体、例えば、トリス(8 キノリノール)アルミ-ゥ ム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ口 モ一 8 キノリノール)アルミニウム、トリス(2 メチル 8 キノリノール)アルミニウム 、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Znq )等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに置 き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリ 一もしくはメタルフタロシアニン、またはそれらの末端がアルキル基ゃスルホン酸基等 で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光 層の材料として例示したジスチリルビラジン誘導体も、電子輸送材料として用いること 力 Sできるし、正孔注入層、正孔輸送層と同様に n型 Si、 n型 SiC等の無機半導体 も電子輸送材料として用いることができる。  [0418] Also, metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5, 7-dive mouth) 8 quinolinol) aluminum, tris (2methyl 8quinolinol) aluminum, tris (5-methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg, Metal complexes replacing Cu, Ca, Sn, Ga or Pb can also be used as electron transport materials. In addition, metal free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. In addition, the distyrylvirazine derivative exemplified as the material for the light-emitting layer can also be used as an electron transport material, and, like the hole injection layer and the hole transport layer, inorganic semiconductors such as n-type Si and n-type SiC Can also be used as an electron transporting material.
[0419] 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャス ト法、インクジェット法を含む印刷法、 LB法等の公知の方法により、薄膜ィ匕することに より形成することができる。電子輸送層の膜厚については特に制限はないが、通常は 5nm〜5 μ m程度、好ましくは 5〜200nmである。電子輸送層は上記材料の 1種ま たは 2種以上力もなる一層構造であってもよ 、。  [0419] The electron transport layer is obtained by thin-filming the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can be formed. Although there is no restriction | limiting in particular about the film thickness of an electron carrying layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5-200 nm. The electron transport layer may be a single layer structure having one or more of the above materials.
[0420] また、不純物をドープした n性の高 、電子輸送層を用いることもできる。その例とし ては、特開平 4— 297076号公報、同 10— 270172号公報、特開 2000— 196140 号公報、同 2001— 102175号公報、 Appl. Phys. , 95, 5773 (2004)等に記載 されたものが挙げられる。 [0420] An n-type high electron transport layer doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140. No. 1, 2001-102175, Appl. Phys., 95, 5773 (2004) and the like.
[0421] 本発明においては、このような η性の高い電子輸送層を用いることがより低消費電 力の素子を作製することができるため好ましい。 [0421] In the present invention, it is preferable to use an electron transport layer having such a high η property because a device with lower power consumption can be produced.
[0422] 反応性置換基を有する電子輸送材料の例としては、以下のものが挙げられる。 [0422] Examples of the electron transporting material having a reactive substituent include the following.
[0423] [化 52] [0423] [Chemical 52]
Figure imgf000096_0001
[0424] [化 53]
Figure imgf000097_0001
Figure imgf000097_0002
Figure imgf000096_0001
[0424] [Chemical 53]
Figure imgf000097_0001
Figure imgf000097_0002
[0425] [化 54] [0425] [Chemical 54]
Figure imgf000098_0001
Figure imgf000098_0001
[0426] [化 55] 3 - 17 [0426] [Chemical 55] 3-17
Figure imgf000099_0001
Figure imgf000099_0001
[0427] また、以下に、請求の範囲第 13項〜第 22項に記載の発明(B)に係わる有機 EL素 子の電子輸送層の形成に好ましく用いられる化合物の具体例を挙げるが、これらに 限定されない。 [0427] Further, specific examples of the compounds preferably used for forming the electron transport layer of the organic EL device according to the invention (B) described in claims 13 to 22 are listed below. It is not limited to.
[0428] [化 56] [0428] [Chemical 56]
Figure imgf000100_0001
Figure imgf000100_0001
[0429] [化 57] [0429] [Chemical 57]
Figure imgf000101_0001
Figure imgf000101_0001
[0430] また、請求の範囲第 13項〜第 22項に記載の発明(B)においては、電子輸送層の 形成には、下記に示す反応性電子輸送材料も好ましく用 ヽられるがこれらに限定さ れない。  [0430] In the invention (B) described in claims 13 to 22, the following electron transporting materials are preferably used for forming the electron transporting layer, but the invention is not limited thereto. No.
[0431] [化 58] [0431] [Chemical 58]
Figure imgf000102_0001
Figure imgf000102_0001
O -51 MO— 52
Figure imgf000102_0002
O -51 MO— 52
Figure imgf000102_0002
[0432] [化 59] [0432] [Chemical 59]
Figure imgf000103_0001
Figure imgf000103_0001
[0433] また、反応性電子輸送材料としては、従来公知の電子輸送材料に、上記の反応性 ホストイ匕合物が有してもよい反応性基が置換したィ匕合物も好ましく用いられる。 [0433] Further, as the reactive electron transport material, a compound obtained by substituting a reactive group that may be possessed by the above-described reactive host compound in a conventionally known electron transport material is also preferably used.
[0434] 《縮合ポリマー》  [0434] Condensation polymer
請求の範囲第 13項〜第 22項に記載の発明(B)に係わる有機 EL素子の製造方法 においては、有機 EL素子の有機層の構成材料の他にも、下記に示す縮合ポリマー を適宜用いることが出来る。 In the method of manufacturing an organic EL element according to the invention (B) according to claims 13 to 22, in addition to the constituent material of the organic layer of the organic EL element, the following condensation polymer Can be used as appropriate.
[0435] 以下、請求の範囲第 13項〜第 22項に記載の発明(B)に用いられる縮合ポリマー としては、下記一般式(1)で表される化合物が挙げられるがこれらに限定されない。  [0435] Hereinafter, examples of the condensation polymer used in the invention (B) according to claims 13 to 22 include, but are not limited to, compounds represented by the following general formula (1).
[0436] [化 60]
Figure imgf000104_0001
[0436] [Chemical 60]
Figure imgf000104_0001
[0437] 一般式(1)において、 [Ar]nは、 n個所の置換可能な部位を有する、芳香族炭化 水素環または芳香族複素環を表す。 Zは、蛍光性ィ匕合物残基またはリン光性ィ匕合物 残基を表し、 Arの置換可能な部位 n個所のうちの m個所が Kを介して連結して ヽる。 Kは、二価の連結基または単結合を表す。 nは、 1〜3の数を表し、 mは、 l〜nの数を 表す。ここで、 Z、 Kが複数の場合、各々は独立に、同一でもよぐ異なっていてもよい 。 Lは、後述する連結基群 1から選択される二価の連結基である。 [0437] In the general formula (1), [Ar] n represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring having n substitutable sites. Z represents a fluorescent compound residue or a phosphorescent compound residue, and m of n replaceable sites of Ar are linked via K. K represents a divalent linking group or a single bond. n represents a number from 1 to 3, and m represents a number from l to n. Here, when there are a plurality of Z and K, each may be independently the same or different. L is a divalent linking group selected from the linking group group 1 described below.
[0438] 一般式(1)において、 Arで表される芳香族炭化水素環としては、ベンゼン環、ビフ ェニル環、ナフタレン環、ァズレン環、アントラセン環、フエナントレン環、ピレン環、ク リセン環、ナフタセン環、トリフエ-レン環、 o—テルフエ-ル環、 m—テルフエ-ル環、 p—テルフエ-ル環、ァセナフテン環、コロネン環、フルオレン環、フルオラントレン環 、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ビラ ントレン環、アンスラアントレン環等が挙げられる。尚、これらの環は、更に、上記一般 式 (A)において、 Rで表される置換基を有していてもよい。  In the general formula (1), the aromatic hydrocarbon ring represented by Ar is a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene. Ring, triphenylene ring, o-terfel ring, m-terfel ring, p-terfel ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring , Pentaphen ring, picene ring, pyrene ring, bianthrene ring, anthraanthrene ring and the like. In addition, these rings may further have a substituent represented by R in the general formula (A).
[0439] 一般式(1)において、 Arで表される芳香族複素環としては、例えば、フラン環、チ ォフェン環、ォキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピ ラジン環、トリアジン環、ベンゾイミダゾール環、ォキサジァゾール環、トリァゾール環、 イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベン ゾイミダゾール環、ベンゾチアゾール環、ベンゾォキサゾール環、キノキサリン環、キ ナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、 力ルバゾール環、カルボリン環、ジァザ力ルバゾール環(カルボリン環を構成する炭 化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げ られる。 [0439] In the general formula (1), examples of the aromatic heterocycle represented by Ar include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, and a pyrazine ring. Triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, indazole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, Cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, force rubazole ring, carboline ring, diaza force rubazole ring (one of the carbon atoms of the hydrocarbon ring constituting the carboline ring is further substituted with a nitrogen atom) Etc.) It is done.
[0440] 尚、これらの環は、更に、上記一般式 (E)において、 Arで表される芳香族炭化水素 環が有しても良 、置換基を有して 、てもよ!/、。  [0440] Note that these rings may further have an aromatic hydrocarbon ring represented by Ar in the general formula (E), or may have a substituent! /, .
[0441] 一般式(1)において、 Kで表される二価の連結基は、一般式(1)において、 Aで表 される二価の連結基と同義である。 [0441] In the general formula (1), the divalent linking group represented by K has the same meaning as the divalent linking group represented by A in the general formula (1).
[0442] 一般式(1)において、 Zで表される蛍光性化合物の残基、リン光性ィ匕合物残基は、 各々、一般式(1)において、 Zで表される蛍光性化合物残基、リン光性化合物残基と 各々同義である。 [0442] In the general formula (1), the residue of the fluorescent compound represented by Z and the phosphorescent compound residue are the fluorescent compound represented by Z in the general formula (1), respectively. Residue and phosphorescent compound residue are synonymous with each other.
[0443] 一般式(1)において、 Lで表される二価の連結基は、下記の連結基群 1から選択さ れる。  [0443] In the general formula (1), the divalent linking group represented by L is selected from the following linking group group 1.
[0444] [化 61] [0444] [Chemical 61]
Figure imgf000105_0001
Figure imgf000105_0001
[0445] 上記連結基群 1において、 R〜R [0445] In the linking group group 1 above, R to R
1 4は、各々アルキル基、芳香族炭化水素基または 芳香族複素環基を表す。  14 each represents an alkyl group, an aromatic hydrocarbon group or an aromatic heterocyclic group.
[0446] 上記連結基群 1において、 R〜Rで各々表されるアルキル基としては、例えば、メ [0446] In the linking group group 1, the alkyl groups represented by R to R include, for example,
1 4  14
チル基、ェチル基、プロピル基、イソプロピル基、 tert—ブチル基、ペンチル基、へキ シル基、ォクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等 が挙げられる。これらは、更に、上記一般式 (A)において、 Rで表される置換基を有 していてもよい。  Examples include til, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, octyl, dodecyl, tridecyl, tetradecyl, pentadecyl and the like. These may further have a substituent represented by R in the general formula (A).
[0447] 上記連結基群 1において、 R〜R  [0447] In the linking group group 1 above, R to R
1 4で表される芳香族炭化水素基としては、例えば、 フエ-ル基、 p—クロロフヱ-ル基、メシチル基、トリル基、キシリル基、ナフチル基、ァ ントリル基、ァズレニル基、ァセナフテュル基、フルォレニル基、フエナントリル基、ィ ンデニル基、ピレニル基、ビフヱ-リル基等が挙げられる。  Examples of the aromatic hydrocarbon group represented by 14 include a phenyl group, a p-chlorophenyl group, a mesityl group, a tolyl group, a xylyl group, a naphthyl group, an anthryl group, an azulenyl group, an acenaphthyl group, Examples thereof include a fluorenyl group, a phenanthryl group, an indenyl group, a pyrenyl group, a biphenylyl group, and the like.
[0448] これらの基は、更に、上記一般式 (A)において、 Rで表される置換基を有していて ちょい。 [0449] 上記連結基群 1にお!/ヽて、 R〜Rで表される芳香族複素環基としては、例えば、ピ [0448] These groups may further have a substituent represented by R in the general formula (A). [0449] Examples of the aromatic heterocyclic group represented by R to R in the above linking group group 1 include:
1 4  14
リジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基 、ピラゾリル基、ピラジュル基、トリァゾリル基 (例えば、 1, 2, 4 トリァゾールー 1ーィ ル基、 1, 2, 3 トリァゾール— 1—ィル基等)、ォキサゾリル基、ベンゾォキサゾリル 基、チアゾリル基、イソォキサゾリル基、イソチアゾリル基、フラザニル基、チェニル基 、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチェ-ル基、ジベンゾチェ- ル基、インドリル基、カルバゾリル基、カルボリニル基、ジァザカルバゾリル基(カルボ -ル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを 示す)、キノキサリニル基、ピリダジ -ル基、トリアジニル基、キナゾリニル基、フタラジ ニル基等が挙げられる。  Lysyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzimidazolyl group, pyrazolyl group, pyrazyl group, triazolyl group (for example, 1, 2, 4 triazole-1-yl group, 1, 2, 3 triazole— 1— Oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, chenyl group, quinolyl group, benzofuryl group, dibenzofuryl group, benzochel group, dibenzochel group , Indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbo group is replaced by a nitrogen atom), quinoxalinyl group, pyridazyl group , Triazinyl group, quinazolinyl group, phthalazinyl group and the like.
[0450] これらの基は、更に、上記一般式 (E)にお 、て、 Arで表される芳香族炭化水素環 が有しても良 、置換基を有して 、てもよ 、。  [0450] In the above general formula (E), these groups may further have an aromatic hydrocarbon ring represented by Ar, or may have a substituent.
[0451] 以下、一般式(1)で表される縮合ポリマーの具体例を示すが、請求の範囲第 13項[0451] Specific examples of the condensation polymer represented by the general formula (1) are shown below.
〜第 22項に記載の発明(B)においてはこれらに限定されない。 However, the invention (B) described in Item 22 is not limited thereto.
[0452] [化 62] [0452] [Chemical 62]
Figure imgf000107_0001
Figure imgf000107_0001
[0453] [化 63] [0453] [Chemical 63]
Figure imgf000108_0001
Figure imgf000108_0001
R = 2—ェチルへキシル基 64]  R = 2—Ethylhexyl group 64]
その他
Figure imgf000108_0002
Other
Figure imgf000108_0002
Figure imgf000108_0003
[0455] 《陽極》
Figure imgf000108_0003
[0455] 《Anode》
本発明において、例えば、第一の電極基板上に形成される陽極としては、仕事関 数の大きい (4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極 物質とするものが好ましく用いられる。このような電極物質の具体例としては Au等の 金属、 Cul、インジウムチンォキシド (ITO)、 SnO、 ZnO等の導電性透明材料が挙  In the present invention, for example, as the anode formed on the first electrode substrate, a material having a large work function (4 eV or more) metal, alloy, electrically conductive compound and a mixture thereof is preferably used. It is done. Specific examples of such electrode materials include metals such as Au, conductive transparent materials such as Cul, indium tinoxide (ITO), SnO, and ZnO.
2  2
げられる。また、 IDIXO (ln O—ZnO)等非晶質で透明導電膜を作製可能な材料を  I can get lost. In addition, IDIXO (ln O-ZnO) and other amorphous materials that can produce transparent conductive films are also available.
2 3  twenty three
用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜 を形成させ、フォトリソグラフィ一法で所望の形状のパターンを形成してもよぐあるい はパターン精度をあまり必要としない場合は(100 m以上程度)、上記電極物質の 蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよ 、。あ るいは、有機導電性ィ匕合物のように塗布可能な物質を用いる場合には、印刷方式、 コーティング方式など湿式製膜法を用いることもできる。この陽極より発光を取り出す 場合には、透過率を 10%より大きくすることが望ましぐまた陽極としてのシート抵抗 は数百 ΩΖ口以下が好ましい。更に膜厚は材料にもよる力 通常 10〜: L000nm、好 ましくは 10〜200nmの範囲で選ばれる。  It may be used. For the anode, these electrode materials can be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern of the desired shape can be formed by a single photolithography method. The pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Alternatively, when a material that can be applied, such as an organic conductive compound, is used, a wet film forming method such as a printing method or a coating method can also be used. In the case where light emission is extracted from this anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω or less. Further, the film thickness is a force depending on the material. Usually, 10 to: L000 nm, preferably 10 to 200 nm is selected.
[0456] 《陰極》 [0456] 《Cathode》
一方、例えば、第一の電極基板上に形成される陰極としては、仕事関数の小さい( 4eV以下)金属 (電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの 混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、 ナトリウム、ナトリウム一カリウム合金、マグネシウム、リチウム、マグネシウム Z銅混合 物、マグネシウム Z銀混合物、マグネシウム Zアルミニウム混合物、マグネシウム Zィ ンジゥム混合物、アルミニウム Z酸ィ匕アルミニウム (Al O )混合物、インジウム、リチウ  On the other hand, for example, as a cathode formed on the first electrode substrate, a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof are used as an electrode material. What to do is used. Specific examples of such electrode materials include sodium, sodium monopotassium alloy, magnesium, lithium, magnesium Z copper mixture, magnesium Z silver mixture, magnesium Z aluminum mixture, magnesium Z aluminum mixture, aluminum Z acid aluminum (Al 2 O 3) mixture, indium, lithium
2 3  twenty three
ム zアルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及 び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大き く安定な金属である第二金属との混合物、例えば、マグネシウム Z銀混合物、マグネ シゥム Zアルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕 アルミニウム (Al O )混合物、リチウム Zアルミニウム混合物、アルミニウム等が好適  Examples include aluminum mixtures and rare earth metals. Among these, from the viewpoint of electron injectability and durability against oxidation, etc., a mixture of an electron injectable metal and a second metal, which is a stable metal having a larger work function value than this, for example, magnesium Z silver Mixture, Magnesium Z Aluminum mixture, Magnesium Z Indium mixture, Aluminum Z Oxide Aluminum (Al 2 O 3) mixture, Lithium Z Aluminum mixture, Aluminum etc. are suitable
2 3  twenty three
である。 [0457] 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させる ことにより、作製することができる。また、陰極としてのシート抵抗は数百 Ω /口以下 が好ましぐ膜厚は通常 10nm〜5 μ m、好ましくは 50〜200nmの範囲で選ばれる。 なお、発光した光を透過させるため、有機 EL素子の陽極または陰極のいずれか一 方が透明または半透明であれば発光輝度が向上し好都合である。 It is. [0457] The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / mouth or less. The film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. In order to transmit the emitted light, if either the anode or the cathode of the organic EL element is transparent or translucent, the emission luminance is advantageously improved.
[0458] また、陰極に上記金属を l〜20nmの膜厚で作製した後に、陽極の説明で挙げた 導電性透明材料をその上に作製することで、透明または半透明の陰極を作製するこ とがでさる。  [0458] In addition, after the metal is formed to a thickness of 1 to 20 nm on the cathode, the transparent conductive material described in the description of the anode is formed thereon, whereby a transparent or translucent cathode is manufactured. Togashi.
[0459] 本発明においては、これらの電極層を基板上に最初に形成した後、有機層の形成 を行うため、例えば、通常の場合のように陰極形成を最後に行う必要がなぐ電極形 成時、有機層 (皮膜)がダメージを受けることが少ない方法である。また、成膜条件へ の制約が小さ!/、ため電極形成が容易である。  [0459] In the present invention, since these electrode layers are first formed on the substrate and then the organic layer is formed, for example, it is possible to form an electrode that does not require the last cathode formation as in a normal case. Sometimes the organic layer (film) is less damaged. In addition, since the restrictions on the film formation conditions are small, it is easy to form electrodes.
[0460] 《支持基盤》  [0460] 《Support base》
本発明の有機 EL素子に係る支持基盤 (以下、基体、基板、基材、支持体ともいう) としては、ガラス、プラスチック等の種類には特に限定はなぐまた透明であっても不 透明であってもよい。支持基盤側力 光を取り出す場合には、支持基盤は透明であ ることが好ましい。好ましく用いられる透明な支持基盤としては、ガラス、石英、透明榭 脂フィルムを挙げることができる。特に好まし 、支持基盤は有機 EL素子にフレキシブ ル性を与えることが可能で、ロールッゥロールによって素子形成が可能な榭脂フィル ムである。  The support substrate (hereinafter also referred to as a substrate, a substrate, a substrate, or a support) according to the organic EL device of the present invention is not particularly limited in the type of glass, plastic, and the like, and is transparent or opaque. May be. When taking out the support substrate side force light, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. Particularly preferably, the support substrate is a resin film that can give the organic EL element flexible and can be formed by roll-to-roll.
[0461] 榭脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナ フタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セル口 ースジアセテート、セノレローストリアセテート、セノレロースアセテートブチレート、セノレ口 ースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セル ロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩ィ匕ビユリ デン、ポリビュルアルコール、ポリエチレンビュルアルコール、シンジォタクティックポ リスチレン、ポリカーボネート、ノルボルネン榭脂、ポリメチルペンテン、ポリエーテルケ トン、ポリイミド、ポリエーテルスルホン(PES)、ポリフエ-レンスルフイド、ポリスルホン 類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素榭脂、ナイロン、ポ リメチルメタタリレート、アクリルあるいはポリアリレート類、アートン (JSR社製)あるいは アベル (三井化学社製) t ヽつたシクロォレフィン系榭脂等を挙げられる。 [0461] Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellose diacetate, senorelose triacetate, sanolose acetate butyrate, senore mouth. Cellulose esters such as Sacetate Propionate (CAP), Cellulose Acetate Phthalate (TAC), Cellulose Nitrate or their derivatives, Polysalt vinylidene, Polybulal alcohol, Polyethylenebutal alcohol, Syndiotactic polystyrene , Polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyetherketoneimide, polyamide, fluorine resin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (JSR) or Abel (Mitsui Chemicals) t And the like.
[0462] 榭脂フィルムの表面には、無機物、有機物の被膜またはその両者のノヽイブリツド被 膜が形成されていてもよぐ JIS K 7129— 1992に準拠した方法で測定された水 蒸気透過度(25 ±0. 5°C、相対湿度(90± 2) %RH)が 0. 01g/ (m2' 24h)以下の ノ リア性フィルムであることが好ましぐ更に ίお IS K 7126— 1987に準拠した方法 で測定された酸素透過度が10— 11137 (1112' 2411' ^111)以下、水蒸気透過度が 10— 3 g/ (m2 · 24h)以下の高ノ リア性フィルムであることが好まし 、。 [0462] The water vapor permeability measured by a method in accordance with JIS K 7129-1992, in which an inorganic film, an organic film, or both of them are coated on the surface of the resin film, is acceptable. It is more preferable that the film is a non-reactive film with a temperature of 25 ± 0.5 ° C and a relative humidity (90 ± 2)% RH of 0.01 g / (m 2 '24h) or less. compliant measured oxygen permeability in a way that 10 111 3 7 (111 2 '2411' ^ 111) or less, the water vapor permeability of 10 3 g / (m 2 · 24h) or less of a high Roh rear film in Is preferred to be.
[0463] 高ノ リア性フィルムとするために榭脂フィルム表面に形成されるバリア膜を形成する 材料としては、水分や酸素など素子の劣化をもたらすものの浸入を抑制する機能を 有する材料であればよぐ例えば、酸化珪素、二酸化珪素、窒化珪素などを用いるこ とがでさる。  [0463] As a material for forming a barrier film formed on the surface of the resin film in order to obtain a high-nore film, any material that has a function of suppressing intrusion of elements such as moisture and oxygen that cause deterioration of the element may be used. For example, silicon oxide, silicon dioxide, silicon nitride or the like can be used.
更に該膜の脆弱性を改良するために、これら無機層と有機材料力 なる層の積層構 造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はな いが、両者を交互に複数回積層させることが好ましい。  Furthermore, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and layers that have organic material strength. There is no particular limitation on the order of lamination of the inorganic layer and the organic layer, but it is preferable to alternately laminate the layers a plurality of times.
[0464] バリア膜の形成方法については特に限定はなぐ例えば、真空蒸着法、スパッタリ ング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、 イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマ CVD法 、レーザー CVD法、熱 CVD法、コーティング法等を用いることができる力 特開 200 4— 68143号公報に記載されているような大気圧プラズマ重合法によるものが特に 好ましい。 [0464] The method of forming the barrier film is not particularly limited, for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure Power capable of using a plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, etc. A method using an atmospheric pressure plasma polymerization method as described in JP-A No. 2004-68143 is particularly preferable. .
[0465] 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムゃ不 透明榭脂基板、セラミック製の基板等が挙げられる。  [0465] Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, non-transparent resin substrates, ceramic substrates, and the like.
[0466] 本発明の有機 EL素子の、発光の室温における外部取り出し効率は、 1%以上であ ることが好ましぐより好ましくは 5%以上である。ここに、外部取り出し量子効率(%) =有機 EL素子外部に発光した光子数 Z有機 EL素子に流した電子数 X 100である [0467] また、カラーフィルタ一等の色相改良フィルタ一等を併用しても、有機 EL素子から の発光色を、蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色 変換フィルターを用いる場合においては、有機 EL素子の発光の λ maxは 480nm以 下が好ましい。 [0466] The external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more. Here, the external extraction quantum efficiency (%) = the number of photons emitted outside the organic EL element Z the number of electrons flown through the organic EL element X 100 [0467] In addition, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination. In the case of using a color conversion filter, the λ max of light emission of the organic EL element is preferably 480 nm or less.
[0468] 《封止》  [0468] <Sealing>
本発明の有機 EL素子の封止に用いられる封止手段としては、例えば、封止部材と 電極、支持基盤とを接着剤で接着する方法を挙げることができる。封止部材としては 、有機 EL素子の表示領域を覆うように配置されておればよぐ凹板状でも平板状でも よい。また、透明性、電気絶縁性は特に限定されない。具体的には、ガラス板、ポリマ 一板'フィルム、金属板'フィルム等が挙げられる。ガラス板としては、特にソーダ石灰 ガラス、ノ リウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノケィ酸ガラス、ホウケィ 酸ガラス、ノ リウムホウケィ酸ガラス、石英等を挙げることができる。  Examples of the sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support base with an adhesive. The sealing member may be in the form of a concave plate or a flat plate as long as it is arranged so as to cover the display area of the organic EL element. Moreover, transparency and electrical insulation are not particularly limited. Specific examples include a glass plate, a polymer plate 'film, a metal plate' film, and the like. Examples of the glass plate include soda lime glass, norlium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
[0469] また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、 ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、 ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリ ブテン、シリコン、ゲルマニウム及びタンタルからなる群力も選ばれる一種以上の金属 または合金力もなるものが挙げられる。本発明においては、素子を薄膜ィ匕できるとい うこと力もポリマーフィルム、金属フィルムを好ましく使用することができる。  [0469] Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include one having at least one metal or alloy power selected from a group force consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum. In the present invention, a polymer film and a metal film can be preferably used because the element can be made into a thin film.
[0470] 更には、ポリマーフィルムは、 JIS K 7126— 1987酸素透過度が10—4«1137(1112 ' 24h'atm)以下、 JIS K 7129— 1992に準拠した方法で測定される水蒸気透過度 力 SlO— 3gZ (m2- 24h)以下、特に 10— 5gZ (m2- 24h)以下のものであることが好まし ヽ 。また、酸素透過度も 10—6cm3/ (m2' 24h'atm)以下であることが更に好ましい。封 止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われ る。 [0470] Furthermore, the polymer film, water vapor as measured by JIS K 7126- 1987 oxygen permeability 10- 4 «11 3 7 (111 2 '24h'atm) below, in compliance with JIS K 7129- 1992 method permeability force SlO- 3 gZ (m 2 - 24h ) or less, in particular 10- 5 gZ (m 2 - 24h )ヽis preferably be of less. Further, it is more preferable oxygen permeability even 10- 6 cm 3 / (m 2 '24h'atm) or less. Sand blasting and chemical etching are used to process the sealing member into a concave shape.
[0471] 接着剤として、具体的にはアクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応 性ビニル基を有する光硬化及び熱硬化型接着剤、 2 シァノアクリル酸エステルなど の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系などの熱及び化学 硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステ ル、ポリオレフインを挙げることができる。また、カチオン硬化タイプの紫外線硬化型 エポキシ榭脂接着剤を挙げることができる。なお、有機 EL素子が熱処理により劣化 する場合があるので、室温から 80°Cまでに接着硬化できるものが好ましい。また、前 記接着剤中に乾燥剤を分散させてぉ 、てもよ ヽ。封止部分への接着剤の塗布は巿 販のディスペンサーを使ってもよ 、し、スクリーン印刷のように印刷してもよ 、。 [0471] Specific examples of adhesives include photo-curing and thermosetting adhesives having a reactive vinyl group of acrylic acid-based oligomers and methacrylic acid-based oligomers, and moisture-curing adhesives such as 2 cyanoacrylates. Can be mentioned. In addition, heat- and chemical-curing types (two-component mixing) such as epoxy type can be mentioned. Also, hot-melt type polyamide, polyester And polyolefin. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned. In addition, since the organic EL element may be deteriorated by heat treatment, it is preferable that the adhesive can be cured from room temperature to 80 ° C. In addition, a desiccant may be dispersed in the adhesive. The adhesive can be applied to the sealing part using a commercially available dispenser or printing like screen printing.
[0472] また、有機層を挟み支持基盤と対向する側の電極の外側に該電極と有機層を被覆 し、支持基盤と接する形で無機物、有機物の層を形成し封止膜とすることも好適にで きる。この場合、該膜を形成する材料としては、水分や酸素など素子の劣化をもたら すものの浸入を抑制する機能を有する材料であればよぐ例えば、酸化珪素、二酸 化珪素、窒化珪素などを用いることができる。更に該膜の脆弱性を改良するために、 これら無機層と有機材料カゝらなる層の積層構造を持たせることが好ましい。  [0472] Alternatively, the electrode and the organic layer may be coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer may be formed in contact with the support substrate to form a sealing film. It can be preferred. In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, etc. Can be used. Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and organic material layers.
[0473] これらの膜の形成方法については特に限定はなぐ例えば、真空蒸着法、スパッタ リング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法 、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマ CVD 法、レーザー CVD法、熱 CVD法、コーティング法などを用いることができる。  [0473] There are no particular restrictions on the method of forming these films, for example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, An atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
[0474] 封止部材と有機 EL素子の表示領域との間隙には、気相及び液相では窒素、アル ゴン等の不活性気体や、フッ化炭化水素、シリコンオイルのような不活性液体を注入 することが好ましい。また、真空とすることも可能である。また、内部に吸湿性ィ匕合物 を封入することもできる。吸湿性ィ匕合物としては、例えば、金属酸化物(例えば、酸ィ匕 ナトリウム、酸ィ匕カリウム、酸ィ匕カルシウム、酸化バリウム、酸化マグネシウム、酸ィ匕ァ ルミ-ゥム等)、硫酸塩 (例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、 硫酸コバルト等)、金属ハロゲン化物(例えば、塩ィ匕カルシウム、塩ィ匕マグネシウム、 フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化ノ リウム、沃 化マグネシウム等)、過塩素酸類 (例えば、過塩素酸バリウム、過塩素酸マグネシウム 等)等が挙げられ、硫酸塩、金属ハロゲンィ匕物及び過塩素酸類においては無水塩が 好適に用いられる。  [0474] In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon or an inert liquid such as fluorinated hydrocarbon or silicon oil is used in the gas phase and the liquid phase. It is preferable to inject. A vacuum can also be used. Also, a hygroscopic compound can be enclosed inside. Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, and acid medium), sulfuric acid, and the like. Salts (eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.), metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, (Norium iodide, magnesium iodide, etc.), perchloric acids (for example, barium perchlorate, magnesium perchlorate, etc.) and the like, and anhydrous salts are preferred for sulfates, metal halides, and perchloric acids. Used for.
[0475] 《保護膜、保護板》  [0475] 《Protective film, protective plate》
有機層を挟み支持基盤と対向する側の前記封止膜、あるいは前記封止用フィルム の外側に素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい 。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずし も高くないため、このような保護膜、保護板を設けることが好ましい。これに使用するこ とができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板'フィル ム、金属板'フィルム等を用いることができる力 軽量且つ薄膜ィ匕ということからポリマ 一フィルムを用いることが好まし 、。 The sealing film on the side facing the support substrate with the organic layer interposed therebetween, or the sealing film In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided outside. In particular, when sealing is performed with the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate 'film, metal plate' film, etc. that are used for the sealing can be used. It is preferable to use a polymer film.
[0476] 《有機 EL素子の作製方法》  [0476] <Method for manufacturing organic EL element>
本発明の有機 EL素子の作製方法について説明する。  A method for producing the organic EL element of the present invention will be described.
[0477] 適当な支持基盤上に所望の電極物質、例えば、陽極用物質力 なる薄膜を 1 μ m 以下、好ましくは 10〜200nmの膜厚になるように、蒸着やスパッタリング等の方法に より形成させ、陽極を作製して陽極基板とする。次に、この上に有機 EL素子材料で ある正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層等各有機層をこの 順で有機材料薄膜として形成させる。陽極基板側に、これらの層のうち、任意の層ま で形成してもよい。例えば、正孔輸送層まで形成させて、陽極側部材を作製する。こ の有機化合物薄膜の成膜法としては、前記の如く蒸着法、ウエットプロセス (スピンコ ート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすぐ 且つピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェ ット法、印刷法が特に好ましい。層毎に異なる製膜法を適用してもよい。  [0477] A desired electrode material, for example, a thin film having a material force for an anode, is formed on a suitable support substrate by a method such as vapor deposition or sputtering so that the film thickness is 1 μm or less, preferably 10 to 200 nm. Then, an anode is produced and used as an anode substrate. Next, organic layers such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic EL element materials, are formed as an organic material thin film in this order. Any of these layers may be formed on the anode substrate side. For example, the anode side member is produced by forming the hole transport layer. As a method for forming this organic compound thin film, there are a vapor deposition method and a wet process (spin coating method, casting method, ink jet method, printing method) as described above. From the viewpoint of difficulty in forming holes, the vacuum deposition method, spin coating method, inkjet method, and printing method are particularly preferable. Different film forming methods may be applied for each layer.
[0478] また、別に第二の支持基板上に陰極物質力もなる薄膜を同じく: L m以下、好まし くは 10〜200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ 、陰極基板を作製する。  [0478] Further, another thin film having a cathode material force is also formed on the second supporting substrate by the same method: vapor deposition, sputtering or the like so as to have a film thickness of Lm or less, preferably 10 to 200 nm. A cathode substrate is prepared.
[0479] 次に、この上に陽極基板上に形成された正孔輸送層の以降の陰極側に形成される べき各層を前記と逆の順で、例えば、電子輸送層、正孔阻止層、発光層と順次形成 して、陰極側部材を作製する。陰極基板上に形成する有機層各層の成膜方法として は、前記同様に蒸着法、ウエットプロセス (スピンコート法、キャスト法、インクジェット法 、印刷法)いずれでもよい。  [0479] Next, each layer to be formed on the subsequent cathode side of the hole transport layer formed on the anode substrate thereon in the order reverse to the above, for example, an electron transport layer, a hole blocking layer, A cathode side member is fabricated by sequentially forming a light emitting layer. As a method for forming each layer of the organic layer formed on the cathode substrate, any of the vapor deposition method and the wet process (spin coating method, casting method, ink jet method, printing method) may be used as described above.
[0480] なお、成膜法として蒸着法を採用する場合、その蒸着条件は使用する化合物の種 類等により異なる力 一般にボート加熱温度 50〜450°C、真空度 10—6〜10—2Pa、蒸 着速度 0. 01〜50nmZ秒、基板温度— 50〜300°C、膜厚 0. lnm〜5 μ m、好まし くは 5〜200nmの範囲で適宜選ぶことが望まし!/、。 [0480] In the case of employing an evaporation method as a film forming method, the deposition conditions may differ force generally boat temperature 50 to 450 ° C by the species and the like of the compound used, the degree of vacuum 10- 6 to 10-2 Pa Steamed It is desirable to select a deposition rate of 0.01 to 50 nm Z seconds, substrate temperature—50 to 300 ° C., film thickness of 0.1 to 5 μm, and preferably 5 to 200 nm! /.
[0481] 尚、請求の範囲第 23項〜第 31項に記載の発明 Cにおいては、形成した陽極側基 板、及び陰極側基板上のそれぞれの表面層は、表面粗さ (Ra)を、請求の範囲第 23 項に記載の様に調整される。例えば、表面粗さ (Ra) =0. lnmの金属製ローラを通 し (線圧 500NZcm、温度 60°C)圧着されることで、金属ロール表面同等の表面粗さ が付与される。 [0481] In the invention C according to claims 23 to 31, the surface layer formed on the anode side substrate and the cathode side substrate has a surface roughness (Ra), It is adjusted as described in claim 23. For example, surface roughness (Ra) = 0. Lnm is passed through a metal roller (linear pressure: 500 NZcm, temperature: 60 ° C) to give the same surface roughness as the metal roll surface.
[0482] 次 1、で、表面粗さを調整した正孔輸送層(陽極側部材)及び発光層(陰極側部材) を、互いに対向させ、接合治具により密着、貼合する。  [0482] Next, the hole transport layer (anode-side member) and the light-emitting layer (cathode-side member), the surface roughness of which has been adjusted in step 1, are opposed to each other and adhered and bonded using a joining jig.
[0483] 貼合は、このようにそれぞれ有機層が形成された陽極側基板、及び陰極側基板の 正孔輸送層(陽極側部材)及び発光層(陰極側部材)を、互いに対向させ、接合治具 により密着、貼合する。 [0483] In the bonding, the anode-side substrate on which the organic layer is formed in this way, and the hole transport layer (anode-side member) and the light-emitting layer (cathode-side member) of the cathode-side substrate are opposed to each other. Adhere and bond with a jig.
[0484] 接合治具は両基板を互いに対向させ、間に挟んで均一な圧力で圧着できるスタン パー様治具と架台とからなるものを用いることができ、圧力を、例えば、真空ラミネー ターを用いて l X 10—2Paの減圧環境下で押圧力 0. IMPaで圧着し、両有機層を密 着、固定し貼合する。 [0484] The joining jig may be a stamper-like jig that can be pressed with a uniform pressure with both substrates facing each other, and a base, and the pressure can be set by, for example, a vacuum laminator. used to crimp a pressing force 0. IMPa under vacuum environment l X 10- 2 Pa, tight adhesion both organic layer and fixed lamination.
[0485] また対向する層中に、例えば、発光ホストあるいはリン光性発光化合物、また正孔 輸送層中の正孔輸送材料 (貼合する層同士、その層に含まれる機能性材料)に化学 反応を利用し共有結合の形成で架橋して密着性を高めようとする場合、紫外線等活 性光線を利用してもよい。  [0485] In the facing layer, for example, a luminescent host or phosphorescent light-emitting compound, or a hole transport material in the hole transport layer (layers to be bonded, functional materials contained in the layer) are chemically treated. When the reaction is used to crosslink by forming a covalent bond to improve adhesion, an active light such as ultraviolet light may be used.
[0486] 上記は陽極基板に正孔輸送層まで設け、陰極基板に発光層以降を設けたが、他 の組み合わせでも勿論よぐ例えば、発光層を両者に設け、発光層同士を密着 (また 架橋)してもょ 、。他の組み合わせでも構わな 、。 [0486] In the above, the positive hole transport layer is provided on the anode substrate, and the light emitting layer and subsequent layers are provided on the cathode substrate. However, other combinations are also possible. For example, the light emitting layer is provided on both sides, and the light emitting layers are in close contact (or crosslinked). ). Other combinations are acceptable.
[0487] このような有機 EL素子は、直流電圧を印加する場合には陽極を +、陰極を一の極 性として電圧 2V〜40V程度を印加すると発光が観測できる。また、交流電圧を印加 してもよい。なお、印加する交流の波形は任意でよい。 [0487] In such an organic EL device, when a DC voltage is applied, light emission can be observed by applying a voltage of about 2 V to 40 V with the anode as + and the cathode as one polarity. An AC voltage may be applied. The alternating current waveform to be applied may be arbitrary.
[0488] 《光取り出し》 [0488] 《Light extraction》
有機 EL素子は空気よりも屈折率の高い (屈折率が 1. 7〜2. 1程度)層の内部で発 光するため、発生した光のうち 15%から 20%程度の光しか取り出せないと言われて いる。これは、臨界角以上の角度 Θで界面 (透明基板と空気との界面)に入射する光 が全反射を起こすことから、透明電極ないし発光層と透明基板との間で光が全反射 を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃 げるためである。 The organic EL element emits light inside the layer, which has a higher refractive index than air (refractive index is about 1.7 to 2.1). It is said that only 15% to 20% of the generated light can be extracted. This is because light incident on the interface (interface between the transparent substrate and air) at an angle Θ greater than the critical angle causes total reflection, so that light is totally reflected between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the element.
[0489] この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸 を形成し、透明基板と空気界面での全反射を防ぐ方法 (米国特許第 4, 774, 435号 明細書)、基板に集光性を持たせることにより効率を向上させる方法 (特開昭 63— 31 4795号公報)、素子の側面等に反射面を形成する方法 (特開平 1— 220394号公 報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成 する方法 (特開昭 62— 172691号公報)、基板と発光体の間に基板よりも低屈折率 を持つ平坦層を導入する方法 (特開 2001— 202827号公報)、基板、透明電極層 や発光層のいずれかの層間 (含む、基板と外界間)に回折格子を形成する方法 (特 開平 11― 283751号公報)等がある。  [0489] As a technique for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435) ), A method for improving the efficiency by giving the substrate light condensing (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of the element (Japanese Patent Laid-Open No. 1-2220394) ), A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (Japanese Patent Laid-Open No. Sho 62-172691), and lower than the substrate between the substrate and the light emitter. A method of introducing a flat layer having a refractive index (Japanese Patent Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light-emitting layer (including between the substrate and the outside world) (Kaihei 11-283751).
[0490] 本発明においては、これらの方法を本発明の有機 EL素子と組み合わせて用いるこ とができる。特に、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する 方法、あるいは基板、透明電極層や発光層のいずれかの層間 (含む、基板と外界間 )に回折格子を形成する方法を好適に用いることができる。  [0490] In the present invention, these methods can be used in combination with the organic EL device of the present invention. In particular, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a diffraction grating between the substrate, the transparent electrode layer, and the light emitting layer (including between the substrate and the outside world). The method of forming can be used suitably.
[0491] また、透明電極と透明基板の間に低屈折率の媒質、例えば、エア口ゲル、多孔質シ リカ、フッ化マグネシウム、フッ素系ポリマー等の層を、光の波長よりも長い厚みで形 成すると、透明電極から出てきた光は媒質の屈折率が低いほど外部への取り出し効 率が高くなる。透明基板の屈折率は一般に 1. 5〜1. 7程度であるので、低屈折率層 は屈折率がおよそ 1. 5以下であることが好ましい。また、更に 1. 35以下であることが 好ましい。  [0491] In addition, a medium having a low refractive index, for example, a layer of air mouth gel, porous silica, magnesium fluoride, fluorine-based polymer, or the like having a thickness longer than the wavelength of light is interposed between the transparent electrode and the transparent substrate. When formed, the light extracted from the transparent electrode has a higher extraction efficiency as the refractive index of the medium is lower. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
[0492] また、低屈折率媒質の厚みは媒質中の波長の 2倍以上となるのが望ましい。これは 低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波 が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。  [0492] The thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
[0493] 全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光 取り出し効率の向上効果が高 、と 、う特徴がある。この方法は回折格子が 1次の回 折や 2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の 向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全 反射等により外に出ることができない光をいずれかの層間、もしくは媒質中 (透明基 板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そう とするちのである。 [0493] A method of introducing a diffraction grating into an interface or any medium that causes total reflection is based on light. There is a feature that the effect of improving the extraction efficiency is high. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction. Of these, light that cannot be emitted due to total reflection between layers, etc. is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). They are trying to take it out.
[0494] 導入する回折格子は、 2次元的な周期屈折率を持っていることが望ましい。これは 発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周 期的な屈折率分布を持っている一般的な 1次元回折格子では、特定の方向に進む 光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分 布を 2次元的な分布にすることによりあらゆる方向に進む光が回折され、光の取り出 し効率が上がる。  [0494] It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so a general one-dimensional diffraction grating having a periodic refractive index distribution only in one direction diffracts only light traveling in a specific direction. The light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency increases.
[0495] 回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透 明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が 望ましい。  [0495] As described above, the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. .
[0496] このとき、回折格子の周期は媒質中の光の波長の約 1Z2〜3倍程度が好ましい。  [0496] At this time, the period of the diffraction grating is preferably about 1Z2 to about 3 times the wavelength of light in the medium.
[0497] 回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、 2 次元的に配列が繰り返されることが好ましい。  [0497] The arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
[0498] 《集光シート》  [0498] 《Condenser sheet》
また、本発明の有機 EL素子は基板の光取り出し側に、マイクロレンズアレイ状の構 造を設けるように加工したり、あるいは所謂集光シートと組み合わせ、特定方向、例え ば、素子発光面の正面方向に集光することにより輝度を高めることができる。  In addition, the organic EL device of the present invention is processed so as to provide a microlens array structure on the light extraction side of the substrate, or is combined with a so-called condensing sheet, for example, in a specific direction, for example, the front surface of the device light emitting surface. Luminance can be increased by focusing in the direction.
[0499] マイクロレンズアレイの例としては、基板の光取り出し側に一辺が 30 μ mでその頂 角が 90度となるような四角錐を 2次元に配列する。一辺は 10〜: LOO mが好ましい。 これより小さくなると回折の効果が発生して色付ぐ大きすぎると厚みが厚くなり好まし くない。  [0499] As an example of a microlens array, a quadrangular pyramid with a side of 30 μm and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10: LOO m. If it is smaller than this, the effect of diffraction is generated, and if it is too large, the thickness becomes too thick, which is not preferable.
[0500] 集光シートとしては、例えば、液晶表示装置の LEDバックライトで実用化されている ものを用いることが可能である。このようなシートとして、例えば、住友スリーェム社製 輝度上昇フィルム (BEF)等を用いることができる。プリズムシートの形状としては、例 えば、基材に頂角 90度、ピッチ 50 111の 状のストライプが形成されたものであって もよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の 形状であってもよい。 [0500] As the light condensing sheet, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device can be used. As such a sheet, for example, manufactured by Sumitomo 3EM A brightness enhancement film (BEF) or the like can be used. As the shape of the prism sheet, for example, the base material may be formed with stripes having a vertex angle of 90 degrees and a pitch of 50 111, a shape with rounded vertex angles, and a random pitch. It may be a changed shape or other shapes.
[0501] また、発光素子からの光放射角を制御するために、光拡散板'フィルムを集光シー トと併用してもよい。例えば、(株)きもと製拡散フィルム (ライトアップ)等を用いること ができる。  [0501] In order to control the light emission angle from the light emitting element, a light diffusing plate 'film may be used in combination with the light collecting sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
[0502] 《用途》  [0502] << Application >>
本発明の有機 EL素子は、表示デバイス、各種発光光源として用いることができる。 発光光源として、例えば、家庭用照明、車内照明、時計や液晶用のバックライト、看 板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光 源、光センサーの光源等が挙げられるがこれに限定するものではないが、特にカラー フィルターと組み合わせた液晶表示装置のノ ックライト、照明用光源としての用途に 有効に用いることができる。  The organic EL element of the present invention can be used as a display device and various light sources. For example, home lighting, interior lighting, backlights for watches and liquid crystals, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sensors However, the present invention is not limited to this, and it can be effectively used as a knock light for a liquid crystal display device combined with a color filter, or as a light source for illumination.
[0503] 本発明の有機 EL素子においては、必要に応じ製膜時にメタルマスクやインクジエツ トプリンティング法等でパターユングを施してもよい。パターユングする場合は、電極 のみをパターユングしてもよいし、電極と発光層をパターユングしてもよいし、素子全 層をパターユングしてもよぐ素子の作製においては、従来公知の方法を用いること ができる。 [0503] In the organic EL device of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or in the production of an element that may be patterned on the entire layer, a conventionally known method Method can be used.
[0504] 本発明の有機 EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ノヽ ンドブック」(日本色彩学会編、東京大学出版会、 1985)の 108頁の図 4. 16におい て、分光放射輝度計 CS - 1000 (コ-力ミノルタセンシング社製)で測定した結果を C IE色度座標に当てはめたときの色で決定される。  [0504] The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in Fig. 4.16 on page 108 of "New Color Science Nord Book" (edited by the Japan Society for Color Science, University of Tokyo Press, 1985). Therefore, it is determined by the color when the result measured with the spectral radiance meter CS-1000 (manufactured by Co-Force Minolta Sensing) is applied to the C IE chromaticity coordinates.
[0505] また、本発明の有機 EL素子が白色素子の場合には、白色とは、 2度視野角正面輝 度を上記方法により測定した際に、 lOOOCdZm2での CIE1931表色系における色 度力 ¾ =0. 33±0. 07、 Y=0. 33±0. 1の領域内にあることを言う。 [0505] When the organic EL device of the present invention is a white device, white means chromaticity in the CIE1931 color system at lOOOCdZm 2 when the 2 ° viewing angle front luminance is measured by the above method. It is in the region of force ¾ = 0.33 ± 0.07, Y = 0.33 ± 0.1.
[0506] 《ディスプレイ装置》  [0506] 《Display device》
本発明のディスプレイ装置について説明する。本発明の表示装置は多色または白 色の表示装置に用いられる。多色または白色の表示装置の場合は、発光層形成時 のみシャドーマスクを設ける。発光層をパターニングする場合、その方法に限定はな いが、好ましくは蒸着法、インクジェット法、印刷法である。蒸着法を用いる場合にお いては、シャドーマスクを用いたパターユングが好ましい。このようにして得られた多 色または白色の表示装置に、直流電圧を印加する場合には、陽極を +、陰極を一の 極性として電圧 2V〜40V程度を印加すると、発光が観測できる。また、逆の極性で 電圧を印加しても電流は流れずに発光は全く生じない。更に、交流電圧を印加する 場合には、陽極が +、陰極が一の状態になったときのみ発光する。なお、印加する 交流の波形は任意でよい。 The display device of the present invention will be described. The display device of the present invention is multicolor or white Used for color display devices. In the case of a multicolor or white display device, a shadow mask is provided only when the light emitting layer is formed. In the case of patterning the light emitting layer, the method is not limited, but the vapor deposition method, the ink jet method, and the printing method are preferable. When using the vapor deposition method, patterning using a shadow mask is preferable. When a DC voltage is applied to the thus obtained multicolor or white display device, light emission can be observed by applying a voltage of about 2V to 40V with the anode as + and the cathode as one polarity. In addition, even if a voltage is applied with the opposite polarity, no current flows and no light is emitted. In addition, when an AC voltage is applied, light is emitted only when the anode is + and the cathode is in a single state. The applied AC waveform may be arbitrary.
[0507] 《照明装置》  [0507] 《Lighting device》
本発明の照明装置について説明する。本発明の有機 EL素子は、照明用や露光光 源のような一種のランプとして使用してもよ 、し、画像を投影するタイプのプロジェクシ ヨン装置や、静止画像や動画像を直接視認するタイプの表示装置 (ディスプレイ)の ノ ックライトとして使用してもよい。液晶表示装置用のノ ックライトとして使用する場合 の液晶の駆動方式は、単純マトリクス (パッシブマトリクス)方式でもアクティブマトリク ス方式でもどちらでもよい。液晶表示装置におけるバックライトであれば、発光層に用 いる発光材料としては特に制限はなぐ CF (カラーフィルター)特性に対応した波長 範囲に適合するように、発光材料中から任意のものを選択して組み合わせて、また、 前記の光取り出し及び Zまたは集光シート等と組み合わせて、白色化すればよい。  The lighting device of the present invention will be described. The organic EL device of the present invention may be used as a kind of lamp for illumination or exposure light source, or a projection device for projecting an image, or directly viewing a still image or a moving image. It may be used as a knocklight for a type of display device (display). When used as a knocklight for a liquid crystal display device, the driving method of the liquid crystal may be either a simple matrix (passive matrix) method or an active matrix method. If it is a backlight in a liquid crystal display device, the light emitting material used for the light emitting layer is not particularly limited, and any light emitting material is selected from the light emitting materials so as to conform to the wavelength range corresponding to the CF (color filter) characteristics. Or in combination with the light extraction and Z or condensing sheet or the like.
[0508] このように、本発明の有機 EL素子は CF (カラーフィルター)と組み合わせて、また C F (カラーフィルター)パターンにあわせ、素子及び駆動トランジスタ回路を配置するこ とで、有機 EL素子力も取り出される白色光をバックライトとして、青色フィルター、緑 色フィルター、赤色フィルターを介して、青色光(430〜480nmの範囲に発光極大を 有する)、緑色光(波長 510〜550nmの範囲に発光極大を有する)、赤色光(波長 6 00〜640nmの範囲に発光極大を有する)を得ることで、低駆動電圧で長寿命のフ ルカラーの有機エレクト口ルミネッセンスディスプレイができ、好まし 、。  [0508] As described above, the organic EL element of the present invention is combined with a CF (color filter) and arranged in accordance with the CF (color filter) pattern to arrange the element and the driving transistor circuit, thereby extracting the organic EL element power. Blue light (having an emission maximum in the range of 430 to 480 nm), green light (having an emission maximum in the wavelength range of 510 to 550 nm) through the blue filter, green filter and red filter. ) And red light (having a light emission maximum in the wavelength range of 600 to 640 nm), it is possible to produce a full-color organic-electric-luminescence display with a low driving voltage and a long life.
[0509] また、これらディスプレイに加えて、各種発光光源、照明装置として、家庭用照明、 車内照明、また露光光源のような一種のランプとして、液晶表示装置のバックライト等 、表示装置にも有用に用いられる。その他、時計等のバックライト、看板広告、信号機 、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサ 一の光源等、更には表示装置を必要とする一般の家庭用電気器具等広い範囲の用 途が挙げられる。 実施例 [0509] In addition to these displays, various light-emitting light sources and lighting devices such as household lighting, interior lighting, and a kind of lamp such as an exposure light source, backlights for liquid crystal display devices, etc. It is also useful for display devices. In addition, backlights such as watches, signboard advertisements, traffic lights, light sources such as optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processing machines, light sources for optical sensors, etc. There are a wide range of uses such as household appliances. Example
[0510] 以下、実施例により本発明を説明するが、本発明の実施態様はこれらに限定され ない。  [0510] Hereinafter, the present invention will be described by way of examples, but the embodiments of the present invention are not limited thereto.
[0511] 以下、実施例 1〜14により請求の範囲第 1項〜 12項に記載の発明(A)を具体的に 説明する。  [0511] The invention (A) described in claims 1 to 12 will be specifically described below with reference to Examples 1 to 14.
[0512] 実施例 1 [0512] Example 1
《比較例サンプル 1の作製》  << Preparation of Comparative Example Sample 1 >>
100mm X 100mm X I. 1mmのガラス基板をイソプロピルアルコールで超音波洗 浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った後、ガラス基板 (NHテ タノグラス社製 NA45)を市販のスピンコータに取り付け、例示化合物 4— 8 (50mg) を 1, 2 ジクロロェタン 10mlに溶解した溶液を用い、 1000rpm、 30秒の条件下、ス ピンコート (膜厚 4045nm)し、 25°Cで 1時間真空乾燥して、反応性置換基を有する 有機化合物である例示化合物 4 8を含有する有機層 1をガラス基板上に作製した。  100 mm X 100 mm X I. 1 mm glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, and then a glass substrate (NA Tetanoglas NA45) was commercially available. Attached to a spin coater, spin-coated (film thickness 4045nm) at 1000rpm for 30 seconds using a solution of Exemplified Compound 4-8 (50mg) dissolved in 10ml of 1,2 dichloroethane, and vacuum dried at 25 ° C for 1 hour Then, an organic layer 1 containing exemplary compound 48, which is an organic compound having a reactive substituent, was produced on a glass substrate.
[0513] 上記と同様にガラス基板上に、同じく例示化合物 4 8を含有する有機層 2を作製 した。 [0513] Similarly to the above, an organic layer 2 containing Exemplified Compound 48 was produced on a glass substrate.
[0514] このようにして得られた各ガラス基板上の有機層 1と有機層 2を対向させて重ね合わ せ、接合冶具で固定し、比較例サンプル 1を作製した。  [0514] The organic layer 1 and the organic layer 2 on each glass substrate obtained in this manner were overlapped with each other and fixed with a joining jig to produce Comparative Example Sample 1.
[0515] 《実施例サンプル 1の作製》 [0515] <Preparation of Example Sample 1>
次に上記で得られた比較例サンプル 1に紫外光を 120秒間照射し、実施例サンプ ル 1を作製した。  Next, the sample 1 of Comparative Example obtained above was irradiated with ultraviolet light for 120 seconds to produce Example Sample 1.
[0516] 《有機層中における例示化合物 4 8の残存量の分析》  [0516] << Analysis of residual amount of Exemplified Compound 48 in organic layer >>
有機相中の例示化合物 4 8の残存量につ 、て、例示化合物 4 8のビュル基の 残存量を測定する方法により求めた。ビニル基の 2重結合の分布は以下の手段によ り求めた。 [0517] フーリエ変換赤外分光装置(島津製作所製 FTIR— 8300)にて、各サンプルの IR スペクトルを測定し、 1626cm"1に検出される C = C伸縮振動由来のピーク強度を比 較した。 The residual amount of Exemplified Compound 48 in the organic phase was determined by a method of measuring the residual amount of the bur group of Exemplified Compound 48. The distribution of the double bond of the vinyl group was determined by the following means. [0517] The IR spectrum of each sample was measured with a Fourier transform infrared spectrometer (FTIR-8300, manufactured by Shimadzu Corporation), and the peak intensity derived from C = C stretching vibration detected at 1626 cm " 1 was compared.
[0518] [表 1]
Figure imgf000121_0001
[0518] [Table 1]
Figure imgf000121_0001
[0519] 測定結果より、比較例サンプル 1と実施例サンプル 1との C = C伸縮振動由来のピ ーク強度から、例示化合物 4 8のビニル基はほぼ全て反応して ヽることが確認され た。 [0519] From the measurement results, it was confirmed from the peak strength derived from C = C stretching vibration of Comparative Sample 1 and Example Sample 1 that almost all vinyl groups of Exemplified Compound 48 were reacted. It was.
[0520] 実施例 2  [0520] Example 2
《比較例サンプル 2の作製》  << Preparation of Comparative Example Sample 2 >>
100mm X 100mm X 100 μ mのポリエチレンテレフタレートフィルム基板 1を巿販 のスピンコータに取り付け、反応性置換基を有する有機化合物である例示化合物 4 8 (50mg)を 1, 2 ジクロロェタン 10mlに溶解した溶液を用い、 1000rpm、 30秒 の条件下、スピンコート (膜厚約 40nm)し、 25°Cで 1時間真空乾燥して、例示化合物 4— 8を含有する有機層 1をフィルム基板 1上に作製した。  A 100 mm x 100 mm x 100 μm polyethylene terephthalate film substrate 1 is attached to a commercially available spin coater, and a solution in which the exemplified compound 48 (50 mg), which is an organic compound having a reactive substituent, is dissolved in 10 ml of 1,2 dichloroethane is used. Then, spin coating (film thickness: about 40 nm) was performed under conditions of 1000 rpm and 30 seconds, and vacuum drying was performed at 25 ° C. for 1 hour to produce an organic layer 1 containing Exemplified Compound 4-8 on the film substrate 1.
[0521] 上記と同様に厚さ 100 mのポリエチレンテレフタレートフィルム基板 2上に、同じく 例示化合物 4 8を含有する有機層 2を作製した。  [0521] Similarly to the above, on the polyethylene terephthalate film substrate 2 having a thickness of 100 m, an organic layer 2 containing the exemplified compound 48 was produced.
[0522] このようにして得られた各ポリエチレンテレフタレートフィルム基板上の有機層 1と有 機層 2を対向させて重ね合わせ、接合冶具で固定し、比較例サンプル 2を作製した。  [0522] The organic layer 1 and the organic layer 2 on each polyethylene terephthalate film substrate thus obtained were overlapped and fixed with a joining jig to produce Comparative Sample 2.
[0523] 《実施例サンプル 2の作製》  [0523] <Preparation of Example Sample 2>
次に上記で得られた比較例サンプル 2にポリエチレンテレフタレートフィルム基板 1 側より紫外光を 120秒間照射し、実施例サンプル 2を作製した。  Next, the sample 2 of Comparative Example obtained above was irradiated with ultraviolet light from the polyethylene terephthalate film substrate 1 side for 120 seconds to prepare Example Sample 2.
[0524] 《有機層中における例示化合物 4 8の残存量の分析》  [0524] << Analysis of residual amount of Exemplified Compound 48 in organic layer >>
薄膜中の未反応の例示化合物 4 8につ 、ては、例示化合物 4 8のビニル基の 分布を測定する方法により求めた。ビュル基の 2重結合の存在は以下の手段により 求めることができる。 The unreacted exemplified compound 48 in the thin film was determined by a method of measuring the distribution of vinyl groups in the exemplified compound 48. The presence of the double bond of the bur group Can be sought.
[0525] 分析面積を確保するため、ダイブラ 'ウィンテス社製サイカス NN04型にて斜め切削 を行った。拡大倍率を 500倍とし、切削を行い、 20 m幅の分析面積を得た。次い で、この切削面について臭素付加法により薄膜中に残存する 2重結合を標識ィ匕した 。標識ィ匕後の試料について、 X線光電子分光装置アルバックフアイ製 QuanteraSX Mを用いて切削面表面の元素組成分布を計測し、切削面表面の元素組成分布を得 た。測定結果を以下に示す。  [0525] In order to secure the analysis area, oblique cutting was performed with a die-brush CYTUS NN04 type manufactured by Wintes. Cutting was performed with an enlargement ratio of 500 times, and an analysis area of 20 m width was obtained. Next, the double bond remaining in the thin film was labeled on the cut surface by the bromine addition method. For the sample after labeling, the elemental composition distribution on the cutting surface was measured using an X-ray photoelectron spectrometer, QuanteraSX M manufactured by ULVAC-FAI, and the elemental composition distribution on the cutting surface was obtained. The measurement results are shown below.
[0526] [表 2]  [0526] [Table 2]
Figure imgf000122_0001
Figure imgf000122_0001
[0527] 測定結果より、例示化合物 4 8のビニル基は層の深さ方向によらずほぼ全て反応 していることが確認された。 [0527] From the measurement results, it was confirmed that almost all of the vinyl groups of Exemplified Compound 48 had reacted regardless of the depth direction of the layer.
[0528] 実施例 3 [0528] Example 3
《比較例サンプル 3の作製》  << Preparation of Comparative Sample 3 >>
100mm X 100mm X I . 1mmのガラス基板をイソプロピルアルコールで超音波洗 浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った後、市販のスピンコータ に取り付け、例示化合物 1— l l (50mg)を 1, 2 ジクロロエタン 10mlに溶解した溶 液を用い、 1000rpm、 30秒の条件下、スピンコート(膜厚約 40nm)し、 25°Cで 1時 間真空乾燥して、反応性置換基を有する有機化合物である例示化合物 1 11を含 有する有機層 1をガラス基板上に作製した。  100mm X 100mm XI. 1mm glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, then attached to a commercially available spin coater, and exemplified compound 1-ll (50mg) Using a solution in which 10 ml of 1,2 dichloroethane is dissolved, spin-coat (film thickness of about 40 nm) under conditions of 1000 rpm for 30 seconds, and vacuum-dried at 25 ° C for 1 hour to have reactive substituents Organic layer 1 containing exemplary compound 111, which is an organic compound, was produced on a glass substrate.
[0529] 上記と同様にガラス基板上に、同じく例示化合物 4 11を含有する有機層 2を作製 した。 [0529] Similarly to the above, an organic layer 2 containing the exemplified compound 411 was produced on a glass substrate.
[0530] このようにして得られた各ガラス基板上の有機層 1と有機層 2を対向させて重ね合わ せ、接合冶具で固定し、比較例サンプル 3を作製した。  [0530] The organic layer 1 and the organic layer 2 on each glass substrate obtained in this manner were overlapped with each other and fixed with a joining jig to produce Comparative Example Sample 3.
[0531] 《実施例サンプル 3の作製》 次に、上記で得られた比較例サンプル 3を 150°Cで 1時間加熱し、実施例サンプル 3を作製した。 [0531] <Preparation of Example Sample 3> Next, Comparative Example Sample 3 obtained above was heated at 150 ° C. for 1 hour to produce Example Sample 3.
[0532] 《接合界面での反応性検討》  [0532] 《Study on reactivity at bonding interface》
作製した比較例サンプル 3及び実施例サンプル 3をテトラヒドロフラン 50mlに浸漬し 、十分に攪拌した後にガラス基板を取り除き、得られた溶液力も溶媒を留去した。残 留物について、飛行時間型 2次イオン質量分析計 (TOF— SIMS)にて分析したとこ ろ、実施例サンプル 3を浸漬した溶液の残留物からのみ、化合物 1 11と化合物 4 11が反応した反応物 Aの分子量に相当する分子量 1248のピークが検出された。  The produced Comparative Example Sample 3 and Example Sample 3 were immersed in 50 ml of tetrahydrofuran, and after sufficiently stirring, the glass substrate was removed, and the solvent of the resulting solution force was distilled off. When the residue was analyzed with a time-of-flight secondary ion mass spectrometer (TOF-SIMS), Compound 1 11 and Compound 4 11 reacted only from the residue of the solution in which Example Sample 3 was immersed. A peak with a molecular weight of 1248 corresponding to the molecular weight of reactant A was detected.
[0533] 以上より貼り合わせた接合界面にて反応が進行して 、ることを確認した。  [0533] From the above, it was confirmed that the reaction proceeded at the bonded interface.
[0534] [化 65]  [0534] [Chemical 65]
Figure imgf000123_0001
Figure imgf000123_0001
実施例 4 Example 4
《有機 EL素子 1 1〜1 3の作製》  <Production of organic EL elements 1 1 to 1 3>
〈陽極側部位の作製〉  <Preparation of anode side part>
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。 100mm X 100mm X I. As an anode, put a pattern on a substrate (ΝΗ Techno Glass Co., Ltd. ΝΑ45) made of ITO (Indium Toxide) on a 1mm glass substrate. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
[0536] この基板を市販のスピンコータに取り付け、下記化合物 BCP (60mg)をトルエン 10 mlに溶解した溶液を用い、 1000rpm、 30秒の条件下、スピンコート(膜厚約 40nm) し、有機層 1層を有する陽極側部位を作製した。 [0536] This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving the following compound BCP (60 mg) in 10 ml of toluene was spin-coated (film thickness: about 40 nm) under conditions of 1000 rpm and 30 seconds to obtain an organic layer 1 The anode side part which has a layer was produced.
[0537] 〈陰極部位の作製〉 [0537] <Preparation of cathode region>
陽極部位の作製時に使用した UVオゾン洗浄済みの基板を市販のスピンコータ〖こ 取り付け、下記化合物 CBP (60mg)をトルエン 10mlに溶解した溶液を用い、 lOOOr pm、 30秒の条件下、スピンコート (膜厚約 40nm)し、有機層 1層を有する陰極部位 を作製した。  Attach the UV ozone-cleaned substrate used for the preparation of the anode part to a commercially available spin coater and use a solution of the following compound CBP (60 mg) dissolved in 10 ml of toluene, spin coating (film) under the condition of lOOOr pm for 30 seconds. A cathode portion having a thickness of about 40 nm and having one organic layer was produced.
[0538] このようにして得られた陽極側部位と陰極部位の有機層を対向させて重ね合わせ、 接合冶具で固定し、 100°Cで 1時間加熱処理を行い、有機 EL素子 1 1を作製した  [0538] The organic layer of the anode side part and the cathode part obtained in this way were placed facing each other, fixed with a joining jig, and heat-treated at 100 ° C for 1 hour to produce an organic EL element 11 did
[0539] 有機 EL素子 1 1の作製にぉ 、て、陽極側部位と陰極部位の有機層に使用する 化合物を表 3に化合物に置き換えた以外は、有機 EL素子 1—1と同じ方法で有機 E[0539] Organic EL element 11 was prepared in the same manner as organic EL element 1-1, except that the compounds used in the organic layer of the anode side portion and the cathode portion were replaced with the compounds shown in Table 3. E
L素子 1— 2〜 1— 3を作製した。 L elements 1-2 to 1-3 were produced.
[0540] (剥離強度の測定) [0540] (Measurement of peel strength)
有機 EL素子の剥離強度は SAICAS法にて、ダイブラ ·ウィンテス社製の SAICAS NN— 04型を用いて測定した。 SAICAS法とは鋭利な切刃(単結晶ダイヤモンド、 焼結合金)を用いて、垂直荷重を一定方向に保った状態で、水平方向に定速で動か すために必要な水平荷重を測定する手法であり、薄膜の剥離強度の測定が可能とな る。測定条件は下記の通りである。  The peel strength of the organic EL element was measured by the SAICAS method using a SAICAS NN-04 model manufactured by Daibra-Wintes. The SAICAS method uses a sharp cutting edge (single crystal diamond, sintered alloy) to measure the horizontal load required to move at a constant speed in the horizontal direction while maintaining a constant vertical load. Thus, the peel strength of the thin film can be measured. The measurement conditions are as follows.
[0541] サイカス測定条件 [0541] Psycho measurement conditions
装置;ダイプラ ·ウィンテス製サイカス NN - 04型  Equipment: Daipla · Wintes Cycus NN-04 type
測定条件;ダイヤモンド製 lmm幅の刃を使用。剪断角度は 45°  Measurement conditions: A diamond lmm wide blade is used. Shear angle is 45 °
押圧荷重を 2 N、バランス加重 1 μ Νとし、垂直速度 InmZ秒、水平速度 lOOnmThe pressing load 2 N, and the balance weight 1 mu New, vertical speed InmZ sec, horizontal velocity lOOnm
Z秒にて切削を行い、水平、垂直力を記録した。なお、サンプリングステップは 0. 2 秒 Zpointである。 [0542] [化 66] Cutting was performed in Z seconds, and horizontal and vertical forces were recorded. The sampling step is 0.2 second Zpoint. [0542] [Chem 66]
CBP BCP CBP BCP
Figure imgf000125_0001
Figure imgf000125_0001
[0543] [表 3] [0543] [Table 3]
Figure imgf000125_0002
Figure imgf000125_0002
[0544] 低分子の化合物同士により形成された有機層の接合面の剥離強度は低い値を示 すのに対し、少なくとも 1方の有機層に分子構造中に反応性置換基を有する有機化 合物を用い、加熱処理もしくは紫外線照射を行ったものは、接合面の剥離強度が高 い値を示すことが分かる。 [0544] While the peel strength of the bonding surface of the organic layer formed of low molecular weight compounds is low, an organic compound having a reactive substituent in the molecular structure in at least one organic layer. It can be seen that those subjected to heat treatment or ultraviolet irradiation using a product exhibit a high peel strength at the joint surface.
[0545] 実施例 5 [0545] Example 5
《有機 EL素子 2— 1〜2— 3の作製》  << Production of organic EL elements 2-1 to 2-3 >>
〈陰極側部位の作製〉  <Preparation of cathode side part>
100mm X 100mm X I. 1mmのガラス基板をイソプロピルアルコールで超音波洗 浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った後、市販の真空蒸着装 置の基板ホルダーに固定し、アルミニウム (膜厚約 l lOnm)、フッ化リチウム (膜厚約 0. 5nm)を 着した。  100mm X 100mm X I. A 1mm glass substrate is ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, and then fixed to a substrate holder of a commercially available vacuum deposition device. Aluminum (thickness: about lOnm) and lithium fluoride (thickness: about 0.5 nm) were applied.
[0546] この基板を市販のスピンコータに取り付け、 BCP (20mg)をトルエン 10mlに溶解し た溶液を用い、 1000rpm、 30秒の条件下、スピンコート(膜厚約 lOnm)、 60°Cで 1 時間真空乾燥し、電子輸送層を設け、陰極側部位を作製した。  [0546] This substrate was attached to a commercially available spin coater, and a solution in which BCP (20 mg) was dissolved in 10 ml of toluene was used. Spin coating (film thickness about lOnm) at 60 ° C for 1 hour under conditions of 1000 rpm and 30 seconds It vacuum-dried, provided the electron carrying layer, and produced the cathode side site | part.
[0547] 〈陽極側部位の作製〉  [0547] <Production of anode side part>
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (NHテクノグラス社製 NA45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。 ITO (indium tin oxide) on a glass substrate of 100mm X 100mm X I. 1mm as the anode After putting a lOOnm film substrate (NH Techno Glass NA45) on the substrate, this transparent support substrate with ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol and dried with dry nitrogen gas. UV ozone cleaning was performed for 5 minutes.
[0548] この基板を市販のスピンコータに取り付け、例示化合物 4 1 (60mg)をトルエン 10 mlに溶解した溶液を用い、 1000rpm、 30秒の条件下、スピンコート(膜厚約 40nm) 、紫外光を 30秒照射した後、 60°Cで 1時間真空乾燥し、正孔輸送層とした。  [0548] This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 41 (60 mg) in 10 ml of toluene was spin-coated (film thickness of about 40 nm) and ultraviolet light under conditions of 1000 rpm and 30 seconds. After irradiation for 30 seconds, vacuum drying was performed at 60 ° C. for 1 hour to form a hole transport layer.
[0549] 次!、で、 CBP (60mg)と Ir— 1 (3. Omg)とをトルエン 6mlに溶解した溶液を用い、 1 OOOrpm、 30秒の条件下、スピンコートし (膜厚約 60nm)、 60°Cで 1時間真空乾燥し 、発光層とし、陽極側部位を作製した。  [0549] Next !, using a solution of CBP (60mg) and Ir-1 (3. Omg) dissolved in 6ml of toluene, spin-coated under the condition of 1 OOOrpm for 30 seconds (film thickness about 60nm) Then, it was vacuum-dried at 60 ° C. for 1 hour to form a light emitting layer, and an anode side portion was produced.
[0550] 〈接合〉  [0550] <Bonding>
このようにして得られた陰極側部位の電子輸送層と陽極側部位の発光層を対向さ せて重ね合わせ、接合冶具を用いて 1 X 10— 2Paの減圧環境下で押圧力 0. IMPaで 圧着し、密着、固定し、 100°Cで 1時間過熱処理を行い、出来上がった素子を封止 処理 (エポキシ系の接着剤を用いた)し、有機 EL素子 2— 1を作製した。 Thus superimposed to face the light-emitting layer electron-transporting layer and the anode side portion of the resulting cathode site, pressure 0. IMPa under a reduced pressure environment of 1 X 10- 2 Pa using a bonding jig Crimping, sticking, and fixing at 100 ° C for 1 hour was performed, and the resulting device was sealed (using an epoxy adhesive) to produce an organic EL device 2-1.
[0551] 有機 EL素子 2— 1の作製において、電子輸送層、発光層及び正孔輸送層に使用 する化合物を表 4に示すィ匕合物に置き換えた以外は、有機 EL素子 2—1と同じ方法 で有機 EL素子 2— 2、 2— 3を作製した。  [0551] In the production of the organic EL device 2-1, the compounds used in the electron transport layer, the light emitting layer, and the hole transport layer were replaced with the compounds shown in Table 4, and the organic EL device 2-1. Organic EL devices 2-2 and 2-3 were fabricated using the same method.
[0552] 《有機 EL素子 2— 1〜2— 3の評価》  [0552] <Evaluation of organic EL elements 2-1 to 2-3>
以下のようにして作製した有機 EL素子 2— 1〜2— 3の評価を行 、、その結果を表 4に示す。  The organic EL devices 2-1 to 2-3 produced as follows were evaluated, and the results are shown in Table 4.
[0553] (外部取り出し量子効率)  [0553] (External quantum efficiency)
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm2 定電流を印加した時の外部取り出し量子効率(%)を測定した。なお測定には同様に 分光放射輝度計 CS - 1000 (コ-力ミノルタ製)を用いた。 With respect to the produced organic EL device, the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C. For measurement, a spectral radiance meter CS-1000 (manufactured by Ko-Force Minolta) was used in the same manner.
[0554] (寿命)  [0554] (Life)
2. 5mAZcm2の一定電流で駆動したときに、輝度が発光開始直後の輝度 (初期 輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間( τ 0. 5)と して寿命の指標とした。なお、測定には分光放射輝度計 CS— 1000 (コ-カミノルタ 製)を用いた。 2. When driving at a constant current of 5 mAZcm 2 , measure the time required for the luminance to drop to half of the luminance immediately after the start of light emission (initial luminance), and this is the half-life time (τ 0.5). And used as an index of life. For measurement, the spectral radiance meter CS-1000 (Co-Caminoolta Made).
[0555] 表 4の外部取り出し量子効率、寿命の測定結果は、有機 EL素子 2—1を 100とした 時の相対値で表した。  [0555] The measurement results of external extraction quantum efficiency and lifetime in Table 4 are expressed as relative values when the organic EL element 2-1 is 100.
[0556] [表 4] [0556] [Table 4]
Figure imgf000127_0001
Figure imgf000127_0001
[0557] 表 4から、本発明の有機 EL素子は、外部取り出し量子効率に優れ、長寿命化が達 成されて!/ヽることが分力ゝつた。 [0557] From Table 4, it was found that the organic EL device of the present invention was excellent in external extraction quantum efficiency and had a long lifetime!
[0558] 実施例 6 [0558] Example 6
《有機 EL素子 3— 1〜3— 3の作製》  《Preparation of organic EL element 3-1 to 3-3》
〈陰極側部位の作製〉  <Preparation of cathode side part>
100mm X 100mm X I. 1mmのガラス基板をイソプロピルアルコールで超音波洗 浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った後、市販の真空蒸着装 置の基板ホルダーに固定し、アルミニウム (膜厚約 l lOnm)、フッ化リチウム (膜厚約 0. 5nm)を 着した。  100mm X 100mm X I. A 1mm glass substrate is ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, and then fixed to a substrate holder of a commercially available vacuum deposition device. Aluminum (thickness: about lOnm) and lithium fluoride (thickness: about 0.5 nm) were applied.
[0559] この基板を市販のスピンコータに取り付け、例示化合物 3— 2 (20mg)をトルエン 10 mlに溶解した溶液を用い、 1000rpm、 30秒の条件下、スピンコート(膜厚約 10nm) 、紫外光を 30秒照射した後、 60°Cで 1時間真空乾燥し、電子輸送層を設けた。  [0559] This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 3-2 (20 mg) in 10 ml of toluene was spin-coated (film thickness: about 10 nm), ultraviolet light under conditions of 1000 rpm and 30 seconds. After being irradiated for 30 seconds, it was vacuum dried at 60 ° C. for 1 hour to provide an electron transport layer.
[0560] 次ぃで、じ8? (601118)と11:ー12 (3. Omg)とをトルエン 12mlに溶解した溶液を用い 、 1000rpm、 30秒の条件下、スピンコートし (膜厚約 30nm)、 60°Cで 1時間真空乾 燥し発光層とし、陰極側部位を作製した。 [0560] Next, spin-coat using a solution of Ji 8? (60111 8 ) and 11: -12 (3. Omg) dissolved in 12ml of toluene at 1000rpm for 30 seconds (approx. Film thickness approx. 30 nm) at 60 ° C. for 1 hour in vacuum to form a light emitting layer, and a cathode side portion was prepared.
[0561] 〈陽極側部位の作製〉  <Fabrication of anode side part>
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。 [0562] この基板を市販のスピンコータに取り付け、例示化合物 4 1 (60mg)をトルエン 10 mlに溶解した溶液を用い、 1000rpm、 30秒の条件下、スピンコート(膜厚約 40nm) 、紫外光を 30秒照射した後、 60°Cで 1時間真空乾燥し正孔輸送層とした。 As a positive electrode, a ITO substrate (100 mm X 100 mm X I. 1 mm thick ITO (indium tin oxide) filmed on lOOnm substrate (ΝΗ Techno Glass Co., Ltd. ΝΑ45)) was put on this ITO transparent electrode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. [0562] This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 4 1 (60 mg) in 10 ml of toluene was spin-coated (film thickness of about 40 nm) and ultraviolet light under conditions of 1000 rpm and 30 seconds. After irradiation for 30 seconds, vacuum drying was performed at 60 ° C. for 1 hour to form a hole transport layer.
[0563] 次いで、 CBP (60mg)と Ir 1 (3. Omg)とをトルエン 12mlに溶解した溶液を用い、 1000rpm、 30秒の条件下、スピンコートし (膜厚約 30nm)、 60°Cで 1時間真空乾燥 し、発光層とし、陽極側部位を作製した。  [0563] Next, a solution obtained by dissolving CBP (60 mg) and Ir 1 (3. Omg) in 12 ml of toluene was spin-coated under a condition of 1000 rpm for 30 seconds (film thickness of about 30 nm) at 60 ° C. It vacuum-dried for 1 hour, it was set as the light emitting layer, and the anode side site | part was produced.
[0564] 〈接合〉  [0564] <Joint>
このようにして得られた陰極側部位の発光層と陽極側部位の発光層を対向させて 重ね合わせ、接合冶具を用いて、 1 X 10— 2Paの減圧環境下で押圧力 0. IMPaで圧 着し、密着、固定し、陽極側力も紫外光(lOOmWZcm2)を 90秒照射し、出来上が つた素子を封止処理 (ガラス基板同士をエポキシ系の接着剤を用い接着した)し、有 機 EL素子 3—1を作製した。 Thus it is opposed to the light-emitting layer and the light emitting layer on the anode side portion of the resulting cathode site overlay, using a bonding jig, the pressing force 0. IMPa under a reduced pressure environment of 1 X 10- 2 Pa It is pressed, adhered, fixed, and the anode side force is irradiated with ultraviolet light (lOOmWZcm 2 ) for 90 seconds, and the resulting device is sealed (the glass substrates are bonded to each other using an epoxy adhesive) Organic EL element 3-1 was fabricated.
[0565] 有機 EL素子 3— 1の作製において、電子輸送層、発光層及び正孔輸送層に使用 する化合物を表 5に示すィ匕合物に置き換えた以外は、有機 EL素子 3—1と同じ方法 で有機 EL素子 3— 2、 3— 3を作製した。  [0565] Organic EL device 3-1, except that the compounds used in the electron transport layer, the light emitting layer, and the hole transport layer were replaced with the compounds shown in Table 5 in the production of organic EL device 3-1. Organic EL devices 3-2 and 3-3 were fabricated using the same method.
[0566] 《有機 EL素子 3— 1〜3— 3の評価》  [0566] 《Evaluation of organic EL device 3-1 to 3-3》
実施例 5と同様にして、外部取り出し量子効率、寿命の評価を行った。  In the same manner as in Example 5, the external extraction quantum efficiency and lifetime were evaluated.
[0567] [表 5]  [0567] [Table 5]
Figure imgf000128_0001
Figure imgf000128_0001
[0568] 表 5から、本発明の有機 EL素子は、外部取り出し量子効率に優れ、長寿命化が達 成されて!/ヽることが分力ゝつた。 [0568] From Table 5, it was found that the organic EL device of the present invention was excellent in external extraction quantum efficiency and achieved a long life!
[0569] 実施例 7 [0569] Example 7
《有機 EL素子 4 1〜4 5の作製》  <Production of organic EL elements 4 1 to 4 5>
〈陰極側部位の作製〉  <Preparation of cathode side part>
100mm X 100mm X I. 1mmのガラス基板をイソプロピルアルコールで超音波洗 浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。この基板を市販の真 空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートの 1つにアルミ- ゥム 200mgを入れ、別のモリブデン製抵抗加熱ボートにフッ化リチウム 200mgを入 れ、更に別のモリブデン製抵抗加熱ボートに BCPを 200mg入れ、別のモリブデン製 抵抗加熱ボートにホストイ匕合物として CBP200mgを入れ、別のモリブデン製抵抗力口 熱ボートに Ir 9を lOOmg入れ、真空蒸着装置に取り付けた。 100mm X 100mm X I. Ultrasonic cleaning of 1mm glass substrate with isopropyl alcohol It was cleaned, dried with dry nitrogen gas, and washed with UV ozone for 5 minutes. This substrate is fixed to the substrate holder of a commercially available vacuum evaporation system, 200 mg of aluminum is put into one of the resistance heating boats made of molybdenum, 200 mg of lithium fluoride is put into another resistance heating boat made of molybdenum, and Put another 200 mg BCP in a resistance heating boat made of molybdenum, put 200 mg CBP as a host compound in another resistance heating boat made of molybdenum, put lOO mg of Ir 9 in another resistance heating boat made of molybdenum, and put it in a vacuum evaporation system Attached.
[0570] 次 、で、真空槽を 4 X 10—4Paまで減圧した後、アルミニウムの入った前記加熱ボー トに通電して加熱し、アルミニウム (膜厚約 l lOnm)を蒸着し、続いてフッ化リチウム の入った熱ボートに通電して加熱し、フッ化リチウム (膜厚約 0. 5nm)を蒸着した。 [0570] in the following, after pressure in the vacuum tank was reduced to 4 X 10- 4 Pa, and heated by supplying an electric current to the boat containing the aluminum, aluminum was vapor-deposited (thickness of about l lOnm), followed by A thermal boat containing lithium fluoride was energized and heated to deposit lithium fluoride (film thickness of about 0.5 nm).
[0571] 次に、 BCPの入った前記加熱ボートに通電して加熱し、蒸着速度 0. InmZ秒で 前記発光層の上に蒸着して膜厚約 lOnmの電子輸送層を設けた。更に、 CBPと Ir— 9の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度 0. 2nmZ秒、 0. 0 12nmZ秒で前記正孔輸送層上に共蒸着して、膜厚 40nmの発光層を設け、陰極 側部位を作製した。  [0571] Next, the heating boat containing BCP was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0. InmZ seconds to provide an electron transport layer having a thickness of about lOnm. Further, the heating boat containing CBP and Ir-9 was energized and heated, and co-deposited on the hole transport layer at a deposition rate of 0.2 nmZ seconds and 0.012 nmZ seconds, respectively, A light emitting layer was provided, and a cathode side portion was prepared.
[0572] 〈陽極側部位の作製〉  <Fabrication of anode side part>
陽極として 100mm X 100mm X I . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。この透明支持基板 を市販の真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボート〖こ a N The ITO transparent electrode was provided after patterning was performed on a substrate (ΝΗ Techno Glass Co., Ltd. ΝΑ45) obtained by depositing ITO (indium tin oxide) on a 100 mm X 100 mm XI .1 mm glass substrate as an anode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This transparent support substrate is fixed to the substrate holder of a commercially available vacuum evaporation system, and a resistance heating boat made of molybdenum a N
PDを 200mg入れ、真空蒸着装置に取り付けた。 200 mg of PD was placed and attached to a vacuum evaporation system.
[0573] 真空槽を 4 X 10—4Paまで減圧した後、 a—NPDの入った前記加熱ボートに通電し て加熱し、蒸着速度 0. InmZ秒で透明支持基板に蒸着し、膜厚 40nmの正孔輸送 層を設け、陽極側部位を作製した。 [0573] After pressure in the vacuum tank was reduced to 4 X 10- 4 Pa, and heated by supplying an electric current to the boat containing a-NPD, it was deposited on the transparent supporting substrate at a deposition rate of 0. InmZ sec, film thickness 40nm The positive hole transport layer was provided, and the anode side part was produced.
[0574] 〈接合〉 [0574] <Join>
このようにして得られた陰極側部位の発光層と陽極側部位の正孔輸送層を対向さ せて重ね合わせ、接合時具を用いて、 l X 10—2Paの減圧環境下で押圧力 0. IMPa で圧着、密着、固定して、出来上がった素子をそのまま封止処理 (ガラス基板同士を エポキシ系の接着剤を用い接着した)し、有機 EL素子 4— 1を作製した。 Thus overlay are opposed to the hole-transporting layer of a light-emitting layer and the anode side portion of the resulting cathode site, using a bonding time of ingredients, the pressing force under a reduced pressure environment of l X 10- 2 Pa 0. IMPa The resulting device was sealed as it was, and the resulting device was sealed (glass substrates were bonded together using an epoxy adhesive) to produce an organic EL device 4-1.
[0575] 有機 EL素子 4 1の作製において、電子輸送層、発光層及び正孔輸送層に使用 する化合物を表 6に示すィ匕合物に置き換えた以外は、有機 EL素子 4—1と同じ方法 で有機 EL素子 4— 2、 4— 3を作製した。 [0575] Same as organic EL device 4-1, except that the compounds used in the electron transport layer, light emitting layer, and hole transport layer were replaced with the compounds shown in Table 6 in the preparation of organic EL device 41. The organic EL devices 4-2 and 4-3 were fabricated by this method.
[0576] 更に有機 EL素子 4— 1〜4— 3それぞれに、 23°C、乾燥窒素ガス雰囲気下で 5. 0 mAZcm2定電流を 100時間印加後の素子を有機 EL素子 4— 4〜4— 6とした。 [0576] Further, each of the organic EL devices 4-1 to 4-3 is a device after applying 5.0 mAZcm 2 constant current for 100 hours at 23 ° C in a dry nitrogen gas atmosphere. — 6
[0577] 《有機 EL素子 4 1〜4 6の評価》 [0577] <Evaluation of organic EL elements 4 1 to 4 6>
実施例 5と同様にして、外部取り出し量子効率、寿命の評価を行った。  In the same manner as in Example 5, the external extraction quantum efficiency and lifetime were evaluated.
[0578] [化 67] — PD
Figure imgf000130_0001
[0578] [Chemical 67] — PD
Figure imgf000130_0001
[0579] [表 6] [0579] [Table 6]
Figure imgf000130_0002
Figure imgf000130_0002
[0580] 表 6から、本発明の有機 EL素子は、外部取り出し量子効率に優れ、長寿命化が達 成されて!/ヽることが分力ゝつた。 [0580] From Table 6, it was found that the organic EL device of the present invention was excellent in external extraction quantum efficiency and achieved a long life!
[0581] 実施例 8 [0581] Example 8
《フルカラー表示装置の作製》  <Production of full-color display device>
(青色発光有機 EL素子) 青色発光有機 EL素子として、実施例 6で作製した有機 EL素子 3— 3を用い、青色 発光有機 EL素子 5 - 1B (青)とした。 (Blue light emitting organic EL device) As the blue light-emitting organic EL element, the organic EL element 3-3 produced in Example 6 was used, and a blue light-emitting organic EL element 5-1B (blue) was obtained.
[0582] (緑色発光有機 EL素子)  [0582] (Green light-emitting organic EL device)
実施例 6の有機 EL素子 3— 3の作製にぉ 、て、 2— 7を 2— 1に変更した以外は同 様にして、緑色発光有機 EL素子 5— 1G (緑)を作製した。  A green light-emitting organic EL element 5-1G (green) was prepared in the same manner as in the production of the organic EL element 3-3 of Example 6 except that 2-7 was changed to 2-1.
[0583] (赤色発光有機 EL素子)  [0583] (Red light-emitting organic EL device)
実施例 6の有機 EL素子 3— 3の作製にぉ 、て、 2— 7を 2— 5に変更した以外は同 様にして、赤色発光有機 EL素子 5— 1R (赤)を作製した。  A red light emitting organic EL element 5-1R (red) was produced in the same manner as in the production of the organic EL element 3-3 of Example 6 except that 2-7 was changed to 2-5.
[0584] 上記の赤色、緑色及び青色発光有機 EL素子を同一基板上に並置し、図 1に記載 の形態を有するアクティブマトリクス方式フルカラー表示装置を作製し、図 2には、作 製した前記表示装置の表示部 Aの模式図のみを示した。即ち、同一基板上に複数 の走査線 5及びデータ線 6を含む配線部と、並置した複数の画素 3 (発光の色が赤領 域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線 5及び複数 のデータ線 6はそれぞれ導電材料力 なり、走査線 5とデータ線 6は格子状に直交し て、直交する位置で画素 3に接続している(詳細は図示せず)。前記複数の画素 3は 、それぞれの発光色に対応した有機 EL素子、アクティブ素子であるスイッチングトラ ンジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動され ており、走査線 5から走査信号が印加されると、データ線 6から画像データ信号を受 け取り、受け取った画像データに応じて発光する。このように各赤、緑、青の画素を適 宜、並置することによって、フルカラー表示装置を作製した。  [0584] The above red, green and blue light emitting organic EL elements are juxtaposed on the same substrate to produce an active matrix type full color display device having the configuration shown in Fig. 1, and Fig. 2 shows the produced display. Only a schematic diagram of the display A of the apparatus is shown. That is, a wiring section including a plurality of scanning lines 5 and data lines 6 on the same substrate, and a plurality of juxtaposed pixels 3 (emission color is a pixel in a red region, a pixel in a green region, a pixel in a blue region, etc.) The scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material force, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions ( Details are not shown). The plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5. Then, an image data signal is received from the data line 6 and light is emitted according to the received image data. In this way, a full color display device was fabricated by juxtaposing the red, green, and blue pixels appropriately.
[0585] 前記フルカラー表示装置を駆動することにより、発光効率が高い発光寿命の長いフ ルカラー動画表示が得られることを確認することができた。  [0585] It was confirmed that by driving the full-color display device, a full-color moving image display with a high luminous efficiency and a long luminous lifetime was obtained.
[0586] 実施例 9  [0586] Example 9
《白色の照明装置の作製》  <Production of white lighting device>
実施例 6の有機 EL素子 3 - 3にお!/、て、 2— 7を 2— 7と 2— 1と 2— 5の混合物に変 更した以外は同様にして、白色発光有機 EL素子 6— 1W (白色)を作製した。  In the same manner as in Example 6 except that the organic EL device 3-3 was changed to a mixture of 2-7, 2-1, and 2-5, and the white light emitting organic EL device 6 — 1W (white) was produced.
[0587] 得られた有機 EL素子 6— 1Wを評価するに際しては、非発光面をガラスケースで覆 い、照明装置とした。照明装置は、発光効率が高く発光寿命の長い白色光を発する 薄型の照明装置として使用することができた。 [0587] In evaluating the obtained organic EL element 6-1W, the non-light-emitting surface was covered with a glass case to obtain a lighting device. The lighting device emits white light with high luminous efficiency and long emission life It could be used as a thin lighting device.
[0588] 実施例 10  [0588] Example 10
《有機 EL素子 3e— l〜3e— 3の作製》  << Production of organic EL elements 3e- l to 3e-3 >>
〈陰極側部位の作製〉  <Preparation of cathode side part>
100mm X 100mm X I. 1mmのガラス基板をイソプロピルアルコールで超音波洗 浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った後、市販の真空蒸着装 置の基板ホルダーに固定し、アルミニウム (膜厚約 l lOnm)、フッ化リチウム (膜厚約 0. 5nm)を 着した。  100mm X 100mm X I. A 1mm glass substrate is ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, and then fixed to a substrate holder of a commercially available vacuum deposition device. Aluminum (thickness: about lOnm) and lithium fluoride (thickness: about 0.5 nm) were applied.
[0589] この基板を市販のスピンコータに取り付け、(t—Bu) PBD (20mg)をトルエン 80ml に溶解した溶液を用い、 1000rpm、 30秒の条件下、スピンコート、 60°Cで 1時間真 空乾燥し、電子輸送層を設け、陰極側部位を作製した。  [0589] This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving (t—Bu) PBD (20 mg) in 80 ml of toluene was spin-coated at 1000 rpm for 30 seconds, and vacuumed at 60 ° C for 1 hour. It dried and provided the electron carrying layer and produced the cathode side site | part.
[0590] 〈陽極側部位の作製〉  [0590] <Production of anode side part>
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。  As a positive electrode, a ITO substrate (100 mm X 100 mm X I. 1 mm thick ITO (indium tin oxide) filmed on lOOnm substrate (ΝΗ Techno Glass Co., Ltd. ΝΑ45)) was put on this ITO transparent electrode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
[0591] この基板を市販のスピンコータに取り付け、ポリ(3, 4 エチレンジォキシチォフエ ン)—ポリスチレンスルホネート(PEDOT/PSSゝ Bayer社製、 Baytron P A1 40 83)を純水で 70%に希釈した溶液を 3000rpm、 30秒、でスピンコート法により製膜し た後、 200°Cにて 1時間乾燥し、膜厚 30nmの第一正孔輸送層を設けた。  [0591] This substrate was attached to a commercially available spin coater, and poly (3,4 ethylene dioxythiophene) -polystyrene sulfonate (PEDOT / PSS ゝ Bayer, Baytron P A1 40 83) was made up to 70% with pure water. The diluted solution was formed into a film by spin coating at 3000 rpm for 30 seconds, and then dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
[0592] この基板を窒素雰囲気下に移し、第一正孔輸送層上に、例示化合物 4 14 (50m g)をトルエン 10mlに溶解した溶液を用い、 1000rpm、 30秒の条件下、スピンコート 、紫外光を 30秒照射した後、 60°Cで 1時間真空乾燥し、第二正孔輸送層とした。  [0592] This substrate was transferred to a nitrogen atmosphere, and a solution obtained by dissolving Exemplified Compound 4 14 (50 mg) in 10 ml of toluene on the first hole transport layer was spin-coated under conditions of 1000 rpm and 30 seconds. After irradiation with ultraviolet light for 30 seconds, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.
[0593] 次!、で、比較化合物 1 (60mg)と Ir— 1 (6. Omg)とをトルエン 6mlに溶解した溶液 を用い、 1000rpm、 30秒の条件下、スピンコートし(膜厚約 60nm)、 60°Cで 1時間 真空乾燥し、発光層とし、陽極側部位を作製した。  [0593] Next! Was spin-coated using a solution of Comparative Compound 1 (60 mg) and Ir-1 (6. Omg) in 6 ml of toluene at 1000 rpm for 30 seconds (film thickness of about 60 nm). ), Vacuum-dried at 60 ° C. for 1 hour to form a light-emitting layer, and an anode side portion was prepared.
[0594] [化 68] [0594] [Chemical 68]
Figure imgf000133_0001
Figure imgf000133_0001
[0595] 〈接合〉 [0595] <Bonding>
このようにして得られた陰極側部位の電子輸送層と陽極側部位の発光層を対向さ せて重ね合わせ、接合冶具を用いて 1 X 10— 2Paの減圧環境下で押圧力 0. IMPaで 圧着し、密着、固定し、 100°Cで 1時間過熱処理を行い、出来上がった素子を封止 処理 (エポキシ系の接着剤を用いた)し、有機 EL素子 3e— 1を作製した。 Thus superimposed to face the light-emitting layer electron-transporting layer and the anode side portion of the resulting cathode site, pressure 0. IMPa under a reduced pressure environment of 1 X 10- 2 Pa using a bonding jig The resulting device was subjected to heat treatment at 100 ° C for 1 hour, and the resulting device was sealed (using an epoxy adhesive) to produce an organic EL device 3e-1.
[0596] 有機 EL素子 3e— 1の作製において、電子輸送層、発光層及び第二正孔輸送層に 使用する化合物を表 7に示すィ匕合物に置き換えた以外は、有機 EL素子 3e—lと同 じ方法で有機 EL素子 3e— 2、 3e— 3を作製した。  [0596] Organic EL device 3e-1 was prepared except that the compounds used in the electron transport layer, the light emitting layer, and the second hole transport layer were replaced with the compounds shown in Table 7 in the production of organic EL device 3e-1. Organic EL devices 3e-2 and 3e-3 were fabricated using the same method as l.
[0597] 《有機EL素子3e— l〜3e— 3の評価》  [0597] << Evaluation of organic EL elements 3e-1 to 3e-3 >>
実施例 5と同様にして、外部取り出し量子効率、寿命の評価を行った。  In the same manner as in Example 5, the external extraction quantum efficiency and lifetime were evaluated.
[0598] [表 7]  [0598] [Table 7]
Figure imgf000133_0002
Figure imgf000133_0002
[0599] 表 7から、本発明の有機 EL素子は、外部取り出し量子効率に優れ、長寿命化が達 成されて!/ヽることが分力ゝつた。 [0599] From Table 7, it was found that the organic EL device of the present invention was excellent in external extraction quantum efficiency and achieved a long life!
[0600] 実施例 11 [0600] Example 11
《有機 EL素子 4e - 1〜4e - 3の作製》  <Production of organic EL elements 4e-1 to 4e-3>
〈陰極側部位の作製〉  <Preparation of cathode side part>
100mm X 100mm X I. 1mmのガラス基板をイソプロピルアルコールで超音波洗 浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った後、市販の真空蒸着装 置の基板ホルダーに固定し、アルミニウム (膜厚約 l lOnm)、フッ化リチウム (膜厚約 0. 5nm)を 着した。 100mm X 100mm X I. Ultrasonic cleaning of 1mm glass substrate with isopropyl alcohol After cleaning with dry nitrogen gas and UV ozone cleaning for 5 minutes, it is fixed to the substrate holder of a commercially available vacuum deposition apparatus, and aluminum (thickness: approx. LOnm), lithium fluoride (thickness: approx. 0) Wearing 5nm).
[0601] この基板を市販のスピンコータに取り付け、例示化合物 3— 2 (20mg)をトルエン 10 mlに溶解した溶液を用い、 1000rpm、 30秒の条件下、スピンコート(膜厚約 lOnm) 、紫外光を 30秒照射した後、 60°Cで 1時間真空乾燥し、電子輸送層を設けた。  [0601] This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 3-2 (20 mg) in 10 ml of toluene was spin-coated (film thickness about lOnm), ultraviolet light under conditions of 1000 rpm and 30 seconds. After being irradiated for 30 seconds, it was vacuum dried at 60 ° C. for 1 hour to provide an electron transport layer.
[0602] 次ぃで、じ8? (601118)と11:ー12 (3. Omg)とをトルエン 12mlに溶解した溶液を用い 、 1000rpm、 30秒の条件下、スピンコートし (膜厚約 30nm)、 60°Cで 1時間真空乾 燥し発光層とし、陰極側部位を作製した。 [0602] Next, using a solution of Ji 8? (60111 8 ) and 11: -12 (3. Omg) dissolved in 12 ml of toluene, spin-coated at 1000 rpm for 30 seconds (film thickness approx. 30 nm) at 60 ° C. for 1 hour in vacuum to form a light emitting layer, and a cathode side portion was prepared.
[0603] 〈陽極側部位の作製〉  [0603] <Fabrication of anode side part>
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。  As a positive electrode, a ITO substrate (100 mm X 100 mm X I. 1 mm thick ITO (indium tin oxide) filmed on lOOnm substrate (ΝΗ Techno Glass Co., Ltd. ΝΑ45)) was put on this ITO transparent electrode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
[0604] この基板を市販のスピンコータに取り付け、例示化合物 4 1 (60mg)をトルエン 10 mlに溶解した溶液を用い、 1000rpm、 30秒の条件下、スピンコート(膜厚約 40nm) 、紫外光を 30秒照射した後、 60°Cで 1時間真空乾燥し正孔輸送層とした。  [0604] This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 4 1 (60 mg) in 10 ml of toluene was spin-coated (film thickness of about 40 nm) and ultraviolet light under conditions of 1000 rpm and 30 seconds. After irradiation for 30 seconds, vacuum drying was performed at 60 ° C. for 1 hour to form a hole transport layer.
[0605] 次いで、 CBP (60mg)と Ir 1 (3. Omg)とをトルエン 12mlに溶解した溶液を用い、 1000rpm、 30秒の条件下、スピンコートし (膜厚約 30nm)、 60°Cで 1時間真空乾燥 し、発光層とし、陽極側部位を作製した。  [0605] Next, a solution obtained by dissolving CBP (60 mg) and Ir 1 (3. Omg) in 12 ml of toluene was spin-coated at 1000 rpm for 30 seconds (film thickness of about 30 nm) at 60 ° C. It vacuum-dried for 1 hour, it was set as the light emitting layer, and the anode side site | part was produced.
[0606] 〈接合〉  [0606] <Joint>
このようにして得られた陰極側部位の発光層と陽極側部位の発光層を対向させて 重ね合わせ、接合冶具を用いて、 1 X 10— 2Paの減圧環境下で押圧力 0. IMPaで圧 着し、密着、固定し、陽極側力も紫外光(lOOmWZcm2)を 90秒照射し、出来上が つた素子を封止処理 (ガラス基板同士をエポキシ系の接着剤を用い接着した)し、有 機 EL素子 4e— 1を作製した。 Thus it is opposed to the light-emitting layer and the light emitting layer on the anode side portion of the resulting cathode site overlay, using a bonding jig, the pressing force 0. IMPa under a reduced pressure environment of 1 X 10- 2 Pa It is pressed, adhered, fixed, and the anode side force is irradiated with ultraviolet light (lOOmWZcm 2 ) for 90 seconds, and the resulting device is sealed (the glass substrates are bonded to each other using an epoxy adhesive) An organic EL element 4e-1 was fabricated.
[0607] 有機 EL素子 4e— 1の作製において、電子輸送層、発光層及び正孔輸送層に使用 する化合物を表 8に示す化合物に置き換えた以外は、有機 EL素子 4e— 1と同じ方 法で有機 EL素子 4e— 2、 4e— 3を作製した。 [0607] The same method as for organic EL element 4e-1, except that the compounds used in the electron transport layer, the light emitting layer, and the hole transport layer were replaced with the compounds shown in Table 8 in the preparation of organic EL element 4e-1. Organic EL devices 4e-2 and 4e-3 were fabricated by the above method.
[0608] 《有機 EL素子 4e— l〜4e— 3の評価》 [0608] << Evaluation of organic EL elements 4e- l to 4e-3 >>
実施例 5と同様にして、外部取り出し量子効率、寿命の評価を行った。  In the same manner as in Example 5, the external extraction quantum efficiency and lifetime were evaluated.
[0609] [表 8] [0609] [Table 8]
Figure imgf000135_0001
Figure imgf000135_0001
[0610] 表 8から、本発明の有機 EL素子は、外部取り出し量子効率に優れ、長寿命化が達 成されて!/ヽることが分力ゝつた。 [0610] From Table 8, it was found that the organic EL device of the present invention was excellent in external extraction quantum efficiency and achieved a long life!
[0611] 実施例 12 [0611] Example 12
《有機 EL素子 5e— l〜5e— 5の作製》  << Production of organic EL elements 5e- l to 5e-5 >>
〈陰極側部位の作製〉  <Preparation of cathode side part>
100mm X 100mm X I. 1mmのガラス基板をイソプロピルアルコールで超音波洗 浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。この基板を市販の真 空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートの 1つにアルミ- ゥム 200mgを入れ、別のモリブデン製抵抗加熱ボートにフッ化リチウム 200mgを入 れ、更に別のモリブデン製抵抗加熱ボートに BCPを 200mg入れ、別のモリブデン製 抵抗加熱ボートにホストイ匕合物として CBP200mgを入れ、別のモリブデン製抵抗力口 熱ボートに Ir 9を lOOmg入れ、真空蒸着装置に取り付けた。  100 mm X 100 mm X I. A 1 mm glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaned for 5 minutes. This substrate is fixed to the substrate holder of a commercially available vacuum evaporation system, 200 mg of aluminum is put into one of the resistance heating boats made of molybdenum, 200 mg of lithium fluoride is put into another resistance heating boat made of molybdenum, and Put 200 mg of BCP in a separate resistance heating boat made of molybdenum, put 200 mg of CBP as a host compound in another resistance heating boat made of molybdenum, put Ir 9 mg in another molybdenum resistance heating boat, and put it in a vacuum evaporation system. Attached.
[0612] 次 、で、真空槽を 4 X 10— 4Paまで減圧した後、アルミニウムの入った前記加熱ボー トに通電して加熱し、アルミニウム (膜厚約 l lOnm)を蒸着し、続いてフッ化リチウム の入った熱ボートに通電して加熱し、フッ化リチウム (膜厚約 0. 5nm)を蒸着した。 [0612] in the following, after pressure in the vacuum tank was reduced to 4 X 10- 4 Pa, and heated by supplying an electric current to the boat containing the aluminum, aluminum was vapor-deposited (thickness of about l lOnm), followed by A thermal boat containing lithium fluoride was energized and heated to deposit lithium fluoride (film thickness of about 0.5 nm).
[0613] 次に、 BCPの入った前記加熱ボートに通電して加熱し、蒸着速度 0. InmZ秒で 前記発光層の上に蒸着して膜厚約 lOnmの電子輸送層を設けた。更に、 CBPと Ir— 9の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度 0. 2nmZ秒、 0. 0 12nmZ秒で前記正孔輸送層上に共蒸着して、膜厚 40nmの発光層を設け、陰極 側部位を作製した。 [0613] Next, the heating boat containing BCP was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0. InmZ seconds to provide an electron transport layer having a thickness of about lOnm. Further, the heating boat containing CBP and Ir-9 was energized and heated, and co-deposited on the hole transport layer at a deposition rate of 0.2 nmZ seconds and 0.012 nmZ seconds, respectively, Emissive layer is provided, cathode A side site was created.
[0614] 〈陽極側部位の作製〉  [0614] <Fabrication of anode side part>
陽極として 100mm X 100mm X I . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。この透明支持基板 を市販の真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボート〖こ a — NPDを 200mg入れ、真空蒸着装置に取り付けた。  The ITO transparent electrode was provided after patterning was performed on a substrate (ΝΗ Techno Glass Co., Ltd. ΝΑ45) obtained by depositing ITO (indium tin oxide) on a 100 mm X 100 mm XI .1 mm glass substrate as an anode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This transparent support substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus, 200 mg of molybdenum resistance heating boat cocoon a-NPD was added, and it was attached to the vacuum vapor deposition apparatus.
[0615] 真空槽を 4 X 10—4Paまで減圧した後、 a—NPDの入った前記加熱ボートに通電し て加熱し、蒸着速度 0. InmZ秒で透明支持基板に蒸着し、膜厚 40nmの正孔輸送 層を設け、陽極側部位を作製した。 [0615] After pressure in the vacuum tank was reduced to 4 X 10- 4 Pa, and heated by supplying an electric current to the boat containing a-NPD, it was deposited on the transparent supporting substrate at a deposition rate of 0. InmZ sec, film thickness 40nm The positive hole transport layer was provided, and the anode side part was produced.
[0616] 〈接合〉  [0616] <Bonding>
このようにして得られた陰極側部位の発光層と陽極側部位の正孔輸送層を対向さ せて重ね合わせ、接合時具を用いて、 l X 10—2Paの減圧環境下で押圧力 0. IMPa で圧着、密着、固定して、出来上がった素子をそのまま封止処理 (ガラス基板同士を エポキシ系の接着剤を用い接着した)し、有機 EL素子 5e— 1を作製した。 Thus overlay are opposed to the hole-transporting layer of a light-emitting layer and the anode side portion of the resulting cathode site, using a bonding time of ingredients, the pressing force under a reduced pressure environment of l X 10- 2 Pa 0. Crimping, adhering, and fixing with IMPa, the resulting device was sealed as it was (glass substrates were bonded together using an epoxy adhesive) to produce organic EL device 5e-1.
[0617] 有機 EL素子 5e— 1の作製において、電子輸送層、発光層及び正孔輸送層に使用 する化合物を表 9に示すィ匕合物に置き換えた以外は、有機 EL素子 5e—lと同じ方 法で有機 EL素子 5e— 2、 5e— 3を作製した。  [0617] In the production of the organic EL element 5e-1, the compounds used in the electron transport layer, the light emitting layer, and the hole transport layer were replaced with the compounds shown in Table 9, and the organic EL element 5e-1 Organic EL devices 5e-2 and 5e-3 were fabricated using the same method.
[0618] 更に有機 EL素子 5e— l〜5e— 3それぞれに、 23°C、乾燥窒素ガス雰囲気下で 5.  [0618] Further, each of the organic EL elements 5e-l to 5e-3 is 23 ° C under a dry nitrogen gas atmosphere 5.
OmAZcm2定電流を 100時間印加後の素子を有機 EL素子 5e— 4〜5e— 6とした。 The elements after applying OmAZcm 2 constant current for 100 hours were designated as organic EL elements 5e-4 to 5e-6.
[0619] 《有機EL素子5e— l〜5e— 6の評価》  [0619] << Evaluation of organic EL elements 5e- l to 5e-6 >>
実施例 5と同様にして、外部取り出し量子効率、寿命の評価を行った。  In the same manner as in Example 5, the external extraction quantum efficiency and lifetime were evaluated.
[0620] [化 69] α - NPD[0620] [Chem 69] α-NPD
Figure imgf000137_0001
Figure imgf000137_0001
[0621] [表 9] [0621] [Table 9]
Figure imgf000137_0002
Figure imgf000137_0002
[0622] 表 9から、本発明の有機 EL素子は、外部取り出し量子効率に優れ、長寿命化が達 成されて!/ヽることが分力ゝつた。 [0622] From Table 9, it was found that the organic EL device of the present invention was excellent in external extraction quantum efficiency and had a long lifetime!
[0623] 実施例 13 [0623] Example 13
《フルカラー表示装置の作製》  <Production of full-color display device>
(青色発光有機 EL素子)  (Blue light emitting organic EL device)
青色発光有機 EL素子として、実施例 11で作製した有機 EL素子 4e— 3を用い、青 色発光有機 EL素子 6e— IB (青)とした。  As the blue light emitting organic EL element, the organic EL element 4e-3 prepared in Example 11 was used, and a blue light emitting organic EL element 6e-IB (blue) was obtained.
[0624] (緑色発光有機 EL素子) [0624] (Green light-emitting organic EL device)
実施例 11の有機 EL素子 4e - 3の作製にぉ 、て、 2 - 7を 2 - 1に変更した以外は 同様にして、緑色発光有機 EL素子 6e— 1G (緑)を作製した。  A green light-emitting organic EL element 6e-1G (green) was produced in the same manner as in the production of the organic EL element 4e-3 of Example 11 except that 2-7 was changed to 2-1.
[0625] (赤色発光有機 EL素子) [0625] (Red light-emitting organic EL device)
実施例 11の有機 EL素子 4e - 3の作製にぉ 、て、 2— 7を 2 - 5に変更した以外は 同様にして、赤色発光有機 EL素子 6e— 1R (赤)を作製した。  A red light-emitting organic EL element 6e-1R (red) was produced in the same manner as in the production of the organic EL element 4e-3 of Example 11 except that 2-7 was changed to 2-5.
[0626] 上記の赤色、緑色及び青色発光有機 EL素子を同一基板上に並置し、図 1に記載 の形態を有するアクティブマトリクス方式フルカラー表示装置を作製し、図 2には、作 製した前記表示装置の表示部 Aの模式図のみを示した。即ち、同一基板上に複数 の走査線 5及びデータ線 6を含む配線部と、並置した複数の画素 3 (発光の色が赤領 域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線 5及び複数 のデータ線 6はそれぞれ導電材料力 なり、走査線 5とデータ線 6は格子状に直交し て、直交する位置で画素 3に接続している(詳細は図示せず)。前記複数の画素 3は 、それぞれの発光色に対応した有機 EL素子、アクティブ素子であるスイッチングトラ ンジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動され ており、走査線 5から走査信号が印加されると、データ線 6から画像データ信号を受 け取り、受け取った画像データに応じて発光する。このように各赤、緑、青の画素を適 宜、並置することによって、フルカラー表示装置を作製した。 [0626] The above red, green, and blue light emitting organic EL elements are juxtaposed on the same substrate to fabricate an active matrix type full color display device having the configuration shown in FIG. 1, and FIG. Only the schematic diagram of the display part A of the manufactured display device is shown. That is, a wiring section including a plurality of scanning lines 5 and data lines 6 on the same substrate, and a plurality of juxtaposed pixels 3 (emission color is a pixel in a red region, a pixel in a green region, a pixel in a blue region, etc.) The scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material force, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions ( Details are not shown). The plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5. Then, an image data signal is received from the data line 6 and light is emitted according to the received image data. In this way, a full color display device was fabricated by juxtaposing the red, green, and blue pixels appropriately.
[0627] 前記フルカラー表示装置を駆動することにより、発光効率が高い発光寿命の長いフ ルカラー動画表示が得られることを確認することができた。  [0627] It was confirmed that by driving the full-color display device, a full-color moving image display with a high light emission efficiency and a long light emission lifetime was obtained.
[0628] 実施例 14  [0628] Example 14
《白色の照明装置の作製》  <Production of white lighting device>
実施例 11の有機 EL素子 4e— 3において、 2— 7を 2— 7と 2— 1と 2— 5の混合物に 変更した以外は同様にして、白色発光有機 EL素子 7e— 1W (白色)を作製した。  In the same manner as in Example 11 organic EL device 4e-3, except that 2-7 was changed to a mixture of 2-7, 2-1, and 2-5, white light emitting organic EL device 7e-1W (white) was Produced.
[0629] 得られた有機 EL素子 7e— 1Wを評価するに際しては、非発光面をガラスケースで 覆い、照明装置とした。照明装置は、発光効率が高く発光寿命の長い白色光を発す る薄型の照明装置として使用することができた。 [0629] In evaluating the obtained organic EL device 7e-1W, the non-light-emitting surface was covered with a glass case to obtain a lighting device. The illuminating device could be used as a thin illuminating device that emits white light with high luminous efficiency and long emission life.
[0630] 次いで、以下、請求の範囲第 13項〜第 22項に記載の発明(B)を実施例 15〜18 により具体的に説明する。 [0630] Next, the invention (B) described in claims 13 to 22 will be specifically described below with reference to Examples 15 to 18.
[0631] また、以下に実施例 15〜18で使用する化合物の構造を示す。  [0631] The structures of the compounds used in Examples 15 to 18 are shown below.
[0632] [化 70] [0632] [Chemical 70]
CBP NPD
Figure imgf000138_0001
[0633] 実施例 15
CBP NPD
Figure imgf000138_0001
[0633] Example 15
《有機エレクト口ルミネッセンス素子 lb— 1 (1)の作製》:蒸着 +貼合  << Preparation of organic-elect mouth luminescence element lb-1 (1) >>: Vapor deposition + bonding
以下のように、陽極側基板 lb— 1— A、陰極側基板 lb— 1—Bを各々作製し、次い で、該陽極側基板 lb— 1— Aと該陰極側基板 lb— 1—Bとを貼合することにより、有 機エレクト口ルミネッセンス素子 lb— 1 (1)を作製した。  The anode side substrate lb— 1—A and the cathode side substrate lb—1—B were prepared as follows, and then the anode side substrate lb—1—A and the cathode side substrate lb—1—B. The organic electoluminescence device lb-1 (1) was fabricated by pasting together.
[0634] 《陽極側基板 lb— 1—Aの作製》  [0634] <Preparation of anode side substrate lb-1A>
陽極として 100mm X 100mm X I . 1mmのガラス基板上に、 ITO (インジウムチン ォキシド)を lOOnm成膜した基板 (NHテクノグラス社製、 NA45)にパターユングを 行つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコ一ルで超 音波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。  The ITO transparent electrode was provided after patterning was performed on a substrate (NH Techno Glass, NA45) on which ITO (Indium Toxide) was deposited on a 100 mm X 100 mm XI .1 mm glass substrate as an anode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
[0635] この透明支持基板上に、ポリ(3, 4 エチレンジォキシチォフェン) ポリスチレンス ルホネート(PEDOTZPSSゝ Bayer社製、 Baytron P A1 4083)を純水で 70% に希釈した溶液を 3000rpm、 30秒でスピンコート法により成膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの第一正孔輸送層を設けた。  [0635] On this transparent support substrate, a solution obtained by diluting poly (3,4 ethylenedioxythiophene) polystyrene sulfonate (PEDOTZPSS ゝ Bayer, Baytron P A1 4083) to 70% with pure water, 3000rpm, After forming a film by spin coating in 30 seconds, the film was dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
[0636] この第一正孔輸送層を設けた透明支持基板を市販の真空蒸着装置の基板ホルダ 一に固定し、一方、モリブデン製抵抗加熱ボートに第二正孔輸送層の形成材料とし て、 4, 4' —ビス〔N— (1—ナフチル)—N—フエ-ルァミノ〕ビフエ-ル(OC— 2 : a -NPD)を 200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物として 4, 4ージ(n—力ルバゾール)ビフエ-ル (OC 6)を 200mg入れ、別のモリブデン製抵 抗加熱ボートにトリス(2 フエ-ルビリジン)イリジウム(PD—1)を 50mg入れ、真空 蒸着装置に取付けた。  [0636] The transparent support substrate provided with the first hole transport layer is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, and on the other hand, as a material for forming the second hole transport layer on a resistance heating boat made of molybdenum, 4, 4'-Bis [N- (1-naphthyl) -N-phenolamino] biphenyl (OC-2: a-NPD) 200mg is put in a separate molybdenum resistance heating boat as a host compound. Add 200 mg of 4-di (n-power rubazole) biphenyl (OC 6), put 50 mg of tris (2 phenolic lysine) iridium (PD-1) into another molybdenum resistance heating boat, and put it in a vacuum evaporation system. Installed.
[0637] 次いで、真空槽を 4 X 10— 4Paまで減圧した後、 OC— 2の入った前記加熱ボートに 通電して加熱し、蒸着速度 0. InmZ秒で、第一正孔輸送層上に蒸着して、膜厚 30 nmの第二正孔輸送層を設けた。 [0637] Next, after pressure in the vacuum tank was reduced to 4 X 10- 4 Pa, and heated by supplying an electric current to the boat containing OC- 2, at a deposition rate of 0. InmZ seconds, the first hole transport layer A second hole transport layer having a thickness of 30 nm was provided.
[0638] 更に、 OC— 6と PD— 1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着 速度 0. 2nmZ秒、 0. 012nmZ秒で前記正孔輸送層上に共蒸着して膜厚 25nmの 発光層を設け、陽極側基板 lb— 1 Aを作製した。なお、蒸着時の基板温度は室温 であった。 [0639] 《陰極側基板 lb— 1—Bの作製》 [0638] Further, the heating boat containing OC-6 and PD-1 was heated by energization, and co-deposited on the hole transport layer at a deposition rate of 0.2 nmZ seconds and 0.012 nmZ seconds, respectively. A light-emitting layer with a thickness of 25 nm was provided, and an anode side substrate lb-1A was produced. The substrate temperature during vapor deposition was room temperature. [0639] 《Preparation of cathode substrate lb— 1-B》
100mm X 100mm X I. 1mmのガラス基板上をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。これを市販の真空 蒸着装置の基板ホルダーに固定した。モリブデン製抵抗加熱ボートに電子輸送層の 形成材料として、ビス(2—メチル 8 キノリノラート) - (p フエ-ルフエノラート)ァ ルミ-ゥム(OC— 28)を 200mg入れ、別のモリブデン製抵抗加熱ボートにホストイ匕合 物として OC— 6を 200mg入れ、別のモリブデン製抵抗加熱ボートに PD— 1を 50mg 入れ、真空蒸着装置に取り付け、真空槽を 4 X 10— 4Paまで減圧した。 100 mm X 100 mm X I. A 1 mm glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This was fixed to a substrate holder of a commercially available vacuum deposition apparatus. Add 200 mg of bis (2-methyl-8quinolinolato)-(p-phenolphenolato) aluminum (OC-28) as a material for forming an electron transport layer in a resistance heating boat made of molybdenum. boat and OC- 6 placed 200mg as Hosutoi匕合was a PD- 1 in a third resistive heating molybdenum boat charged 50mg, attached to a vacuum deposition apparatus, pressure in the vacuum tank was reduced to 4 X 10- 4 Pa.
[0640] 基板上に、アルミニウム l lOnm、次いでフッ化リチウム 0. 5nmを蒸着して陰極を形 成した後、 OC— 28の入った前記加熱ボートに通電して加熱し、蒸着速度 0. lnm/ 秒で蒸着して、膜厚 50nmの電子輸送層を設けた。  [0640] On the substrate, aluminum lOnm and then lithium fluoride 0.5nm were vapor-deposited to form a cathode, and then the heating boat containing OC-28 was energized and heated, with a vapor deposition rate of 0.1nm. Vapor deposition was performed at a rate of 50 nm per second to provide an electron transport layer having a thickness of 50 nm.
[0641] 更に、 OC— 6と PD—1の入った前記加熱ボートに通電して加熱し、各々蒸着速度 0. 2nmZ秒、 0. 012nm/秒で前記電子輸送層上に共蒸着して膜厚 25nmの発光 層を設け、陰極側基板 lb— 1—Bを作製した。なお、蒸着時の基板温度は室温であ つた o  [0641] Further, the heating boat containing OC-6 and PD-1 was heated by energization, and co-deposited on the electron transport layer at a deposition rate of 0.2 nmZ second and 0.012 nm / second, respectively. A light-emitting layer with a thickness of 25 nm was provided, and a cathode side substrate lb-1-B was produced. The substrate temperature during vapor deposition is room temperature.
[0642] 《貼合による有機 EL素子 lb— 1 (1)の作製》  [0642] << Preparation of organic EL element lb-1 (1) by bonding >>
得られた、陽極側基板 lb— 1—Aと陰極側基板 lb— 1—Bとを大気に接触させるこ となく窒素雰囲気下のグローブボックス(純度 99. 999%以上の高純度窒素ガスの雰 囲気下)で、 lb— 1—Aと lb— 1—Bを重ね合わせ 1 X 10— 2Paの減圧環境下で押圧 力 0. IMPaで圧着し、密着、固定し、有機 EL素子 lb— 1 (1)を作製した。 The obtained glove box in a nitrogen atmosphere without contacting the anode side substrate lb-1—A and the cathode side substrate lb—1—B to the atmosphere (atmosphere of high purity nitrogen gas with a purity of 99.999% or more). in囲気under), and pressed at a pressing force 0. IMPa under vacuum environment lb-1-a 1 superposed and lb- 1-B X 10- 2 Pa , adhesion, and fixing, the organic EL element lb-1 (1) was produced.
[0643] 《有機 EL素子 lb— 1 (2)〜 (5)の作製》 [0643] <Production of organic EL device lb— 1 (2) to (5)>
有機 EL素子 lb— 1 (1)の作製において、作製のノ《ツチが異なる以外は全て同様 にして、有機 EL素子 lb 1 (2)〜lb— 1 (5)を各々作製した。  Organic EL elements lb-1 (1) were manufactured in the same manner except that the manufacturing method was different, and organic EL elements lb 1 (2) to lb-1 (5) were respectively manufactured.
[0644] 《有機 EL素子 lb 2〜: Lb 14の作製》 [0644] << Organic EL element lb 2 ~: Preparation of Lb 14 >>
有機 EL素子 lb— 1の作製において、陽極側基板 lb— 1— Aと、陰極側基板 lb— 1 Bの、各々の発光層の膜厚を表 10に記載の膜厚に変更した以外は全く同様にし て素子 lb— 2〜: Lb— 14を作製した。  In the production of the organic EL device lb-1, the thickness of each light emitting layer of the anode side substrate lb-1 A and the cathode side substrate lb-1 B was changed to the thickness shown in Table 10 at all. In the same manner, the elements lb-2 to Lb-14 were produced.
[0645] 尚、表 10において、有機 EL素子 lb— 2 (1)〜: Lb— 2 (5)、 lb— 5 (1)及び lb— 5 ( 2)、 lb— 6 (1)、 lb— 6 (2)、 lb— 7 (1)、 lb— 7 (2)の各々バッチの異なる試料を表 している。 [0645] In Table 10, organic EL elements lb— 2 (1) to: Lb— 2 (5), lb— 5 (1) and lb— 5 ( 2), lb-6 (1), lb-6 (2), lb-7 (1), and lb-7 (2) each representing a different sample.
[0646] 《有機 EL素子 lb— 1〜 lb— 14の評価》  [0646] <Evaluation of organic EL device lb— 1 to lb— 14>
得られた有機 EL素子 lb— 1〜: Lb— 14の各々について、下記に記載の方法により 、色ムラ、駆動電圧 (単に電圧ともいう)を測定、評価した。  For each of the obtained organic EL devices lb-1 to Lb-14, color unevenness and driving voltage (also simply referred to as voltage) were measured and evaluated by the methods described below.
[0647] また、得られた有機 EL素子 lb— 1〜: Lb— 14を評価するに際しては、作製後の各 有機 EL素子の非発光面をガラスケースで覆い、厚み 300 mのガラス基板を封止 用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤 (東亞合成 社製ラックストラック LC0629B)を適用し、これを上記陰極上に重ねて前記透明支持 基板と密着させ、ガラス基板側カゝら UV光を照射して、硬化させて、封止して、図 4、 図 5に示すような照明装置を形成して評価した。  [0647] When evaluating the obtained organic EL devices lb-1 to Lb-14, the non-light-emitting surface of each organic EL device after fabrication was covered with a glass case, and a glass substrate having a thickness of 300 m was sealed. An epoxy-based photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material around the substrate as a sealing substrate, and this is overlaid on the cathode to be in close contact with the transparent support substrate. The substrate side cover was irradiated with UV light, cured and sealed, and an illumination device as shown in FIGS. 4 and 5 was formed and evaluated.
[0648] 図 4は、照明装置の概略図を示し、有機 EL素子 101は、ガラスカバー 102で覆わ れている。尚、ガラスカバーでの封止作業は、有機 EL素子 101を大気に接触させる ことなく窒素雰囲気下のグローブボックス(純度 99. 999%以上の高純度窒素ガスの 雰囲気下で行った)。図 5は、照明装置の断面図を示し、図 5において、 105は陰極、 106は有機 EL層、 107は透明電極つきガラス基板を示す。尚、ガラスカバー 102内 には窒素ガス 108が充填され、捕水剤 109が設けられている。  FIG. 4 shows a schematic diagram of the lighting device, and the organic EL element 101 is covered with a glass cover 102. Note that the glass cover was sealed with a glove box in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere (in a high purity nitrogen gas atmosphere with a purity of 99.999% or more). FIG. 5 shows a cross-sectional view of the lighting device. In FIG. 5, 105 denotes a cathode, 106 denotes an organic EL layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
[0649] 《駆動電圧の測定》  [0649] <Measurement of drive voltage>
温度 23°C、乾燥窒素ガス雰囲気下で発光開始の電圧を測定した。なお、発光開 始の電圧は、輝度 50cd/m2以上となったときの電圧値を測定した。輝度の測定に は分光放射輝度計 CS - 1000 (コ-力ミノルタセンシング社製)を用いた。 The voltage at the start of light emission was measured at a temperature of 23 ° C. in a dry nitrogen gas atmosphere. The voltage at the start of light emission was measured when the luminance was 50 cd / m 2 or more. A spectral radiance meter CS-1000 (manufactured by Koryo Minolta Sensing) was used for the luminance measurement.
[0650] 《非発光点および色ムラの測定》  [0650] <Measurement of non-light emitting point and color unevenness>
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で、輝度 300cdZ m2以上となったときの発光面の非発光点、および色ムラを目視によって測定した。 About the produced organic EL element, the non-light-emitting point and the color unevenness of the light-emitting surface when the luminance reached 300 cdZm 2 or more were measured visually at 23 ° C. in a dry nitrogen gas atmosphere.
[0651] 得られた結果を表 10に示す。  [0651] Table 10 shows the obtained results.
[0652] また、評価については、下記のようのランク評価を行った。  [0652] Regarding the evaluation, the following rank evaluation was performed.
[0653] 〇:非発光点及び色ムラが観察されなかった、 [0653] ○: No non-light-emitting point and color unevenness were observed,
X:非発光点及び色ムラが観察された、 また、駆動電圧は、有機 EL素子 lb— 1 (1)の値を 100とした時の相対値で表した。 X: Non-light emitting point and color unevenness were observed, The driving voltage is expressed as a relative value when the value of the organic EL element lb-1 (1) is 100.
[表 10] [Table 10]
Figure imgf000142_0001
表 10から、本発明の有機 EL素子力 非発光点、色むらのどちらの項目についても 良好な特性を示していることがわかる。また、発光層の膜厚が、 40nm以下となると非 発光点や発光ムラが生じること、更に発光層の膜厚が lOOnm超になると、発光開始 電圧が高くなり有機 EL素子として十分な性能を発揮できないことが明らかである。
Figure imgf000142_0001
From Table 10, it can be seen that the organic EL element power of the present invention shows good characteristics for both the non-emission point and the color unevenness. In addition, when the thickness of the light emitting layer is 40 nm or less, non- It is clear that the emission point and emission unevenness occur, and that if the emission layer thickness exceeds lOOnm, the emission start voltage increases and the organic EL device cannot perform sufficiently.
[0656] 実施例 16 [0656] Example 16
《有機 EL素子 2b― 1の作製》:塗布 +貼合により作製  <Production of organic EL element 2b-1>: Production by coating and bonding
以下のように、陽極側基板 2b— 1— A、陰極側基板 2b— 1—Bを各々作製し、次い で、該陽極側基板 2b— 1— Aと該陰極側基板 2b— 1—Bとを貼合することにより、有 機エレクト口ルミネッセンス素子 2b— 1を作製した。  The anode side substrate 2b—1—A and the cathode side substrate 2b—1—B were respectively prepared as follows, and then the anode side substrate 2b—1—A and the cathode side substrate 2b—1—B. The organic electoluminescence device 2b-1 was produced by pasting together.
[0657] 《陽極側基板 2b— 1—Aの作製》  [0657] <Preparation of anode-side substrate 2b-1-A>
陽極として 100mm X 100mm X I. 1mmのガラス基板上に、 ITO (インジウムチン ォキシド)を lOOnm成膜した基板 (NHテクノグラス社製 NA45)にパターユングを 行つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコ一ルで超 音波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。  The ITO transparent electrode was provided after patterning was performed on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which ITO (indium oxide) was deposited on a 100 mm X 100 mm X I. 1 mm glass substrate as an anode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
[0658] この透明支持基板上にポリ (3, 4—エチレンジォキシチォフェン)一ポリスチレンス ルホネート(PEDOTZPSSゝ Bayer社製、 Baytron P A1 4083)を純水で 70% に希釈した溶液を 3000rpm、 30秒でスピンコート法により成膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの第一正孔輸送層を設けた。  [0658] On this transparent support substrate, a solution of poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOTZPSS P Bayer, Baytron P A1 4083) diluted to 70% with pure water at 3000 rpm After forming a film by spin coating in 30 seconds, the film was dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
[0659] 第一正孔輸送層上に、 30mgの MO— 10をトルエン 3mlに溶解した溶液を、 1000 rpm、 30秒の条件下、スピンコート法により成膜し、窒素下、 150°Cにて 1時間加熱し 、 MO— 10分子内の反応性基を重合させることにより不溶ィ匕処理を行った。  [0659] On the first hole transport layer, a solution of 30 mg of MO-10 in 3 ml of toluene was formed by spin coating at 1000 rpm for 30 seconds, and the temperature was adjusted to 150 ° C under nitrogen. The mixture was heated for 1 hour to polymerize the reactive groups in the MO-10 molecule, and an insoluble soot treatment was performed.
[0660] 結果、加熱処理により MO— 10の重合膜から成る膜厚 30nmの第二正孔輸送層を 設けた。更に、第二正孔輸送層上に、 30mgの OC— 6と 1. 5mgの PD— 1をトルエン 3mlに溶解した溶液を、 1500rpm、 30秒の条件下、スピンコート法により成膜し、 15 0°Cにて 1時間乾燥し、膜厚 25nmの発光層を設け、陽極側基板 2b— 1— Aを作製し た。  [0660] As a result, a second hole transport layer having a film thickness of 30 nm composed of a polymer film of MO-10 was provided by heat treatment. Furthermore, a solution of 30 mg OC-6 and 1.5 mg PD-1 dissolved in 3 ml of toluene was formed on the second hole transport layer by spin coating under conditions of 1500 rpm and 30 seconds. 15 The substrate was dried at 0 ° C. for 1 hour, provided with a light emitting layer having a thickness of 25 nm, and an anode side substrate 2b-1-A was produced.
[0661] 《陰極側基板 2b— 1—Bの作製》  [0661] << Preparation of cathode side substrate 2b-1-B >>
100mm X 100mm X I. 1mmのガラス基板上をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。これを市販の真空 蒸着装置の基板ホルダーに固定した。真空蒸着装置に取り付け、真空槽を 4 X 10— 4 Paまで減圧した。基板上に、アルミニウム—マグネシウム合金 l lOnmを蒸着して陰 極を形成した。 100 mm X 100 mm X I. A 1 mm glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This was fixed to a substrate holder of a commercially available vacuum deposition apparatus. Attached to the vacuum evaporation system and the vacuum chamber is 4 X 10— 4 The pressure was reduced to Pa. An aluminum-magnesium alloy lOnm was deposited on the substrate to form a negative electrode.
[0662] 別途、過酸ィ匕ベンゾィルを開始剤とした MO— 52のラジカル重合により調製した、 MO— 52ポリマー(数平均分子量 71, 000) 30mgをジクロ口ベンゼン 3mlに溶解し た溶液を、上記の陰極上に、 1000rpm、 30秒の条件下、スピンコート法により成膜し 、 150°Cにて 1時間乾燥し、膜厚 50nmの電子輸送層を設けた。  [0662] Separately, a solution of 30 mg of MO-52 polymer (number average molecular weight 71,000), prepared by radical polymerization of MO-52 using peroxybenzoyl as an initiator, was dissolved in 3 ml of dichroic benzene. On the cathode, a film was formed by spin coating under conditions of 1000 rpm and 30 seconds, and dried at 150 ° C. for 1 hour to provide an electron transport layer having a thickness of 50 nm.
[0663] 更に、電子輸送層上に、 30mgの OC— 6と 1. 5mgの PD— 1をトルエン 3mlに溶解 した溶液を、 1500rpm、 30秒の条件下、スピンコート法により成膜を行い、 150°Cに て 1時間乾燥し、膜厚 25nmの発光層を設け、陰極側基板 2b— 1—Bを作製した。な お、蒸着時の基板温度は室温であった。  [0663] Further, on the electron transport layer, a solution of 30 mg OC-6 and 1.5 mg PD-1 dissolved in 3 ml of toluene was formed by spin coating at 1500 rpm for 30 seconds. The substrate was dried at 150 ° C. for 1 hour, a light emitting layer having a film thickness of 25 nm was provided, and a cathode side substrate 2b-1-B was produced. The substrate temperature during vapor deposition was room temperature.
[0664] 《貼合による有機 EL素子 2b— 1の作製》  [0664] << Preparation of organic EL element 2b-1 by bonding >>
実施例 15の有機 EL素子 lb— 1 (1)の作製時と同様に、陽極側基板 2b— 1— Aと 陰極側基板 2b— 1—Bとを貼合して、有機 EL素子 2b— 1を作製した。  Organic EL device lb-1 in Example 15 1 As in the production of (1), the anode side substrate 2b— 1—A and the cathode side substrate 2b—1—B were bonded together, and the organic EL device 2b—1 Was made.
[0665] 《有機 EL素子 2b― 2の作製》:比較例 (順次蒸着積層により作製)  [0665] << Preparation of organic EL device 2b-2 >>: Comparative example (Sequential deposition deposition)
陽極として 100mm X 100mm X I. 1mmのガラス基板上に、 ITO (インジウムチン ォキシド)を lOOnm成膜した基板 (NHテクノグラス社製 NA45)にパターユングを 行つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコ一ルで超 音波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。  The ITO transparent electrode was provided after patterning was performed on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which ITO (indium oxide) was deposited on a 100 mm X 100 mm X I. 1 mm glass substrate as an anode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
[0666] この透明支持基板上にポリ (3, 4 エチレンジォキシチォフェン)—ポリスチレンス ルホネート(PEDOTZPSSゝ Bayer社製、 Baytron P Al 4083)を純水で 70% に希釈した溶液を 3000rpm、 30秒でスピンコート法により成膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの第一正孔輸送層を設けた。  [0666] A solution obtained by diluting poly (3,4 ethylenedioxythiophene) -polystyrene sulfonate (PEDOTZPSS Bayer, Baytron P Al 4083) to 70% with pure water on this transparent support substrate at 3000 rpm, After forming a film by spin coating in 30 seconds, the film was dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
[0667] この第一正孔輸送層を設けた透明支持基板を市販の真空蒸着装置の基板ホルダ 一に固定し、一方、モリブデン製抵抗加熱ボートに第二正孔輸送層の形成材料とし て、 OC— 1を 200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物として O C 6を 200mg、另 IJのモリブデン製抵抗力口熱ボー卜に PD— 1を 50mg、 OC— 18を 2 00mg入れ、真空蒸着装置に取付けた。  [0667] The transparent support substrate provided with the first hole transport layer is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, and on the other hand, as a material for forming the second hole transport layer on a resistance heating boat made of molybdenum, 200 mg of OC-1 is put into another resistance heating boat made of molybdenum, 200 mg of OC 6 as a host compound, 50 mg of PD-1 is put into an additional IJ molybdenum resistance heating hot water bath, and 200 mg of OC-18 is put into vacuum. Attached to the vapor deposition equipment.
[0668] 次いで、真空槽を 4 X 10—4Paまで減圧した後、 OC— 1の入った前記加熱ボートに 通電して加熱し、蒸着速度 0. InmZ秒で、第一正孔輸送層上に蒸着して、膜厚 30 nmの第二正孔輸送層を設けた。 [0668] Next, after pressure in the vacuum tank was reduced to 4 X 10- 4 Pa, the heating boat containing OC- 1 The second hole transport layer having a film thickness of 30 nm was provided by heating by energization and depositing on the first hole transport layer at a deposition rate of 0. InmZ seconds.
[0669] 更に、 OC— 6と PD— 1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着 速度 0. 2nmZ秒、 0. 012nm/秒で、第二正孔輸送層上に共蒸着して膜厚 50nm の発光層を設け、次いで、 OC— 18の入った前記加熱ボートに通電して加熱し、蒸 着速度 0. InmZ秒で、発光層上に蒸着して、膜厚 50nmの電子輸送層を設けた。 最後にフッ化リチウム 0. 5nm、次いで、アルミニウム l lOnmを蒸着して陰極を形成し 、有機 EL素子 2b— 2を作製した。  [0669] Further, the heating boat containing OC-6 and PD-1 was heated by energization, and co-evaporated on the second hole transport layer at a deposition rate of 0.2 nmZ second and 0.012 nm / second, respectively. Then, a light emitting layer with a thickness of 50 nm was provided, and then heated by energizing the heating boat containing OC-18, and deposited on the light emitting layer at a deposition rate of 0. InmZ seconds. An electron transport layer was provided. Finally, lithium fluoride 0.5 nm and then aluminum lOnm were vapor-deposited to form a cathode, and an organic EL device 2b-2 was produced.
[0670] 《有機 EL素子 lb— 1 (1)、 2b— 1、 2b— 2の評価》  [0670] << Evaluation of organic EL element lb-1 (1), 2b-1, 1, 2b-2 >>
得られた有機 EL素子 lb— 1 (1)、及び、 2b— 1、 2b— 2各々について、下記に記 載の方法により、外部取りだし量子効率、発光寿命、駆動電圧 (単に電圧ともいう)非 発光点および色ムラを測定、評価した。駆動電圧、非発光点および色ムラの測定は 実施例 15と全く同様にして行った。  For each of the obtained organic EL devices lb-1 (1), 2b-1, and 2b-2, the external extraction quantum efficiency, emission lifetime, and driving voltage (also simply referred to as voltage) The light emission point and color unevenness were measured and evaluated. Measurements of drive voltage, non-light emission point, and color unevenness were performed in exactly the same manner as in Example 15.
[0671] 尚、外部取りだし量子効率、発光寿命、駆動電圧は有機 EL素子 lb— 1 (1)を 100 とした時の相対値で表した。  [0671] The external extraction quantum efficiency, the light emission lifetime, and the driving voltage are expressed as relative values when the organic EL element lb-1 (1) is 100.
[0672] 《外部取りだし量子効率の測定》  [0672] <Measurement of external extraction quantum efficiency>
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm2 定電流を印加した時の外部取り出し量子効率(%)を測定した。尚、測定には分光放 射輝度計 CS - 1000 (コ-力ミノルタセンシング社製)を用いた。 With respect to the produced organic EL device, the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C. The measurement was performed using a spectral radiation luminance meter CS-1000 (manufactured by Coforce Minolta Sensing).
[0673] 《発光寿命の測定》  [0673] <Measurement of luminous lifetime>
温度 23°C、乾燥窒素ガス雰囲気下で 2. 5mAZcm2の一定電流で駆動したときに 、輝度が発光開始直後の輝度 (初期輝度)の半分に低下するのに要した時間を測定 し、これを半減寿命時間( τ 0. 5)として寿命の指標とした。尚、測定には同様に、分 光放射輝度計 CS - 1000 (コ-力ミノルタセンシング社製)を用いた。 When driving at a constant current of 2.5 mAZcm 2 in a dry nitrogen gas atmosphere at a temperature of 23 ° C, the time required for the luminance to drop to half of the luminance immediately after the start of light emission (initial luminance) was measured. Was used as an index of life as a half-life time (τ 0.5). For the measurement, a spectral radiance meter CS-1000 (manufactured by Coforce Minolta Sensing Co., Ltd.) was used.
[0674] 有機 EL素子 lb— 1 (1) (本発明)、 2b— 2 (本発明)及び 2b— 3 (比較例)の外部取 り出し量子効率、発光寿命、駆動電圧、非発光点および色ムラの測定結果を、表 11 に示す。なお、各測定値は、有機 EL素子 lb— 1 (1)を 100とした時の相対値で表し [0675] [表 11] [0674] Organic EL devices lb— 1 (1) (invention), 2b-2 (invention) and 2b-3 (comparative example) external extraction quantum efficiency, emission lifetime, drive voltage, non-emission point and Table 11 shows the measurement results of color unevenness. Each measured value is expressed as a relative value when the organic EL element lb-1 (1) is 100. [0675] [Table 11]
Figure imgf000146_0001
Figure imgf000146_0001
[0676] 表 11から、外部取り出し量子効率、発光寿命、駆動電圧、非発光点および色ムラ 等の有機 EL素子の基本的性能は、これまでの蒸着積層プロセスを用いた場合と同 等の性能を示している。特に、これまで蒸着系に比較して性能が劣ると言われている 塗布法を用いた場合も、ほぼ同等の性能を示した。本発明の製造方法を用いること で、有機 EL素子としての諸性能を低下させること無ぐ革新的な有機 EL素子製造プ 口セスを提供できることがわかった。 [0676] From Table 11, the basic performance of the organic EL elements such as external extraction quantum efficiency, emission lifetime, drive voltage, non-emission point, and color unevenness are the same as those using the conventional vapor deposition lamination process. Is shown. In particular, even when the coating method, which has been said to be inferior to the deposition system so far, was used, it showed almost the same performance. It has been found that by using the manufacturing method of the present invention, an innovative organic EL device manufacturing process can be provided without degrading various performances as an organic EL device.
[0677] 実施例 17 [0677] Example 17
《フルカラー表示装置の作製》  <Production of full-color display device>
(青色発光有機 EL素子)  (Blue light emitting organic EL device)
実施例 16の有機 EL素子 2b— 1の作製において、 PD— 1を PD— 12に変更した以 外は同様にして、青色発光有機 EL素子 2b— 1B (青)を作製した。  A blue light-emitting organic EL device 2b-1B (blue) was prepared in the same manner as in the production of the organic EL device 2b-1 of Example 16, except that PD-1 was changed to PD-12.
[0678] (緑色発光有機 EL素子) [0678] (Green light-emitting organic EL device)
緑色発光有機 EL素子として、実施例 16で作製した有機 EL素子 2b— 1を用いた。  As the green light-emitting organic EL element, the organic EL element 2b-1 produced in Example 16 was used.
[0679] (赤色発光有機 EL素子) [0679] (Red light-emitting organic EL device)
実施例 16の有機 EL素子 2b— 1において、 PD— 1を PD— 6に変更した以外は同 様にして、赤色発光有機 EL素子 2b— 1R (赤)を作製した。  A red light-emitting organic EL device 2b-1R (red) was produced in the same manner as in the organic EL device 2b-1 of Example 16, except that PD-1 was changed to PD-6.
[0680] 上記の赤色、緑色及び青色発光有機 EL素子を、同一基板上に並置し、図 1に記 載の形態を有するアクティブマトリクス方式フルカラー表示装置を作製し、図 2には、 作製した前記表示装置の表示部 Aの模式図のみを示した。即ち、同一基板上に、複 数の走査線 5及びデータ線 6を含む配線部と、並置した複数の画素 3 (発光の色が赤 領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線 5及び複 数のデータ線 6はそれぞれ導電材料力 なり、走査線 5とデータ線 6は格子状に直交 して、直交する位置で画素 3に接続している(詳細は図示せず)。前記複数の画素 3 は、それぞれの発光色に対応した有機 EL素子、アクティブ素子であるスイッチングト ランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動さ れており、走査線 5から走査信号が印加されると、データ線 6から画像データ信号を 受け取り、受け取った画像データに応じて発光する。この様に各赤、緑、青の画素を 適宜、並置することによって、フルカラー表示装置を作製した。 [0680] The red, green, and blue light-emitting organic EL elements described above are juxtaposed on the same substrate to produce an active matrix full-color display device having the form shown in FIG. 1, and FIG. Only a schematic diagram of the display unit A of the display device is shown. That is, a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 arranged in parallel on the same substrate (light emitting color is a pixel in a red region, a pixel in a green region, a pixel in a blue region, etc.) The scanning line 5 and the plurality of data lines 6 in the wiring part are each made of a conductive material, and the scanning line 5 and the data line 6 are orthogonal to each other in a lattice shape. Thus, the pixel 3 is connected at the orthogonal position (details are not shown). The plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is received from a scanning line 5. When applied, it receives an image data signal from the data line 6 and emits light according to the received image data. In this way, a full-color display device was produced by appropriately juxtaposing the red, green, and blue pixels.
[0681] 前記フルカラー表示装置を駆動することにより、発光効率が高い発光寿命の長いフ ルカラー動画表示が得られることを確認することができた。  [0681] It was confirmed that by driving the full-color display device, it was possible to obtain a full-color moving image display with high luminous efficiency and long emission life.
[0682] 実施例 18  [0682] Example 18
《白色の照明装置の作製》  <Production of white lighting device>
(a)実施例 16の有機 EL素子 2b— 1にお 、て、陽極側基板 2b— 1—A及び陰極側 基板 2b— 1— Bに用いた PD— 1を PD— 1、 PD— 6、 PD— 12に変更した以外は同 様にして、白色発光有機 EL素子 2b— 1W (白色)を作製した。  (a) In the organic EL device 2b-1 of Example 16, the PD-1 used for the anode side substrate 2b-1A and the cathode side substrate 2b-1 B is PD-1, PD-6, A white light-emitting organic EL device 2b-1W (white) was produced in the same manner except that PD-12 was used.
[0683] (b)実施例 16の有機 EL素子 2b— 1において、陽極側基板 2b— 1— Aに用いた P D— 1を PD— 13とし、更に陰極側基板 2b— 1—Bの作製に用いた PD— 1を PD— 1 0に変更した以外は同様にして、白色発光有機 EL素子 3b— 1W (白色)を作製した。  [0683] (b) In the organic EL element 2b-1 of Example 16, PD-1 used for the anode side substrate 2b-1A was PD-13, and further, for preparing the cathode side substrate 2b-1B A white light-emitting organic EL device 3b-1W (white) was produced in the same manner except that the PD-1 used was changed to PD-10.
[0684] 得られた有機 EL素子 2b— 1W、 3b— 1Wを評価するに際しては、実施例 15と同様 に、非発光面をガラスケースで覆い、照明装置とした。照明装置は、発光効率が高く 発光寿命の長い白色光を発する薄型の照明装置として使用することができた。  [0684] When the obtained organic EL elements 2b-1W and 3b-1W were evaluated, the non-light emitting surface was covered with a glass case in the same manner as in Example 15 to obtain a lighting device. The illuminating device could be used as a thin illuminating device that emits white light with high luminous efficiency and long emission life.
[0685] 以下、請求の範囲第 23項〜第 31項に記載の発明について実施例 19〜24により 具体的に説明する。  [0685] The invention described in claims 23 to 31 will be specifically described below with reference to Examples 19 to 24.
[0686] 実施例 19  [0686] Example 19
100mm X 100mm X I. 1mmのガラス基板をイソプロピルアルコールで超音波洗 浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った後、市販のスピンコータ に取り付け、 α— NPD (60mg)をトルエン 10mlに溶解した溶液を用い、 1000rpm、 30secの条件下、スピンコート(膜厚約 40nm)し、サンプル aを得た。  100 mm X 100 mm X I. 1 mm glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, attached to a commercially available spin coater, and α-NPD (60 mg) was added. Using a solution dissolved in 10 ml of toluene, a sample a was obtained by spin coating (film thickness: about 40 nm) under conditions of 1000 rpm and 30 sec.
[0687] [化 71] [0687] [Chemical 71]
Figure imgf000148_0001
Figure imgf000148_0001
[0688] このサンプル aの α— NPD側に Ra= lOOnmの金属製ローラに、金属ローラの表 面温度 60°Cで、線圧 500NZcm、 1. OmZsecの速度で圧着し、サンプル lc— lを 得た。同様にサンプル 1を Ra=0. lnmの金属製ローラで処理し、サンプル 2c— 2を 得た。 [0688] On the α-NPD side of this sample a, press it onto a metal roller with Ra = lOOnm at a surface temperature of the metal roller of 60 ° C, linear pressure of 500 NZcm, 1. OmZsec. Obtained. Similarly, Sample 1 was treated with a metal roller with Ra = 0.lnm to obtain Sample 2c-2.
[0689] 次に 100mm X 100mm X 1. 1mmのガラス基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った後、市販の真空蒸 着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートに a—NPDを 200m g入れ、真空蒸着装置に取り付けた。真空槽を 4 X 10— 4Paまで減圧した後、 a— NP Dの入った前記加熱ボートに通電して加熱し、蒸着速度 0. InmZsecで透明支持 基板に蒸着 (膜厚 40nm)し、サンプル bを得た。 [0689] Next, a 100mm X 100mm X 1.1mm glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, and then a substrate for a commercial vacuum deposition apparatus. Fixed to a holder, 200 mg of a-NPD was placed in a molybdenum resistance heating boat and attached to a vacuum evaporation system. After pressure in the vacuum tank was reduced to 4 X 10- 4 Pa, a- NP D of containing and heated by supplying an electric current to the boat, deposited on a transparent supporting substrate at a deposition rate of 0. InmZsec (thickness 40 nm), a sample got b.
[0690] このサンプル bの α— NPD側に Ra = 80nmの金属製ローラに圧着(線圧 500NZ cm、温度 60°C、速度 1. OmZsec)しサンプル lc— 3を得た。同様にサンプル 1を Ra =0. lnmの金属製ローラで処理し、サンプル lc— 4を得た。  [0690] Sample lc-3 was obtained by pressing the sample b on the α-NPD side against a metal roller with Ra = 80 nm (linear pressure 500 NZ cm, temperature 60 ° C, speed 1. OmZsec). Similarly, Sample 1 was treated with a metal roller with Ra = 0.lnm to obtain Sample lc-4.
[0691] このようにして得られたサンプル lc— l〜サンプル lc— 4の表面粗さ(Ra)を AFM ( 原子間力顕微鏡;セイコーインスツルメンッ社製 SPI3800Nプローブステーションお よび SPA400多機能型ユニット)にて測定し、表 12の結果を得た。  [0691] The surface roughness (Ra) of samples lc—l to lc—4 obtained in this way was measured using AFM (atomic force microscope; Seiko Instruments Inc. SPI3800N probe station and SPA400 multifunctional type. Unit), and the results shown in Table 12 were obtained.
[0692] [表 12]  [0692] [Table 12]
Figure imgf000148_0002
Figure imgf000148_0002
[0693] 塗布層、また蒸着により得られた有機薄膜いずれにおいても、所定の表面粗さ (Ra )をもつ金属ローラにより、それに応じた表面粗さをもつ有機薄膜 (層)が得られること がわカゝる。 [0693] In both the coating layer and the organic thin film obtained by vapor deposition, the specified surface roughness (Ra It is clear that an organic thin film (layer) with a corresponding surface roughness can be obtained by a metal roller with).
[0694] 実施例 20  [0694] Example 20
〈有機 EL素子 2c— l〜2c— 6の作製〉  <Preparation of organic EL elements 2c-l to 2c-6>
陰極側部材の作製  Production of cathode side member
100mm X 100mm X I. 1mmのガラス基板をイソプロピルアルコールで超音波洗 浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った後、市販の真空蒸着装 置の基板ホルダーに固定し、アルミニウム (膜厚約 l lOnm)、フッ化リチウム (膜厚約 0. 5nm)を 着した。  100mm X 100mm X I. A 1mm glass substrate is ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, and then fixed to a substrate holder of a commercially available vacuum deposition device. Aluminum (thickness: about lOnm) and lithium fluoride (thickness: about 0.5 nm) were applied.
[0695] この基板を市販のスピンコータに取り付け、 BCP (20mg)をトルエン 10mlに溶解し た溶液を用い、 1000rpm、 30secの条件下、スピンコート(膜厚約 10nm)、 60°Cで 1 時間真空乾燥し、電子輸送層を設け、陰極側部材を作製した。  [0695] This substrate was attached to a commercially available spin coater, and a solution in which BCP (20 mg) was dissolved in 10 ml of toluene was used. Spin coating (film thickness: about 10 nm) at 60 ° C for 1 hour under conditions of 1000 rpm and 30 sec. It dried and provided the electron carrying layer, and produced the cathode side member.
[0696] 陽極側部材の作製  [0696] Fabrication of anode side member
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。  As a positive electrode, a ITO substrate (100 mm X 100 mm X I. 1 mm thick ITO (indium tin oxide) filmed on lOOnm substrate (ΝΗ Techno Glass Co., Ltd. ΝΑ45)) was put on this ITO transparent electrode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
[0697] この基板を市販のスピンコータに取り付け、例示化合物 4 1 (60mg)をトルエン 10 mlに溶解した溶液を用い、 1000rpm、 30secの条件下、スピンコート(膜厚約 40nm )、紫外光を 30秒照射した後、 60°Cで 1時間真空乾燥し正孔輸送層とした。  [0697] This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 4 1 (60 mg) in 10 ml of toluene was spin-coated (film thickness: about 40 nm) and ultraviolet light was used under conditions of 1000 rpm and 30 sec. After irradiation for 2 seconds, it was vacuum-dried at 60 ° C for 1 hour to form a hole transport layer.
[0698] 次!、で、 CBP (60mg)と例示化合物 Ir 1 (3. Omg)とをトルエン 6mlに溶解した溶 液を用い、 1000rpm、 30secの条件下、スピンコートし(膜厚約 60nm)、 60°Cで 1時 間真空乾燥し発光層とし、陽極側部材を作製した。  [0698] Next !, using a solution of CBP (60 mg) and the exemplified compound Ir 1 (3. Omg) dissolved in 6 ml of toluene, spin-coated at 1000 rpm for 30 sec (film thickness: about 60 nm) Then, it was vacuum dried at 60 ° C. for 1 hour to form a light emitting layer, and an anode side member was produced.
[0699] 金属ローラでの表面処理  [0699] Surface treatment with metal roller
作製した陰極側部材、陽極側部材をそれぞれ固有の表面粗さをもった金属製ロー ラで、実施例 19の条件で圧着し、表 13に示す表面粗さ (Ra)の部材を得た。  The prepared cathode-side member and anode-side member were each pressed with a metal roller having a specific surface roughness under the conditions of Example 19 to obtain members having a surface roughness (Ra) shown in Table 13.
[0700] 接合  [0700] Joining
このようにして得られた陰極側部材の電子輸送層と陽極側部材の発光層をそれぞ れ対向させて重ね合わせ、接合冶具を用いて 1 X 10— 2Paの減圧環境下で押圧力 0. IMPaで圧着し、密着、固定し、 100°Cで 1時間加熱処理を行い、出来上がった素子 を封止処理 (エポキシ系の接着剤を用いた)し、有機 EL素子 2c - 1を作製した。 The electron transport layer of the cathode-side member and the light-emitting layer of the anode-side member obtained in this way are respectively provided. Overlay Re are opposed, with a joining jig and pressed by the pressing force 0. IMPa under a reduced pressure environment of 1 X 10- 2 Pa, adhesion, fixing, for 1 hour heat treatment at 100 ° C, the finished The device was sealed (using an epoxy adhesive) to produce an organic EL device 2c-1.
[0701] 有機 EL素子 2c— 1の作製において、電子輸送層、発光層及び正孔輸送層に使用 する化合物を表 13に示すィ匕合物に置き換え、かつ、有機層表面の金属製ローラに よる圧着表面処理のときに、金属製ローラの種類 (表面粗さ)を変えて、各層の表面 粗さを表 13に示したように変更した以外は有機 EL素子 2c - 1と同じ方法で 2c - 2〜 2c— 6を作製した。上記で使用した化合物の構造を以下に示す。  [0701] In the production of the organic EL device 2c-1, the compounds used in the electron transport layer, the light emitting layer, and the hole transport layer were replaced with the compounds shown in Table 13, and the metal roller on the surface of the organic layer was replaced. 2c-The same method as for organic EL elements 2c-1 except that the surface roughness of each layer was changed as shown in Table 13 by changing the type (surface roughness) of the metal roller during the crimping surface treatment. -2 to 2c-6 were prepared. The structure of the compound used above is shown below.
[0702] [化 72]  [0702] [Chemical 72]
CBP BCP CBP BCP
Figure imgf000150_0001
Figure imgf000150_0001
[0703] [表 13] [0703] [Table 13]
CO 1 CO 1
CM CM  CM CM
素素子子素素 2子素素 2子子子 22221 c c c c c c一- --— 1 \ 1  Element Element Element Element Two Element Element Element Two Element 22221
CO 03  CO 03
発本明本発発明本較較較明比比比 1  Inventor Inventor Inventor Inventor Comparer Comparer Ratio Ratio 1
層電輸子送  Layer transport
ΙΩ 発光層  ΙΩ Light emitting layer
1  1
CM 輸送層正孔 CM transport hole
ΟΓ οεOToοοτα πΐ mu ιπιι  ΟΓ οεOToοοτα πΐ mu ιπιι
1 \ 1 層) (電輸子送 Ol Rnm a.  1 \ 1 layer) (Trans-Transfer Ol Rnm a.
CO <M oOTou r  CO <M oOTou r
光 (発層) Ol Ol 20 R Olnmnmnranm a...  Light (layer) Ol Ol 20 R Olnmnmnranm a ...
1 寸
Figure imgf000151_0001
O
1 inch
Figure imgf000151_0001
O
1  1
1 ^ 1 ^
1 ^ 1 ^
[0704] 〈有機 EL素子 2c— l〜2c— 6の評価〉 <0704] <Evaluation of organic EL devices 2c— l to 2c— 6>
以下のようにして作製した有機 EL素子 2c—:!〜 2c— 4の評価を行い、その結果を 表 14に示す。  Evaluation of organic EL devices 2c— :! to 2c—4 produced as follows was performed, and the results are shown in Table 14.
[0705] (外部取りだし量子効率) 作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm' 定電流を印加した時の外部取り出し量子効率(%)を測定した。なお測定には同様に 分光放射輝度計 CS - 1000 (コ-力ミノルタ製)を用いた。 [0705] (External extraction quantum efficiency) The fabricated organic EL device was measured for external extraction quantum efficiency (%) when a 2.5 mA / cm ′ constant current was applied at 23 ° C. in a dry nitrogen gas atmosphere. For measurement, a spectral radiance meter CS-1000 (manufactured by Ko-Force Minolta) was used in the same manner.
[0706] 表 14の外部取りだし量子効率の測定結果は、有機 EL素子 2c— 1の測定値を 100 とした時の相対値で表した。  [0706] The measurement results of the external extraction quantum efficiency in Table 14 are expressed as relative values when the measured value of the organic EL element 2c-1 is 100.
[0707] (寿命)  [0707] (Life)
2. 5mAZcm2の一定電流で駆動したときに、輝度が発光開始直後の輝度 (初期 輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間( τ 0. 5)と して寿命の指標とした。なお測定には分光放射輝度計 CS— 1000 (コ-力ミノルタ製 )を用いた。 2. When driving at a constant current of 5 mAZcm 2 , measure the time required for the luminance to drop to half of the luminance immediately after the start of light emission (initial luminance), and this is the half-life time (τ 0.5). And used as an index of life. For the measurement, a spectral radiance meter CS-1000 (manufactured by Ko-Force Minolta) was used.
[0708] 表 14の寿命の測定結果は、有機 EL素子 2c— 1を 100とした時の相対値で表した。  [0708] The lifetime measurement results in Table 14 are expressed as relative values when the organic EL element 2c-1 is 100.
[0709] [表 14] [0709] [Table 14]
Figure imgf000152_0001
Figure imgf000152_0001
[0710] 表 14から、本発明の有機 EL素子は、比較に比べ、長寿命化が達成されていること が分力つた。特に加熱処理によって、反応性置換基 (ビュル基)をもつ材料を、それ ぞれ貼合する二つの層中に有する(陰極側部材の電子輸送層中に、ビニル基を有 する電子輸送材料が、また陽極側部材の発光層中には同じくビュル基を有するホス ト材料及びドーパント材料が含有されている)素子 2c— 5、 2c— 6については、更に 寿命が向上している。 [0710] From Table 14, it was found that the organic EL device of the present invention achieved a longer life than the comparison. In particular, a material having a reactive substituent (bule group) is included in each of the two layers to be bonded by heat treatment (an electron transport material having a vinyl group is present in the electron transport layer of the cathode side member). In addition, the lifetime of the elements 2c-5 and 2c-6 is further improved. The light emitting layer of the anode side member also contains a host material and a dopant material having a bull group.
[0711] 実施例 21 [0711] Example 21
〈有機 EL素子 3c— l〜3c— 4の作製〉  <Preparation of organic EL elements 3c-l to 3c-4>
陰極側部材の作製  Production of cathode side member
100mm X 100mm X I. 1mmのガラス基板をイソプロピルアルコールで超音波洗 浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った後、市販の真空蒸着装 置の基板ホルダーに固定し、アルミニウム (膜厚約 l lOnm)、フッ化リチウム (膜厚約 0. 5nm)を 着した。 100mm X 100mm X I. Ultrasonic cleaning of 1mm glass substrate with isopropyl alcohol After cleaning with dry nitrogen gas and UV ozone cleaning for 5 minutes, it is fixed to the substrate holder of a commercially available vacuum deposition apparatus, and aluminum (thickness: approx. LOnm), lithium fluoride (thickness: approx. 0) Wearing 5nm).
[0712] この基板を市販のスピンコータに取り付け、例示化合物 3— 2 (20mg)をトルエン 10 mlに溶解した溶液を用い、 1000rpm、 30secの条件下、スピンコート(膜厚約 lOnm )、紫外光を 30秒照射した後、 60°Cで 1時間真空乾燥し、電子輸送層を設けた。  [0712] This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 3-2 (20 mg) in 10 ml of toluene was spin-coated (film thickness about lOnm) and ultraviolet light under conditions of 1000 rpm and 30 sec. After irradiation for 30 seconds, vacuum drying was performed at 60 ° C for 1 hour to provide an electron transport layer.
[0713] 次いで、 CBP (60mg)と例示化合物 Ir—12 (3. Omg)とをトルエン 12mlに溶解し た溶液を用い、 1000rpm、 30secの条件下、スピンコートし(膜厚約 30nm)、 60°C で 1時間真空乾燥し発光層 (発光層 1)とし、陰極側部材を作製した。  [0713] Next, a solution obtained by dissolving CBP (60 mg) and the exemplified compound Ir-12 (3. Omg) in 12 ml of toluene was spin-coated under a condition of 1000 rpm and 30 sec (film thickness of about 30 nm). A cathode side member was produced by vacuum drying at ° C for 1 hour to form a light emitting layer (light emitting layer 1).
[0714] 陽極側部材の作製  [0714] Fabrication of anode side member
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。  As a positive electrode, a ITO substrate (100 mm X 100 mm X I. 1 mm thick ITO (indium tin oxide) filmed on lOOnm substrate (ΝΗ Techno Glass Co., Ltd. ΝΑ45)) was put on this ITO transparent electrode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
[0715] この基板を市販のスピンコータに取り付け、例示化合物 4 1 (60mg)をトルエン 10 mlに溶解した溶液を用い、 1000rpm、 30secの条件下、スピンコート(膜厚約 40nm )、紫外光を 30秒照射した後、 60°Cで 1時間真空乾燥し正孔輸送層とした。  [0715] This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 4 1 (60 mg) in 10 ml of toluene was spin-coated (film thickness of about 40 nm) and ultraviolet light was used under conditions of 1000 rpm and 30 sec. After irradiation for 2 seconds, it was vacuum-dried at 60 ° C for 1 hour to form a hole transport layer.
[0716] 次いで、 CBP (60mg)と例示化合物 Ir—12 (3. Omg)とをトルエン 12mlに溶解し た溶液を用い、 1000rpm、 30secの条件下、スピンコートし(膜厚約 30nm)、 60°C で 1時間真空乾燥し発光層 (発光層 2)とし、陽極側部材を作製した。  [0716] Next, a solution obtained by dissolving CBP (60 mg) and the exemplified compound Ir-12 (3. Omg) in 12 ml of toluene was spin-coated under a condition of 1000 rpm and 30 sec (film thickness of about 30 nm). Vacuum drying was performed at ° C for 1 hour to form a light emitting layer (light emitting layer 2), and an anode side member was produced.
[0717] 金属ローラでの表面処理  [0717] Surface treatment with metal roller
作製した陰極側部材、陽極側部材 (の表面 (発光層 1、発光層 2の表面))をそれぞ れ固有の表面粗さをもった金属製ローラで実施例 19と同様に圧着して、表 15に示 す表面粗さ (Ra)の部材を得た。  The prepared cathode-side member and anode-side member (the surfaces (the surfaces of the light-emitting layer 1 and the light-emitting layer 2)) were pressure-bonded in the same manner as in Example 19 with metal rollers having inherent surface roughness, The members having the surface roughness (Ra) shown in Table 15 were obtained.
[0718] 接合  [0718] Joining
このようにして得られた陰極側部材の発光層と陽極側部材の発光層を対向させて 重ね合わせ、接合冶具を用いて、 1 X 10— 2Paの減圧環境下で押圧力 0. IMPaで圧 着し、密着、固定し、陽極側力も紫外光(lOOmWZcm2)を 90秒照射し、出来上が つた素子を封止処理 (ガラス基板同士をエポキシ系の接着剤を用い接着した)し、有 機 EL素子 3c— 1を作製した。 Thus it is opposed to the light emitting layer of the light-emitting layer and the anode-side member of the resulting cathode side member overlay, using a bonding jig, the pressing force 0. IMPa under a reduced pressure environment of 1 X 10- 2 Pa Pressed, adhered and fixed, and the anode side force was irradiated with ultraviolet light (lOOmWZcm 2 ) for 90 seconds. The device was sealed (glass substrates were bonded together using an epoxy adhesive) to produce an organic EL device 3c-1.
[0719] 有機 EL素子 3c— 1の作製において、電子輸送層、発光層及び正孔輸送層に使用 する化合物を表 15に示す化合物に置き換え、表面処理 (圧着処理)のときの金属性 ローラの種類を変更し、表面粗さを表 15に示したように変えた以外は有機 EL素子 3c[0719] In the production of the organic EL device 3c-1, the compounds used in the electron transport layer, the light emitting layer, and the hole transport layer were replaced with the compounds shown in Table 15, and the surface of the metallic roller during the surface treatment (compression treatment) was changed. Organic EL element 3c except that the type was changed and the surface roughness was changed as shown in Table 15.
- 1と同じ方法で 3c— 2〜3c— 4を作製した。 -3c-2 to 3c-4 were prepared in the same way as 1.
[0720] [表 15] [0720] [Table 15]
Figure imgf000154_0001
Figure imgf000154_0001
[0721] 〈有機 EL素子 3c— l〜3c— 4の評価〉 [0721] <Evaluation of organic EL devices 3c— l to 3c— 4>
以下のようにして作製した有機 EL素子 3c— l〜3c—4の評価を行 、、その結果を 表 16に示す。  The organic EL devices 3c-1 to 3c-4 produced as follows were evaluated and the results are shown in Table 16.
[0722] (外部取りだし量子効率) [0722] (External extraction quantum efficiency)
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm2 定電流を印加した時の外部取り出し量子効率(%)を測定した。なお測定には同様に 分光放射輝度計 CS - 1000 (コ-力ミノルタ製)を用いた。 With respect to the produced organic EL device, the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C. For measurement, a spectral radiance meter CS-1000 (manufactured by Ko-Force Minolta) was used in the same manner.
[0723] 表 16の外部取りだし量子効率の測定結果は、有機 EL素子 3c— 1の測定値を 100 とした時の相対値で表した。 [0723] The measurement results of the external extraction quantum efficiency in Table 16 are expressed as relative values when the measured value of the organic EL element 3c-1 is 100.
[0724] (寿命) [0724] (Life)
2. 5mAZcm2の一定電流で駆動したときに、輝度が発光開始直後の輝度 (初期 輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間( τ 0. 5)と して寿命の指標とした。なお測定には分光放射輝度計 CS— 1000 (コ-力ミノルタ製 )を用いた。 [0725] 表 16の寿命の測定結果は、有機 EL素子 3c— 1を 100とした時の相対値で表した。 2. When driving at a constant current of 5 mAZcm 2 , measure the time required for the luminance to drop to half of the luminance immediately after the start of light emission (initial luminance), and this is the half-life time (τ 0.5). And used as an index of life. For the measurement, a spectral radiance meter CS-1000 (manufactured by Ko-Force Minolta) was used. [0725] The lifetime measurement results in Table 16 are expressed as relative values when the organic EL element 3c-1 is 100.
[0726] [表 16] [0726] [Table 16]
Figure imgf000155_0001
Figure imgf000155_0001
[0727] 表 16から、本発明の有機 EL素子は、長寿命化が達成されていることが分力つた。 [0727] From Table 16, it was found that the organic EL device of the present invention had a long lifetime.
また、紫外光照射により反応性置換基 (ビニル基)をもつ材料を、反応させ貼合した 素子 3c—4 (発光層 1, 2中共に、ビニル基を有するホスト材料及びドーパント材料が 含有されている)については、更に寿命が向上している。  In addition, a device having a reactive substituent (vinyl group) reacted by UV irradiation and bonded to device 3c-4 (both the light-emitting layers 1 and 2 contain a host material and a dopant material having a vinyl group). The life is further improved.
[0728] 実施例 22 [0728] Example 22
〈有機 EL素子 4c 1〜4c 8の作製〉  <Production of organic EL elements 4c 1 to 4c 8>
陰極側部材の作製  Production of cathode side member
100mm X 100mm X I. 1mmのガラス基板をイソプロピルアルコールで超音波洗 浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。この基板を市販の真 空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートの一つにアルミ -ゥム 200mgを入れ、別のモリブデン製抵抗加熱ボートにフッ化リチウム 200mgを 入れ、更に別のモリブデン製抵抗加熱ボートに BCPを 200mg入れ、別のモリブデン 製抵抗加熱ボートにホストイ匕合物として CBP200mgを入れ、別のモリブデン製抵抗 加熱ボートに例示化合物 Ir 9を lOOmg入れ、真空蒸着装置に取り付けた。  100 mm X 100 mm X I. A 1 mm glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaned for 5 minutes. This substrate is fixed to the substrate holder of a commercially available vacuum evaporation system, 200 mg of aluminum is put in one of the resistance heating boats made of molybdenum, and 200 mg of lithium fluoride is put in another resistance heating boat made of molybdenum. 200 mg of BCP is put into a resistance heating boat made of molybdenum, 200 mg of CBP as a host compound is put into another resistance heating boat made of molybdenum, and lOOmg of the exemplified compound Ir 9 is put into another resistance heating boat made of molybdenum and attached to a vacuum evaporation system. It was.
[0729] 次 、で、真空槽を 4 X 10—4Paまで減圧した後、アルミニウムの入った前記加熱ボー トに通電して加熱し、アルミニウム (膜厚約 l lOnm)を蒸着し、続いて、フッ化リチウム の入った熱ボートに通電して加熱し、フッ化リチウム (膜厚約 0. 5nm)を蒸着した。 [0729] in the following, after pressure in the vacuum tank was reduced to 4 X 10- 4 Pa, and heated by supplying an electric current to the boat containing the aluminum, aluminum was vapor-deposited (thickness of about l lOnm), followed by Then, electricity was supplied to a heat boat containing lithium fluoride and heated to deposit lithium fluoride (film thickness: about 0.5 nm).
[0730] 次に、 BCPの入った前記加熱ボートに通電して加熱し、蒸着速度 0. InmZsecで 前記発光層の上に蒸着して膜厚約 lOnmの電子輸送層を設けた。  [0730] Next, the heating boat containing BCP was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0. InmZsec to provide an electron transport layer having a thickness of about lOnm.
[0731] 更に、 CBPと例示化合物 Ir 9の入った前記加熱ボートに通電して加熱し、それぞ れ蒸着速度 0. 2nm/sec, 0. 012nm/secで前記正孔輸送層上に共蒸着して、 膜厚 40nmの発光層を設け、陰極側部材を作製した。 [0731] Further, the heating boat containing CBP and the exemplified compound Ir 9 was energized and heated, and co-evaporated on the hole transport layer at a deposition rate of 0.2 nm / sec and 0.012 nm / sec, respectively. do it, A light emitting layer having a thickness of 40 nm was provided to produce a cathode side member.
[0732] 陽極側部材の作製 [0732] Fabrication of anode side member
陽極として 100mm X 100mm X I . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。この透明支持基板 を市販の真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボート〖こ a The ITO transparent electrode was provided after patterning was performed on a substrate (ΝΗ Techno Glass Co., Ltd. ΝΑ45) obtained by depositing ITO (indium tin oxide) on a 100 mm X 100 mm XI .1 mm glass substrate as an anode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This transparent support substrate is fixed to the substrate holder of a commercially available vacuum evaporation system, and a molybdenum resistance heating boat is used.
— NPDを 200mg入れ、真空蒸着装置に取り付けた。 — 200 mg of NPD was added and attached to the vacuum evaporation system.
[0733] 真空槽を 4 X 10—4Paまで減圧した後、 a—NPDの入った前記加熱ボートに通電し て加熱し、蒸着速度 0. InmZsecで透明支持基板に蒸着し、膜厚 40nmの正孔輸 送層を設け、陽極側部材を作製した。 [0733] After pressure in the vacuum tank was reduced to 4 X 10- 4 Pa, and heated by supplying an electric current to the boat containing a-NPD, it was deposited on the transparent supporting substrate at a deposition rate of 0. InmZsec, the film thickness 40nm A positive hole transport layer was provided to produce an anode side member.
[0734] 金属ローラでの表面処理 [0734] Surface treatment with metal roller
作製した陰極側部材、陽極側部材をそれぞれ固有の表面粗さをもった金属製ロー ラで実施例 19と同様の方法で圧着し、剥離して表 17に示す表面粗さ (Ra)の部材を 得た。  The prepared cathode-side member and anode-side member were each pressed with a metal roller having a specific surface roughness in the same manner as in Example 19, peeled, and peeled to the surface roughness (Ra) members shown in Table 17. Got.
[0735] 接合 [0735] Joining
このようにして得られた陰極側部材の発光層と陽極側部材の発光層を対向させて 重ね合わせ、接合冶具を用いて、 1 X 10— 2Paの減圧環境下で押圧力 0. IMPaで圧 着、密着、固定して、出来上がった素子をそのまま封止処理 (ガラス基板同士をェポ キシ系の接着剤を用い接着した)して有機 EL素子 4c— 1を作製した。 Thus it is opposed to the light emitting layer of the light-emitting layer and the anode-side member of the resulting cathode side member overlay, using a bonding jig, the pressing force 0. IMPa under a reduced pressure environment of 1 X 10- 2 Pa The organic EL device 4c-1 was produced by sealing, bonding, and fixing the resulting device as it was (glass substrates were bonded together using an epoxy adhesive).
[0736] 有機 EL素子 4c 1の作製において、電子輸送層、発光層及び正孔輸送層に使用 する化合物を表 17に示す化合物に置き換えた以外は有機 EL素子 4c 1と同じ方 法で 4c - 2〜4c - 4を作製した。  [0736] In the production of the organic EL device 4c 1, the compounds used in the electron transport layer, the light emitting layer, and the hole transport layer were replaced with the compounds shown in Table 17 in the same manner as the organic EL device 4c 1. 2-4c-4 were produced.
[0737] また、更に、有機 EL素子 4c— l〜4c— 4それぞれに、 23°C、乾燥窒素ガス雰囲気 下で 5. OmAZcm2定電流を 100時間印加後の素子を有機 EL素子 4c— 5〜4c— 8 とした。 [0737] Further, each of the organic EL elements 4c-l to 4c-4 was subjected to an OmAZcm 2 constant current for 100 hours at 23 ° C in a dry nitrogen gas atmosphere. -4c-8.
[0738] [表 17] 素子 4 c - 1 素子 4 c -2 素子 4 c一 3 素子 4 c -4 素子 4 c一 5 素子 4 c一 6 素子 4 c -7 素子 4 c一 8 比 較 比 較 本発明 本発明 電子輸送層 BCP BCP BCP 3- 2 [0738] [Table 17] Element 4 c-1 Element 4 c -2 Element 4 c One 3 Element 4 c -4 Element 4 c One 5 Element 4 c One 6 Element 4 c -7 Element 4 c One 8 Comparison Comparison The present invention Electron transport Layer BCP BCP BCP 3- 2
CBP/lr- 9 CBP/lr - 9 CBP/lr - 9 1一 2/2 5 正孔輸送層 a-NPD a -NPD a - NPD 4- 1 CBP / lr- 9 CBP / lr-9 CBP / lr-9 1 1 2/2 5 Hole transport layer a-NPD a -NPD a-NPD 4-1
R a (発光層) 100 lOOnm O.lnm O.lnmR a (light emitting layer) 100 lOOnm O.lnm O.lnm
R a (正孔輸送層) lOOnm O.lnm O.lnm O.lnm R a (hole transport layer) lOOnm O.lnm O.lnm O.lnm
[0739] 〈有機 EL素子 4c l〜4c 8の評価〉 [0739] <Evaluation of organic EL devices 4c l to 4c 8>
以下のようにして作製した有機 EL素子 4c - l〜4c - 8の評価を行 、、その結果を 表 18に示す。  Evaluation of organic EL devices 4c-1 to 4c-8 produced as follows was performed, and the results are shown in Table 18.
[0740] (外部取りだし量子効率) [0740] (External quantum efficiency)
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm2 定電流を印加した時の外部取り出し量子効率(%)を測定した。なお測定には同様に 分光放射輝度計 CS - 1000 (コ-力ミノルタ製)を用いた。 With respect to the produced organic EL device, the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C. For measurement, a spectral radiance meter CS-1000 (manufactured by Ko-Force Minolta) was used in the same manner.
[0741] 表 18の外部取りだし量子効率の測定結果は、有機 EL素子 4c 1の測定値を 100 とした時の相対値で表した。 [0741] The measurement results of the external extraction quantum efficiency in Table 18 are expressed as relative values when the measured value of the organic EL element 4c 1 is 100.
[0742] (寿命) [0742] (Life)
2.5mAZcm2の一定電流で駆動したときに、輝度が発光開始直後の輝度 (初期 輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間( τ 0.5)と して寿命の指標とした。なお測定には分光放射輝度計 CS— 1000 (コ-力ミノルタ製 )を用いた。 When driving at a constant current of 2.5 mAZcm 2 , the time required for the luminance to drop to half of the luminance immediately after the start of light emission (initial luminance) is measured, and this is used as the half-life time (τ 0.5). It was used as an index. For the measurement, a spectral radiance meter CS-1000 (manufactured by Ko-Force Minolta) was used.
[0743] 表 18の寿命の測定結果は、有機 EL素子 4c— 1を 100とした時の相対値で表した。  [0743] The measurement results of lifetime in Table 18 are expressed as relative values when the organic EL element 4c-1 is 100.
[0744] [表 18] 外部取り出し量子効率 卩 備 考 [0744] [Table 18] External quantum efficiency 卩 Remarks
素子 4 c - 1 100 100 比 較  Element 4 c-1 100 100 Comparison
素子 4 c一 2 81 91 比 較  Element 4 c 1 2 81 91 Comparison
素子 4 c - 3 112 123 本発明  Element 4 c-3 112 123 Present invention
素子 4 c ~ 4 119 250 本発明  Element 4 c to 4 119 250 The present invention
素子 4 c一 5 88 84 比 較 (通電)  Element 4 c 1 5 88 84 Comparison (energization)
素子 4 c一 6 72 66 比 較 (通電)  Element 4 c 1 6 72 66 Comparison (energization)
素子 4 c - 7 108 182 本発明 (通電)  Element 4 c-7 108 182 Present invention (energized)
素子 4 c - 8 116 381 本発明 (通電)  Element 4 c-8 116 381 Present invention (energized)
[0745] 表 18から、本発明の有機 EL素子は、長寿命化が達成されていることが分力つた。 [0745] From Table 18, it was found that the organic EL device of the present invention had a long lifetime.
貼合した二つの層中に重合性のビニル基を有する材料 (ホスト材料、正孔輸送材料 等)を用いたものはより寿命が優れることがわかり、また、有機 EL素子 4c— l〜4c— 4それぞれを 100時間、定電流駆動した有機 EL素子 4c— 5〜4c— 8のうち、本発明 の素子 4c— 7、 4c— 8については更に寿命が向上している。  It can be seen that materials using a polymerizable vinyl group (host material, hole transport material, etc.) in the two bonded layers have a longer lifetime, and organic EL elements 4c— l to 4c— 4 Of the organic EL elements 4c-5 to 4c-8, each of which is driven at a constant current for 100 hours, the lifetimes of the elements 4c-7 and 4c-8 of the present invention are further improved.
[0746] 実施例 23 [0746] Example 23
《フルカラー表示装置の作製》  <Production of full-color display device>
(青色発光有機 EL素子)  (Blue light emitting organic EL device)
青色発光有機 EL素子として、実施例 21で作製した有機 EL素子 3c— 4を用い、青 色発光有機 EL素子 5c - 1B (青)とした。  As the blue light emitting organic EL element, the organic EL element 3c-4 prepared in Example 21 was used, and a blue light emitting organic EL element 5c-1B (blue) was obtained.
[0747] (緑色発光有機 EL素子) [0747] (Green light-emitting organic EL device)
実施例 21の有機 EL素子 3c— 4の作製において、 2— 7を 2—1に変更した以外は 同様にして、緑色発光有機 EL素子 5c— 1G (緑)を作製した。  Green light-emitting organic EL element 5c-1G (green) was produced in the same manner as in the production of organic EL element 3c-4 of Example 21, except that 2-7 was changed to 2-1.
[0748] (赤色発光有機 EL素子) [0748] (Red light-emitting organic EL device)
実施例 21の有機 EL素子 3c— 4の作製において、 2— 7を 2— 5に変更した以外は 同様にして、赤色発光有機 EL素子 5c— 1R (赤)を作製した。  A red light emitting organic EL element 5c-1R (red) was produced in the same manner as in the production of the organic EL element 3c-4 of Example 21, except that 2-7 was changed to 2-5.
[0749] 上記の赤色、緑色及び青色発光有機 EL素子を、同一基板上に並置し、図 1に記 載の形態を有するアクティブマトリクス方式フルカラー表示装置を作製し、図 2には、 作製した前記表示装置の表示部 Aの模式図のみを示した。即ち、同一基板上に、複 数の走査線 5及びデータ線 6を含む配線部と、並置した複数の画素 3 (発光の色が赤 領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線 5及び複 数のデータ線 6はそれぞれ導電材料力 なり、走査線 5とデータ線 6は格子状に直交 して、直交する位置で画素 3に接続している(詳細は図示せず)。前記複数の画素 3 ( 図 3に各画素の駆動回路の模式図を示した。)は、それぞれの発光色に対応した有 機 EL素子、アクティブ素子であるスイッチングトランジスタ 11と駆動トランジスタ 12そ れぞれが設けられたアクティブマトリクス方式で駆動されており、走査線 5から走査信 号が印加されると、データ線 6から画像データ信号を受け取り、受け取った画像デー タに応じて発光する。なお、 7は電源ライン、 10は有機 EL素子、 13はコンデンサであ る。 [0749] The above red, green, and blue light emitting organic EL elements are juxtaposed on the same substrate to produce an active matrix type full-color display device having the form shown in FIG. 1, and FIG. Only a schematic diagram of the display unit A of the display device is shown. That is, a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 arranged in parallel on the same substrate (light emission color is a pixel in a red region, a pixel in a green region, a pixel in a blue region, etc.) Scanning lines 5 and multiple Each of the data lines 6 has a conductive material force, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are not shown). The plurality of pixels 3 (a schematic diagram of the drive circuit of each pixel is shown in FIG. 3) is an organic EL element corresponding to each emission color, a switching transistor 11 and an drive transistor 12 which are active elements, respectively. When the scanning signal is applied from the scanning line 5, an image data signal is received from the data line 6, and light is emitted according to the received image data. 7 is a power line, 10 is an organic EL element, and 13 is a capacitor.
[0750] この様に各赤、緑、青の画素を適宜、並置することによって、フルカラー表示装置を 作製した。  [0750] In this way, a full-color display device was produced by appropriately juxtaposing the red, green, and blue pixels.
[0751] 前記フルカラー表示装置を駆動することにより、発光効率が高い発光寿命の長いフ ルカラー動画表示が得られることを確認することができた。  [0751] It was confirmed that by driving the full-color display device, a full-color moving image display with a high luminous efficiency and a long luminous lifetime was obtained.
[0752] 実施例 24 [0752] Example 24
《白色の照明装置の作製》  <Production of white lighting device>
実施例 21の有機 EL素子 3c— 4において、 2— 7を 2— 7と 2— 1と 2— 5の混合物に 変更した以外は同様にして、白色発光有機 EL素子 6c— 1W (白色)を作製した。  In the same manner as in Example 21 organic EL device 3c-4, except that 2-7 was changed to a mixture of 2-7, 2-1, and 2-5, white light emitting organic EL device 6c-1W (white) was Produced.
[0753] 得られた有機 EL素子 6c— 1Wを評価するに際しては、非発光面をガラスケースで 覆い、照明装置とした。照明装置は、発光効率が高く発光寿命の長い白色光を発す る薄型の照明装置として使用することができた。 [0753] When the obtained organic EL element 6c-1W was evaluated, the non-light-emitting surface was covered with a glass case to obtain a lighting device. The illuminating device could be used as a thin illuminating device that emits white light with high luminous efficiency and long emission life.
[0754] 以下、実施例 25〜30により請求の範囲第 32項〜第 40項に記載の発明を具体的 に説明する。 [0754] Hereinafter, the inventions described in claims 32 to 40 will be specifically described by Examples 25 to 30.
[0755] 実施例 25 [0755] Example 25
〈第 1の電極基板の作製〉  <Production of first electrode substrate>
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。  As a positive electrode, a ITO substrate (100 mm X 100 mm X I. 1 mm thick ITO (indium tin oxide) filmed on lOOnm substrate (ΝΗ Techno Glass Co., Ltd. ΝΑ45)) was put on this ITO transparent electrode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
[0756] この基板を市販のスピンコータに取り付け、下記化合物 BCP (60mg)をトルエン 10 mlに溶解した溶液を用い、 1000rpm、 30secの条件下、スピンコート(膜厚約 40nm[0756] This substrate was attached to a commercially available spin coater, and the following compound BCP (60 mg) was added to toluene 10 Using a solution dissolved in ml, spin coating (film thickness of about 40 nm) under conditions of 1000 rpm and 30 sec
)し、有機層 1層を有する第 1の電極基板を作製した。 Then, a first electrode substrate having one organic layer was produced.
[0757] 〈第 2の電極基板の作製〉 [0757] <Production of second electrode substrate>
第 1の電極基板の作製時に使用した UVオゾン洗浄済みの基板を市販のスピンコ ータに取り付け、下記化合物 CBP (60mg)をトルエン 10mlに溶解した溶液を用い、 Attach the UV ozone-cleaned substrate used in the preparation of the first electrode substrate to a commercially available spin coater, and use a solution of the following compound CBP (60 mg) dissolved in 10 ml of toluene.
1000rpm、 30secの条件下、スピンコート(膜厚約 40nm)し、有機層 1層を有する第Spin coat (film thickness about 40nm) under the condition of 1000rpm, 30sec, and the first organic layer
2の電極基板を作製した。 Two electrode substrates were prepared.
[0758] このようにして得られた第 1の電極基板と第 2の電極基板の有機層を対向させて重 ね合わせ、接合冶具で固定し、 100°Cで 1時間加熱処理を行い、素子 Id— 1を作製 した。 [0758] The organic layers of the first electrode substrate and the second electrode substrate obtained as described above were overlapped with each other, fixed with a joining jig, and heat-treated at 100 ° C for 1 hour to obtain an element. Id-1 was produced.
[0759] 素子 Id— 1の作製において、第 1の電極基板と第 2の電極基板の有機層に使用す る化合物と後処理方法を表 19に示す方法に置き換えた以外は、素子 Id— 1と同じ 方法で素子 Id— 2、 Id— 3を作製した。  [0759] Element Id-1 was prepared except that the compounds used in the organic layers of the first electrode substrate and the second electrode substrate and the post-treatment method were replaced with the methods shown in Table 19 in the preparation of element Id-1. The devices Id-2 and Id-3 were fabricated by the same method.
[0760] 上記で使用した化合物の構造を以下に示す。  [0760] The structures of the compounds used above are shown below.
[0761] [化 73]  [0761] [Chemical 73]
CBP BCP
Figure imgf000160_0001
CBP BCP
Figure imgf000160_0001
[0762] 〔剥離強度の測定〕 [0762] [Measurement of peel strength]
素子の剥離強度は SAICAS法にて、ダイプラ 'ウィンテス社製の SAICAS NN— 04型を用いて測定した。 SAICAS法とは,鋭利な切刃(単結晶ダイヤモンド,焼結合 金)を用いて,垂直荷重を一定方向に保った状態で、水平方向に定速で動かすため に必要な水平荷重を測定する手法であり、薄膜の剥離強度の測定が可能となる。  The peel strength of the element was measured by the SAICAS method using a SAICAS NN-04 model manufactured by Daipura Wintes. The SAICAS method uses a sharp cutting edge (single crystal diamond, burned-bonded gold) to measure the horizontal load required to move at a constant speed in the horizontal direction while maintaining a constant vertical load. Thus, the peel strength of the thin film can be measured.
[0763] 測定条件は下記の通りである。  [0763] The measurement conditions are as follows.
[0764] サイカス測定条件 装置;ダイプラ ·ウィンテス製サイカス NN - 04型 [0764] Psycho measurement conditions Equipment: Daipla · Wintes Cycus NN-04 type
測定条件;  Measurement condition;
ダイヤモンド製 lmm幅の刃を使用。剪断角度は 45°  A diamond lmm wide blade is used. Shear angle is 45 °
押圧荷重を 2 μ Ν、バランス加重 1 μ Νとし、垂直速度 lnmZsec、水平速度 100η mZsecにて切削を行い、水平、垂直力を記録した。尚、サンプリングステップは 0. 2 sec/ pointである。 The pressing load 2 mu New, and balance weight 1 mu New, vertical speed LnmZsec, perform cutting in a horizontal velocity 100η mZsec, were recorded horizontal and vertical forces. The sampling step is 0.2 sec / point.
[表 19]  [Table 19]
Figure imgf000161_0001
Figure imgf000161_0001
[0766] 上記測定方法にて、層間の剥離強度の測定が可能であることが分かる [0766] It can be seen that the peel strength between layers can be measured by the above measurement method.
実施例 26  Example 26
〈有機 EL素子 2d— l〜2d— 3の作製〉  <Preparation of organic EL elements 2d-l to 2d-3>
〈第 1の電極基板の作製〉  <Production of first electrode substrate>
100mm X 100mm X I. lmmのガラス基板をイソプロピルアルコールで超音波洗 浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った後、市販の真空蒸着装 置の基板ホルダーに固定し、アルミニウム (膜厚約 l lOnm)、フッ化リチウム (膜厚約 0. 5nm)を 着した。  100mm X 100mm X I. lmm glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, then fixed to a commercially available vacuum evaporation system substrate holder, Aluminum (thickness: about lOnm) and lithium fluoride (thickness: about 0.5 nm) were applied.
[0767] この基板を市販のスピンコータに取り付け、 BCP (20mg)をトルエン 10mlに溶解し た溶液を用い、 1000rpm、 30secの条件下、スピンコート(膜厚約 10nm)、 60°Cで 1 時間真空乾燥し、有機層 (電子輸送層)を設け、第 1の電極基板 (陰極側)を作製し た。  [0767] This substrate was attached to a commercially available spin coater, and a solution of BCP (20 mg) dissolved in 10 ml of toluene was used. Spin coating (film thickness: about 10 nm) at 60 ° C for 1 hour under conditions of 1000 rpm and 30 sec. After drying, an organic layer (electron transport layer) was provided, and a first electrode substrate (cathode side) was produced.
[0768] 〈第 2の電極基板の作製〉  [0768] <Production of second electrode substrate>
陽極として 100mm X 100mm X I. lmmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。 As a positive electrode, a ITO substrate (100 mm X 100 mm X I. lmm) on which ITO (indium tin oxide) is deposited on lOOnm (Pure 45 made by Techno Glass Co., Ltd.) was patterned, and then this ITO transparent electrode was provided. A transparent support substrate with isopropyl alcohol Washed, dried with dry nitrogen gas, and UV ozone washed for 5 minutes.
[0769] この基板を市販のスピンコータに取り付け、例示化合物 4 1 (60mg)をトルエン 10 mlに溶解した溶液を用い、 1000rpm、 30secの条件下、スピンコート(膜厚約 40nm )、紫外光を 30秒照射した後、 60°Cで 1時間真空乾燥し、有機層 (正孔輸送層)を形 成した。 [0769] This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 4 1 (60 mg) in 10 ml of toluene was spin-coated (film thickness: about 40 nm) and ultraviolet light was used under conditions of 1000 rpm and 30 sec. After irradiation for 2 seconds, it was vacuum dried at 60 ° C for 1 hour to form an organic layer (hole transport layer).
[0770] 次!、で、 CBP (60mg)と例示化合物 Ir 1 (3. Omg)とをトルエン 6mlに溶解した溶 液を用い、 1000rpm、 30secの条件下、スピンコートし(膜厚約 60nm)、 60°Cで 1時 間真空乾燥し、発光層を形成した。このようにして、有機層として正孔輸送層及び発 光層を有する第 2の電極基板 (陽極側)を作製した。  [0770] Next, spin-coat using a solution of CBP (60 mg) and the exemplified compound Ir 1 (3. Omg) dissolved in 6 ml of toluene at 1000 rpm for 30 sec (film thickness of about 60 nm) Then, it was vacuum-dried at 60 ° C. for 1 hour to form a light emitting layer. In this way, a second electrode substrate (anode side) having a hole transport layer and a light emitting layer as an organic layer was produced.
[0771] このようにして得られた第 1の電極基板 (陰極側)と第 2の電極基板(陽極側)の有機 層を対向させて重ね合わせ、接合冶具で固定し、 100°Cで 1時間過熱処理を行い、 出来上がった素子を封止処理し、有機 EL素子 2d— 1を作製した。  [0771] The organic layers of the first electrode substrate (cathode side) and the second electrode substrate (anode side) obtained in this way were placed facing each other, fixed with a joining jig, and 1 ° C at 100 ° C. Overtime heat treatment was performed, and the resulting device was sealed to produce an organic EL device 2d-1.
[0772] 有機 EL素子 2d— 1の作製において、電子輸送層、発光層及び正孔輸送層に使用 する化合物を表 20に示すィ匕合物に置き換えた以外は有機 EL素子 2d— 1と同じ方 法で有機 EL素子 2d— 2、 2d— 3を作製した。  [0772] Same as organic EL device 2d-1, except that the compounds used in the electron transport layer, light emitting layer, and hole transport layer were replaced with the compounds shown in Table 20 in the preparation of organic EL device 2d-1. Organic EL devices 2d-2 and 2d-3 were fabricated by this method.
[0773] [表 20]  [0773] [Table 20]
Figure imgf000162_0001
Figure imgf000162_0001
[0774] 〈有機 EL素子 2d— l〜2d— 3の評価〉 <0774] <Evaluation of organic EL elements 2d-l to 2d-3>
以下のようにして作製した有機 EL素子 2d— l〜2d— 3の評価を行 、、その結果を 表 21に示す。  Evaluation of organic EL devices 2d-1 to 2d-3 produced as follows was performed and the results are shown in Table 21.
[0775] (外部取りだし量子効率) [0775] (External extraction quantum efficiency)
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm2 定電流を印加した時の外部取り出し量子効率(%)を測定した。なお測定には同様に 分光放射輝度計 CS - 1000 (コ-力ミノルタ製)を用いた。 With respect to the produced organic EL device, the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C. For measurement, a spectral radiance meter CS-1000 (manufactured by Ko-Force Minolta) was used in the same manner.
[0776] 表 21の外部取りだし量子効率の測定結果は、有機 EL素子 2d— 1の測定値を 100 とした時の相対値で表した。 [0776] The measurement results of external extraction quantum efficiency in Table 21 are the measured values of organic EL element 2d-1 100. It was expressed as a relative value.
[0777] (寿命) [0777] (Life)
2. 5mAZcm2の一定電流で駆動したときに、輝度が発光開始直後の輝度 (初期 輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間( τ 0. 5)と して寿命の指標とした。なお測定には分光放射輝度計 CS— 1000 (コ-力ミノルタ製 )を用いた。 2. When driving at a constant current of 5 mAZcm 2 , measure the time required for the luminance to drop to half of the luminance immediately after the start of light emission (initial luminance), and this is the half-life time (τ 0.5). And used as an index of life. For the measurement, a spectral radiance meter CS-1000 (manufactured by Ko-Force Minolta) was used.
[0778] 表 21の寿命の測定結果は、有機 EL素子 2d— 1を 100とした時の相対値で表した  [0778] The lifetime measurement results in Table 21 are expressed as relative values when the organic EL element 2d-1 is 100.
[0779] また、接合面における剥離強度を実施例 25と同様に測定を行い、その結果を表 21 に示した。 [0779] The peel strength at the joint surface was measured in the same manner as in Example 25, and the results are shown in Table 21.
[0780] [表 21] [0780] [Table 21]
Figure imgf000163_0001
Figure imgf000163_0001
[0781] 表 21から、本発明の有機 EL素子は、長寿命化が達成されていることが分力つた。 [0781] From Table 21, it was found that the organic EL device of the present invention had a long lifetime.
[0782] 実施例 27 [0782] Example 27
〈有機 EL素子 3d— l〜3d— 3の作製〉  <Production of organic EL elements 3d-l to 3d-3>
〈第 1の電極基板の作製〉  <Production of first electrode substrate>
100mm X 100mm X I. 1mmのガラス基板をイソプロピルアルコールで超音波洗 浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った後、市販の真空蒸着装 置の基板ホルダーに固定し、アルミニウム (膜厚約 l lOnm)、フッ化リチウム (膜厚約 0. 5nm)を 着した。  100mm X 100mm X I. A 1mm glass substrate is ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, and then fixed to a substrate holder of a commercially available vacuum deposition device. Aluminum (thickness: about lOnm) and lithium fluoride (thickness: about 0.5 nm) were applied.
[0783] この基板を市販のスピンコータに取り付け、例示化合物 3— 2 (20mg)をトルエン 10 mlに溶解した溶液を用い、 1000rpm、 30secの条件下、スピンコート(膜厚約 10nm )、紫外光を 30秒照射した後、 60°Cで 1時間真空乾燥し、有機層として電子輸送層 を設けた。 [0784] 次いで、 CBP (60mg)と下記化合物 Ir—12 (3. Omg)とをトルエン 12mlに溶解し た溶液を用い、 1000rpm、 30secの条件下、スピンコートし(膜厚約 30nm)、 60°C で 1時間真空乾燥し発光層を形成した。このようにして、有機層として電子輸送層及 び発光層を有する第 1の電極基板 (陰極側)を作製した。 [0783] This substrate was attached to a commercially available spin coater, and a solution of Exemplified Compound 3-2 (20 mg) dissolved in 10 ml of toluene was used. Spin coating (film thickness: about 10 nm) and ultraviolet light were performed at 1000 rpm for 30 sec. After irradiation for 30 seconds, vacuum drying was performed at 60 ° C for 1 hour, and an electron transport layer was provided as an organic layer. [0784] Next, a solution obtained by dissolving CBP (60 mg) and the following compound Ir-12 (3. Omg) in 12 ml of toluene was spin-coated under a condition of 1000 rpm and 30 sec (film thickness: about 30 nm). A light emitting layer was formed by vacuum drying at ° C for 1 hour. In this way, a first electrode substrate (cathode side) having an electron transport layer and a light emitting layer as an organic layer was produced.
[0785] 〈第 2の電極基板の作製〉  [0785] <Production of second electrode substrate>
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。  As a positive electrode, a ITO substrate (100 mm X 100 mm X I. 1 mm thick ITO (indium tin oxide) filmed on lOOnm substrate (ΝΗ Techno Glass Co., Ltd. ΝΑ45)) was put on this ITO transparent electrode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
[0786] この基板を市販のスピンコータに取り付け、例示化合物 4 1 (60mg)をトルエン 10 mlに溶解した溶液を用い、 1000rpm、 30secの条件下、スピンコート(膜厚約 40nm )、紫外光を 30秒照射した後、 60°Cで 1時間真空乾燥し、有機層として正孔輸送層 を形成した。  [0786] This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 4 1 (60 mg) in 10 ml of toluene was spin-coated (film thickness: about 40 nm) and ultraviolet light was used under conditions of 1000 rpm and 30 sec. After irradiation for 2 seconds, vacuum drying was performed at 60 ° C. for 1 hour to form a hole transport layer as an organic layer.
[0787] 次いで、化合物 CBP (60mg)と化合物 Ir 1 (3. Omg)とをトルエン 12mlに溶解し た溶液を用い、 1000rpm、 30secの条件下、スピンコートし(膜厚約 30nm)、 60°C で 1時間真空乾燥し有機層として発光層を形成した。このようにして、有機層として正 孔輸送層と発光層を有する第 2の電極基板 (陽極側)を作製した。  [0787] Next, a solution obtained by dissolving Compound CBP (60 mg) and Compound Ir 1 (3. Omg) in 12 ml of toluene was spin-coated under conditions of 1000 rpm and 30 seconds (film thickness of about 30 nm), and 60 ° A light emitting layer was formed as an organic layer by vacuum drying with C for 1 hour. In this way, a second electrode substrate (anode side) having a hole transport layer and a light emitting layer as an organic layer was produced.
[0788] このようにして得られた第 1の電極基板 (陰極側)と第 2の電極基板(陽極側)の発光 層を対向させて重ね合わせ、接合冶具で固定し、陽極側力も紫外光を 90秒照射し、 出来上がった素子を封止処理し、有機 EL素子 3d— 1を作製した。  [0788] The light emitting layers of the first electrode substrate (cathode side) and the second electrode substrate (anode side) obtained in this way are overlapped and fixed with a bonding jig, and the anode side force is also UV light. Was irradiated for 90 seconds, and the resulting device was sealed to produce an organic EL device 3d-1.
[0789] 有機 EL素子 3d— 1の作製において、電子輸送層、発光層及び正孔輸送層に使用 する化合物を表 22に示すィ匕合物に置き換えた以外は有機 EL素子 3d— 1と同じ方 法で 3d— 2、 3d— 3を作製した。  [0789] Same as organic EL element 3d-1, except that the compounds used in the electron transport layer, the light emitting layer, and the hole transport layer were replaced with the compounds shown in Table 22 in the preparation of organic EL element 3d-1. 3d-2 and 3d-3 were prepared by this method.
[0790] [表 22] 素子 No . 電子輸送層 癸光層 正孔輸送層 備 考  [0790] [Table 22] Device No. Electron transport layer Fluorescent layer Hole transport layer Remarks
3 d - 1 3 - 2 C B P /l r- 12 4 - 1 比 較  3 d-1 3-2 C B P / l r-12 4-1 Comparison
3 d - 2 3 - 2 1一 2 / I r— 12 4一 1 本発明  3 d-2 3-2 1 1 2 / I r— 12 4 1 1
3 d— 3 3 - 2 1一 2 / 2— 7 4 - 1 本発明 [0791] 〈有機 EL素子 3d— l 3d— 3の評価〉 3 d— 3 3-2 1 1 2 / 2— 7 4-1 The present invention [0791] <Evaluation of organic EL device 3d- l 3d-3>
以下のようにして作製した有機 EL素子 3d— l 3d— 3の評価を行 、、その結果を 表 23に示す。  Evaluation of the organic EL devices 3d-l 3d-3 produced as follows was performed, and the results are shown in Table 23.
[0792] (外部取りだし量子効率) [0792] (External extraction quantum efficiency)
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm2 定電流を印加した時の外部取り出し量子効率(%)を測定した。なお測定には同様に 分光放射輝度計 CS - 1000 (コ-力ミノルタ製)を用いた。 With respect to the produced organic EL device, the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C. For measurement, a spectral radiance meter CS-1000 (manufactured by Ko-Force Minolta) was used in the same manner.
[0793] 表 23の外部取りだし量子効率の測定結果は、有機 EL素子 3d— 1の測定値を 100 とした時の相対値で表した。 [0793] The measurement results of the external extraction quantum efficiency in Table 23 are expressed as relative values when the measured value of the organic EL element 3d-1 is 100.
[0794] (寿命) [0794] (Life)
2. 5mAZcm2の一定電流で駆動したときに、輝度が発光開始直後の輝度 (初期 輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間( τ 0. 5)と して寿命の指標とした。なお測定には分光放射輝度計 CS— 1000 (コ-力ミノルタ製 )を用いた。 2. When driving at a constant current of 5 mAZcm 2 , measure the time required for the luminance to drop to half of the luminance immediately after the start of light emission (initial luminance), and this is the half-life time (τ 0.5). And used as an index of life. For the measurement, a spectral radiance meter CS-1000 (manufactured by Ko-Force Minolta) was used.
[0795] 表 23の寿命の測定結果は、有機 EL素子 3d— 1を 100とした時の相対値で表した  [0795] Lifetime measurement results in Table 23 are expressed as relative values when the organic EL element 3d-1 is assumed to be 100.
[0796] また、接合面における剥離強度を実施例 25と同様に測定を行い、その結果を表 23 に示した。 [0796] The peel strength at the joint surface was measured in the same manner as in Example 25. The results are shown in Table 23.
[0797] [表 23] [0797] [Table 23]
Figure imgf000165_0001
Figure imgf000165_0001
[0798] 表 23から、本発明の有機 EL素子は、長寿命化が達成されていることが分力つた。 [0798] From Table 23, it was found that the organic EL device of the present invention had a long lifetime.
[0799] 実施例 28 [0799] Example 28
〈有機 EL素子 4d— 1 4d— 5の作製〉  <Preparation of organic EL elements 4d-1 4d-5>
〈第 1の電極基板の作製〉 100mm X 100mm X I . 1mmのガラス基板をイソプロピルアルコールで超音波洗 浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。この基板を市販の真 空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートの一つにアルミ -ゥム 200mgを入れ、別のモリブデン製抵抗加熱ボートにフッ化リチウム 200mgを 入れ、更に別のモリブデン製抵抗加熱ボートに BCPを 200mg入れ、別のモリブデン 製抵抗加熱ボートにホストイ匕合物として CBP200mgを入れ、別のモリブデン製抵抗 加熱ボートに Ir 9を lOOmg入れ、真空蒸着装置に取付けた。 <Production of first electrode substrate> 100 mm X 100 mm XI. A 1 mm glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaned for 5 minutes. This substrate is fixed to the substrate holder of a commercially available vacuum evaporation system, 200 mg of aluminum is put in one of the resistance heating boats made of molybdenum, and 200 mg of lithium fluoride is put in another resistance heating boat made of molybdenum. 200 mg of BCP was put in a molybdenum resistance heating boat, and 200 mg of CBP as a host compound was put in another resistance heating boat made of molybdenum.
[0800] 次 、で、真空槽を 4 X 10— 4Paまで減圧した後、アルミニウムの入った前記加熱ボー トに通電して加熱し、アルミニウム (膜厚約 l lOnm)を蒸着し、続いて、フッ化リチウム の入った熱ボートに通電して加熱し、フッ化リチウム (膜厚約 0. 5nm)を蒸着した。 [0800] in the following, after pressure in the vacuum tank was reduced to 4 X 10- 4 Pa, and heated by supplying an electric current to the boat containing the aluminum, aluminum was vapor-deposited (thickness of about l lOnm), followed by Then, electricity was supplied to a heat boat containing lithium fluoride and heated to deposit lithium fluoride (film thickness: about 0.5 nm).
[0801] 次に、 BCPの入った前記加熱ボートに通電して加熱し、蒸着速度 0. InmZsecで 前記発光層の上に蒸着して膜厚約 lOnmの電子輸送層を設けた。  [0801] Next, the heating boat containing BCP was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0. InmZsec to provide an electron transport layer having a thickness of about lOnm.
[0802] 更に、 CBPと Ir— 9の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度 0. 2nm/sec、 0. 012nmZsecで前記正孔輸送層上に共蒸着して、膜厚 40nmの 発光層を設け、第 1の電極基板 (陰極側)を作製した。  [0802] Further, the heating boat containing CBP and Ir-9 was energized and heated, and co-deposited on the hole transport layer at a deposition rate of 0.2 nm / sec and 0.012 nm Zsec, respectively. A 40 nm light-emitting layer was provided to fabricate a first electrode substrate (cathode side).
[0803] 〈第 2の電極基板の作製〉  [0803] <Production of second electrode substrate>
陽極として 100mm X 100mm X I . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。この透明支持基板 を市販の真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボート〖こ a — NPDを 200mg入れ、真空蒸着装置に取り付けた。  The ITO transparent electrode was provided after patterning was performed on a substrate (ΝΗ Techno Glass Co., Ltd. ΝΑ45) obtained by depositing ITO (indium tin oxide) on a 100 mm X 100 mm XI .1 mm glass substrate as an anode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This transparent support substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus, 200 mg of molybdenum resistance heating boat cocoon a-NPD was added, and it was attached to the vacuum vapor deposition apparatus.
[0804] 真空槽を 4 X 10—4Paまで減圧した後、 a—NPDの入った前記加熱ボートに通電し て加熱し、蒸着速度 0. InmZsecで透明支持基板に蒸着し、膜厚 40nmの正孔輸 送層を設け、陽極側部位を作製した。 [0804] After pressure in the vacuum tank was reduced to 4 X 10- 4 Pa, and heated by supplying an electric current to the boat containing a-NPD, it was deposited on the transparent supporting substrate at a deposition rate of 0. InmZsec, the film thickness 40nm A hole transport layer was provided to prepare the anode side part.
[0805] このようにして得られた陰極側部位の発光層と陽極側部位の正孔輸送層を対向さ せて重ね合わせ、接合時具で固定し、出来上がった素子を封止処理し、有機 EL素 子 4d— 1を作製した。 [0806] 有機 EL素子 4d— 1の作製において、電子輸送層、発光層及び正孔輸送層に使用 する化合物を表 24に示すィ匕合物に置き換えた以外は有機 EL素子 4d—lと同じ方 法で 4d— 2、 4d— 3を作製した。 [0805] The light emitting layer at the cathode side portion and the hole transport layer at the anode side portion thus obtained were overlapped and fixed with a bonding tool, and the resulting device was sealed and treated organically. An EL device 4d-1 was fabricated. [0806] Same as organic EL element 4d-1, except that the compounds used in the electron transport layer, the light emitting layer, and the hole transport layer were replaced with the compounds shown in Table 24 in the preparation of organic EL element 4d-1. 4d-2 and 4d-3 were prepared by this method.
[0807] 更に、有機 EL素子 4d— l〜4d— 3それぞれに、 23°C、乾燥窒素ガス雰囲気下で[0807] Further, each of the organic EL elements 4d-l to 4d-3 was placed at 23 ° C in a dry nitrogen gas atmosphere.
5. 0mAZcm2定電流を100時間印加後の素子を有機EL素子4d—4〜4d—6とし た。 5. The devices after applying a 0 mAZcm 2 constant current for 100 hours were designated as organic EL devices 4d-4 to 4d-6.
[0808] [化 74] な NPD [0808] [Chemical 74] NPD
Figure imgf000167_0001
Figure imgf000167_0001
[0809] [表 24] [0809] [Table 24]
Figure imgf000167_0002
Figure imgf000167_0002
[0810] 〈有機EL素子4d—l〜4d—6の評価〉 [0810] <Evaluation of organic EL elements 4d-1 to 4d-6>
以下のようにして作製した有機 EL素子 4d—l〜4d— 6の評価を行い、その結果を 表 25に示す。  The organic EL devices 4d-1 to 4d-6 fabricated as follows were evaluated and the results are shown in Table 25.
[0811] (外部取りだし量子効率) [0811] (External extraction quantum efficiency)
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm2 定電流を印加した時の外部取り出し量子効率(%)を測定した。なお測定には同様に 分光放射輝度計 CS - 1000 (コ-力ミノルタ製)を用いた。 With respect to the produced organic EL device, the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C. For measurement, a spectral radiance meter CS-1000 (manufactured by Ko-Force Minolta) was used in the same manner.
[0812] 表 25の外部取りだし量子効率の測定結果は、有機 EL素子 4d— 1の測定値を 100 とした時の相対値で表した。 [0812] The measurement results of the external extraction quantum efficiency in Table 25 are expressed as relative values when the measured value of the organic EL element 4d-1 is 100.
[0813] (寿命) 2. 5mAZcm2の一定電流で駆動したときに、輝度が発光開始直後の輝度 (初期 輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間( τ 0. 5)と して寿命の指標とした。なお測定には分光放射輝度計 CS— 1000 (コ-力ミノルタ製 )を用いた。 [0813] (Life) 2. When driving at a constant current of 5 mAZcm 2 , measure the time required for the luminance to drop to half of the luminance immediately after the start of light emission (initial luminance), and this is the half-life time (τ 0.5). And used as an index of life. For the measurement, a spectral radiance meter CS-1000 (manufactured by Ko-Force Minolta) was used.
[0814] 表 25の寿命の測定結果は、有機 EL素子 4d—lを 100とした時の相対値で表した  [0814] Lifetime measurement results in Table 25 are expressed as relative values when the organic EL element 4d-l is 100.
[0815] また、接合面における剥離強度を実施例 25と同様に測定を行い、その結果を表 25 に示した。 [0815] The peel strength at the joint surface was measured in the same manner as in Example 25. The results are shown in Table 25.
[0816] [表 25] [0816] [Table 25]
Figure imgf000168_0001
Figure imgf000168_0001
[0817] 表 25から、本発明の有機 EL素子は、長寿命化が達成されていることが分力つた。 [0817] From Table 25, it was found that the organic EL device of the present invention had a long lifetime.
[0818] 実施例 29 [0818] Example 29
《フルカラー表示装置の作製》  <Production of full-color display device>
(青色発光有機 EL素子)  (Blue light emitting organic EL device)
青色発光有機 EL素子として、実施例 27で作製した有機 EL素子 3d— 3を用い、青 色発光有機 EL素子 5d— IB (青)とした。  As the blue light-emitting organic EL element, the organic EL element 3d-3 prepared in Example 27 was used, and a blue light-emitting organic EL element 5d-IB (blue) was obtained.
[0819] (緑色発光有機 EL素子) [0819] (Green light-emitting organic EL device)
実施例 27の有機 EL素子 3d— 3の作製にぉ 、て、 2 - 7を 2 - 1に変更した以外は 同様にして、緑色発光有機 EL素子 5d— 1G (緑)を作製した。  A green light-emitting organic EL element 5d-1G (green) was produced in the same manner as in the production of the organic EL element 3d-3 of Example 27, except that 2-7 was changed to 2-1.
[0820] (赤色発光有機 EL素子) [0820] (Red light emitting organic EL device)
実施例 27の有機 EL素子 3d— 3の作製にぉ 、て、 2 - 7を 2 - 5に変更した以外は 同様にして、赤色発光有機 EL素子 5d— 1R (赤)を作製した。  A red light-emitting organic EL element 5d-1R (red) was produced in the same manner as in the production of the organic EL element 3d-3 of Example 27 except that 2-7 was changed to 2-5.
[0821] 上記の赤色、緑色及び青色発光有機 EL素子を、同一基板上に並置し、図 1に記 載の形態を有するアクティブマトリクス方式フルカラー表示装置を作製し、図 2には、 作製した前記表示装置の表示部 Aの模式図のみを示した。即ち、同一基板上に、複 数の走査線 5及びデータ線 6を含む配線部と、並置した複数の画素 3 (発光の色が赤 領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線 5及び複 数のデータ線 6はそれぞれ導電材料力 なり、走査線 5とデータ線 6は格子状に直交 して、直交する位置で画素 3に接続している(詳細は図示せず)。前記複数の画素 3 は、それぞれの発光色に対応した有機 EL素子、アクティブ素子であるスイッチングト ランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動さ れており、走査線 5から走査信号が印加されると、データ線 6から画像データ信号を 受け取り、受け取った画像データに応じて発光する。この様に各赤、緑、青の画素を 適宜、並置することによって、フルカラー表示装置を作製した。 [0821] The above red, green, and blue light-emitting organic EL devices are juxtaposed on the same substrate and shown in Fig. 1. An active matrix type full-color display device having the above-described form was manufactured, and FIG. 2 shows only a schematic diagram of the display portion A of the manufactured display device. That is, a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 arranged in parallel on the same substrate (light emission color is a pixel in a red region, a pixel in a green region, a pixel in a blue region, etc.) The scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material force, and the scanning line 5 and the data line 6 are orthogonal to each other in a grid pattern and are connected to the pixel 3 at the orthogonal position. (Details not shown). The plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is received from a scanning line 5. When applied, it receives an image data signal from the data line 6 and emits light according to the received image data. In this way, a full-color display device was produced by appropriately juxtaposing the red, green, and blue pixels.
[0822] 前記フルカラー表示装置を駆動することにより、発光効率が高い発光寿命の長いフ ルカラー動画表示が得られることを確認することができた。  [0822] It was confirmed that by driving the full-color display device, a full-color moving image display with a high luminous efficiency and a long luminous lifetime was obtained.
[0823] 実施例 30  [0823] Example 30
《白色の照明装置の作製》  <Production of white lighting device>
実施例 27の有機 EL素子 3d— 3において、 2— 7を 2— 7と 2— 1と 2— 5の混合物に 変更した以外は同様にして、白色発光有機 EL素子 6d— 1W (白色)を作製した。  In the same manner as in Example 27 organic EL device 3d-3, except that 2-7 was changed to a mixture of 2-7, 2-1, and 2-5, white light emitting organic EL device 6d-1W (white) was Produced.
[0824] 得られた有機 EL素子 6d— 1Wを評価するに際しては、非発光面をガラスケースで 覆い、照明装置とした。照明装置は、発光効率が高く発光寿命の長い白色光を発す る薄型の照明装置として使用することができた。 [0824] In evaluating the obtained organic EL element 6d-1W, the non-light-emitting surface was covered with a glass case to obtain a lighting device. The illuminating device could be used as a thin illuminating device that emits white light with high luminous efficiency and long emission life.

Claims

請求の範囲 The scope of the claims
[1] 陽極と陰極との間に複数の有機層を有する有機エレクト口ルミネッセンス素子であつ て、一方の電極上に反応性置換基を有する有機化合物を含有する第 1の有機層を 少なくとも 1層形成し、他方の電極上に第 2の有機層を少なくとも 1層形成し、第 1の 有機層と第 2の有機層を互いに対向させて貼り合わせて作製したことを特徴とする有 機エレクト口ルミネッセンス素子。  [1] An organic electoluminescence device having a plurality of organic layers between an anode and a cathode, and at least one first organic layer containing an organic compound having a reactive substituent on one electrode An organic elect mouth characterized in that it is formed by forming at least one second organic layer on the other electrode, and bonding the first organic layer and the second organic layer so as to face each other. Luminescence element.
[2] 前記第 2の有機層に反応性置換基を有する有機化合物を含有することを特徴とする 請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。  [2] The organic electroluminescent device according to [1], wherein the second organic layer contains an organic compound having a reactive substituent.
[3] 前記複数の有機層のうち少なくとも 1層がリン光性発光化合物を含有することを特徴 とする請求の範囲第 1項または第 2項に記載の有機エレクト口ルミネッセンス素子。 [3] The organic electroluminescent device according to [1] or [2], wherein at least one of the plurality of organic layers contains a phosphorescent light emitting compound.
[4] 前記反応性置換基が下記置換基群から選ばれる反応性置換基であることを特徴と する請求の範囲第 1項〜第 3項のいずれか 1項に記載の有機エレクト口ルミネッセン ス素子。 [4] The organic electoluminescence according to any one of claims 1 to 3, wherein the reactive substituent is a reactive substituent selected from the following substituent group: element.
[化 1]  [Chemical 1]
^^CH2 ~ =CH — NH2 —OH — SH ^^ CH 2 ~ = CH — NH 2 —OH — SH
Figure imgf000170_0001
Figure imgf000170_0001
(上記反応性置換基において、 Aは下記一般式 (a)、—O—及び—S—力らなる連結 基群から選択される少なくとも 1つを有する連結基、または該連結基の複数の組み合 わせで表される 2価の連結基を表し、 Bは水素原子または置換基を表す。 ) (In the reactive substituent, A is a linking group having at least one selected from the following general formula (a), -O- and -S-powered linking groups, or a plurality of combinations of the linking groups) Represents a divalent linking group represented by a combination, and B represents a hydrogen atom or a substituent.
[化 2] —般式 (a)
Figure imgf000171_0001
[Chemical 2] —General formula (a)
Figure imgf000171_0001
(式中、 R、 R' は各々水素原子または置換基を表し、 nは 1以上の整数を表す。 ) (In the formula, R and R ′ each represent a hydrogen atom or a substituent, and n represents an integer of 1 or more.)
[5] 前記第 1の有機層と第 2の有機層を互いに対向させて貼り合わせ、反応性置換基を 有する有機化合物間で結合を形成させたことを特徴とする請求の範囲第 1項〜第 4 項のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 [5] The first and second organic layers, wherein the first organic layer and the second organic layer are bonded to each other so as to form a bond between the organic compounds having a reactive substituent. 4. The organic electroluminescence device according to item 4, wherein any force of item 4.
[6] 前記第 1の有機層と第 2の有機層との界面で前記結合を形成させたことを特徴とする 請求の範囲第 1項〜第 5項のいずれか 1項に記載の有機エレクト口ルミネッセンス素 子。 [6] The organic elect according to any one of claims 1 to 5, wherein the bond is formed at an interface between the first organic layer and the second organic layer. Mouth luminescence element.
[7] 前記結合が共有結合であることを特徴とする請求の範囲第 5項または第 6項に記載 の有機エレクト口ルミネッセンス素子。  [7] The organic electroluminescent device according to [5] or [6], wherein the bond is a covalent bond.
[8] 前記第 1の有機層と第 2の有機層が同一の組成を有し、結合が、第 1の有機層及び 第 2の有機層のガラス転移温度 (Tg)以下で形成されることを特徴とする請求の範囲 第 5項〜第 7項のいずれか 1項に記載の有機エレクト口ルミネッセンス素子。  [8] The first organic layer and the second organic layer have the same composition, and the bond is formed below the glass transition temperature (Tg) of the first organic layer and the second organic layer. The organic electoluminescence device according to any one of claims 5 to 7, wherein:
[9] 前記有機層の少なくとも 1層が湿式法で形成されたことを特徴とする請求の範囲第 1 項〜第 8項のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。  [9] The organic electroluminescent device according to any one of [1] to [8], wherein at least one of the organic layers is formed by a wet method.
[10] 陽極と陰極との間に複数の有機層を有する請求の範囲第 1項〜第 9項のいずれか 1 項に記載の有機エレクト口ルミネッセンス素子の製造方法であって、一方の電極上に 第 1の有機層を少なくとも 1層形成する工程、他方の電極上に第 2の有機層を少なく とも 1層形成する工程、更に第 1の有機層と第 2の有機層を互いに対向させて貼り合 わせる工程とを有することを特徴とする有機エレクト口ルミネッセンス素子の製造方法  [10] The method for producing an organic electoluminescence device according to any one of claims 1 to 9, which has a plurality of organic layers between an anode and a cathode, on one electrode Forming at least one first organic layer, forming at least one second organic layer on the other electrode, and allowing the first and second organic layers to face each other. And a method for producing an organic electoluminescence device, comprising: a step of bonding
[11] 請求の範囲第 1項〜第 9項のいずれか 1項に記載の有機エレクト口ルミネッセンス素 子を用いたことを特徴とする照明装置。 [11] An illuminating device using the organic electoluminescence element according to any one of claims 1 to 9.
[12] 請求の範囲第 1項〜第 9項のいずれか 1項に記載の有機エレクト口ルミネッセンス素 子を用いたことを特徴とするディスプレイ装置。 [12] The organic electroluminescent device according to any one of claims 1 to 9 A display device characterized by using a child.
[13] 支持基板上に少なくとも陽極、陰極を有し、該陽極と該陰極間に少なくとも一層の発 光層を含む有機層を有する有機エレクト口ルミネッセンス素子の製造方法において、 該発光層の総膜厚 T(EM) (nm)が下記関係式(1)を満たし、前記発光層の少なく とも一層がリン光発光材料を有し、且つ、該有機層の少なくとも 1層が、層 Aと層 Bとの 貼合により形成する工程を有することを特徴とする有機エレクト口ルミネッセンス素子 の製造方法。  [13] In the method of manufacturing an organic electroluminescent device having at least an anode and a cathode on a support substrate, and having an organic layer including at least one light emitting layer between the anode and the cathode, the total film of the light emitting layer The thickness T (EM) (nm) satisfies the following relational expression (1), at least one of the light emitting layers has a phosphorescent light emitting material, and at least one of the organic layers is composed of layer A and layer B. The manufacturing method of an organic electoluminescence element characterized by having the process formed by bonding with.
関係式 (1)  Relational expression (1)
40nm<T(EM)≤ lOOnm  40nm <T (EM) ≤ lOOnm
[14] 前記有機層が三層以上であることを特徴とする請求の範囲第 13項に記載の有機ェ レクト口ルミネッセンス素子の製造方法。 14. The method for producing an organic electroluminescent device according to claim 13, wherein the organic layer has three or more layers.
[15] 前記層 A、前記層 Bが、各々主成分として同一構造の化合物を含有して!/、ることを特 徴とする請求の範囲第 13項または第 14項に記載の有機エレクト口ルミネッセンス素 子の製造方法。  [15] The organic elect mouth according to claim 13 or 14, wherein each of the layer A and the layer B contains a compound having the same structure as a main component! A method for manufacturing a luminescence element.
[16] 前記層 Aまたは前記層 Bの 、ずれかがリン光発光材料を含むことを特徴とする請求 の範囲第 13項〜第 15項のいずれか 1項に記載の有機エレクト口ルミネッセンス素子 の製造方法。  [16] The organic electoluminescence device according to any one of claims 13 to 15, wherein a shift of the layer A or the layer B includes a phosphorescent material. Production method.
[17] 前記層 A及び前記層 Bが各々リン光発光材料を含むことを特徴とする請求の範囲第 13項〜第 15項のいずれか 1項に記載の有機エレクト口ルミネッセンス素子の製造方 法。  [17] The method for producing an organic electroluminescent device according to any one of claims 13 to 15, wherein each of the layer A and the layer B contains a phosphorescent material. .
[18] 前記層 A及び前記層 Bが同一のリン光発光材料を含む層であることを特徴とする請 求の範囲第 17項に記載の有機エレクト口ルミネッセンス素子の製造方法。  [18] The method for producing an organic electoluminescence device according to item 17, wherein the layer A and the layer B are layers containing the same phosphorescent material.
[19] 前記リン光発光材料が、イリジウム錯体または白金錯体であることを特徴とする請求 の範囲第 13項〜第 18項のいずれか 1項に記載の有機エレクト口ルミネッセンス素子 の製造方法。  [19] The method for producing an organic electoluminescence device according to any one of [13] to [18], wherein the phosphorescent material is an iridium complex or a platinum complex.
[20] 請求の範囲第 13項〜第 19項のいずれか 1項に記載の有機エレクト口ルミネッセンス 素子の製造方法により作製されたことを特徴とする有機エレクト口ルミネッセンス素子 [20] An organic electoluminescence device produced by the method for producing an organic electroluminescence device according to any one of claims 13 to 19
[21] 請求の範囲第 20項に記載の有機エレクト口ルミネッセンス素子を具備することを特徴 とする照明装置。 [21] An illuminating device comprising the organic electoluminescence element according to claim 20.
[22] 請求の範囲第 20項に記載の有機エレクト口ルミネッセンス素子を具備することを特徴 とするディスプレイ装置。  [22] A display device comprising the organic electoluminescence element according to claim 20.
[23] 少なくとも n層 (n≥0)の有機層を有する第 1の電極基板と、少なくとも m層 (m+n≥ 1 )の有機層を有する第 2の電極基板を対向させて貼り合わせ作製する有機エレクト口 ルミネッセンス素子において、前記有機層の少なくとも一つがリン光性発光化合物を 含有し、対向する 2つの積層面の表面粗さ(Ra)がそれぞれ 0. 05〜: LOnmの範囲に あり、 2つの積層面表面の、表面粗さの比率が 0. 5〜2. 0以内であることを特徴とす る有機エレクト口ルミネッセンス素子。  [23] A first electrode substrate having at least n (n≥0) organic layers and a second electrode substrate having at least m (m + n≥1) organic layers are bonded to each other. In the organic electoluminescence device, at least one of the organic layers contains a phosphorescent light-emitting compound, and the surface roughness (Ra) of two opposing laminated surfaces is in the range of 0.05 to LOnm, An organic electoluminescence device characterized in that the surface roughness ratio of the two laminated surfaces is within a range of 0.5 to 2.0.
[24] 貼り合わせる 2つの積層面が互いに有機層であることを特徴とする請求の範囲第 23 項に記載の有機エレクト口ルミネッセンス素子。  [24] The organic electroluminescent device according to item 23, wherein the two laminated surfaces to be bonded together are organic layers.
[25] 貼り合せる 2つの積層面の少なくとも一方に反応性置換基を有する有機化合物を含 有することを特徴とする請求の範囲第 23項または第 24項に記載の有機エレクトロル ミネッセンス素子。 [25] The organic electroluminescent element according to item 23 or 24, which contains an organic compound having a reactive substituent on at least one of the two laminated surfaces to be bonded.
[26] 貼り合せる積層面の両方に反応性置換基を有する有機化合物を含有することを特徴 とする請求の範囲第 23項〜第 25項のいずれか 1項に記載の有機エレクト口ルミネッ センス素子。  [26] The organic electoluminescence device according to any one of claims 23 to 25, which contains an organic compound having a reactive substituent on both of the laminated surfaces to be bonded. .
[27] 反応性置換基が下記一般式で表されることを特徴とする請求の範囲第 25項または 第 26項に記載の有機エレクト口ルミネッセンス素子。  [27] The organic electroluminescent device according to item 25 or 26, wherein the reactive substituent is represented by the following general formula.
[化 3]  [Chemical 3]
= — NH2 —OH — SH = — NH 2 —OH — SH
Figure imgf000173_0001
Figure imgf000173_0001
[28] 有機層の積層方法が湿式方法であることを特徴とする請求の範囲第 23項〜第 27項 のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 [28] The method according to claim 23, wherein the organic layer is laminated by a wet method. The organic electoluminescence device according to item 1 above.
[29] 少なくとも n層 (n≥0)の有機層を有する第 1の電極基板と、少なくとも m層 (m+n≥ 1 )の有機層を有する第 2の電極基板を対向させて貼り合わせる、有機エレクトロルミネ ッセンス素子の製造方法であって、前記有機層の少なくとも一つがリン光性発光化合 物を含有し、対向する 2つの積層面の表面粗さ(Ra)がそれぞれ 0. 05〜: LOnmの範 囲にあり、 2つの積層面表面の、表面粗さの比率が 0. 5〜2. 0以内であることを特徴 とする有機エレクト口ルミネッセンス素子の製造方法。  [29] A first electrode substrate having at least n (n≥0) organic layers and a second electrode substrate having at least m (m + n≥1) organic layers are bonded to face each other. A method for producing an organic electroluminescence device, wherein at least one of the organic layers contains a phosphorescent light-emitting compound, and the surface roughness (Ra) of two opposing laminated surfaces is 0.05 to: LOnm A method for producing an organic electoluminescence device, wherein the ratio of the surface roughness of the two laminated surfaces is within the range of 0.5 to 2.0.
[30] 請求の範囲第 23項〜第 28項のいずれか 1項に記載の有機エレクト口ルミネッセンス 素子を備えたことを特徴とする照明装置。  [30] An illuminating device comprising the organic electoluminescence element according to any one of items 23 to 28.
[31] 請求の範囲第 23項〜第 28項のいずれか 1項に記載の有機エレクト口ルミネッセンス 素子を備えたことを特徴とするディスプレイ装置。  [31] A display device comprising the organic electoluminescence device according to any one of items 23 to 28.
[32] 少なくとも n層 (n≥0)の有機層を有する第 1の電極基板と、少なくとも m層 (m≥0)の 有機層を有する第 2の電極基板を貼り合わせて形成された有機エレクト口ルミネッセ ンス素子において、前記有機層(m + n≥ 1 )の少なくとも 1つにりん光性発光化合物 を含有し、貼り合せた面の剥離強度が lONZm以上であることを特徴とする有機エレ タトロルミネッセンス素子。  [32] An organic elect formed by bonding together a first electrode substrate having at least n (n≥0) organic layers and a second electrode substrate having at least m (m≥0) organic layers In the mouth luminescence device, the organic electroluminescence is characterized in that at least one of the organic layers (m + n≥1) contains a phosphorescent light emitting compound, and the peel strength of the bonded surface is lONZm or more. Luminescence element.
[33] 貼り合せる面が互いに有機層であることを特徴とする請求の範囲第 32項に記載の有 機エレクト口ルミネッセンス素子。  [33] The organic electoluminescence device according to item 32, wherein the surfaces to be bonded are organic layers.
[34] 貼り合せる面の少なくとも一方に反応性置換基を有する有機化合物を含有することを 特徴とする請求の範囲第 32項または第 33項に記載の有機エレクト口ルミネッセンス 素子。  [34] The organic electroluminescent device according to claim 32 or 33, which contains an organic compound having a reactive substituent on at least one of the surfaces to be bonded.
[35] 貼り合せる面の両方に反応性置換基を有する有機化合物を含有することを特徴とす る請求の範囲第 32項〜第 34項の何れか 1項の記載の有機エレクト口ルミネッセンス 素子。  [35] The organic electroluminescent device according to any one of claims 32 to 34, which contains an organic compound having a reactive substituent on both surfaces to be bonded.
[36] 反応性置換基が下記一般式(1)で表されることを特徴とする請求の範囲第 34項また は第 35項に記載の有機エレクト口ルミネッセンス素子。  [36] The organic electroluminescent device according to [34] or [35], wherein the reactive substituent is represented by the following general formula (1).
[化 4] [Chemical 4]
Figure imgf000175_0001
Figure imgf000175_0001
[37] 有機層の形成方法が湿式方法であることを特徴とする請求の範囲第 32項〜第 36項 の何れ力 1項に記載の有機エレクト口ルミネッセンス素子。 [37] The organic electroluminescent device according to any one of [32] to [36], wherein the organic layer is formed by a wet method.
[38] 請求の範囲第 32項〜第 37項の何れか 1項に記載の有機エレクト口ルミネッセンス素 子を製造する有機エレクト口ルミネッセンス素子の製造方法にぉ 、て、前記有機層の 少なくとも 1つにりん光性発光化合物を含有し、貼り合せた面の剥離強度が lONZm 以上であることを特徴とする有機エレクト口ルミネッセンス素子の製造方法。  [38] In the method for producing an organic electoluminescence device for producing an organic electroluminescence device according to any one of claims 32 to 37, at least one of the organic layers is provided. And a phosphorescent light-emitting compound, and the peel strength of the bonded surface is lONZm or more.
[39] 請求の範囲第 32項〜第 37項の何れか 1項に記載の有機エレクト口ルミネッセンス素 子を備えたことを特徴とする照明装置。  [39] An illuminating device comprising the organic electoluminescence element according to any one of claims 32 to 37.
[40] 請求の範囲第 32項〜第 37項の何れか 1項に記載の有機エレクト口ルミネッセンス素 子を備えたことを特徴とするディスプレイ装置。  [40] A display device comprising the organic electroluminescent device according to any one of claims 32 to 37.
PCT/JP2007/062225 2006-06-21 2007-06-18 Organic electroluminescent device, process for producing organic electroluminescent device, illuminator, and display WO2007148649A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2006171161A JP5228288B2 (en) 2006-06-21 2006-06-21 Organic electroluminescence device and method for producing the same
JP2006-171161 2006-06-21
JP2006-186477 2006-07-06
JP2006186477A JP2008016648A (en) 2006-07-06 2006-07-06 Organic electroluminescence element, method of manufacturing the same illuminator, and display
JP2006186478 2006-07-06
JP2006-186478 2006-07-06
JP2006-222251 2006-08-17
JP2006222251A JP2008047428A (en) 2006-08-17 2006-08-17 Organic electroluminescence element, manufacturing method therefor, lighting device, and display device
JP2006335663A JP2008034786A (en) 2006-07-06 2006-12-13 Organic electroluminescence device, method of manufacturing the same, illuminator, and display apparatus
JP2006-335663 2006-12-13

Publications (1)

Publication Number Publication Date
WO2007148649A1 true WO2007148649A1 (en) 2007-12-27

Family

ID=38833391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062225 WO2007148649A1 (en) 2006-06-21 2007-06-18 Organic electroluminescent device, process for producing organic electroluminescent device, illuminator, and display

Country Status (1)

Country Link
WO (1) WO2007148649A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212510A (en) * 2008-02-07 2009-09-17 Mitsubishi Chemicals Corp Organic electroluminescent element, organic el display, and organic el illumination
JP2009252944A (en) * 2008-04-04 2009-10-29 Konica Minolta Holdings Inc Organic electroluminescence element and its manufacturing method
WO2010044342A1 (en) * 2008-10-15 2010-04-22 コニカミノルタホールディングス株式会社 Organic el element, organic el element manufacturing method, white organic el element, display device, and illumination device
CN106380468A (en) * 2014-05-30 2017-02-08 浙江工业大学 O-phenanthroline derivative, preparation method and application thereof
WO2017073409A1 (en) * 2015-10-30 2017-05-04 住友化学株式会社 Method for manufacturing organic el element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052857A (en) * 1999-08-06 2001-02-23 Sharp Corp Organic electroluminescent element and manufacture thereof
JP2002203675A (en) * 2000-10-31 2002-07-19 Canon Inc Manufacturing method of organic light-emitting element and organic light-emitting display, organic light-emitting element and organic light-emitting display
JP2004342407A (en) * 2003-05-14 2004-12-02 Fuji Photo Film Co Ltd Organic electroluminescent element and its manufacturing method
JP2006302795A (en) * 2005-04-25 2006-11-02 Seiko Epson Corp Light emitting device, method for manufacturing the same and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052857A (en) * 1999-08-06 2001-02-23 Sharp Corp Organic electroluminescent element and manufacture thereof
JP2002203675A (en) * 2000-10-31 2002-07-19 Canon Inc Manufacturing method of organic light-emitting element and organic light-emitting display, organic light-emitting element and organic light-emitting display
JP2004342407A (en) * 2003-05-14 2004-12-02 Fuji Photo Film Co Ltd Organic electroluminescent element and its manufacturing method
JP2006302795A (en) * 2005-04-25 2006-11-02 Seiko Epson Corp Light emitting device, method for manufacturing the same and electronic apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212510A (en) * 2008-02-07 2009-09-17 Mitsubishi Chemicals Corp Organic electroluminescent element, organic el display, and organic el illumination
JP2009252944A (en) * 2008-04-04 2009-10-29 Konica Minolta Holdings Inc Organic electroluminescence element and its manufacturing method
WO2010044342A1 (en) * 2008-10-15 2010-04-22 コニカミノルタホールディングス株式会社 Organic el element, organic el element manufacturing method, white organic el element, display device, and illumination device
CN106380468A (en) * 2014-05-30 2017-02-08 浙江工业大学 O-phenanthroline derivative, preparation method and application thereof
WO2017073409A1 (en) * 2015-10-30 2017-05-04 住友化学株式会社 Method for manufacturing organic el element

Similar Documents

Publication Publication Date Title
JP5402942B2 (en) Organic electroluminescence element, display device, and lighting device
US8242488B2 (en) Organic electroluminescent element, display device, and illuminating device
JP5304010B2 (en) Organic electroluminescence element, display device and lighting device
WO2008029652A1 (en) Organic electroluminescent device, illuminating device and display
WO2008029729A1 (en) Organic electroluminescent device, illuminating device and display
KR20170102000A (en) Aromatic heterocyclic derivatives, organic electroluminescent devices using the same, lighting devices and display devices
WO2007114244A1 (en) Organic electroluminescent device, illuminating device and display device
WO2008072596A1 (en) Organic electroluminescent device, display and illuminating device
WO2008035571A1 (en) Organic electroluminescence element
WO2006104118A1 (en) Organic electroluminescent device, display and illuminating device
JP2008311608A (en) Organic electroluminescent element, display device and illuminating device
JP6056884B2 (en) Method for manufacturing organic electroluminescence device
WO2007123111A1 (en) Compound, organic electroluminescence element containing the compound, illuminating device and display device
JP2011008991A (en) Organic electroluminescent element, white organic electroluminescent element, display device and illumination device
WO2006103909A1 (en) Organic electroluminescent device, display and illuminating device
JP5458882B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
US9843011B2 (en) Organic electroluminescent element having intermediate electrode including two metal layers
WO2007148649A1 (en) Organic electroluminescent device, process for producing organic electroluminescent device, illuminator, and display
US20140197399A1 (en) Organic electroluminescent element, lighting device and display device
JP2015060728A (en) Transparent electrode and organic electroluminescent element
WO2020189283A1 (en) Charge-transporting compound and manufacturing method thereof, ink composition, organic electroluminescence element material, etc.
JP2009076826A (en) Organic electroluminescent element, display device, and lighting system
EP2728639B1 (en) Organic electroluminescent element and its manufacturing method
WO2016194865A1 (en) Organic electroluminescent element
JP5660129B2 (en) Method for manufacturing organic electroluminescence element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07767130

Country of ref document: EP

Kind code of ref document: A1