WO2007147327A1 - Procédé, système et appareil de repérage de défaillance d'un appareil de communication - Google Patents

Procédé, système et appareil de repérage de défaillance d'un appareil de communication Download PDF

Info

Publication number
WO2007147327A1
WO2007147327A1 PCT/CN2007/001815 CN2007001815W WO2007147327A1 WO 2007147327 A1 WO2007147327 A1 WO 2007147327A1 CN 2007001815 W CN2007001815 W CN 2007001815W WO 2007147327 A1 WO2007147327 A1 WO 2007147327A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
unit circuit
test information
field replaceable
matrix
Prior art date
Application number
PCT/CN2007/001815
Other languages
English (en)
French (fr)
Inventor
Binhe Yang
Dayong Huo
Zhixin Song
Xuefeng Jin
Xiaobo Kang
Biao Yuan
Jianxu Geng
Li Cheng
Xiuguo Cui
Haitao Pan
Jianxun Tang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to AT07721388T priority Critical patent/ATE526752T1/de
Priority to EP07721388A priority patent/EP2031800B1/en
Publication of WO2007147327A1 publication Critical patent/WO2007147327A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/069Management of faults, events, alarms or notifications using logs of notifications; Post-processing of notifications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/2257Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using expert systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a method, system and device for fault location of a communication device.
  • fault location The main purpose of fault location is to provide guidance for troubleshooting.
  • the general requirement is to locate the fault to a Field Replaceable Unit (FRU).
  • FRUs are usually circuit boards, communication cables, etc.
  • Fault location usually does not focus on the root cause of the fault. In order to reduce the average repair time and increase the availability of the equipment, the time spent on fault location should be as short as possible.
  • a communication device When a communication device fails, it usually exhibits certain symptoms of failure, such as: communication service interruption, slow downloading of data by the communication terminal, and significant reduction in voice quality. What kind of symptom of the failure of the communication device in the event of a failure is closely related to the configuration of the communication device.
  • the automatic alarm through the device or system is a simple and quick way to obtain fault information. Therefore, the fault location generally starts from the obtained alarm information, and the positioning process is mainly the analysis process of the alarm information.
  • a fault location system usually includes three basic components: positioning knowledge (ie, expert experience, relationship between fault symptoms and faults), facts (on-site fault symptoms, configuration, etc.), reasoning (positioning steps, inference logic) analysis. Elements.
  • the general steps of fault location include: collecting fault symptoms, configuration, and other field facts; Positioning knowledge analysis site information) Initially determine the fault range and possible faults; (Deeply analyze the field information according to the fault location knowledge W Bar fault range is reduced to the replaceable unit range, and even find the real fault. For further information, during the positioning process Sometimes you need to perform some tests.
  • fault location technology In the field of communication technology, the research on fault location technology is very active.
  • the widely used fault location technologies include: manual analysis method, alarm correlation analysis method, and fault tree analysis method (FTA).
  • the manual analysis method requires engineers involved in fault analysis to be familiar with a series of technical information such as circuit relationships, alarms, and positioning procedures of communication equipment. They are familiar with and have specialized knowledge of fault location. In the specific positioning process, engineers need to collect and review various facts and information, and use their knowledge of positioning, through multiple inferences, to complete the fault location. For some faults, if the alarm information is rare, or the alarm information itself has directly indicated a limited fault range, according to such alarm information, the engineer can easily find the exact location of the fault when performing fault location. If there are many alarms, or the alarm information indicates a wide range of faults directly or indirectly, it will be very difficult for the engineer to locate the fault.
  • the above-mentioned alarm correlation analysis method needs to distinguish the root alarm and the accompanying alarm according to the correlation between the alarm information in the communication device.
  • the two advantages of this are: You can filter out the redundant accompanying alarms in the alarm information, extract only the root alarms, and reduce the alarm information processing. 7 001815 a 3—
  • the fault range can be concentrated from the communication network or the communication device on a group of FRUs related to the root alarm, so that the search range of the communication device failure can be narrowed.
  • a root cause alarm will still be associated with multiple FRUs. Even after using the above alarm correlation analysis method, the fault range needs to be taken from the communication network or communication device to a group of FRUs related to the root cause alarm. Other analysis methods can locate the fault on the FRU that is actually failing, and finally meet the need to eliminate the failure of the communication device.
  • the alarm correlation analysis method can only narrow the scope of fault location, and cannot directly and accurately determine the fault location.
  • the alarm correlation analysis method must also be combined with other analysis methods to finally find the faulty FRU; therefore, the alarm correlation analysis method is not a complete fault location method.
  • the fault tree analysis method is a classic method for fault location in the industry. It is widely used in the field of communications.
  • the fault analysis system can construct faults and fault symptoms as a location knowledge-fault tree. After a simple transformation, the fault tree can be transformed into a fault location tree.
  • the fault location tree is an incomplete binary tree.
  • each node contains a fault symptom information (test information or alarm information). Different fault symptoms point to different child nodes in the fault location tree.
  • the leaf nodes in the fault location tree are faults, and other nodes are faults. symptom.
  • the meaning of any root-to-leaf branch in the fault location tree is: expr(Tl,T2,...) -> /Fm.
  • Ti indicates failure symptom information
  • Fm indicates failure.
  • the meaning of the expression: F is a function of T, and a set of T uniquely determines an F.
  • the process of analyzing and reasoning faults is to determine the next step and how to make a decision based on the traversal of the fault locating tree, starting from typical fault symptoms and determining each of the other fault symptoms.
  • the fault location tree is integrated with positioning knowledge and positioning reasoning, which can intuitively reflect the positive reasoning logic relationship and directly correspond to people's direct experience knowledge, which is easy to understand and operate.
  • the fault tree analysis method relies on the circuit relationship of the communication device.
  • the fault tree can only be obtained when the circuit relationship of the communication device is determined, and then the fault tree analysis method is used for fault location.
  • the circuit relationship of the communication device changes, the above fault tree needs to be reconstructed.
  • the circuit relationship of the communication device is usually not fixed and dynamic, the work of constructing the fault tree can only be performed at the site where the device is operating.
  • the complexity of the communication equipment causes the logical structure of the fault tree to be complex and rigorous, which is extremely difficult to construct.
  • the communication equipment is upgraded, the communication equipment is reconfigured at the operation site. The fault tree is even more difficult.
  • Embodiments of the present invention provide a method, system, and device for fault location of a communication device, which can automatically locate a fault of a communication device to a FRU, and shorten the time taken for fault location.
  • the embodiments of the present invention include the following technical solutions:
  • a method for locating a fault of a communication device wherein an association matrix of each unit circuit association relationship is set in the field replaceable unit, the method further comprising:
  • the positioning sub-matrix includes a unit circuit set corresponding to the test information and a test information set associated with the unit circuit set ;
  • the field replaceable unit corresponding to the unit circuit whose working state is abnormal is found.
  • a system for fault location of a communication device comprising:
  • test adaptation unit configured to obtain internal test information of the field replaceable unit in the communication device, and send the test information to the inference engine
  • the unit knowledge base may be replaced in the field for storing an association matrix of the relationship between each unit circuit in each field replaceable unit in the communication device;
  • a knowledge construction unit configured to establish, according to test information obtained from the inference engine, and an association matrix of each unit circuit association relationship in the field replaceable unit obtained from the field replaceable unit knowledge base, a matrix, and transmitting the positioning sub-matrix to the inference engine, the positioning sub-matrix comprising a unit circuit set corresponding to the test information and a test information set associated with the unit circuit set;
  • the inference engine queries each test information in the positioning sub-matrix according to the received fault location request, searches for a unit circuit whose working state is abnormal, and searches for a field that corresponds to the unit circuit in which the working state is abnormal. Replace the unit.
  • a field replaceable unit comprising: a unit circuit, further comprising: a fault location system, the fault location system comprising:
  • test adapting unit configured to obtain internal test information of the field replaceable unit, and send the test information to the inference engine;
  • the unit knowledge base may be replaced in the field to store an association matrix of the circuit related relationships of each unit in the field replaceable unit;
  • a knowledge construction unit configured to establish, according to test information obtained from the inference engine, and an association matrix of each unit circuit association relationship in the field replaceable unit obtained from the field replaceable unit knowledge base, a matrix, and transmitting the positioning sub-matrix to the inference engine, the positioning sub-matrix comprising a unit circuit set corresponding to the test information and a test information set associated with the unit circuit set;
  • the inference engine queries the test information in the positioning sub-matrix according to the received fault location request, searches for a unit circuit whose working state is abnormal, and finds that the working circuit is in an abnormal unit circuit Replace the unit on site.
  • a communication device including a field replaceable unit, further comprising:
  • test adaptation unit configured to obtain internal test information of the field replaceable unit in the communication device, and send the test information to the inference engine
  • the unit knowledge base may be replaced in the field for storing an association matrix of the relationship between each unit circuit in each field replaceable unit in the communication device;
  • a knowledge construction unit configured to establish, according to test information obtained from the inference engine, and an association matrix of each unit circuit association relationship in the field replaceable unit obtained from the field replaceable unit knowledge base, a matrix, and transmitting the positioning sub-matrix to the inference engine, the positioning sub-matrix comprising a unit circuit set corresponding to the test information and a test information set associated with the unit circuit set;
  • the inference engine queries each test information in the positioning sub-matrix according to the received fault location request, searches for a unit circuit whose working state is abnormal, and searches for a field that corresponds to the unit circuit in which the working state is abnormal. Replace the unit.
  • the fault location method of the embodiment of the present invention associates the fault or alarm information of the communication device with the unit circuit of the field replaceable unit, and constructs an association matrix based on the unit circuit, and at the same time, One 6—
  • the corresponding one or more unit circuits are found according to the association matrix and the detected information constructed according to the above-mentioned manner, and further according to the management of the previously recorded different unit circuits.
  • the relationship between the relationship, the field-replaceable unit, and the configuration information of the communication device automatically locates the field-replaceable unit where the actual fault or alarm is located, and overcomes the defect that the existing communication equipment fault location technology cannot quickly locate the fault, and can automatically
  • the fault of the communication device is located to the FRU, which solves the problem that the prior art takes a long time for fault location.
  • the system for fault location of a communication device overcomes the defect of difficulty in locating knowledge in the fault location technology of the existing communication device based on the unit circuit-based construction method of the failure information of the communication device, and can adapt to automatic and dynamic structural positioning.
  • the demand for knowledge solves the problem that the fault location information cannot be constructed quickly and automatically after the configuration of the communication device or the communication network is changed in the prior art.
  • the fault location method and system of the embodiment of the present invention decomposes the process of fault location of the communication device in the prior art into a positioning mode based on the fault of the positioning unit circuit, and realizes the purpose of directly positioning the fault to the FRU.
  • FIG. 1 is a schematic diagram of constituent elements of a fault location system
  • FIG. 2 is a schematic structural view of an FRU according to an embodiment of the invention.
  • FIG. 3 is a schematic structural view of a FRU according to another embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a fault location system according to an embodiment of the present invention.
  • the communication device is composed of one FRU or a plurality of FRUs connected to each other; the components constituting the FRUs, as shown in FIG. 2 and FIG. 3, may be unit circuits capable of performing basic electrical functions, or by these units A combination of circuits and FRUs. These unit circuits are the objects that need attention when the fault is located. However, in order to quickly replace the faulty components in the event of a fault and make the communication equipment work in a good state, it is usually more concerned for the communication network administrators.
  • a FRU consisting of unit circuits.
  • These FRUs, the physical entities of concern for fault location, can be nodes: Physical entities of concern for fault location, such as boards, chassis, subracks, devices, etc. These physical entities can use an association matrix to describe their relationship to each other.
  • the FRU 1 shown in Fig. 2 is constructed by interconnecting the unit circuits 11, 12 and 13; wherein any unit circuit, test information and signal correlation can be described by an association matrix, respectively.
  • the abscissa of the associated matrix is used to represent a set of input signals or testable modules or a combination thereof, and the ordinate is used to represent the relationship of a test signal or an output signal.
  • the unit circuit 11 of the FRU 1 is expressed by the correlation matrix listed in Table 1, wherein F1-F3 represents each circuit module in the unit circuit 11 or an input signal of the unit circuit 11, and T1-T4 represents each unit in the unit circuit 11.
  • the value of each element in the correlation matrix is stored in the unit circuit 11 when the unit circuit 11 is completed; wherein the value of any element indicates the line Fm (l ⁇ m ⁇ 3) of the element and the element
  • the correlation of the column ⁇ (1 ⁇ 4) See Table 1.
  • each element can be "0", “1” or “1+,” three, where "1” means that Fm is weakly related to Tn, that is, Tn may but not necessarily occur when Fm occurs.
  • the value "1+” indicates that Fm is strongly correlated with Tn, that is, Tn must occur when Fm occurs; the value "0" indicates that Fm is not related to Tn, that is, there is no necessary relationship between the two.
  • a set of T related to Fm is a fault symptom or alarm of Fm. If Tn occurs, there must be an F in a group F associated with Tn, that is, a fault or alarm must occur.
  • Tn occurs, there must be an F in a group F associated with Tn, that is, a fault or alarm must occur.
  • Table 1 The following explanations can help to understand the information represented by this association matrix:
  • the phenomenon; and so on, the correlation expressed by other elements in the correlation matrix can also be obtained by using the above correlation matrix.
  • This correlation matrix is generated while the unit circuit 11 is manufactured, and is stored in the unit circuit 11.
  • the association matrix described above can be used to describe an arbitrary unit circuit. The advantage of this is that the knowledge or information used for fault location is set in each unit circuit. When it is necessary to combine these unit circuits to form one FRU, relevant association information can be taken out from each unit circuit to construct an association of the entire FRU. matrix. This is a very flexible way.
  • Table 2 - Table 5 show the correlation matrices describing all the unit circuits 11, 12, 13 of the FRU 1 shown in Fig. 2 and their interrelationships.
  • the correlation matrix unit circuit 12 of the unit circuit 12 is tested for the voltage of the electric unit circuit 12 (OUT1)
  • Unit circuit 12 power module 1 1
  • Unit circuit 12 voltage conversion circuit 1 1
  • Unit circuit 12 input signal 1 1
  • Unit electric unit electric unit circuit unit circuit 12 output 1 output 2 way 11 circuit 11 anti 12 voltage measurement voltage test (OUT (OUT pressure test lightning test 1) 2) lightning protection circuit 111 0 1+ 1 1 1 1 1 filter circuit 112 0 0 1 1 1 1 1 Power supply module 121 0 0 1 0 1 0 Voltage conversion 122 0 0 1 0 1 0 Power supply module 131 0 0 0 1 0 1 Voltage conversion 132 0 0 0 1 0 1 Input signal IN 1 1 1 1 1 1 It can be seen from the above Table 2 - Table 5 that the input signals and faults of the respective unit circuits 11, 12, 13 may affect the test state and output signal of each unit circuit.
  • the input signal of the subsequent unit or module can be regarded as the image of the failure of the previous unit circuit at the entrance of the node (ie, the subsequent unit or module); and the output signal of the former unit or module can be regarded as the latter unit circuit Test the image at the exit of the unit circuit (ie the pre-stage unit or module).
  • test information of the unit circuit itself is limited. Using only the test information of the unit circuit itself, it is often difficult to locate whether the fault occurs within the unit circuit or the unit. If the test information of each unit circuit can be fully utilized, all faults can be located in the unit circuit range.
  • FIG. 3 shows another form of FRU, that is, FRU2 includes FRU1, which is different from FRU1:
  • FRU2 also has a unit circuit 21, and the unit circuit 21 is composed of a filter module 211 and a voltage conversion module 212, and the input signal thereof is IN1, the output signal is OUT3;
  • the configuration of the correlation matrix of the FRU 2 composed of the above-mentioned respective components is the same as that of the above-described FRU 1, and will not be described herein.
  • the FRU can establish its association matrix for positioning and store it in the relevant FRU, which is carried by the FRU.
  • the method for establishing the association matrix is as follows:
  • the FRU Since the FRU is a basic component of the communication device, its circuit configuration is fixed, so the knowledge of the location of the FRU is also fixed. Positioning knowledge can be constructed during the FRU development phase. Since the FRU is a closed small system, it is possible to construct and verify the positioning knowledge only by focusing on the FRU itself. Therefore, the construction of the positioning knowledge is difficult.
  • the tester can verify that the FRU location knowledge is correct by simulating the fault during the verification phase of the FRU, and can verify the location knowledge in the FRU development phase, and the verification method is simple; since the FRU location knowledge can be easily upgraded as independent device configuration data, Other configuration data is not coupled, and the upgrade is easy and simple.
  • the most important ones are:
  • the utility model can support automatic and dynamic construction of communication device positioning knowledge according to the FRU configuration and FRU positioning knowledge of the communication device.
  • the present invention provides a specific example as follows to help those skilled in the relevant art to further understand the technical solution of the present invention.
  • the overall idea of fault location in the embodiment of the present invention is: First, the unit circuit that may be faulty is inferred according to the current fault symptom, and then the FRU that may be faulty is inferred according to the state of the unit circuit. Of course, after the fault location is completed, the fault location result needs to be output so that the fault can be eliminated as soon as possible.
  • the method includes:
  • Step 401 Acquire internal FRU test information in the communication device, where the test information reflects whether the function or output of the tested unit circuit has a failure status.
  • Step 40 Search for the correlation matrix of each unit circuit relationship according to the test information and the correlation matrix stored in the FRU, and search for the unit circuit set corresponding to the test information in the correlation matrix.
  • the unit circuit set corresponding to the test information of the non-conforming state may be searched for in the correlation matrix according to the test information of the FAIL state and the correlation matrix stored in the FRU for describing the relationship of each unit circuit. That is, a collection of unit circuits suspected of failure.
  • each unit circuit has an associated matrix corresponding to them, and these association matrices are stored in the FRU.
  • Step 403 Search for the relevant test information set according to the unit circuit set of the suspected fault that has been searched, and establish a positioning sub-matrix composed of each unit circuit set and the associated test information set.
  • Steps 404 to 406 in the positioning sub-matrix, take out an unanalyzed test information, traverse all fault inference rules, find a unit circuit whose working state is abnormal in the positioning sub-matrix, and perform recording; repeat this step until the All test information in the positioning sub-matrix has been analyzed, and then the unit circuit set whose state is not good (GOOD) is recorded.
  • GOOD unit circuit set whose state is not good
  • Step 407 409 in a unit circuit set whose state is not GOOD, take out an unanalyzed unit circuit, traverse all FRU analysis rules, and judge the unit circuit whose working state is abnormal. Breaking, analyzing, and obtaining the FRU corresponding to the unit circuit whose working state is abnormal; repeating this step until all the unit circuits in the unit circuit set in which the state is not GOOD have been analyzed, and then recording the FRU whose state is not GOOD set.
  • an unanalyzed test information is taken out from the positioning sub-matrix; and the unit circuit associated with the test information is judged according to a predetermined fault inference rule; if the unit circuit is in an abnormal state, the unit is recorded. Circuit; Repeat the above steps until all test information in the positioning sub-matrix is analyzed. Through this traversal in the positioning sub-matrix, all the unit circuits whose working states are abnormal can be found on the basis of the above-mentioned associated matrix.
  • the above fault inference rules include:
  • test information is FAIL
  • the state of the unit circuit associated with the test information is set to a Suspect state
  • test information If the test information is pass (PASS), the state of the unit circuit that is strongly correlated with the test information is set to a good (GOOD) state;
  • test information is not good (GOOD)
  • GOOD a unique state is not good
  • BAD fault
  • the state of the unit circuit is set to be good ( GOOD) status
  • test information is unqualified (FAIL)
  • all the unit circuits in the unit circuit group related to the test information are not in a fault (BAD) state
  • the test set related to the unit circuit set is obtained according to the unit circuit set, and the compliance test is determined.
  • the smallest set of unit circuits this group of unit circuits is called a fault group
  • the unit circuit state in the fault group is set to a possible fault (PROBABLY) state; If there is only one unit circuit in a fault group, set the unit circuit state to the fault (BAD) state.
  • the state of all the unit circuits in the FRU is a good (GOOD) state
  • the state of the field replaceable unit is set to a good (GOOD) state
  • the state of the FRU is set to the fault (BAD) state;
  • the state of the field replaceable unit is set to a fault (BAD) state
  • the state of the FRU is set to a non-trusted (Suspect) state;
  • an operation for positioning a FRU is generated by some nodes in the communication network, such as a network management device, by issuing a positioning command; therefore, when the positioning is completed, the result of the positioning should be returned to the nodes that issue the positioning command. Therefore, the example shown in Figure 4 also includes:
  • Step 410 Return the fault location result, that is, return the information of the FRU corresponding to the unit circuit whose working state recorded in the positioning process is abnormal to the setting operation command.
  • the steps are as follows; those skilled in the art can fully implement the knowledge according to the prior art, for example: the processing method of request and response in the communication process, which is not mentioned here.
  • an operation for positioning the FRU may also be an automatic positioning triggered by an automatic test information reporting event in the communication device.
  • the embodiment of the present invention further provides a technical solution for automatically updating the association matrix, and a specific example includes the following steps:
  • the FRU unit circuit, interface input signal and test, interface output signal form a communication device association matrix, and retain the relevant elements between the original FRU, between the unit circuits and between the FRU and the unit circuit;
  • an embodiment of the present invention also provides an example of a system for fault location of a communication device, to help those skilled in the relevant art understand the system of the present invention.
  • the system S is generally disposed in the FRU, and may also be disposed in the communication device composed of the FRU, and mainly includes a test adaptation unit S1, a positioning knowledge construction unit S3, a FRU knowledge base S4, and an inference engine S2; :
  • the test adapting unit S1 is connected to the alarm module S11 and the test module S12, and is configured to obtain alarm information and test information, and send it to the inference engine S2 connected to the test adapting unit S1;
  • the knowledge construction unit S3 is connected to the FRU knowledge base S4 and the configuration management module S31, and is used for establishing a positioning sub-matrix composed of each unit circuit set and the associated test information set of the current positioning association, and the reasoning connected to the knowledge construction unit S3.
  • Machine S2 sends;
  • the FRU knowledge base S4 is used for storing the circuit unit internals of the field replaceable unit in the communication device. Relational matrix of relationships;
  • the inference engine S2 receives the operation command issued by the fault location node S21, and locates the faulty FRU according to the fault inference rule and the FRU analysis rule. For details, refer to the foregoing positioning method, and details are not described herein again.
  • the alarm module S11, the test module S12, and the configuration management module S31 are functional units existing in the prior art.
  • the test adapting unit S1 sorts (adapts) the test information sent by the alarm module S1 l and the test module S12, and then sends the test information to the inference engine S2, and the test information is described here.
  • the information of the FRU knowledge base and the information of the configuration management module S31 are matched by the knowledge construction unit S3.
  • this process is the above-mentioned test information sent according to the inference engine, an association matrix describing the association relationship of each unit circuit in the field replaceable unit in the communication device, and searching and testing in the correlation matrix
  • the unit circuit corresponding to the information obtains the unit circuit set, and further searches for the associated test information, and establishes an operation of the positioning sub-matrix composed of each unit circuit set and the associated test information set.
  • the inference engine S2 queries each test information in the positioning sub-matrix according to the inference rule, and finds and records the unit circuit whose working state is abnormal; finally finds the work.
  • the field replaceable unit corresponding to the abnormal unit circuit is obtained, and the corresponding fault analysis result is obtained.
  • an operation for positioning a FRU is generated by some nodes in the communication network, for example, a network management device, and a positioning command is issued; therefore, when the positioning is completed, the result information of the positioning should be returned to the positioning commands. node. Therefore, in the example of the system of the present invention, a fault location node S21 is further included. After the inference engine completes the location reasoning operation, the information about the FRU corresponding to the unit circuit recorded in the positioning process is abnormal. Returning to the device that issues the positioning operation command; the process of this interaction can be implemented by those skilled in the art according to the knowledge of the prior art, for example: the processing method of request and response in the communication process, and will not be described here. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • External Artificial Organs (AREA)

Description

通信设备故障定位的方法和系统及设备 本申请要求于 2006 年 6 月 16 日提交中国专利局、 申请号为 200610086709.3、 发明名称为"通信设备故障定位的方法和系统,,的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。
技术械 本发明属于通信技术领域,特別涉及一种通信设备故障定位的方法和系统 及设备。
背景技术 器件失效、软件缺陷、 线缆老化、人为错误等众多因素都会导致通信设备 在运行过程中发生故障, 通信设备提供的通信服务业务也会出现中断或异常。 当通信设备发生故障时, 应当尽快地对故障进行定位, 以便尽快地排除故障, 恢复通信设备的正常运行, 保障通信设备能够正常地提供的通信服务业务。
故障定位的主要目的是为排除故障提供指导性信息。一般的要求是将故障 定位到现场可更换单元(Field Replace Unit, 以下简称为 FRU ), 这些 FRU通 常为电路板、通信线缆等; 故障定位通常并不关注故障的根本原因。 为了降低 平均修复时间, 提高设备的可用度, 故障定位所花费的时间应当尽可能地短。
通信设备在发生故障时, 通常会表现出一定的故障症状, 例如: 通信服务 业务中断、通信终端下载数据的速度变慢、话音质量明显降低等。通信设备在 发生故障时会表现出何种故障症状, 与通信设备的配置情况密切相关。 通常, 故障信息的获得主要有三种途径:设备或系统自动告警、使用通信业务用户的 投诉、 专业人员的测试。 相对来说, 通过设备或系统的自动告警是较为简单、 快捷地获取故障信息的途径。 因而故障定位一般都是从获取的告警信息着手, 定位过程也主要是对告警信息的分析过程。
参见图 1 , 一个故障定位系统通常包括定位知识(即专家经验, 为故障症 状与故障的关系)、 事实(现场的故障症状、 配置等)、 推理(定位步驟、 推理 逻辑)分析三个基本构成要素。
故障定位的一般步骤包括: 收集故障症状、 配置等现场事实; (根据故障 定位知识分析现场信息)初步确定故障范围及可能的故障; (根据故障定位知 识深入分析现场信息 W巴故障范围缩小到可更换单元范围,甚至找出真正故障。 为获得进一步的信息, 定位过程中有时还需要执行一些测试。
在通信技术领域,对于故障定位技术的研究非常活跃; 目前应用较为广泛 的故障定位技术包括: 人工分析方法、告警相关性分析方法、 故障树分析方法 ( Fault Tree Analysis , 以下简称 FTA )。
当通信设备发生故障时, 常常采用人工分析的方法来确定故障原因及范 围。人工分析方法需要参与故障分析的工程师熟悉通信设备的电路关系、告警、 定位程序等一系列技术信息, 熟悉并具备专门的故障定位知识。在具体的定位 过程中, 工程师需要收集并查阅各种事实、 信息, 利用其掌握的定位知识, 通 过多次的推理,才能来完成故障的定位。对一些故障而言,如果告警信息很少, 或者告警信息本身已经直接指示出有限的故障范围,依据这样的告警信息, 工 程师进行故障定位时, 会较为容易找到故障的准确位置。 如果告警信息很多, 或者告警信息直接或间接指示的故障范围很广,工程师对故障的定位工作就会 非常困难。
随着通信设备和通信网络规模及复杂度越来越大,参与故障定位工作的工 程师通过技术、设备资料学习及工作实践来掌握的众多通信设备的故障定位知 识存在困难。 因此, 采用人工分析方法, 需要参与故障定位工作的工程师具有 较高的技术能力, 即使如此, 对于故障定位的时间也会较长, 难以满足高可用 通信设备快速定位故障的要求, 同时, 故障定位的成本也会较高。
在由通信设备构成的通信网络中, 当一个通信设备发生故障时,发生故障 的通信设备以及与该通信设备相关联的其他通信设备都会发出告警,所有的告 警汇集在一起, 会形成庞大的告警信息。 但是, 在这些庞大的告警信息中, 只 有少量的告警信息是有关通信设备故障的根源告警,而绝大多数属于因根源告 警的故障原因而产生的伴随告警。在通信网络中, 这种伴随告警的数量往往会 非常庞大, 经常会大到将携带有反映故障原因的根源告警淹没掉的程度。
采用上述的告警相关性分析方法,需要根据通信设备中告警信息之间的相 互关联关系, 区分出根源告警及伴随告警。 这样做的两个好处是: 可以过滤掉 告警信息中冗余的伴随告警, 只把根源告警提取出来, 达到减少告警信息处理 7 001815 一 3—
工作量的目的; 找到根源告警,可以把故障范围从通信网絡或通信设备集中在 和根源告警相关的一组 FRU上, 因此, 可以缩小通信设备故障的查找范围。
但是, 一个根源告警仍然会与多个 FRU相关, 即使在采用上述的告警相 关性分析方法,将故障范围从通信网络或通信设备集中到和根源告警相关的一 組 FRU之上后, 还需要采取其他分析方法才能把故障定位到真正出故障的 FRU上, 最终满足排除通信设备故障的需要。
因此, 采用告警相关性分析方法, 只能缩小故障定位的范围, 无法直接、 准确地确定故障位置。告警相关性分析方法还必须与其它分析方法相结合, 才 能最终找出故障的 FRU; 所以, 采用告警相关性分析方法不是一个完整的故 障定位方法。
采用故障树分析方法是工业界进行故障定位的经典方法。在通信领域中应 用得较为广泛。 在故障树分析方法中, 故障分析系统可以将故障、故障症状构 造为定位知识 -故障树。经过简单的变换,就可以将故障树转化为故障定位树。 故障定位树为不完全二叉树。在故障定位树中,每一个节点包含一个故障症状 信息(测试信息或告警信息), 不同的故障症状指向故障定位树中不同的子节 点, 故障定位树中的叶节点是故障, 其他节点为故障症状。 故障定位树中的任 何一个由根到叶的分枝的含义是: expr(Tl,T2,...) -> /Fm。 Ti表示故障症状信息, Fm表示故障。 表达式的含义: F为 T的函数, 一组 T唯一确定一个 F。
对故障进行分析、推理的过程, 就是通过对故障定位树的遍历, 从典型的 故障症状出发, 根据每一个预设的其它故障症状确定下一步可以做出什么判 断, 以及如何做。 故障定位树与定位知识、 定位推理结合为一体, 可以直观地 反映正向的推理逻辑关系, 与人的直接经验知识有直接的对应关系,便于理解 和操作。
故障树分析方法依赖于通信设备的电路关系。只有当通信设备的电路关系 确定时, 才能获得故障树, 进而使用故障树分析方法进行故障定位。 当通信设 备的电路关系发生变化时, 需要重新构造上述的故障树。 由于通信设备的电路 关系通常都不是固定的, 而具有动态性,构造故障树的工作只能在设备运行的 现场进行。 但是, 通信设备复杂性导致故障树的逻辑结构复杂、 严密, 构造起 来具有艮大的难度,在对通信设备进行升级时,在通信设备运行现场重新构造 故障树的难度就更大了。
发明内容
本发明实施例提供一种通信设备故障定位的方法和系统及设备,能够自动 地将通信设备的故障定位到 FRU, 且缩短故障定位所花费时间。
具体而言, 本发明实施例包括如下的技术方案:
一种通信设备故障定位的方法,在可现场更换单元内设置有各单元电路关 联关系的关联矩阵, 该方法还包括:
根据接收到的故障定位请求,获取通信设备中可现场更换单元内部测试信 息;
根据所述测试信息及所述关联矩阵,建立本次定位关联的定位子矩阵; 所 述定位子矩阵中包括与所述测试信息对应的单元电路集和与所述单元电路集 关联的测试信息集;
查询所述定位子矩阵中各测试信息, 查找工作状态为不正常的单元电路; 以及,
查找到所述工作状态为不正常的单元电路所对应的可现场更换单元。
一种通信设备故障定位的系统, 包括:
测试适配单元, 用于获取通信设备中可现场更换单元内部测试信息, 并发 送给推理机;
可现场更换单元知识库,用于存储通信设备中各个可现场更换单元内部各 单元电路关联关系的关联矩阵;
知识构造单元, 用于根据从推理机得到的测试信息, 以及从所述可现场更 换单元知识库中获得的可现场更换单元内部各单元电路关联关系的关联矩阵, 建立本次定位关联的定位子矩阵, 并将所述定位子矩阵发送给所述推理机, 所 述定位子矩阵包括与所述测试信息对应的单元电路集和与所述单元电路集关 联的测试信息集;
推理机,根据接收到的故障定位请求,查询所述定位子矩阵中各测试信息, 查找工作状态为不正常的单元电路,并查找所述工作状态为不正常的单元电路 中所对应的可现场更换单元。 一种可现场更换单元, 包括: 单元电路, 还包括: 故障定位系统, 所述故 障定位系统包括:
测试适配单元,用于获取可现场更换单元内部测试信息,并发送给推理机; 可现场更换单元知识库,用于存储可现场更换单元内部各单元电路关联关 系的关联矩阵;
知识构造单元, 用于根据从推理机得到的测试信息, 以及从所述可现场更 换单元知识库中获得的可现场更换单元内部各单元电路关联关系的关联矩阵 , 建立本次定位关联的定位子矩阵, 并将所述定位子矩阵发送给所述推理机, 所 述定位子矩阵包括与所述测试信息对应的单元电路集和与所述单元电路集关 联的测试信息集;
推理机,根据接收到的故障定位请求,查询所述定位子矩阵中各测试信息, 查找工作状态为不正常的单元电路,并查找到所述工作状态为不正常的单元电 路中所对应的可现场更换单元。
一种通信设备, 包括可现场更换单元, 还包括:
测试适配单元, 用于获取通信设备中可现场更换单元内部测试信息, 并发 送给推理机;
可现场更换单元知识库,用于存储通信设备中各个可现场更换单元内部各 单元电路关联关系的关联矩阵;
知识构造单元, 用于根据从推理机得到的测试信息, 以及从所述可现场更 换单元知识库中获得的可现场更换单元内部各单元电路关联关系的关联矩阵, 建立本次定位关联的定位子矩阵, 并将所述定位子矩阵发送给所述推理机, 所 述定位子矩阵包括与所述测试信息对应的单元电路集和与所述单元电路集关 联的测试信息集;
推理机,根据接收到的故障定位请求,查询所述定位子矩阵中各测试信息, 查找工作状态为不正常的单元电路,并查找所述工作状态为不正常的单元电路 中所对应的可现场更换单元。
本发明实施例的故障定位方法,通过将通信设备的故障或告警信息与可现 场更换单元的单元电路进行关联, 并构建基于单元电路的关联矩阵, 同时, 在 一 6—
发生故障告警或对通信设备进行测试时,根据按照上迷方式构建的关联矩阵和 检测到的信息找出对应的一个或多个单元电路,再进一步根据事先记载的、 不 同单元电路之间的管理关系、 可现场更换单元以及通信设备的配置关系信息, 自动地定位出实际发生故障或告警所在的可现场更换单元,克服了现有通信设 备故障定位技术不能快速进行故障定位的缺陷,能够自动地通信设备的故障定 位到 FRU, 解决了现有技术为故障定位所花费时间较长的问题。
本发明实施例的通信设备故障定位的系统,基于通信设备故障信息以单元 电路为基础的构建方式,克服了现有通信设备故障定位技术中定位知识构造困 难的缺陷, 能够适应自动、 动态构造定位知识的需求, 解决了现有技术中, 通 信设备或通信网络配置变化后, 不能快速、 自动构造故障定位信息的问题。 本 发明实施例的故障定位方法和系统,把现有技术中通信设备故障定位的过程分 解为基于定位单元电路故障的定位方式, 实现了把故障直接定位到 FRU的目 的。
附图说明 图 1为故障定位系统的组成要素示意图;
图 2为根据本发明一实施例的 FRU结构示意图;
图 3为根据本发明另一实施例的 FRU结构示意图;
图 4为根据本发明实施例的故障定位流程图;
图 5为根据本发明实施例的故障定位系统结构框图。
具体实施方式 为了能够清楚地描述本发明的技术方案,以下首先对作为本发明技术方案 基础的通信设备配置信息进行介绍:
本发明实施例涉及的通信设备,均由一个 FRU或多个相互连接的 FRU构 成; 构成这些 FRU的部件, 参见图 2、 图 3, 可以是能够完成基本电功能的单 元电路, 或由这些单元电路和 FRU的组合。 这些单元电路在故障定位时, 尽 管是需要关注的对象, 但是, 为了能在发生故障时迅速更换掉故障部件, 使通 信设备工作在良好的状态,对于通信网络管理人员而言,通常更加关心那些由 单元电路构成的 FRU。 这些 FRU, 即故障定位所关心的物理实体可以是节点: 故障定位所关心的物理实体, 例如电路板、 机框、 子架、 设备等。 这些物理实 体可以采用一种关联矩阵来描述其相互之间的关联关系。
图 2所示的 FRU1由单元电路 11、 12和 13相互连接构成; 其中, 任何单 元电路、测试信息与信号的关联关系都可以分别采用一个关联矩阵来描述。 关 联矩阵的横坐标用于表示一组输入信号或可测试模块或者其组合,纵坐标用于 表示一测试信号或输出信号的关系。
参见表 1 , FRU1的单元电路 11采用表 1所列关联矩阵来表达,其中, F1-F3 表示单元电路 11中各个电路模块或该单元电路 11的输入信号, T1-T4表示单 元电路 11中各个电路模块的测试信号以及该单元电路 11的输出信号;以 F1- F3 为横坐标, T1-T4为纵坐标, 构成单元电路 11的关联矩阵。 该关联矩阵中的 各个元素值在该单元电路 11制造完成时就存储在该单元电路 11之中; 其中, 任意元素的值均表示该元素所在行 Fm ( l<m<3 )与该元素所在列 Τη ( 1<η<4 ) 的相关性。 参见表 1 , 各个元素的取值可以为" 0", "1"或" 1+,,三种, 其中, "1" 表示 Fm与 Tn弱相关, 即当 Fm发生时 Tn可能但不必然发生; 取值" 1+"表示 Fm与 Tn强相关, 即当 Fm发生时 Tn必然发生; 取值" 0"表示 Fm与 Tn不相 关, 即两者之间无必然关系。
由与 Fm相关的一组 T为 Fm的故障症状或者告警。 如果 Tn发生, 则与 Tn相关的一组 F中必有一个 F发生, 即必有一个故障或告警发生。 由此上述 的关联矩阵如表 1 所示。 以下的解释可以帮助理解这个关联矩阵所表示的信 息:
假设 Fl、 F2、 F3分别表示单元电路 11中防雷模块 111、 滤波模块 112和 输入信号 IN; T1-T4分别表示单元电路 11中的电压测试、 防雷测试、 第一路 电压输出和第二路电压输出; 由表 1就可以看出: 防雷模块 111与电压测试之 间的相关性为 "0", 即表示: 防雷模块 111与电压测试之间无必然关系; 同样, 防雷模块 111与防雷测试之间的相关性为 即表示: 防雷模块 111与防雷 测试之间具有强相关性, 防雷模块 111 发生故障, 则必然会发生防雷测试的 结果为不正常或故障的现象;依此类推, 关联矩阵中其他元素所表达的相关性 也可以用上述的关联矩阵得到。 这个关联矩阵是该单元电路 11制造的同时就 生成, 并保存在单元电路 11之中。
Figure imgf000010_0001
采用上述的关联矩阵可以用于描述任意的单元电路。这样做的好处是使用 于进行故障定位的知识或信息设置在各个单元电路中,当需要将这些单元电路 组合而构成一个 FRU时, 可以从各个单元电路中取出相关的关联信息构建整 个 FRU的关联矩阵。 这是一个非常灵活的方式。
众所周知: 在通信设备的配置改变, 往往是通过改变单元电路或 FRU来 实现的, 而 FRU同样是由单元电路构成的。 因此, 将关联矩阵细化到单元电 路后, 即使通信设备被改变,也可以简单地通过上述的关联矩阵来自动地构造 出新的故障定位信息。
参见表 2-表 5, 它们给出了描述图 2所示 FRU1的所有单元电路 11、 12、 13以及它们之间相互关联关系的关联矩阵。
Figure imgf000010_0002
单元电路 12的关联矩阵 单元电路 12电 单元电路 12的输 压测试 出 (OUT1 )
单元电路 12电源模块 1 1
单元电路 12电压转换电路 1 1
单元电路 12输入信号 1 1
Figure imgf000011_0001
Figure imgf000011_0003
Figure imgf000011_0002
单元电 单元电 单元电路 单元电路 12 输出 1 输出 2 路 11电 路 11防 12电压测 电压测试 ( OUT ( OUT 压测试 雷测试 试 1 ) 2 ) 防雷电路 111 0 1+ 1 1 1 1 滤波电路 112 0 0 1 1 1 1 电源模块 121 0 0 1 0 1 0 电压转换 122 0 0 1 0 1 0 电源模块 131 0 0 0 1 0 1 电压转换 132 0 0 0 1 0 1 输入信号 IN 1 1 1 1 1 1 由上述表 2-表 5可以看出: 各个单元电路 11、 12、 13的输入信号和故障, 可能会影响各个单元电路的测试状态及输出信号。因此,各个单元电路的故障、 测试、输入信号、输出信号及相互关联关系构成了定位知识的几个要素。 后级 单元或模块的输入信号可以看作是前级单元电路故障在本节点(即后级单元或 模块 )入口处的映象; 而前級单元或模块输出信号可以看作是后级单元电路测 试在本单元电路(即前级单元或模块) 出口处的映象。
单元电路自身的测试信息是有限的。 仅仅利用单元电路自身的测试信息, 常常难以定位出故障是发生在单元电路内还是单元电^夕卜。如果能够充分利 用各单元电路的测试信息, 所有故障都可以定位到单元电路范围。
图 3所示是另一种形态 FRU, 即 FRU2中包含有 FRU1 , 与 FRU1不同的 是: FRU2还具有一个单元电路 21 , 单元电路 21由滤波模块 211和电压转换 模块 212构成, 其输入信号是 IN1 , 输出信号是 OUT3; 由上述各个部件构成 的 FRU2, 其关联矩阵的构成与上述 FRU1的构成方式相同, 在此不再赘述。
FRU在设计阶段就可以将其用于定位的关联矩阵建立好, 并存储在相关 的 FRU中, 由该 FRU携带。 该关联矩阵建立的方法如下:
确定 FRU的单元电路及接口输入信号, 并添加到关联矩阵中; 确定 FRU 的测试及接口输出信号,也添加到关联矩阵中; 遍历所有单元电路及接口输入 信号,根据单元电路或接口输入信号对测试及接口输出信号的影响,确定它们 之间的相关性, 也将这些相关性的参数表达形式添加到关联矩阵中; 最后, 将 关联矩阵转化为 FRU或 FRU所在通信设备支持的数据配置文件。
由于 FRU作为通信设备的基本组成单元, 其电路配置是固定不变的, 因 此 FRU的定位知识也是固定不变的。 可以在 FRU研发阶段构造定位知识。 由 于 FRU是闭合的小系统,构造及验证定位知识时可以只关注 FRU自身就可以, 因此, 定位知识的构造难度低。 测试人员可以在 FRU的验证阶段通过模拟故 障来验证 FRU定位知识是否正确, 可以在 FRU研发阶段验证定位知识, 且验 证方法简单; 由于 FRU定位知识可以很容易作为独立的设备配置数据进行升 级, 与其他配置数据没有耦合, 升级容易、 简单。 最为重要的是: 上述的这些 特点, 可以支持根据通信设备的 FRU配置及 FRU定位知识而自动、 动态地构 造通信设备定位知识。
为了能够说明基于上述的关联矩阵来实现对故障或报警信息的定位,本发 明提供了如下的一个具体的实例,以帮助相关领域技术人员进一步理解本发明 技术方案。
本发明实施例故障定位的整体思路是: 首先,根据当前的故障症状推理出 可能故障的单元电路, 然后再根据单元电路的状态, 推理出可能故障的 FRU。 当然, 在故障定位完成后, 需要输出故障定位结果, 以使故障能够尽快地被排 除。
参见图 4, 本发明的具体实例中, 包括:
步骤 401 , 获取通信设备中 FRU内部测试信息, 这些测试信息反映了被 测试的单元电路的功能或输出是否存在不合格状态。
步驟 40 , 根据这些测试信息以及保存在 FRU内部, 用于描述各单元电 路关联关系的关联矩阵,在这些关联矩阵中搜寻与上述测试信息对应的单元电 路集合。 例如, 可根据不合格(FAIL )状态的测试信息以及保存在 FRU内部, 用于描述各单元电路关联关系的关联矩阵,在这些关联矩阵中搜寻与上述不合 格状态的测试信息对应的单元电路集合即怀疑故障的单元电路集合。
根据上面的介绍, 一个 FRU内部会存在若干个单元电路, 每个单元电路 都有与之相对应的关联矩阵, 这些关联矩阵存储在 FRU中。
步驟 403, 再根据上述已经搜索的所述怀疑故障的单元电路集合, 搜索相 关测试信息集, 建立由各单元电路集合及关联测试信息集合构成的定位子矩 阵。
步驟 404〜406, 在定位子矩阵中, 取出一未分析过的测试信息, 遍历所有 故障推理规则, 找到定位子矩阵中工作状态为不正常的单元电路并进行记录; 重复执行此步骤, 直到所述定位子矩阵中所有测试信息已被分析, 之后, 记录 状态不为良好(GOOD ) 的单元电路集。
步骤 407 409, 在状态不为 GOOD的单元电路集中, 取出一未分析过的 单元电路, 遍历所有 FRU分析规则, 对工作状态为不正常的单元电路进行判 断、 分析, 得到工作状态为不正常的单元电路所对应的 FRU; 重复执行此步 骤, 直到所述状态不为 GOOD的单元电路集中所有单元电路已被分析, 之后, 记录状态不为 GOOD的 FRU集。
如果根据故障推理规则,在定位子矩阵中没有搜索到工作状态为不正常的 单元电路, 说明 FRU中没有工作状态为不正常的单元电路, 因此, 在此情况 下, 就无需再执行判断并记录工作状态为不正常的单元电路所对应的 FRU的 操作。 为了在定位子矩阵中找到工作状态为不正常的单元电路并对其进行记 录, 需要执行如下的操作步骤:
首先,从定位子矩阵中取出一未分析过的测试信息; 再根据事先确定的故 障推理规则对与所述测试信息关联的单元电路进行判断;如果单元电路工作状 态为不正常, 则记录这个单元电路; 重复上述的各个步骤, 直到定位子矩阵中 所有测试信息均分析完毕。通过这种在定位子矩阵中遍历的方式, 就可以在上 述关联矩阵的基础上, 找到所有工作状态为不正常的单元电路。
上述的故障推理规则包括:
如果测试信息为不合格 ( FAIL ), 则将与所述测试信息关联的单元电路的 状态设置为不可信 (Suspect)状态;
如果测试信息为通过(PASS ), 则将与所述测试信息的关联关系为强相关 的单元电路的状态设置为良好(GOOD )状态;
如果测试信息不是良好 ( GOOD ), 且与所述测试信息相关的单元电路中 存在唯一的状态不为良好(GOOD )的单元电路, 则将所述单元电路的状态设 置为故障(BAD )状态;
如果一个单元电路与某一 FRU内相关的所有测试信息的关联关系都为弱 相关, 且所有的这些测试信息的结果都为通过(PASS ), 则将所述的单元电路 的状态设置为良好(GOOD )状态;
如果测试信息为不合格 ( FAIL ), 且与所述测试信息相关的单元电路集中 所有单元电路都不为故障(BAD )状态, 则根据单元电路集得到单元电路集相 关的测试集,确定符合测试集的最少的一组单元电路(这组单元电路称为一个 故障组),把故障组中的单元电路状态设置为有可能故障(PROBABLY )状态; 如果某故障組中只有一个单元电路,把该单元电路状态设置为故障(BAD ) 状态。
在找到并记录下单元电路的工作状态后,还需要进一步找到那些工作状态 不是良好的单元电路所对应的 FRU, 这样才能最终将故障定位的工作完成。 为了定位到上述的 FRU, 需要采用如下的判断步驟, 这些步骤的顺序是可以 任意改变的。 这些步骤包括:
如果 FRU中所有单元电路的状态都是良好(GOOD )状态, 则将所述可 现场更换单元的状态设置为良好 ( GOOD )状态;
如果 FRU中只要存在状态为故障( BAD )状态的单元电路, 则将 FRU的 状态设置为故障 (BAD )状态;
如果可现场更换单元中存在有状态为可能故障 (Probably)的单元电路, 且 与该状态为可能故障 (Probably)的单元电路同属一个故障组的单元电路完全属 于该可现场更换单元, 则将所述可现场更换单元的状态设置为故障 (BAD)状 态;
如果 FRU中存在有状态为可能故障 (Probably)的单元电路, 且与该状态为 可能故障 (Probably)的单元电路同属一个故障组的单元电路不完全属于该 FRU, 且该 FRU的状态不为故障(BAD )状态, 则将所述 FRU的状态设置为 可能故障 (Probably)状态;
如果 FRU中存在有状态为不可信 (Suspect)的单元电路, 且 FRU的状态不 是故障( BAD )或可能故障 (Probably),则将 FRU的状态设置为不可信( Suspect ) 状态;
如果 FRU的所有测试信息为不合格 ( FAIL ) 的单元电路都属于该 FRU, 则设置该 FRU的状态为故障( BAD )状态。
通常, 一个对 FRU定位的操作是通信网络中一些节点, 例如网管设备, 发出的定位命令而产生的; 因此, 当定位结束后, 定位的结果信息应当返回给 这些发出定位命令的节点。 因此, 图 4所示实例还包括:
步驟 410, 返回故障定位结果, 即将上述在定位过程中所记录的工作状态 为不正常的单元电路所对应的 FRU的信息返回给所述发出定位操作命令的设 备的步骤;这种步骤,所属领域技术人员完全可以依据现有技术的知识而实现, 例如: 采用通信过程中的请求和响应的处理方法, 在此不再赞述。
此外, 一个对 FRU定位的操作也可以是通信设备内自动测试信息上报事 件触发的自动定位。
如上所述, 在一个通信设备因升级或故障, 更换了其中的 FRU后, 该通 信设备中 FRU的关联矩阵则需要进行更新, 以满足在新的配置情况下, 对通 信设备进行故障定位的需要。 因此,本发明实施例还提供了一个自动更新关联 矩阵的技术方案, 具体的一个实例包括如下的步糠:
首先, 以 FRU的单元电路、 接口输入信号与测试、 接口输出信号构成通 信设备关联矩阵, 并保留原 FRU之间、 单元电路之间以及 FRU与单元电路之 间的相关元素;
然后,遍历通信设备关联矩阵中所有的单元电路,如果单元电路存在相关 的接口输出信号,则找到与该接口输出信号存在连接关系的接口输入信号,采 用递归搜索的方式,搜索与接口输入信号相关的所有测试信号,在通信设备关 联矩阵中存储相应单元电路与测试信号的相关元素;
最后,删除通信设备关联矩阵中存在连接关系的接口输入信号元素与接口 输出信号元素, 形成新的通信设备关联矩阵。
与上述技术方案相对应,本发明实施例还提供了一个通信设备故障定位的 系统的实例, 以帮助相关技术领域技术人员对本发明的系统的理解。
参见图 5, 该系统 S—般设置在 FRU中, 也可以设置在由 FRU构成的通 信设备中, 主要包括测试适配单元 Sl、 定位知识构造单元 S3、 FRU知识库 S4 和推理机 S2; 其中:
测试适配单元 S1连接告警模块 S11和测试模块 S12, 用于获取告警信息 和测试信息, 并向和该测试适配单元 S1连接的推理机 S2发送;
知识构造单元 S3连接 FRU知识库 S4和配置管理模块 S31, 用于建立本 次定位关联的由各单元电路集合与关联测试信息集构成的定位子矩阵,并向和 该知识构造单元 S3连接的推理机 S2发送;
FRU知识库 S4用于存储通信设备中可现场更换单元内部各单元电路关联 关系的关联矩阵;
推理机 S2接收故障定位节点 S21发出的操作命令, 根据故障推理规则和 FRU分析规则, 对存在故障的 FRU进行定位, 具体参见上述的定位方法, 在 此不再赘述。
事实上, 告警模块 Sll、 测试模块 S12和配置管理模块 S31是现有技术中 存在的功能单元,但是, 由于前述现有技术中这些模块发出的信息并未能够合 理地使用, 造成了上述种种故障定位的问题。 本发明实施例的系统中, 测试适 配单元 S1将告警模块 Sl l、 测试模块 S12发来的测试信息整理(适配)后, 才发送给推理机 S2, 而这里所述的测试信息整理就是上述获取通信设备中可 现场更换单元内部的告警信息和测试信息的操作,具体参见上述的定位方法的 介绍; 同样, 由知识构造单元 S3将 FRU知识库的信息和配置管理模块 S31 的信息进行匹配后送入推理机 S2; 这一过程即是上述根据推理机发送的测试 信息、 描述通信设备中可现场更换单元内部各单元电路关联关系的关联矩阵, 在所述关联矩阵中搜寻与所述测试信息对应的单元电路,得到单元电路集合, 以及进一步搜索关联的测试信息,建立由各单元电路集合与关联测试信息集构 成的定位子矩阵的操作。在整理好的测试信息和匹配好的 FRU知识的基础上, 推理机 S2根据推理规则, 查询定位子矩阵中各测试信息, 查找并记录工作状 态为不正常的单元电路;最终查找到所述工作状态为不正常的单元电路中所对 应的可现场更换单元, 得到相应的故障分析结果。
—般而言, 一个对 FRU定位的操作是通信网络中一些节点, 例如: 网管 设备, 发出的定位命令而产生的; 因此, 当定位结束后, 定位的结果信息应当 返回给这些发出定位命令的节点。 因此, 本发明系统的实例中, 还包括一个故 障定位节点 S21 , 在推理机完成定位推理工作后, 会将上述在定位过程中所记 录的工作状态为不正常的单元电路所对应的 FRU的信息返回给发出定位操作 命令的设备;这种交互的过程是所属领域技术人员可以依据现有技术的知识就 能实现的, 例如: 采用通信过程中的请求和响应的处理方法, 在此不再赘述。
本领域普通技术人员可以理解,实现上述实施例方法的全部或部分步骤可 以通过程序指令相关的硬件来完成,所述的程序可以存储于计算机可读取存储 介质中, 所述的存储介质包括 ROM RAM、 磁碟、 光盘等。 最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对本发明 作限制性理解。尽管参照上述较佳实施例对本发明进行了详细说明,本领域的 普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替 换, 而这种修改或者等同替换并不脱离本发明技术方案的精神和范围。

Claims

权 利 要 求
1、 一种通信设备故障定位的方法, 其特征在于, 可现场更换单元内设置 有各单元电路关联关系的关联矩阵, 该方法还包括:
根据接收到的故障定位请求,获取通信设备中可现场更换单元内部测试信
•3 '&,
根据所述测试信息及所述关联矩阵,建立本次定位关联的定位子矩阵; 所 述定位子矩阵包括与所述测试信息对应的单元电路集和与所述单元电路集关 联的测试信息集;
查询所述定位子矩阵中各测试信息, 查找工作状态为不正常的单元电路;0 以及,
查找到所述工作状态为不正常的单元电路所对应的可现场更换单元。
2、 根据权利要求 1所述的方法, 其特征在于: 所述根据所述测试信息及 所述关联矩阵, 建立本次定位关联的定位子矩阵的方法包括:
在所述关联矩阵中搜寻与所述测试信息对应的单元电路,得到单元电路集5 合;
根据所述单元电路集合搜索关联的测试信息, 得到关联测试信息集; 根据所述单元电路集及测试信息集,建立本次定位关联的由各单元电路集 合与关联测试信息集构成的定位子矩阵。
3、 根据权利要求 1所述的方法, 其特征在于: 所述查询所述定位子矩阵0 中各测试信息, 查找工作状态为不正常的单元电路的步骤, 具体包括:
从所述定位子矩阵的测试信息集中取出一未分析过的测试信息; 获得与所述测试信息关联的单元电路;
根据预先确定的故障推理规则,确定与所述测试信息关联的单元电路的工 作状态;
5 如果所述单元电路工作状态为不正常,则得到工作状态为不正常的单元电 路;
重复上述的步骤, 直到定位子矩阵中所有测试信息均分析完毕。
4、 根据权利要求 3所述的方法, 其特征在于: 所述根据预先确定的故障 推理规则, 确定与所述测试信息关联的单元电路的工作状态的步骤包括: 如果测试信息为不合格,则与所述测试信息关联的单元电路的状态为不可 信状态;
如果测试信息为通过,则与所述测试信息的关联关系为强相关的单元电路 的状态为良好状态;
如果测试信息不是良好,且与所述测试信息相关联的单元电路中存在唯一 的状态不为良好的单元电路, 则所迷单元电路的状态为故障状态;
如果一个单元电路与某一可现场更换单元内相关的所有测试信息的关联 关系都为弱相关, 且所有这些测试信息的结果都为通过, 则所述单元电路的状 态为良好状态;
如果测试信息为不合格,且与所述测试信息相关的单元电路集中所有单元 电路都不为故障状态, 则根据单元电路集得到单元电路集相关的测试集,确定 符合测试集的最少的一组单元电路, 该组单元电路的状态为有可能故障状态; 如果所述符合测试集的最少的一组单元电路组中只有一个单元电路,则该 单元电路状态为故障状态。
5、 根据权利要求 1所述的方法, 其特征在于: 所述查找到所述工作状态 为不正常的单元电路所对应的可现场更换单元的步骤为:
根据可现场更换单元分析规则, 对工作状态为不正常的单元电路进行分 析, 得到所述工作状态为不正常的单元电路所对应的可现场更换单元。
6、 根据权利要求 5所述的方法, 其特征在于: 所述根据可现场更换单元 分析规则,得到所述工作状态为不正常的单元电路所对应的可现场更换单元的 步驟包括:
如果所述可现场更换单元中所有单元电路的状态都是良好,则所述可现场 更换单元的状态为良好;
如果所述可现场更换单元中只要存在状态为故障的单元电路,则所述可现 场更换单元的状态为故障;
如果可现场更换单元中存在有状态为可能故障的单元电路,且该状态为可 能故障的单元电路同属一个故障组的单元电路完全属于该可现场更换单元,则 所述可现场更换单元的状态为故障;
如果可现场更换单元中存在有状态为可能故障的单元电路,且该状态为可 能故障的单元电路同属一个故障组的单元电路不完全属于该可现场更换单元, 且该可现场更换单元的状态不为故障,则所述可现场更换单元的状态为可能故 障;
如果可现场更换单元中存在有状态为不可信的单元电路,且所述可现场更 换单元的状态不是故障或可能故障, 则可现场更换单元的状态为不可信状态; 如果可现场更换单元的所有测试信息为不合格的单元电路都属于该可现 场更换单元, 则该可现场更换单元的状态为故障。
7、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 记录所 场更换单元的信息返回给发出故障定位请求的设备。
8、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 对所述 描述通信设备中可现场更换单元内部各单元电路关联关系的关联矩阵自动更 新, 构成新的关联矩阵的步骤:
以所述可现场更换单元的单元电路、接口输入信号与所述测试、接口输出 信号构成所述通信设备关联矩阵, 并保留原可现场更换单元之间、单元电路之 间以及可现场更换单元与单元电路之间的相关元素;
遍历通信设备关联矩阵中所有的单元电路,如果所述单元电路存在相关的 接口输出信号,找到与接口输出信号存在连接关系的接口输入信号,递归搜索 与接口输入信号相关的所有测试信号,在所述通信设备关联矩阵中存储相应单 元电路与所述测试信号的相关元素;
删除通信设备关联矩阵中存在连接关系的接口输入信号元素与接口输出 信号元素。
9、 根据权利要求 1所述的方法, 其特征在于, 所述故障定位请求为通信 设备发出的定位操作命令,或者所述故障定位请求为通信设备内自动测试信息 上报事件所触发的自动定位请求。
10、 一种通信设备故障定位的系统, 其特征在于: 包括:
测试适配单元, 用于获取通信设备中可现场更换单元内部测试信息, 并发 送给推理机;
可现场更换单元知识库,用于存储通信设备中各个可现场更换单元内部各 单元电路关联关系的关联矩阵;
知识构造单元, 用于根据从推理机得到的测试信息, 以及从所述可现场更 换单元知识库中获得的可现场更换单元内部各单元电路关联关系的关联矩阵, 建立本次定位关联的定位子矩阵, 并将所述定位子矩阵发送给所述推理机, 所 述定位子矩阵包括与所述测试信息对应的单元电路集和与所述单元电路集关 联的测试信息集;
推理机,根据接收到的故障定位请求,查询所述定位子矩阵中各测试信息, 查找工作状态为不正常的单元电路,并查找所述工作状态为不正常的单元电路 中所对应的可现场更换单元。
11、 根据权利要求 10所述的系统, 其特征在于, 所述推理机还用于给发 出故障定位请求的节点设备返回定位结果信息,所述定位结果信息是工作状态 为不正常的单元电路所对应的可现场更换单元的信息。
12、 一种可现场更换单元, 包括: 单元电路, 其特征在于, 还包括: 故障 定位系统, 所述故障定位系统包括:
测试适配单元,用于获取可现场更换单元内部测试信息,并发送给推理机; 可现场更换单元知识库,用于存储可现场更换单元内部各单元电路关联关 系的关联矩阵;
知识构造单元, 用于根据从推理机得到的测试信息, 以及从所述可现场更 换单元知识库中获得的可现场更换单元内部各单元电路关联关系的关联矩阵, 建立本次定位关联的定位子矩阵, 并将所述定位子矩阵发送给所述推理机, 所 述定位子矩阵包括与所述测试信息对应的单元电路集和与所述单元电路集关 联的测试信息集;
推理机,根据接收到的故障定位请求,查询所述定位子矩阵中各测试信息, 查找工作状态为不正常的单元电路,并查找到所述工作状态为不正常的单元电 路中所对应的可现场更换单元。
13、 根据权利要求 12所述的可现场更换单元, 其特征在于, 所迷推理机 还用于给发出故障定位请求的节点设备返回定位结果信息,所述定位结果信息 是工作状态为不正常的单元电路所对应的可现场更换单元的信息。
14、 一种通信¾:备, 包括可现场更换单元, 其特征在于, 还包括: 测试适配单元, 用于获取通信设备中可现场更换单元内部测试信息, 并发 送给推理机;
可现场更换单元知识库,用于存储通信设备中各个可现场更换单元内部各 单元电路关联关系的关联矩阵;
知识构造单元, 用于根据从推理机得到的测试信息, 以及从所述可现场更 换单元知识库中获得的可现场更换单元内部各单元电路关联关系的关联矩阵, 建立本次定位关联的定位子矩阵, 并将所述定位子矩阵发送给所述推理机, 所 述定位子矩阵包括与所述测试信息对应的单元电路集和与所述单元电路集关 联的测试信息集;
推理机,根据接收到的故障定位请求,查询所述定位子矩阵中各测试信息, 查找工作状态为不正常的单元电路,并查找所述工作状态为不正常的单元电路 中所对应的可现场更换单元。
15、 根据权利要求 14所述的通信设备, 其特征在于, 所述推理机还用于 将定位结果信息返回给发出故障定位请求的节点设备,所述定位结果信息是工 作状态为不正常的单元电路所对应的可现场更换单元的信息。
PCT/CN2007/001815 2006-06-16 2007-06-08 Procédé, système et appareil de repérage de défaillance d'un appareil de communication WO2007147327A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT07721388T ATE526752T1 (de) 2006-06-16 2007-06-08 Verfahren, system und vorrichtung zur fehlerlokalisierung für kommunikationsvorrichtungen
EP07721388A EP2031800B1 (en) 2006-06-16 2007-06-08 Method, system and apparatus of fault location for communicaion apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610086709.3 2006-06-16
CN2006100867093A CN101047738B (zh) 2006-06-16 2006-06-16 通信设备故障定位的方法和系统

Publications (1)

Publication Number Publication Date
WO2007147327A1 true WO2007147327A1 (fr) 2007-12-27

Family

ID=38771943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001815 WO2007147327A1 (fr) 2006-06-16 2007-06-08 Procédé, système et appareil de repérage de défaillance d'un appareil de communication

Country Status (4)

Country Link
EP (1) EP2031800B1 (zh)
CN (1) CN101047738B (zh)
AT (1) ATE526752T1 (zh)
WO (1) WO2007147327A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112866014A (zh) * 2021-01-06 2021-05-28 上海航天电子有限公司 扩频应答机常见故障排查方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159886B (zh) * 2007-11-09 2010-10-20 华为技术有限公司 获取服务损耗度的方法及装置
WO2009149583A1 (en) * 2008-06-12 2009-12-17 Zoran Corporation System and method for locating a fault on a device under test
CN101594192B (zh) * 2009-06-19 2012-12-19 中兴通讯股份有限公司 一种信号处理设备和光接口板的在线故障检测方法和装置
CN102055604B (zh) * 2009-11-05 2012-12-05 中国移动通信集团山东有限公司 一种故障定位方法及其系统
CN102083114B (zh) * 2009-11-27 2014-03-12 中国移动通信集团北京有限公司 断站业务核查的方法和装置
US9336111B1 (en) * 2010-07-30 2016-05-10 Emc Corporation System and method for data logging within a field replaceable unit
CN102375769B (zh) * 2010-08-26 2016-12-28 罗普特(厦门)科技集团有限公司 测试完整性控制系统及方法
CN102243674B (zh) * 2011-06-29 2013-02-20 北京航空航天大学 一种基于结构层次关系的改进相关性矩阵分析方法
CN103475531A (zh) * 2012-06-08 2013-12-25 中兴通讯股份有限公司 异常处理方法、自动巡检控制台和知识库系统
CN104065501A (zh) * 2013-03-22 2014-09-24 中兴通讯股份有限公司 一种网管系统中网络故障定位的方法及装置
CN103973496B (zh) * 2014-05-21 2017-10-17 华为技术有限公司 故障诊断方法及装置
CN106936639A (zh) * 2017-03-22 2017-07-07 中国人民解放军重庆通信学院 一种用于应急移动通信系统的故障诊断平台及其构建方法
CN110832826B (zh) 2017-06-30 2023-01-13 区块链控股有限公司 区块链网络中概率中继的流量控制的方法和系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561760A (en) * 1994-09-22 1996-10-01 International Business Machines Corporation System for localizing field replaceable unit failures employing automated isolation procedures and weighted fault probability encoding
EP1333615A2 (en) * 2002-01-24 2003-08-06 Alcatel Canada Inc. System and method of identifying a faulty component in a network element
US20030236998A1 (en) * 2002-05-17 2003-12-25 Sun Microsystems, Inc. Method and system for configuring a computer system using field replaceable unit identification information
CN1474542A (zh) * 2002-08-06 2004-02-11 华为技术有限公司 电信设备故障信息管理方法
CN1479461A (zh) * 2002-08-29 2004-03-03 华为技术有限公司 通讯系统故障诊断方法和系统
US20040088463A1 (en) * 2002-10-24 2004-05-06 Sun Microsystems, Inc. System and method for DHCP client-ID generation
CN1606260A (zh) * 2004-05-14 2005-04-13 中国联合通信有限公司 一种用于通信网络中的故障定位方法及装置
CN1851491A (zh) * 2006-02-20 2006-10-25 华为技术有限公司 一种故障定位方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561760A (en) * 1994-09-22 1996-10-01 International Business Machines Corporation System for localizing field replaceable unit failures employing automated isolation procedures and weighted fault probability encoding
EP1333615A2 (en) * 2002-01-24 2003-08-06 Alcatel Canada Inc. System and method of identifying a faulty component in a network element
US20030236998A1 (en) * 2002-05-17 2003-12-25 Sun Microsystems, Inc. Method and system for configuring a computer system using field replaceable unit identification information
CN1474542A (zh) * 2002-08-06 2004-02-11 华为技术有限公司 电信设备故障信息管理方法
CN1479461A (zh) * 2002-08-29 2004-03-03 华为技术有限公司 通讯系统故障诊断方法和系统
US20040088463A1 (en) * 2002-10-24 2004-05-06 Sun Microsystems, Inc. System and method for DHCP client-ID generation
CN1606260A (zh) * 2004-05-14 2005-04-13 中国联合通信有限公司 一种用于通信网络中的故障定位方法及装置
CN1851491A (zh) * 2006-02-20 2006-10-25 华为技术有限公司 一种故障定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BOYANHESHIG ET AL.: "Research on Method of Fault Diagnosis Based on Relationship Matrix", JOURNAL OF VIBRATION AND SHOCK, vol. 18, no. 1, 31 March 1999 (1999-03-31), pages 1 - 3, XP008102489 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112866014A (zh) * 2021-01-06 2021-05-28 上海航天电子有限公司 扩频应答机常见故障排查方法

Also Published As

Publication number Publication date
EP2031800B1 (en) 2011-09-28
EP2031800A4 (en) 2009-08-26
CN101047738B (zh) 2010-06-09
ATE526752T1 (de) 2011-10-15
EP2031800A1 (en) 2009-03-04
CN101047738A (zh) 2007-10-03

Similar Documents

Publication Publication Date Title
WO2007147327A1 (fr) Procédé, système et appareil de repérage de défaillance d&#39;un appareil de communication
CN107317695B (zh) 用于调试联网故障的方法、系统和装置
EP2439882B1 (en) Method, device and system for evaluating network reliability
US10949280B2 (en) Predicting failure reoccurrence in a high availability system
US20220050765A1 (en) Method for processing logs in a computer system for events identified as abnormal and revealing solutions, electronic device, and cloud server
CN110088744B (zh) 一种数据库维护方法及其系统
US8892959B2 (en) Automatic problem diagnosis
WO2019047072A1 (zh) 一种数据库的检测方法及其终端
WO2006117833A1 (ja) 監視シミュレーション装置,方法およびそのプログラム
CN112838944B (zh) 诊断及管理、规则确定及部署方法、分布式设备、介质
CN117041029A (zh) 网络设备故障处理方法、装置、电子设备及存储介质
CN110647417B (zh) 能源互联网异常数据处理方法、装置及系统
WO2010139146A1 (zh) 告警相关性分析方法及装置、校验告警相关性分析装置的系统及方法
CN116506340A (zh) 流量链路的测试方法、装置、电子设备及存储介质
CN110609761A (zh) 确定故障源的方法、装置、存储介质和电子设备
CN116775376A (zh) 处理NVMe盘链路故障的方法、系统、设备和存储介质
CN113328898B (zh) 一种具有自主学习能力的故障诊断方法和系统
CN114500236A (zh) 基于交换机信息状态和日志的设备故障分析方法及装置
Kavulya et al. Draco: Top Down Statistical Diagnosis of Large-Scale VoIP Networks
CN112231202A (zh) 一种基于日志监控和被测模块监控的自动提Bug方法
RU2801825C2 (ru) Способ, комплекс обработки информации об отказах устройств беспроводных сенсорных сетей передачи данных и связанных сетей
JP2000069122A (ja) 故障箇所特定化方法及び故障箇所特定化プログラムを記録した媒体
CN116055391A (zh) Ip中继巡检方法及装置、存储介质及电子设备
CN114244722A (zh) 虚拟网络健康分析方法、系统和网络设备
CN115811464A (zh) 基于多维整合数据的网络故障智能分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07721388

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007721388

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE