WO2007145261A1 - Hydrate production apparatus - Google Patents

Hydrate production apparatus Download PDF

Info

Publication number
WO2007145261A1
WO2007145261A1 PCT/JP2007/061942 JP2007061942W WO2007145261A1 WO 2007145261 A1 WO2007145261 A1 WO 2007145261A1 JP 2007061942 W JP2007061942 W JP 2007061942W WO 2007145261 A1 WO2007145261 A1 WO 2007145261A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
raw material
material gas
hydrate
gas
Prior art date
Application number
PCT/JP2007/061942
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshitaka Yamamoto
Taro Kawamura
Akihiro Wakisaka
Kazuo Matsuura
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Ultrasound Brewery
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Ultrasound Brewery filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2007145261A1 publication Critical patent/WO2007145261A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates

Definitions

  • the present invention relates to an apparatus for producing an idrate by reacting a raw material gas such as carbon dioxide gas or natural gas in the air with fine particles of water.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-342473
  • the apparatus described in the publication of Patent Document 1 includes a reaction tank 91 that generates hydrate.
  • the reaction tank 91 is a pressure vessel, and a cooling coil 92 is provided inside.
  • the cooling coil 92 cools and holds the aqueous phase L in the reaction tank 91 at about 1 ° C. as a temperature for generating hydrate.
  • the illustrated apparatus includes a water tank 93.
  • the water tank 93 supplies water to the reaction tank 91 through the pipe 94, and the bottom of the reaction tank 91 is the water phase L.
  • a methane inlet 9 la is provided at the lower part of the reaction tank 91.
  • This methane introduction port 91a is connected to a gas storage unit 97, and this force is also supplied with methane gas as a raw material gas.
  • the methane supplied to the reaction tank 91 keeps the pressure of the gas phase G at 40 atm with the pressure for generating the nodule.
  • a water outlet 91b for extracting unreacted water is provided at the bottom of the reaction tank 91. Drain outlet 91b Is connected to a spray nozzle 98 at the upper end of the reaction tank 91 via a pump 95 and a heat exchanger ⁇ 96.
  • the spray nozzle 98 cools the water to a temperature at which a noise rate can be generated by heat exchange 96 and sprays it as fine particles inside the reaction tank 91.
  • the spray nozzle 98 sprays water as fine particles of several tens / zm downward into the reaction tank 91.
  • Patent Document 1 also describes an apparatus that uses an ultrasonic vibration plate 80 in place of the spray nozzle 98 as shown in FIG.
  • the ultrasonic vibration plate 80 is horizontally disposed on the upper part of the reaction tank 81.
  • Water is supplied from the pipe 82 above the ultrasonic vibration plate 80.
  • the supplied water forms a water film 83 on the ultrasonic vibration plate 80.
  • the water film 83 is released into the reaction tank 81 as fine particles by ultrasonic vibration.
  • the raw material gas cannot be hydrated efficiently and quickly. This is because the average particle size of fine particles cannot be made smaller than a micron unit in a structure using a spray nozzle. Moreover, even if a water film is provided on the ultrasonic vibration plate and this is made into fine particles by ultrasonic vibration, water cannot be atomized efficiently into fine particles having a small average particle diameter.
  • the present invention reduces the average particle size of the fine water particles to increase the production rate and improve the efficiency. It was often developed for the purpose of making the source gas hydrate.
  • the hydrate manufacturing apparatus of the present invention has the following configuration in order to achieve the above-described object.
  • the idrate production apparatus atomizes water into fine particles, and makes the fine particles of atomized water and raw material gas contact in a cooled state to form a hydrate.
  • the idrate manufacturing apparatus includes a sealed chamber 1 to which a raw material gas is supplied, and an ultrasonic vibrator 2 that atomizes water supplied to the sealed chamber 1 by ultrasonic vibration into fine particles in the raw material gas.
  • a duct 4 and a cooler 5 that cools the reaction chamber 3 and uses fine particles of water and raw material gas transferred in the transfer duct 4 as a reaction environment are provided.
  • the sealed chamber 1 includes a water reservoir 6 at the bottom, and an ultrasonic vibrator 2 is disposed at the bottom of the water reservoir 6.
  • the water reservoir 6 can be atomized into fine particles by ultrasonic vibration.
  • the raw material gas can be air containing carbon dioxide or natural gas.
  • the hydrate manufacturing apparatus of the present invention is configured to forcibly blow a forced feed into the reaction chamber 3 by sucking a raw material gas containing fine particles of water in the sealed chamber 1 between the sealed chamber 1 and the reaction chamber 3.
  • Transporter 8 can be connected.
  • the hydrate production apparatus of the present invention is characterized in that the average particle size of fine water particles is reduced to increase the production rate, and the raw material gas can be efficiently hydrated.
  • Figures 3 and 4 are graphs showing the state in which methane hydrate is generated.
  • Fig. 3 shows the characteristics of the production apparatus of the present invention for generating hydrate
  • Fig. 4 shows the characteristics of the production apparatus of Fig. 1 for generating hydrate.
  • the horizontal axis represents the time axis
  • the vertical axis represents the relative value at which hydrate is generated.
  • the production apparatus of the present invention can dramatically improve the hydrate generation speed as compared with the conventional apparatus. Furthermore, in FIGS.
  • the amount of hydrate produced after 6 hours is set to 1, and therefore the hydrate rate after 6 hours is not the same in FIGS. 3 and 4.
  • the manufacturing apparatus of the present invention shown in FIG. 3 can considerably improve the hydrate rate as compared with the conventional apparatus shown in FIG. This is because when the particle size of fine water particles is changed using the conventional apparatus shown in Fig. 1, the hydrate rate power after 6 hours changes from 5.6% to 19.7%. It is.
  • the hydrate rate is a value indicating (number of moles of water containing methane) Z (number of moles of water) [molZmol].
  • the production apparatus of the present invention can remarkably reduce the particle size of water fine particles and the micro-order force of the conventional apparatus as nano-order. From this, the production apparatus of the present invention can significantly improve the idrate rate and can produce gas hydrate efficiently.
  • the hydrate production apparatus shown in FIG. 5 atomizes water into fine particles, and contacts the atomized water fine particles with the raw material gas in a cooled state to obtain an idrate.
  • This manufacturing apparatus uses air or natural gas containing carbon dioxide as raw material gas.
  • the apparatus of the present invention does not specify the source gas as air or natural gas.
  • the source gas any gas that can be made into an idrate can be used. Hydrate is generated using air containing carbon dioxide as the raw material gas, and the aerodynamic force can also separate carbon dioxide. This is because carbon dioxide gas is efficiently hydrated compared to nitrogen and oxygen contained in the air. For this reason, hydrate is generated from the exhaust gas containing carbon dioxide in the air, and the exhaust gas force can also separate the carbon dioxide, and the separated carbon dioxide can be converted into a hydrate convenient for disposal.
  • the volume can be reduced to about 1/160 of the gas state. wear. For this reason, natural gas can be made into a favorable state for transportation as a hydrate state.
  • natural gas is cooled and liquidized to reduce the volume and transport it. Natural gas transported in this state must be kept at a very low temperature to prevent vaporization. For this reason, the transport device requires a special device for keeping it in a cryogenic state. Hydrate natural gas can be transported with simpler equipment than liquefied. This is because the temperature maintained in the idrate is higher than the temperature maintained in the liquefied state. Therefore, natural gas can be easily and efficiently transferred by making the natural gas hydrate with the production apparatus of the present invention. In this case, it is important how efficiently and quickly the natural gas can be hydrated, but the apparatus of the present invention can efficiently generate natural gas into the hydrate.
  • the hydrate production apparatus shown in FIG. 5 includes a sealed chamber 1 for supplying a raw material gas, and an ultrasonic wave that atomizes water into the fine particles in the raw material gas by ultrasonically oscillating water in the sealed chamber 1.
  • the sealed chamber 1 is filled with a source gas by supplying a source gas such as natural gas or exhaust gas.
  • a source gas such as natural gas or exhaust gas.
  • the ultrasonic vibrator 2 does not inject pressurized air or the like into the sealed chamber 1 in order to atomize water.
  • the production apparatus of the present invention can fill the sealed chamber 1 with the raw material gas.
  • the closed chamber 1 filled with the raw material gas atomizes the water particles to be atomized as fine particles in the raw material gas.
  • the atomization efficiency is affected by the water particle concentration of the raw material gas. Atomization by ultrasonic vibration can increase the efficiency by lowering the water particle concentration of the source gas.
  • the apparatus shown in the figure continuously supplies a raw material gas to the sealed chamber 1, and further continuously discharges a raw material gas containing water particles.
  • the sealed chamber 1 in the figure supplies a source gas from one side and discharges a source gas containing water particles from the opposite side.
  • the sealed chamber 1 moves the atomized water particles to the atomization region force and supplies fresh raw material gas containing no water particles to the atomization region.
  • the sealed chamber 1 having this structure allows the raw material gas to flow in a certain direction to efficiently atomize water particles. Atomization This is because the water particle concentration of the source gas in the region can be lowered.
  • the water particle concentration in the atomization region also affects the particle size of the water particles to be atomized.
  • the particle size of the water particles to be atomized can be reduced by lowering the water particle concentration in the atomization region.
  • the raw material gas is flowed in a fixed direction in the sealed chamber 1 to cause the raw material gas in the atomization region containing water particles to flow, and the atomization region contains water particles.
  • an apparatus for supplying fresh raw material gas can reduce the particle size of fine particles.
  • the flow rate of the raw material gas supplied to the sealed chamber 1 is determined to an optimum value in consideration of the atomization amount of water particles.
  • the amount of atomization of water particles is specified by the input power of the ultrasonic transducer 2.
  • the amount of atomization with respect to the input power of the ultrasonic vibrator 2 varies depending on the efficiency of the ultrasonic vibrator 2, but for example, the ultrasonic vibrator 2 with an input power of 10 W is approximately 0.5 liters per hour. Atomize 1 liter of water. Therefore, the flow rate of the raw material gas with respect to the input power of 10 W of the ultrasonic vibrator 2 is 10 liters Z minutes or more, preferably 15 liters Z minutes or more, more preferably 20 liters Z minutes or more.
  • the flow rate of the raw material gas with respect to the input power of the ultrasonic vibrator 2 is too large, the water particles contained in the raw material gas are reduced. For this reason, the flow rate of the raw material gas with respect to the input power of 10 W of the ultrasonic vibrator 2 is preferably 100 liters Z or less.
  • the flow rate of the raw material gas is also specified by reacting the raw material gas with water of fine particles to form a hydrate.
  • the theoretical ratio of fine particle water to source gas is 5.75 mol Z1.0 mol assuming that all source gases are hydrated (in the case of type I methane hydrate, the gas species and the structure to be generated) ) O
  • specify the appropriate water and gas supply in consideration of the reaction efficiency of atomized water and gas.
  • the sealed chamber 1 is a tank that is hermetically sealed and has a water reservoir 6 at the bottom.
  • An ultrasonic transducer 2 is disposed at the bottom of the water reservoir 6.
  • the ultrasonic transducer 2 is connected to an ultrasonic power source 7 and ultrasonically vibrates the water in the water reservoir 6.
  • the ultrasonic vibrator 2 is vibrated with an ultrasonic wave having a frequency higher than the audible frequency, for example, 20 kHz to 10 MHz.
  • the vibration frequency of the ultrasonic vibrator 2 affects the particle size of the water particles to be atomized. Increasing the vibration frequency of the ultrasonic vibrator 2 can reduce the particle size of the atomized water particles.
  • the frequency of the ultrasonic transducer 2 is preferably 1 to 5 MHz. Optimally, it should be 2-3MHz.
  • the water reservoir 6 of the sealed chamber 1 has a water depth at which water can be efficiently atomized. If the depth of the water reservoir 6 is too shallow, water cannot be atomized efficiently. If the depth of the water reservoir 6 is less than 5 mm, water cannot be atomized efficiently. Even if the depth of the water reservoir 6 is deeper than 5 cm, water cannot be efficiently atomized. Therefore, for example, when the input power of the ultrasonic vibrator 2 is 10 W and the vibration frequency is 10 kHz to 5 MHz, the water depth of the water reservoir 6 is preferably 1 cm to 5 cm, and more preferably 1 cm to 3 cm. However, since the optimum water depth of the water reservoir portion varies depending on the frequency of the ultrasonic transducer and the input power, the present invention does not specify the water depth of the water reservoir portion within the aforementioned range.
  • the ultrasonic vibrator 2 is horizontally fixed to the bottom of the water reservoir 6, and ultrasonically vibrates water up and down.
  • the ultrasonic vibrator can also be disposed in the water reservoir in a slightly inclined posture to cause ultrasonic vibration of the water.
  • an ultrasonic vibrator can be disposed in the water supplied to the sealed chamber, and the water supplied to the sealed chamber can be atomized by ultrasonic vibration. Since this structure cannot atomize all the water supplied to the sealed chamber, it collects the bottom force water of the sealed chamber and repeatedly supplies it to the sealed chamber to atomize some of the supplied water. .
  • the water is cooled and supplied to the sealed chamber 1.
  • the water is frozen when cooled to below 0 ° C, so it is higher than 0 ° C and as close to 0 ° C as possible, for example, cooled to 0 ° C to 5 ° C, and supplied to the closed chamber 1 .
  • the apparatus shown in the figure supplies water stored in a water tank 10 to a sealed chamber 1 by a water pump 11. In the apparatus shown in the figure, the water supplied by the water pump 11 is further cooled by the cooler 5 and supplied to the sealed chamber 1.
  • the sealed chamber 1 can improve the atomization efficiency of water by reducing the internal pressure.
  • a forced transfer device 8 is connected to the sealed chamber 1 to reduce the internal pressure.
  • the forced transfer device 8 is connected between the closed chamber 1 and the reaction chamber 3 and sucks the raw material gas containing water particles into the closed chamber 1 and forcibly transfers it to the reaction chamber 3.
  • the forced transfer device 8 is a compressor such as a roots blower or a compressor such as a reshorm compressor. This device can reduce the closed chamber 1 to below atmospheric pressure with the forced transfer device 8 and improve the atomization rate of water.
  • the sealed chamber 1 that has been depressurized below the atmospheric pressure increases the atomization efficiency and smoothly sucks the raw material gas.
  • the sealed chamber 1 has an outlet 1A that is connected to the suction side of the forced transfer device 8. Furthermore, the sealed chamber 1 shown in the figure is provided with a demister 9 for removing atomized large water particles at the discharge port 1A.
  • This apparatus removes large water particles contained in the raw gas discharged from the sealed chamber 1 and supplies water fine particles to the reaction chamber 3, so that the average of the water fine particles supplied to the reaction chamber 3 is averaged. The particle size can be reduced. For this reason, fine water particles can be supplied to the reaction chamber 3 to efficiently generate hydrate.
  • the device shown in the figure is a force that removes large water particles by installing a demister 9 at the outlet 1A. Instead of demister 9, a mechanism that separates large water particles, for example, large water particles are condensed on the surface and separated. A mechanism or the like can be provided between the sealed chamber and the reaction chamber.
  • the reaction chamber 3 is a pressure vessel, and a raw material gas containing water particles supplied from the sealed chamber 1 is cooled by a forced transfer device 8 in a pressurized state to generate a noble rate of the raw material gas.
  • the temperature and pressure at which the raw material gas reacts with water and produces idrate is specified by the raw material gas.
  • natural gas reacts with water at atmospheric pressure and below 30 ° C to produce hydrate. Therefore, the reaction chamber 3 cools the temperature to 50 ° C. and generates a natural gas hydrate at atmospheric pressure.
  • the reaction chamber 3 can generate natural gas hydrate at 30 ° C. or lower, preferably ⁇ 50 ° C. or lower, more preferably 170 ° C. or lower.
  • the reaction chamber 3 of the pressure-resistant vessel can be pressurized with the raw material gas transferred by the forced transfer device 8, the temperature at which hydrate is generated can be lowered as the pressurized state. Therefore, when the reaction chamber 3 is in a pressurized state to generate a hydrate of natural gas, the temperature of the reaction chamber 3 can be higher than the set temperature described above. When the raw material gas reacts with water to produce hydrate, heat of reaction is generated. The reaction chamber 3 is cooled by the cooler 5 so that the temperature of the reaction chamber 3 does not increase due to the heat of reaction.
  • the reaction chamber 3 is provided with a rotary feeder 12 at the bottom for taking out the hydrate in a sealed state.
  • the rotary feeder 12 rotates the rotor to discharge the hydrate accumulated at the bottom while keeping the reaction chamber 3 sealed.
  • the manufacturing apparatus shown in the figure includes a heat exchanger 13 that cools water supplied to the sealed chamber 1, a heat exchanger 14 that cools the sealed chamber 1, and a source gas containing water particles supplied to the reaction chamber 3. And heat exchange 16 for cooling the reaction chamber 3.
  • Each heat The interchanges l3, 14, 15, 16 are connected to a chiller (not shown) and cooled by a cooling medium supplied from the chiller. Since each of the heat exchangers 13, 14, 15, and 16 has a different temperature for cooling the water and the raw material gas, a control valve (not shown) for controlling the circulation amount of the refrigerant is provided so as to be an optimum temperature. ing.
  • the raw material gas such as carbon dioxide gas or natural gas in the air is in a hydrated state. It is extremely effective in storage, transportation and supply means.
  • FIG. 1 is a schematic configuration diagram of a conventional hydrate manufacturing apparatus.
  • FIG. 2 is an enlarged sectional view showing another example of reducing the particle size of fine particles in a conventional manufacturing apparatus.
  • FIG. 3 is a graph showing characteristics of producing hydrate by a hydrate manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the characteristics of a conventional hydrate manufacturing apparatus that generates hydrate.
  • FIG. 5 is a schematic configuration diagram of a hydrate manufacturing apparatus according to an embodiment of the present invention. Explanation of symbols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

[PROBLEMS] To increase the rate of production of a hydrate by decreasing the average particle size of microparticles of water, and to convert a raw material gas into a hydrate at high efficiency. [MEANS FOR SOLVING PROBLEMS] Disclosed is a hydrate production apparatus which can atomize water in the form of microparticles and enables the contact of the atomized water microparticles with a raw material gas under cooled conditions, thereby producing a hydrate. The apparatus comprises: a closed chamber (1) to which the raw material gas is introduced; an ultrasonic oscillator (2) for causing the ultrasonic oscillation of water supplied into the closed chamber (1) to atomize water in the form of microparticles in the raw material gas; a reactor (3) to which the microparticles atomized by the ultrasonic oscillator (2) is transferred together with the raw material gas; a transfer duct (4) for transferring the raw material gas containing the water microparticles from the closed chamber (1) to the reactor (3); and a cooler (5) for cooling the reactor (3) to bring the inside of the reactor (3) into the condition suitable for the reaction between the water microparticles and the raw material gas transferred by the transfer duct (4).

Description

明 細 書  Specification
ハイドレートの製造装置  Hydrate production equipment
技術分野  Technical field
[0001] 本発明は、空気中の炭酸ガスや天然ガス等の原料ガスを水の微細粒子と反応させ てノ、イドレートを製造する装置に関する。  [0001] The present invention relates to an apparatus for producing an idrate by reacting a raw material gas such as carbon dioxide gas or natural gas in the air with fine particles of water.
背景技術  Background art
[0002] 原料ガスを水に反応させてハイドレートとする装置は開発されている。簡単な装置 は、原料ガスを充填する容器に氷を入れて撹拌して、ノ、イドレートにできる。この装置 は、容器の内部で撹拌される氷力 表面力も原料ガスと反応してハイドレートとなる。 この構造の装置は、効率よくハイドレートを製造できな!/、。  [0002] An apparatus for producing a hydrate by reacting a raw material gas with water has been developed. A simple device can be made into an idrate by putting ice in a container filled with source gas and stirring. In this device, ice force and surface force stirred inside the container also reacts with the raw material gas to become hydrate. The device with this structure cannot produce hydrates efficiently! /.
[0003] 製造効率を高くする装置として、原料ガスを充填している圧力タンク内に、ノズルか ら水を噴霧して微細粒子としてノ、イドレートとする装置が開発されている。(特許文献 1参照)  [0003] As an apparatus for increasing the production efficiency, an apparatus has been developed in which water is sprayed from a nozzle into a pressure tank filled with a raw material gas to form fine particles and idrate. (See Patent Document 1)
特許文献 1:特開 2001— 342473号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-342473
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 特許文献 1の公報に記載される装置は、図 1に示すように、ハイドレートを生成する 反応タンク 91を備える。反応タンク 91は圧力容器で、内部には冷却コイル 92を設け ている。冷却コイル 92は、反応タンク 91内の水相 Lを、ハイドレートを生成する温度と して約 1°Cに冷却保持する。ノ、イドレートを生成する際には水和熱が発生する力 ハ イドレートは低温 ·高圧状態でなければ生成できな 、ので、冷却コイル 92で冷却して いる。さらに、図の装置は、貯水槽 93を備える。貯水槽 93は反応タンク 91に水を配 管 94で供給して、反応タンク 91内の底部を水相 Lとする。さらに、反応タンク 91の下 部には、メタン導入口 9 laを設けている。このメタン導入口 91aはガス貯蔵部 97に連 結されて、ここ力も原料ガスのメタンガスが供給される。反応タンク 91に供給されるメ タンは、気相 Gの圧力をノヽイドレートの生成圧力として、 40atmに保持する。反応タン ク 91の底部には、未反応の水を抜出する水抜出口 91bを設けている。水抜出口 91b は、ポンプ 95と熱交^^ 96を介して反応タンク 91の上端部のスプレーノズル 98に 連結している。スプレーノズル 98は、熱交^^ 96でノヽイドレートを生成できる温度ま で水を冷却して反応タンク 91の内部に微細粒子として噴霧する。スプレーノズル 98 は、反応タンク 91の内部に、下向きに水を数十/ z mの微細粒子として噴霧する。スプ レーノズル 98から噴霧される微細粒子は、平均粒径を小さくすることで、水の単位体 積あたりの表面積、すなわち気相 Gとの接触面積を大きくして、ハイドレートを速やか に生成できる。 [0004] As shown in FIG. 1, the apparatus described in the publication of Patent Document 1 includes a reaction tank 91 that generates hydrate. The reaction tank 91 is a pressure vessel, and a cooling coil 92 is provided inside. The cooling coil 92 cools and holds the aqueous phase L in the reaction tank 91 at about 1 ° C. as a temperature for generating hydrate. When generating the hydrate, the force hydrate that generates heat of hydration can only be generated at low temperature and high pressure, so it is cooled by the cooling coil 92. Further, the illustrated apparatus includes a water tank 93. The water tank 93 supplies water to the reaction tank 91 through the pipe 94, and the bottom of the reaction tank 91 is the water phase L. Further, a methane inlet 9 la is provided at the lower part of the reaction tank 91. This methane introduction port 91a is connected to a gas storage unit 97, and this force is also supplied with methane gas as a raw material gas. The methane supplied to the reaction tank 91 keeps the pressure of the gas phase G at 40 atm with the pressure for generating the nodule. At the bottom of the reaction tank 91, a water outlet 91b for extracting unreacted water is provided. Drain outlet 91b Is connected to a spray nozzle 98 at the upper end of the reaction tank 91 via a pump 95 and a heat exchanger ^ 96. The spray nozzle 98 cools the water to a temperature at which a noise rate can be generated by heat exchange 96 and sprays it as fine particles inside the reaction tank 91. The spray nozzle 98 sprays water as fine particles of several tens / zm downward into the reaction tank 91. By reducing the average particle size of the fine particles sprayed from the spray nozzle 98, the surface area per unit volume of water, that is, the contact area with the gas phase G can be increased, and hydrates can be generated quickly.
[0005] さらに、特許文献 1は、微細粒子の粒径を小さくするために、図 2に示すように、スプ レーノズル 98に代わって、超音波振動板 80を使用する装置も記載する。超音波振 動板 80は、反応タンク 81の上部に水平に配置される。超音波振動板 80の上方に、 配管 82から水が供給される。供給される水は、超音波振動板 80上に水膜 83を形成 する。水膜 83は、超音波振動により微細粒子となって反応タンク 81内に放出される。 この構造は、スプレーノズル 98のように水を微細粒子にするための気体を噴射する 必要がなく、また水の微細粒子の粒径を均一にできる。  [0005] Further, Patent Document 1 also describes an apparatus that uses an ultrasonic vibration plate 80 in place of the spray nozzle 98 as shown in FIG. The ultrasonic vibration plate 80 is horizontally disposed on the upper part of the reaction tank 81. Water is supplied from the pipe 82 above the ultrasonic vibration plate 80. The supplied water forms a water film 83 on the ultrasonic vibration plate 80. The water film 83 is released into the reaction tank 81 as fine particles by ultrasonic vibration. With this structure, it is not necessary to inject a gas for making water into fine particles unlike the spray nozzle 98, and the particle diameter of the water can be made uniform.
[0006] し力しながら、以上の構造によっては、原料ガスを効率よく速やかにハイドレートに できない。スプレーノズルを使用する構造では、微細粒子の平均粒径をミクロン単位 よりも小さくできないからである。また、超音波振動板の上に水膜を設けて、これを超 音波振動で微細粒子とする構造によっても、効率よく水を平均粒径の小さくする微細 粒子に霧化できない。  However, depending on the structure described above, the raw material gas cannot be hydrated efficiently and quickly. This is because the average particle size of fine particles cannot be made smaller than a micron unit in a structure using a spray nozzle. Moreover, even if a water film is provided on the ultrasonic vibration plate and this is made into fine particles by ultrasonic vibration, water cannot be atomized efficiently into fine particles having a small average particle diameter.
[0007] ノ、イドレートを効率よく製造するには、水の微細粒子の平均粒径をいかに小さくでき るかが大切である。平均粒径が小さくなると、体積あたりの表面積が増加して、原料 ガスと水とが速やかに反応して生成速度が速くなるからである。また、水の微細粒子 の平均粒径を小さくすることは、生成されたノヽイドレートに含まれる原料ガスの割合を 増加することにも効果がある。さらに、水と原料ガスとの反応効率、言いかえると製造 されたハイドレートが原料ガスを含む割合は、温度を低くして向上できる。ただ、温度 を低くすると、反応タンクの生成速度が遅くなるので、反応効率を高くするために、温 度を低くする場合も、水の微細粒子の平均粒径を小さくすることが大切である。  [0007] In order to efficiently produce idrate, it is important how the average particle size of the fine water particles can be reduced. This is because as the average particle size decreases, the surface area per volume increases and the raw material gas and water react quickly to increase the production rate. In addition, reducing the average particle size of the fine water particles is also effective in increasing the proportion of the raw material gas contained in the generated nodrate. Furthermore, the reaction efficiency between water and the raw material gas, in other words, the ratio of the produced hydrate containing the raw material gas can be improved by lowering the temperature. However, if the temperature is lowered, the production rate of the reaction tank is slowed down. To increase the reaction efficiency, it is important to reduce the average particle size of the fine water particles even when the temperature is lowered.
[0008] 本発明は、水の微細粒子の平均粒径を小さくして生成速度を速くすると共に、効率 よく原料ガスをハイドレートとすることを目的に開発されたものである。 [0008] The present invention reduces the average particle size of the fine water particles to increase the production rate and improve the efficiency. It was often developed for the purpose of making the source gas hydrate.
課題を解決するための手段  Means for solving the problem
[0009] 本発明のハイドレートの製造装置は、前述の目的を達成するために以下の構成を 備える。  The hydrate manufacturing apparatus of the present invention has the following configuration in order to achieve the above-described object.
ノ、イドレートの製造装置は、水を微細粒子に霧化し、霧化された水の微細粒子と原 料ガスを冷却状態で接触させてハイドレートとする。ノ、イドレートの製造装置は、原料 ガスが供給される密閉チャンバ 1と、この密閉チャンバ 1に供給される水を超音波振 動させて原料ガス中に微細粒子に霧化する超音波振動子 2と、この超音波振動子 2 で霧化された微細粒子が原料ガスと一緒に搬送される反応室 3と、密閉チャンバ 1か ら反応室 3に水の微細粒子を含む原料ガスを移送する移送ダクト 4と、反応室 3を冷 却して、移送ダクト 4で移送される水の微細粒子と原料ガスを反応環境とする冷却器 5とを備える。  The idrate production apparatus atomizes water into fine particles, and makes the fine particles of atomized water and raw material gas contact in a cooled state to form a hydrate. The idrate manufacturing apparatus includes a sealed chamber 1 to which a raw material gas is supplied, and an ultrasonic vibrator 2 that atomizes water supplied to the sealed chamber 1 by ultrasonic vibration into fine particles in the raw material gas. A reaction chamber 3 in which fine particles atomized by the ultrasonic vibrator 2 are transported together with the raw material gas, and a transfer for transferring the raw material gas containing fine water particles from the sealed chamber 1 to the reaction chamber 3 A duct 4 and a cooler 5 that cools the reaction chamber 3 and uses fine particles of water and raw material gas transferred in the transfer duct 4 as a reaction environment are provided.
[0010] 本発明のハイドレートの製造装置は、密閉チャンバ 1が底部に水溜部 6を備え、この 水溜部 6の底部に超音波振動子 2を配設して、超音波振動子 2でもって水溜部 6を超 音波振動して、微細粒子に霧化することができる。  In the hydrate manufacturing apparatus of the present invention, the sealed chamber 1 includes a water reservoir 6 at the bottom, and an ultrasonic vibrator 2 is disposed at the bottom of the water reservoir 6. The water reservoir 6 can be atomized into fine particles by ultrasonic vibration.
[0011] 本発明のハイドレートの製造装置は、原料ガスを、炭酸ガスを含む空気、または天 然ガスとすることができる。 [0011] In the hydrate production apparatus of the present invention, the raw material gas can be air containing carbon dioxide or natural gas.
[0012] 本発明のハイドレートの製造装置は、密閉チャンバ 1と反応室 3の間に、密閉チャン バ 1の水の微細粒子を含む原料ガスを吸入して、反応室 3に強制送風する強制移送 器 8を連結することができる。 [0012] The hydrate manufacturing apparatus of the present invention is configured to forcibly blow a forced feed into the reaction chamber 3 by sucking a raw material gas containing fine particles of water in the sealed chamber 1 between the sealed chamber 1 and the reaction chamber 3. Transporter 8 can be connected.
発明の効果  The invention's effect
[0013] 本発明のハイドレートの製造装置は、水の微細粒子の平均粒径を小さくして生成速 度を速くし、また効率よく原料ガスをハイドレートにできる特徴がある。図 3と図 4は、メ タンハイドレートが生成される状態を示すグラフである。図 3は本発明の製造装置が ハイドレートを生成する特性を示し、図 4は図 1に示す製造装置がハイドレートを生成 する特性を示す。ただし、これ等の図は、横軸を時間軸とし、縦軸はハイドレートが生 成される相対値を示している。図 3と図 4から明らかなように、本発明の製造装置は、 従来の装置に比較して、ハイドレートの生成速度を飛躍的に向上できる。 [0014] さらに、図 3と図 4は、各々 6時間後におけるハイドレートの生成量を 1としていること から、図 3と図 4において、 6時間後におけるハイドレート率は同一ではない。図 3に示 す本発明の製造装置は、図 4に示す従来の装置に比較して、ハイドレート率も相当 に向上できる。それは、図 1に示す従来の装置を使用して、水の微細粒子の粒径を 変化させると、 6時間後におけるハイドレート率力 5. 6%〜19. 7%の範囲で変化 する力らである。ここで、ハイドレート率とは、(メタンを含む水のモル数) Z (水のモル 数) [molZmol]を示す値である。本発明の製造装置は、水の微細粒子の粒径を、 従来の装置のマイクロオーダー力もナノオーダと著しく小さくできる。このことから、本 発明の製造装置は、ノ、イドレート率を相当に向上して、効率よくガスハイドレートを製 造できる。 [0013] The hydrate production apparatus of the present invention is characterized in that the average particle size of fine water particles is reduced to increase the production rate, and the raw material gas can be efficiently hydrated. Figures 3 and 4 are graphs showing the state in which methane hydrate is generated. Fig. 3 shows the characteristics of the production apparatus of the present invention for generating hydrate, and Fig. 4 shows the characteristics of the production apparatus of Fig. 1 for generating hydrate. However, in these figures, the horizontal axis represents the time axis, and the vertical axis represents the relative value at which hydrate is generated. As is apparent from FIGS. 3 and 4, the production apparatus of the present invention can dramatically improve the hydrate generation speed as compared with the conventional apparatus. Furthermore, in FIGS. 3 and 4, the amount of hydrate produced after 6 hours is set to 1, and therefore the hydrate rate after 6 hours is not the same in FIGS. 3 and 4. The manufacturing apparatus of the present invention shown in FIG. 3 can considerably improve the hydrate rate as compared with the conventional apparatus shown in FIG. This is because when the particle size of fine water particles is changed using the conventional apparatus shown in Fig. 1, the hydrate rate power after 6 hours changes from 5.6% to 19.7%. It is. Here, the hydrate rate is a value indicating (number of moles of water containing methane) Z (number of moles of water) [molZmol]. The production apparatus of the present invention can remarkably reduce the particle size of water fine particles and the micro-order force of the conventional apparatus as nano-order. From this, the production apparatus of the present invention can significantly improve the idrate rate and can produce gas hydrate efficiently.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は 、本発明の技術思想を具体ィ匕するためのハイドレートの製造装置を例示するもので あって、本発明は製造装置を以下のものに特定しない。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiments described below exemplify a hydrate manufacturing apparatus for concretely illustrating the technical idea of the present invention, and the present invention does not specify the manufacturing apparatus as follows.
[0016] さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される 部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄 」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例 の部材に特定するものでは決してな 、。  [0016] Further, in this specification, in order to facilitate understanding of the claims, the numbers corresponding to the members shown in the embodiments are referred to as "Claims" and "Means for solving the problems". It is added to the member shown by. However, the members shown in the claims are not limited to the members in the embodiments.
[0017] 図 5に示すハイドレートの製造装置は、水を微細粒子に霧化し、霧化された水の微 細粒子と原料ガスを冷却状態で接触させてノ、イドレートとする。この製造装置は、原 料ガスとして炭酸ガスを含む空気や天然ガス等を使用する。ただし、本発明の装置 は、原料ガスを空気や天然ガスには特定しない。原料ガスには、ノ、イドレートにできる 全てのガスを使用できる。炭酸ガスを含む空気を原料ガスとしてハイドレートを生成し て、空気力も炭酸ガスを分離できる。炭酸ガスが、空気に含まれる窒素や酸素などに 比較して、効率よくハイドレートになるからである。このため、空気に炭酸ガスが含ま れる排気ガスからハイドレートを生成して、排気ガス力も炭酸ガスを分離でき、また分 離された炭酸ガスを廃棄に好都合なハイドレートにできる。  [0017] The hydrate production apparatus shown in FIG. 5 atomizes water into fine particles, and contacts the atomized water fine particles with the raw material gas in a cooled state to obtain an idrate. This manufacturing apparatus uses air or natural gas containing carbon dioxide as raw material gas. However, the apparatus of the present invention does not specify the source gas as air or natural gas. As the source gas, any gas that can be made into an idrate can be used. Hydrate is generated using air containing carbon dioxide as the raw material gas, and the aerodynamic force can also separate carbon dioxide. This is because carbon dioxide gas is efficiently hydrated compared to nitrogen and oxygen contained in the air. For this reason, hydrate is generated from the exhaust gas containing carbon dioxide in the air, and the exhaust gas force can also separate the carbon dioxide, and the separated carbon dioxide can be converted into a hydrate convenient for disposal.
[0018] さらに、天然ガスをノヽイドレートとすることで、体積をガス状態の約 1/160に減少で きる。このため、天然ガスはハイドレートの状態として輸送に好ましい状態にできる。 現在、天然ガスは、冷却し、液ィ匕させて体積を小さくして輸送している。この状態で輸 送される天然ガスは、気化を阻止するために、極めて低い低温に保持する必要があ る。このため、輸送装置には極低温状態に保持する特別装置を必要とする。ハイドレ ートの天然ガスは、液化された状態よりも簡単な装置で輸送できる。ノ、イドレートに保 持する温度が、液化された状態に保持する温度よりも高いからである。したがって、 本発明の製造装置で天然ガスをハイドレートとすることで、天然ガスを簡単に能率よく 移送できる。この場合、天然ガスをいかに能率よく速やかにハイドレートにできるかが 大切であるが、本発明の装置は、天然ガスを効率よくハイドレートに生成できる。 [0018] Further, by using natural gas as a noble rate, the volume can be reduced to about 1/160 of the gas state. wear. For this reason, natural gas can be made into a favorable state for transportation as a hydrate state. Currently, natural gas is cooled and liquidized to reduce the volume and transport it. Natural gas transported in this state must be kept at a very low temperature to prevent vaporization. For this reason, the transport device requires a special device for keeping it in a cryogenic state. Hydrate natural gas can be transported with simpler equipment than liquefied. This is because the temperature maintained in the idrate is higher than the temperature maintained in the liquefied state. Therefore, natural gas can be easily and efficiently transferred by making the natural gas hydrate with the production apparatus of the present invention. In this case, it is important how efficiently and quickly the natural gas can be hydrated, but the apparatus of the present invention can efficiently generate natural gas into the hydrate.
[0019] 図 5に示すハイドレートの製造装置は、原料ガスを供給する密閉チャンバ 1と、この 密閉チャンバ 1内で水を超音波振動させて原料ガス中に微細粒子に霧化する超音 波振動子 2と、この超音波振動子 2で霧化された微細粒子が原料ガスと一緒に搬送 される反応室 3と、密閉チャンバ 1から反応室 3に水の微細粒子を含む原料ガスを移 送する移送ダクト 4と、反応室 3を冷却して、移送ダクト 4で移送される水の微細粒子と 原料ガスを反応環境とする冷却器 5とを備える。  The hydrate production apparatus shown in FIG. 5 includes a sealed chamber 1 for supplying a raw material gas, and an ultrasonic wave that atomizes water into the fine particles in the raw material gas by ultrasonically oscillating water in the sealed chamber 1. The vibrator 2, the reaction chamber 3 in which the fine particles atomized by the ultrasonic vibrator 2 are transported together with the raw material gas, and the raw material gas containing fine water particles from the sealed chamber 1 to the reaction chamber 3 are transferred. It includes a transfer duct 4 to be sent, and a cooler 5 that cools the reaction chamber 3 and uses the fine particles of water transferred by the transfer duct 4 and a source gas as a reaction environment.
[0020] 密閉チャンバ 1は、天然ガスや排気ガス等の原料ガスを供給して、原料ガスを充満 させている。超音波振動子 2は、従来装置に使用されるスプレーノズルのように、水を 霧化するために加圧空気などを密閉チャンバ 1内に噴射しない。このため、本発明の 製造装置は、密閉チャンバ 1内を原料ガスで満たすことができる。原料ガスを満たし て ヽる密閉チャンバ 1は、霧化される水粒子を原料ガス中に微細粒子として霧化させ る。水の微細粒子を原料ガス中に霧化させる装置は、霧化効率が、原料ガスの水粒 子濃度に影響を受ける。超音波振動による霧化は、原料ガスの水粒子濃度を低くし て効率を高くできる。この状態を実現するために、図の装置は、密閉チャンバ 1に原 料ガスを連続して供給し、さらに、水粒子を含む原料ガスを連続的に排出する。図の 密閉チャンバ 1は、一方カゝら原料ガスを供給して、反対側から水粒子を含む原料ガス を排出する。この密閉チャンバ 1は、霧化された水粒子を霧化領域力 移動させると 共に、霧化領域には水粒子を含まない新鮮な原料ガスを供給する。この構造の密閉 チャンバ 1は、原料ガスを一定の方向に流動して、水粒子を効率よく霧化する。霧化 領域の原料ガスの水粒子濃度を低くできるからである。 [0020] The sealed chamber 1 is filled with a source gas by supplying a source gas such as natural gas or exhaust gas. Unlike the spray nozzle used in the conventional apparatus, the ultrasonic vibrator 2 does not inject pressurized air or the like into the sealed chamber 1 in order to atomize water. For this reason, the production apparatus of the present invention can fill the sealed chamber 1 with the raw material gas. The closed chamber 1 filled with the raw material gas atomizes the water particles to be atomized as fine particles in the raw material gas. In the device that atomizes fine water particles into the raw material gas, the atomization efficiency is affected by the water particle concentration of the raw material gas. Atomization by ultrasonic vibration can increase the efficiency by lowering the water particle concentration of the source gas. In order to realize this state, the apparatus shown in the figure continuously supplies a raw material gas to the sealed chamber 1, and further continuously discharges a raw material gas containing water particles. The sealed chamber 1 in the figure supplies a source gas from one side and discharges a source gas containing water particles from the opposite side. The sealed chamber 1 moves the atomized water particles to the atomization region force and supplies fresh raw material gas containing no water particles to the atomization region. The sealed chamber 1 having this structure allows the raw material gas to flow in a certain direction to efficiently atomize water particles. Atomization This is because the water particle concentration of the source gas in the region can be lowered.
[0021] さらに、霧化領域の水粒子濃度は、霧化される水粒子の粒径にも影響を与える。霧 化される水粒子の粒径は、霧化領域の水粒子濃度を低くして小さくできる。図に示す ように、原料ガスを密閉チャンバ 1内で一定の方向に流動させて、水粒子を含む霧化 領域の原料ガスを霧化領域力 流動させ、さらに霧化領域には水粒子を含まな 、新 鮮な原料ガスを供給する装置は、微細粒子の粒径を小さくできる。  [0021] Further, the water particle concentration in the atomization region also affects the particle size of the water particles to be atomized. The particle size of the water particles to be atomized can be reduced by lowering the water particle concentration in the atomization region. As shown in the figure, the raw material gas is flowed in a fixed direction in the sealed chamber 1 to cause the raw material gas in the atomization region containing water particles to flow, and the atomization region contains water particles. However, an apparatus for supplying fresh raw material gas can reduce the particle size of fine particles.
[0022] 密閉チャンバ 1に供給する原料ガスの流量は、水粒子の霧化量を考慮して最適値 に特定される。水粒子の霧化量は、超音波振動子 2の入力電力で特定される。超音 波振動子 2の入力電力に対する霧化量は、超音波振動子 2の効率により変化するが 、たとえば入力電力を 10Wとする超音波振動子 2は、 1時間に約 0. 5リットル〜 1リット ルの水を霧化させる。このことから、超音波振動子 2の入力電力 10Wに対する原料 ガスの流量は、 10リットル Z分以上、好ましくは 15リットル Z分以上、さらに好ましくは 20リットル Z分以上とする。超音波振動子 2の入力電力に対する原料ガスの流量が 多すぎると、原料ガスに含まれる水粒子が少なくなる。このため、超音波振動子 2の 入力電力 10Wに対する原料ガスの流量は、好ましくは 100リットル Z分以下とする。  [0022] The flow rate of the raw material gas supplied to the sealed chamber 1 is determined to an optimum value in consideration of the atomization amount of water particles. The amount of atomization of water particles is specified by the input power of the ultrasonic transducer 2. The amount of atomization with respect to the input power of the ultrasonic vibrator 2 varies depending on the efficiency of the ultrasonic vibrator 2, but for example, the ultrasonic vibrator 2 with an input power of 10 W is approximately 0.5 liters per hour. Atomize 1 liter of water. Therefore, the flow rate of the raw material gas with respect to the input power of 10 W of the ultrasonic vibrator 2 is 10 liters Z minutes or more, preferably 15 liters Z minutes or more, more preferably 20 liters Z minutes or more. If the flow rate of the raw material gas with respect to the input power of the ultrasonic vibrator 2 is too large, the water particles contained in the raw material gas are reduced. For this reason, the flow rate of the raw material gas with respect to the input power of 10 W of the ultrasonic vibrator 2 is preferably 100 liters Z or less.
[0023] さらに、原料ガスの流量は、原料ガスと微細粒子の水とを反応させてハイドレートと することからも特定される。微細粒子の水と原料ガスの理論比は、全ての原料ガスが ハイドレートとなると仮定すれば、 5. 75モル Z1. 0モルである(I型メタンハイドレート の場合、ガス種及び生成する構造により規定される。 ) o現実には、霧化した水とガス の反応効率等を考慮して、適切な水及びガスの供給量を特定する。  [0023] Furthermore, the flow rate of the raw material gas is also specified by reacting the raw material gas with water of fine particles to form a hydrate. The theoretical ratio of fine particle water to source gas is 5.75 mol Z1.0 mol assuming that all source gases are hydrated (in the case of type I methane hydrate, the gas species and the structure to be generated) ) O In practice, specify the appropriate water and gas supply in consideration of the reaction efficiency of atomized water and gas.
[0024] 密閉チャンバ 1は、気密に密閉されたタンクで、底部を水溜部 6としている。水溜部 6の底部に超音波振動子 2を配設している。超音波振動子 2は、超音波電源 7に接続 されて、水溜部 6の水を超音波振動させる。超音波振動子 2は、可聴周波数よりも高 い周波数、たとえば 20kHz〜10MHzの超音波で振動される。超音波振動子 2の振 動周波数は、霧化される水粒子の粒径に影響を与える。超音波振動子 2の振動周波 数を高くすると、霧化される水粒子の粒径を小さくできる。ただ、超音波振動子 2は、 振動周波数が高すぎると効率が低下し、また極めて高 、周波数で振動する素子は 製作も難しくなる。このことから、超音波振動子 2の周波数は、好ましくは、 l〜5MHz 、最適には 2〜3MHzとする。 The sealed chamber 1 is a tank that is hermetically sealed and has a water reservoir 6 at the bottom. An ultrasonic transducer 2 is disposed at the bottom of the water reservoir 6. The ultrasonic transducer 2 is connected to an ultrasonic power source 7 and ultrasonically vibrates the water in the water reservoir 6. The ultrasonic vibrator 2 is vibrated with an ultrasonic wave having a frequency higher than the audible frequency, for example, 20 kHz to 10 MHz. The vibration frequency of the ultrasonic vibrator 2 affects the particle size of the water particles to be atomized. Increasing the vibration frequency of the ultrasonic vibrator 2 can reduce the particle size of the atomized water particles. However, if the vibration frequency of the ultrasonic vibrator 2 is too high, the efficiency is lowered, and it is difficult to manufacture an element that vibrates at an extremely high frequency. From this, the frequency of the ultrasonic transducer 2 is preferably 1 to 5 MHz. Optimally, it should be 2-3MHz.
[0025] 密閉チャンバ 1の水溜部 6は、水を効率良く霧化できる水深とする。水溜部 6の水深 が浅すぎると、水を効率よく霧化できない。水溜部 6の水深が 5mmよりも浅いと、水を 効率よく霧化できない。また、水溜部 6の水深が 5cmよりも深くても、水を効率よく霧 化できなくなる。このことから、たとえば超音波振動子 2の入力電力を 10W、振動周 波数を 10kHz〜5MHzとする場合、好ましくは水溜部 6の水深を lcm〜5cm、さら に好ましくは lcm〜3cmとする。ただし、水溜部の最適な水深は、超音波振動子の 周波数や入力電力により変化するので、本発明は水溜部の水深を前述の範囲には 特定しない。 [0025] The water reservoir 6 of the sealed chamber 1 has a water depth at which water can be efficiently atomized. If the depth of the water reservoir 6 is too shallow, water cannot be atomized efficiently. If the depth of the water reservoir 6 is less than 5 mm, water cannot be atomized efficiently. Even if the depth of the water reservoir 6 is deeper than 5 cm, water cannot be efficiently atomized. Therefore, for example, when the input power of the ultrasonic vibrator 2 is 10 W and the vibration frequency is 10 kHz to 5 MHz, the water depth of the water reservoir 6 is preferably 1 cm to 5 cm, and more preferably 1 cm to 3 cm. However, since the optimum water depth of the water reservoir portion varies depending on the frequency of the ultrasonic transducer and the input power, the present invention does not specify the water depth of the water reservoir portion within the aforementioned range.
[0026] 超音波振動子 2は、水溜部 6の底部に水平に固定されて、水を上下に超音波振動 させる。ただし、超音波振動子は、多少傾斜する姿勢で水溜部に配設して、水を超 音波振動させることもできる。また、図示しないが、密閉チャンバに供給する水中に超 音波振動子を配設して、密閉チャンバに供給される水を超音波振動して霧化するこ ともできる。この構造は、密閉チャンバに供給される全ての水を霧化できないので、密 閉チャンバの底部力 水を回収して、繰り返し密閉チャンバに供給して、供給される 水の一部を霧化させる。  [0026] The ultrasonic vibrator 2 is horizontally fixed to the bottom of the water reservoir 6, and ultrasonically vibrates water up and down. However, the ultrasonic vibrator can also be disposed in the water reservoir in a slightly inclined posture to cause ultrasonic vibration of the water. Further, although not shown, an ultrasonic vibrator can be disposed in the water supplied to the sealed chamber, and the water supplied to the sealed chamber can be atomized by ultrasonic vibration. Since this structure cannot atomize all the water supplied to the sealed chamber, it collects the bottom force water of the sealed chamber and repeatedly supplies it to the sealed chamber to atomize some of the supplied water. .
[0027] 水は冷却されて密閉チャンバ 1に供給される。水は 0°C以下に冷却すると凍るので 、 0°Cよりも高ぐかつできるかぎり 0°Cに近い温度、例えば 0°C〜5°Cに冷却して、密 閉チャンバ 1に供給される。図の装置は、水槽 10に蓄える水を水ポンプ 11で密閉チ ヤンバ 1に供給している。図の装置は、水ポンプ 11で供給する水を、さらに冷却器 5 で冷却して密閉チャンバ 1に供給して 、る。  The water is cooled and supplied to the sealed chamber 1. The water is frozen when cooled to below 0 ° C, so it is higher than 0 ° C and as close to 0 ° C as possible, for example, cooled to 0 ° C to 5 ° C, and supplied to the closed chamber 1 . The apparatus shown in the figure supplies water stored in a water tank 10 to a sealed chamber 1 by a water pump 11. In the apparatus shown in the figure, the water supplied by the water pump 11 is further cooled by the cooler 5 and supplied to the sealed chamber 1.
[0028] 密閉チャンバ 1は、内圧を低下して水の霧化効率を向上できる。図の製造装置は、 密閉チャンバ 1に強制移送器 8を連結して内圧を減圧している。強制移送器 8は、密 閉チャンバ 1と反応室 3の間に連結されて、水粒子を含む原料ガスを密閉チャンバ 1 力 吸入して、反応室 3に強制的に移送する。強制移送器 8はルーツブロア等のプロ ァゃ、リショルムコンプレッサ等のコンプレッサである。この装置は、強制移送器 8で密 閉チャンバ 1を大気圧以下に減圧して、水の霧化率を向上できる。大気圧以下に減 圧された密閉チャンバ 1は、霧化効率を高くして、原料ガスをスムーズに吸入する。 [0029] 密閉チャンバ 1は、排出口 1Aを開口して、ここに強制移送器 8の吸入側を連結して いる。さらに、図の密閉チャンバ 1は、排出口 1Aに、霧化された大粒の水粒子を除去 するデミスタ 9を設けている。この装置は、密閉チャンバ 1から排出される原料ガスに 含まれる大粒の水粒子を除去して反応室 3に水の微細粒子を供給するので、反応室 3に供給される水の微細粒子の平均粒径を小さくできる。このため、反応室 3には、微 細な水の微細粒子を供給して、効率よくハイドレートを生成できる。図の装置は、排 出口 1Aにデミスタ 9を設けて大きな水粒子を除去している力 デミスタ 9に代わって、 大きな水粒子を分離する機構、たとえば大きな水粒子を表面に結露させて分離する 分離機構等を、密閉チャンバと反応室との間に設けることもできる。 [0028] The sealed chamber 1 can improve the atomization efficiency of water by reducing the internal pressure. In the manufacturing apparatus shown in the figure, a forced transfer device 8 is connected to the sealed chamber 1 to reduce the internal pressure. The forced transfer device 8 is connected between the closed chamber 1 and the reaction chamber 3 and sucks the raw material gas containing water particles into the closed chamber 1 and forcibly transfers it to the reaction chamber 3. The forced transfer device 8 is a compressor such as a roots blower or a compressor such as a reshorm compressor. This device can reduce the closed chamber 1 to below atmospheric pressure with the forced transfer device 8 and improve the atomization rate of water. The sealed chamber 1 that has been depressurized below the atmospheric pressure increases the atomization efficiency and smoothly sucks the raw material gas. [0029] The sealed chamber 1 has an outlet 1A that is connected to the suction side of the forced transfer device 8. Furthermore, the sealed chamber 1 shown in the figure is provided with a demister 9 for removing atomized large water particles at the discharge port 1A. This apparatus removes large water particles contained in the raw gas discharged from the sealed chamber 1 and supplies water fine particles to the reaction chamber 3, so that the average of the water fine particles supplied to the reaction chamber 3 is averaged. The particle size can be reduced. For this reason, fine water particles can be supplied to the reaction chamber 3 to efficiently generate hydrate. The device shown in the figure is a force that removes large water particles by installing a demister 9 at the outlet 1A. Instead of demister 9, a mechanism that separates large water particles, for example, large water particles are condensed on the surface and separated. A mechanism or the like can be provided between the sealed chamber and the reaction chamber.
[0030] 反応室 3は耐圧容器で、強制移送器 8で密閉チャンバ 1から供給される水粒子を含 む原料ガスを加圧状態で冷却して、原料ガスのノヽイドレートを生成する。原料ガスが 水と反応してノ、イドレートを生成する温度と圧力は、原料ガスによって特定される。た とえば天然ガスは、大気圧において 30°C以下で水と反応してハイドレートを生成 する。したがって、反応室 3は、温度を 50°Cに冷却して、大気圧で天然ガスのハイ ドレートを生成する。ただし、反応室 3は、 30°C以下、好ましくは— 50°C以下、さら に好ましくは一 70°C以下として、天然ガスのハイドレートを生成することができる。耐 圧容器の反応室 3は、強制移送器 8で移送する原料ガスで加圧状態にできるので、 加圧状態として、ハイドレートを生成する温度を低くすることもできる。したがって、反 応室 3を加圧状態として、天然ガスのハイドレートを生成する場合、反応室 3の温度は 、前述の設定温度よりも高くできる。原料ガスが水と反応してハイドレートを生成すると き、反応熱が発生する。この反応熱で反応室 3の温度が上昇しないように、反応室 3 は冷却器 5で冷却される。  [0030] The reaction chamber 3 is a pressure vessel, and a raw material gas containing water particles supplied from the sealed chamber 1 is cooled by a forced transfer device 8 in a pressurized state to generate a noble rate of the raw material gas. The temperature and pressure at which the raw material gas reacts with water and produces idrate is specified by the raw material gas. For example, natural gas reacts with water at atmospheric pressure and below 30 ° C to produce hydrate. Therefore, the reaction chamber 3 cools the temperature to 50 ° C. and generates a natural gas hydrate at atmospheric pressure. However, the reaction chamber 3 can generate natural gas hydrate at 30 ° C. or lower, preferably −50 ° C. or lower, more preferably 170 ° C. or lower. Since the reaction chamber 3 of the pressure-resistant vessel can be pressurized with the raw material gas transferred by the forced transfer device 8, the temperature at which hydrate is generated can be lowered as the pressurized state. Therefore, when the reaction chamber 3 is in a pressurized state to generate a hydrate of natural gas, the temperature of the reaction chamber 3 can be higher than the set temperature described above. When the raw material gas reacts with water to produce hydrate, heat of reaction is generated. The reaction chamber 3 is cooled by the cooler 5 so that the temperature of the reaction chamber 3 does not increase due to the heat of reaction.
[0031] 反応室 3は密閉状態でハイドレートを取り出すロータリフィーダ 12を底部に設けて いる。ロータリフィーダ 12は、ローターを回転させて、反応室 3を密閉状態に保ちなが ら底部に溜まったハイドレートを排出する。  [0031] The reaction chamber 3 is provided with a rotary feeder 12 at the bottom for taking out the hydrate in a sealed state. The rotary feeder 12 rotates the rotor to discharge the hydrate accumulated at the bottom while keeping the reaction chamber 3 sealed.
[0032] 図の製造装置は、密閉チャンバ 1に供給する水を冷却する熱交換器 13と、密閉チ ヤンバ 1を冷却する熱交換器 14と、反応室 3に供給する水粒子を含む原料ガスを冷 却する熱交 と、さらに反応室 3を冷却する熱交 16とを備える。各々の熱 交 l3、 14、 15、 16はチラ一(図示せず)に連結されて、チラ一から供給される冷 媒で冷却される。各々の熱交換器 13、 14、 15、 16は、水や原料ガスを冷却する温 度が異なるので、最適温度となるように、冷媒の循環量をコントロールする制御弁(図 示せず)を設けている。 The manufacturing apparatus shown in the figure includes a heat exchanger 13 that cools water supplied to the sealed chamber 1, a heat exchanger 14 that cools the sealed chamber 1, and a source gas containing water particles supplied to the reaction chamber 3. And heat exchange 16 for cooling the reaction chamber 3. Each heat The interchanges l3, 14, 15, 16 are connected to a chiller (not shown) and cooled by a cooling medium supplied from the chiller. Since each of the heat exchangers 13, 14, 15, and 16 has a different temperature for cooling the water and the raw material gas, a control valve (not shown) for controlling the circulation amount of the refrigerant is provided so as to be an optimum temperature. ing.
産業上の利用可能性  Industrial applicability
[0033] 本発明では、ハイドレートの生成速度を飛躍的に向上して、効率よく原料ガスをノヽ イドレートにできるので、空気中の炭酸ガスや天然ガス等の原料ガスを、ハイドレート の状態で貯蔵、輸送、供給する手段において極めて有効である。 [0033] In the present invention, since the production rate of hydrate can be dramatically improved and the raw material gas can be efficiently converted into a noble gas, the raw material gas such as carbon dioxide gas or natural gas in the air is in a hydrated state. It is extremely effective in storage, transportation and supply means.
図面の簡単な説明  Brief Description of Drawings
[0034] [図 1]従来のハイドレートの製造装置の概略構成図である。 FIG. 1 is a schematic configuration diagram of a conventional hydrate manufacturing apparatus.
[図 2]従来の製造装置において微細粒子の粒径を小さくする他の一例を示す拡大断 面図である。  FIG. 2 is an enlarged sectional view showing another example of reducing the particle size of fine particles in a conventional manufacturing apparatus.
[図 3]本発明の一実施例に力かるハイドレートの製造装置がハイドレートを生成する 特性を示すグラフである。  FIG. 3 is a graph showing characteristics of producing hydrate by a hydrate manufacturing apparatus according to an embodiment of the present invention.
[図 4]従来のハイドレートの製造装置がハイドレートを生成する特性を示すグラフであ る。  FIG. 4 is a graph showing the characteristics of a conventional hydrate manufacturing apparatus that generates hydrate.
[図 5]本発明の一実施例にかかるハイドレートの製造装置の概略構成図である。 符号の説明  FIG. 5 is a schematic configuration diagram of a hydrate manufacturing apparatus according to an embodiment of the present invention. Explanation of symbols
1· ' ··密閉チャンバ 1Α· ··排出口  1 ····· Closed chamber 1Α ··· Discharge port
2· ··超音波振動子  2 ... Ultrasonic vibrator
3· ··反応室  3 ··· Reaction chamber
4· '·移送ダクト  4'Transport duct
5· "冷却器  5 · Cooler
6· ··水溜部  6 ... Water reservoir
Ί. ' ··超音波電源  ·. '· Ultrasonic power supply
8· 強制移送器  8. Forced transfer device
9· '·デミスタ  9 '' Demister
10· · •水槽 1…水ポンプ10 · · · Aquarium 1 ... Water pump
2…ロータリフィーダ2 ... Rotary feeder
3···熱交3 ...
4…熱交換器4… Heat exchanger
5…熱交換器5 ... Heat exchanger
6…熱交翻6 ... heat exchange
0…超音波振動板0 ... Ultrasonic diaphragm
1…反応タンク1 ... Reaction tank
2…配管2 ... Piping
3···水膜3 ... Water film
1···反応タンク 9 la…メタン導入口 1 ··· Reaction tank 9 la… Methane inlet
91b…水抜出口2···冷却コイル 91b ... Drain outlet 2 ... Cooling coil
3…貯水槽3 ... Water tank
4…配管4 ... Piping
5···ポンプ5 ... Pump
6…熱交換器6 ... Heat exchanger
7···ガス貯蔵部7 ... Gas storage
8···スプレーノス'ノレ 8 ... Spraynos' Nore
L…水相 L ... Water phase

Claims

請求の範囲 The scope of the claims
[1] 水を微細粒子に霧化し、霧化された水の微細粒子と原料ガスを冷却状態で接触さ せてノ、イドレートとするノ、イドレートの製造装置であって、  [1] A device for producing an idrate by atomizing water into fine particles and bringing the atomized fine water particles and the raw material gas into contact with each other in a cooled state.
原料ガスが供給される密閉チャンバ (1)と、この密閉チャンバ (1)に供給される水を超 音波振動させて原料ガス中に微細粒子に霧化する超音波振動子 (2)と、この超音波 振動子 (2)で霧化された微細粒子が原料ガスと一緒に搬送される反応室 (3)と、密閉 チャンバ (1)から反応室 (3)に水の微細粒子を含む原料ガスを移送する移送ダクト (4)と 、前記の反応室 (3)を冷却して、移送ダクト (4)で移送される水の微細粒子と原料ガス を反応環境とする冷却器 (5)とを備えるハイドレートの製造装置。  A sealed chamber (1) to which a source gas is supplied, an ultrasonic vibrator (2) that atomizes water supplied to the sealed chamber (1) by ultrasonic vibration into fine particles in the source gas, A reaction chamber (3) in which fine particles atomized by the ultrasonic vibrator (2) are transported together with the raw material gas, and a raw material gas containing fine particles of water from the sealed chamber (1) to the reaction chamber (3) A transfer duct (4) for transferring the reaction chamber, and a cooler (5) for cooling the reaction chamber (3) and using fine particles of water and raw material gas transferred in the transfer duct (4) as a reaction environment. Hydrate manufacturing equipment provided.
[2] 密閉チャンバ (1)が底部に水溜部 (6)を備え、この水溜部 (6)の底部に超音波振動子 ( 2)を配設して、超音波振動子 (2)でもって水溜部 (6)を超音波振動して、微細粒子に霧 化する請求項 1に記載されるハイドレートの製造装置。  [2] The sealed chamber (1) is provided with a water reservoir (6) at the bottom, and an ultrasonic vibrator (2) is disposed at the bottom of the water reservoir (6). The hydrate manufacturing apparatus according to claim 1, wherein the water reservoir (6) is ultrasonically vibrated to atomize into fine particles.
[3] 原料ガスが、炭酸ガスを含む空気である請求項 1に記載されるノ、イドレートの製造 装置。  [3] The apparatus for producing a nodule according to claim 1, wherein the raw material gas is air containing carbon dioxide gas.
[4] 原料ガスが、天然ガスである請求項 1に記載されるハイドレートの製造装置。  [4] The hydrate production apparatus according to claim 1, wherein the source gas is natural gas.
[5] 密閉チャンバ (1)と反応室 (3)の間に、密閉チャンバ (1)の水の微細粒子を含む原料 ガスを吸入して、反応室 (3)に強制送風する強制移送器 (8)を連結して ヽる請求項 1に 記載されるハイドレートの製造装置。  [5] Forced transfer device that sucks the raw material gas containing fine water particles in the sealed chamber (1) between the sealed chamber (1) and the reaction chamber (3) and forcibly blows air into the reaction chamber (3) ( The apparatus for producing a hydrate according to claim 1, wherein 8) is connected.
PCT/JP2007/061942 2006-06-14 2007-06-13 Hydrate production apparatus WO2007145261A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-165390 2006-06-14
JP2006165390A JP4998772B2 (en) 2006-06-14 2006-06-14 Hydrate production equipment

Publications (1)

Publication Number Publication Date
WO2007145261A1 true WO2007145261A1 (en) 2007-12-21

Family

ID=38831775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061942 WO2007145261A1 (en) 2006-06-14 2007-06-13 Hydrate production apparatus

Country Status (2)

Country Link
JP (1) JP4998772B2 (en)
WO (1) WO2007145261A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011244728A (en) * 2010-05-26 2011-12-08 Ihi Corp Co2 hydrate and method of producing the same
CN101544921B (en) * 2009-05-15 2012-10-31 北京工业大学 Skid-mounted device for ultrasonically dehydrating, removing liquid, purifying and separating for natural gas
EP3670635A1 (en) * 2018-12-20 2020-06-24 Fachhochschule Vorarlberg GmbH Method and device for producing gas hydrate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034556B2 (en) 2007-12-21 2015-05-19 Tokyo Ohka Kogyo Co., Ltd. Compound and method of producing the same, acid generator, resist composition and method of forming resist pattern
KR101141169B1 (en) * 2009-11-17 2012-05-02 한국에너지기술연구원 Production system and method for gas hydrates using ultra-sonic vibrator
JP5079141B2 (en) * 2010-03-26 2012-11-21 三井造船株式会社 Carbon dioxide separation apparatus and carbon dioxide separation method
KR101274302B1 (en) * 2011-03-29 2013-06-13 에스티엑스조선해양 주식회사 gas hydrate continually manufacturing device
KR101401727B1 (en) * 2011-10-06 2014-06-02 제주대학교 산학협력단 Hydrate generating apparatus using ultrasonic waves and method for forming hydrate using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256227A (en) * 1999-03-15 2000-09-19 Mitsubishi Heavy Ind Ltd Method and apparatus for producing hydrate
JP2000264851A (en) * 1999-03-15 2000-09-26 Mitsubishi Heavy Ind Ltd Method for producing hydrate and device for producing the same
JP2001010989A (en) * 1999-06-30 2001-01-16 Mitsui Eng & Shipbuild Co Ltd Device for producing methane hydrate and method for producing the same
JP2003252804A (en) * 2002-03-04 2003-09-10 Ishikawajima Harima Heavy Ind Co Ltd Method for producing hydrate and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256227A (en) * 1999-03-15 2000-09-19 Mitsubishi Heavy Ind Ltd Method and apparatus for producing hydrate
JP2000264851A (en) * 1999-03-15 2000-09-26 Mitsubishi Heavy Ind Ltd Method for producing hydrate and device for producing the same
JP2001010989A (en) * 1999-06-30 2001-01-16 Mitsui Eng & Shipbuild Co Ltd Device for producing methane hydrate and method for producing the same
JP2003252804A (en) * 2002-03-04 2003-09-10 Ishikawajima Harima Heavy Ind Co Ltd Method for producing hydrate and apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101544921B (en) * 2009-05-15 2012-10-31 北京工业大学 Skid-mounted device for ultrasonically dehydrating, removing liquid, purifying and separating for natural gas
JP2011244728A (en) * 2010-05-26 2011-12-08 Ihi Corp Co2 hydrate and method of producing the same
EP3670635A1 (en) * 2018-12-20 2020-06-24 Fachhochschule Vorarlberg GmbH Method and device for producing gas hydrate
WO2020127740A1 (en) * 2018-12-20 2020-06-25 Fachhochschule Vorarlberg Gmbh Process and device for producing gas hydrate

Also Published As

Publication number Publication date
JP2007330891A (en) 2007-12-27
JP4998772B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
WO2007145261A1 (en) Hydrate production apparatus
US6653516B1 (en) Production method for hydrate and device for proceeding the same
JP4559898B2 (en) Gas hydrate production equipment
US7357334B2 (en) Method and apparatus for separating a solution
CA2475582C (en) Ultrasonic solution separator
JP2005270888A (en) Solution concentration method and concentrator to be used therein
JP2006297243A (en) Vacuum spray dryer
JPWO2006070894A1 (en) Ultrasonic separation method of solution and ultrasonic separation apparatus used in this method
KR100925150B1 (en) Ultrasonic spray pyrolysis apparatus
JP2007118005A (en) Ultrasonic solution separator
JP4020415B2 (en) Ultrasonic separator for solution
JP2005066526A5 (en)
JP2003138279A (en) Gas hydrate generation apparatus
US7946508B2 (en) Method and apparatus for separating a solution
CN110898766A (en) Gas-liquid reaction device
JP2000264852A (en) Device for continuously producing gas hydrate
JP4676151B2 (en) Gas hydrate manufacturing method and manufacturing apparatus
JP2003055675A (en) Production method of gas hydrate and production equipment thereof, and production system of gas hydrate
JP3517832B2 (en) Water spray type hydrate manufacturing method
WO2024135478A1 (en) Hydrogen generation device and reaction case
KR101722321B1 (en) - -hydrate slurry refrigeration and freezing systems
CN114199041B (en) Atomization mechanism and condensing device
JPS6232121B2 (en)
JP2000256226A (en) Method and apparatus for producing hydrate
KR101141169B1 (en) Production system and method for gas hydrates using ultra-sonic vibrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745209

Country of ref document: EP

Kind code of ref document: A1