WO2007148464A1 - Linear oscillation actuator - Google Patents

Linear oscillation actuator Download PDF

Info

Publication number
WO2007148464A1
WO2007148464A1 PCT/JP2007/057748 JP2007057748W WO2007148464A1 WO 2007148464 A1 WO2007148464 A1 WO 2007148464A1 JP 2007057748 W JP2007057748 W JP 2007057748W WO 2007148464 A1 WO2007148464 A1 WO 2007148464A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
slider
slide mechanism
vibration actuator
traveling wave
Prior art date
Application number
PCT/JP2007/057748
Other languages
French (fr)
Japanese (ja)
Inventor
Masaki Takasan
Kazuo Seiki
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyota Jidoshokki filed Critical Kabushiki Kaisha Toyota Jidoshokki
Priority to TW096113414A priority Critical patent/TW200803146A/en
Publication of WO2007148464A1 publication Critical patent/WO2007148464A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/08Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using travelling waves, i.e. Rayleigh surface waves

Definitions

  • the present invention relates to a linear vibration actuator, and more particularly to an actuator that relatively moves a driving object using ultrasonic vibration.
  • the transport device disclosed in Patent Document 1 presses and holds a magnetic card, which is a transported object, between a pair of rod-shaped elastic bodies, and applies high-frequency power to piezoelectric ceramics bonded to both elastic bodies.
  • the magnetic card is conveyed by generating and generating ultrasonic traveling waves in these elastic bodies. By using ultrasonic vibration, it is possible to obtain a transport device having a large thrust while being thin.
  • the magnetic card is transferred at high speed, and during the transfer, the magnetic head reads data from the magnetic card and writes data to the magnetic card. It can be carried out.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-266260
  • the present invention has been made to solve such problems, and provides a linear vibration actuator that can move an external driving object relative to each other using ultrasonic vibration. With the goal.
  • a linear vibration actuator includes a slide mechanism portion in which a slider is movably disposed in a predetermined direction along a surface of a plate-shaped or rod-shaped stator, and the slider is disposed outside the slide mechanism portion.
  • a connecting member that is connected to an object to be driven, a preload means that pressurizes the slider against the surface of the stator, and one of a facing surface of the stator and the slider along the predetermined direction.
  • a traveling wave generating means for generating a traveling wave is generated, and the traveling wave is generated by the traveling wave generating means to move the slider in the slide mechanism along the surface of the stator. The object is moved relatively.
  • the driven object moves relative to the stator whose position is fixed.
  • FIG. 1 is a side sectional view showing a configuration of a linear vibration actuator according to a first embodiment.
  • FIG. 2 is a perspective view showing a stator used in Embodiment 1.
  • FIG. 3 is a side sectional view showing a configuration of a linear vibration actuator according to a modification of the first embodiment.
  • FIG. 4 is a side cross-sectional view showing the configuration of the linear vibration actuator according to the second embodiment.
  • FIG. 5 is a side cross-sectional view showing the configuration of the linear vibration actuator according to the third embodiment.
  • FIG. 6 is a perspective view showing a configuration of a linear vibration actuator according to a third embodiment.
  • FIG. 7 is a side cross-sectional view showing the configuration of the linear vibration actuator according to the fourth embodiment.
  • FIG. 8 is a side cross-sectional view showing a configuration of a linear vibration actuator according to a fifth embodiment.
  • FIG. 9 is a side cross-sectional view showing the configuration of the linear vibration actuator according to the sixth embodiment.
  • FIG. 10 is a perspective view showing a stator used in Embodiment 6.
  • FIG. 11 is a side cross-sectional view showing the configuration of the linear vibration actuator according to the seventh embodiment.
  • FIG. 12 is a front cross-sectional view showing a configuration of a linear vibration actuator according to a seventh embodiment.
  • FIG. 13 is a side sectional view showing a configuration of a linear vibration actuator according to an eighth embodiment.
  • FIG. 14 is a side sectional view showing a configuration of a linear vibration actuator according to a ninth embodiment.
  • FIG. 15 is a schematic front view showing a robot hand to which the present invention is applied.
  • FIG. 1 shows the configuration of the linear vibration actuator according to the first embodiment.
  • a pair of flat plate-like lower stator 2 and upper stator 3 each formed from a piezoelectric substrate are arranged in parallel in each other in casing 1 with one end opened, and a metal isotropic force is also formed between these stators 2 and 3.
  • a slider 4 is arranged.
  • the lower stator 2 is fixed to the bottom of the casing 1 and the upper stator 3 is arranged so that the slider 4 is sandwiched between the lower stator 2 and the lower stator 2, the upper stator 3 and the slider 4.
  • a slide mechanism S is formed.
  • a plate panel 5 is inserted as a preload means between the upper surface of the upper stator 3 and the ceiling surface of the casing 1.
  • the urging force of the plate panel 5 causes the upper stator 3 to move in the direction of the lower stator 2.
  • the slider 4 is pressed and brought into pressure contact with the surfaces of the lower stator 2 and the upper stator 3 with a predetermined pressure.
  • Interdigital electrodes 6 and 7 are formed in the vicinity of both end portions of the upper surface of the lower stator 2 facing the slider 4, and similarly, interdigital shapes are formed in the vicinity of both end portions of the lower surface of the upper stator 3 facing the slider 4. Electrodes 8 and 9 are formed. And the drive control part 10 which has a high frequency power supply is electrically connected to these interdigital electrodes 6-9. The interdigital electrodes 6 to 9 and the drive controller 10 form traveling wave generating means.
  • the direction from the interdigital electrodes 6 and 8 at one end of the lower stator 2 and the upper stator 3 to the interdigital electrodes 7 and 9 is + X direction, and the interdigital electrodes 7 and 9 at the other end are also one end.
  • the direction of the force toward the interdigital electrodes 6 and 8 is defined as the X direction.
  • the driven object 12 is disposed so as to be movable in the + X direction and the ⁇ X direction, and is biased in a direction away from the casing 1, that is, in the + X direction by a biasing means such as a panel not shown. To do.
  • the operation of the first embodiment will be described.
  • a high frequency voltage is applied from the high frequency power source 13 in the drive control unit 10 to the interdigital electrode 6 at one end of the lower stator 2
  • the surface elasticity is applied to the upper surface of the lower stator 2 where the piezoelectric substrate force is formed.
  • the wave is excited and propagates toward the interdigital electrode 7 at the other end.
  • a matching circuit 14 in the drive control unit 10 is connected to the interdigital electrode 7 at the other end, and the interdigital electrode 7 is used as a receiving electrode to perform matching so that the surface acoustic wave is generated from the interdigital electrode. 7 is absorbed and the generation of the reflected wave is suppressed, and the surface acoustic wave becomes a traveling wave in the + X direction from the interdigital electrode 6 at one end to the interdigital electrode 7 at the other end.
  • the energy of the surface acoustic wave absorbed by the interdigital electrode 7 is a force that can be consumed by a resistance for energy consumption or the like. By using it for excitation, energy efficiency is greatly improved. It can be done.
  • a high-frequency voltage is applied from the drive control unit 10 to the interdigital electrode 8 at one end of the upper stator 3 and matching is performed with the interdigital electrode 9 at the other end as a receiving electrode.
  • a surface acoustic wave traveling in the + X direction is generated from the interdigital electrode 8 toward the interdigital electrode 9 at the other end.
  • the traveling waves in the + X direction generated on the upper surface of the lower stator 2 and the lower surface of the upper stator 3 are in pressure contact with the surfaces of the lower stator 2 and the upper stator 3 with a predetermined pressure.
  • the slider 4 moves in the direction opposite to the traveling wave along the surfaces of the lower stator 2 and the upper stator 3, that is, in the X direction from the interdigital electrodes 7 and 9 at the other end to the interdigital electrodes 6 and 8 at the other end. To do.
  • the driving object 12 outside the casing 1 moves relative to the X direction against the urging force of the panel or the like via the wire 11, not shown.
  • the lower stator 2 and the linear guide 15 extending in parallel with the upper stator 3 are installed in the casing 1, and the movement of the slider 4 is guided by this linear guide 15, so that the lower part The slider 4 can be smoothly moved along the surfaces of the stator 2 and the upper stator 3.
  • FIG. 4 shows the configuration of the linear vibration actuator according to the second embodiment.
  • four slide mechanism portions S used in the first embodiment are stacked on top of each other and housed in the casing 21 to constitute a stacked type actuator.
  • Four slide mechanism parts S are stacked on top of each other in a casing 21 that is open at one end.
  • the lower stator 2 of the upper slide mechanism portion S is located on the upper surface of the upper stator 3 of the id mechanism portion S.
  • a panel panel 5 is inserted between the upper surface of the uppermost slide mechanism S and the ceiling surface of the casing 21.
  • the plate panel 5 acts as a preload means in common with the four slide mechanism portions S, and the slider 4 of each slide mechanism portion S is applied to the surfaces of the lower stator 2 and the upper stator 3 with a predetermined pressure. Press contact.
  • the sliders 4 of the four slide mechanism portions S are connected to different driving objects 12 through corresponding wires 11 respectively. Further, drive control units 10 corresponding to the interdigital electrodes 6 to 9 of the four slide mechanism units S are electrically connected.
  • the sliders 4 of the four slide mechanism sections S can be independently moved by the corresponding drive control sections 10, and the four driving objects 12 are driven with multiple degrees of freedom. It becomes possible to do.
  • the preload applied to the four slide mechanism sections S is uniform, and the movement characteristics of the slider 4 in the four slide mechanism sections S can be made uniform.
  • a feature is configured.
  • FIG. 5 and 6 show the configuration of the linear vibration actuator according to the third embodiment.
  • the lower stator 2 of the upper slide mechanism portion S also serves as the upper stator of the lower slide mechanism portion S in the actuator of the second embodiment shown in FIG.
  • the upper stage Interdigital electrodes 6 and 7 are formed in the vicinity of both ends of the upper surface of the lower stator 2 of the ride mechanism S, and the interdigital electrodes 6 and 7 are used as lower electrodes of the upper slide mechanism S.
  • the interdigital electrodes 8 and 9 are formed in the vicinity of both ends of the lower surface of the lower stator 2, and the interdigital electrodes 8 and 9 are used as the upper electrodes of the lower slide mechanism section S.
  • stator positioned between the upper slide mechanism portion S and the lower slide mechanism portion S stacked on each other can be made into one sheet, and is thinner and has a simple structure.
  • a multi-degree-of-freedom linear vibration actuator is realized.
  • FIG. 7 shows the configuration of the linear vibration actuator according to the fourth embodiment.
  • the fourth embodiment is formed of metal or the like instead of sandwiching the slider 4 formed of a metal or the like between the lower stator 2 and the upper stator 3 formed with piezoelectric substrate force in the first embodiment.
  • a slider 24 having a piezoelectric substrate force formed between the lower stator 22 and the upper stator 23 is sandwiched to form interdigital electrodes 6 and 7 near both ends of the lower surface of the slider 24 and near both ends of the upper surface of the slider 24.
  • interdigital electrodes 8 and 9 are formed.
  • the lower stator 22, the upper stator 23, and the slider 24 form a slide mechanism portion S.
  • the drive control unit 10 is electrically connected to the interdigital electrodes 6-9.
  • the slider 24 is pressed against the surfaces of the lower stator 22 and the upper stator 23 with a predetermined pressure by the urging force of the plate panel 5.
  • the driven object 12 outside the casing 1 is connected to the slider 24 via a wire 11.
  • the drive object 12 outside the casing 1 can be moved via the wire 11.
  • FIG. 8 shows a configuration of the linear vibration actuator according to the fifth embodiment.
  • the four slide mechanism portions S used in the fourth embodiment are stacked on top of each other and housed in the casing 21 to constitute a stacked actuator and the upper slide mechanism portion S.
  • the lower stator 22 also serves as the upper stator of the lower slide mechanism S.
  • Four slide mechanism parts S are stacked on top of each other in the casing 21 with one end open, and only the lower stator 22 of the upper slide mechanism part S is located between the slide mechanism parts S that overlap each other.
  • the lower stator 22 of the upper slide mechanism part S also serves as the upper stator of the lower slide mechanism part S.
  • a plate panel 5 is inserted between the upper surface of the uppermost slide mechanism S and the ceiling surface of the casing 21. The plate panel 5 allows the sliders 24 of the four slide mechanisms S to move to the lower stator 22 and the upper stator 23, respectively. The surface is pressed and contacted with a predetermined pressure!
  • the sliders 24 of the four slide mechanism portions S are connected to different driving objects via the corresponding sliders 11, respectively.
  • drive control units respectively corresponding to the interdigital electrodes 6 to 9 formed on both surfaces of the slider 24 of the four slide mechanism units S are electrically connected.
  • the preload applied to the four slide mechanism sections S becomes uniform, and the movement characteristics of the slider 24 in the four slide mechanism sections S can be made uniform.
  • a high-quality multi-degree-of-freedom actuator is constructed.
  • FIG. 9 shows the configuration of the linear vibration actuator according to the sixth embodiment.
  • the lower stator 32 and the upper stator 33 which also have an inertial physical force, are used instead of the lower stator 2 and the upper stator 3, and the lower stator 32 is used instead of the interdigital electrodes 6 and 7.
  • Piezoelectric elements 36 and 37 are pasted near the both ends of the upper surface of each of the electrodes, and piezoelectric elements 38 and 39 are pasted near the both ends of the lower surface of the upper stator 33 instead of the interdigital electrodes 8 and 9, respectively.
  • a slide mechanism S is formed by the lower stator 32, the upper stator 33 and the slider 4.
  • the drive control unit 10 is electrically connected to the piezoelectric elements 36 to 39.
  • the slider 4 is pressed and contacted with the surfaces of the lower stator 32 and the upper stator 33 with a predetermined pressing force by the urging force of the plate panel 5.
  • a driven object 12 outside the casing 1 is connected to the slider 4 via a wire 11.
  • the energy efficiency can be greatly improved by allowing the flexural vibration energy absorbed by the piezoelectric element 37 at the other end to flow back to the piezoelectric element 36 side at the one end and using it for exciting the flexural vibration. .
  • the lower surface of the upper stator 33 is A bending traveling wave is generated that travels in the + X direction from the piezoelectric element 38 toward the piezoelectric element 39 at the other end.
  • FIGS. 11 and 12 show the configuration of the linear vibration actuator according to the seventh embodiment.
  • a stack type actuator is configured by stacking four slide mechanism portions S using a bending traveling wave and storing them in a casing 21.
  • Each slide mechanism portion S is formed by an upper stator 33 that also has elastic body force, a linear guide 40 that extends in parallel with the upper stator 33, and a slider 4 that is movably held by the linear guide 40.
  • the lower surface of the upper stator 33 is in contact with the upper surface of the slider 4, and the leg portion 41 of the linear guide 40 is positioned below the lower surface of the slider 4.
  • Piezoelectric elements 38 and 39 are attached to the vicinity of both ends of the lower surface of the upper stator 33 of each slide mechanism S. Force not shown in the drawing Upper part of the four slide mechanism parts S The drive control parts corresponding to the piezoelectric elements 38 and 39 of the stator 33 are electrically connected. In addition, the sliders 4 of the four slide mechanism sections S are connected to each other via corresponding wires 11. Connected to different driving objects! Speak.
  • the sliders 4 of the four slide mechanism parts S can be independently moved by the corresponding drive control parts as in the second, third and fifth embodiments. It becomes possible to drive four driving objects with multiple degrees of freedom.
  • the preload applied to the four slide mechanism sections S is uniform, and the movement characteristics of the slider 4 in the four slide mechanism sections S can be made uniform.
  • a feature is configured.
  • FIG. 13 shows the configuration of the linear vibration actuator according to the eighth embodiment.
  • the upper surface of the slider 44 in which the elastic force is also formed instead of attaching the piezoelectric elements 36 to 39 to the surfaces of the lower stator 32 and the upper stator 33, which also have elastic force, in the sixth embodiment.
  • Piezoelectric elements 36 and 37 are pasted near the both ends of this, respectively, and the slider 44 is sandwiched between the lower stator 22 and the upper stator 23 in which a metal isotropic force is also formed.
  • the lower stator 22, the upper stator 23 and the slider 44 form a slide mechanism portion S.
  • the drive control unit 10 is electrically connected to the piezoelectric elements 36 and 37 of the slider 44.
  • the slider 44 is pressed against the surfaces of the lower stator 22 and the upper stator 23 with a predetermined pressure by the urging force of the plate panel 5. Further, the driven object 12 outside the casing 1 is connected to the slider 44 via the wire 11.
  • the driving object 12 outside the casing 1 can be moved via the wire 11.
  • the piezoelectric elements 36 and 37 may be pasted near both ends of the lower surface of the slider 44, respectively.
  • FIG. 14 shows the configuration of the linear vibration actuator according to the ninth embodiment.
  • the four slide mechanism portions S used in the eighth embodiment are stacked on top of each other and housed in the casing 21 to constitute a stacked actuator and the upper slide mechanism portion S.
  • the lower stator 22 also serves as the upper stator of the lower slide mechanism section S.
  • Four slide mechanism parts S are stacked on each other in the casing 21 with one end opened, and only the lower stage 22 of the upper slide mechanism part S is located between the slide mechanism parts S that overlap each other.
  • the lower stator 22 of the slide mechanism section S also serves as the upper stator of the lower slide mechanism section S.
  • a plate panel 5 is inserted between the upper surface of the uppermost slide mechanism S and the ceiling surface of the casing 21. The plate panel 5 allows the sliders 44 of the four slide mechanisms S to be moved to the lower stator 22 and the upper stator 23, respectively. The surface is pressed and contacted with a predetermined pressure!
  • the sliders 44 of the four slide mechanism portions S are connected to different driving objects via the corresponding carriers 11, respectively. Furthermore, drive control units respectively corresponding to the piezoelectric elements 36 and 37 formed on the upper surfaces of the sliders 44 of the four slide mechanism units S are electrically connected.
  • the preload applied to the four slide mechanism sections S is uniform, and the movement characteristics of the slider 44 in the four slide mechanism sections S can be made uniform, resulting in a high-quality, multi-degree of freedom.
  • An actuator is configured.
  • a force using the wire 11 as a connecting member for connecting the external drive object 12 to the sliders 4, 24, and 44 is not limited to this.
  • a plate-like member can also be used.
  • a power bar-shaped stator using flat-shaped lower stators 2, 22, and 32 and upper stators 3, 23, and 33 can also be used. Furthermore, if the slider can be moved freely, a curved stator can be used. In addition to the force using the plate panel 5 as preloading means, various biasing means such as a dish panel and a coil panel can be used.
  • Embodiments 2, 3, 5, 7, and 9 four slide mechanism portions S are stacked on each other.
  • the number of stacked slide mechanism portions S is not limited to four. Two, three One or five or more slide mechanism sections S can be stacked.
  • the driven object 12 is arranged so as to be movable in the + X direction and the X direction, and the sliders 4, 24, Force that moved the drive target 12 with respect to the casing 1 by moving 44
  • the casing 1 is arranged to be movable in the + X direction and the X direction, and a fixed object is adopted as the drive target 12 By doing so, the casing 1 can be moved with respect to the driven object 12.
  • a high-frequency voltage is applied from the drive control unit 10 to the interdigital electrodes 6 and 8 at one end of the lower stator 2 and the upper stator 3 and the interdigital transducer is formed at the other end.
  • electrodes 7 and 9 as receiving electrodes, surface acoustic waves traveling in the + X direction are generated on the upper surface of lower stator 2 and the lower surface of upper stator 3, and slider 4 force Lower stator 2 and upper stator 3 Move in the X direction relative to.
  • the casings 1 and 21 are arranged so as to be movable in the + X direction and the one X direction, and a fixed object is used as the driving object 12. On the other hand, the casings 1 and 21 can be moved.
  • the drive is connected to the sliders 4, 24, and 44 of each slide mechanism portion S.
  • the sliders 4, 24 and 44 of the plurality of slide mechanism sections S may be moved in synchronization.
  • a drive object 12 as a fixed object is connected to a slider of at least one slide mechanism part S among the plurality of slide mechanism parts S to connect the slider.
  • the casing 21 is moved by the ride mechanism S, and the movable drive object 12 is connected to the slider of the other slide mechanism S, and the movable drive object 12 is moved by the slide mechanism S. It is also possible to configure.
  • This mouth bot hand is an array of five multi-joint fingers F, such as the first finger, the second finger, and the third finger, which are arranged side by side on a plurality of wires 11 of a stacked actuator A. is there.
  • the stacked type actuator A By using the stacked type actuator A, a small robot hand can be realized.
  • the finger F is used by using a vibration actuator having a single slider 4, 24, 44 as shown in the first, fourth, sixth, and eighth embodiments. It's a matter of moving around.
  • the entire robot hand can be moved by attaching the robot hand to the tip of an arm (not shown) and moving the arm.
  • the relative positions of the casings 1 and 21 and the driving object 12 change while the casings 1 and 21 of the vibration actuator and the finger F as the driving object 12 are both moved by the movement of the arm. .

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

When a high frequency voltage is applied from a drive control section (10) to an interdigital electrode (6) at one end of a lower stator (2) and an interdigital electrode (8) at one end of an upper stator (3) and interdigital electrodes (7, 9) at the other end are matched as a wave receiving electrode, a surface acoustic wave traveling in the +X direction is generated on the upper surface of the lower stator (2) and the lower surface of the upper stator (3) formed of a piezoelectric substrate. By the surface acoustic wave, a slider (4) brought into pressure contact with the surfaces of the lower stator (2) and the upper stator (3) by a leaf spring (5) is moved in the –X direction and thereby a drive object (12) on the outside of a casing (1) moves relatively through a wire (11).

Description

明 細 書  Specification
リニア型振動ァクチユエータ  Linear type vibration actuator
技術分野  Technical field
[0001] この発明は、リニア型振動ァクチユエータに係り、特に超音波振動を利用して駆動 対象物を相対的に移動させるァクチユエータに関する。  TECHNICAL FIELD [0001] The present invention relates to a linear vibration actuator, and more particularly to an actuator that relatively moves a driving object using ultrasonic vibration.
背景技術  Background art
[0002] 超音波モータを用いて物体を搬送する装置が知られている。例えば、特許文献 1に 開示された搬送装置は、一対の棒状の弾性体の間に被搬送物である磁気カードを 圧接挟持させ、双方の弾性体にそれぞれ接着されている圧電セラミックスに高周波 電力を供給して、これら弾性体に超音波の進行波を発生させることにより磁気カード を搬送している。超音波振動の利用により、薄型でありながら大きな推力を有する搬 送装置が得られる。  An apparatus that conveys an object using an ultrasonic motor is known. For example, the transport device disclosed in Patent Document 1 presses and holds a magnetic card, which is a transported object, between a pair of rod-shaped elastic bodies, and applies high-frequency power to piezoelectric ceramics bonded to both elastic bodies. The magnetic card is conveyed by generating and generating ultrasonic traveling waves in these elastic bodies. By using ultrasonic vibration, it is possible to obtain a transport device having a large thrust while being thin.
特許文献 1の搬送装置を磁気カードリーダライタ等に搭載することで、磁気カードを 高速で搬送し、その搬送中に磁気ヘッドにより磁気カードからのデータの読み出し、 および磁気カードへのデータの書き込みを行うことができる。  By mounting the transfer device of Patent Document 1 on a magnetic card reader / writer, etc., the magnetic card is transferred at high speed, and during the transfer, the magnetic head reads data from the magnetic card and writes data to the magnetic card. It can be carried out.
[0003] 特許文献 1 :特開平 5— 266260号公報 Patent Document 1: Japanese Patent Laid-Open No. 5-266260
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、例えば、ロボットノ、ンド等において、手や指の移動に特許文献 1のよう な搬送装置を利用しょうとすると、駆動対象物である手や指を一対の棒状または板状 の弾性体で圧接挟持し、この状態で双方の弾性体に超音波の進行波を発生させな ければならない。このため、ロボットハンドとしては、手や指の両側に配置される弾性 体が邪魔な存在となり、また手や指の移動方向も、弾性体における進行波の進行方 向に沿った方向に限定されることとなり、極めて使 、勝手の悪 、ものとなってしまう。 これは、駆動対象物が搬送装置の内部に位置することに由来している。また、特に複 数の対象物を駆動させる場合、ァクチユエータが大きくなるため、小型化が課題であ つた o そこで、この発明は、このような問題点を解消するためになされたもので、超音波振 動を利用して外部の駆動対象物を相対移動させることができるリニア型振動ァクチュ エータを提供することを目的とする。 [0004] However, for example, when trying to use a transport device such as Patent Document 1 to move a hand or a finger in a robot, a robot, etc., the hand or finger that is the object to be driven is paired with a pair of rods or The plate-like elastic body is pressed and clamped, and in this state, a traveling wave of ultrasonic waves must be generated in both elastic bodies. For this reason, as a robot hand, elastic bodies arranged on both sides of the hand and fingers are obstructive, and the moving direction of the hands and fingers is limited to the direction along the traveling direction of the traveling wave in the elastic bodies. As a result, it becomes extremely messy and selfish. This is due to the fact that the driven object is located inside the transport device. In particular, when driving multiple objects, the size of the actuator increases, so downsizing is an issue. Accordingly, the present invention has been made to solve such problems, and provides a linear vibration actuator that can move an external driving object relative to each other using ultrasonic vibration. With the goal.
課題を解決するための手段  Means for solving the problem
[0005] この発明に係るリニア型振動ァクチユエータは、板状または棒状のステータの表面 に沿ってスライダが所定の方向へ移動自在に配置されたスライド機構部と、前記スラ イダをスライド機構部の外部の駆動対象物に連結する連結部材と、前記ステータの 表面に対して前記スライダを加圧接触させる予圧手段と、前記ステータおよび前記ス ライダの対向面のうちの一方に前記所定の方向に沿った進行波を発生させる進行波 発生手段とを備えており、進行波発生手段で進行波を発生させてスライド機構部に おけるスライダをステータの表面に沿って移動させることにより連結部材を介して駆動 対象物を相対移動させるものである。  [0005] A linear vibration actuator according to the present invention includes a slide mechanism portion in which a slider is movably disposed in a predetermined direction along a surface of a plate-shaped or rod-shaped stator, and the slider is disposed outside the slide mechanism portion. A connecting member that is connected to an object to be driven, a preload means that pressurizes the slider against the surface of the stator, and one of a facing surface of the stator and the slider along the predetermined direction. A traveling wave generating means for generating a traveling wave is generated, and the traveling wave is generated by the traveling wave generating means to move the slider in the slide mechanism along the surface of the stator. The object is moved relatively.
なお、「駆動対象物を相対移動させる」とは、次の 3つの態様を含むものである。 Note that “relatively moving the driving object” includes the following three modes.
(1)位置が固定しているステータに対して駆動対象物が移動する、 (1) The driven object moves relative to the stator whose position is fixed.
(2)位置が固定して 、る駆動対象物に対してステータが移動する、  (2) The position is fixed and the stator moves relative to the driven object.
(3)ステータと駆動対象物が共に移動しながらステータと駆動対象物との相対位置が 変化する。  (3) The relative position of the stator and the driving object changes while the stator and the driving object move together.
発明の効果  The invention's effect
[0006] この発明によれば、超音波振動を利用して外部の駆動対象物を相対的に移動させ ることがでさる。  [0006] According to the present invention, it is possible to relatively move an external driving object using ultrasonic vibration.
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1]実施の形態 1に係るリニア型振動ァクチユエータの構成を示す側面断面図であ る。  FIG. 1 is a side sectional view showing a configuration of a linear vibration actuator according to a first embodiment.
[図 2]実施の形態 1で用いられたステータを示す斜視図である。  FIG. 2 is a perspective view showing a stator used in Embodiment 1.
[図 3]実施の形態 1の変形例に係るリニア型振動ァクチユエータの構成を示す側面断 面図である。  FIG. 3 is a side sectional view showing a configuration of a linear vibration actuator according to a modification of the first embodiment.
[図 4]実施の形態 2に係るリニア型振動ァクチユエータの構成を示す側面断面図であ る。 [図 5]実施の形態 3に係るリニア型振動ァクチユエータの構成を示す側面断面図であ る。 FIG. 4 is a side cross-sectional view showing the configuration of the linear vibration actuator according to the second embodiment. FIG. 5 is a side cross-sectional view showing the configuration of the linear vibration actuator according to the third embodiment.
[図 6]実施の形態 3に係るリニア型振動ァクチユエータの構成を示す斜視図である。  FIG. 6 is a perspective view showing a configuration of a linear vibration actuator according to a third embodiment.
[図 7]実施の形態 4に係るリニア型振動ァクチユエータの構成を示す側面断面図であ る。 FIG. 7 is a side cross-sectional view showing the configuration of the linear vibration actuator according to the fourth embodiment.
[図 8]実施の形態 5に係るリニア型振動ァクチユエータの構成を示す側面断面図であ る。  FIG. 8 is a side cross-sectional view showing a configuration of a linear vibration actuator according to a fifth embodiment.
[図 9]実施の形態 6に係るリニア型振動ァクチユエータの構成を示す側面断面図であ る。  FIG. 9 is a side cross-sectional view showing the configuration of the linear vibration actuator according to the sixth embodiment.
[図 10]実施の形態 6で用いられたステータを示す斜視図である。  FIG. 10 is a perspective view showing a stator used in Embodiment 6.
[図 11]実施の形態 7に係るリニア型振動ァクチユエータの構成を示す側面断面図で ある。  FIG. 11 is a side cross-sectional view showing the configuration of the linear vibration actuator according to the seventh embodiment.
[図 12]実施の形態 7に係るリニア型振動ァクチユエータの構成を示す正面断面図で ある。  FIG. 12 is a front cross-sectional view showing a configuration of a linear vibration actuator according to a seventh embodiment.
[図 13]実施の形態 8に係るリニア型振動ァクチユエータの構成を示す側面断面図で ある。  FIG. 13 is a side sectional view showing a configuration of a linear vibration actuator according to an eighth embodiment.
[図 14]実施の形態 9に係るリニア型振動ァクチユエータの構成を示す側面断面図で ある。  FIG. 14 is a side sectional view showing a configuration of a linear vibration actuator according to a ninth embodiment.
[図 15]この発明を適用したロボットハンドを示す概略正面図である。  FIG. 15 is a schematic front view showing a robot hand to which the present invention is applied.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、この発明の実施の形態を添付図面に基づいて説明する。  Embodiments of the present invention will be described below with reference to the accompanying drawings.
実施の形態 1 Embodiment 1
図 1に、実施の形態 1に係るリニア型振動ァクチユエータの構成を示す。一端が開 放されたケーシング 1内にそれぞれ圧電基板から形成された一対の平板形状の下部 ステータ 2および上部ステータ 3が互いに平行に配置され、これらのステータ 2および 3の間に金属等力も形成されたスライダ 4が配置されている。下部ステータ 2はケーシ ング 1内の底部に固定され、下部ステータ 2との間にスライダ 4を挟むように上部ステ ータ 3が配置されており、これら下部ステータ 2、上部ステータ 3およびスライダ 4により スライド機構部 Sが形成されている。さらに、上部ステータ 3の上面とケーシング 1の天 井面との間に予圧手段として板パネ 5が挿入されており、この板パネ 5の付勢力によ つて上部ステータ 3が下部ステータ 2の方向に押圧され、スライダ 4が下部ステータ 2 および上部ステータ 3の表面に対して所定の加圧力で加圧接触されている。 FIG. 1 shows the configuration of the linear vibration actuator according to the first embodiment. A pair of flat plate-like lower stator 2 and upper stator 3 each formed from a piezoelectric substrate are arranged in parallel in each other in casing 1 with one end opened, and a metal isotropic force is also formed between these stators 2 and 3. A slider 4 is arranged. The lower stator 2 is fixed to the bottom of the casing 1 and the upper stator 3 is arranged so that the slider 4 is sandwiched between the lower stator 2 and the lower stator 2, the upper stator 3 and the slider 4. A slide mechanism S is formed. Further, a plate panel 5 is inserted as a preload means between the upper surface of the upper stator 3 and the ceiling surface of the casing 1. The urging force of the plate panel 5 causes the upper stator 3 to move in the direction of the lower stator 2. The slider 4 is pressed and brought into pressure contact with the surfaces of the lower stator 2 and the upper stator 3 with a predetermined pressure.
[0009] スライダ 4を臨む下部ステータ 2の上面の両端部付近にはそれぞれすだれ状電極 6 および 7が形成され、同様に、スライダ 4を臨む上部ステータ 3の下面の両端部付近 にはそれぞれすだれ状電極 8および 9が形成されている。そして、これらすだれ状電 極 6〜9に高周波電源を有する駆動制御部 10が電気的に接続されている。なお、す だれ状電極 6〜9と駆動制御部 10により進行波発生手段が形成されている。  Interdigital electrodes 6 and 7 are formed in the vicinity of both end portions of the upper surface of the lower stator 2 facing the slider 4, and similarly, interdigital shapes are formed in the vicinity of both end portions of the lower surface of the upper stator 3 facing the slider 4. Electrodes 8 and 9 are formed. And the drive control part 10 which has a high frequency power supply is electrically connected to these interdigital electrodes 6-9. The interdigital electrodes 6 to 9 and the drive controller 10 form traveling wave generating means.
ここで、下部ステータ 2と上部ステータ 3の一端のすだれ状電極 6および 8から他端 のすだれ状電極 7および 9へ向力う方向を +X方向、他端のすだれ状電極 7および 9 力も一端のすだれ状電極 6および 8へ向力 方向を一 X方向とする。  Here, the direction from the interdigital electrodes 6 and 8 at one end of the lower stator 2 and the upper stator 3 to the interdigital electrodes 7 and 9 is + X direction, and the interdigital electrodes 7 and 9 at the other end are also one end. The direction of the force toward the interdigital electrodes 6 and 8 is defined as the X direction.
[0010] また、スライダ 4に連結部材としてのワイヤ 11の一端が接続され、ワイヤ 11の他端が ケーシング 1の開放端部を通ってケーシング 1の外部へ延出され、駆動対象物 12に 接続されている。駆動対象物 12は、 +X方向および—X方向に移動自在に配置され ると共に図示しないパネ等の付勢手段によりケーシング 1から遠ざ力る方向すなわち +X方向へ付勢されているものとする。  In addition, one end of a wire 11 as a connecting member is connected to the slider 4, and the other end of the wire 11 extends to the outside of the casing 1 through the open end of the casing 1 and is connected to the driven object 12. Has been. The driven object 12 is disposed so as to be movable in the + X direction and the −X direction, and is biased in a direction away from the casing 1, that is, in the + X direction by a biasing means such as a panel not shown. To do.
[0011] 次に、この実施の形態 1の動作について説明する。図 2に示されるように、駆動制御 部 10内の高周波電源 13から下部ステータ 2の一端のすだれ状電極 6に高周波電圧 を印加すると、圧電基板力 形成されている下部ステータ 2の上面に表面弾性波が 励振され、他端のすだれ状電極 7に向けて伝搬する。このとき、他端のすだれ状電極 7に駆動制御部 10内の整合回路 14を接続して、このすだれ状電極 7を受波電極とし て整合をとることにより、表面弾性波はこのすだれ状電極 7で吸収され、反射波の発 生が抑制されて、表面弾性波は一端のすだれ状電極 6から他端のすだれ状電極 7に 向力う +X方向の進行波となる。  Next, the operation of the first embodiment will be described. As shown in FIG. 2, when a high frequency voltage is applied from the high frequency power source 13 in the drive control unit 10 to the interdigital electrode 6 at one end of the lower stator 2, the surface elasticity is applied to the upper surface of the lower stator 2 where the piezoelectric substrate force is formed. The wave is excited and propagates toward the interdigital electrode 7 at the other end. At this time, a matching circuit 14 in the drive control unit 10 is connected to the interdigital electrode 7 at the other end, and the interdigital electrode 7 is used as a receiving electrode to perform matching so that the surface acoustic wave is generated from the interdigital electrode. 7 is absorbed and the generation of the reflected wave is suppressed, and the surface acoustic wave becomes a traveling wave in the + X direction from the interdigital electrode 6 at one end to the interdigital electrode 7 at the other end.
[0012] なお、すだれ状電極 7で吸収された表面弾性波のエネルギーは、エネルギー消費 用の抵抗等で消費させることもできる力 このエネルギーを一端のすだれ状電極 6側 へ還流させて進行波の励振に利用することによりエネルギー効率を大幅に向上させ ることがでさる。 [0012] The energy of the surface acoustic wave absorbed by the interdigital electrode 7 is a force that can be consumed by a resistance for energy consumption or the like. By using it for excitation, energy efficiency is greatly improved. It can be done.
同様に、駆動制御部 10から上部ステータ 3の一端のすだれ状電極 8に高周波電圧 を印加すると共に他端のすだれ状電極 9を受波電極として整合をとることにより、上部 ステータ 3の下面に一端のすだれ状電極 8から他端のすだれ状電極 9に向けて +X 方向に進行する表面弾性波が発生する。  Similarly, a high-frequency voltage is applied from the drive control unit 10 to the interdigital electrode 8 at one end of the upper stator 3 and matching is performed with the interdigital electrode 9 at the other end as a receiving electrode. A surface acoustic wave traveling in the + X direction is generated from the interdigital electrode 8 toward the interdigital electrode 9 at the other end.
[0013] これら下部ステータ 2の上面と上部ステータ 3の下面に発生した +X方向の進行波 により、下部ステータ 2と上部ステータ 3の表面に対して所定の加圧力で加圧接触さ れているスライダ 4が、下部ステータ 2と上部ステータ 3の表面に沿って進行波とは逆 方向、すなわち他端のすだれ状電極 7および 9から一端のすだれ状電極 6および 8に 向けて一 X方向に移動する。このスライダ 4の移動に伴い、ワイヤ 11を介してケーシ ング 1外部の駆動対象物 12が図示しな 、パネ等の付勢力に抗して X方向に相対 移動することとなる。 [0013] The traveling waves in the + X direction generated on the upper surface of the lower stator 2 and the lower surface of the upper stator 3 are in pressure contact with the surfaces of the lower stator 2 and the upper stator 3 with a predetermined pressure. The slider 4 moves in the direction opposite to the traveling wave along the surfaces of the lower stator 2 and the upper stator 3, that is, in the X direction from the interdigital electrodes 7 and 9 at the other end to the interdigital electrodes 6 and 8 at the other end. To do. As the slider 4 moves, the driving object 12 outside the casing 1 moves relative to the X direction against the urging force of the panel or the like via the wire 11, not shown.
[0014] 逆に、下部ステータ 2と上部ステータ 3の他端のすだれ状電極 7および 9にそれぞれ 高周波電圧を印加すると共に一端のすだれ状電極 6および 8をそれぞれ受波電極と して用いることにより、下部ステータ 2の上面と上部ステータ 3の下面にそれぞれ他端 のすだれ状電極 7および 9から一端のすだれ状電極 6および 8に向けて—X方向に 進行する表面弾性波が発生し、スライダ 4を +X方向へ移動させることができる。これ により、スライダ 4と駆動対象物 12とを連結するワイヤ 11の張力が下がり、駆動対象 物 12が図示しないパネ等の付勢力を受けて +X方向に相対移動する。  [0014] Conversely, by applying a high-frequency voltage to the interdigital electrodes 7 and 9 at the other ends of the lower stator 2 and the upper stator 3, respectively, and using the interdigital electrodes 6 and 8 at one end as receiving electrodes, respectively. Then, surface acoustic waves traveling in the X direction from the interdigital electrodes 7 and 9 at the other end toward the interdigital electrodes 6 and 8 at the other end are generated on the upper surface of the lower stator 2 and the lower surface of the upper stator 3, respectively. Can be moved in the + X direction. As a result, the tension of the wire 11 connecting the slider 4 and the driven object 12 is lowered, and the driven object 12 is relatively moved in the + X direction under the urging force of a panel or the like (not shown).
[0015] なお、図 3に示されるように、下部ステータ 2および上部ステータ 3と平行に延びるリ ユアガイド 15をケーシング 1内に設置し、このリニアガイド 15によりスライダ 4の移動を 案内すれば、下部ステータ 2と上部ステータ 3の表面に沿ってスライダ 4を円滑に移動 させることがでさる。  As shown in FIG. 3, the lower stator 2 and the linear guide 15 extending in parallel with the upper stator 3 are installed in the casing 1, and the movement of the slider 4 is guided by this linear guide 15, so that the lower part The slider 4 can be smoothly moved along the surfaces of the stator 2 and the upper stator 3.
[0016] 実施の形態 2  [0016] Embodiment 2
図 4に、実施の形態 2に係るリニア型振動ァクチユエータの構成を示す。この実施の 形態 2は、実施の形態 1で用いられたスライド機構部 Sを 4つ互いに積層してケーシン グ 21内に収納することにより積層型のァクチユエータを構成したものである。一端が 開放されたケーシング 21内に 4つのスライド機構部 Sが互いに積層され、下段のスラ イド機構部 Sの上部ステータ 3の上面上に上段のスライド機構部 Sの下部ステータ 2が 位置している。さらに、最上段のスライド機構部 Sの上面とケーシング 21の天井面との 間に板パネ 5が挿入されている。この板パネ 5は、 4つのスライド機構部 Sに共通して それぞれ予圧手段として作用し、各スライド機構部 Sのスライダ 4を下部ステータ 2お よび上部ステータ 3の表面に対して所定の加圧力で加圧接触させる。 FIG. 4 shows the configuration of the linear vibration actuator according to the second embodiment. In the second embodiment, four slide mechanism portions S used in the first embodiment are stacked on top of each other and housed in the casing 21 to constitute a stacked type actuator. Four slide mechanism parts S are stacked on top of each other in a casing 21 that is open at one end. On the upper surface of the upper stator 3 of the id mechanism portion S, the lower stator 2 of the upper slide mechanism portion S is located. Further, a panel panel 5 is inserted between the upper surface of the uppermost slide mechanism S and the ceiling surface of the casing 21. The plate panel 5 acts as a preload means in common with the four slide mechanism portions S, and the slider 4 of each slide mechanism portion S is applied to the surfaces of the lower stator 2 and the upper stator 3 with a predetermined pressure. Press contact.
4つのスライド機構部 Sのスライダ 4はそれぞれ対応するワイヤ 11を介して互いに異 なる駆動対象物 12に連結されている。さらに、 4つのスライド機構部 Sのすだれ状電 極 6〜9にそれぞれ対応する駆動制御部 10が電気的に接続されている。  The sliders 4 of the four slide mechanism portions S are connected to different driving objects 12 through corresponding wires 11 respectively. Further, drive control units 10 corresponding to the interdigital electrodes 6 to 9 of the four slide mechanism units S are electrically connected.
[0017] このような構成により、 4つのスライド機構部 Sのスライダ 4を、それぞれ対応する駆 動制御部 10によって独立して移動させることができ、 4つの駆動対象物 12を多自由 度で駆動することが可能となる。 [0017] With such a configuration, the sliders 4 of the four slide mechanism sections S can be independently moved by the corresponding drive control sections 10, and the four driving objects 12 are driven with multiple degrees of freedom. It becomes possible to do.
4つのスライド機構部 Sを積層すると共に共通の板パネ 5で 4つのスライド機構部 S にそれぞれ予圧をかけるため、部品点数が少ない薄型の多自由度リニア型振動ァク チユエータが実現される。  Since the four slide mechanism parts S are stacked and the four plate mechanism parts S are preloaded with the common plate panel 5, a thin multi-degree-of-freedom linear vibration actuator with a small number of parts is realized.
また、共通の板パネ 5を用いることにより、 4つのスライド機構部 Sに加えられる予圧 が均一となり、 4つのスライド機構部 Sにおけるスライダ 4の移動特性を揃えることがで き、高品質の多自由度ァクチユエータが構成される。  In addition, by using the common plate panel 5, the preload applied to the four slide mechanism sections S is uniform, and the movement characteristics of the slider 4 in the four slide mechanism sections S can be made uniform. A feature is configured.
さらに、進行波として表面弾性波を用いているので、各ステータ 2および 3のスライダ 4とは反対側の面は振動することがなぐこのため各ステータ 2および 3のこれらの面 のどの部分でも予圧をかけることができ、予圧手段の構成を簡素化することが可能と なる。  Furthermore, since surface acoustic waves are used as traveling waves, the surface of each stator 2 and 3 opposite to the slider 4 does not vibrate, so any part of these surfaces of each stator 2 and 3 is preloaded. This makes it possible to simplify the configuration of the preload means.
[0018] 実施の形態 3  [0018] Embodiment 3
図 5および図 6に、実施の形態 3に係るリニア型振動ァクチユエータの構成を示す。 この実施の形態 3は、図 4に示した実施の形態 2のァクチユエータにおいて、上段の スライド機構部 Sの下部ステータ 2が下段のスライド機構部 Sの上部ステータを兼ねた ものである。  5 and 6 show the configuration of the linear vibration actuator according to the third embodiment. In the third embodiment, the lower stator 2 of the upper slide mechanism portion S also serves as the upper stator of the lower slide mechanism portion S in the actuator of the second embodiment shown in FIG.
進行波として表面弾性波を用いているので、一枚のステータの両面にそれぞれ異 なる表面弾性波を発生させることができる。そこで、この実施の形態 3では、上段のス ライド機構部 Sの下部ステータ 2の上面の両端部付近にそれぞれすだれ状電極 6お よび 7を形成してこれらすだれ状電極 6および 7を上段のスライド機構部 Sの下側の電 極として用いると共に、この下部ステータ 2の下面の両端部付近にそれぞれすだれ状 電極 8および 9を形成してこれらすだれ状電極 8および 9を下段のスライド機構部 Sの 上側の電極として用いて 、る。 Since surface acoustic waves are used as traveling waves, different surface acoustic waves can be generated on both sides of one stator. Therefore, in this third embodiment, the upper stage Interdigital electrodes 6 and 7 are formed in the vicinity of both ends of the upper surface of the lower stator 2 of the ride mechanism S, and the interdigital electrodes 6 and 7 are used as lower electrodes of the upper slide mechanism S. The interdigital electrodes 8 and 9 are formed in the vicinity of both ends of the lower surface of the lower stator 2, and the interdigital electrodes 8 and 9 are used as the upper electrodes of the lower slide mechanism section S.
[0019] このような構成とすることにより、互いに積層された上段のスライド機構部 Sと下段の スライド機構部 Sの間に位置するステータを一枚とすることができ、さらに薄型で構造 が簡単な多自由度リニア型振動ァクチユエータが実現される。  [0019] By adopting such a configuration, the stator positioned between the upper slide mechanism portion S and the lower slide mechanism portion S stacked on each other can be made into one sheet, and is thinner and has a simple structure. A multi-degree-of-freedom linear vibration actuator is realized.
[0020] 実施の形態 4  [0020] Embodiment 4
図 7に、実施の形態 4に係るリニア型振動ァクチユエータの構成を示す。この実施の 形態 4は、実施の形態 1において、圧電基板力 形成された下部ステータ 2および上 部ステータ 3の間に金属等カゝら形成されたスライダ 4を挟持する代わりに金属等から 形成された下部ステータ 22および上部ステータ 23の間に圧電基板力も形成された スライダ 24を挟持し、スライダ 24の下面の両端部付近にすだれ状電極 6および 7を 形成すると共にスライダ 24の上面の両端部付近にすだれ状電極 8および 9を形成し たものである。下部ステータ 22、上部ステータ 23およびスライダ 24によりスライド機構 部 Sが形成されている。また、すだれ状電極 6〜9に駆動制御部 10が電気的に接続 されている。  FIG. 7 shows the configuration of the linear vibration actuator according to the fourth embodiment. The fourth embodiment is formed of metal or the like instead of sandwiching the slider 4 formed of a metal or the like between the lower stator 2 and the upper stator 3 formed with piezoelectric substrate force in the first embodiment. In addition, a slider 24 having a piezoelectric substrate force formed between the lower stator 22 and the upper stator 23 is sandwiched to form interdigital electrodes 6 and 7 near both ends of the lower surface of the slider 24 and near both ends of the upper surface of the slider 24. In this example, interdigital electrodes 8 and 9 are formed. The lower stator 22, the upper stator 23, and the slider 24 form a slide mechanism portion S. Further, the drive control unit 10 is electrically connected to the interdigital electrodes 6-9.
なお、板パネ 5の付勢力により、スライダ 24が下部ステータ 22および上部ステータ 2 3の表面に対して所定の加圧力で加圧接触されている。また、スライダ 24にワイヤ 11 を介してケーシング 1外部の駆動対象物 12が連結されている。  The slider 24 is pressed against the surfaces of the lower stator 22 and the upper stator 23 with a predetermined pressure by the urging force of the plate panel 5. In addition, the driven object 12 outside the casing 1 is connected to the slider 24 via a wire 11.
[0021] 駆動制御部 10からスライダ 24の一端のすだれ状電極 6および 8に高周波電圧を印 加すると共に他端のすだれ状電極 7および 9を受波電極として整合をとることにより、 スライダ 24の両面においてすだれ状電極 6および 8からすだれ状電極 7および 9に向 力つて +X方向に進行する表面弾性波が発生し、スライダ 24が +X方向に移動する 。一方、駆動制御部 10からスライダ 24の他端のすだれ状電極 7および 9に高周波電 圧を印加すると共に一端のすだれ状電極 6および 8を受波電極として整合をとること により、スライダ 24の両面においてすだれ状電極 7および 9からすだれ状電極 6およ び 8に向力つて— X方向に進行する表面弾性波が発生し、スライダ 24が— X方向に 移動する。 By applying a high frequency voltage from the drive control unit 10 to the interdigital electrodes 6 and 8 at one end of the slider 24 and using the interdigital electrodes 7 and 9 at the other end as receiving electrodes, matching is performed. Surface acoustic waves traveling in the + X direction are generated from the interdigital electrodes 6 and 8 toward the interdigital electrodes 7 and 9 on both sides, and the slider 24 moves in the + X direction. On the other hand, by applying a high frequency voltage from the drive control unit 10 to the interdigital electrodes 7 and 9 at the other end of the slider 24 and matching the interdigital electrodes 6 and 8 at one end with the receiving electrodes, both sides of the slider 24 are obtained. Interdigital electrodes 7 and 9 to interdigital electrodes 6 and As a result, the surface acoustic wave traveling in the X direction is generated and the slider 24 moves in the X direction.
したがって、実施の形態 1と同様に、ワイヤ 11を介してケーシング 1外部の駆動対 象物 12を移動させることが可能となる。  Therefore, similarly to the first embodiment, the drive object 12 outside the casing 1 can be moved via the wire 11.
[0022] 実施の形態 5  [0022] Embodiment 5
図 8に、実施の形態 5に係るリニア型振動ァクチユエータの構成を示す。この実施の 形態 5は、実施の形態 4で用いられたスライド機構部 Sを 4つ互いに積層してケーシン グ 21内に収納することにより積層型のァクチユエータを構成すると共に上段のスライ ド機構部 Sの下部ステータ 22が下段のスライド機構部 Sの上部ステータを兼ねたもの である。一端が開放されたケーシング 21内に 4つのスライド機構部 Sが互 ヽに積層さ れ、互いに重なるスライド機構部 Sの間には、上段のスライド機構部 Sの下部ステータ 22のみが位置し、この上段のスライド機構部 Sの下部ステータ 22が下段のスライド機 構部 Sの上部ステータを兼用している。最上段のスライド機構部 Sの上面とケーシン グ 21の天井面との間に板パネ 5が挿入され、この板パネ 5により 4つのスライド機構部 Sのスライダ 24がそれぞれ下部ステータ 22と上部ステータ 23の表面に対して所定の 加圧力で加圧接触されて!ヽる。  FIG. 8 shows a configuration of the linear vibration actuator according to the fifth embodiment. In this fifth embodiment, the four slide mechanism portions S used in the fourth embodiment are stacked on top of each other and housed in the casing 21 to constitute a stacked actuator and the upper slide mechanism portion S. The lower stator 22 also serves as the upper stator of the lower slide mechanism S. Four slide mechanism parts S are stacked on top of each other in the casing 21 with one end open, and only the lower stator 22 of the upper slide mechanism part S is located between the slide mechanism parts S that overlap each other. The lower stator 22 of the upper slide mechanism part S also serves as the upper stator of the lower slide mechanism part S. A plate panel 5 is inserted between the upper surface of the uppermost slide mechanism S and the ceiling surface of the casing 21. The plate panel 5 allows the sliders 24 of the four slide mechanisms S to move to the lower stator 22 and the upper stator 23, respectively. The surface is pressed and contacted with a predetermined pressure!
[0023] 図示省略されているが、 4つのスライド機構部 Sのスライダ 24はそれぞれ対応するヮ ィャ 11を介して互いに異なる駆動対象物に連結されている。さらに、 4つのスライド機 構部 Sのスライダ 24の両面に形成されたすだれ状電極 6〜9にそれぞれ対応する駆 動制御部が電気的に接続されている。  Although not shown in the drawings, the sliders 24 of the four slide mechanism portions S are connected to different driving objects via the corresponding sliders 11, respectively. In addition, drive control units respectively corresponding to the interdigital electrodes 6 to 9 formed on both surfaces of the slider 24 of the four slide mechanism units S are electrically connected.
[0024] このような構成により、上述した実施の形態 2および 3と同様に、 4つのスライド機構 部 Sのスライダ 24を、それぞれ対応する駆動制御部によって独立して移動させること ができ、 4つの駆動対象物を多自由度で駆動することが可能となる。  [0024] With such a configuration, similarly to Embodiments 2 and 3 described above, the sliders 24 of the four slide mechanism sections S can be independently moved by the corresponding drive control sections, It becomes possible to drive the driven object with multiple degrees of freedom.
4つのスライド機構部 Sを積層すると共に共通の板パネ 5で 4つのスライド機構部 S にそれぞれ予圧をかけるため、部品点数が少ない薄型の多自由度リニア型振動ァク チユエータが実現される。  Since the four slide mechanism parts S are stacked and the four plate mechanism parts S are preloaded with the common plate panel 5, a thin multi-degree-of-freedom linear vibration actuator with a small number of parts is realized.
また、共通の板パネ 5を用いることにより、 4つのスライド機構部 Sに加えられる予圧 が均一となり、 4つのスライド機構部 Sにおけるスライダ 24の移動特性を揃えることが でき、高品質の多自由度ァクチユエータが構成される。 Also, by using the common plate panel 5, the preload applied to the four slide mechanism sections S becomes uniform, and the movement characteristics of the slider 24 in the four slide mechanism sections S can be made uniform. A high-quality multi-degree-of-freedom actuator is constructed.
[0025] 実施の形態 6  [0025] Embodiment 6
図 9に、実施の形態 6に係るリニア型振動ァクチユエータの構成を示す。この実施の 形態 6は、実施の形態 1において、下部ステータ 2および上部ステータ 3の代わりに弹 性体力もなる下部ステータ 32および上部ステータ 33を用いると共にすだれ状電極 6 および 7の代わりに下部ステータ 32の上面の両端部付近にそれぞれ圧電素子 36お よび 37を貼付し、すだれ状電極 8および 9の代わりに上部ステータ 33の下面の両端 部付近にそれぞれ圧電素子 38および 39を貼付したものである。下部ステータ 32、 上部ステータ 33およびスライダ 4によりスライド機構部 Sが形成されている。また、圧電 素子 36〜39に駆動制御部 10が電気的に接続されている。  FIG. 9 shows the configuration of the linear vibration actuator according to the sixth embodiment. In the sixth embodiment, the lower stator 32 and the upper stator 33, which also have an inertial physical force, are used instead of the lower stator 2 and the upper stator 3, and the lower stator 32 is used instead of the interdigital electrodes 6 and 7. Piezoelectric elements 36 and 37 are pasted near the both ends of the upper surface of each of the electrodes, and piezoelectric elements 38 and 39 are pasted near the both ends of the lower surface of the upper stator 33 instead of the interdigital electrodes 8 and 9, respectively. A slide mechanism S is formed by the lower stator 32, the upper stator 33 and the slider 4. In addition, the drive control unit 10 is electrically connected to the piezoelectric elements 36 to 39.
なお、板パネ 5の付勢力により、スライダ 4が下部ステータ 32および上部ステータ 33 の表面に対して所定の加圧力で加圧接触されている。また、スライダ 4にワイヤ 11を 介してケーシング 1外部の駆動対象物 12が連結されている。  The slider 4 is pressed and contacted with the surfaces of the lower stator 32 and the upper stator 33 with a predetermined pressing force by the urging force of the plate panel 5. In addition, a driven object 12 outside the casing 1 is connected to the slider 4 via a wire 11.
[0026] 図 10に示されるように、駆動制御部 10内の高周波電源 13から下部ステータ 2の一 端の圧電素子 36に高周波電圧を印加すると、弾性体力もなる下部ステータ 32にた わみ振動が発生し、他端の圧電素子 37に向けて伝搬する。このとき、他端の圧電素 子 37に駆動制御部 10内の整合回路 14を接続して、この圧電素子 37を吸振側素子 として整合をとることにより、たわみ振動はこの圧電素子 37で吸収され、反射波の発 生が抑制されて、一端の圧電素子 36から他端の圧電素子 37に向かう +X方向のた わみ進行波となる。  As shown in FIG. 10, when a high frequency voltage is applied from the high frequency power supply 13 in the drive control unit 10 to the piezoelectric element 36 at one end of the lower stator 2, flexural vibration is generated in the lower stator 32 that also has elastic body force. Is generated and propagates toward the piezoelectric element 37 at the other end. At this time, by connecting the matching circuit 14 in the drive control unit 10 to the piezoelectric element 37 at the other end and performing matching with the piezoelectric element 37 as the vibration-absorbing side element, the flexural vibration is absorbed by the piezoelectric element 37. Then, the generation of the reflected wave is suppressed, and a bending traveling wave in the + X direction from the piezoelectric element 36 at one end toward the piezoelectric element 37 at the other end is generated.
[0027] なお、他端の圧電素子 37で吸収されたたわみ振動のエネルギーを一端の圧電素 子 36側へ還流させてたわみ振動の励振に利用することによりエネルギー効率を大幅 に向上させることができる。  [0027] It is to be noted that the energy efficiency can be greatly improved by allowing the flexural vibration energy absorbed by the piezoelectric element 37 at the other end to flow back to the piezoelectric element 36 side at the one end and using it for exciting the flexural vibration. .
同様に、駆動制御部 10から上部ステータ 33の一端の圧電素子 38に高周波電圧を 印加すると共に他端の圧電素子 39を吸振側素子として整合をとることにより、上部ス テータ 33の下面に一端の圧電素子 38から他端の圧電素子 39に向けて +X方向に 進行するたわみ進行波が発生する。  Similarly, by applying a high-frequency voltage from the drive control unit 10 to the piezoelectric element 38 at one end of the upper stator 33 and matching the piezoelectric element 39 at the other end as a vibration-absorbing side element, the lower surface of the upper stator 33 is A bending traveling wave is generated that travels in the + X direction from the piezoelectric element 38 toward the piezoelectric element 39 at the other end.
[0028] これら下部ステータ 32の上面と上部ステータ 33の下面に発生した +X方向の進行 波により、下部ステータ 32と上部ステータ 33の表面に対して所定の加圧力で加圧接 触されているスライダ 4力 下部ステータ 32と上部ステータ 33の表面に沿って進行波 とは逆方向、すなわち— X方向に移動する。このスライダ 4の移動に伴い、ワイヤ 11を 介してケーシング 1外部の駆動対象物 12が図示しないパネ等の付勢力に抗して X 方向に移動することとなる。 [0028] Progression in the + X direction generated on the upper surface of the lower stator 32 and the lower surface of the upper stator 33 The slider 4 force pressed against the surfaces of the lower stator 32 and the upper stator 33 by a predetermined pressure by the wave 4 force along the surface of the lower stator 32 and the upper stator 33, that is, in the direction opposite to the traveling wave, Move in the X direction. As the slider 4 moves, the driven object 12 outside the casing 1 moves in the X direction against the urging force of a panel or the like (not shown) via the wire 11.
[0029] 逆に、下部ステータ 32と上部ステータ 33の他端の圧電素子 37および 39にそれぞ れ高周波電圧を印加すると共に一端の圧電素子 36および 38をそれぞれ吸振側素 子として用いることにより、下部ステータ 32の上面と上部ステータ 33の下面にそれぞ れ他端の圧電素子 37および 39から一端の圧電素子 36および 38に向けて—X方向 に進行するたわみ進行波が発生し、スライダ 4を +X方向へ移動させることができる。 これにより、スライダ 4と駆動対象物 12とを連結するワイヤ 11の張力が下がり、駆動対 象物 12が図示しないパネ等の付勢力を受けて +X方向に移動する。  [0029] Conversely, by applying a high-frequency voltage to the piezoelectric elements 37 and 39 at the other ends of the lower stator 32 and the upper stator 33, respectively, and using the piezoelectric elements 36 and 38 at the one end as vibration-absorbing side elements, A deflection traveling wave traveling in the X direction from the piezoelectric elements 37 and 39 at the other end to the piezoelectric elements 36 and 38 at the other end is generated on the upper surface of the lower stator 32 and the lower surface of the upper stator 33, respectively. Can be moved in the + X direction. As a result, the tension of the wire 11 connecting the slider 4 and the driving object 12 is lowered, and the driving object 12 is moved in the + X direction by receiving an urging force of a panel or the like (not shown).
[0030] 実施の形態 7  [0030] Embodiment 7
図 11および図 12に、実施の形態 7に係るリニア型振動ァクチユエータの構成を示 す。この実施の形態 7は、たわみ進行波を利用するスライド機構部 Sを 4つ互いに積 層してケーシング 21内に収納することにより積層型のァクチユエータを構成したもの である。各スライド機構部 Sは、弾性体力もなる上部ステータ 33と、この上部ステータ 33と平行に延びるリニアガイド 40と、リニアガイド 40によって移動自在に保持された スライダ 4とから形成されている。上部ステータ 33の下面がスライダ 4の上面に当接し 、リニアガイド 40の脚部 41がスライダ 4の下面より下方に位置している。  FIGS. 11 and 12 show the configuration of the linear vibration actuator according to the seventh embodiment. In the seventh embodiment, a stack type actuator is configured by stacking four slide mechanism portions S using a bending traveling wave and storing them in a casing 21. Each slide mechanism portion S is formed by an upper stator 33 that also has elastic body force, a linear guide 40 that extends in parallel with the upper stator 33, and a slider 4 that is movably held by the linear guide 40. The lower surface of the upper stator 33 is in contact with the upper surface of the slider 4, and the leg portion 41 of the linear guide 40 is positioned below the lower surface of the slider 4.
[0031] 一端が開放されたケーシング 21内に 4つのスライド機構部 Sが互いに積層され、下 段のスライド機構部 Sの上部ステータ 33の上面上に上段のスライド機構部 Sのリニア ガイド 40の脚部 41が載っている。最上段のスライド機構部 Sの上面とケーシング 21 の天井面との間に板パネ 5が挿入されている。この板パネ 5の付勢力により最上段の スライド機構部 Sの上部ステータ 33がスライダ 4に対して加圧され、さらにリニアガイド 40を介して下段のスライド機構部 Sの上部ステータ 33に板パネ 5の付勢力が作用す る。このようにして、板パネ 5は、 4つのスライド機構部 Sに共通してそれぞれ予圧手段 として作用し、各スライド機構部 Sのスライダ 4を上部ステータ 33の下面に対して所定 の加圧力で加圧接触させる。 [0031] Four slide mechanism portions S are stacked on each other in the casing 21 with one end opened, and the legs of the linear guide 40 of the upper slide mechanism portion S on the upper surface of the upper stator 33 of the lower slide mechanism portion S. Part 41 is listed. A panel panel 5 is inserted between the upper surface of the uppermost slide mechanism S and the ceiling surface of the casing 21. The upper stator 33 of the uppermost slide mechanism section S is pressed against the slider 4 by the urging force of the plate panel 5, and is further applied to the upper stator 33 of the lower slide mechanism section S via the linear guide 40. The urging force is applied. In this way, the plate panel 5 acts as a preload means in common with the four slide mechanism portions S, and the slider 4 of each slide mechanism portion S is predetermined with respect to the lower surface of the upper stator 33. Press contact with a pressure of.
[0032] 各スライド機構部 Sの上部ステータ 33の下面の両端部付近にそれぞれ圧電素子 3 8および 39が貼付されている。図示省略されている力 4つのスライド機構部 Sの上部 ステータ 33の圧電素子 38および 39にそれぞれ対応する駆動制御部が電気的に接 続されている。また、 4つのスライド機構部 Sのスライダ 4はそれぞれ対応するワイヤ 1 1を介して互!、に異なる駆動対象物に連結されて!ヽる。  [0032] Piezoelectric elements 38 and 39 are attached to the vicinity of both ends of the lower surface of the upper stator 33 of each slide mechanism S. Force not shown in the drawing Upper part of the four slide mechanism parts S The drive control parts corresponding to the piezoelectric elements 38 and 39 of the stator 33 are electrically connected. In addition, the sliders 4 of the four slide mechanism sections S are connected to each other via corresponding wires 11. Connected to different driving objects! Speak.
[0033] このような構成により、上述した実施の形態 2、 3および 5と同様に、 4つのスライド機 構部 Sのスライダ 4を、それぞれ対応する駆動制御部によって独立して移動させること ができ、 4つの駆動対象物を多自由度で駆動することが可能となる。  [0033] With such a configuration, the sliders 4 of the four slide mechanism parts S can be independently moved by the corresponding drive control parts as in the second, third and fifth embodiments. It becomes possible to drive four driving objects with multiple degrees of freedom.
4つのスライド機構部 Sを積層すると共に共通の板パネ 5で 4つのスライド機構部 S にそれぞれ予圧をかけるため、部品点数が少ない薄型の多自由度リニア型振動ァク チユエータが実現される。  Since the four slide mechanism parts S are stacked and the four plate mechanism parts S are preloaded with the common plate panel 5, a thin multi-degree-of-freedom linear vibration actuator with a small number of parts is realized.
また、共通の板パネ 5を用いることにより、 4つのスライド機構部 Sに加えられる予圧 が均一となり、 4つのスライド機構部 Sにおけるスライダ 4の移動特性を揃えることがで き、高品質の多自由度ァクチユエータが構成される。  In addition, by using the common plate panel 5, the preload applied to the four slide mechanism sections S is uniform, and the movement characteristics of the slider 4 in the four slide mechanism sections S can be made uniform. A feature is configured.
[0034] 実施の形態 8 [0034] Embodiment 8
図 13に、実施の形態 8に係るリニア型振動ァクチユエータの構成を示す。この実施 の形態 8は、実施の形態 6において、弾性体力もなる下部ステータ 32および上部ステ ータ 33の表面に圧電素子 36〜39を貼付する代わりに弾性体力も形成されたスライ ダ 44の上面の両端部付近にそれぞれ圧電素子 36および 37を貼付し、このスライダ 44を金属等力も形成された下部ステータ 22および上部ステータ 23の間に挟持した ものである。下部ステータ 22、上部ステータ 23およびスライダ 44によりスライド機構部 Sが形成されている。また、スライダ 44の圧電素子 36および 37に駆動制御部 10が電 気的に接続されている。  FIG. 13 shows the configuration of the linear vibration actuator according to the eighth embodiment. In the eighth embodiment, the upper surface of the slider 44 in which the elastic force is also formed instead of attaching the piezoelectric elements 36 to 39 to the surfaces of the lower stator 32 and the upper stator 33, which also have elastic force, in the sixth embodiment. Piezoelectric elements 36 and 37 are pasted near the both ends of this, respectively, and the slider 44 is sandwiched between the lower stator 22 and the upper stator 23 in which a metal isotropic force is also formed. The lower stator 22, the upper stator 23 and the slider 44 form a slide mechanism portion S. Further, the drive control unit 10 is electrically connected to the piezoelectric elements 36 and 37 of the slider 44.
なお、板パネ 5の付勢力により、スライダ 44が下部ステータ 22および上部ステータ 2 3の表面に対して所定の加圧力で加圧接触されている。また、スライダ 44にワイヤ 11 を介してケーシング 1外部の駆動対象物 12が連結されている。  The slider 44 is pressed against the surfaces of the lower stator 22 and the upper stator 23 with a predetermined pressure by the urging force of the plate panel 5. Further, the driven object 12 outside the casing 1 is connected to the slider 44 via the wire 11.
[0035] 駆動制御部 10からスライダ 44の一端の圧電素子 36に高周波電圧を印加すると共 に他端の圧電素子 37を吸振側素子として整合をとることにより、弾性体力 なるスラ イダ 44に一端の圧電素子 36から他端の圧電素子 37に向力 +X方向のたわみ進 行波が発生し、スライダ 44が +X方向に移動する。一方、駆動制御部 10からスライダ 44の他端の圧電素子 37に高周波電圧を印加すると共に一端の圧電素子 36を吸振 側素子として整合をとることにより、弾性体力もなるスライダ 44に他端の圧電素子 37 力も一端の圧電素子 36に向力 — X方向のたわみ進行波が発生し、スライダ 44が— X方向に移動する。 When a high frequency voltage is applied from the drive control unit 10 to the piezoelectric element 36 at one end of the slider 44, When the piezoelectric element 37 at the other end is matched as the vibration-absorbing side element, a bending traveling wave in the direction + X direction is generated from the piezoelectric element 36 at one end to the piezoelectric element 37 at the other end in the slider 44, which is an elastic body force. The slider 44 moves in the + X direction. On the other hand, by applying a high-frequency voltage from the drive control unit 10 to the piezoelectric element 37 on the other end of the slider 44 and matching the piezoelectric element 36 on the one end as a vibration-absorbing side element, the piezoelectric element 36 on the other end of the slider 44 also has elastic body force. The element 37 force is also directed to the piezoelectric element 36 at one end — a bending traveling wave in the X direction is generated, and the slider 44 moves in the X direction.
したがって、実施の形態 6と同様に、ワイヤ 11を介してケーシング 1外部の駆動対 象物 12を移動させることが可能となる。  Therefore, similarly to the sixth embodiment, the driving object 12 outside the casing 1 can be moved via the wire 11.
なお、スライダ 44の上面に圧電素子 36および 37を貼付する代わりに、スライダ 44 の下面の両端部付近にそれぞれ圧電素子 36および 37を貼付してもよい。  Instead of pasting the piezoelectric elements 36 and 37 on the upper surface of the slider 44, the piezoelectric elements 36 and 37 may be pasted near both ends of the lower surface of the slider 44, respectively.
[0036] 実施の形態 9  [0036] Embodiment 9
図 14に、実施の形態 9に係るリニア型振動ァクチユエータの構成を示す。この実施 の形態 9は、実施の形態 8で用いられたスライド機構部 Sを 4つ互いに積層してケーシ ング 21内に収納することにより積層型のァクチユエータを構成すると共に上段のスラ イド機構部 Sの下部ステータ 22が下段のスライド機構部 Sの上部ステータを兼ねたも のである。一端が開放されたケーシング 21内に 4つのスライド機構部 Sが互いに積層 され、互いに重なるスライド機構部 Sの間には、上段のスライド機構部 Sの下部ステー タ 22のみが位置し、この上段のスライド機構部 Sの下部ステータ 22が下段のスライド 機構部 Sの上部ステータを兼用している。最上段のスライド機構部 Sの上面とケーシ ング 21の天井面との間に板パネ 5が挿入され、この板パネ 5により 4つのスライド機構 部 Sのスライダ 44がそれぞれ下部ステータ 22と上部ステータ 23の表面に対して所定 の加圧力で加圧接触されて!、る。  FIG. 14 shows the configuration of the linear vibration actuator according to the ninth embodiment. In the ninth embodiment, the four slide mechanism portions S used in the eighth embodiment are stacked on top of each other and housed in the casing 21 to constitute a stacked actuator and the upper slide mechanism portion S. The lower stator 22 also serves as the upper stator of the lower slide mechanism section S. Four slide mechanism parts S are stacked on each other in the casing 21 with one end opened, and only the lower stage 22 of the upper slide mechanism part S is located between the slide mechanism parts S that overlap each other. The lower stator 22 of the slide mechanism section S also serves as the upper stator of the lower slide mechanism section S. A plate panel 5 is inserted between the upper surface of the uppermost slide mechanism S and the ceiling surface of the casing 21. The plate panel 5 allows the sliders 44 of the four slide mechanisms S to be moved to the lower stator 22 and the upper stator 23, respectively. The surface is pressed and contacted with a predetermined pressure!
[0037] 図示省略されているが、 4つのスライド機構部 Sのスライダ 44はそれぞれ対応するヮ ィャ 11を介して互いに異なる駆動対象物に連結されている。さらに、 4つのスライド機 構部 Sのスライダ 44の上面に形成された圧電素子 36および 37にそれぞれ対応する 駆動制御部が電気的に接続されている。  [0037] Although not shown, the sliders 44 of the four slide mechanism portions S are connected to different driving objects via the corresponding carriers 11, respectively. Furthermore, drive control units respectively corresponding to the piezoelectric elements 36 and 37 formed on the upper surfaces of the sliders 44 of the four slide mechanism units S are electrically connected.
[0038] このような構成により、上述した実施の形態 2、 3、 5および 7と同様に、 4つのスライド 機構部 Sのスライダ 44を、それぞれ対応する駆動制御部によって独立して移動させ ることができ、 4つの駆動対象物を多自由度で駆動することが可能となる。 [0038] With such a configuration, as in Embodiments 2, 3, 5, and 7 described above, four slides are provided. The sliders 44 of the mechanism part S can be independently moved by the corresponding drive control parts, and the four drive objects can be driven with multiple degrees of freedom.
4つのスライド機構部 Sを積層すると共に共通の板パネ 5で 4つのスライド機構部 S にそれぞれ予圧をかけるため、部品点数が少ない薄型の多自由度リニア型振動ァク チユエータが実現される。  Since the four slide mechanism parts S are stacked and the four plate mechanism parts S are preloaded with the common plate panel 5, a thin multi-degree-of-freedom linear vibration actuator with a small number of parts is realized.
また、共通の板パネ 5を用いることにより、 4つのスライド機構部 Sに加えられる予圧 が均一となり、 4つのスライド機構部 Sにおけるスライダ 44の移動特性を揃えることが でき、高品質の多自由度ァクチユエータが構成される。  In addition, by using the common plate panel 5, the preload applied to the four slide mechanism sections S is uniform, and the movement characteristics of the slider 44 in the four slide mechanism sections S can be made uniform, resulting in a high-quality, multi-degree of freedom. An actuator is configured.
[0039] なお、実施の形態 1〜9では、スライダ 4、 24および 44に外部の駆動対象物 12を連 結する連結部材としてワイヤ 11を用いた力 これに限るものではなぐ剛性を有する ロッドや板状の部材を用いることもできる。 [0039] In the first to ninth embodiments, a force using the wire 11 as a connecting member for connecting the external drive object 12 to the sliders 4, 24, and 44 is not limited to this. A plate-like member can also be used.
また、実施の形態 1〜9では、平板形状の下部ステータ 2、 22および 32と上部ステ ータ 3、 23および 33を用いた力 棒形状のステータを用いることもできる。さらに、スラ イダを移動自在にすることができれば、曲面形状のステータの使用も可能である。 予圧手段として板パネ 5を用いた力 この他、皿パネ、コイルパネ等、各種の付勢手 段を使用することもできる。  In Embodiments 1 to 9, a power bar-shaped stator using flat-shaped lower stators 2, 22, and 32 and upper stators 3, 23, and 33 can also be used. Furthermore, if the slider can be moved freely, a curved stator can be used. In addition to the force using the plate panel 5 as preloading means, various biasing means such as a dish panel and a coil panel can be used.
また、上記の実施の形態 2〜6、 8および 9においても、図 3に示したようなリニアガイ ド 15によりスライダ 4、 24および 44の移動を案内することが好ましい。  Also in the above-described Embodiments 2 to 6, 8, and 9, it is preferable to guide the movement of the sliders 4, 24 and 44 by the linear guide 15 as shown in FIG.
[0040] 上記の実施の形態 2、 3、 5、 7および 9においては、 4つのスライド機構部 Sのスライ ダ 4、 24および 44をそれぞれ異なる駆動対象物 12に連結して独立駆動させた力 こ れら 4つのスライド機構部 Sのスライダ 4、 24および 44を共通の駆動対象物 12に連結 することもできる。このようにすれば、単一のスライド機構部 Sにより駆動対象物 12を 移動させる場合に比べて 4倍の推力を得ることができる。この場合には、 4つのスライ ド機構部 Sのすだれ状電極 6〜9または圧電素子 36〜39に共通の駆動制御部 10を 電気的に接続して 4つのスライド機構部 Sのスライダ 4、 24および 44を同期させて移 動させればよい。 [0040] In the above-described Embodiments 2, 3, 5, 7, and 9, the forces of the sliders 4, 24, and 44 of the four slide mechanism portions S connected to different driving objects 12 and independently driven It is also possible to connect the sliders 4, 24 and 44 of these four slide mechanisms S to a common driving object 12. In this way, it is possible to obtain a thrust four times that in the case where the driven object 12 is moved by the single slide mechanism S. In this case, the common drive control unit 10 is electrically connected to the interdigital electrodes 6 to 9 or the piezoelectric elements 36 to 39 of the four slide mechanism units S, and the sliders 4 and 24 of the four slide mechanism units S are connected. And 44 and 44 can be moved in synchronization.
[0041] また、実施の形態 2、 3、 5、 7および 9では、 4つのスライド機構部 Sを互いに積層し たが、スライド機構部 Sの積層個数については 4つに限定されるものではなぐ 2つ、 3 つ、あるいは 5つ以上のスライド機構部 Sを積層させることもできる。 [0041] In Embodiments 2, 3, 5, 7, and 9, four slide mechanism portions S are stacked on each other. However, the number of stacked slide mechanism portions S is not limited to four. Two, three One or five or more slide mechanism sections S can be stacked.
[0042] 上記の各実施の形態では、駆動対象物 12を +X方向および X方向に移動自在 に配置し、下部ステータ 2、 22、 32および上部ステータ 3、 23、 33に対するスライダ 4 、 24、 44の移動によりケーシング 1に対して駆動対象物 12を移動させた力 逆に、ケ 一シング 1を + X方向および X方向に移動自在に配置すると共に駆動対象物 12と して固定物を採用することにより、駆動対象物 12に対してケーシング 1を移動させる ように構成することちできる。  [0042] In each of the embodiments described above, the driven object 12 is arranged so as to be movable in the + X direction and the X direction, and the sliders 4, 24, Force that moved the drive target 12 with respect to the casing 1 by moving 44 On the contrary, the casing 1 is arranged to be movable in the + X direction and the X direction, and a fixed object is adopted as the drive target 12 By doing so, the casing 1 can be moved with respect to the driven object 12.
[0043] 例えば、図 1に示す実施の形態 1において、駆動制御部 10から下部ステータ 2およ び上部ステータ 3の一端のすだれ状電極 6および 8に高周波電圧を印加すると共に 他端のすだれ状電極 7および 9を受波電極として整合をとることにより、下部ステータ 2の上面と上部ステータ 3の下面において +X方向に進行する表面弾性波が発生し 、スライダ 4力 下部ステータ 2と上部ステータ 3に対して相対的に X方向に移動す る。このとき、スライダ 4はワイヤ 11を介して固定物である駆動対象物 12に連結されて いるため、ワイヤ 11の張力により実際には一 X方向に移動することができず、下部ス テータ 2および上部ステータ 3がスライダ 4に対して相対的に +X方向に移動すること となる。このようにして、ケーシング 1を +X方向に移動させることが可能となる。  For example, in the first embodiment shown in FIG. 1, a high-frequency voltage is applied from the drive control unit 10 to the interdigital electrodes 6 and 8 at one end of the lower stator 2 and the upper stator 3 and the interdigital transducer is formed at the other end. By aligning electrodes 7 and 9 as receiving electrodes, surface acoustic waves traveling in the + X direction are generated on the upper surface of lower stator 2 and the lower surface of upper stator 3, and slider 4 force Lower stator 2 and upper stator 3 Move in the X direction relative to. At this time, since the slider 4 is connected to the driven object 12 which is a fixed object via the wire 11, it cannot actually move in the X direction due to the tension of the wire 11, and the lower stator 2 and The upper stator 3 moves relative to the slider 4 in the + X direction. In this way, the casing 1 can be moved in the + X direction.
[0044] なお、ケーシング 1を X方向に移動させる場合には、スライダ 4を下部ステータ 2と 上部ステータ 3に対して相対的に +X方向に移動させる必要があるため、ワイヤ 11の 代わりに剛性を有するロッドや板状の連結部材を用いてスライダ 4と駆動対象物 12を 連結することが好ましい。  [0044] When the casing 1 is moved in the X direction, it is necessary to move the slider 4 in the + X direction relative to the lower stator 2 and the upper stator 3. It is preferable to connect the slider 4 and the driven object 12 using a rod or a plate-like connecting member.
同様にして、実施の形態 2〜9においても、ケーシング 1、 21を +X方向および一 X 方向に移動自在に配置すると共に駆動対象物 12として固定物を採用することにより 、駆動対象物 12に対してケーシング 1、 21を移動させることができる。  Similarly, in the second to ninth embodiments, the casings 1 and 21 are arranged so as to be movable in the + X direction and the one X direction, and a fixed object is used as the driving object 12. On the other hand, the casings 1 and 21 can be moved.
[0045] 実施の形態 2、 3、 5、 7および 9のように複数のスライド機構部 Sを互いに積層させて 使用する際に、各スライド機構部 Sのスライダ 4、 24および 44に連結する駆動対象物 12をそれぞれ固定物とした場合には、複数のスライド機構部 Sのスライダ 4、 24およ び 44を同期させて移動させればよい。また、複数のスライド機構部 Sのうち少なくとも 一つのスライド機構部 Sのスライダに固定物としての駆動対象物 12を連結してこのス ライド機構部 Sによりケーシング 21を移動させ、他のスライド機構部 Sのスライダに移 動自在な駆動対象物 12を連結してこのスライド機構部 Sにより移動自在な駆動対象 物 12を移動させるように構成することも可能である。 [0045] When a plurality of slide mechanism portions S are stacked and used as in the second, third, fifth, seventh, and ninth embodiments, the drive is connected to the sliders 4, 24, and 44 of each slide mechanism portion S. When the object 12 is a fixed object, the sliders 4, 24 and 44 of the plurality of slide mechanism sections S may be moved in synchronization. In addition, a drive object 12 as a fixed object is connected to a slider of at least one slide mechanism part S among the plurality of slide mechanism parts S to connect the slider. The casing 21 is moved by the ride mechanism S, and the movable drive object 12 is connected to the slider of the other slide mechanism S, and the movable drive object 12 is moved by the slide mechanism S. It is also possible to configure.
上述した実施の形態 2、 3、 5、 7および 9に係る積層型のァクチユエータを用いるこ とにより、例えば図 15に示すようなロボットノ、ンドを構成することが可能となる。この口 ボットハンドは、積層型のァクチユエータ Aの複数のワイヤ 11に第 1指、第 2指および 第 3指等の多関節の指 Fの各部分を連結したものを 5つ並べて配列したものである。 積層型のァクチユエータ Aを用いることにより、小型のロボットハンドが実現される。 なお、指 Fの一つの部分のみを駆動する場合には、実施の形態 1、 4、 6および 8に 示したような単一のスライダ 4、 24、 44を有する振動ァクチユエータを使用して指 Fを 馬区動することちでさる。  By using the stacked type actuators according to the second, third, fifth, seventh, and ninth embodiments described above, it is possible to configure a robot node as shown in FIG. 15, for example. This mouth bot hand is an array of five multi-joint fingers F, such as the first finger, the second finger, and the third finger, which are arranged side by side on a plurality of wires 11 of a stacked actuator A. is there. By using the stacked type actuator A, a small robot hand can be realized. When only one part of the finger F is driven, the finger F is used by using a vibration actuator having a single slider 4, 24, 44 as shown in the first, fourth, sixth, and eighth embodiments. It's a matter of moving around.
さらに、ロボットハンドを図示しない腕の先端に取り付け、腕を移動させることにより ロボットハンド全体を移動させることもできる。この場合、振動ァクチユエータのケーシ ング 1、 21と駆動対象物 12としての指 Fが共に腕の移動によって移動しつつ、ケーシ ング 1、 21と駆動対象物 12との相対位置が変化することとなる。  Furthermore, the entire robot hand can be moved by attaching the robot hand to the tip of an arm (not shown) and moving the arm. In this case, the relative positions of the casings 1 and 21 and the driving object 12 change while the casings 1 and 21 of the vibration actuator and the finger F as the driving object 12 are both moved by the movement of the arm. .

Claims

請求の範囲 The scope of the claims
[1] 板状または棒状のステータの表面に沿ってスライダが所定の方向へ移動自在に配 置されたスライド機構部と、  [1] a slide mechanism portion in which a slider is arranged so as to be movable in a predetermined direction along the surface of a plate-like or rod-like stator;
前記スライダを前記スライド機構部の外部の駆動対象物に連結する連結部材と、 前記ステータの表面に対して前記スライダを加圧接触させる予圧手段と、 前記ステータおよび前記スライダの対向面のうちの一方に前記所定の方向に沿つ た進行波を発生させる進行波発生手段と  A coupling member that couples the slider to an object to be driven outside the slide mechanism; a preload means that pressurizes and contacts the slider against the surface of the stator; and one of the opposing surfaces of the stator and the slider Traveling wave generating means for generating traveling waves along the predetermined direction
を備え、前記進行波発生手段で進行波を発生させて前記スライダを前記ステータ の表面に沿って移動させることにより前記連結部材を介して前記駆動対象物を相対 移動させることを特徴とするリニア型振動ァクチユエータ。  A linear type characterized in that a traveling wave is generated by the traveling wave generating means and the slider is moved along the surface of the stator to move the driven object relative to each other via the connecting member. Vibration actuator.
[2] 前記スライド機構部は、互いに平行に配置された一対の前記ステータとこれら一対 の前記ステータの間に配置された前記スライダとを含む請求項 1に記載のリニア型振 動ァクチユエータ。  [2] The linear vibration actuator according to [1], wherein the slide mechanism section includes a pair of stators arranged in parallel with each other and the slider arranged between the pair of stators.
[3] 前記スライド機構部は、前記ステータの表面に沿った前記スライダの移動を案内す るリニアガイドを有する請求項 1に記載のリニア型振動ァクチユエータ。  3. The linear vibration actuator according to claim 1, wherein the slide mechanism portion has a linear guide for guiding the movement of the slider along the surface of the stator.
[4] 互いに積層された複数の前記スライド機構部と、  [4] a plurality of the slide mechanism portions stacked on each other;
複数の前記スライド機構部を積層状態で加圧することによりそれぞれの前記スライ ド機構部において前記ステータの表面に対し前記スライダを加圧接触させる共通の 前記予圧手段と、  A common preloading means that pressurizes the plurality of slide mechanism portions in a stacked state to press the slider in pressure contact with the surface of the stator in each of the slide mechanism portions;
複数の前記スライド機構部の前記スライダをそれぞれ複数の前記駆動対象物に連 結する複数の前記連結部材と、  A plurality of the connecting members respectively connecting the sliders of the plurality of slide mechanism sections to the plurality of driving objects;
複数の前記スライド機構部の前記スライダをそれぞれ移動させる複数の前記進行 波発生手段と  A plurality of traveling wave generating means for respectively moving the sliders of the plurality of slide mechanism sections;
を備えた請求項 1に記載のリニア型振動ァクチユエータ。  The linear vibration actuator according to claim 1, further comprising:
[5] 複数の前記スライド機構部は、それぞれ互いに平行に配置された上部ステータおよ び下部ステータとこれら上部ステータおよび下部ステータの間に配置された前記スラ イダとを含み、上段の前記スライド機構部の下部ステータが下段の前記スライド機構 部の上部ステータを兼ねている請求項 4に記載のリニア型振動ァクチユエータ。 [5] The plurality of slide mechanism sections include an upper stator and a lower stator that are arranged in parallel to each other, and the slider that is arranged between the upper stator and the lower stator, and the upper slide mechanism. 5. The linear vibration actuator according to claim 4, wherein the lower stator of the portion also serves as the upper stator of the lower slide mechanism portion.
[6] 複数の前記スライド機構部は、それぞれ前記ステータの表面に沿った前記スライダ の移動を案内する複数のリニアガイドを有し、 [6] The plurality of slide mechanism portions each have a plurality of linear guides for guiding the movement of the slider along the surface of the stator,
前記予圧手段は、前記複数のリニアガイドを介して複数の前記スライド機構部をカロ 圧する請求項 4に記載のリニア型振動ァクチユエータ。  5. The linear type vibration actuator according to claim 4, wherein the preload means calorically presses the plurality of slide mechanism portions via the plurality of linear guides.
[7] 前記進行波発生手段は、進行波として表面弾性波を発生させる請求項 1に記載の リニア型振動ァクチユエータ。 7. The linear vibration actuator according to claim 1, wherein the traveling wave generating means generates a surface acoustic wave as a traveling wave.
[8] 前記ステータは、圧電基板から形成され、 [8] The stator is formed of a piezoelectric substrate,
前記進行波発生手段は、前記ステータの表面に形成されたすだれ状電極と、前記 すだれ状電極に高周波電圧を印加する駆動制御部とを有する請求項 7に記載のリニ ァ型振動ァクチユエータ。  8. The linear vibration actuator according to claim 7, wherein the traveling wave generating means includes an interdigital electrode formed on a surface of the stator and a drive control unit that applies a high frequency voltage to the interdigital electrode.
[9] 前記進行波発生手段は、前記ステータの表面に形成された第 2のすだれ状電極を 有し、 [9] The traveling wave generating means has a second interdigital electrode formed on the surface of the stator,
前記すだれ状電極と前記第 2のすだれ状電極はそれぞれ前記ステータの両端部 付近に形成され、  The interdigital electrode and the second interdigital electrode are respectively formed near both ends of the stator,
前記駆動制御部は、前記第 2のすだれ状電極を受波電極として整合をとる請求項 8に記載のリニア型振動ァクチユエータ。  9. The linear vibration actuator according to claim 8, wherein the drive control unit performs matching using the second interdigital electrode as a receiving electrode.
[10] 前記スライダは、圧電基板から形成され、 [10] The slider is formed of a piezoelectric substrate,
前記進行波発生手段は、前記スライダの表面に形成されたすだれ状電極と、前記 すだれ状電極に高周波電圧を印加する駆動制御部とを有する請求項 7に記載のリニ ァ型振動ァクチユエータ。  8. The linear vibration actuator according to claim 7, wherein the traveling wave generating means includes an interdigital electrode formed on a surface of the slider and a drive control unit that applies a high frequency voltage to the interdigital electrode.
[11] 前記進行波発生手段は、前記スライダの表面に形成された第 2のすだれ状電極を 有し、 [11] The traveling wave generating means has a second interdigital electrode formed on the surface of the slider,
前記すだれ状電極と前記第 2のすだれ状電極はそれぞれ前記スライダの両端部付 近に形成され、  The interdigital electrode and the second interdigital electrode are respectively formed near both ends of the slider,
前記駆動制御部は、前記第 2のすだれ状電極を受波電極として整合をとる請求項 10に記載のリニア型振動ァクチユエータ。  11. The linear vibration actuator according to claim 10, wherein the drive control unit performs matching using the second interdigital electrode as a receiving electrode.
[12] 前記進行波発生手段は、進行波としてたわみ進行波を発生させる請求項 1に記載 のリニア型振動ァクチユエータ。 12. The linear vibration actuator according to claim 1, wherein the traveling wave generating means generates a bending traveling wave as a traveling wave.
[13] 前記ステータは、弾性体から形成され、 [13] The stator is formed of an elastic body,
前記進行波発生手段は、前記ステータの表面に配置された圧電素子と、前記圧電 素子に高周波電圧を印加する駆動制御部とを有する請求項 12に記載のリニア型振 動ァクチユエータ。  13. The linear vibration actuator according to claim 12, wherein the traveling wave generating means includes a piezoelectric element disposed on a surface of the stator and a drive control unit that applies a high frequency voltage to the piezoelectric element.
[14] 前記進行波発生手段は、前記ステータの表面に形成された第 2の圧電素子を有し 前記圧電素子と前記第 2の圧電素子はそれぞれ前記ステータの両端部付近に形 成され、  [14] The traveling wave generating means includes a second piezoelectric element formed on the surface of the stator, and the piezoelectric element and the second piezoelectric element are formed near both ends of the stator,
前記駆動制御部は、前記第 2の圧電素子を吸振側素子として整合をとる請求項 13 に記載のリニア型振動ァクチユエータ。  14. The linear vibration actuator according to claim 13, wherein the drive control unit uses the second piezoelectric element as a vibration absorption side element for matching.
[15] 前記スライダは、弾性体から形成され、 [15] The slider is formed of an elastic body,
前記進行波発生手段は、前記スライダの表面に配置された圧電素子と、前記圧電 素子に高周波電圧を印加する駆動制御部とを有する請求項 12に記載のリニア型振 動ァクチユエータ。  13. The linear vibration actuator according to claim 12, wherein the traveling wave generating means includes a piezoelectric element disposed on a surface of the slider and a drive control unit that applies a high frequency voltage to the piezoelectric element.
[16] 前記進行波発生手段は、前記スライダの表面に形成された第 2の圧電素子を有し 前記圧電素子と前記第 2の圧電素子はそれぞれ前記スライダの両端部付近に形成 され、  [16] The traveling wave generating means includes a second piezoelectric element formed on the surface of the slider, and the piezoelectric element and the second piezoelectric element are formed near both ends of the slider,
前記駆動制御部は、前記第 2の圧電素子を吸振側素子として整合をとる請求項 15 に記載のリニア型振動ァクチユエータ。  16. The linear vibration actuator according to claim 15, wherein the drive control unit performs matching using the second piezoelectric element as a vibration-side element.
[17] 前記スライド機構部を収容すると共に一端が開放されたケーシングをさらに備え、 前記連結部材は前記ケーシングの開放端部を通って前記ケーシングの外部へ延 出される請求項 1に記載のリニア型振動ァクチユエータ。 17. The linear mold according to claim 1, further comprising a casing that houses the slide mechanism portion and that is open at one end, and the connecting member extends to the outside of the casing through an open end portion of the casing. Vibration actuator.
[18] 前記予圧手段は、前記ケーシングの内面と前記ステータとの間に挿入された板バ ネカもなる請求項 17に記載のリニア型振動ァクチユエータ。 18. The linear vibration actuator according to claim 17, wherein the preload means also includes a plate banner inserted between the inner surface of the casing and the stator.
PCT/JP2007/057748 2006-06-20 2007-04-06 Linear oscillation actuator WO2007148464A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096113414A TW200803146A (en) 2006-06-20 2007-04-17 Linear type vibration actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006169850A JP2008005568A (en) 2006-06-20 2006-06-20 Linear vibration actuator
JP2006-169850 2006-06-20

Publications (1)

Publication Number Publication Date
WO2007148464A1 true WO2007148464A1 (en) 2007-12-27

Family

ID=38833207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057748 WO2007148464A1 (en) 2006-06-20 2007-04-06 Linear oscillation actuator

Country Status (3)

Country Link
JP (1) JP2008005568A (en)
TW (1) TW200803146A (en)
WO (1) WO2007148464A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268241A (en) * 2008-04-24 2009-11-12 Olympus Corp Linear drive type ultrasonic motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328758A (en) * 1992-05-25 1993-12-10 Sumitomo Heavy Ind Ltd Ultrasonic actuator
JPH09285152A (en) * 1996-04-09 1997-10-31 Olympus Optical Co Ltd Ultrasonic motor
JPH11146665A (en) * 1997-11-06 1999-05-28 Japan Science & Technology Corp Driving device for surface acoustic wave motor
JP2002315369A (en) * 2001-04-13 2002-10-25 Nec Corp Actuator, optical fiber moving body and optical switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328758A (en) * 1992-05-25 1993-12-10 Sumitomo Heavy Ind Ltd Ultrasonic actuator
JPH09285152A (en) * 1996-04-09 1997-10-31 Olympus Optical Co Ltd Ultrasonic motor
JPH11146665A (en) * 1997-11-06 1999-05-28 Japan Science & Technology Corp Driving device for surface acoustic wave motor
JP2002315369A (en) * 2001-04-13 2002-10-25 Nec Corp Actuator, optical fiber moving body and optical switch

Also Published As

Publication number Publication date
TW200803146A (en) 2008-01-01
JP2008005568A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP4511120B2 (en) Ultrasonic linear motor
KR100843403B1 (en) Device for Lens Transfer
CN101674029B (en) Vibration wave driving device
US9391257B2 (en) Actuator, robot hand, robot, electronic component carrying device, electronic component inspection device, and printer
JP4794897B2 (en) Ultrasonic motor
JP4679938B2 (en) Ultrasonic motor
KR20080104785A (en) A piezoelectric actuator and device for lens transfer having the same
US20120279342A1 (en) Motor, robot hand, and robot
EP2645560A1 (en) Piezoelectric motor
Tanoue et al. Opposing preloads type ultrasonic linear motor with quadruped stator
JP6049277B2 (en) Vibration type driving device
JP2005081538A (en) Manipulator and device equipped with it
JP2006094591A (en) Ultrasonic motor and its operation method
CN103339848B (en) Biasing member, drive member, actuator and drive unit
JP2000324859A (en) Piezoelectric actuator
WO2007148464A1 (en) Linear oscillation actuator
CN101860257A (en) Miniature piezoelectric monocrystal linear motor
JPH027875A (en) Ultrasonic oscillator and driver having this oscillator
CN109302096A (en) More ceramic exciting standing wave type linear ultrasonic electric machines based on cross stator structure
JPH01264582A (en) Ultrasonic linear motor
JP2008067539A (en) Ultrasonic actuator and method of manufacturing its vibrator
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof
JPH05115846A (en) Ultrasonic vibrator and driver having the same
JP2008178209A (en) Ultrasonic actuator
JP5188061B2 (en) Vibration wave drive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741184

Country of ref document: EP

Kind code of ref document: A1