WO2007147317A1 - MCS d'un procédé de détermination de données inverses et terminal d'accès - Google Patents

MCS d'un procédé de détermination de données inverses et terminal d'accès Download PDF

Info

Publication number
WO2007147317A1
WO2007147317A1 PCT/CN2007/001565 CN2007001565W WO2007147317A1 WO 2007147317 A1 WO2007147317 A1 WO 2007147317A1 CN 2007001565 W CN2007001565 W CN 2007001565W WO 2007147317 A1 WO2007147317 A1 WO 2007147317A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
access terminal
reverse data
reverse
modulation
Prior art date
Application number
PCT/CN2007/001565
Other languages
English (en)
French (fr)
Inventor
Juejun Liu
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2007147317A1 publication Critical patent/WO2007147317A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • H04L1/0034Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter where the transmitter decides based on inferences, e.g. use of implicit signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method for determining a reverse data modulation and coding method and an access terminal thereof. Background technique
  • OFDM Orthogonal Frequency Division Multiplexing
  • LTE Long Term Evolution
  • AIE Air Interface Evolution
  • OFDMA Orthogonal Frequency Division Multiplexing
  • the transmitting end processes the data symbols by Inverse Discrete Fourier Transformation (IDFT) and maps them to different mutually orthogonal narrowband subcarriers, respectively, and respectively adds them to each narrowband subcarrier.
  • IDFT Inverse Discrete Fourier Transformation
  • Cyclic prefix forms an OFDM symbol for transmission; although the signal received by the receiving end will contain multiple multipath components with different delays after aerial propagation, the receiving end can utilize discrete Fourier transform (DFT) , Discrete Fourier Transformation) processing to extract each data symbol transmitted by the transmitting end on each mutually orthogonal narrow-band subcarrier, and each multipath component is automatically subjected to equal gain combining after DFT processing, thus making the OFDM system instinctive Resistance to multipath capability.
  • DFT discrete Fourier transform
  • Discrete Fourier Transformation Discrete Fourier Transformation
  • an access network In an OFDMA system, an access network (AN, Access Network) will each time according to the current reverse channel quality and quality of service (QoS, Quality of Quality) of each AT. Service), information such as the size of the data to be transmitted and the current power, to determine whether to schedule the corresponding AT and determine the packet length and transmission rate assigned to the corresponding AT being scheduled, etc., and by scheduling to each AT sends an assignment message to notify The corresponding AT is sent in accordance with the instruction of the AN. Each AT will report its current power information, data size information to be sent, and QoS priority information to the AN according to the corresponding time rule. Since the AN has reverse power control effect on the AT, the reverse power control process is The AN needs to constantly measure the reverse channel shield of the AT.
  • QoS Quality of Quality of Quality
  • the AN sends an instruction to notify the AT to reduce the transmit power to save the power of the AT and reduce the interference generated by other ATs; At the same time, if the measurement result is less than the predetermined threshold, the AN sends an instruction to notify the AT to increase the transmission power to ensure that the reverse channel quality of the AT satisfies the transmission requirement of the system. At the same time, the AN determines the reverse channel quality of each AT by measuring the reverse channel of the AT. Generally, for an AT with poor reverse channel quality, the AN will instruct the AT to transmit data at a lower transmission rate, for the reverse channel quality. A good AT, AN will instruct the AT to send data at a higher transmission rate.
  • the inventor of the present application finds that during the process of scheduling the AT by the AN, the AT needs to report more overhead information, for example, the AN needs to know the current power information of the AT, because the higher the rate level allocated by the AN for the AT, the more power the AT needs. Large, and if the AN does not know the current power information of the AT, it may cause a higher transmission rate for the AT, and if the current power of the AT itself cannot support the transmission rate allocated by the AN, it will affect the AT. Data transmission; The AN also needs to know the data size information that the scheduled AT needs to send at present, because the AT needs to send a small amount of data, and the AN allocates a high transmission rate for it, which causes a waste of transmission resources.
  • the AT currently needs to send more data, and the AN allocates a lower transmission rate, which affects the data transmission throughput of the AT.
  • the AN needs to know the QoS priority information of the current data transmission service of the AT. This is good for meeting the QoS requirements of different data services. Therefore, in the case of a ⁇ :, the AT needs to report the above-mentioned overhead information to the AN, so that the AN can determine whether or not the reverse channel quality obtained by measuring the reverse channel of the AT according to the overhead information of the AT on the AT.
  • the AT is scheduled and information such as packet length and transmission rate allocated to the AT when the AT is scheduled is determined.
  • the AT reports the above-mentioned overhead information to the AN through the overhead channel or the in-band signaling.
  • the AN receives the overhead information on the AT.
  • the current power information of the AT and the data to be transmitted are large. Small information may have changed, so it will cause scheduling error for the AN to schedule the AT.
  • the AT needs to continuously report the overhead information, but this will inevitably affect Data transmission throughput to the AT reverse channel. Summary of the invention
  • the embodiment of the present invention provides a method for determining a reverse data modulation and coding mode to solve the scheduling error caused by the AN scheduling AT in the prior art, and avoids affecting the throughput of reverse channel data transmission.
  • a corresponding embodiment of the present invention also proposes an access terminal.
  • the embodiment of the present invention provides a method for determining a reverse data modulation and coding mode, which includes determining, by an access terminal, a channel quality of a reverse power channel according to a channel quality of a reverse power control reference channel indicated by the access network; The channel quality of the reverse data channel in turn determines the modulation and coding scheme employed for the reverse data transmission.
  • An embodiment of the present invention further provides an access terminal, including a channel quality determining unit, configured to determine a channel quality of a reverse data channel according to a channel quality of a reverse power control reference channel indicated by the access network; a modulation and coding mode determining unit, A modulation coding scheme employed for reverse data transmission is determined for channel quality of the reverse data channel determined by the channel quality determining unit.
  • the AT calculates the spectrum efficiency used by the primary reverse data according to the channel quality of the current reverse power control reference channel indicated by the AN, thereby correspondingly determining the reverse data.
  • Modulation coding method (MCS) used. Therefore, when the AT does not need to report the overhead information such as the current power, the data size to be sent, and the QoS priority to the AN, the AT can also determine the transmission rate that the AT needs to use to transmit the reverse data, thus avoiding the uplink overhead information.
  • DRAWINGS 1 is a flowchart of an implementation of a method for determining a reverse data modulation and coding mode according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a process for processing an uplink data by an AT according to the determined MCS information
  • FIG. 3 is a schematic diagram of a process of the second embodiment in which the AT implements transmission of uplink data according to the determined MCS information;
  • FIG. 4 is a schematic diagram of a process of processing a third embodiment of the AT for transmitting uplink data according to the determined MCS information
  • FIG. 5 is a block diagram showing the structure of an embodiment of an access terminal according to the present invention.
  • FIG. 6 is a block diagram showing the structure of a channel quality determining unit in an access terminal according to the present invention
  • FIG. 8 is a block diagram showing the structure of a first embodiment of an access terminal for implementing uplink data transmission according to the present invention
  • a second embodiment of the uplink data transmission constitutes a structural block diagram.
  • the AN performs reverse power control on the AT based on a reference channel.
  • the reverse power control reference channel is a reverse pilot channel.
  • the reverse power control reference channel is a Channel Quality Indicator (CQI) channel.
  • the AN continuously measures the channel shield of the reverse power control reference channel, and calculates the signal-to-noise ratio of the reverse power control reference channel according to the measured channel shield of the reference channel ( SNR, Signal to Noise Ratio), if the calculated SNR is greater than the preset target SNR, the AN sends a power control command to the AT to instruct the AT to lower the transmit power of the reference channel; otherwise, the AN sends a power control command to the AT to indicate the AT rise.
  • SNR Signal to Noise Ratio
  • the power of the actual reverse data channel of the AT is obtained by multiplying the power of the reverse power reference channel by an offset value ( Delta), for example, assuming that the power of the reverse power reference channel is 1 milliwatt. Whereas the offset value of the reverse data channel is 10, the power of the reverse data channel should be 10 times the power of the reference channel, that is, the power of the reverse data channel is 10 milliwatts.
  • the purpose of reverse power control is to maintain the channel quality of the reverse power reference channel within a certain range, even if the reverse power reference channel
  • the SNR is maintained within a certain range, then all ATs can consider that the transmission quality of the reverse data channel of its own is multiplied by an offset value based on the SNR of the reference channel, so that the AT can be directly based on the AT when it is scheduled by the AN.
  • the transmission quality (ie, SNR) of its own reverse data channel comes from the reverse data transmission rate corresponding to its own calculation, without having to prioritize its own current power information, data size information to be transmitted, and QoS each time it is scheduled.
  • the level information and the like are reported to the AN (but the longer period length can be used to report the overhead information, and only the AN allocates the frequency resource for use), thereby avoiding the scheduling error of the AN every time the AT is scheduled, and reducing The occupation of the AT reverse data channel transmission resource increases the transmission throughput of the reverse data channel accordingly.
  • the transmission subcarrier resources actually used by the AT each time it is scheduled are allocated by the AN, because only the allocation by the AN ensures that the transmission subcarriers used between each AT are orthogonal to each other.
  • the reverse data transmission rate determined by the AT autonomously refers to the spectrum efficiency that the AT can transmit next time, that is, the number of bits per sector per Hz that can be transmitted per second, corresponding to the determined reverse data transmission.
  • aT should choose the spectral efficiency corresponding to the modulation and coding scheme: the amount of data (MCS modulation and code scheme) 0 in the OFDMA system, the spectral efficiency corresponding to each sub-carrier can be transmitted, the higher the spectral efficiency, data transmitted on the transmission units per unit many.
  • the embodiment of the present invention proposes a method for determining the reverse data modulation and coding mode herein.
  • the specific embodiments of the present invention and the corresponding beneficial effects thereof will be described in detail below with reference to the accompanying drawings.
  • FIG. 1 it is a flowchart of an implementation method for determining a reverse data modulation coding mode according to an embodiment of the present invention, and the implementation process thereof is as follows:
  • Step S10 In the radio access network, the AT determines the channel quality of the reverse power control reference channel indicated by the AN (the channel quality of the reverse power control reference channel may be based on the SNR identifier of the reverse power control reference channel) Channel quality of the data channel (correspondingly, the channel quality of the AT reverse data channel can also be based on the SNR identifier); wherein the AT multiplies the channel quality of the reference channel based on the channel quality of the reverse power control reference channel indicated by the AN Taking a predetermined offset value (Delta) as the channel quality of its own reverse data channel, the offset value (Delta) used by the AT in this process is mainly caused by the transmit power of the AT reverse data channel relative to the reverse power.
  • the offset value (Delta) used by the AT in this process is mainly caused by the transmit power of the AT reverse data channel relative to the reverse power.
  • the gain is determined by the maximum transmit power limit that the AT can actually support.
  • the channel quality (such as SNR) of the reference channel of the AT is maintained in a certain floating range due to the reverse power control effect of the AN on the AT, the channel of the reference channel of each AT in practice
  • the quality (such as SNR) is not necessarily the same, and each AT may not be able to maintain the channel quality value of its own reference channel in the floating range, but may change according to the location of the AT and the interference situation.
  • the actual channel quality of the reverse power reference channel should be used when the current AT performs reverse data transmission (eg, SNR when SN is identified).
  • BaseChannd is subject to calculations' to ensure that the scheduling results and transmission rates calculated by the AT are optimal.
  • the channel quality value AT of the reverse power control reference channel at that time is unknown, so in an actual mobile communication system, the AN can maintain the current reverse power reference channel of the AT through an overhead channel or an in-band signaling manner.
  • the channel quality value and the channel quality change of the subsequent reverse power control reference channel are notified to the AT, and the AT can accurately calculate the reverse data of the channel according to the channel quality value of the reverse reference channel notified by the AN and its corresponding change.
  • the transfer rate is gone.
  • the AN can accurately indicate to the AT the channel quality of the reverse power control reference channel by the following process:
  • the relevant adjustment step value is pre-agreed between AN and AT;
  • the channel quality of the channel is identified by the SNR value of the channel.
  • the SNR of the reference channel can be carried by means of in-band signaling.
  • the value of the field is the AT reverse of the system setting.
  • the manner of indication may be as follows: a new overhead channel may be designed or an existing resource assignment channel may be used to carry indication information indicating that the AT increases or decreases the adjustment step value, since the overhead channel is characterized by fast processing speed, but It cannot carry too much information, otherwise it occupies too much transmission resources and affects the transmission of forward data. Therefore, 1 bit can be used here to identify information indicating that the AT increases or decreases the relevant adjustment step value, such as the AN indicates in the overhead channel. When the AT information is "0", it indicates that the AT is decremented by the SNR value received by the latest in-band signaling.
  • the pre-agreed adjustment step value and when the information indicated by the AN to the AT in the overhead channel is "1", the indication indicates that the AT adds the pre-agreed adjustment step size to the SNR value received by the last in-band signaling mode. value.
  • the AN notifies the specific value of the signal-to-noise ratio of the AT reference channel by means of in-band signaling, and transmits the lbit information through the overhead channel to notify the change of the signal-to-noise ratio of the AT reference channel, that is, the signal-to-noise ratio of the reference channel is increased or The value of the step is reduced, so that the AT can quickly obtain the SNR value that the current reverse reference channel can maintain without occupying too much forward cost, and the real-time notification is also good.
  • the time interval for specific in-band signaling transmission and the step value for increasing or decreasing can be determined by AN and AT pre-negotiation.
  • Step S20 the AT calculates the transmission spectral efficiency of the reverse data according to the determined channel quality of the reverse data channel (such as the SNR value of the reverse data channel), and can determine the frequency efficiency in calculating the frequency efficiency of the reverse data.
  • MCS information used for reverse data transmission is used for reverse data transmission.
  • the AT determines its own reverse data channel according to the SNR value of the reference channel indicated by the AN.
  • the SNR value, and calculating the spectral efficiency of the reverse data based on the determined SNR value of the reverse data channel, thereby determining the MCS information used for the reverse data transmission in the process of calculating the reverse data spectral efficiency as an example
  • SNR DataPower X SNR—of a BaseChannel
  • DataPower is the power value of the reverse data channel on the unit transmission unit
  • BasePower is the power value of the reference channel on the unit transmission unit.
  • the physical meaning of the formula is: When the power value of the reference channel unit transmission unit is BasePower, the signal-to-noise ratio that can be maintained is SNR_of_BaseChannel, then the power value on the unit of the reverse data channel unit transmission unit
  • BasePower is equal to the power offset value of the reverse data channel mentioned above with respect to the reference channel. That is, when the AT determines the SNR value of its reverse data channel, it is based on the current SNR value of the reverse power control reference channel, and is multiplied by an offset value DataPo . The offset value is also subject to the AT maximum. Supported hair
  • p beta X logl0(l + SNR)
  • a certain quantitative grading of these spectral efficiencies is summarized as a finite number of rate classes.
  • the AT determines the corresponding reverse data transmission packet length according to the subcarrier resources allocated by the AN to itself, that is, the actual transmitted packet length ⁇ fetSze
  • T is the transmission time of the reverse data
  • is the number of subcarriers allocated by the AN to the AT.
  • the AT will inevitably find a corresponding set of MCS information as a method of modulating and encoding the reverse transmitted data, so that the reversed data after the coded modulation reaches a certain level. Transmission spectrum efficiency.
  • the AT may further combine the frequency resource conditions indicated by the AN indication to the AT (the AN may directly allocate the frequency resource to the AT in the forward assignment channel. And determining the transmission rate of the reverse data by itself; the AT transmits the data on the reverse data channel according to the determined reverse data transmission rate, and reports the MCS information determined according to the above process to the AN through the reverse rate indication channel.
  • the AN can perform corresponding demodulation and decoding processing on the reverse data transmitted by the AT according to the MCS information reported by the AT through the reverse rate indication channel, thereby completing the transmission processing of the uplink data, and the specific processing procedure is as shown in FIG. 2 .
  • the AT can also implement the uplink data transmission processing by the following processing process. For details, refer to FIG. 3:
  • the AT will report the MCS information used for the reverse data transmission to the AN through the reverse rate reporting channel;
  • the AN determines the frequency resources allocated for each AT according to the MCS information reported by each AT, and indicates the frequency resources allocated to each AT to the corresponding AT respectively;
  • the AT determines the transmission rate of its own reverse data based on the determined MCS information used for the reverse data transmission, and in combination with the AN indication to its own frequency resource;
  • the AT transmits data on the reverse data channel based on the reverse data transmission rate determined in the above 3;
  • the AN performs demodulation and decoding processing on the reverse data transmitted by the AT according to the MCS information reported by the AT in the above 1, thereby completing the transmission processing of the uplink data.
  • the processing in FIG. 3 is different from the processing in FIG. 2, in that the AT first reports the determined MCS information to the AN, and the AN determines the frequency resource allocated to the AT according to the MCS information reported by the AT, and then determines the determined frequency. The frequency resource is indicated to the AT so that the AT determines the transmission rate of the reverse data. . W 200
  • the AT can also implement the uplink data transmission processing by the following processing procedure.
  • the AT can also implement the uplink data transmission processing by the following processing procedure. For details, please refer to FIG. :
  • the AN determines the frequency resources allocated to each AT according to the MCS information reported by each AT, and re-assigns new MCS information to each AT;
  • the AN indicates the frequency resource allocated to each AT and the new MCS information assigned to each AT to the corresponding AT;
  • the AT determines the transmission rate of its own reverse data based on the new MCS information that the AN indicates to itself, and combines the A indication with its own frequency resource;
  • the AT transmits data on the reverse data channel based on the determined reverse data transmission rate
  • the AN performs corresponding demodulation and decoding processing on the reverse data transmitted by the AT according to the corresponding MCS information assigned to the AT in the above 3), thereby completing the transmission processing of the uplink data.
  • the technical solution of the present invention can implement the channel quality of the current reverse power control reference channel indicated by A according to the channel quality of the current reverse power control indicated by A, and the spectrum efficiency used by the primary calculation of the reverse data, correspondingly determining the opposite The modulation and coding method used for the data.
  • the AT does not need to report the current power information, the data size information to be sent, and the QoS priority information to the AN as in the prior art, and the AN determines the transmission rate that the AT needs to use to transmit the reverse data.
  • the scheduling error caused by the transmission delay of the uplink overhead information is avoided, so that the AN can more accurately schedule the AT, and at the same time, the AT is reduced to report the related overhead information, and the reverse transmission resource is excessively occupied, correspondingly improved.
  • the transmission throughput of the reverse transmission channel is avoided, so that the AN can more accurately schedule the AT, and at the same time, the AT is reduced to report the related overhead information, and the reverse transmission resource is excessively occupied, correspondingly improved.
  • the channel quality determining unit 10 is configured to: according to the channel quality of the reverse power control reference channel indicated by the AN The quantity determines the channel quality of the reverse data channel;
  • the modulation and coding mode determining unit 20 is configured to determine, according to the channel quality of the reverse data channel determined by the channel quality determining unit 10, a modulation and coding mode to be used for reverse data transmission (ie, for reverse data transmission) MCS information).
  • FIG. 6 it is a structural block diagram of an embodiment of a channel quality determining unit in an access terminal according to the present invention, wherein the channel quality determining unit includes a storage subunit 110, a channel quality buffer subunit 120, a multiplication subunit 130, and a step size.
  • the value storage sub-unit 140, the indication information receiving sub-unit 150, and the step value adjustment sub-unit 160, wherein the specific functions of the respective constituent units are as follows:
  • the storage subunit 110 is configured to prestore an offset value
  • a channel quality buffer sub-unit 120 configured to buffer a channel quality of the reverse-powered reference channel indicated by the AN last time
  • a step value storage subunit 140 configured to store a pre-agreed adjustment step value between the AN and the AT;
  • the indication information receiving subunit 150 is configured to receive indication information of increasing or decreasing the agreed step size value indicated by the AN;
  • the step value adjustment sub-unit 160 is configured to increase or decrease the channel quality of the reverse power control reference channel buffered by the channel quality buffer sub-unit 120 according to the indication information received by the indication information receiving sub-unit 150.
  • the multiplication sub-unit 130 is configured to multiply the channel quality of the reverse power control reference channel currently buffered by the channel quality buffer sub-unit 120 by the offset value stored by the storage subunit 110, and use the multiplication result as the current AT counter. Channel quality to the data channel.
  • FIG. 7 is a block diagram of a first embodiment of the present invention, which further includes a first transmission rate determining unit 30, and a first
  • the data transmission unit 40 and the first modulation and coding method are used in the unit 50, wherein the functions of each new unit are as follows:
  • the first transmission rate determining unit 30 is configured to determine, according to the frequency resource condition indicated by the AN, the MCS information used for the reverse data transmission determined by the modulation and coding mode determining unit 20. Reverse data transmission rate;
  • the first data transmission unit 40 is configured to transmit data on the reverse data channel according to the reverse data transmission rate determined by the first transmission rate determining unit 30;
  • the first modulation and coding scheme reporting unit 50 is configured to report the MCS information used by the modulation and coding scheme determining unit 20 for the reverse data transmission to the AN, so that the AN can report the MCS reported by the unit 50 according to the first modulation and coding scheme.
  • the information is subjected to correlation demodulation decoding processing on the reverse data uploaded from the first data transmission unit 40.
  • the MCS information used for the reverse data transmission determined by the element 20 is reported to the AN, and the AN further allocates the corresponding frequency resource to each AT according to the MCS information used by each AT, and indicates the allocated frequency resource to the corresponding AT;
  • the first transmission rate determining unit 30 further determines the transmission rate of the reverse data based on the MCS information used for the reverse data transmission determined by the modulation and coding mode determining unit 20, and the frequency resource condition indicated by the AN;
  • the unit 40 transmits data on the reverse data channel according to the reverse data transmission rate determined by the first transmission rate determining unit 30; thus, the AN can also transmit the first data according to the MCS information reported by the reporting unit 50 in the first modulation and coding mode.
  • the reverse data uploaded by unit 40 is subjected to correlation demodulation decoding processing.
  • FIG. 8 is a block diagram showing the structure of the second embodiment of the access terminal of the present invention for implementing uplink data transmission. Further, based on the component structure of FIG. 5 , the second modulation coding mode is also applied to the temple unit 60 .
  • the second transmission rate determining unit 70 and the second data transmission unit 80, wherein the specific functions of the respective constituent units are as follows:
  • the second modulation and coding mode reporting unit 60 is configured to report the MCS information used by the modulation and coding mode determining unit 20 to the reverse data transmission to the AN;
  • a second transmission rate determining unit 70 configured to determine a transmission rate of the reverse data based on a new MCS 4 message and a frequency resource allocation situation indicated by the AN;
  • the second data transmission unit 80 is configured to transmit data on the reverse data channel according to the reverse data transmission rate determined by the second transmission rate determining unit 70, so that the AN can directly notify the AT of the new MCS information according to its own indication.
  • the reverse data uploaded by the second data transmission unit 80 performs correlation demodulation The decoding process is done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

反向数据调制编码方式的确定方法及其接入终端 技术领域
本发明涉及无线通信技术领域, 尤其是涉及一种反向数据调制编码方式 的确定方法及其接入终端。 背景技术
未来移动通信系统主要釆用正交频分复用(OFDM, Orthogonal Frequency Division Multiplexing ) 多址接入方式, 如 3 GPP组织提出的长期演进 ( LTE , Long Term Evolution ) 系统和空中接口演进( AIE , Air Interface Evolution ) 系 统等都正在朝着基于 OFDM多址方式(如 OFDMA )的方向进行演进。在 OFDM 系统中, 发送端将数据符号经离散傅立叶逆变换 (IDFT, Inverse Discrete Fourier Transformation )处理后分别映射到不同的相互正交的窄带子载波上, 再通过分别.为每个窄带子载波附加循环前缀( CP, Cyclic Prefix )而形成 OFDM 符号进行发射; 虽然经过空中传播后, 接收端接收到的信号中将包含多个时 延不同的多径分量, 但是接收端可以利用离散傅立叶变换 (DFT, Discrete Fourier Transformation )处理来在各个相互正交的窄带子载波上提取出发送端 发送的各个数据符号, 而各多径分量经 DFT处理后将自动完成等增益合并, 因此使得 OFDM系统具有本能的抗多径能力。正是由于 OFDM技术具有优良 的抗多径能力、 易于与多天线技术相结合及其接收机结构比较简单等明显优 势, 使得其已经成为未来移动通信系统釆用的主要多址方式。
在 OFDMA系统中, 无线接入网 (AN, Access Network )在每次调度无 线接入终端(AT, Access Terminal )时刻, 会根据每个 AT的当前反向信道质 量、 服务质量 (QoS, Quality of Service )优先级、 要发送数据的大小和当前 功率等信息, 来决定是否调度相应的 AT以及确定为被调度的相应 AT所分配 的分组包长及传输速率等等,并通过向每个被调度的 AT发送指配消息来通知 对应被调度的 AT按照 AN的指示来发送数据。 其中每个 AT会按照相应的时 间规律将自身的当前功率信息、 要发送的数据大小信息和 QoS优先级信息等 上报给 AN, 由于 AN对 AT具有反向功率控制作用, 反向功率控制过程即为 AN需要不断的测量 AT的反向信道盾量, 如果测量结果大于一预定的阈值, 则 AN发送指令通知 AT降低发送功率, 以节约 AT的功率并减小对别的 AT 所产生的干扰; 同时如果测量结果小于该预定的阈值, 则 AN发送指令通知 AT提高发送功率, 以保证 AT的反向信道质量满足系统的传输要求。 同时 AN 通过测量 AT的反向信道来确定每个 AT的反向信道质量, 一般对于反向信道 质量较差的 AT, AN会指示 AT以较低的传输速率发送数据,对于反向信道质 量较好的 AT, AN会指示 AT以较高的传输速率发送数据。
本申请的发明人发现在 AN调度 AT的过程中, 需要 AT上报较多的开销 信息, 比如 AN需要了解 AT的当前功率信息, 因为 AN为 AT分配的速率等 级越高, 需要 AT具有的功率越大, 而如果 AN不知道 AT的当前功率信息, 则有可能造成为 AT分配较高的传输速率, 而假如 AT本身当前的功率不能支 持 AN分配的传输速率的情况下, 则会影响到 AT的数据传输; AN还需要了 解被调度的 AT当前需要发送的数据大小信息, 因为 AT当前需要发送的数据 量很少, 而 AN 为其分配了较高的传输速率, 则会造成传输资源的浪费, 而 AT当前需要发送的数据较多, 而 AN为其分配了较低的传输速率, 则会影响 到 AT的数据传输吞吐量; 另外 AN还需要了解 AT当前传输数据业务的 QoS 优先级信息, 以此很好的满足不同数据业务的 QoS需求。 因此一 ^:情况下, AT需要上报上述这些开销信息给 AN,以使 AN根据 AT上^ =艮的这些开销信息 同时结合自身对 AT反向信道测量所得到的反向信道质量,来决定是否调度该 AT以及确定调度该 AT时为该 AT所分配的分组包长及传输速率等信息。 其 中 AT是通过开销信道或者带内信令的方式将上述这些开销信息上报给 AN 的, 由于 AT处理及传输这些开销信息都存在延时, 所以在 AN接收到 AT上 才艮的这些开销信息, 基于这些开销信息确定是否调度该 AT以及该 AT被调度 时为其分配传输速率等信息时,该 AT当前的功率信息以及需要发送的数据大 小等信息都可能已经发生了变化, 因此会为 AN调度该 AT带来调度误差, 然 而为了尽可能小的减小这种调度误差, 就需要 AT不断的上报这些开销信息, 但是这样势必会影响到 AT反向信道的数据传输吞吐量。 发明内容
本发明实施例提出一种反向数据调制编码方式的确定方法, 以解决现有 技术中 AN调度 AT时所造成的调度误差,并避免影响反向信道数据传输的吞 吐量。
相应的本发明实施例还提出了一种接入终端。
本发明实施例提出一种反向数据调制编码方式的确定方法, 包括接入终 端根据接入网络指示的反向功控基准信道的信道质量确定自身反向数据信道 的信道质量; 以及根据确定的反向数据信道的信道质量进而确定对反向数据 传输所采用的调制编码方式。
本发明实施例还提出一种接入终端, 包括信道质量确定单元, 用于根据 接入网络指示的反向功控基准信道的信道质量确定反向数据信道的信道质 量; 调制编码方式确定单元, 用于根据信道质量确定单元确定的反向数据信 道的信道质量进而确定对反向数据传输所采用的调制编码方式。
本发明实施例通过在 AN调度 AT的过程中, AT根据 AN指示的当前反 向功控基准信道的信道质量, 来自主计算反向数据所使用的频谱效率, 从而 对应确定反向数据所应釆用的调制编码方式(MCS )。 从而使 AT在不需要上 报自身当前功率、 要发送的数据大小和 QoS优先级等开销信息给 AN的情况 下, 也能确定自身传输反向数据需要使用的传输速率, 因此避免了由于上行 开销信息的传输时延所造成的调度误差, 使 AN能够更为准确的调度 AT; 同 时还进而减少了 AT为上报相关开销信息对反向传输资源进行过多占用,相应 提高了反向传输信道的传输吞吐量。 附图说明 图 1为本发明实施例反向数据调制编码方式确定方法的实现流程图; 图 2为 AT按照确定的 MCS信息实现传输上行数据的第一实施例处理过 程示意图;
图 3为 AT按照确定的 MCS信息实现传输上行数据的第二实施例处理过 程示意图;
图 4为 AT按照确定的 MCS信息实现传输上行数据的第三实施例处理过 程示意图;
图 5为本发明接入终端的实施例组成结构框图;
图 6为本发明接入终端中信道质量确定单元的实施例组成结构框图; 图 Ί为本发明接入终端实现上行数据传输的第一实施例组成结构框图; 图 8为本发明接入终端实现上行数据传输的第二实施例组成结构框图。 具体实施方式
在实际的移动通信系统中, AN在对 AT进行反向功率控制时 , 都是以一 个参考信道为基准,比如在 DO Rev.A移动通信系统中反向功控基准信道是反 向导频信道, 而在 802.02移动通信系统中反向功控基准信道是反向信道质量 指示(CQI, Channel Quality Indicator )信道。 在 AN对 AT进行反向功率控制 的过程中, AN不断测量反向功控基准信道的信道盾量, 并根据测量到的基准 信 道 的 信 道 盾 量 计 算 反 向 功 控 基 准 信 道 的 信 噪 比 ( SNR, Signal to Noise Ratio ), 如果计算得到的 SNR大于预设的目标 SNR, 则 AN向 AT发送功控指令, 指示 AT降低基准信道的发送功率; 否则 AN向 AT发送功控指令, 指示 AT升高基准信道的发送功率。
而 AT 的实际反向数据信道的功率都是在反向功控基准信道功率的基础 上乘以一个偏置值( Delta )得出的, 比如假设反向功控基准信道的功率是 1 毫瓦, 而反向数据信道的偏置值是 10, 则反向数据信道的功率应该是基准信 道功率的 10倍, 即反向数据信道的功率是 10毫瓦。 反向功率控制的目的在 于让反向功控基准信道的信道质量维持在一定范围, 即使反向功控基准信道 的 SNR维持在一定范围, 那么所有的 AT都可以认为自身反向数据信道的传 输质量在基准信道的 SNR基础上乘以一个偏置值也是稳定的, 因此 AT在被 AN调度时, AT可以直接根据自身的反向数据信道的传输质量(即 SNR )来 自主计算对应自身的反向数据传输速率, 而无需在每次被调度时都将自身的 当前功率信息、 需发送的数据大小信息和 QoS优先级信息等上报给 AN (而 是可以采取较长的周期长度来上报这些开销信息, 仅供 AN分配频率资源使 用),从而避免了 AN在每次调度 AT时所存在的调度误差, 并减小对 AT反向 数据信道传输资源的占用, 相应增加了反向数据信道的传输吞吐量。
AT每次在被调度时实际所使用的传输子载波资源都是由 AN来分配的, 因为只有由 AN分配才能保证每个 AT之间所使用的传输子载波相互正交。而 AT 自主所确定的反向数据传输速率主要是指 AT下次传输分組包所能够达到 的频谱效率, 即每扇区每赫兹每秒能够传输的 bit数, 对应达到这个确定的反 向数据传输频谱效率 AT应该选择对应的调制编码方式(MCS: modulation and code scheme )0在 OFDMA系统中, 频谱效率对应于每个子载波能够传输的数 据量, 频谱效率越高, 单位传输单元上传输的数据越多。
针对上述, 本发明实施例提出了这里的反向数据调制编码方式的确定方 法, 下面将结合各个附图对本发明具体实施方式及其对应能够达到的有益效 果进行详细的阐述。
如图 1 所示, 为本发明实施例反向数据调制编码方式确定方法的实现流 程图, 其实现过程如下:
步骤 S10, 在无线接入网络中, AT根据 AN指示的反向功控基准信道的 信道质量(反向功控基准信道的信道质量可以基于反向功控基准信道的 SNR 标识)确定自身反向数据信道的信道质量(相应的, AT反向数据信道的信道 质量也可以基于 SNR标识); 其中 AT根据 AN所指示的反向功控基准信道的 信道质量, 在该基准信道的信道质量基础上乘以一预定的偏置值( Delta )作 为自身反向数据信道的信道质量,在这个过程中 AT所利用到的偏置值( Delta ) 主要由 AT反向数据信道的发射功率相对于反向功控基准信道的发射功率的 增益确定, 同时还要受到 AT实际能够支持的最大发射功率限制。 然而在实际的移动通信系统中,尽管由于 AN对 AT的反向功率控制作用 使 AT的基准信道的信道质量(如 SNR ) 维持在一定的浮动范围, 但是实际 中每个 AT的基准信道的信道质量(如 SNR )并不一定相同 , 而且每个 AT也 不一定能够维持自身基准信道在浮动范围内的信道质量值, 而是可能根据 AT 所处位置以及受到的干扰情况而发生变化, 由此可见在 AT每次被调度时, 为 了使 AT能够计算得到准确的反向数据传输速率, 应该以当前 AT进行反向数 据传输时反向功控基准信道实际的信道质量 ( 如以 SN 标识时 SNR— of—BaseChannd )为准进行计算' 这样才能保证 AT所计算取得的调度 结果和传输速率是最佳的。然而当时的反向功控基准信道的信道质量值 AT是 不知道的, 因此在实际移动通信系统中, AN可以通过开销信道或者带内信令 方式将 AT 当前的反向功控基准信道维持的信道质量值及其后续反向功控基 准信道的信道质量变化情况通知给 AT, AT就可以根据 AN通知的反向基准 信道的信道质量值及其相应的变化情况来准确计算自身反向数据的传输速率 了。
综上 AN可以通过如下处理过程来准确的向 AT指示反向功控基准信道的 信道质量:
AN与 AT之间预先约定好相关的调节步长值;
AN将自身测量得到的反向功控基准信道的信道质量周期性的指示给 AT, 并在不指示信道质量期间根据 AT .反向数据信道的信道质量变化情况, 指示 AT增加或减小上述约定的步长值; 例如当 AN测量到 AT的反向数据信 道的误帧率增加时, 将指示 AT减小上述约定的步长值, 而在测量到 AT的反 向数据信道的误帧率降低时, 将指示 AT增加上述约定的步长值;
AT根据 A 下发的上述指示, 在最近一次接收到的反向功控基准信道的 信道质量上增加或减小约定的步长值,从而达到使 AN在调度 AT时将当时准 确的基准信道的信道质量值指示给 AT, 使 AT基于较为准确的基准信道的质 量值准确确定自身反向数据信道的信道质量, 为后续求取精确的反向数据传 输速率奠定基础, 并且这种指示方式还可以减少对前向开销信道传输资源的 过多占用。
例如以信道的 SNR值来标识信道的信道质量,在实际的移动通信系统中, 可以通过带内信令的方式携带基准信道的 SNR— of— BaseChannem该域的值是 系统设定的 AT反向基准信道需要维持的目标 SN , 由于带内信令可以传输 较多的信息, 但是处理时延比较大, 所以带内信令可以采用每隔一定周期发 逸一 SNR— of— BaseChannem 同时结合开销信道指示的方式,如可以设计一 个新的开销信道或者使用已存的资源指配信道来携带用于指示 AT增加或减 小调节步长值的指示信息, 由于开销信道的特点是处理速度快, 但是不能携 带太多信息, 否则占用太多传输资源, 影响前向数据的传输, 因此这里可以 使用 1比特来标识指示 AT增加或减小相关调节步长值的信息,如 AN在开销 信道中指示给 AT的信息为 "0" 时, 表示指示 AT在最近一次通过带内信令 方式接收的 SNR值上减去预先约定的调节步长值, 并 AN在开销信道中指示 给 AT的信息为 "1" 时, 表示指示 AT在最近一次通过带内信令方式接收的 SNR值上加上预先约定的调节步长值。
即 AN每次通过带内信令方式通知 AT基准信道的信噪比具体值,而通过 开销信道传输 lbit信息来通知 AT基准信道的信噪比变化情况,即对基准信道 的信噪比增加或降低一定步长值,这样 AT就可以快速的获取当前反向基准信 道能够维持的信噪比值, 而又不用占用太多的前向开销, 并且通知的实时性 也很好。 其中具体带内信令发送的时间间隔以及增加或者降低的步长值可以 通过 AN和 AT预先协商来确定。
步骤 S20, AT根据上述确定的反向数据信道的信道质量(如反向数据信 道的 SNR值)来计算自身反向数据的传输频谱效率, 在计算反向数据的频率 效率过程中就能够确定对反向数据传输所采用的 MCS信息。
这里以 AT根据 AN指示的基准信道的 SNR值来确定自身反向数据信道 的 SNR值,并基于确定的反向数据信道的 SNR值计算自身反向数据的频谱效 率, 从而在计算反向数据频谱效率的过程中确定对反向数据传输所采用的 MCS信息为例来说明 AT计算反向数据频谱效率的计算实例:
根据信息论香农公式以及" P. Hosein, "On the Optimal Scheduling of Uplink Resources in OFDMA-Based Wireless Networks", Proceedings of the 12th European Wireless Conference, Athens, Greece, April 2006." 文献记载, 本发明 这里可以得出在 OFDMA系统中, 理想化的频谱效率; σ
Figure imgf000010_0001
+ Λ¾) , 式中 SNR就是单位传输单元上能够取得的信噪比(即当前反向数据信道的 SNR值), 在实际的移动通信系统中, 频谱效率需要由一个常数(beta )来进 行调整, 其中式中的 SNR等于:
SNR = DataPower X SNR— of一 BaseChannel
BasePower
其中 DataPower是单位传输单元上反向数据信道的功率值, BasePower是 单位传输单元上基准信道的功率值。 该公式的物理意义是: 当基准信道单位 传输单元上功率值为 BasePower 时, 其能够维持的信噪比为 SNR— of— BaseChannel , 则当反向数据信道单位传输单元上的功率值为
DataPower时,反向数据信道能够得到的信噪比为 SNR。可以看出 DataPower
BasePower 好等于上文提到的反向数据信道相对于基准信道的功率偏置值。即 AT确定自 身反向数据信道的 SNR值时,要根据反向功控基准信道当前的 SNR值,在其 基础上乘以一偏置值 DataPo暫得出 , 该偏置值还要受 AT最大能够支持的发
BasePower
射功率控制。
通过上述公式计算获取反向数据信道的 SN 值后, 通过 p = beta X logl0(l + SNR)计算,就可以得出每个 AT反向数据信道能够取得的频谱 效率, 在实际系统中可能需要对这些频谱效率进行一定的量化分级, 即总结 为一套有限数量的速率等级。最后 AT根据 AN分配给自身的子载波资源确定 对应的反向数据传输分组包长, 即实际传输的分组包长 ^fetSze 该式中 T是反向数据的传输时间, Ν是 AN分配给 AT的子载波数量。 其中 AT在上述过程中确定反向数据的频率效率过程中, 必然会找到对应的一组 MCS信息作为对反向传输数据进行调制和编码的方式, 以使编码调制后的反 向数据达到确定的传输频谱效率。
后续, AT按照上述处理过程在确定了对反向数据传输所采取的 MCS信 息后, 就可以进而结合 AN指示给自身的频率资源情况(AN可以在前向指配 信道直接向 AT指配频率资源), 来进而确定自身反向数据的传输速率; AT按 照确定的反向数据传输速率在反向数据信道上传输数据, 并将按照上述处理 过程确定的 MCS信息通过反向速率指示信道上报给 AN; 这样 AN就可以按 照 AT通过反向速率指示信道上报的 MCS信息对 AT传输来的反向数据进行 相应的解调解码处理, 从而完成上行数据的传输处理, 其具体处理过程如图 2 所示。
此外, AT在确定了对反向数据传输所采取的 MCS信息后, 还可以通过 下述处理过程来实现上行数据的传输处理, 具体请参照图 3:
1. AT将确定的对反向数据传输所采用的 MCS信息通过反向速率上报信 道上报给 AN;
2. AN根据各个 AT上报的 MCS信息, 确定为各个 AT分配的频率资源, 并将为各个 AT分配的频率资源分别指示给对应的 AT;
3. AT基于确定的对反向数据传输所采用的 MCS信息, 并结合 AN指示 给自身的频率资源, 来确定自身反向数据的传输速率;
4. AT基于上述 3 中确定的反向数据传输速率在反向数据信道上传输数 据;
5. AN按照 AT在上述 1中上报的 MCS信息对 AT传输来的反向数据进 行解调解码处理, 从而完成上行数据的传输处理。该图 3中的处理过程同图 2 中的处理过程相比, 区别在于 AT先将确定的 MCS信息上报给 AN, 由 AN 根据 AT上报的 MCS信息确定为 AT分配的频率资源, 进而将确定的频率资 源指示给 AT, 以使 AT再确定反向数据的传输速率。 . W 200
另外为了更为精确的确定反向数据的传输速率, AT在确定了对反向数据 传输所采取的 MCS信息后,还可以通过下述处理过程来实现上行数据的传输 处理, 具体请参照图 4:
1 ) AT将确定的对反向数据传输所采用的 MCS信息通过反向速率上报信 道上报给 AN;
2 ) AN根据各 AT上报的 MCS信息, 确定为各 AT分配的频率资源, 并 重新为各 AT指配新的 MCS信息;
3 ) AN将为各 AT分配的频率资源及为各 AT指配的新的 MCS信息指示 给对应的 AT;
4 ) AT基于 AN指示给自身的新的 MCS信息, 并结合 A 指示给自身的 频率资源, 确定自身反向数据的传输速率;
5 ) AT基于确定的反向数据传输速率在反向数据信道上传输数据;
6 ) AN按照上述 3 ) 中指配给 AT的对应 MCS信息对 AT传输来的反向 数据进行相应的解调解码处理, 从而完成上行数据的传输处理。
综上可见, 本发明技术方案可以实现在 AN调度 AT的过程中, AT根据 A 指示的当前反向功控基准信道的信道质量,来自主计算反向数据所使用的 频谱效率, 对应确定对反向数据所采用的调制编码方式。 而不再需要象现有 技术一样, AT需将自身的当前功率信息、要发送的数据大小信息和 QoS优先 级信息等上报给 AN,进而由 AN确定 AT传输反向数据需要使用的传输速率, 因此避免了由于上行开销信息的传输时延所造成的调度误差, 使 AN 能够更 为准确的调度 AT, 同时还进而减少了 AT为上报相关开销信息对反向传输资 源进行过多占用, 相应提高了反向传输信道的传输吞吐量。
相应于本发明上述提出的方法, 本发明这里还对应的提出了一种接入终 端, 请具体参照图 5 , 该图是本发明接入终端的实施例组成结构框图, 其包括 信道质量确定单元 10和调制编码方式确定单元 20,其中这两个组成单元的具 体作用如下:
信道质量确定单元 10, 用于根据 AN指示的反向功控基准信道的信道质 量确定反向数据信道的信道质量;
调制编码方式确定单元 20,用于根据上述信道质量确定单元 10所确定的 反向数据信道的信道质量进而确定对反向数据传输所要采用的调制编码方式 (即对反向数据传输所要釆用的 MCS信息)。
进而如图 6所示, 为本发明接入终端中信道质量确定单元的实施例组成 结构框图, 其中信道质量确定单元包括存储子单元 110、信道质量緩存子单元 120、 乘法子单元 130、 步长值存储子单元 140、 指示信息接收子单元 150和 步长值调节子单元 160,.其中各个组成单元的具体作用如下:
存储子单元 110, 用于预先存储一偏置值;
信道质量緩存子单元 120,用于緩存 AN最近一次所指示的反向功控基准 信道的信道质量;
步长值存储子单元 140, 用于存储 AN与 AT之间预先约定好的调节步长 值;
指示信息接收子单元 150,用于接收 AN所指示的增加或减小约定步长值 的指示信息;
步长值调节子单元 160,用于根据上述指示信息接收子单元 150接收到的 指示信息, 将信道质量緩存子单元 120緩存的反向功控基准信道的信道质量 增加或减小步长值存储子单元 140存储的步长值;
乘法子单元 130,用于将上述信道质量緩存子单元 120当前緩存的反向功 控基准信道的信道质量与上述存储子单元 110存储的偏置值相乘, 并将相乘 结果作为 AT当前反向数据信道的信道质量。
具体请参照图 7,该图是本发明接入终端实现上行数据传输的第一实施例 组成结构框图, 其在上述图 5 的组成结构基础上还进而包括第一传输速率确 定单元 30、 第一数据传输单元 40和第一调制编码方式上 ^艮单元 50, 其中各 个新增单元的作用如下:
第一传输速率确定单元 30,用于基于上述调制编码方式确定单元 20确定 的对反向数据传输所采用的 MCS信息, 结合 AN指示的频率资源情况, 确定 反向数据的传输速率;
第一数据传输单元 40 ,用于按照第一传输速率确定单元 30确定的反向数 据传输速率在反向数据信道上传输数据;
第一调制编码方式上报单元 50,用于将调制编码方式确定单元 20确定的 对反向数据传输所采用的 MCS信息上报给 AN, 这样 AN就可以依据第一调 制编码方式上报单元 50上报的 MCS信息对第一数据传输单元 40上传来的反 向数据进行相关解调解码处理了。 元 20确定的对反向数据传输所采用的 MCS信息上报给 AN, AN进而根据各 AT所采用的 MCS信息, 为各 AT分配对应的频率资源, 并将分配的频率资源 指示给对应的 AT; 第一传输速率确定单元 30进而基于上述调制编码方式确 定单元 20确定的对反向数据传输所采用的 MCS信息, 并结合 AN指示的频 率资源情况, 确定反向数据的传输速率; 第一数据传输单元 40, 进而按照第 一传输速率确定单元 30 确定的反向数据传输速率在反向数据信道上传输数 据; 这样 AN也可以依据第一调制编码方式上报单元 50上报的 MCS信息对 第一数据传输单元 40上传来的反向数据进行相关解调解码处理了。
进而请参照图 8,该图是本发明接入终端实现上行数据传输的第二实施例 组成结构框图, 其在上述图 5 的组成结构基础上还进而包括第二调制编码方 式上寺艮单元 60、 第二传输速率确定单元 70和第二数据传输单元 80, 其中各 个组成单元的具体作用如下:
第二调制编码方式上报单元 60,用于将上述调制编码方式确定单元 20确 定的对反向数据传输所采用的 MCS信息上报给 AN;
第二传输速率确定单元 70,用于基于 AN指示的新的 MCS 4言息和频率资 源分配情况确定反向数据的传输速率;
第二数据传输单元 80,用于按照第二传输速率确定单元 70所确定的反向 数据传输速率在反向数据信道上传输数据,这样 AN按照自身指示给 AT的新 的 MCS信息就可以对第二数据传输单元 80上传来的反向数据进行相关解调 解码处理了。
另外, 本关本发明接入终端的其他相关具体技术实现细节请具体参照本 发明上述方法中的相关描述, 这里不再给以过多赘述。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种反向数据调制编码方式的确定方法, 其特征在于, 包括步驟: 接入终端根据接入网络指示的反向功控基准信道的信道质量确定自身反 向数据信道的信道质量; 以及
根据确定的反向数据信道的信道质量进而确定对反向数据传输所采用的 调制编码方式。
2、 如权利要求 1所述的方法, 其特征在于, 接入网络指示反向功控基准 信道的信道质量给接入终端的过程具体包括:
接入网络与接入终端之间预先约定调节步长值;
接入网络将测量得到的反向功控基准信道的信道质量周期性的指示给接 入终端; 以及
在不指示信道质量期间根据接入终端反向数据信道的信道质量变化情 况, 指示接入终端增加或减小所述约定的步长值;
接入终端根据接入网络的指示, 在最近一次接收到的反向功控基准信道 的信道质量上增加或减 d、所述约定的步长值。
3、 如权利要求 2所述的方法, 其特征在于, 接入网络根据反向数据信道 的信道质量变化情况, 指示接入终端增加或减小所述约定步长值具体是指: 接入网络测量到接入终端的反向数据信道的误帧率增加时, 指示接入终 端减小所述约定的步长值; 以及
在测量到接入终端的反向数据信道的误帧率降低时, 指示接入终端增加 所述约定的步长值。
4、 如权利要求 1、 2或 3所述的方法, 其特征在于, 接入终端将接入网 络指示的反向功控基准信道的信道质量乘以一预定的偏置值作为自身反向数 据信道的信道质量。
5、 如权利要求 4所述的方法, 其特征在于, 所述预定的偏置值由接入终 端的反向数据信道的单位传输单元发射功率相对于反向功控基准信道的单位 传输单元发射功率的增益确定。
6、 如权利要求 1所述的方法, 其特征在于, 还包括步骤:
接入终端基于确定的对反向数据传输所釆用的调制编码方式, 结合接入 网络指示给自身的频率资源, 确定自身反向数据的传输速率。
7、 如权利要求 6所述的方法, 其特征在于, 还包括步骤:
接入终端基于确定的反向数据传输速率在反向数据信道上传输数据; 以 及
将确定的对反向数据传输所采用的调制编码方式上报给接入网络; 接入网络按照接入终端上报的调制编码方式对接入终端传输来的反向数 据进行解调解码。
8、 如权利要求 1所述的方法, 其特征在于, 还包括步骤:
接入终端将确定的对反向数据传输所采用的调制编码方式上报给接入网 絡;
接入网络根据各接入终端上报的调制编码方式, 确定为各接入终端分配 的频率资源; 以及
将为各接入终端分配的频率资源分别指示给对应的接入终端;
接入终端基于确定的对反向数据传输所采用的调制编码方式, 结合接入 网络指示给自身的频率资源, 确定自身反向数据的传输速率。
9、 如权利要求 8所述的方法, 其特征在于, 还包括步骤:
接入终端基于确定的反向数据传输速率在反向数据信道上传输数据; 接入网络按照接入终端上报的调制编码方式对接入终端传输来的反向数 据进行解调解码。
10、 如权利要求 1所述的方法, 其特征在于, 还包括步骤:
接入终端将确定的对反向数据传输所采用的调制编码方式上报给接入网 络;
接入网络根据各接入终端上报的调制编码方式, 确定为各接入终端分配 的频率资源; 以及 重新为各接入终端指配新的调制编码方式;
接入网络将为各接入终端分配的频率资源及为各接入终端指配的新的调 制编码方式指示给对应的接入终端;
接入终端基于接入网络指示给自身的新的调制编码方式, 结合接入网络 指示给自身的频率资源, 确定自身反向数据的传输速率。
11、 如权利要求 10所述的方法, 其特征在于, 还包括步骤:
接入终端基于确定的反向数据传输速率在反向数据信道上传输数据; 接入网络按照指配给接入终端的对应调制编码方式对接入终端传输来的 反向数据进行解调解码。
12、 如权利要求 4所述的方法, 其特征在于, 基于信道的信噪比来标识 信道的信道质量。
13、 一种接入终端, 其特征在于, 包括:
信道质量确定单元, 用于根据接入网络指示的反向功控基准信道的信道 质量确定反向数据信道的信道质量;
调制编码方式确定单元, 用于根据信道质量确定单元确定的反向数据信 道的信道质量进而确定对反向数据传输所采用的调制编码方式。
14、 如权利要求 13所述的接入终端, 其特征在于, 所述信道质量确定单 元具体包括:
存储子单元, 用于预先存储一偏置值;
信道质量緩存子单元, 用于緩存接入网络最近一次指示的反向功控基准 信道的信道质量;
乘法子单元, 用于将信道质量缓存子单元緩存的反向功控基准信道的信 道质量与存储子单元存储的偏置值相乘, 并将相乘结杲作为反向数据信道的 信道质量。
15、 如权利要求 14所述的接入终端, 其特征在于, 所述信道盾量确定单 元具体还包括:
步长值存储子单元, 用于存储接入网络与接入终端之间预先约定的调节 步长值;
指示信息接收子单元, 用于接收接入网络指示的增加或减小所述约定步 长值的指示信息;
步长值调节子单元, 用于根据指示信息接收子单元接收到的指示信息, 将信道质量緩存子单元緩存的反向功控基准信道的信道质量增加或减小所述 步长值存储子单元存储的约定步长值。
16、 如权利要求 13所述的接入终端, 其特征在于, 还包括:
第一传输速率确定单元, 用于基于调制编码方式确定单元确定的对反向 数据传输所采用 ^调制编码方式, 结合接入网络指示的频率资源, 确定反向 数据的传输速率;
第一数据传输单元, 用于按照第一传输速率确定单元确定的反向数据传 输速率在反向数据信道上传输数据;
第一调制编码方式上报单元, 用于将调制编码方式确定单元确定的对反 向数据传输所采用的调制编码方式上报给接入网络。
17、 如权利要求 13所述的接入终端, 其特征在于, 还包括:
第二调制编码方式上报单元, 用于将调制编码方式确定单元确定的对反 向数据传输所采用的调制编码方式上报给接入网絡;
第二传输速率确定单元, 用于基于接入网絡指示的新的调制编码方式和 频率资源确定反向数据的传输速率;
第二数据传输单元, 用于按照第二传输速率确定单元确定的反向数据传 输速率在反向数据信道上传输数据。
PCT/CN2007/001565 2006-06-15 2007-05-15 MCS d'un procédé de détermination de données inverses et terminal d'accès WO2007147317A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610082875.6 2006-06-15
CN200610082875A CN101043500B (zh) 2006-06-15 2006-06-15 反向数据调制编码方式的确定方法及其接入终端

Publications (1)

Publication Number Publication Date
WO2007147317A1 true WO2007147317A1 (fr) 2007-12-27

Family

ID=38808690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001565 WO2007147317A1 (fr) 2006-06-15 2007-05-15 MCS d'un procédé de détermination de données inverses et terminal d'accès

Country Status (2)

Country Link
CN (1) CN101043500B (zh)
WO (1) WO2007147317A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105517172A (zh) * 2014-10-15 2016-04-20 中国移动通信集团公司 一种业务调度方法及装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5203745B2 (ja) * 2008-02-26 2013-06-05 京セラ株式会社 無線通信システムおよび通信制御方法
US8520559B2 (en) * 2008-04-02 2013-08-27 Alcatel Lucent Method for routing via access terminals
CN101686111B (zh) * 2008-09-28 2013-03-20 华为技术有限公司 一种指配信息下发的方法、设备及通信系统
CN101925204B (zh) * 2009-06-11 2012-12-12 上海无线通信研究中心 中继分布式链路自适应通信方法
CN106464645B (zh) 2014-03-28 2019-11-12 华为技术有限公司 发送设备和接收设备及其方法
CN107710842B (zh) * 2015-07-01 2020-04-03 华为技术有限公司 传输上行数据的方法和设备
US10616838B2 (en) 2016-10-12 2020-04-07 Qualcomm Incorporated Signaling of transmit power related information
WO2021088309A1 (zh) * 2019-11-04 2021-05-14 海信视像科技股份有限公司 一种显示设备及信息提示方法
CN113300826B (zh) * 2021-07-26 2021-11-05 广州慧睿思通科技股份有限公司 一种通信方法、通信装置、设备及计算机存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1515127A (zh) * 2002-02-07 2004-07-21 松下电器产业株式会社 无线电通信设备和传输速率确定方法
CN1551536A (zh) * 2003-05-12 2004-12-01 Lg电子株式会社 在移动通信系统中产生反向数据速率信息的方法
WO2005046152A1 (ja) * 2003-11-07 2005-05-19 Matsushita Electric Industrial Co., Ltd. 無線通信装置及びmcs決定方法
CN1698290A (zh) * 2003-04-29 2005-11-16 三星电子株式会社 在移动站确定反向数据率的移动通信系统中的反向功率控制方法和设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1146167C (zh) * 2001-07-18 2004-04-14 华为技术有限公司 码分多址通信系统中的功率控制方法
CN1295897C (zh) * 2001-12-28 2007-01-17 华为技术有限公司 一种时分双工系统中下行高速数据传输参数获得的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1515127A (zh) * 2002-02-07 2004-07-21 松下电器产业株式会社 无线电通信设备和传输速率确定方法
CN1698290A (zh) * 2003-04-29 2005-11-16 三星电子株式会社 在移动站确定反向数据率的移动通信系统中的反向功率控制方法和设备
CN1551536A (zh) * 2003-05-12 2004-12-01 Lg电子株式会社 在移动通信系统中产生反向数据速率信息的方法
WO2005046152A1 (ja) * 2003-11-07 2005-05-19 Matsushita Electric Industrial Co., Ltd. 無線通信装置及びmcs決定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105517172A (zh) * 2014-10-15 2016-04-20 中国移动通信集团公司 一种业务调度方法及装置
CN105517172B (zh) * 2014-10-15 2019-05-31 中国移动通信集团公司 一种业务调度方法及装置

Also Published As

Publication number Publication date
CN101043500B (zh) 2010-05-12
CN101043500A (zh) 2007-09-26

Similar Documents

Publication Publication Date Title
WO2007147317A1 (fr) MCS d'un procédé de détermination de données inverses et terminal d'accès
US11026240B2 (en) Method and user equipment for predicting available throughput for uplink data
JP5413631B2 (ja) 規定のサービス品質を満たすための負荷推定
EP1750399B1 (en) Channel quality indicator for time, frequency and spatial channel in terrestrial radio access network
JP5698401B2 (ja) Sc−fdma通信システムにおける制御信号及びデータ信号の送信のための周波数リソースの分割
JP4936023B2 (ja) 局所スケジューリング及び分散スケジューリングの制御方法及び装置
KR101221255B1 (ko) 무선 통신 시스템에서의 채널 품질 리포팅
TW202145746A (zh) 可靠頻道狀態訊息報告方法、裝置及系統
US8559297B2 (en) User apparatus, base station apparatus, and communication control method for controlling coverage area and data rate according to environments
US20070149249A1 (en) Method and apparatus for efficient configuration of hybrid sub-carrier allocation
EP3694135B1 (en) Telecommunications apparatus and methods
WO2007003121A1 (fr) Procede d'etablissement de canal hsdpa multiporteuse et procede de transmission de donnees par paquets en liaison descendante multiporteuse
WO2010019080A1 (en) A method and a device in a wireless communication system
WO2009145354A1 (en) Systems and methods for reducing feedback overhead in wireless networks using channel characteristics
WO2019125234A1 (en) Methods and wireless communication nodes for improving transmission link performance
JP2014140221A (ja) 加入者局ベースのアドミッション制御のための方法およびシステム
WO2012125087A1 (en) A radio base station and a method therein for scheduling radio resources
WO2010065280A2 (en) Method for efficient reporting of channel quality information from user equipment to the network
WO2015014125A1 (zh) 接入信道的方法和设备
CN113473401A (zh) 一种面向电力物联网应用的无线资源分配方法
CN114144986A (zh) 上行信号的发送和接收方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07721138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07721138

Country of ref document: EP

Kind code of ref document: A1