WO2007147914A1 - Intercambiadores de presión de cámaras desdobladas (ipcd's) - Google Patents

Intercambiadores de presión de cámaras desdobladas (ipcd's) Download PDF

Info

Publication number
WO2007147914A1
WO2007147914A1 PCT/ES2007/000346 ES2007000346W WO2007147914A1 WO 2007147914 A1 WO2007147914 A1 WO 2007147914A1 ES 2007000346 W ES2007000346 W ES 2007000346W WO 2007147914 A1 WO2007147914 A1 WO 2007147914A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
ipcd
pressure
pressurized
chambers
Prior art date
Application number
PCT/ES2007/000346
Other languages
English (en)
French (fr)
Other versions
WO2007147914B1 (es
Inventor
Fernando Ruiz Del Olmo
Original Assignee
Prextor Systems, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES200601694A external-priority patent/ES2321997B1/es
Application filed by Prextor Systems, S.L. filed Critical Prextor Systems, S.L.
Priority to US12/304,372 priority Critical patent/US20100014997A1/en
Priority to AU2007262970A priority patent/AU2007262970A1/en
Priority to EP07788594A priority patent/EP2065597A1/en
Publication of WO2007147914A1 publication Critical patent/WO2007147914A1/es
Publication of WO2007147914B1 publication Critical patent/WO2007147914B1/es
Priority to NO20090160A priority patent/NO20090160L/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F13/00Pressure exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/109Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
    • F04B9/117Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other
    • F04B9/1176Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each piston in one direction being obtained by a single-acting piston liquid motor

Definitions

  • the invention falls within the framework of the pressure exchangers, which constitute a method for transmitting the dynamic pressure from one fluid to another.
  • the invention becomes a new pumping system for all types of fluids, and even a new system for generating electricity.
  • Pressure exchangers are an invention made more than twenty-five years ago and basically consist of pressurizing a fluid (fluid 1 in Figure 1) from the pressure of another that is depressurized after the process (fluid 2).
  • Fluid 1 is introduced into the interconnection chambers. Once full, the passage through the other end to the fluid 2 is allowed, which displaces it by pushing an intermediate element that transmits the remaining pressure. between them separating them (normally a disk or piston, although sometimes an intermediate fluid or any other system is used). In this way, it is possible to pressurize the fluid 1.
  • the inlet of the fluid 2 is cut and a drain valve is opened. Again, through the valve system, the passage of the fluid 1 that displaces the fluid 2 (now without pressure) is allowed, by virtue of the drain.
  • the system is mounted with two parallel interconnection lines, and is electronically controlled in such a way that at each moment the disk or piston of each tube is in the opposite position with respect to the center (operation of the lines in reverse), to thus achieving a pressure at the outlet of the fluid 1 as constant as possible, and also a use of the fluid pressure 2 as high as possible.
  • the process is very simple: a pretreatment is carried out to the water, and after this the water pressure rises until it exceeds its osmotic pressure.
  • the water is then passed through the reverse osmosis filters, which have a semipermeable membrane and produce two outlets: desalinated and depressurized water on one side and on the other brine at a fairly high pressure. This pressure is used to pressurize part of the water from the pretreatment, thus reducing the flow of high pressure pumps with the consequent saving of electrical energy.
  • the vertical ones have the motor on the surface, but they give many mechanical problems with the long axis they need, and the submerged have the problem that, being the pump body and the motor submerged in the well or casket, any failure of operation causes a considerable time of having the group out of service, since it is necessary to disassemble and assemble the group
  • IPCD's Pressure exchangers of unfolded chambers
  • each of the fluids only circulates through its corresponding chamber, making it impossible to mix them (and thus solving the second of the problems set forth in the previous point).
  • the exchange of pressures occurs by replacing the intermediate transmitting elements of the pressure of the traditional exchangers with two rigidly connected disks or pistons, as shown in Figure 3.
  • the pressurized fluid will also push and displace the other fluid to through its corresponding camera.
  • the chambers need to be open to the outside to allow the entry and exit of air during the movements of the discs or pistons and avoid voids, as also shown in Figure 3.
  • Drains can be provided at the opposite ends of the chambers in case it is necessary to evacuate some small amount of the fluids that can be lost through the joints of the discs or pistons.
  • a first possible arrangement would be that set forth in Figure 3, in which the cross sections of each chamber are identical. In this way, the same pressure of the pressurized fluid would be transmitted to the fluid to be pressurized, except for the mechanical losses.
  • the invented system allows another arrangement, in which the cross-sections of the chambers are different ( Figure 4), and therefore the pressure transmitted is also different (the pressure ratio will be equal to the area ratio, except obviously for mechanical losses , since the net force is the same). Obviously, in this way the problem of the need for a pump can be solved Booster mentioned above in the description of the technical problem posed.
  • the cross section of the tube should be such that the energy transferred to the disk or piston of the other line is the minimum necessary.
  • curved or circular chamber lines can also be arranged, in which case the joint between the disks or pistons will be curved with the same radius and will be taken to the center by a ball joint (Figure 7).
  • Figure 7 a ball joint
  • the splitting of the chambers can be applied to all types of traditional pressure exchangers currently developed.
  • traditional pressure exchangers that are based on the same principle of operation but that consist of a cylinder with a series of internal ducts through which the fluids exchanging the pressures. They have the peculiarity that also the cylinder itself rotates on its axis. Also, this type of exchangers can unfold the cameras to obtain the advantages that have been exposed here.
  • IPCD IPCD 's in which to carry out the pressure transmission the chambers are telescopic and push each other, instead of the rigidly attached double disk or piston system.
  • a schematic representation of them is attached in Figure 8.
  • IPCD IPCD 's in which to carry out the transmission of pressures the chambers are bellows type and push each other, instead of the rigidly attached double disc or piston system.
  • a schematic representation of them is attached in Figure 9.
  • IPCD 's IPCD 's in which the chambers in each line are arranged in such a way that those corresponding to the fluid to be pressurized are of rigid walls, and those of the fluid that yields their pressure are of the membrane type, these being included within those of walls rigid.
  • a schematic representation of them is attached in Figure 10.
  • any of the possible arrangements can be combined in a way that the chambers corresponding to one of the fluids adopt one and those corresponding to the other fluid adopt a different one.
  • the IPCD 's multistage
  • the multi-stage IPCD ' s consist of the fluid chambers whose pressure is transferred are divided into several, which are used or not depending on the available pressure of the fluid, by means of a valve system, thus transmitting a pressure as homogeneous as possible to the fluid to be pressurized, as it appears in figure 13.
  • the chambers that unfold are those of the fluid to be pressurized, thus being able to pressurize it at different pressures depending on the needs at each moment.
  • Ia 13 and Ia 14 multi-stage IPCDs with piston-type chambers have been represented, but obviously they can also be arranged with telescopic, bellows, membrane or mixed type cameras.
  • they have been represented with the different chambers as concentric and superimposed cylinders, but obviously they can be arranged with any possible geometry, as long as the pressurized fluid pushes through all the chambers in the same direction.
  • Figure 15 shows a multi-stage IPCD with circular arrangement, which allows assisted reverse operation, as explained above.
  • IPCD the pressure to which the fluid must be returned whose pressure is transferred once it has been depressurized
  • the starting pressure of the fluid to be pressurized is variable, or both
  • IPCD ' s multistage with circular arrangement or with other arrangements and the "U" tube system also described above, it is possible to make the control system adjust the steps that must also come into operation depending on these pressures.
  • IPCD's variable section IPCDSV
  • IPCDs can have a variable section, in any of their fluid chambers (one, several or all). For this, it is essential that, either the piston, or the chambers themselves, or both, can have variable sections. Both possibilities are described below: Variable section pistons
  • the pistons must be designed in such a way that they can increase or decrease in section, maintaining their own rigidity and the tightness of their joints with the walls of their corresponding chamber.
  • any type of system, mechanical or pneumatic, or a combination thereof can be used.
  • Figures 16 and 17 show the beginning and end of stroke of a piston of variable section. For simplicity, it has been considered a piston type exchanger with a single line.
  • IPCDSV This type of IPCDSV will be applicable in those situations in which the pressure distribution required by the system is known in advance.
  • variable geometry chambers can be used, whether telescopic or piston type, that can be opened or closed and even opened at one end and closed at the other.
  • Figures 18 and 19 a single-line, piston-type IPCDSV is shown with one of its variable section chambers.
  • auxiliary telescopic cylinders that are filled with an incompressible fluid and fixed at one end to the wall of the chamber and at the other to a fixed wall, as reflected in Figures 18 and 19. Removing or introducing fluid from the cylinders will cause the walls of the chamber to move according to the needs of the system.
  • the telescopic cylinders could be replaced by a fixed chamber filled with an auxiliary fluid, on which the wall of the IPCDSV chamber itself would move like a piston (figures 20 and 21).
  • IPCDSV can be designed in such a way that the piston speed is constant, except in a small initial section in which it is necessary to accelerate it to the desired speed. In this way, the performance of the energy transfer is optimized, since it is not invested in an unnecessary acceleration of the double or single disc or piston.
  • Figure 26 shows a possible design for this purpose, which consists of providing the chamber with one of the fluids of an initial section of variable section, during which the piston accelerates, until reaching the design speed, moment in which the straight section is reached, and the speed is kept constant because the system is designed so that at that moment the force exerted on the piston the fluid whose pressure is transferred is equal to the force exerted by the fluid to be pressurized on it plus friction losses corresponding to the design speed.
  • FIG. 27 and 28 There is another way of making a design to keep the piston speed constant that is shown in Figures 27 and 28, and which prevents the piston from having a variable section.
  • the chamber has a section step, and is again designed to reach the desired piston speed in the initial section of greater section.
  • the piston would have the possibility of separating into two or more parts, so that during the first section it is rigidly maintained joined and during the second section separate. This could be done with any type of mechanical system.
  • systems could also be arranged in which the initial acceleration of the piston is carried out by any other mechanical, electrical, magnetic or pneumatic system imaginable, and even systems in which the piston accelerates while the gas is entering
  • IPCDs in any of the presented arrangements, can be arranged in series (figure 29), or in parallel (figure 30).
  • mixed systems with pumps can be arranged to increase the pressure of the pressurized fluid and / or the fluid to be pressurized at the inlet and / or outlet of the pressure exchanger (figure 31), notwithstanding that they may also be arranged in series or in parallel.
  • a card with an on-site processor can be mounted, or signals can be sent to a central computer that governs them.
  • the control system will be more complex as it will have to regulate the valves according to the inlet and / or outlet pressures of the two intervening fluids. Number of lines per IPCD
  • IPCD As for the number of lines required by IPCD, it will normally be at least two but depending on the ranges of flows and pressures with which one works in each case it may be desirable to increase it to three or more lines, although it may be agreed that some line does not have The same length, since it would be used to achieve a pressure as constant as possible at the outlet of the exchanger and a maximum possible use of the pressure of the pressurized starting fluid.
  • any of the longitudinally exposed arrangements they can be straight, curved and even circular, and their circular, elliptical, triangular, square, rectangular, polygonal or any imaginable cross-section.
  • IPCD 's in any of the arrangements described, can be aligned in any way possible (horizontally, vertically or angled it).
  • IPCD ' s multistage with vertical alignments are presented, with the pressurized fluid pushing up (figure 32) or down (figure 33).
  • each of the fluids only circulates through its corresponding chamber, making it impossible to mix them.
  • this system can be used to pump any type of fluid by transmitting the necessary energy to another different fluid (which can be clean water, and even distilled water, or any other fluid that is proven to damage the electropump groups less), and after exchanging their pressures.
  • Very heavy and non-corrosive fluids can also be chosen to reduce the size of the pumping and storage facilities. This will mean an increase in the yields achieved as well as a huge saving in maintenance costs and even in the design and execution of the facilities
  • the IPCD 's with telescopic cameras, bellows type, membrane type or mixed avoid the problem of bending stresses appearing on disks or pistons rigidly interconnected, reduce the space occupied by the cameras to half, and can be designed so that the reverse operation does not need to be assisted, since it can be played with the elasticity of the membranes or design the telescopic or bellows cameras so that they always automatically return to their position of starting, with enough force to drag the fluid, once depressurized, inside
  • IPCD the IPCD 's multistage able to transmit a more homogeneous Io possible pressure to the fluid to be pressurized, despite variations in the pressure of the pressurized fluid to the inlet or get pressurize at different pressures according to the needs at every moment
  • the reinforcement of the joints of the rod, rods, sheets or solid central parts with the discs or pistons manages to reduce the problem of bending forces
  • IPCDSVs open the possibility of modulating the working pressures of the pressure chambers exchangers, which will allow to adapt better to the needs of a large number of possible applications
  • IPCDSV can be designed in such a way that the piston speed is constant, except in a small initial section in which It must be accelerated to the desired speed. In this way it is possible to optimize the performance of the energy transfer, since it is not invested in an unnecessary acceleration of the double or simple disc or piston
  • Figure 1 Scheme of traditional pressure exchangers
  • Figure 2 Process of a desalination plant with traditional pressure exchangers
  • Figure 3 Diagram of a split-chamber pressure exchanger
  • FIG. 5 Vertical mounting of IPCD 's
  • Figure 6 Operation to reverse assisted Ia of IPCD' s
  • FIG. 8 IPCD ' s with telescopic cameras
  • FIG 10 IPCD ' s with membrane type cameras
  • Figure 11 IPCD ' s with mixed cameras (piston / telescopic type)
  • FIG 12 IPCD ' s with mixed cameras (telescopic / bellows type)
  • Figure 15 IPCD ' s multistage with circular arrangement
  • Figure 16 Diagram of a line of a piston-type IPCDSV with a fixed section chamber and the other of variable section with fixed walls, starting the piston stroke
  • Figure 17 Diagram of a line of a piston-type IPCDSV with a chamber of fixed section and the other of variable section with fixed walls, concluding the piston stroke
  • Figure 18 Diagram of a line of an IPCDSV of mobile walls with telescopic pneumatic cylinders for securing the walls, starting the piston stroke
  • Figure 19 Diagram of a line of an IPCDSV of mobile walls with telescopic pneumatic cylinders for securing the walls, concluding the piston stroke and having modified the section of the chamber of mobile walls
  • Figure 20 Scheme of a line of an IPCDSV of mobile walls with an outer chamber filled with fluid for securing the walls starting the piston stroke
  • Figure 21 Diagram of a line of an IPCDSV of mobile walls with an outer chamber filled with fluid for securing the walls, concluding the piston stroke and having modified the section of
  • Figure 22 Diagram of a line of an IPCDSV of mobile walls with two telescopic pneumatic cylinders for securing the walls, which allow the displacement and rotation of the walls of one of the chambers, starting the piston stroke
  • Figure 23 Diagram of a line of an IPCDSV of mobile walls with two telescopic pneumatic cylinders for securing the walls, which allow the displacement and rotation of the walls of one of the chambers, concluding the stroke of the piston and after having modified Ia geometry of the movable wall chamber
  • Figure 24 Diagram of a line of an IPCDSV of mobile walls with telescopic pneumatic cylinders for securing the walls, pistons of fixed section and elastic section in the chamber of mobile walls, starting the piston stroke
  • Figure 25 Scheme of a line of an IPCDSV of mobile walls with telescopic pneumatic cylinders for securing the walls, pistons of fixed section and elastic section in the chamber of mobile walls, concluding the stroke of the piston and after having modified the section of the chamber of mobile walls
  • Figure 26 Scheme of a line of an IPCDSV in which one of the cameras has an initial section of variable section to accelerate the piston
  • Figure 27 Scheme of a line of an IPCDSV in which one of the cameras has an initial section of minor section to accelerate the piston, during the piston acceleration phase
  • Figure 28 Diagram of a line of an IPCDSV in which one of the chambers has an initial section of smaller section to accelerate the piston, during
  • Figure 32 IPCD ' s multistage in vertical arrangement, with the pressurized fluid pushing up
  • Figure 33 IPCD ' s multistage in vertical arrangement, with the pressurized fluid pushing down
  • Figure 34 Reinforcements in the joints of the rod, rods, plates or central solid parts with the discs or pistons (I)
  • Figure 35 Reinforcements in the joints of the rod, rods, sheets or solid central parts with the discs or pistons (II)
  • Figure 36 Step operation of the multi-stage IPCD (I) Figure 37: Step operation of the multi-stage IPCD (II) Figure 38: Step operation of the multi-stage IPCD (III) Figure 39: Step operation of the multi-stage IPCD (IV) Figure 40 : Pumping system with IPCD ' s
  • Figure 41 Pumping system for wells or arches with IPCD's
  • Figure 42 Use of the geographical slope of a river
  • Figure 43 Use of the difference in tidal level (high tide)
  • Figure 44 Use of the difference in tidal level (low tide)
  • Figure 45 Taking advantage of the difference in level of the tides with an elastic wall chamber (high tide by discharging fluid from the chamber)
  • Figure 46 Taking advantage of the difference in the level of the tides with an elastic wall chamber (high tide at the conclusion of the discharge of the fluid from the chamber)
  • Figure 47 Taking advantage of the difference in tidal level with a chamber with elastic walls (low tide begins the loading of fluid to the chamber)
  • Figure 48 Taking advantage of the difference in level of the tides with an elastic chamber (low tide fluid load at the finished chamber)
  • Figure 49 Taking advantage of the difference in the level of the tides with an elastic wall chamber and an uninterruptible power supply system
  • Figure 50 Process of a desalination plant with IPCD ' s
  • Figures 36 to 39 schematically represent the operation process of a multi-stage IPCD, with seven concentric chambers located on the side of the pressurized feed fluid.
  • Figure 36 shows the first of the lines beginning to fill and the second beginning to empty.
  • the pressure gauge at the inlet of the pressurized fluid registers a high pressure thereof, whereby the valve that feeds the concentric chambers is closed and therefore only pressurized fluid enters the central cylinder.
  • the valve system included in the gray drawer of the figure allows the passage of pressurized fluid to the first line and prevents its passage to the second line. Likewise, said system allows the evacuation of said fluid, already depressurized, from the second line.
  • the valve system that appears in the figure in the second line, having the valve that feeds the concentric chambers closed allows the evacuation of the fluid from the central cylinder but not from the rest of the cylinders. The fluid contained in the rest of the cylinders therefore leaves through the conduction that leads to the auxiliary tank.
  • the system evolves by raising the fluid of the first line and lowering that of the second line.
  • the auxiliary deposit goes feeding the concentric cylinders of the first line, since the valves that give access to each of them are open.
  • the level in the auxiliary tank does not fall, since in turn it is feeding on the depressurized fluid of the concentric cylinders of the second line. That is why it could even be suppressed and become an overflow.
  • the lines have evolved halfway as shown in Figure 37.
  • the pressure gauge detects a drop in the pressure of the pressurized feed fluid, and that is why the control system It immediately calculates, based on this drop, how many chambers must be put into operation, to keep the pressure transmitted to the fluid to be pressurized as constant as possible.
  • the control system would activate four of the concentric cylinders, as shown in Figure 38. Obviously, when the concentric cylinders are filled with depressurized fluid from the auxiliary reservoir, these are automatically pressurized with the single opening and closing of the corresponding valves, thus not losing the fluid energy while filling the concentric cylinders if they had been empty.
  • fluid that is used to pump does not have to be the same as the one that needs to be pumped (fluid 1), which is of the utmost importance and of application in countless cases. That is, whether they are wastewater, viscous, toxic, dangerous fluids, seawater, chemicals, concrete, turbid waters, or any kind of fluid we can imagine, even fluids with suspended solids, with exchangers of this type they can use clean water pumps, and even work with distilled water or any other fluid that is proven to damage the electropump groups less (very heavy and non-corrosive fluids can also be chosen to reduce the size of the pumping and storage facilities) . This will mean an increase in the yields achieved as well as a huge savings in maintenance costs and even design and execution of facilities
  • the submerged pumps or vertical wells or chambers deep may be replaced by pumps surface with IPCD 's that have long joints between the discs of the order of the length of the well or manhole, thereby that some cameras remain on the surface and the others at the bottom of the well or casket (figure 41).
  • the surface chambers are fed with any fluid, chosen again to optimize the manufacturing and maintenance costs of the facilities.
  • This system can be mounted in two stages, so that in the first stage the water or fluid to be pumped to the surface is simply raised and in the second stage its pressure is raised to the desired one.
  • the system can also be mounted with the lower dry IPCD chambers, either in the same well or cassette above the water level, using a small auxiliary supply pump, or in an adjacent waterproof case
  • IPCD 's can also be use natural geographical unevenness of a river, standing on one edge of the river at a certain depth the IPCD 's, which feed one from making the river, and playing with the sections of the chambers , it is possible to raise the pressure of the fluid to be pumped (water from the river itself for irrigators, farms, urbanizations, municipalities or nearby industries, or any other fluid that is to be pumped for any type of process). River water enters one of the IPCD ' s chambers with some pressure due to the depth at
  • Another application is to take advantage of the unevenness caused by seas, estuaries and river mouths by the tides.
  • Water can be taken directly from the sea or from a beach well when the tide is high, and, after pumping it if necessary or driving it down to increase the pressure, it feeds the IPCD ' s, and then stored in a raft or reservoir (figure 43) to wait for the tide to drop and then returned to the sea by pumping if necessary, which will be equipped with a check valve at the exit to avoid that the water circulates in the reverse direction when the tide is high (figure 44). While the tide is low, if you want to keep the plant running, it will be necessary to pump or pump the feed water of the exchangers with a greater jump.
  • two pumps can be mounted in parallel or a pump in parallel with a single tube, depending on the design needs
  • FIG. 6 Another way to take advantage of the unevenness of the tides is to use a fluid installed inside a chamber with elastic walls (membrane type).
  • the chamber is placed inside the sea firmly connected by its base to the bottom of the sea, as it appears in figures 45 to 48. From the bottom of the chamber there is a pipe that extends to the mainland, which has a shut-off valve . While the tide rises, the chamber is full of the fluid and with the shut-off valve closed, so that the fluid increases its pressure.
  • the valve opens and cutting begins to empty the chamber, feeding the IPCD 's (Figure 45). If necessary, additional pumping would be added prior to the entrance to the exchangers, as shown in Figure 45. The process continues until the chamber is completely emptied ( Figure 46).
  • the depressurized fluid at the exit of the exchangers has been stored in a raft or reservoir, to be poured or pumped back into the chamber when the tide drops (figure 47), until the chamber is refilled (figure 48). If you need to work continuously, the exchangers can be fed the rest of the time using a pumping from the raft or fluid storage tank (figure 49). You can choose a very heavy fluid to optimize the dimensions of the system, or you can even use the seawater itself or any other fluid, such as fresh or even distilled water, to reduce wear with the use of the installation.
  • the system can be controlled electronically or either by computer, to optimize the moments in which the pressure of the fluid inside the chamber is used, since in many cases the levels do not change from maximum to minimum and vice versa, and therefore it may be convenient to take advantage of the inflection points of fill up to empty and vice versa
  • Figure 50 shows the scheme of a seawater desalination plant with IPCD's (which obviously also corresponds to that of a desalination plant of brackish waters but without the advantage in most cases of the unevenness caused by the tides).
  • IPCD IP Compact 's provisions

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Los IPCD's se caracterizan porque las cámaras en las que se produce el intercambio de presiones y sus pistones se desdoblan en dos. Cada fluido circula por su cámara correspondiente, haciendo imposible la mezcla de los mismos. Variando las secciones transversales de las cámaras se varía la presión transmitida. Permiten asegurar y armonizar el funcionamiento inverso de las líneas, mediante un tubo en U con lados telescópicos y base fija lleno de fluido ó líneas curvas diametralmente opuestas, y admiten múltiples disposiciones. Sirven como sistema de bombeo en superficie ó en pozos, permitiendo que el fluido que se bombea sea diferente del que se necesita bombear. Permiten aprovechar diferencias de nivel de cualquier material en cualquier lugar de almacenamiento, mediante una cámara con paredes elásticas llena de fluido y unida al fondo. Se puede generar energía eléctrica turbinando el fluido previamente bombeado.

Description

DESCRIPCIÓN
"INTERCAMBIADORES DE PRESIÓN DE CÁMARAS DESDOBLADAS (IPCD'S)"
Sector de Ia técnica a que se refiere Ia invención
La invención se encuadra dentro del marco de los intercambiadores de presión, que constituyen un método para transmitir Ia presión dinámica de un fluido a otro diferente.
Debido a las innovaciones aportadas, Ia invención se convierte en un nuevo sistema de bombeo de todo tipo de fluidos, e incluso en un nuevo sistema de generación de energía eléctrica.
Estado de Ia técnica
Los intercambiadores de presión
Los intercambiadores de presión son un invento realizado hace ya más de veinticinco años y básicamente consisten en presurizar un fluido (fluido 1 en Ia figura 1) a partir de Ia presión de otro que queda despresurizado tras el proceso (fluido 2). Existen varios modelos, pero básicamente todos se rigen por el esquema de Ia figura 1. Mediante un sistema de válvulas de corte y de retención, representado con los cajones en gris, se introduce el fluido 1 en las cámaras de interconexión. Una vez lleno, se permite el paso por el otro extremo al fluido 2, que Io desplaza empujando un elemento intermedio transmisor de Ia presión que queda entre ellos separándolos (normalmente un disco ó pistón, aunque en ocasiones se utiliza un fluido intermedio ó cualquier otro sistema). De este modo, se consigue presurizar el fluido 1. Luego se corta Ia entrada del fluido 2 y se abre una válvula de desagüe. Nuevamente, mediante el sistema de válvulas, se permite el paso del fluido 1 que desplaza al fluido 2 (ahora ya sin presión), virtiéndolo por el desagüe.
El sistema se monta con dos líneas de interconexión en paralelo, y se controla electrónicamente de tal modo que en cada momento el disco ó pistón de cada tubo se encuentra en Ia posición contraria respecto al centro (funcionamiento de las líneas a Ia inversa), para conseguir así una presión a Ia salida del fluido 1 Io más constante posible, e igualmente un aprovechamiento de la presión del fluido 2 Io mayor posible.
En el gráfico de Ia figura 1 se han dado tonos más claros a los fluidos
1 y 2 cuando están sin presión y más oscuros cuando se encuentran presurizados. Este juego de tonos se mantendrá a Io largo de todas las figuras que acompañan a esta Descripción.
Se ha realizado una búsqueda exhaustiva a nivel mundial en Ia base de datos espacenet de documentos de patentes relativas a intercambiadores de presión, y se ha podido comprobar que, aunque en Ia actualidad existe un importante desarrollo de los mismos, ninguna de ellas aporta las innovaciones que aquí se van a presentar.
Aplicaciones actuales de los intercambiadores de presión
Tradicionalmente se han utilizado en minería, para desplazar aguas residuales de proceso con agua limpia, y el sistema se utiliza sin discos ni pistones, puesto que no importa que se mezclen ambos fluidos. Actualmente se están empezando a utilizar en plantas desaladoras de agua por osmosis inversa, siguiendo un esquema como el de Ia figura 2.
El proceso es muy simple: se realiza un pretratamiento al agua, y tras éste se eleva Ia presión del agua hasta rebasar su presión osmótica. Entonces se hace pasar el agua por los filtros de osmosis inversa, que tienen una membrana semipermeable y producen dos salidas: agua desalada y despresurizada por un lado y por el otro salmuera a una presión bastante elevada. Esta presión se utiliza para presurizar parte del agua procedente del pretratamiento, reduciendo así el caudal de las bombas de alta presión con el consiguiente ahorro de energía eléctrica.
Los sistemas de bombeo
En Ia actualidad se encuentran muy desarrollados todo tipo de grupos electrobomba horizontales, verticales y sumergidas para aguas limpias, así como multitud de sistemas de bombeo de todo tipo de fluidos (aguas residuales, fluidos viscosos, tóxicos, peligrosos, agua de mar, productos químicos, hormigón, aguas turbias, o cualquier clase de fluido que podamos imaginar, incluso fluidos con sólidos en suspensión).
Explicación de Ia invención
Problemas técnicos planteados por los intercambiadores de presión tradicionales
Aunque el sistema planteado en el apartado anterior relativo a Ia desalación es bastante eficiente energéticamente, presenta dos problemas:
- Ia presión de salida de los filtros de osmosis inversa de Ia salmuera siempre es inferior a Ia del agua de alimentación, Io cual implica que resulta necesario instalar una bomba booster que aumente Ia presión del agua
- al estar separados el agua del pretratamiento y Ia salmuera en los elementos intermedios transmisores de Ia presión, siempre existe una pequeña aunque significativa mezcla entre ambos fluidos, por Io que el agua del pretratamiento sale de los intercambiadores de presión con una concentración de sales mayor, que perjudica obviamente el proceso
Además, en los intercambiadores de presión tradicionales en general existe otro inconveniente y es que el fluido a presurizar (fluido 1 ) está obligado a desplazar al fluido 2 una vez que ha sido despresurizado. Esto no es tanto problema en el caso de las desaladoras porque el agua a presurizar procede del pretratamiento del cual sale con algo de presión, pero en otras aplicaciones puede resultar un grave inconveniente, máxime teniendo en cuenta que resulta necesario el funcionamiento de líneas a Ia inversa, y las velocidades naturales de los discos ó pistones en uno y otro sentido son muy diferentes. Esto disminuye el rendimiento de los intercambiadores y complica Ia electrónica de control del sistema.
Todos estos inconvenientes son los que probablemente no han permitido un mayor desarrollo de los intercambiadores de presión en todo tipo de aplicaciones.
Problemas técnicos planteados por los grupos electrobomba tradicionales
Aun cuando se encuentran muy optimizados en Ia actualidad los diseños de todo tipo de grupos electrobomba, tienen algunas carencias, por el momento imposibles de solucionar, que son las siguientes:
- en cuanto a los grupos electrobomba para sacar agua de pozos ó arquetas, los verticales tienen el motor en superficie, pero dan muchos problemas mecánicos con el largo eje que necesitan, y los sumergidos tienen el problema de que, al estar el cuerpo de bomba y el motor sumergidos en el pozo ó arqueta, cualquier fallo de operación provoca un tiempo considerable de tener el grupo fuera de servicio, ya que se hace necesario el desmontaje y montaje del grupo
- en cuanto a los sistemas de bombeo de otros fluidos, en muchos casos tienen mucho peor rendimiento, y suelen dar muchos problemas de mantenimiento, por entrada de sólidos como puede ser el caso del bombeo de aguas residuales, o por corrosión del cuerpo de bomba, delicado y caro, o por ambos efectos
Descripción general de Ia invención y soluciones aportadas
Los intercambiadores de presión de cámaras desdobladas (IPCD's)
Se trata de intercambiadores de presión caracterizados porque las cámaras en las que se produce el intercambio de presiones se desdoblan en dos, una para cada uno de los fluidos, tal como se muestra en Ia figura
3. De este modo, cada uno de los fluidos sólo circula por su cámara correspondiente, haciendo imposible Ia mezcla de los mismos (y solucionando por tanto el segundo de los problemas expuestos en el punto anterior). El intercambio de presiones se produce sustituyendo los elementos intermedios transmisores de Ia presión de los intercambiadores tradicionales por dos discos ó pistones unidos rígidamente, tal como se muestra en Ia figura 3. De esta forma, el fluido presurizado empujará y desplazará igualmente al otro fluido a través de su cámara correspondiente. Evidentemente, las cámaras necesitan tener apertura al exterior para permitir Ia entrada y salida de aire durante los movimientos de los discos ó pistones y evitar vacíos, tal como también se muestra en Ia figura 3.
Se pueden disponer desagües en los extremos enfrentados de las cámaras por si fuera necesario evacuar alguna pequeña cantidad de los fluidos que se pueda perder por las juntas de los discos ó pistones.
Disposiciones
IPCD'S con cámaras tipo pistón
Una primera disposición posible sería Ia expuesta en Ia figura 3, en Ia que las secciones transversales de cada cámara son idénticas. De este modo, se trasmitiría Ia misma presión del fluido presurizado al fluido a presurizar, salvo evidentemente las pérdidas mecánicas.
El sistema inventado permite otra disposición, en Ia que las secciones transversales de las cámaras sean diferentes (figura 4), y por tanto Ia presión transmitida también es diferente (el cociente de presiones será igual al cociente de áreas, salvo evidentemente por las pérdidas mecánicas, ya que Ia fuerza neta es Ia misma). Evidentemente, de este modo se puede solucionar el problema de Ia necesidad de una bomba booster mencionado más arriba en Ia descripción del problema técnico planteado.
Obviamente, también es posible Ia disposición de las líneas en vertical ó en ángulo (figura 5), pero ello empeorará el problema de que el fluido a presurizar (fluido 1 ) tiene que desplazar al fluido 2 una vez que ha sido despresurizado, ya que en este caso además deberá vencer el peso del fluido, más el de los discos ó pistones y Ia unión entre ambos. Para ello se podría poner un sistema adicional de elevación de los mismos, cuyo control se integraría en el sistema electrónico de control del sistema, o bien se puede utilizar el sistema de evacuación presentado en Ia figura 6, que consiste en aprovechar Ia energía del fluido presurizado (fluido 2) no sólo para transmitirla al que se quiere presurizar (fluido 1 ), sino también para ayudar al propio fluido 1 a desplazar al fluido 2 en Ia otra línea una vez que ha sido despresurizado. Esto se consigue mediante un tubo auxiliar en forma de "U" que se encuentra interconectando ambas líneas tal como se presenta en Ia figura 6, y que es telescópico por ambos lados de Ia "U", estando soportado rígidamente por Ia base de Ia "U". Los extremos de Ia "U" se encuentran unidos a los discos ó pistones de sus respectivas líneas, y Ia "U" se encuentra llena de un fluido incompresible. De esta forma, al entrar el fluido 2 a presión en su cámara, no sólo presiona a su disco ó pistón para desplazar al fluido 1 , sino que también transmite parte de su energía al disco ó pistón de Ia otra línea para ayudar al fluido 1 de Ia otra línea a desplazar al fluido 2 despresurizado en dicha línea y a vencer el rozamiento de los discos ó pistones y su peso y el del fluido 2 despresurizado si es necesario. Lógicamente, Ia sección transversal del tubo deberá ser tal que Ia energía traspasada al disco ó pistón de Ia otra línea sea Ia mínima necesaria. Mediante este sistema, se consigue además asegurar el funcionamiento de las líneas a Ia inversa, simplificando así Ia electrónica de control del sistema. Puede ser montado en cualquier tipo de intercambiadores de presión, ya sean de cámaras desdobladas ó no. Evidentemente, en lugar de ser un tubo telescópico podrían ser varios equidistantes entre sí y del centro, o bien un anillo ó varios trozos de anillo de Ia misma longitud y equidistantes, todo ello para distribuir mejor los esfuerzos sobre los discos ó pistones.
Finalmente, también se pueden disponer líneas de cámaras curvas ó circulares, en cuyo caso Ia unión entre los discos ó pistones será curva con el mismo radio y estará cogida al centro mediante una unión tipo rótula (figura 7). De este modo, se puede conseguir un incremento de Ia presión transmitida en función de Ia distancia de las cámaras de uno y otro fluido al centro, sin necesidad de cambiar Ia sección transversal de las cámaras, aunque sin perjuicio de poder combinar ambos efectos. Además, si las dos líneas se colocan de forma diametralmente opuesta, y las piezas de unión entre los discos ó pistones de cada línea se unen a su vez rígidamente entre sí, tal como aparece en Ia figura 7, se consigue el mismo efecto que el tubo en "U" descrito anteriormente, es decir, por un lado asegurar el funcionamiento de las líneas a Ia inversa, simplificando así Ia electrónica de control del sistema, y por otro lado desplazar el fluido 2, una vez despresurizado, de sus cámaras correspondientes sin necesidad de bombeo auxiliar, en los casos en los que el fluido 1 entre a muy poca presión.
El desdoblamiento de las cámaras se puede aplicar a todos los tipos de intercambiadores de presión tradicionales desarrollados en Ia actualidad. En particular, y se menciona por ser tal vez el más diferente de ellos, existe otro tipo de intercambiadores de presión tradicionales que se basan en el mismo principio de funcionamiento pero que consisten en un cilindro con una serie de conductos interiores por los que pasan los fluidos intercambiándose las presiones. Tienen Ia particularidad de que además el propio cilindro gira sobre su eje. También a este tipo de intercambiadores se les puede desdoblar las cámaras para obtener las ventajas que aquí se han expuesto.
IPCD's con cámaras telescópicas
Son IPCD's en los que para efectuar Ia transmisión de presiones las cámaras son telescópicas y se empujan unas a otras, en lugar del sistema del doble disco ó pistón unido rígidamente. En Ia figura 8 se adjunta una representación esquemática de los mismos.
IPCD'S con cámaras tipo fuelle
Son IPCD's en los que para efectuar Ia transmisión de presiones las cámaras son tipo fuelle y se empujan unas a otras, en lugar del sistema del doble disco ó pistón unido rígidamente. En Ia figura 9 se adjunta una representación esquemática de los mismos.
IPCD'S con cámaras tipo membrana
Son IPCD's en los que las cámaras en cada línea están dispuestas de tal forma que las correspondientes al fluido a presurizar son de paredes rígidas, y las del fluido que cede su presión son del tipo membrana, quedando éstas incluidas dentro de las de paredes rígidas. En Ia figura 10 se adjunta una representación esquemática de los mismos.
IPCD'S con cámaras mixtas
Evidentemente se puede combinar cualquiera de las disposiciones posibles (tipo pistón, telescópicas, tipo fuelle ó tipo membrana) de forma que las cámaras correspondientes a uno de los fluidos adopten una y las correspondientes al otro fluido adopten otra diferente.
Se han representado dos de las combinaciones posibles en las figuras 11 (cámaras tipo pistón / cámaras telescópicas) y 12 (cámaras telescópicas / cámaras tipo fuelle).
Los IPCD' s multietapa
Los IPCD's multietapa consisten en que las cámaras del fluido cuya presión se cede se desdoblan en varias, que se utilizan o no dependiendo de Ia presión disponible del fluido, mediante un sistema de válvulas, consiguiendo transmitir así una presión Io más homogénea posible al fluido a presurizar, tal como aparece en Ia figura 13.
También se pueden disponer de forma que las cámaras que se desdoblan sean las del fluido a presurizar, consiguiendo así presurizarlo a diferentes presiones en función de las necesidades en cada momento.
Mediante Ia ayuda de un depósito auxiliar, se puede conseguir el llenado de todas las cámaras en continuo para permitir abrir a medio recorrido cámaras auxiliares si varía Ia presión de alimentación, aprovechando al máximo Ia energía del fluido presurizado, tal como se muestra en Ia figura 14.
En ambas figuras, Ia 13 y Ia 14, se han representado los IPCD's multietapa con cámaras tipo pistón, pero evidentemente también se les puede disponer con cámaras telescópicas, tipo fuelle, tipo membrana ó mixtas. Además, se han representado con las diferentes cámaras a modo de cilindros concéntricos y superpuestos, pero evidentemente pueden disponerse con cualquier geometría posible, siempre y cuando el fluido presurizado empuje por todas las cámaras en el mismo sentido.
En Ia figura 15 se ha representado un IPCD multietapa con disposición circular, el cual permite el funcionamiento a Ia inversa asistido, según se ha explicado anteriormente. Para aquellas aplicaciones en las que bien la presión a Ia que hay que devolver el fluido cuya presión se cede una vez que ha sido despresurizado sea variable, bien Ia presión de partida del fluido a presurizar sea variable, o bien ambas, con IPCD's multietapa con disposición circular, o bien con otras disposiciones y el sistema de tubo en "U" también descrito anteriormente, se puede hacer que el sistema de control ajuste las etapas que deben entrar a funcionar también en función de estas presiones.
Finalmente, también es posible complementar el sistema con un bombeo auxiliar y un variador de velocidad, para conseguir mantener Ia presión del fluido a presurizar totalmente constante, controlando todo desde el sistema electrónico de control. Si el fluido presurizado proviene de un bombeo, se puede colocar el variador de velocidad en dicho bombeo.
IPCD's de sección variable (IPCDSV)
Otra posibilidad interesante en cuanto al diseño de los IPCD's estriba en que puedan tener una sección variable, en cualquiera de sus cámaras de fluido (una, varias ó todas). Para ello, se hace imprescindible que, bien el pistón, bien las propias cámaras, o bien ambos, puedan tener secciones variables. A continuación se describen ambas posibilidades: Pistones de sección variable
Son pistones cuya sección cambia a Io largo de Ia carrera que realizan. Para ello, Ia cámara sobre Ia cual están alojados debe tener una sección transversal variable.
Los pistones deben diseñarse de tal forma que puedan ir aumentando ó disminuyendo de sección, manteniendo su propia rigidez y Ia estanqueidad de sus uniones con las paredes de su cámara correspondiente. Para ello, se puede utilizar cualquier tipo de sistema, mecánico ó neumático, o bien una combinación de los mismos.
En las figuras 16 y 17 se han representado los inicios y finales de carrera de un pistón de sección variable. Por simplicidad, se ha considerado un intercambiador de tipo pistón con una sola línea.
Al ir disminuyendo progresivamente Ia sección del pistón, Ia presión ejercida sobre el fluido a presurizar va aumentando.
Este tipo de IPCDSV será de aplicación en aquellas situaciones en que Ia distribución de presiones que requiere el sistema es conocida de antemano.
Cámaras de paredes variables
En una buena parte de las aplicaciones posibles no se conoce a priori
Ia distribución de presiones que requiere el sistema en cada momento, y de Io que se trata es de poder modularla en función de las necesidades del propio sistema. En estos casos se pueden utilizar cámaras de geometría variable, ya sean telescópicas ó tipo pistón, que puedan abrirse ó cerrarse e incluso abrirse por un extremo y cerrarse por el otro. En las figuras 18 y 19 se representa un IPCDSV de una sola línea y de tipo pistón con una de sus cámaras de sección variable.
Para mover las paredes de las cámaras de sección variable se puede utilizar cualquier tipo de sistema mecánico ó neumático. En particular, puede resultar muy interesante Ia utilización de cilindros telescópicos auxiliares que se encuentren llenos de un fluido incompresible y fijos por un extremo a Ia pared de Ia cámara y por el otro a una pared fija, tal como aparece reflejado en las figuras 18 y 19. Extrayendo ó introduciendo fluido de los cilindros se hará que se muevan las paredes de Ia cámara según las necesidades del sistema.
Evidentemente, podrían sustituirse los cilindros telescópicos por una cámara fija llena de un fluido auxiliar, sobre Ia cual se desplazaría a modo de pistón Ia propia pared de Ia cámara del IPCDSV (figuras 20 y 21).
Como se ha expuesto más arriba, también es posible disponer cámaras de forma que se puedan abrir por un extremo y cerrar por el otro ó viceversa (figuras 22 y 23).
Es importante resaltar que las paredes de las cámaras se pueden mover sin apenas esfuerzo mientras Ia cámara correspondiente no está en carga, por tanto éste sería el momento ideal para hacerlo. Sin embargo, en determinadas aplicaciones puede interesar moverlas durante Ia carrera del pistón, cuando Ia cámara está en carga, aunque para ello haya que realizar más esfuerzo. Por último, también cabe mencionar Ia posibilidad de utilizar una membrana ó material elástico para que se abra ó cierre una cámara telescópica, con idea de evitar Ia necesidad de que el pistón deba ser de sección variable (figuras 24 y 25).
Control de Ia velocidad del pistón
Una ventaja adicional que resulta de enorme interés es que los IPCDSV se pueden diseñar de tal forma que Ia velocidad del pistón sea constante, salvo en un pequeño tramo inicial en que hay que acelerarlo hasta Ia velocidad deseada. De este modo se consigue optimizar el rendimiento de Ia transferencia de energía, pues no se invierte Ia misma en una aceleración innecesaria del doble ó simple disco ó pistón. En Ia figura 26 se representa un posible diseño para este propósito, el cual consiste en dotar a Ia cámara de uno de los fluidos de un tramo inicial de sección variable, durante el cual el pistón se acelera, hasta llegar a Ia velocidad de diseño, momento en el cual se llega al tramo recto, y Ia velocidad se mantiene constante pues se diseña el sistema para que en ese momento Ia fuerza que ejerce sobre el pistón el fluido cuya presión se cede sea igual a Ia fuerza que ejerce el fluido a presurizar sobre el mismo más las pérdidas por rozamientos correspondientes a Ia velocidad de diseño.
Existe otra forma de realizar un diseño para mantener Ia velocidad del pistón constante que se expone en las figuras 27 y 28, y que evita que el pistón deba ser de sección variable. Como se puede apreciar, Ia cámara presenta un escalón de sección, y nuevamente se diseña para llegar a Ia velocidad deseada del pistón en el tramo inicial de mayor sección. En este caso el pistón tendría Ia posibilidad de separarse en dos ó más partes, de forma que durante el primer tramo se mantenga rígidamente unido y durante el segundo tramo se separe. Esto se podría realizar con cualquier tipo de sistema mecánico.
Evidentemente, también se podrían disponer sistemas en los que Ia aceleración inicial del pistón se realice mediante cualquier otro sistema mecánico, eléctrico, magnético ó neumático imaginable, e incluso sistemas en los que el pistón se acelere mientras está entrando el gas en
Ia cámara, de tal forma que Ia presión a vencer sea mínima.
Baterías de intercambiadores
Tal como ocurre con los intercambiadores de presión tradicionales, los IPCD's, en cualquiera de las disposiciones presentadas, pueden ser dispuestos en serie (figura 29), o en paralelo (figura 30). Igualmente, cuando los saltos de presiones que se pretenden sean muy elevados, se pueden disponer sistemas mixtos con bombas para aumentar Ia presión del fluido presurizado y/o Ia del fluido a presurizar a Ia entrada y/o a Ia salida del intercambiador de presión (figura 31 ), sin perjuicio de que además se puedan disponer también en serie ó en paralelo.
Electrónica de control
En cuanto a Ia electrónica de control de las válvulas, se puede montar una tarjeta con un procesador in situ, o bien se pueden enviar señales a un ordenador central que las gobierne. En el caso de IPCD's multietapa, el sistema de control será más complejo pues deberá regular las válvulas en función de las presiones de entrada y/o salida de los dos fluidos intervinientes. Número de líneas por IPCD
En cuanto al número de líneas necesario por IPCD, será normalmente de al menos dos pero dependiendo de los rangos de caudales y presiones con los que se trabaje en cada caso puede convenir aumentarlo a tres ó más líneas, aunque pueda convenir que alguna línea no tenga Ia misma longitud, ya que se utilizaría para conseguir una presión Io más constante posible de salida del intercambiador y un aprovechamiento Io mayor posible de Ia presión del fluido presurizado de partida.
Por otro lado, en determinadas ocasiones puede convenir que sólo se disponga de una línea, simplificando enormemente Ia electrónica de control del sistema.
Geometría de las cámaras
Finalmente, en cuanto a Ia geometría de las líneas de las cámaras, en cualquiera de las disposiciones expuestas longitudinalmente pueden ser rectas, curvas e incluso circulares, y su sección transversal circular, elíptica, triangular, cuadrada, rectangular, poligonal ó cualquiera imaginable.
Alineación
Finalmente, los IPCD's, en cualquiera de las disposiciones expuestas, pueden alinearse en cualquier forma posible (horizontalmente, verticalmente ó en ángulo). En las figuras 32 y 33 se presentan IPCD's multietapa con alineaciones en vertical, con el fluido presurizado empujando hacia arriba (figura 32) ó hacia abajo (figura 33). Diseño de las uniones en los IPCD's tipo pistón
Para reducir el efecto de los esfuerzos flectores en los IPCD's tipo pistón, otra posibilidad consiste en reforzar las uniones de Ia varilla, varillas, chapas ó piezas macizas centrales con los discos ó pistones, tal como se muestra en las figuras 34 y 35.
Ventajas de Ia invención respecto al estado de Ia técnica anterior
Tal como se ha explicado anteriormente en Ia descripción general de Ia invención, las ventajas fundamentales de los IPCD's son las siguientes:
- cada uno de los fluidos sólo circula por su cámara correspondiente, haciendo imposible Ia mezcla de los mismos. Esto significa que se puede utilizar este sistema para bombear cualquier tipo de fluido transmitiendo Ia energía necesaria a otro fluido diferente (que puede ser agua limpia, e incluso agua destilada, ó cualquier otro fluido que se compruebe que dañe menos los grupos electrobomba), e intercambiando después las presiones de los mismos. También se pueden escoger fluidos muy pesados y no corrosivos para reducir el tamaño de las instalaciones de bombeo y almacenamiento. Esto va a suponer un incremento de los rendimientos conseguidos así como un enorme ahorro de gastos de mantenimiento e incluso de diseño y ejecución de las instalaciones
- permiten variar las secciones transversales de las cámaras, consiguiendo variar así Ia presión transmitida al fluido a presurizar. Esta constituye otra de las grandes ventajas de esta invención, ya que permite elegir entre bombear más caudal a menos altura ó menos caudal a más altura, Io que posibilita escoger en cada caso el tipo de bomba que de mejor rendimiento y aprovechar mucho mejor pequeñas diferencias de presión ó pequeños desniveles de grandes cantidades de fluido, tal como se describirá más adelante
- permiten asegurar y armonizar el funcionamiento a Ia inversa asistido de las líneas, bien mediante el tubo en U con lados telescópicos y base fija lleno de fluido incompresible ó bien mediante Ia disposición de líneas curvas diametralmente opuestas, y piezas de unión entre pistones de cada línea unidas rígidamente entre sí
- permiten aprovechar energéticamente las diferencias de nivel de cualquier material en cualquier forma de almacenamiento, mediante el método también innovador que se describirá más adelante
además,
- los IPCD's con cámaras telescópicas, tipo fuelle, tipo membrana ó mixtas evitan el problema de los esfuerzos flectores que aparecen en los discos ó pistones unidos rígidamente entre sí, reducen el espacio que ocupan las cámaras a Ia mitad, y se pueden diseñar para que el funcionamiento a Ia inversa no necesite ser asistido, ya que se puede jugar con Ia elasticidad de las membranas ó diseñar las cámaras telescópicas ó de fuelle de tal forma que vuelvan siempre automáticamente a su posición de partida, con Ia suficiente fuerza como para arrastrar el fluido, una vez despresurizado, en su interior
- los IPCD's multietapa consiguen transmitir una presión Io más homogénea posible al fluido a presurizar, a pesar de las variaciones de Ia presión del fluido presurizado a Ia entrada, o bien consiguen presurizarlo a diferentes presiones en función de las necesidades en cada momento
- para aquellas aplicaciones en las que bien Ia presión a Ia que hay que devolver el fluido cuya presión se cede una vez que ha sido despresurizado sea variable, bien Ia presión de partida del fluido a presurizar sea variable, o bien ambas, con IPCD's multietapa con disposición circular, o bien con otras disposiciones y el sistema de tubo en "U", se puede hacer que el sistema de control ajuste las etapas que deben entrar a funcionar también en función de estas presiones
- en los IPCD's tipo pistón, el refuerzo de las uniones de Ia varilla, varillas, chapas ó piezas macizas centrales con los discos ó pistones consigue reducir el problema de los esfuerzos flectores
- los IPCDSV abren Ia posibilidad de modulación de las presiones de trabajo de los intercambiadores de presión de cámaras desdobladas, Io cual va a permitir adaptarse mejor a las necesidades de una gran cantidad de aplicaciones posibles
- una ventaja adicional que resulta de enorme interés es que los IPCDSV se pueden diseñar de tal forma que Ia velocidad del pistón sea constante, salvo en un pequeño tramo inicial en que hay que acelerarlo hasta Ia velocidad deseada. De este modo se consigue optimizar el rendimiento de Ia transferencia de energía, pues no se invierte Ia misma en una aceleración innecesaria del doble ó simple disco ó pistón
Descripción de los dibujos
Se aportan 50 figuras para ayudar a explicar el funcionamiento, disposiciones y aplicaciones de los IPCD's. A todas ellas se hace referencia desde distintos puntos de este documento, explicando en cada caso el contenido de las mismas. En cualquier caso, se recopila aquí Ia relación y contenido de cada una de ellas:
Figura 1: Esquema de los intercambiadores de presión tradicionales Figura 2: Proceso de una planta desaladora con intercambiadores de presión tradicionales
Figura 3: Esquema de un intercambiador de presión de cámaras desdobladas
Figura 4: IPCD's con secciones transversales diferentes
Figura 5: Montaje en vertical de los IPCD's Figura 6: Funcionamiento a Ia inversa asistido de los IPCD's
Figura 7: Montaje con líneas curvas de los IPCD's
Figura 8: IPCD's con cámaras telescópicas
Figura 9: IPCD's con cámaras tipo fuelle
Figura 10: IPCD's con cámaras tipo membrana Figura 11: IPCD's con cámaras mixtas (tipo pistón / telescópicas)
Figura 12: IPCD's con cámaras mixtas (telescópicas / tipo fuelle)
Figura 13: IPCD's multietapa
Figura 14: IPCD's multietapa con depósito auxiliar
Figura 15: IPCD's multietapa con disposición circular Figura 16: Esquema de una línea de un IPCDSV tipo pistón con una cámara de sección fija y Ia otra de sección variable con paredes fijas, comenzando Ia carrera del pistón
Figura 17: Esquema de una línea de un IPCDSV tipo pistón con una cámara de sección fija y Ia otra de sección variable con paredes fijas, concluyendo Ia carrera del pistón
Figura 18: Esquema de una línea de un IPCDSV de paredes móviles con cilindros neumáticos telescópicos de sujeción de las paredes, comenzando Ia carrera del pistón
Figura 19: Esquema de una línea de un IPCDSV de paredes móviles con cilindros neumáticos telescópicos de sujeción de las paredes, concluyendo Ia carrera del pistón y tras haber modificado Ia sección de Ia cámara de paredes móviles Figura 20: Esquema de una línea de un IPCDSV de paredes móviles con una cámara exterior llena de fluido para sujeción de las paredes comenzando Ia carrera del pistón
Figura 21: Esquema de una línea de un IPCDSV de paredes móviles con una cámara exterior llena de fluido para sujeción de las paredes concluyendo Ia carrera del pistón y tras haber modificado Ia sección de
Ia cámara de paredes móviles
Figura 22: Esquema de una línea de un IPCDSV de paredes móviles con dos cilindros neumáticos telescópicos de sujeción de las paredes, que permiten el desplazamiento y el giro de las paredes de una de las cámaras, comenzando la carrera del pistón
Figura 23: Esquema de una línea de un IPCDSV de paredes móviles con dos cilindros neumáticos telescópicos de sujeción de las paredes, que permiten el desplazamiento y el giro de las paredes de una de las cámaras, concluyendo Ia carrera del pistón y tras haber modificado Ia geometría de Ia cámara de paredes móviles
Figura 24: Esquema de una línea de un IPCDSV de paredes móviles con cilindros neumáticos telescópicos de sujeción de las paredes, pistones de sección fija y tramo elástico en Ia cámara de paredes móviles, comenzando la carrera del pistón Figura 25: Esquema de una línea de un IPCDSV de paredes móviles con cilindros neumáticos telescópicos de sujeción de las paredes, pistones de sección fija y tramo elástico en Ia cámara de paredes móviles, concluyendo Ia carrera del pistón y tras haber modificado Ia sección de Ia cámara de paredes móviles Figura 26: Esquema de una línea de un IPCDSV en Ia que una de las cámaras tiene un tramo inicial de sección variable para acelerar el pistón Figura 27: Esquema de una línea de un IPCDSV en Ia que una de las cámaras tiene un tramo inicial de sección menor para acelerar el pistón, durante Ia fase de aceleración del pistón
Figura 28: Esquema de una línea de un IPCDSV en Ia que una de las cámaras tiene un tramo inicial de sección menor para acelerar el pistón, durante
Ia fase de velocidad constante del pistón, una vez engarzadas las dos partes del pistón Figura 29: Montaje en serie de los IPCD's
Figura 30: Montaje en paralelo de los IPCD's
Figura 31: Sistemas mixtos de grupos electrobomba e IPCD's
Figura 32: IPCD's multietapa en disposición vertical, con el fluido presurizado empujando hacia arriba Figura 33: IPCD's multietapa en disposición vertical, con el fluido presurizado empujando hacia abajo Figura 34: Refuerzos en las uniones de Ia varilla, varillas, chapas ó piezas macizas centrales con los discos ó pistones (I)
Figura 35: Refuerzos en las uniones de Ia varilla, varillas, chapas ó piezas macizas centrales con los discos ó pistones (II)
Figura 36: Funcionamiento por pasos del IPCD multietapa (I) Figura 37: Funcionamiento por pasos del IPCD multietapa (II) Figura 38: Funcionamiento por pasos del IPCD multietapa (III) Figura 39: Funcionamiento por pasos del IPCD multietapa (IV) Figura 40: Sistema de bombeo con IPCD's
Figura 41: Sistema de bombeo para pozos ó arquetas con IPCD's Figura 42: Aprovechamiento del desnivel geográfico de un río Figura 43: Aprovechamiento de Ia diferencia de nivel de las mareas (marea alta) Figura 44: Aprovechamiento de Ia diferencia de nivel de las mareas (marea baja) Figura 45: Aprovechamiento de Ia diferencia de nivel de las mareas con cámara de paredes elásticas (marea alta descargando fluido de Ia cámara) Figura 46: Aprovechamiento de Ia diferencia de nivel de las mareas con cámara de paredes elásticas (marea alta al concluir Ia descarga del fluido de Ia cámara) Figura 47: Aprovechamiento de Ia diferencia de nivel de las mareas con cámara de paredes elásticas (marea baja comienza Ia carga de fluido a Ia cámara)
Figura 48: Aprovechamiento de Ia diferencia de nivel de las mareas con cámara de paredes elásticas (marea baja carga de fluido a Ia cámara concluida) Figura 49: Aprovechamiento de Ia diferencia de nivel de las mareas con cámara de paredes elásticas y sistema de alimentación ininterrumpida
Figura 50: Proceso de una planta desaladora con IPCD's
Exposición detallada un modo de realización de Ia invención
En las figuras 36 a 39 se representa de modo esquemático el proceso de funcionamiento de un IPCD multietapa, con siete cámaras concéntricas situadas en el lado del fluido presurizado de alimentación.
En Ia figura 36 aparece Ia primera de las líneas comenzando a llenarse y Ia segunda comenzando a vaciarse. El manómetro a Ia entrada del fluido presurizado registra una presión elevada del mismo, por Io que se cierra Ia válvula que alimenta a las cámaras concéntricas y por tanto sólo entra fluido presurizado al cilindro central. El sistema de válvulas englobado en el cajón gris de Ia figura permite el paso de fluido presurizado a Ia primera línea e impide su paso a Ia segunda línea. Igualmente, dicho sistema permite Ia evacuación de dicho fluido, ya despresurizado, desde Ia segunda línea. Por otro lado, el sistema de válvulas que aparece en Ia figura en Ia segunda línea, al tener cerrada Ia válvula que alimenta a las cámaras concéntricas, permite Ia evacuación del fluido del cilindro central pero no del resto de cilindros. El fluido contenido en el resto de cilindros sale por tanto por Ia conducción que Io lleva al depósito auxiliar.
Así pues, el sistema evoluciona subiendo el fluido de Ia primera línea y bajando el de Ia segunda línea. Además, el depósito auxiliar va alimentando a los cilindros concéntricos de Ia primera línea, ya que se encuentran abiertas las válvulas que Ie dan acceso a cada uno de ellos. El nivel en el depósito auxiliar no baja, pues a su vez se está alimentando del fluido despresurizado de los cilindros concéntricos de Ia segunda línea. Es por ello que podría hasta suprimirse y convertirse en un rebosadero.
En un cierto momento del recorrido, las líneas han evolucionado hasta medio camino tal como se representa en Ia figura 37. En dicho momento, el manómetro detecta una caída de Ia presión del fluido presurizado de alimentación, y es por ello que el sistema de control inmediatamente calcula en función de dicha caída cuántas cámaras deben entrar en funcionamiento, para mantener Io más constante posible Ia presión transmitida al fluido a presurizar. En el supuesto que se presenta, el sistema de control activaría cuatro de los cilindros concéntricos, tal como se muestra en Ia figura 38. Evidentemente, al encontrarse los cilindros concéntricos llenos de fluido despresurizado proveniente del depósito auxiliar, estos se presurizan automáticamente con Ia sola apertura y cierre de las válvulas correspondientes, no perdiendo por tanto el fluido energía mientras llena los cilindros concéntricos si hubieran estado vacíos.
A partir de este momento, como los cilindros concéntricos de Ia segunda línea se siguen descargando al depósito auxiliar y éste solo alimenta a los restantes de Ia primera línea, el depósito comienza a llenarse y por tanto a rebosar por el aliviadero, descargando el fluido al desgüe correspondiente, tal como se muestra en Ia figura 39, en Ia que se han supuesto ya las líneas llegando al final de su recorrido. Una vez al final del recorrido, se debe comenzar Ia descarga de Ia primera línea y Ia carga de Ia segunda línea, siguiendo un proceso análogo al aquí mostrado.
El proceso se repite indefinidamente.
Aplicaciones industriales de Ia invención
Debido a las importantes ventajas descritas que aporta Ia invención, el abanico de aplicaciones industriales que se abre es muy amplio. A continuación se relacionan las más relevantes:
1) Como sistema de bombeo en general (figura 40), ya que al tener las cámaras desdobladas presenta las siguientes ventajas:
- el fluido que se utiliza para bombear (fluido 2 en Ia figura 40) no tiene por qué ser el mismo que el que se necesita bombear (fluido 1 ), Io cual es de suma importancia y de aplicación en infinidad de casos. Esto es, que ya sean aguas residuales, fluidos viscosos, tóxicos, peligrosos, agua de mar, productos químicos, hormigón, aguas turbias, o cualquier clase de fluido que podamos imaginar, incluso fluidos con sólidos en suspensión, con intercambiadores de este tipo se pueden utilizar bombas de agua limpia, e incluso que trabajen con agua destilada ó cualquier otro fluido que se compruebe que dañe menos los grupos electrobomba (también se pueden escoger fluidos muy pesados y no corrosivos para reducir el tamaño de las instalaciones de bombeo y almacenamiento). Esto va a suponer un incremento de los rendimientos conseguidos así como un enorme ahorro de gastos de mantenimiento e incluso de diseño y ejecución de las instalaciones
- se puede elegir entre bombear más caudal a menos altura ó menos caudal a más altura; así pues, se puede escoger en cada caso el tipo de bomba que de mejor rendimiento. Además, esto posibilita aprovechar mucho mejor pequeñas diferencias de presión ó pequeños desniveles de grandes cantidades de fluido
2) en las centrales hidroeléctricas, insertando estos IPCD's también se puede elegir entre turbinar más caudal a menos altura ó menos caudal a más altura, Io cual también permite escoger en cada caso el tipo de turbina que da mejor rendimiento. Evidentemente, y tal como se ha expuesto en el punto anterior, el fluido a turbinar no tiene por qué ser el mismo, Io cual también supone otra importante ventaja pues nuevamente se pueden escoger fluidos a medida para reducir los costes de fabricación y mantenimiento de las centrales
3) en cuanto a las bombas sumergidas ó verticales en pozos ó arquetas profundas, éstas pueden ser sustituidas por bombas en superficie, con IPCD's que dispongan de largas uniones entre los discos del orden de Ia longitud del pozo ó arqueta, de tal modo que queden unas cámaras en superficie y las otras en el fondo del pozo ó arqueta (figura 41). Las cámaras de Ia superficie se alimentan con cualquier fluido, elegido de nuevo para optimizar los costes de fabricación y mantenimiento de las instalaciones. Este sistema se puede montar en dos etapas, de tal forma que en Ia primera etapa simplemente se sube el agua ó fluido a bombear a Ia superficie y en Ia segunda etapa se eleva su presión hasta Ia deseada. El sistema se puede montar también con las cámaras inferiores del IPCD en seco, bien en el mismo pozo ó arqueta por encima del nivel del agua, utilizando un pequeño bombeo auxiliar de alimentación, o bien en una arqueta estanca contigua
4) también se pueden aprovechar los desniveles geográficos naturales de un río, colocando en uno de los márgenes del río a una cierta profundidad los IPCD's, que se alimentan de una toma procedente del río, y, jugando con las secciones de las cámaras, se consigue elevar Ia presión del fluido a bombear (agua del propio río para regantes, fincas, urbanizaciones, municipios ó industrias cercanas, o bien cualquier otro fluido que se quiera bombear para cualquier tipo de proceso). El agua del río entra en una de las cámaras de los IPCD's con cierta presión debido a Ia profundidad a
Ia que se coloquen los IPCD's y/o a un bombeo previo de alimentación. Además, colocando Ia toma de forma adecuada, se puede aprovechar también Ia energía cinética de Ia corriente del río. A Ia salida, este agua se vuelve a verter al río, a través de una conducción que Io traslada aguas abajo de forma que cae por gravedad o al menos se reduce Ia altura a bombear (figura 42). Si se dispone de suficiente desnivel geográfico, también se puede colocar una turbina para aprovechar Ia energía remanente del agua previo a su devolución al cauce del río
5) otra aplicación consiste en aprovechar el desnivel provocado en mares, rías y desembocaduras de los ríos por las mareas. Se puede tomar directamente agua de mar ó de un pozo playero cuando Ia marea está alta, y, tras bombearla de ser necesario ó conducirla hacia abajo para aumentarle Ia presión, alimenta a los IPCD 's, y luego se almacena en una balsa ó depósito (figura 43) para esperar a que baje Ia marea y entonces se devuelve al mar mediante un bombeo si es necesario, que irá dotado de una válvula de retención a Ia salida para evitar que circule el agua en sentido inverso cuando Ia marea está alta (figura 44). Mientras Ia marea está baja, si se quiere mantener Ia planta en funcionamiento, se necesitará bombear ó bombear con un salto mayor el agua de alimentación de los intercambiadores. Para optimizar el sistema, se puede montar dos bombas en paralelo ó una bomba en paralelo con un simple tubo, según las necesidades del diseño
6) otra forma de aprovechar el desnivel de las mareas consiste en utilizar un fluido instalado dentro de una cámara con paredes elásticas (tipo membrana). La cámara se coloca dentro del mar unida firmemente por su base al fondo del mar, tal como aparece en las figuras 45 a 48. Del fondo de Ia cámara sale una tubería que se extiende hasta tierra firme, Ia cual dispone de una válvula de corte. Mientras sube Ia marea, Ia cámara se encuentra llena del fluido y con Ia válvula de corte cerrada, de modo que el fluido va aumentando su presión. Cuando Ia marea está alta, se abre Ia válvula de corte y comienza a vaciarse Ia cámara, alimentando a los IPCD's (figura 45). Si fuera necesario, se añadiría un bombeo adicional previo a Ia entrada a los intercambiadores, tal como aparece en Ia figura 45. El proceso continúa hasta que se vacía Ia cámara por completo (figura 46). El fluido despresurizado a Ia salida de los intercambiadores se ha ido almacenando en una balsa ó depósito, para verterlo ó bombearlo de vuelta a Ia cámara cuando baje Ia marea (figura 47), hasta que Ia cámara se vuelve a llenar (figura 48). Si se necesita trabajar en continuo, se pueden alimentar los intercambiadores el resto del tiempo mediante un bombeo desde Ia balsa ó depósito de almacenamiento de fluido (figura 49). Se puede escoger un fluido muy pesado para optimizar las dimensiones del sistema, o incluso se puede utilizar el propio agua del mar o cualquier otro fluido, como agua dulce o incluso destilada, para reducir el desgaste con el uso de Ia instalación. Es importante destacar también Ia ventaja medioambiental de este sistema frente a otros desarrollados de aprovechamiento del desnivel producido por las mareas (que normalmente implican Ia construcción de diques u otras obras de importante impacto medioambiental), ya que al estar Ia cámara de paredes elásticas sumergida el impacto medioambiental es cero. Para terminar con este punto, simplemente añadir que en lugar de paredes elásticas se podrían poner rígidas pero telescópicas, o bien rígidas y con Ia parte superior subiendo y bajando a modo de pistón
7) evidentemente el sistema de aprovechamiento de los desniveles producidos por las mareas con el sistema de cámara con paredes elásticas presentado en Ia aplicación anterior se puede extrapolar a cualquier otro desnivel que se presente en el tiempo de cualquier tipo de material que se pueda imaginar, sea cual sea el estado en que se encuentre, como es el caso de embalses, depósitos de agua potable, de riego ó de cualquier otro fluido en cualquier tipo de proceso industrial, e incluso en cualquier tipo de silo, depósito ó lugar donde se almacenen sólidos, ya que, en definitiva, Io que este sistema hace es aprovechar que en un determinado lugar existe algo que se carga y descarga en el tiempo y cuyo peso se aprovecha para presionar un fluido que alimenta a los IPCD's. En ocasiones convendrá que el fluido a utilizar sea un gas para que ocupe menos al comprimirse y no se pierda capacidad de almacenamiento. El sistema se puede controlar electrónicamente ó bien mediante ordenador, para optimizar los momentos en los que se aprovecha Ia presión del fluido dentro de Ia cámara, ya que en muchos casos los niveles no van cambiando de máximo a mínimo y viceversa, y por tanto puede convenir aprovechar los puntos de inflexión de ir llenándose a ir vaciándose y viceversa
8) igualmente se pueden aprovechar los desniveles geográficos existentes en las redes de saneamiento y sobre todo de pluviales, pues al tratarse en este último caso de agua limpia (de lluvia) es de más fácil manejo como fluido de alimentación de los IPCD's. El modo de funcionamiento es similar al descrito para los ríos, es decir, se realiza una toma en un punto de Ia red, que alimenta a los intercambiadores, que se encuentran a una cota más baja para conseguir una presión determinada a Ia entrada, y, una vez utilizada para aumentar Ia presión del otro fluido (cualquiera que deseemos bombear), se vierte de nuevo a Ia red aguas abajo, ya sea completamente por gravedad o bien con Ia ayuda de un bombeo
9) con este sistema se va a poder aprovechar análogamente Ia presión remanente de multitud de fluidos que intervienen en procesos industriales, y en general cualquier remanente de presión imaginable
10) otra aplicación de gran importancia es Ia relativa a las redes de distribución de fluidos. Los dos casos probablemente más importantes son las redes de distribución de agua potable y las de agua de riego. En general, en una red de distribución se introduce el fluido en uno ó varios puntos, y tiene múltiples salidas a Io largo de Ia misma. Comoquiera que se necesita disponer de una presión mínima en el punto más desfavorable de Ia red, en muchos tramos de Ia red existen sobrepresiones que a veces incluso obligan a colocar válvulas reductoras de presión. Además, el caudal que circula al comienzo de Ia distribución de Ia red no se necesita completo para los primeros suministros, sino que muy bien se podría reducir de forma muy importante de forma que quedase tan sólo el necesario para atender a dichos primeros suministros. Así pues, mediante Ia correspondiente red de tuberías, se podría recoger una parte del fluido al comienzo de Ia red, utilizarla para alimentar IPCD's, y finalmente devolverla a Ia red de distribución, aguas abajo y con menor presión, en particular con Ia presión necesaria en ese punto de Ia red. De esta forma se consigue presurizar el fluido que se ponga al otro lado de los intercambiadores, que puede ser el propio fluido de Ia red para abastecer puntos altos de Ia misma o los depósitos de cabecera, o bien cualquier otro fluido que resulte necesario bombear (por ejemplo aguas residuales en el caso de redes de distribución de agua potable)
11 ) cualquier combinación posible de las aplicaciones descritas; por ejemplo, mediante un control integrado del sistema, las plantas desaladoras de agua de mar bien podrían utilizar una combinación de aprovechamiento de los desniveles de las mareas, de los de un posible río que discurra ó desemboque en las cercanías de Ia ubicación de Ia planta, de las redes de distribución de agua potable ó de riego cercanas, de saneamiento y/o pluviales, ó de cualquier fluido con presión remanente en cualquier tipo de proceso industrial existente en Ia zona. En Ia figura 50 se representa el esquema de una planta desaladora de agua de mar con IPCD's (que evidentemente también se corresponde con el de una desaladora de aguas salobres pero sin Ia ventaja en Ia mayoría de los casos de los desniveles producidos por las mareas). Por simplicidad se ha representado con una única balsa ó depósito de almacenamiento, suponiendo que se aprovechan deniveles de mareas, ríos ó redes de pluviales, y que por tanto se vierten después de vuelta al mar, pero evidentemente si se combinan otros aprovechamientos (redes de abastecimiento, saneamiento, industriales, etc) deberá realizarse una balsa ó depósito por cada fluido que haya de devolverse a un sitio diferente
12) finalmente, si en las aplicaciones descritas existe un remanente de presión disponible tras utilizarla en los múltiples usos de bombeo de fluidos que se puedan necesitar, evidentemente siempre existe Ia posibilidad de utilizarla para turbinar el fluido en cuestión y producir energía eléctrica. Además, insertando nuevamente IPCD's se pueden mejorar notablemente los costes de ejecución y mantenimiento así como el rendimiento de las plantas, tal como se ha descrito en el punto 2 anterior
Existe una gran variedad de disposiciones de los IPCD's, tal como se ha presentado anteriormente. Por simplicidad se han representado en todas las figuras intercambiadores únicos de líneas paralelas, pero en cada aplicación se escogerá Ia disposición óptima de los mismos, en función de los parámetros de diseño de Ia instalación.

Claims

REIVINDICACIONES
1. El intercambiador de presión de cámaras desdobladas (IPCD), caracterizado por ser un intercambiador de presión, es decir, un sistema donde se transmite el empuje producido por un fluido (fluido presurizado) a otro fluido diferente (fluido a presurizar), en el que las cámaras donde se realiza el intercambio de presiones se desdoblan en dos, sustituyendo los elementos intermedios transmisores de Ia presión de los intercambiadores de presión tradicionales por dos discos ó pistones unidos rígidamente, eliminando todo contacto entre el fluido presurizado y el que se pretende presurizar, y permitiendo cambiar las secciones transversales de las cámaras correspondientes a uno y otro fluido
2. El funcionamiento a Ia inversa asistido en los intercambiadores de presión, caracterizado por el aprovechamiento de Ia presión del fluido presurizado no sólo para transmitirla al que se quiere presurizar, sino también para ayudar al propio fluido a presurizar a desplazar al otro fluido una vez que ha sido despresurizado. Esto se consigue mediante un tubo auxiliar en forma de "U" que se encuentra interconectando ambas líneas, y que es telescópico por ambos lados de Ia "U", estando soportado rígidamente por Ia base de Ia "U". Los extremos de Ia "U" se encuentran unidos a los discos ó pistones de sus respectivas líneas, y Ia "U" se encuentra llena de un fluido incompresible. De esta forma, al entrar el fluido presurizado en su cámara, no sólo presiona a su disco ó pistón para desplazar al fluido a presurizar, sino que también transmite parte de su energía al disco ó pistón de Ia otra línea para ayudar al fluido a presurizar de Ia otra línea a desplazar al otro fluido, ya despresurizado, en dicha línea y a vencer el rozamiento de los discos ó pistones y su peso y el del fluido ya despresurizado si el montaje es en vertical ó en ángulo. De esta forma se consigue además asegurar el funcionamiento de las líneas a Ia inversa, simplificando Ia electrónica de control del sistema.
3. El IPCD, según reivindicación 1, caracterizado por incorporar un refuerzo de las uniones de Ia varilla, varillas, chapas ó piezas macizas centrales con los discos ó pistones, que consigue reducir el problema de los esfuerzos flectores
4. El IPCD, según reivindicaciones anteriores, caracterizado por tener las cámaras curvas ó circulares, con las líneas dispuestas de forma diametralmente opuesta, las cámaras de cada fluido con radios de curvatura diferentes, y Ia unión entre los discos ó pistones curva con el mismo radio y cogida al centro mediante una unión tipo rótula. Esta disposición permite incrementar Ia presión transmitida en función de Ia distancia de las cámaras de uno y otro fluido al centro, sin necesidad de cambiar Ia sección transversal de las mismas, aunque sin perjuicio de poder combinar ambos efectos. Además, se pueden montar las piezas de unión entre los discos ó pistones de cada línea unidas a su vez rígidamente entre sí, para asegurar el funcionamiento de las líneas a Ia inversa, simplificando Ia electrónica de control del sistema, y para poder desplazar el fluido que ha transmitido su presión en el IPCD, una vez despresurizado, desde sus cámaras correspondientes sin necesidad de bombeo auxiliar, en los casos en los que el fluido a presurizar entre a muy poca presión
5. El IPCD, según reivindicaciones anteriores, caracterizado por que sus cámaras se abren y cierran de forma telescópica, suprimiendo los dobles discos ó pistones unidos rígidamente para evitar esfuerzos flectores en las uniones, reduciendo el espacio ocupado, y permitiendo el aseguramiento del funcionamiento a Ia inversa sin necesidad de asistirlo
6. El IPCD, según reivindicaciones anteriores, caracterizado por que sus cámaras se abren y cierran en forma de fuelle, suprimiendo los dobles discos ó pistones unidos rígidamente para evitar esfuerzos flectores en las uniones, reduciendo el espacio ocupado, y permitiendo el aseguramiento del funcionamiento a Ia inversa sin necesidad de asistirlo
7. El IPCD, según reivindicaciones anteriores, caracterizado por que en el mismo las cámaras en cada línea están dispuestas de tal forma que las correspondientes al fluido a presurizar son de paredes rígidas, y las del fluido que cede su presión son del tipo membrana, quedando éstas incluidas dentro de las de paredes rígidas, suprimiendo los dobles discos ó pistones unidos rígidamente para evitar esfuerzos flectores en las uniones, reduciendo el espacio ocupado, y permitiendo el aseguramiento del funcionamiento a Ia inversa sin necesidad de asistirlo
8. El IPCD, según reivindicaciones anteriores, caracterizado por que en el mismo las cámaras correspondientes a uno de los fluidos adopten una disposición (tipo pistón, telescópicas, tipo fuelle ó tipo membrana) y las correspondientes al otro fluido adopten otra diferente (IPCD mixto)
9. El IPCD, según reivindicaciones anteriores, caracterizado por que en el mismo las cámaras del fluido cuya presión se cede se desdoblan en varias, que se utilizan o no dependiendo de Ia presión disponible del fluido, mediante un sistema de válvulas controladas electrónicamente ó por ordenador, consiguiendo transmitir así una presión Io más homogénea posible al fluido a presurizar. Se trata, por tanto, de un IPCD multietapa. También se puede disponer de forma que las cámaras que se desdoblan sean las del fluido a presurizar, consiguiendo así presurizarlo a diferentes presiones en función de las necesidades en cada momento, e incluso que el concepto de múltiples etapas se extienda tanto a las cámaras del fluido a presurizar como a las del fluido cuya presión se cede
10. El IPCD multietapa, según reivindicación 9, caracterizado por disponer de un depósito auxiliar ó de un rebosadero, desde el cual se van llenando las cámaras de las etapas que no se encuentran activadas, consiguiéndose un llenado homogéneo de todas las cámaras, Io que permite activar a medio recorrido otras etapas en función de las necesidades del sistema, sin pérdidas de Ia energía del fluido presurizado
11. El IPCD multietapa, según reivindicación 9, caracterizado por disponer de un bombeo auxiliar y un variador de velocidad, para conseguir mantener Ia presión del fluido a presurizar totalmente constante, gobernándolo todo desde el sistema electrónico de control. Si el fluido presurizado proviene de un bombeo, se puede colocar el variador de velocidad en dicho bombeo
12. El IPCD multietapa, según reivindicación 9, caracterizado por estar dotado de cámaras circulares, o bien con otras disposiciones y el sistema de funcionamiento a Ia inversa asistido mediante el tubo en "U", para aquellas aplicaciones en las que bien Ia presión a Ia que hay que devolver el fluido cuya presión se cede una vez que ha sido despresurizado sea variable, bien Ia presión de partida del fluido a presurizar sea variable, o bien ambas, programando el sistema de control para que ajuste las etapas que deben entrar a funcionar también en función de estas presiones
13. El IPCD, según reivindicaciones anteriores, caracterizado por tener una sección variable, en cualquiera de sus cámaras de fluido (una, varias ó todas). Para ello, se hace imprescindible que, bien el pistón, bien las propias cámaras, o bien ambos, tengan secciones variables. Se trata, por tanto, de un IPCD de sección variable (IPCDSV)
14. El IPCDSV, según reivindicación 13, caracterizado por dotar a Ia cámara de uno de los fluidos de un tramo inicial de sección variable, durante el cual el pistón se acelera, hasta llegar a Ia velocidad de diseño, momento en el cual se llega a un tramo recto de Ia cámara, y Ia velocidad se mantiene constante pues se diseña el sistema para que en ese momento Ia fuerza que ejerce sobre el pistón el fluido cuya presión se cede sea igual a Ia fuerza que ejerce el fluido a presurizar sobre el mismo más las pérdidas por rozamientos correspondientes a Ia velocidad de diseño
15. El IPCDSV, según reivindicación 13, caracterizado por dotar a Ia cámara de uno de los fluidos de un tramo inicial de sección diferente, durante el cual el pistón se acelera, hasta llegar a Ia velocidad de diseño, momento en el cual se llega a un tramo recto de Ia cámara, y Ia velocidad se mantiene constante pues se diseña el sistema para que en ese momento Ia fuerza que ejerce sobre el pistón el fluido cuya presión se cede sea igual a Ia fuerza que ejerce el fluido a presurizar sobre el mismo más las pérdidas por rozamientos correspondientes a Ia velocidad de diseño
16. El IPCD, según reivindicaciones anteriores, caracterizado por disponer de tres líneas, con Ia tercera de longitud menor ajustada para aprovechar de forma óptima Ia presión del fluido presurizado dependiendo de los rangos de caudales y presiones con los que se trabaje en cada caso
17. El IPCD, según reivindicaciones anteriores, caracterizado por disponer de una sola línea, simplificando Ia electrónica de control del sistema
18. Las baterías de IPCD s, según reivindicaciones anteriores, consistentes en Ia disposición de un conjunto de IPCD's en serie ó en paralelo, o sistemas mixtos, incluso añadiendo bombas para aumentar Ia presión del fluido presurizado y/o Ia del fluido a presurizar a Ia entrada y/o a Ia salida de los IPCD's, cuando los saltos de presiones que se pretendan sean muy elevados
19. El sistema de bombeo mediante IPCD's, según reivindicaciones anteriores, consistente en utilizar grupos electrobomba tradicionales para presurizar el fluido de alimentación a los IPCD's, que cederá su presión al fluido a presurizar consiguiendo así bombearlo, con las ventajas de que ambos fluidos pueden ser diferentes, de que se puede elegir entre bombear más caudal a menos altura ó menos caudal a más altura, y de que, en el caso de bombeo en pozos ó arquetas, este sistema permite extraer el fluido del pozo ó arqueta bombeando otro fluido en superficie. Este sistema permite, además, el aprovechamiento energético de los desniveles geográficos existentes en los ríos, redes de saneamiento y de pluviales, ó de las sobrepresiones existentes en las redes de distribución de fluidos y las presiones remanentes de fluidos en cualquier tipo de proceso industrial, ya sea para bombear otros fluidos ó bien incluso para producir energía eléctrica
20. El sistema de turbinado mediante IPCD's, según reivindicaciones anteriores, consistente en Ia incorporación de IPCD's a las centrales hidroeléctricas, como paso previo al turbinado, permitiendo elegir entre turbinar más caudal a menos altura ó menos caudal a más altura, y permitiendo igualmente que el fluido a turbinar sea diferente de aquel cuya energía se dispone
21. El sistema de aprovechamiento de cualquier desnivel que se presente en el tiempo de cualquier tipo de material que se pueda imaginar en cualquier forma de almacenamiento ó aparcamiento, como es el caso de mareas, embalses, depósitos de agua potable, de riego ó de cualquier otro fluido en cualquier tipo de proceso industrial, e incluso a cualquier tipo de silo, depósito ó lugar donde se almacenen o aparquen sólidos, caracterizado por disponer de una cámara con paredes elásticas que se encuentra llena de un fluido incompresible y se ubica unida rígidamente al fondo del depósito, mar, embalse o lugar de almacenamiento, aprovechando, mediante un control electrónico o por ordenador, los momentos de nivel alto para alimentar con el fluido a IPCD s, según reivindicaciones anteriores, y bombear así otro fluido o bien para turbinar el fluido de Ia cámara ó el presurizado en los IPCD s y generar energía eléctrica
PCT/ES2007/000346 2006-06-13 2007-06-11 Intercambiadores de presión de cámaras desdobladas (ipcd's) WO2007147914A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/304,372 US20100014997A1 (en) 2006-06-13 2007-06-11 Split-chamber pressure exchangers
AU2007262970A AU2007262970A1 (en) 2006-06-13 2007-06-11 Split-chamber pressure exchangers
EP07788594A EP2065597A1 (en) 2006-06-13 2007-06-11 Split-chamber pressure exchangers
NO20090160A NO20090160L (no) 2006-06-13 2009-01-12 Delt trykkutvekslingskammer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ESP200601694 2006-06-13
ES200601694A ES2321997B1 (es) 2006-06-13 2006-06-13 Intercambiadores de presion de camaras desdobladas.
ES200602232A ES2321999B1 (es) 2006-06-13 2006-08-17 Intercambiadores de presion de camaras desdobladas multietapa.
ESP200602232 2006-08-17

Publications (2)

Publication Number Publication Date
WO2007147914A1 true WO2007147914A1 (es) 2007-12-27
WO2007147914B1 WO2007147914B1 (es) 2008-02-07

Family

ID=38833100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/000346 WO2007147914A1 (es) 2006-06-13 2007-06-11 Intercambiadores de presión de cámaras desdobladas (ipcd's)

Country Status (3)

Country Link
EP (1) EP2065597A1 (es)
AU (1) AU2007262970A1 (es)
WO (1) WO2007147914A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123454A2 (en) * 2009-03-23 2010-10-28 Guy Andrew Vaz Power generation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009020932A1 (de) * 2009-05-12 2010-11-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Druckaustauscher mit Linearantrieb
CA2776218A1 (en) * 2009-09-30 2011-04-07 Ghd Pty Ltd Liquid treatment system
WO2015104660A1 (en) * 2014-01-08 2015-07-16 Hofmeyr Robert Mark A gravitationally assisted liquid pump assembly
CA2959388C (en) * 2014-08-29 2018-10-16 Energy Recovery, Inc. Systems and method for pump protection with a hydraulic energy transfer system
ES2633840B1 (es) * 2016-02-25 2018-04-18 Universidad A Distancia De Madrid Udima S.A. Sistema de bombeo hidráulico a alta presión sin consumo energético externo y procedimiento para la puesta en práctica del mismo

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US776106A (en) * 1901-12-23 1904-11-29 Alexis Beurrier Apparatus for raising fluids by solar heat.
US2490118A (en) * 1945-07-23 1949-12-06 Hygroequipments Ltd Pump
US2807215A (en) * 1955-07-28 1957-09-24 Crane Packing Co Variable displacement pump
DE1294812B (de) * 1961-02-21 1969-05-08 Conen Foerdermengenverstellbare Druckmittelpumpe
US3885393A (en) * 1973-09-07 1975-05-27 Us Energy Hydraulic load matching device
US5062268A (en) * 1990-02-02 1991-11-05 The University Of British Columbia Fluid actuator
WO2003002876A1 (fr) * 2001-06-27 2003-01-09 Karasawa Fine., Ltd Surpresseur
GB2403986A (en) * 2003-07-15 2005-01-19 Paul Kristian Hatchwell Tidal energy system for power generation or storage

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US776106A (en) * 1901-12-23 1904-11-29 Alexis Beurrier Apparatus for raising fluids by solar heat.
US2490118A (en) * 1945-07-23 1949-12-06 Hygroequipments Ltd Pump
US2807215A (en) * 1955-07-28 1957-09-24 Crane Packing Co Variable displacement pump
DE1294812B (de) * 1961-02-21 1969-05-08 Conen Foerdermengenverstellbare Druckmittelpumpe
US3885393A (en) * 1973-09-07 1975-05-27 Us Energy Hydraulic load matching device
US5062268A (en) * 1990-02-02 1991-11-05 The University Of British Columbia Fluid actuator
WO2003002876A1 (fr) * 2001-06-27 2003-01-09 Karasawa Fine., Ltd Surpresseur
GB2403986A (en) * 2003-07-15 2005-01-19 Paul Kristian Hatchwell Tidal energy system for power generation or storage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123454A2 (en) * 2009-03-23 2010-10-28 Guy Andrew Vaz Power generation
WO2010123454A3 (en) * 2009-03-23 2011-06-30 Guy Andrew Vaz Power generation

Also Published As

Publication number Publication date
EP2065597A1 (en) 2009-06-03
AU2007262970A1 (en) 2007-12-27
WO2007147914B1 (es) 2008-02-07

Similar Documents

Publication Publication Date Title
ES2321997B1 (es) Intercambiadores de presion de camaras desdobladas.
CA1042269A (en) Method and apparatus for transporting fluid substances, e.g. water, slurry and similar other materials by utilization of potential energy of liquid columns
WO2007147914A1 (es) Intercambiadores de presión de cámaras desdobladas (ipcd's)
CN101952583B (zh) 用于脱盐及电力的海浪能量
NO330104B1 (no) Kraftinstallasjon
WO2013150320A2 (en) Mechanical hydraulic electrical floating and grounded system exploiting the kinetic energy of waves (seas-lakes-oceans) and converting it to electric energy and to drinking water
EP2606230B1 (en) Water motor
US20220010763A1 (en) Ffwn clean energy power plant
WO2011150354A2 (en) Wave energy transfer system
CA2875345A1 (en) Floating methanization system
JP2009281142A (ja) 水力発電設備
WO2006037828A1 (es) Sistema de generación de energía eléctrica y desalación en una planta flotante
CN100549409C (zh) 浮力泵动力系统
ES2633840B1 (es) Sistema de bombeo hidráulico a alta presión sin consumo energético externo y procedimiento para la puesta en práctica del mismo
AU2015202311A1 (en) Harnessing wave power
CA2970368C (en) Apparatuses for the functioning of a floating methanization system
KR20120011127A (ko) 여러 겹으로 제작한 구유형 물주머니를 이용한 수직형 물주머니수차와 수차발전소구조물
AU2016429336B2 (en) Assembly and system for pumping a volume of fluid through a body of water
PL243168B1 (pl) Sposób wytwarzania energii elektrycznej oraz układ do wytwarzania energii elektrycznej, zwłaszcza elektrownia wodna
EP3115595A1 (en) Electricity generator that utilizes hydraulic jumps
RU65901U1 (ru) Шахтная гидроаккумулирующая электростанция
WO2021004554A1 (es) Método y dispositivo de generación de energía undimotríz
ES2331766B1 (es) Planta oleohidraulica, desaladora.
EP2719891A1 (de) Vorrichtung zur Nutzung der Auftriebskraft in Flüssigkeiten mit reduziertem potentiellem Flüssigkeits-Energieverlust für wiederkehrende Massenverschiebungen an Drehachsen oder für lineare Kräfte in multivalenten mechanischen Systemen
WO2017093826A1 (es) Sistema hidraulico reciprocante

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07788594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 574122

Country of ref document: NZ

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 2007262970

Country of ref document: AU

Ref document number: 2007788594

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007262970

Country of ref document: AU

Date of ref document: 20070611

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12304372

Country of ref document: US