WO2007145199A1 - Nonvolatile storage device, nonvolatile data recording media, nonvolatile device, and method for writing data into nonvolatile storage device - Google Patents

Nonvolatile storage device, nonvolatile data recording media, nonvolatile device, and method for writing data into nonvolatile storage device Download PDF

Info

Publication number
WO2007145199A1
WO2007145199A1 PCT/JP2007/061791 JP2007061791W WO2007145199A1 WO 2007145199 A1 WO2007145199 A1 WO 2007145199A1 JP 2007061791 W JP2007061791 W JP 2007061791W WO 2007145199 A1 WO2007145199 A1 WO 2007145199A1
Authority
WO
WIPO (PCT)
Prior art keywords
write
writing
additional
value
data
Prior art date
Application number
PCT/JP2007/061791
Other languages
French (fr)
Japanese (ja)
Inventor
Ken Kawai
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2007145199A1 publication Critical patent/WO2007145199A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5685Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using storage elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor

Definitions

  • Nonvolatile storage device nonvolatile data recording medium, nonvolatile device, and method of writing data to nonvolatile storage device
  • the present invention relates to a nonvolatile memory device. More specifically, the present invention relates to a nonvolatile memory device using a nonvolatile memory element, a nonvolatile data recording medium, a nonvolatile device, and a method for writing data to the nonvolatile memory device.
  • Flash EEPROM disclosed in Patent Document 1 as a conventional nonvolatile storage device.
  • the binary data is stored in correspondence with the threshold voltage of each value memory cell of the binary data. That is, the low threshold state is assigned to the value “1” of the binary data, and the high threshold state is assigned to the value “0” of the binary data.
  • erasing data electrons are extracted from the floating gate, so that data needs to be erased in batches in a predetermined unit such as a sector having a plurality of memory cells.
  • data stored in a desired cell is read by using ONZOFF of the transistor in the memory cell and comparing the current flowing through the memory cell with a reference current.
  • the flash EEPROM of Patent Document 1 performs two-stage writing. That is, first, while data is being input, temporary provisional writing is performed using short time pulses. Next, when the data input is completed, additional data storage writing is performed using a long pulse. According to the operation, the storability of the data written by the temporary writing only needs to be such that the data can be temporarily maintained until additional writing is performed even if it is not guaranteed for a long time. Therefore, the temporary writing speed can be increased, and the data writing speed is apparently improved. In the additional write operation, the memory cell is reduced to a level that can guarantee long-term data storage at the timing when the system load decreases. The threshold voltage is changed.
  • FIG. 18 is a graph schematically showing the relationship between the threshold voltage V and the write time Tp in the flash EEPROM.
  • FIG. 19 is a diagram showing threshold voltage distributions in the erase state and the write state (temporary write state and additional write state) of the flash EEPROM.
  • the difference between the threshold voltage and the read voltage Vr is the margin necessary for temporary storage until the additional write operation (initial read operation margin Ml).
  • FIG. 20 is a block diagram showing a configuration of a memory system including a semiconductor memory device using a flash EEPROM.
  • the memory system 700 includes a semiconductor storage device 701, a flash EEPRO M interface circuit 702, a buffer memory 703 (DRAM), and a buffer memory And an interface circuit 704.
  • DRAM buffer memory
  • the data is once written into the buffer memory 703 via the notch memory interface circuit 704 at a high speed.
  • the semiconductor memory device 701 is erased in a predetermined unit.
  • the data stored in the nother memory 703 is written at high speed by the temporary write operation via the buffer memory interface circuit 704 and the flash EEPROM interface circuit 702.
  • additional write to the semiconductor memory device 701 is performed in response to an additional write command from the host device.
  • This resistance change memory device uses, as a memory cell, a resistance change element using a resistance change material such as an oxide having a base bumite structure containing manganese.
  • the resistance change material changes greatly in resistance value by application of a positive or negative voltage pulse. Utilizing powerful physical properties, data can be converted into element resistance values and stored to operate as a storage device.
  • FIG. 21 is a diagram showing the relationship between the resistance value of the variable resistance material disclosed in Patent Document 2 and the number (length) of applied voltage pulses. As shown in the figure, the resistance value of the variable resistance material changes greatly at the start of voltage pulse application, and the amount of change gradually decreases as the number of pulses increases.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-253093
  • Patent Document 2 JP 2004-185755 A
  • the configuration of the conventional flash EEPROM still has a problem that the data rewrite speed is still slow.
  • the circuit area is reduced due to the need for a nother memory.
  • a nonvolatile memory device which can reduce the circuit area and simplify the device configuration with high data writing speed.
  • variable resistance devices For the purpose of providing data recording media, variable resistance devices, and methods for writing data to variable resistance elements! Speak.
  • a nonvolatile memory device includes a nonvolatile memory element whose resistance value changes and data that can take a plurality of values for the resistance value of the nonvolatile memory element.
  • a non-volatile memory device having a writing device for writing the multi-value data into the non-volatile memory element by changing to a resistance value corresponding to the value data value, wherein the writing device is written
  • the resistance value of the nonvolatile memory element corresponds to the old value, such as the resistance value corresponding to the old value.
  • the additional writing device for performing additional writing to change the resistance value of the volatile memory element to the resistance value corresponding to the new value, the temporary writing device, and the additional writing device are switched to duplicate the nonvolatile memory element.
  • a write switching device for writing value data With such a configuration, the data writing speed is increased, and the circuit area can be reduced and the device configuration can be simplified.
  • the difference between the resistance value corresponding to the old value and the temporary write resistance value is the difference between the resistance value corresponding to the old value and the resistance value corresponding to the new value. It may be 20% or more and 98% or less of the difference.
  • a suitable temporary write resistance value can be set according to the ratio with the resistance value corresponding to the new value.
  • the non-volatile memory element has a resistance value that changes according to a cumulative amount of energy input in a predetermined mode, and the writing device inputs energy in the predetermined mode. Accordingly, the resistance value of the nonvolatile memory element may be changed.
  • the cumulative amount of energy input in the predetermined mode is a cumulative voltage pulse application amount, and the writing device applies a voltage pulse to the non-volatile memory element.
  • the resistance value may be changed.
  • the resistance value of the non-volatile memory element may change so as to be saturated with respect to a cumulative amount of energy input in a predetermined mode.
  • the resistance value changes greatly at the start of energy input. Using this large amount of change, the resistance value is changed to a level necessary for temporary retention of data. Subsequent additional writes will change the resistance to a level sufficient for long-term data storage. Therefore, it is possible to realize a storage device with high apparent writing speed and high reliability in terms of data storage.
  • the width of a voltage pulse applied to perform the temporary writing may be 60 ns or less! /.
  • the width of the voltage pulse applied to perform the temporary writing may be equal to or less than the width of the voltage pulse applied to perform the reading.
  • a nonvolatile device of the present invention includes the above-described nonvolatile memory device, a control device, and a volatile memory device, and the width of a voltage pulse applied to perform the temporary writing is It is set to be equal to or smaller than the width of the read pulse of the volatile memory device.
  • the buffer memory inside the resistance variable device can be reduced.
  • the width force of the voltage pulse applied to perform the temporary writing may be shorter than the width of the voltage pulse applied to perform the additional writing. Further, a voltage pulse applied to perform the temporary write may be equal to a voltage pulse applied to perform the additional write.
  • a voltage force of a voltage pulse applied to perform the temporary writing may be higher than a voltage pulse voltage applied to perform the additional writing. Further, the width force of the voltage pulse applied to perform the temporary writing may be equal to the width of the voltage pulse applied to perform the additional writing.
  • the voltage of the voltage Norse for temporary writing is increased, so that the temporary writing is performed. Can be performed at a higher speed.
  • the power consumption can be reduced by lowering the voltage for additional writing.
  • a nonvolatile data recording medium of the present invention includes the nonvolatile storage device and a control device, and the control device switches the temporary writing device and the additional writing device so as to switch between the temporary writing device and the additional writing device. Control the switching device.
  • a resistance variable data recording medium can be realized as a high-speed and small non-volatile data recording medium.
  • the nonvolatile memory device includes a memory cell including a memory cell including the nonvolatile memory element, a memory cell array having a plurality of memory cell sections each having a plurality of the memory cells, and one flag nonvolatile for each memory cell section.
  • a non-volatile memory element belonging to the memory cell section which has a memory element, and that is written to the non-volatile memory element for flag corresponding to the temporary write to the non-volatile memory element belonging to the memory cell section
  • a temporary write flag area may be provided in which the fact is written in the flag non-volatile memory element corresponding to the additional write.
  • the nonvolatile data recording medium includes the nonvolatile memory device and a control device, and the control device includes a nonvolatile memory element in which the additional writing is not completed for each of the memory cell sections. Whether the memory cell section is the additional write target memory cell section is determined based on the value of the temporary write flag area, and the additional write target memory is written using the data written to the additional write target memory cell section. Additional writing may be performed on the nonvolatile memory element belonging to the cell section.
  • the nonvolatile storage device further includes a write data storage device that temporarily records data written in at least a part of the nonvolatile storage elements belonging to the memory cell section for additional writing. May be.
  • the nonvolatile data recording A medium includes the nonvolatile memory device and a control device, and the control device includes a nonvolatile memory element that completes the additional writing for each of the memory cell sections. Whether or not the memory cell section is the additional write target memory cell section is determined based on the value of the temporary write flag area, and at least a part of the data of the additional write target memory cell section is stored in the write data storage device. Further, additional writing may be performed on the non-volatile storage element belonging to the additional write target memory cell section using data stored in the write data storage device.
  • the nonvolatile storage device includes an additional write sequence control circuit that controls the write switching device so as to switch between the temporary writing device and the additional writing device, and the additional write sequence control circuit is input from an external device.
  • the write switching device may be controlled to perform the additional writing when the control signal indicates that a non-volatile storage device is not selected.
  • a nonvolatile data recording medium of the present invention includes the nonvolatile storage device and a control device, and the control device is the external device.
  • the nonvolatile memory device has a function of outputting an additional write execution flag signal for prohibiting input of write data from an external device when writing by the additional write device is performed. Also good.
  • the resistance change type data recording medium includes the nonvolatile memory device and a control device, and the additional write execution flag signal output from the nonvolatile memory device indicates an input prohibited state.
  • the control device may stop data input to the nonvolatile memory device. In such a configuration, when an additional write operation is performed, an external control device or the like can easily determine that fact, so that a malfunction can be prevented.
  • the nonvolatile data recording medium of the present invention includes a control device, a nonvolatile storage element whose resistance value changes, and multi-value data which is data that can take a plurality of resistance values of the nonvolatile storage element.
  • the control device updates the value stored in the nonvolatile memory element from the old value to the new value.
  • the controller then changes the resistance value of the nonvolatile memory element that has been changed to the temporary write resistance value to a resistance value corresponding to the new value. Control the writing device to do.
  • the control device controls the writing device so as to temporarily write the plurality of nonvolatile storage elements, and then the control device includes the plurality of nonvolatile storage elements.
  • the writing device may be controlled to perform additional writing.
  • the data writing method to the nonvolatile memory device of the present invention is a data writing method to the nonvolatile memory device including a plurality of nonvolatile memory elements, and corresponds to each value of the multi-value data to be written. When the resistance value of the nonvolatile memory element is set, the value of the written multi-value data is referred to as an old value, and the value of the multi-value data to be written is referred to as a new value.
  • the resistance value of each of the nonvolatile memory elements is changed from the resistance value corresponding to the old value to the resistance value corresponding to the old value.
  • Temporary writing is performed to change to a temporary writing resistance value between the resistance value corresponding to the new value, and then the resistance value of each nonvolatile memory element is determined from the temporary writing resistance value. Additional writing may be performed to change to a resistance value corresponding to the new value.
  • the nonvolatile memory device may further include an additional write sequence control device that controls the writing device to perform the additional writing.
  • the additional write sequence control device may be configured to control the writing device to perform the additional writing at regular intervals.
  • the additional write sequence control device may include a timer that outputs a signal for performing the write operation for a predetermined time in a period of the predetermined period.
  • the additional write sequence control device may be configured to control the writing device to perform the additional writing when the power is turned off.
  • the additional write sequence control device may be configured to control the write device to perform the additional write when a power supply is turned on.
  • the additional write sequence control device controls the writing device to perform the additional writing at regular intervals, and controls the writing device to perform the additional writing when the power is turned off. It may be configured to control.
  • periodic additional writing using a timer and additional writing when the power is turned off are used in combination. Since additional writing is performed periodically during normal operation, data deterioration can be prevented from occurring in memory cells that do not happen to be written with data while the power is on. In addition, additional writing is performed for all memory cells when the power is turned off, so additional memory writing can be performed before the power is turned off even for memory cells that have been temporarily written after the last periodic additional writing. State. Therefore, it is possible to reliably prevent the data storage state from deteriorating below the allowable limit while the power is off.
  • the additional write sequence control device may include a timer.
  • the timing to perform an additional write operation autonomously using a timer with a powerful configuration Can be adjusted.
  • the certain period is set so that the difference between the resistance value of the nonvolatile memory element in the temporarily written state and the resistance value of the reference resistance after the certain period is equal to or greater than a read guarantee margin. May be.
  • the resistance value and the timing of the temporary writing to be performed next time are set before the storage state of the data temporarily written first deteriorates, and the temporary writing is performed. Sufficient reliability can be ensured for the preservation of data in the state.
  • the additional write sequence control device executes additional write for prohibiting input of write data from an external device while controlling the write device to perform the additional write. It may be configured to output a middle flag signal.
  • the non-volatile memory device further includes a memory cell array including the non-volatile memory element, a memory cell array including a plurality of memory cell sections including the plurality of memory cells, and a temporary write flag region, and the temporary write flag
  • the area includes one flag nonvolatile memory element for each memory cell section, and when the temporary write is performed to the nonvolatile memory element belonging to the memory cell section, the corresponding flag nonvolatile memory element When the additional writing is performed to the nonvolatile memory element belonging to the memory cell section when the fact is written to the memory element, the fact is written to the corresponding flag nonvolatile memory element. Also good.
  • the additional write sequence control device is configured to control the writing device to perform the additional write based on the information written in the temporary write flag area.
  • the present invention has the above-described configuration and has the following effects.
  • non-volatile storage devices non-volatile data recording media, non-volatile devices, and methods for writing data to non-volatile storage devices that can reduce the circuit area that speeds up data writing and simplify the device configuration are provided. It becomes possible to do.
  • FIG. 1 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of a resistance change type data recording medium and a resistance change type device according to the first embodiment of the present invention.
  • FIG. 3 is an equivalent circuit diagram showing a schematic configuration of the memory cell array in the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a schematic configuration of a circuit for writing and reading data to and from a memory cell in the first embodiment of the present invention.
  • FIG. 5 is a graph schematically showing the relationship between the length (Tp) of the applied voltage pulse and the absolute value ( ⁇ R) of the change amount of the resistance value indicated by the resistance change material.
  • FIG. 6 is a flowchart showing an outline of a temporary write operation in the first embodiment of the present invention.
  • FIG. 7 is a flowchart showing an outline of an additional write operation in the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a relationship between a resistance application time and a resistance value in an example of the present invention.
  • FIG. 9 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 2 of the present invention.
  • FIG. 10 is a timing chart showing a write operation by the resistance change memory device according to the second embodiment of the present invention.
  • FIG. 11 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 3 of the present invention.
  • FIG. 12 is a diagram showing an example of a change with time of the resistance value of the resistance variable element.
  • FIG. 13 is a flowchart showing an outline of an additional write operation in the third embodiment of the present invention.
  • FIG. 14 is a diagram showing a timing of an additional write operation enable signal AP and an additional write execution flag FG.
  • FIG. 15 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 4 of the present invention.
  • FIG. 16 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 5 of the present invention.
  • FIG. 17 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 6 of the present invention.
  • FIG. 18 is a graph schematically showing the relationship between the threshold voltage V and the write time Tp in the flash EEPROM.
  • FIG. 19 is a diagram showing threshold values and value voltage distributions in the erase state and the write state (temporary write state and additional write state) of the flash EEPROM.
  • FIG. 20 is a block diagram showing a configuration of a memory system including a semiconductor memory device using a flash EEPROM.
  • FIG. 21 is a diagram showing the relationship between the resistance value of the variable resistance material disclosed in Patent Document 2 and the number (length) of applied voltage pulses.
  • Control circuit 404 Input data latch
  • FIG. 1 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 1 of the present invention.
  • an outline of the configuration and operation of the resistance change storage device according to the present embodiment will be described with reference to FIG.
  • the resistance change storage device 100 (nonvolatile storage device) of the present embodiment includes a control circuit 102, an input data latch 104, and a temporary write short pulse generation circuit 106. Additional write long pulse generation circuit 108, write pulse switching circuit 110, write circuit 112, row decoder 114, temporary write flag area 116, memory cell array 118, sense amplifier 120, and output data latch 122.
  • the control circuit 102 receives a command (chip select CS, external control signal CTL, address AD, write pulse WP) via an external control device 180 (described later) via a pin, etc.
  • Control signals (address, write mode, timing signal, etc.) are output to control each part of the resistance change memory device 100.
  • the number of control circuits 102 is not necessarily one.
  • distributed control may be performed by a plurality of control circuits specialized for each function performed by the control circuit.
  • the input data latch 104 includes an internal control signal from the control circuit 102 and a control device 180.
  • An input data signal input from a data input terminal DIN (described later) is received, the data is latched, and the input data signal is output to the write circuit 112 as a write data signal at a predetermined timing.
  • the temporary write short pulse generation circuit 106 (the time write device) receives the internal control signal from the control circuit 102, and when the internal control signal indicates the temporary write mode, the temporary write short pulse ( (Voltage voltage) is output, otherwise the output is stopped to save power consumption.
  • the temporary write short pulse (Voltage voltage)
  • the additional write long pulse generation circuit 108 receives the internal control signal from the control circuit 102, and when the internal control signal indicates the additional write mode, the additional write long pulse (voltage Output), otherwise the output is stopped to save power consumption.
  • the write pulse switching circuit 110 (write switching device) is configured to receive the outputs of both the temporary write short pulse generation circuit 106 and the additional write long pulse generation circuit 108. Is electrically connected to the output terminal.
  • the write pulse switching circuit 110 receives the internal control signal from the control circuit 102, and when the internal control signal indicates the temporary write mode, selects the output of the temporary write short pulse generation circuit 106 and outputs it to the write circuit 112. When the internal control signal indicates the additional write mode, the output of the additional write long pulse generation circuit 108 is selected. And output to the write circuit 112.
  • the writing device 111 includes the temporary writing short pulse generation circuit 106, the additional writing long pulse generation circuit 108, and the writing pulse switching circuit 110.
  • the memory cell array 118 includes a plurality of bit lines and a plurality of word lines that are orthogonal to each other, and has a memory cell that also has a transistor and a resistance variable element force at the intersection of the bit line and the word line.
  • the resistance variable element the resistance state (resistance value) is largely changed by an applied voltage pulse.
  • the resistance change storage device 100 stores data using the transition of the resistance state. The detailed configuration of the memory cell array 118 will be described later.
  • the temporary write flag area 116 has the same configuration as that of the memory cell array 118 and shares a word line with the memory cell array 118.
  • the temporary write flag area 116 includes one memory cell (flag variable resistance element) per sector (memory cell section) of the memory cell array 118.
  • a sector is a unit in which one or a plurality of word lines of the memory cell array 118 are collected. That is, cells connected to one word line belong to the same sector.
  • the row decoder 114 is connected to each word line of the memory cell array 118.
  • the row decoder 114 receives the internal control signal from the control circuit 102, selects a word line corresponding to the address of the memory cell array 118 to be written or read and the temporary write flag area 1 16 at a predetermined timing, and Activate.
  • the sense amplifier 120 Based on the internal control signal received from the control circuit 102, the sense amplifier 120 detects (reads) and amplifies the data signal (bit line data) from the memory cell array 118, and this read data signal (at a predetermined timing) Read data signal) to output data latch 122.
  • the output data latch 122 latches data based on the internal control signal received from the control circuit 102 and the read data signal received from the sense amplifier 120, and switches the output destination at a predetermined timing.
  • a read data signal is output to the control device 18 0 (described later) or the write circuit 112 via DOUT. Ie When the internal control signal indicates the data read mode, the read data signal is output as an output data signal to the data output terminal DOUT, and when the internal control signal indicates the additional write mode, the read data signal is written. Write to circuit 112 and output as data signal.
  • the write circuit 112 is connected to each bit line of the memory cell array 118.
  • the write circuit 112 receives the internal control signal from the control circuit 102 and writes to the memory cell at a predetermined timing. That is, when the internal control signal indicates the temporary write mode, the corresponding bit line is selected based on the write data signal received from the input data latch 104 and the address information included in the internal control signal, and the write data is written.
  • the temporary write short pulse input from the read pulse switching circuit 110 is applied and temporarily written to a predetermined address in the data memory cell array 118 (described later). At the same time, “0” is written to the memory cell in the temporary write flag area 116 corresponding to the sector of the address where the data is written, and the flag information power is set to the “H” level.
  • the corresponding bit line is selected based on the write data signal received from the output data latch 122 and the address information included in the internal control signal, and is input from the write pulse switching circuit 110. Is added to the data memory cell array 118 (described later), and if the additional writing is completed for the memory cell included in the sector, the sector is supported. “1” is written to the temporary write flag area 116 to be set, and the flag information is set to the “L” level. It is configured so as to apply a voltage pulse simultaneously to the cell, Ru.
  • FIG. 2 is a block diagram showing a schematic configuration of the resistance change type data recording medium and resistance change type device according to the first embodiment of the present invention.
  • the configuration and operation of the resistance change type data recording medium 170 and the resistance change type device 194 of this embodiment will be described with reference to FIG.
  • the resistance change type data recording medium 170 includes a resistance change type storage device 100 and a control device 180.
  • the resistance change type device 194 includes a resistance change type data recording medium 170, a system 190 (for example, a mobile computer, a mobile phone, etc.)
  • the system 190 includes a volatile storage device 192 (for example, DRAM) therein.
  • the control device 180 receives the input data signal and the address signal from the system 190 and, at a predetermined timing, converts the chip select CS, the external control signal CTL, the address AD, the write pulse WP, and the input data signal into a resistance change type. Output to storage device 100.
  • control device 180 receives the output data signal from the resistance change storage device 100 and outputs the output data signal to the system 190.
  • the value of the temporary write flag area 116 is determined by the control device 18 0 via the sense amplifier 120 and the output data latch 122 so that the control device 180 can detect the presence of temporarily written data in the memory cell array 118. Is output.
  • the system 190 uses the volatile storage device 192 as a temporary storage means. In other words, write data to the resistance change storage device 100 and data read from the resistance change storage device 100 are temporarily stored in the volatile storage device 192, and data read from the volatile storage device 192 is stored in the resistance change storage device 192. Temporarily writes to storage device 100 at high speed. After that, when the resistance change type data storage medium 170 is not selected, the control device 180 performs additional writing for long-term storage in accordance with the signal of the temporary write flag area power in accordance with the signal of the temporary write flag area.
  • FIG. 3 is an equivalent circuit diagram showing a schematic configuration of the memory cell array in the first embodiment of the present invention.
  • the memory cell array 118 is a 1T1R type (one transistor, one resistance change element type), and bit lines 130 formed in parallel to each other at a predetermined interval and parallel to the bit lines 130 at a predetermined interval.
  • a source line 132 formed and a bit line 130 and a word line 134 formed in parallel with each other at a predetermined interval so as to be orthogonal to the source line 132 are provided.
  • the bit lines 130 and the source lines 132 are alternately arranged one by one, and the bit lines 130 and the source lines 132 are connected in series at each intersection of the bit lines 130 and the word lines 134.
  • One select transistor 136 and one variable resistance element 138 are electrically connected to each other through a memory cell 139.
  • the bit line 130 is the drain electrode of the selection transistor 1 36
  • the source electrode of the selection transistor 136 is one end of the resistance change element 138
  • the other end of the resistance change element 138 is the source line 132
  • the gate electrode of the selection transistor 136 Are electrically connected to the word lines 134, respectively.
  • the row decoder 114 is connected to each word line 134, and receives an internal control signal from the control circuit 102. Based on the above, the word line 134 to be accessed is selected and a voltage is applied (activated), and the selection transistor 136 is turned on.
  • the target variable resistance element 1 38 When writing and reading data, the target variable resistance element 1 38 is identified by the combination of the bit line 130, the source line 132, and the word line 134, and the bit line 130 and the source line 132 are A voltage is applied or the current flowing between them is detected. Data is stored in the memory cell 139 in association with the resistance value of the resistance variable element 138, and the low resistance (LR: about 50 kQ to 62 kQ) state is high in the binary data “0” value. The resistance (HR: approx. 1 ⁇ to 2 ⁇ ⁇ ) state is assigned to the “1” value of the binary data.
  • the resistance change element 138 is configured by interposing a resistance change layer between electrode materials such as Pt.
  • Various materials can be used for the variable resistance material of the variable resistance element 138 (material for the variable resistance layer).
  • Iron oxide laminated compounds Fe 2 O 3 / Ye 2 O and ZnFe 2 O 3 / Ye
  • Transition metal oxides such as O 2 are particularly preferably used (see Examples).
  • the polarity of the voltage pulse (low resistance pulse) applied to make the transition from the high resistance state to the low resistance state and the transition from the low resistance state to the high resistance state are required.
  • the polarity of the voltage pulse (high resistance pulse) to be applied is the same or different.
  • the configuration of this embodiment can be applied to the case where the polarity of the low resistance pulse and the polarity of the high resistance pulse are equal U. This is especially effective when the polarity is different.
  • FIG. 4 is a diagram showing a schematic configuration of a circuit that performs writing and reading of data with respect to the memory cell in the first embodiment of the present invention.
  • the write circuit 112 includes a voltage application circuit 140 and a voltage application circuit 142, and the sense amplifier 120 includes a comparator 146 and a reference resistor 148.
  • Memory cell An NMOS transistor 144 is disposed between the source line 132 of the array 118 and the voltage application circuit 142 of the write circuit 112.
  • the write circuit 112 includes the same number of voltage application circuits 140 and voltage application circuits as the number of memory cells to which voltage pulses are applied simultaneously (the number of memory cells corresponding to one address: for example, 16). 142.
  • the NMOS transistor 144 is provided at the peripheral edge of the memory cell array 118.
  • One NMOS transistor 144 may be provided for a plurality of source lines 132, and one NMOS transistor 144 may be provided for one source line 132! /!
  • the temporary write short pulse generation circuit 106 and the additional write long pulse generation circuit 108 are selectively connected to the write circuit 112 by the write pulse switching circuit 110.
  • the pulse output from the write pulse switching circuit 110 is input to the voltage application circuit 140 and the voltage application circuit 142.
  • the voltage application circuit 140 is selected according to the data to be written while the input pulse is H.
  • the high voltage (+ 3.3V) and 0V are switched and output to the bit line 130, and the voltage application circuit 142 is selected according to the data to be written while the input noise is H. Switch between 0V and high voltage (+ 3.3V) and output to source line 132 corresponding to bit line 130.
  • the voltage application circuit 140 sets its output terminal to a high impedance state (non-conductive state), and the voltage application circuit 142 supplies 0 V to the source line 132. Is output.
  • the output terminal of the voltage application circuit 140 is connected to one end of the bit line 130 of the memory cell array 118.
  • the other end of the bit line 130 is connected to the input terminal of the comparator 146 included in the sense amplifier 120.
  • a reference resistor 148 is connected to the other input terminal of the comparator 146.
  • the output terminal of the voltage application circuit 142 is connected to one end of the source line 132 via the NMOS transistor 144.
  • a select transistor 136 and a resistance variable element 138 are connected in series between the bit line 130 and the source line 132 at each intersection of the bit line 130 and the word line 134.
  • the gate of the selection transistor 136 is connected to the word line 134.
  • the gate of the NMOS transistor 144 is connected to the row decoder 114 (see FIG. 1). [Voltage pulse and resistance change of variable resistance material]
  • FIG. 5 is a graph schematically showing the relationship between the length (Tp) of the applied voltage pulse and the absolute value of the change amount of the resistance value indicated by the resistance change material (AR: hereinafter simply referred to as the change amount).
  • the change amount There are positive and negative voltage pulses, but the same change pattern is shown in either case. In other words, regardless of whether positive or negative noise is applied, the voltage pulse application time becomes longer and the amount of change in resistance value saturates (asymptotically) to a predetermined value.
  • the amount of change (AR) in the resistance value indicated by the resistance change material increases as the applied voltage pulse becomes longer (according to the cumulative application amount of the voltage pulse).
  • Tp voltage pulse length
  • AR begins to increase.
  • the increase rate (slope) exceeds a very large Tpl at the start of increase (from Tpc to Tpl), and the increase rate (slope) decreases as Tp increases.
  • this change pattern is used to perform two-step writing to shorten the apparent writing time.
  • a voltage pulse of Tpl (for example, 40 ns) is first applied as a short pulse.
  • the resistance value changes by AR1 to an intermediate resistance value (temporary writing resistance value), and data is temporarily written.
  • the length of Tp 1 is preferably adjusted so that ARl is 20% or more and 98% or less of the AR target value (AR2).
  • the target value of AR is appropriately adjusted according to the data retention characteristics of the resistance variable element. For example, if the target value of the data retention time is 10 years, the AR target value is set so that the written data can be read with sufficient accuracy even after 10 years.
  • the resistance value changes with time in a direction to cancel the written change.
  • the change in AR1 is sufficient to ensure the preservation of data for at least a short time (eg, 1 week, 1 month, 1 year, etc.).
  • the temporarily written data is retained for at least the time until the additional writing is completed.
  • the guaranteed storage time of data by temporary writing is preferably one week or longer.
  • Temporarily written data can be written in a more storable state by additional writes that are performed later. Get in. Therefore, the size of ARl may not be sufficient to guarantee the preservation of data over a long period of time (eg, 10 years).
  • the length of Tpl is preferably adjusted to a length that eliminates the need for a buffer memory.
  • the length that eliminates the need for the buffer memory is applied to the variable resistance device 194 for reading out the volatile storage device 192 (such as DRAM) disposed outside the variable resistance memory device 100. It is equal to or shorter than the voltage pulse width (related to the read cycle). More specifically, although depending on the performance of the volatile memory device 192, the length of Tpl is preferably 60 ns or less in consideration of the general DRAM read speed.
  • the length of Tpl is preferably 60 ns or less in consideration of the general DRAM read speed.
  • the length of Tpl is preferably from Ins to 60 ns.
  • Tp 1 and ⁇ R1 are determined to be suitable values by appropriately adjusting the intensity of the voltage pulse, the composition of the resistance change material, the manufacturing method and structure of the memory cell, and the like.
  • the additional writing is performed.
  • a voltage having a predetermined magnitude is applied so that the total application time of the short pulse and the long pulse becomes ⁇ 2 (for example, 120 ns). That is, the width of the long pulse is Tp2 ⁇ Tpl (for example, 80 ns).
  • Tp2 is preferably determined so that AR2 is large enough to guarantee the preservation of data over a long period of time (eg 10 years).
  • a data read operation will be described.
  • a specific word line 134 is activated by the row decoder 114 according to the chip select CS and address AD input from the control device 180, and the selection transistor 136 connected to the word line is turned on.
  • the corresponding NMOS transistor 144 is also turned on by the row decoder 114.
  • the voltage application circuit 140 is set to a high impedance state (non-conductive state), and the voltage application circuit 142 is set to OV. With this control, a current path is formed from the comparator 146 through the selection transistor 136, the resistance change element 138, and the NMOS transistor 144 to reach the voltage application circuit 142.
  • the comparator 146 includes a voltage applying circuit, and applies an equal voltage to both the current path and the reference resistor 148.
  • the comparator 146 compares the currents flowing through the two, whereby the memory cell data (resistance value of the resistance variable element 138) is read out.
  • the state level of the selected memory cell is read as the output level (read data signal) of the comparator 146, and is output to the data output terminal DOUT as the output data signal via the output data latch 122.
  • the control device 180 To the system 190 via the control device 180.
  • FIG. 6 is a flowchart showing an outline of the temporary write operation in the first embodiment of the present invention.
  • FIG. 7 is a flowchart showing an outline of the additional write operation in the first embodiment of the present invention.
  • a predetermined memory cell 139 is selected by the write circuit 112 and the row decoder 114 in accordance with the internal control signal, and writing is performed. That is, both ends (bit line 130 and source line 132) of the memory cell 139 are electrically connected to the voltage application circuit 140 and the voltage application circuit 142, respectively, and a desired voltage pulse is applied to the resistance variable element 138. Thus, the resistance value is switched.
  • an active voltage eg, +5 V
  • an inactive voltage eg, 0 V
  • the selection transistor 136 at the address to which data is to be written is turned on (step S101).
  • the corresponding NMOS transistor 144 is also turned on.
  • the data to be written is composed of binary numbers (bits) that take two values “1” and “0”, and a plurality of (for example, 16) bits are assigned to one address. Therefore, it is first determined whether or not “1” is present in the write data (step S102). If YES is determined, the write circuit 112 is written to the memory cell 139 to which “1” is to be written. Is set for positive pulse application (step S103). That is, for the memory cell, the write circuit 112 is set so that +3.3 V is applied to the voltage applying circuit 140 side and 0 V is applied to the voltage applying circuit 142 side.
  • step S104 it is determined whether or not “0” is present in the write data (step S104). If it is determined as YE S, write to the memory cell 139 to which “0” is to be written. Circuit 112 Set for negative pulse application (step S105). That is, for the memory cell, the writing circuit 112 is set so that +3.3 V is applied to the voltage application circuit 140 side on the OV force voltage application circuit 142 side. If NO is determined in step S102, "0" is written in all the cells. Therefore, the process proceeds to step S105, and the write circuit 112 is negative for all the cells at the address. Set for pulse application.
  • step S106 the voltage noise output from the temporary writing short pulse generation circuit 106 is applied to the memory cell 139 corresponding to the address to which data is to be written. Note that step S106 is also executed when NO is determined in step S104.
  • step S106 for the cell to which "1" is to be written, +3.3 from the voltage application circuit 140 via the bit line 130 and the selection transistor 136 to one end of the resistance variable element 138.
  • a voltage of 0 V is applied from the V, voltage application circuit 142 to the other end of the resistance variable element 138 via the NMOS transistor 144 and the source line 132 for a predetermined time (for example, 40 ns) (positive pulse temporary writing).
  • a strong voltage the resistance state of the resistance variable element 138 changes from a low resistance state (for example, about 51 kQ) to a high resistance state (shallow high resistance state: Transition to approximately 287 k ⁇ ).
  • the high resistance state at this time is relatively shallow, and by applying more voltage in the additional write operation (described later), the resistance value is higher, that is, the target high resistance state (deep high resistance state). : For example, about 1.2 ⁇ ).
  • 0 V is applied to one end of the resistance variable element 138 from the voltage application circuit 140 via the bit line 130 and the selection transistor 136, and the voltage application circuit 14 2 Then, a voltage of +3.3 V is applied to the other end of the resistance variable element 138 through the NMOS transistor 144 and the source line 132 for a predetermined time (for example, 40 ns). That is, a pulse having a polarity opposite to that of the positive pulse writing is applied (temporary negative Norse writing). By applying such a voltage, the resistance state of the resistance variable element 138 has a higher resistance value than the target low resistance state from the high and low resistance state (for example, about 1.2 M ⁇ ).
  • Transition to a low resistance state (eg, approximately 113 k ⁇ ).
  • the low resistance state at this time is relatively shallow, and the resistance value is lower by applying more voltage in the additional write operation (described later).
  • Transition to a state that is, a target low resistance state (deep, low resistance state: for example, about 60 k ⁇ ).
  • step S106 When step S106 is completed, "0" is written to the resistance variable element for flag in the temporary write flag area 116 corresponding to the sector including the temporarily written address, and the temporary write flag is set to "H”. "Set to level (step S107). Note that the write operation to the temporary write flag region 116 is the same as the write operation to the memory cell 139 of the memory cell array 118, and thus description thereof is omitted.
  • the resistance change type storage device 100 repeats the temporary write operation from steps S 101 to S 107 to perform a temporary write of a series of data for each address.
  • the control circuit 102 selects the additional writing mode according to the control of the controller 180. Then, an additional write operation is started (start).
  • control circuit 102 is controlled by control device 180, and data in temporary write flag area 116 corresponding to each sector is read and a flag whose value is “0” (flag information is “H”).
  • a determination is made as to whether or not there is a force "a flag that is” (step S201). Note that the data read operation of the temporary write flag area 116 is the same as the read operation of the memory cell array 118, and thus the description thereof is omitted. If NO is determined in step S201, no additional write operation is performed (end) because all memory cells are in a state that can withstand long-term storage. On the other hand, if YES is determined in step S201, a series of additional write operations are performed under the control of control device 180 (steps S202 and after).
  • step S202 all the data (“1” or “0”) recorded in the sector corresponding to the flag of “0” (hereinafter referred to as additional write target sector) is read out, and the output data latch 122. It is stored in (write data storage device) (step S202). [0081] Next, 0 is substituted for the variable N indicating the sector write address of the additional write target sector (step S203), and the data for the number of unit write bits (for example, 16 bits) is extracted from the stored data. The data is transferred from the output data latch 122 to the write circuit 112 (step S204).
  • an active voltage for example, + 5V
  • an inactive signal is applied to the other word lines 134.
  • a voltage eg OV
  • the selection transistor 136 of the cell to which additional data is to be written becomes conductive (step S205).
  • the corresponding NMOS transistor 144 is also turned on.
  • step S206 it is determined whether or not “1” is present in the write data transferred to the write circuit 112 (data stored in the cell at the sector write address N) (step S206). Then, the write circuit 112 is set for applying a positive pulse to a cell (a cell in the memory cell array 218) to which “1” is to be additionally written (step S207). That is, for the cell, the write circuit 112 is set so that +3.3 V is applied to the voltage application circuit 140 side and OV is applied to the voltage application circuit 142 side.
  • step S 208 it is determined whether or not “0” is present in the write data (step S 208). If it is determined as YE S, a cell to be additionally written with “0” (in the memory cell array 218). For the cell), the write circuit 112 is set to apply a negative pulse (step S209). In other words, for the cell, the write circuit 112 is set so that OV force is applied to the voltage application circuit 140 side and +3.3 V is applied to the voltage application circuit 142 side. If NO is determined in step S206, “0” is additionally written to all the cells. Therefore, the process proceeds to step S209, and the writing circuit 112 is written to all the cells. Is set for negative pulse application.
  • step S210 the voltage noise output from the additional write long pulse generation circuit 108 is applied to the memory cell 139 corresponding to the address to which data is to be written (step S210). Note that step S210 is also executed when it is determined NO in step S208.
  • the voltage application circuit 140 passes through the bit line 130 and the selection transistor 136 to one end of the resistance variable element 138 +3.3. A voltage of 0 V is applied from the V, voltage application circuit 142 to the other end of the resistance variable element 138 via the NMOS transistor 144 and the source line 132 for a predetermined time (for example, 80 ns) (positive pulse additional writing).
  • the resistance state of the resistance variable element 138 changes from a shallow high resistance state (for example, about 287 k ⁇ ) to a deep high resistance state (for example, about 1.2 M ⁇ ).
  • a shallow high resistance state for example, about 287 k ⁇
  • a deep high resistance state for example, about 1.2 M ⁇ .
  • 0 V is applied to one end of the resistance variable element 138 from the voltage application circuit 140 via the bit line 130 and the selection transistor 136, and the voltage application circuit 14 2 Then, a voltage of +3.3 V is applied to the other end of the resistance variable element 138 through the NMOS transistor 144 and the source line 132 for a predetermined time (for example, 80 ns). That is, a pulse having a polarity opposite to that of the positive pulse additional write is applied (negative pulse additional write).
  • a pulse having a polarity opposite to that of the positive pulse additional write is applied (negative pulse additional write).
  • step S210 When step S210 ends, 1 is added to N (step S211), and it is determined whether N exceeds Nmax (step S212). If not, the process returns to step 204.
  • the write operation to the temporary write flag area 116 is the same as the write operation to the cells of the memory cell array 218, and thus description thereof is omitted.
  • the resistance change memory device 100 repeats the operations from step S201 to step S213, thereby sequentially performing additional writing until the flag becomes 1 ("L" level) for all sectors. Do.
  • the resistance change type storage device 100 can perform a desired change according to the input chip select CS, external control signal CTL, address AD, and write pulse WP. Read and write operations (temporary write and additional write) to memory cell 139 are performed.
  • “1” or “0” can be selectively written to each memory cell 139 individually (simultaneously and in parallel) by applying a single pulse.
  • the batch erase operation which was necessary with conventional flash memory, is no longer necessary, and the programming speed is dramatically improved.
  • the resistance change storage device 100 includes the temporary write short pulse generation circuit 106 and the additional write long pulse generation circuit 108 to perform writing in two stages.
  • a short pulse voltage is applied to write data in a shallow and short time.
  • all data to be written is first temporarily written using a short pulse.
  • the temporary writing requires only a very short time (for example, about 40 ns) to write one unit, and the writing speed is almost the same as the reading speed.
  • an additional writing operation is executed under the control of the control device 180.
  • a long pulse voltage is applied to the additional write target cell, and the cell resistance state transitions to the target resistance level from the viewpoint of data stability and storage stability. Since such additional writing can be performed in a time zone where the load on the entire system is small, apparently the additional writing time hardly affects the performance of the system. Further, additional writing improves data storability and realizes a nonvolatile storage device having high reliability.
  • FIG. 8 is a diagram showing the relationship between the pulse application time and the resistance value in the example.
  • an iron oxide laminated compound Fe 2 O 3 / Ye 2 O 3
  • Figure 1 an iron oxide laminated compound
  • the square indicates the resistance value after the positive pulse is applied, and the triangle indicates the resistance value after the negative pulse is applied.
  • the resistance variable element of this example was manufactured by the following method. First, the lower electrode (Pt) was formed on the substrate by sputtering so as to have a thickness of lOOnm.
  • the resistance change layer is a Fe O target material that has a thickness of 95 nm on the lower electrode.
  • the upper electrode (Pt) was formed by sputtering so as to have a thickness of 50 nm.
  • the diameter of the element was about 0.
  • the resistance variable element obtained by the above method was subjected to multiple positive voltage pulses to change into a deep high resistance state (1.18 ⁇ ).
  • a voltage pulse (negative pulse) with a pulse width of 20 ns and a voltage value of ⁇ 3.3 V was applied to the resistance variable element in the deep high resistance state.
  • the polarity of the voltage is described as the voltage of the upper electrode with respect to the lower electrode (the same applies hereinafter).
  • the resistance value changes to 113 k ⁇ , when it is applied three times, the resistance value changes to 84 k ⁇ , and when it is applied six times, the resistance value is about 60 k ⁇ (deep Changed to a low resistance state).
  • a voltage pulse with a pulse width of 20 ns and a voltage value of +3.3 V is applied to a resistance variable element in a deep low resistance state (approximately 51 kQ) to which a negative pulse has been applied 10 times in total. (Positive pulse) was applied.
  • the resistance value changes to 287 k ⁇
  • the resistance value changes to 550 k ⁇
  • the resistance value becomes 1.18 ⁇ (depth V, high resistance state). If the amount of change in resistance from the deep low resistance state to the deep!
  • the resistance value gradually increased as the positive pulse application time increased, and the resistance value gradually decreased as the negative pulse application time increased.
  • the resistance value first changed rapidly with respect to the cumulative amount of voltage pulses applied, and then gradually changed (saturated to a predetermined value).
  • the target resistance change (1129 k ⁇ )
  • short pulses 40 ns or 60 ns
  • the amount of change in the resistance value was almost equal between the case where the pulse having a predetermined time width was divided and applied and the case where the pulse was applied with a single pulse. For example, when the 20 ns pulse is applied twice and when the 40 ns pulse is applied once, the amount of change in resistance is almost equal.
  • Example 2 instead of Fe 2 O in Example 1, ZnFe 2 O was used as the resistance change material.
  • variable resistance layer consists of a layer with a thickness of 95 nm that is Fe O force and ZnFe O force.
  • Example 3 4 2 4 was formed as a layer having a thickness of 5 nm (other configurations and formation methods are the same as in Example 1). O With this configuration, the same results as in Example 1 were obtained. That is, the resistance value gradually increased as the positive pulse application time increased, and the resistance value gradually decreased as the negative pulse application time increased. Therefore, as in Example 1, it was presumed that a high-speed write operation could be performed by temporarily writing with a short pulse. Also, when extra time is available It was speculated that the data storage stability could be improved by writing additional pulses.
  • pulse width for temporary writing (Tpl) ⁇ pulse width for additional writing
  • the force of (Tp2-Tpl) The two types of pulse width can be set arbitrarily, including the magnitude relationship.
  • the pulse voltage may be made equal, and the pulse width for temporary writing may be shorter than the pulse width for additional writing.
  • the pulse widths may be made equal to make the pulse voltage for temporary writing larger than the pulse voltage for additional writing.
  • Tpl pulse width for hourly writing
  • Tp2—Tpl pulse width for additional writing
  • the pulse width and voltage may be any value as long as the desired AR and writing speed can be realized.
  • the temporary write flag may be provided for an arbitrary memory cell section such as a word line unit, a mat unit, or a bank unit, which is not necessarily provided for each sector.
  • the temporary write flag area 116 may be provided in the control device 180.
  • a data latch dedicated to additional writing may be provided separately.
  • sectors to be additionally written are collectively stored in the output data latch 122, and then additional writing is performed on all cells in the sector for each writing unit (sector writing address). Carried out.
  • the same number of output data latches as the number of sense amplifiers 120 may be prepared, and the target data in the sector may be read in smaller units, and additional writing may be performed each time. According to the configuration, the circuit area can be reduced and the device can be downsized.
  • the resistance variable element is used as a memory cell for storing binary data.
  • the resistance level (AR2) can vary depending on the intensity (voltage) and length (pulse width) of the applied voltage pulse. Therefore, the data stored in the resistance change storage device may be any data as long as it can take a plurality of values discretely (multi-value data).
  • a plurality of AR2 may be set, and each memory cell may be configured as a so-called “multi-value memory” that can store a value larger than 2 (for example, 4 or 8). With such a configuration, further integration of the circuit becomes possible.
  • the temporary writing and the additional writing do not necessarily have to be performed by a single voltage pulse, and each writing may be performed in a plurality of times. However, for high-speed writing, it is preferable to configure voltage voltage to be printed only once, at least for temporary writing.
  • the configuration may include one pulse generation circuit.
  • the pulse width for temporary writing may be equal to the pulse width for additional writing. With same width pulse
  • the depth of the temporary write and the additional write may be adjusted.
  • the write pulse switching circuit 110 is not essential. The temporary write operation and the additional write operation may be switched under the control of the control circuit 102.
  • a voltage pulse is applied to the resistance variable element, the resistance value changes based on the cumulative amount of voltage pulse applied, and data is written.
  • the method of changing the resistance value is not necessarily limited to the application of a voltage pulse. Any method may be used as long as the resistance value is changed according to the cumulative amount of energy input in a predetermined mode. For example, data may be written by changing the resistance value based on the cumulative amount of current.
  • the two-stage writing if the value of the written data is updated (changed) from “0" to "1” or from "1" to "0", the same data can be written. If it is a value, writing may not be performed. It is possible to determine before writing whether the value to be written and the value to be written have the same power or not, and if the values are the same, the writing may not be performed. In order to simplify the operation, writing may be performed even if the data to be written has the same value. In the case where power is applied, the resistance value hardly changes even by the temporary write operation and the additional write operation. That is, there are cases where the resistance value hardly changes during the temporary write operation and the additional write operation.
  • the material of the resistance change layer As the material of the resistance change layer, as the width of the applied voltage pulse is longer, the amount of change in the resistance value becomes larger, and the resistance value first changes rapidly with respect to the cumulative applied voltage pulse, and then gradually. Any material that changes so as to saturate (converge to a predetermined value) may be used. This embodiment is particularly suitable when a material made of iron oxide or a material containing a transition metal such as zinc (Zn) as an impurity in the iron oxide is used as the material of the resistance change layer.
  • a material made of iron oxide or a material containing a transition metal such as zinc (Zn) as an impurity in the iron oxide is used as the material of the resistance change layer.
  • the resistance value achieved by the additional writing and the resistance value achieved by the temporary writing can be appropriately determined based on the required data retention time, the data retention characteristics of the element, and the like.
  • the resistance value achieved by additional writing does not necessarily have to be the resistance value when the amount of change is saturated. Realize the amount of change in resistance value that is smaller than the target amount of change (achieved by additional writing) but sufficient for temporary data retention by applying a shorter voltage pulse. Thus, high-speed temporary writing becomes possible.
  • a resistance variable element whose resistance value is changed by application of a voltage pulse is used as the nonvolatile memory element.
  • a magnetic field as the nonvolatile memory element. You can use MRAM (Magnetic RAM) to store information, OUM (Ovonic Unified Memory) or PRAM, etc. to store information by changing resistance values using heat! ,.
  • FIG. 9 is a block diagram showing a schematic configuration of the resistance variable memory apparatus according to Embodiment 2 of the present invention.
  • the outline of the configuration and operation of the resistance change type storage device of the present embodiment will be described below with reference to FIG.
  • the resistance change type storage device of the second embodiment adds an additional write sequence control circuit 224 to the control circuit of the resistance change type storage device of the first embodiment, and the control circuit power is also added to the control device as an additional write execution flag.
  • FG is output, and other configurations are the same as in the first embodiment. Therefore, common components are given the same names and description thereof is omitted.
  • the additional write sequence control circuit 224 is a circuit for controlling the additional write operation.
  • the control of the additional write operation performed by the control device 180 is performed in the resistance change type storage device. This is what is achieved.
  • the additional write execution flag FG is output to a control device outside the control circuit 202 (not shown: corresponding to the control device 180 of the first embodiment) based on whether additional writing is being performed. This is a binary signal.
  • the additional writing execution flag is at the FG force level, it indicates that the resistance change type storage device 200 is performing additional writing and data reception from the outside is impossible.
  • the additional write execution flag FG is at the “L” level, it indicates that the resistance change storage device 200 can accept data from outside (temporary write) during the additional write.
  • FIG. 2 it can be configured as a resistance change type data recording medium or resistance change type storage device provided with a control device.
  • a feature of the resistance change type storage device 200 of the present embodiment is that additional writing is autonomously performed using the sequence control circuit 224 and the additional writing execution flag FG.
  • the write operation of the resistance change storage device 200 will be described.
  • FIG. 10 is a timing chart showing a write operation by the resistance change memory device according to the second embodiment of the present invention.
  • chip select CS when chip select CS is at "H" level, temporary writing is performed according to the input via the external system power controller. It is. That is, the input data DIN (DO, Dl, D2-... Is written to the memory cell of the input address AD (A 0, ⁇ 1, ⁇ 2,%) In accordance with the timing of the write pulse WP. Since the temporary write operation to the memory cell is the same as that of the first embodiment (FIG. 6), description thereof is omitted.
  • the additional write sequence control circuit 224 When the chip select CS becomes “L” level, the additional write sequence control circuit 224 performs an additional write operation. During the additional write operation, the additional write sequence control circuit 224 reads the data in the normal write flag area 216 via the output data latch 222 (corresponding to step S201 in FIG. 7). At this time, if even one temporary read flag area 216 includes the value of “0” (“H”), at least one sector including a temporarily written cell is included. It means to exist. Therefore, the control circuit 202 outputs “H” level as the additional write execution flag FG, and performs the additional write operation. Note that the additional write operation is the same as that of the first embodiment (FIG. 7), and a description thereof will be omitted.
  • control circuit 202 When the additional write operation is completed, the control circuit 202 outputs “L” level as the additional write execution flag FG. While the “H” level is being output as the additional write execution flag FG, the external control device or system does not input data (write command) to the resistance change storage device 200! / ⁇ .
  • a resistance change type storage device array including a plurality of resistance change type storage devices 200 may be configured.
  • a control device outside the resistance change type storage device array inputs the chip select CS to each resistance change type storage device 200.
  • the control device selects one of the plurality of resistance change storage devices 200 by switching the chip select CS. That is, an “H” level signal is input as the chip select CS to the selected resistance change storage device 200, and temporary writing is performed according to the input of the control device.
  • the resistance change type memory device 200 that has not been selected receives an “L” level signal as the chip select CS, and the additional write sequence control circuit 224 performs additional writing.
  • the resistance change type memory device 200 has the same effect as the resistance change type memory device 100. In addition, the following effects are achieved. That is, it is not necessary to control the additional write operation by an external control device, so that convenience for the user is improved. In addition, while the "H" level is being output as the additional write execution flag FG, malfunctions can be prevented by preventing the external controller or system from issuing a data write command.
  • the power of performing an additional write operation using the period when the chip select is at the “L” level For example, BGO (Back Ground Operation), while reading a certain bank, separate it in the knock ground. Write additional banks, and in effect, make additional write operations invisible.
  • BGO Back Ground Operation
  • the additional write execution flag is used during the additional write operation, and the control signal and new write data cannot be received. If a read or write command is input during the additional write operation, the additional write operation is interrupted, the read or temporary write operation is preferentially executed, and interrupted after the interrupted read or temporary write operation is completed. The additional write operation may be resumed. With this powerful operation, write data does not stay in the host system.
  • a resistance change type data recording medium may be configured by combining a resistance change type storage device and a control device, and a resistance change type device is configured by adding a system. May be.
  • FIG. 11 is a block diagram showing a schematic configuration of the resistance variable memory apparatus according to Embodiment 3 of the present invention.
  • the resistance change type storage device of the second embodiment performs additional writing based on a signal from the outside
  • the resistance change type storage device of the second embodiment is the resistance change type of the third embodiment.
  • the changeable storage device is equipped inside Additional writing based on the timer (calendar).
  • the resistance change type storage device of the third embodiment adds an additional write sequence control circuit 324 to the control circuit of the resistance change type storage device of the first embodiment, and further adds an additional write write timer 326.
  • the other configurations are the same as those in the first embodiment. Therefore, common components are given the same names and description thereof is omitted.
  • the additional write sequence control circuit 324 is a circuit incorporated in the control circuit 302 for controlling an additional write operation (described later).
  • the control circuit 302 is the same as the control circuit 102 except that it includes an additional write sequence control circuit 324 and outputs a temporary write execution flag FG signal to an external control device.
  • the additional write timer 326 (for example, an odd number of inverters connected in series) outputs an additional write operation enable signal AP (described later) to the control circuit 302 (additional write sequence control circuit 324).
  • the additional write timer 326 may be a circuit configured to detect a long cycle by using date and time information possessed by a system such as a personal computer! /.
  • the additional write sequence control circuit 324 and the additional write timer 326 constitute an additional write sequence control device.
  • the resistance variable data storage medium and the resistance variable device as shown in FIG. 2 are configured.
  • FIG. 12 is a diagram showing an example of a change with time of the resistance value of the resistance variable element.
  • the horizontal axis plots elapsed time (T) with a logarithmic axis (logT).
  • the resistance value changes (decays) with time in a direction that cancels the written change.
  • AR ' the absolute value of the attenuation
  • AR' is almost proportional to logT
  • the resistance value changes linearly with respect to logT. Therefore, it is preferable that the change in AR1 is set so that at least a short period of data (for example, one week, one month, one year, etc.) can be secured.
  • the temporarily written data is retained at least during the period from the completion of the temporary writing to the additional writing.
  • the power is turned off in the temporary write state, and the resistance value decreases.
  • the guarantee period Ttau for data storage by temporary writing is one week or longer.
  • Temporarily written data is written in a more storable state by additional writing performed later. Therefore, the size of ARl may not be sufficient to guarantee the preservation of data over a long period (eg, 10 years).
  • additional writing is performed (details of timing adjustment will be described later).
  • a voltage of a predetermined magnitude is applied as a long pulse so that the total application time of the short pulse and the long pulse is Tp2. That is, the width of the long pulse is ⁇ 2-Tpl.
  • the amount of change in the resistance value becomes AR2 (the resistance value becomes a value corresponding to the new value).
  • Tp2 is preferably determined so that AR2 is large enough to guarantee data storage over a long period of time (eg, 10 years).
  • a state in which additional writing is performed and data storage stability is guaranteed is hereinafter referred to as an additional writing state.
  • FIG. 2 it can be configured as a resistance change type data recording medium or resistance change type storage device provided with a control device.
  • the temporary write operation is performed at any time by data input from the control device 180.
  • the variable resistance storage device 300 of the present embodiment is characterized in that the write sequence control circuit 124 and the additional write timer 126 are autonomously added without being based on a command from the external control device 180 or the like. The point is to perform a write operation.
  • FIG. 13 is a flowchart showing an outline of the additional write operation in the third embodiment of the present invention.
  • the additional write operation in the third embodiment will be described with reference to FIG.
  • the additional write sequence control circuit 324 and the additional write timer 326 are not based on a command from an external control device (corresponding to the control device 180 in FIG. 2) or the like and autonomously perform an additional write operation. I do.
  • the additional write timer 326 outputs the additional write operation enable signal AP while power is supplied to the resistance change storage device 300.
  • the additional write operation enable signal AP is pulsed at the “H” level for a predetermined period (several seconds, minutes, etc.) with a fixed period (1 day, 1 week, 1 month, 1 year, etc.). And others are set to the "L" level. The period is preferably set to a period during which the variable resistance element in the temporarily written state can hold data with sufficient reliability.
  • the additional write operation enable signal AP becomes “L” level, the additional write operation is forcibly terminated. Therefore, it is preferable that the time during which the “H” level is maintained be adjusted to a time during which additional writing can be performed for the Mori cell 139.
  • the control circuit 302 selects the additional write mode, and the additional write operation is controlled according to the control of the additional write sequence control circuit 324 in the control circuit 302. Start (Start).
  • the additional write execution flag FG output from the control circuit 302 is set to the “H” level (step S301), and the data in the temporary write flag area 116 corresponding to each sector is read.
  • a determination is made as to whether or not there is a flag having a value of “0” (flag information flag “ ⁇ ”) (step S302).
  • the description is omitted because it is the same as the read operation of the memory cell array 118. If NO is determined in step S302, all the memory cells are in the additional write state, so the additional write execution flag FG is set to “ L "level is set (step S315), and the additional write operation is terminated (end).
  • YES is determined in step S302, a series of additional operations are performed according to the control of the controller 180. Operation is performed write attempts (step S303 ⁇ ).
  • Step S304 Of the stored data, data corresponding to the number of unit write bits (for example, 16 bits) is extracted and transferred from the output data latch 122 to the write circuit 112 (Step S305).
  • an active voltage eg, 3.3V
  • An inactive voltage for example, OV
  • the selection transistor 136 of the cell to which additional data is to be written is turned on (step S306).
  • the corresponding NMOS transistor 144 is also turned on.
  • step S307 it is determined whether or not "1" is present in the write data transferred to the write circuit 112 (data stored in the cell at the sector write address N) (step S307). If it is determined as S, the write circuit 112 is set for applying a positive pulse to the cell to which “1” is to be additionally written (cell of the memory cell array 218) (step S308). That is, for the cell, the write circuit 112 is set so that +3.3 V is applied to the voltage application circuit 140 side and OV is applied to the voltage application circuit 142 side.
  • step S309 it is determined whether or not “0” is present in the write data (step S309). If it is determined as YE S, a cell to be additionally written with “0” (in the memory cell array 218). For the cell), the write circuit 112 is set to apply a negative pulse (step S310). In other words, for the cell, the write circuit 112 is set so that OV force is applied to the voltage application circuit 140 side and +3.3 V is applied to the voltage application circuit 142 side. If NO is determined in step S307, “0” is additionally written to all the cells. Therefore, the process proceeds to step S310, and the writing circuit 112 is written to all the cells. Is set for negative pulse application.
  • Step S 311 is also executed if NO is determined in step S309.
  • step S311 for the cell to which "1" is to be written, +3.3 from the voltage application circuit 140 via the bit line 130 and the selection transistor 136 to one end of the resistance variable element 138.
  • a voltage of 0 V is applied from the V and voltage application circuit 142 to the other end of the resistance variable element 138 via the NMOS transistor 144 and the source line 132 (positive Norse tracking write).
  • the resistance state of the resistance variable element 138 changes from a shallow high resistance state (for example, 287 k ⁇ ) to a deep high resistance state (for example, 1.18 ⁇ ).
  • the resistance state of the resistance variable element 138 can be stably maintained in the high resistance state, and data storability is improved.
  • 0 V is applied to one end of the resistance variable element 138 from the voltage application circuit 140 via the bit line 130 and the selection transistor 136, and the voltage application circuit 14 2 Then, a voltage of +3.3 V is applied to the other end of the resistance variable element 138 via the NMOS transistor 144 and the source line 132. That is, a pulse having a polarity opposite to that of the positive pulse additional write is applied (negative pulse additional write).
  • a voltage By applying a voltage, the resistance state of the resistance variable element 138 changes from a shallow low resistance state (for example, 113 k ⁇ ) to a deep low resistance state (for example, 60 k ⁇ ).
  • the resistance state of the resistance variable element 138 can be stably maintained at the low resistance state, and the data storability is improved.
  • the resistance change memory apparatus 300 repeats the operations from step S302 to step S314, thereby sequentially performing additional writing until the flags become 1 ("L" level) for all sectors. Do. [0135] With the operation and configuration as described above, the resistance change type storage device 300 performs the read operation of a desired memory cell 139 according to the input chip select CS, external control signal CTL, address AD, and write pulse WP. And temporary write operation. Further, the resistance change type memory device 300 autonomously performs an additional write operation at regular intervals without being based on a signal input from an external force.
  • FIG. 14 is a diagram showing the timing of the additional write operation enable signal AP and the additional write execution flag FG.
  • the additional write operation enable signal AP is periodically set to the “H” level.
  • the cycle Tea (additional write cycle: the interval from when the additional write operation enable signal AP becomes “H” level to “H” level again) corresponds to the interval between additional write operations. After additional writing is completed, Tea is set so that the next additional writing is performed before the storage state of the data that was temporarily written first deteriorates.
  • the depth of temporary writing temporary writing resistance value
  • Ttau Tca
  • Ttau the guarantee period for data storage by temporary writing (temporary writing data guarantee period).
  • Tea is set so that the difference (gap) force between the resistance value of the resistance variable element and the resistance value of the reference resistance in the state where only Tea has passed is equal to or greater than the reading guarantee margin.
  • the additional write timer 326 and the additional write sequence control circuit 324 are in a temporary write state or an additional write state for all the memory cells every predetermined period (additional write cycle). If there is a memory cell in the temporary write state, the sector containing that memory cell is selected! Then, an additional write operation is performed. In the additional write operation, a long pulse voltage is applied to the additional write target cell, and the target resistance from the viewpoint of data stability and storage stability. The resistance state of the cell transitions to the value level. Since this additional write operation is performed sporadically over a relatively long period (1 day, 1 week, 1 year, etc.), the additional write time hardly affects the system performance.
  • the additional write cycle is set to a period during which data storage by temporary writing is sufficiently guaranteed.
  • the depth of temporary writing (temporary writing resistance value) is set so as to guarantee at least data storability during a period corresponding to the interval between additional writing operations. That is, after the completion of the additional writing, the resistance value and the timing of the temporary writing are set so that the next additional writing is performed before the storage state of the data temporarily written temporarily deteriorates.
  • This powerful configuration makes it possible to ensure sufficient reliability for the storability of data that is temporarily written.
  • the temporary write operation is performed as needed according to the input of the external control device force, but the additional write operation is autonomously performed by the resistance change type storage device regardless of the external force signal.
  • the additional write execution flag FG is output, when the resistance change type storage device is busy (additional write operation is in progress: the additional write execution flag is "H" level), the external system It becomes possible to stop input, and malfunction can be prevented.
  • the additional write operation enable signal AP when the additional write operation enable signal AP is at the "H" level, the force for performing the additional write operation is set to the "H” level. Additional writing may be performed for. That is, the additional write operation enable signal AP does not need to be at the “H” level during the additional write period. Even after you return to the bell, additional writing may be done.
  • the additional write operation enable signal AP can be any signal as long as it controls the timing so that the additional write sequence control circuit 124 can perform the additional write operation at a fixed period.
  • the additional write execution flag is used during the additional write operation, and the control signal and new write data cannot be received. If a read or write command is input during an additional write operation, the additional write operation is interrupted, the read or temporary write operation is preferentially executed, and the interrupted read operation or temporary write operation is completed after completion. The additional write operation may be resumed. According to this mode, write data does not stay in the host system.
  • the power for performing the additional write operation using the period when the additional write operation enable signal AP is set to the "H" level For example, BGO (Back Ground Operation)
  • another bank may be additionally written in the background while one bank is being read, so that the additional write operation is effectively invisible.
  • FIG. 15 is a block diagram showing a schematic configuration of the resistance variable memory apparatus according to Embodiment 4 of the present invention.
  • the outline of the configuration and operation of the resistance change storage device according to the present embodiment will be described below with reference to FIG.
  • the resistance change type storage device of the fourth embodiment is obtained by replacing the additional write sequence control circuit of the resistance change type storage device of the third embodiment with a power down sequence control circuit and deleting the additional write timer.
  • the configuration is the same as that of the third embodiment. Therefore, common constituent elements are given the same names and description thereof is omitted.
  • the power-down sequence control circuit 424 (additional write sequence control device) is a circuit incorporated in the control circuit 402, and the power-down sequence control circuit 400 is powered down. Sometimes it is a circuit that performs an additional write operation.
  • the resistance change type storage device 400 is driven by electric power supplied from the outside. For this reason, the power-down of the resistance change type storage device 400 is started based on an external control signal that is not autonomously performed. Specifically, the power is turned off by the following steps. First, when the power of the system (corresponding to the system 190 in FIG. 2) is turned off, the system power is also sent to the control device (corresponding to the control device 180 in FIG. 2).
  • the control device When the control device receives the power-down notification signal, it sends a power-down signal to the resistance change type storage device 400.
  • the power-down sequence control circuit 424 receives the power-down signal, the power-down sequence control circuit 424 executes the power-down sequence, and additional writing is performed in the operation. Note that the additional write operation in the power-down sequence is the same as the additional write operation in the third embodiment, and a description thereof will be omitted.
  • additional writing is performed collectively when the power is turned off. Therefore, when the power is turned off, all the data is recorded in the memory cell, and the additional writing is completed, and the data is reliably saved even when the power is turned off. become.
  • no additional writing is performed while the power is on (during normal operation), and all data writing is processed by temporary writing. Therefore, the apparent writing speed is increased. In other words, since no additional writing is performed during normal operation, the additional writing operation does not substantially affect the performance of the entire system.
  • FIG. 16 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 5 of the present invention.
  • the resistance change type storage device of the fifth embodiment is a power down sequence control circuit of the resistance change type storage device of the fourth embodiment.
  • the one-on-sequence control circuit is replaced, and other configurations are the same as those in the fourth embodiment. Therefore, common components are given the same names and description thereof is omitted.
  • the No.1 on-sequence control circuit 524 (additional write sequence control device) is a circuit incorporated in the control circuit 502, and performs an additional write operation when the resistance change memory device 500 is powered on. It is.
  • the resistance change type storage device 500 is driven by electric power supplied from the outside.
  • the switch of the system (equivalent to system 190 in FIG. 2) is turned on and the power is turned on, the system power is also supplied to the control unit (equivalent to control unit 180 in FIG. 2) and the resistance change type storage device 500. Is started.
  • the power-on sequence control circuit 524 detects the start of power supply, executes a power-on sequence, and additional writing is performed in the operation. Note that the additional write operation in the power-on sequence is the same as the additional write operation in the first embodiment, and a description thereof will be omitted.
  • additional writing is performed at a time when the power is turned on. Therefore, when the power is turned on, additional writing is performed on all the memory cells including the memory cell in which the writing state is deteriorated, and the data storage stability and reading accuracy are improved. On the other hand, no additional writing is performed after the power is turned on (during normal operation), and all data writing is processed by temporary writing. Therefore, the apparent writing speed is increased. In other words, since additional writing is not performed during normal operation, the additional writing operation does not substantially affect the performance of the entire system.
  • this embodiment has the same effects as those of the first embodiment.
  • FIG. 17 is a block diagram showing a schematic configuration of the resistance variable memory apparatus according to Embodiment 6 of the present invention.
  • the configuration of the resistance change storage device according to the present embodiment An outline of the operation will be described.
  • the resistance change type storage device of the sixth embodiment is obtained by adding a power down sequence control circuit of the resistance change type storage device of the fourth embodiment to the resistance change type device of the third embodiment. Therefore, the same name is attached
  • the additional write operation enable signal AP force output from the additional write timer 626 AP power S
  • the additional write sequence control circuit Under the control of 624, an additional write operation is performed.
  • an additional write operation is performed under the control of the power-down sequence control circuit 628 when the power is turned off.
  • the details of the operations of the additional write timer 626, the additional write sequence control circuit 624, and the power-down sequence control circuit 628 are the same as those in the third and fourth embodiments, and thus the description thereof is omitted.
  • periodic additional writing using a timer and additional writing at the time of power-off are used in combination.
  • additional writing is performed periodically during normal operation, so that data is not accidentally written while the power is on, so that data deterioration occurs due to memory cells. Can be prevented.
  • additional writing is performed for all memory cells when the power is turned off, additional writing can be performed before the power is turned off even for memory cells that are temporarily written after the last periodic additional writing. State. Therefore, it is possible to reliably prevent the data storage state from deteriorating to the allowable limit or less (the difference from the reference resistance value is less than the reading guarantee margin) while the power is off. In this way, by combining the components of the third embodiment and the fourth embodiment, it is possible to simultaneously prevent deterioration of the data storage state when the power is turned on and deterioration of the data storage state when the power is turned off.
  • this embodiment also has the same effects as those of the third and fourth embodiments.
  • the additional write timer and additional write sequence control circuit of the third embodiment are combined with the power down sequence control circuit of the fourth embodiment.
  • the write timer and additional write sequence control circuit may be combined with the power-on sequence control circuit of the fifth embodiment.
  • the power-down sequence control circuit of the fourth embodiment may be combined with the power-on sequence control circuit of the fifth embodiment.
  • the nonvolatile memory device is a nonvolatile memory device, a resistance change type data recording medium, and a resistance change type capable of reducing the circuit area where the data writing speed is high and simplifying the device configuration. It is useful as a device and a method for writing data to a resistance variable element.

Abstract

A nonvolatile storage device includes a nonvolatile storage element (138) having a changing resistance value and a write-in device (111) for writing multi-value data into the nonvolatile storage element by changing a resistance value of the nonvolatile storage element to a resistance value corresponding to a multi-value data value which may have a plurality of values. The write-in device (111) includes: a temporary write-in device (106) for performing a temporary write-in for changing the resistance value of the nonvolatile storage element (138) from a resistance value corresponding to an old value (a value written in) to a temporary write-in resistance value existing between the resistance value corresponding to the old value and the resistance value corresponding to a new value (a value to be written in); an additional write-in device (108) for performing additional write-in for changing the resistance value of the resistance change type element (138) which has been changed to the temporary write-in resistance value, to a resistance value corresponding to the new value; and a write-in switching device (110) for performing switching between the temporary write-in device (106) and the additional write-in device (108) so as to write in multi-value data into the resistance change type element.

Description

明 細 書  Specification
不揮発性記憶装置、不揮発性データ記録メディア、不揮発型装置、およ び不揮発性記憶装置へのデータ書き込み方法  Nonvolatile storage device, nonvolatile data recording medium, nonvolatile device, and method of writing data to nonvolatile storage device
技術分野  Technical field
[0001] 本発明は、不揮発性記憶装置に関する。より詳しくは、不揮発性記憶素子を利用し た不揮発性記憶装置、不揮発性データ記録メディア、不揮発型装置、および不揮発 性記憶装置へのデータ書き込み方法に関する。  [0001] The present invention relates to a nonvolatile memory device. More specifically, the present invention relates to a nonvolatile memory device using a nonvolatile memory element, a nonvolatile data recording medium, a nonvolatile device, and a method for writing data to the nonvolatile memory device.
背景技術  Background art
[0002] 従来の不揮発性記憶装置として、特許文献 1に開示されたフラッシュ EEPROMが ある。このフラッシュ EEPROMでは、 2値データの各値力メモリセルのしきい値電圧と 対応づけられ、その 2値データが記憶される。すなわち、低しきい値状態は、 2値デー タの" 1"の値に、高しきい値状態は、 2値データの" 0"の値に割付けられる。データ消 去時には、フローティングゲートから電子が引き抜かれるため、複数のメモリセルを有 するセクタ等の所定単位でデータが一括消去される必要がある。  There is a flash EEPROM disclosed in Patent Document 1 as a conventional nonvolatile storage device. In this flash EEPROM, the binary data is stored in correspondence with the threshold voltage of each value memory cell of the binary data. That is, the low threshold state is assigned to the value “1” of the binary data, and the high threshold state is assigned to the value “0” of the binary data. When erasing data, electrons are extracted from the floating gate, so that data needs to be erased in batches in a predetermined unit such as a sector having a plurality of memory cells.
データの読み出し動作では、メモリセルにおけるトランジスタの ONZOFFを利用し 、メモリセルを流れる電流を基準電流と比較することで、所望のセルに記憶されたデ ータの読み出しが行われる。  In the data read operation, data stored in a desired cell is read by using ONZOFF of the transistor in the memory cell and comparing the current flowing through the memory cell with a reference current.
データの書き込み動作は、読み出し動作よりも一般に長い時間を必要とする。そこ で、書き込み動作をより迅速に行うために、特許文献 1のフラッシュ EEPROMでは、 2段階の書き込みが行われる。すなわち、まず、データが入力されている間は、短時 間のパルスを用いて一時的な仮の書き込みが行われる。次に、データの入力が終了 すると、長時間のパルスを用いて、追カ卩的なデータ保存用の書き込みが行われる。 力かる動作によれば、一時書き込みで書き込まれたデータの保存性は、長期間保証 されていなくてもよぐ追加書き込みが行われるまで一時的にデータを維持できる程 度であればよい。よって、一時書き込みの速度を速くすることができ、見かけ上、デー タの書き込み速度が向上する。追加書き込み動作では、システムの負荷が減少した タイミングに合わせて、長期間のデータ保存性を保証できるレベルまでメモリセルのし きい値電圧が変更される。 Data write operations generally require a longer time than read operations. Therefore, in order to perform the writing operation more quickly, the flash EEPROM of Patent Document 1 performs two-stage writing. That is, first, while data is being input, temporary provisional writing is performed using short time pulses. Next, when the data input is completed, additional data storage writing is performed using a long pulse. According to the operation, the storability of the data written by the temporary writing only needs to be such that the data can be temporarily maintained until additional writing is performed even if it is not guaranteed for a long time. Therefore, the temporary writing speed can be increased, and the data writing speed is apparently improved. In the additional write operation, the memory cell is reduced to a level that can guarantee long-term data storage at the timing when the system load decreases. The threshold voltage is changed.
[0003] 図 18は、フラッシュ EEPROMにおけるしきい値電圧 Vと書き込み時間 Tpの関係を 模式的に示すグラフである。図 19は、フラッシュ EEPROMの消去状態及び書き込 み状態 (一時書き込み状態及び追加書き込み状態)のしき!ヽ値電圧分布を示した図 である。図 18及び図 19に示すように、読み出し電圧 Vrが 4Vの場合、一時書き込み 時間として、初期の読み出しが正常に動作するための必要最低限の書き込み時間 T p ( = lms)を設定する。信頼性保証を考慮した通常の書き込み時間 Tp (= 10ms)に 対して、一桁短い時間で一時書き込みが行われる。一時書き込みにより、フローティ ングゲートに電子が注入され、一時書き込み時間 Tp ( = lms)に応じてメモリセルの しきい値が正方向に上昇する。一時書き込み後は、しきい値電圧と読出し電圧 Vrと の差が、追加書き込み動作までの一時保存に必要なマージン (初期読出し動作マー ジン Ml)となっている。  FIG. 18 is a graph schematically showing the relationship between the threshold voltage V and the write time Tp in the flash EEPROM. FIG. 19 is a diagram showing threshold voltage distributions in the erase state and the write state (temporary write state and additional write state) of the flash EEPROM. As shown in FIGS. 18 and 19, when the read voltage Vr is 4 V, the minimum write time T p (= lms) necessary for the initial read to operate normally is set as the temporary write time. Temporary writing is performed in an order of magnitude shorter than the normal writing time Tp (= 10 ms) considering reliability assurance. Due to the temporary write, electrons are injected into the floating gate, and the threshold value of the memory cell increases in the positive direction according to the temporary write time Tp (= lms). After temporary writing, the difference between the threshold voltage and the read voltage Vr is the margin necessary for temporary storage until the additional write operation (initial read operation margin Ml).
[0004] 一連のデータについて一時書き込みが終了すると、追加書き込みが行われる。追 加書き込み動作では、追加書き込み時間として、通常の信頼性保証を考慮した書き 込み時間 Tp ( = 9ms)が設定されている。追加書き込み後は、しきい値電圧と読出し 電圧 Vrとの差が、長期間(例えば 10年)の保存を保証するのに必要なマージン (信 頼性保証マージン M2)となって!/、る。  [0004] When temporary writing is completed for a series of data, additional writing is performed. In the additional write operation, the write time Tp (= 9 ms) is set as the additional write time in consideration of normal reliability assurance. After additional writing, the difference between the threshold voltage and the read voltage Vr becomes the margin (reliability guarantee margin M2) necessary to guarantee long-term storage (eg, 10 years)! / .
[0005] このように 2段階の書き込みを行うことで、見かけ上、通常の書き込み時間(約 10m s)よりも短い書き込み時間(約 lms)でデータの書き込みが行われる。し力しながら、 一時書き込みに必要な時間(約 lms)は、一般の揮発型記憶装置 (DRAMなど)の 読み出し Z書き込み時間(20〜60ns)よりはるかに長い。このため、フラッシュ EEPR OMへの書き込みを行う場合には、データを一時的に保存するノ ッファメモリが用意 される。  [0005] By performing the two-stage writing in this way, data is written in a seemingly shorter writing time (about lms) than a normal writing time (about 10 ms). However, the time required for temporary writing (approximately lms) is much longer than the read Z write time (20-60ns) of a general volatile storage device (DRAM, etc.). Therefore, when writing to the flash EEPROM, a nota memory is provided to temporarily store the data.
図 20は、フラッシュ EEPROMを用いた半導体記憶装置を含むメモリシステムの構 成を示すブロック図である。図 20に示すように、上位装置からの書換えに要する時間 を短縮するために、メモリシステム 700は、半導体記憶装置 701、フラッシュ EEPRO M用インターフェース回路 702、バッファメモリ 703 (DRAM)、及びバッファメモリ用 インターフェース回路 704とから構成される。 上位装置力もの書換え命令が送られると、ノ ッファメモリ用インターフェース回路 70 4を介してバッファメモリ 703に一端データが高速に書き込まれる。上位装置力ものデ ータ書換え命令が終了すると、まず、半導体記憶装置 701の所定単位の消去が行わ れる。次に、ノ ッファメモリ 703に記憶したデータをバッファメモリ用インターフェース 回路 704及びフラッシュ EEPROM用インターフェース回路 702を介して、一時書き 込み動作により高速に書き込む。最後に、半導体記憶装置 701が非活性化されると 、上位装置からの追加書き込み命令に応じて、半導体記憶装置 701に対する追カロ 書き込みが実施される。 FIG. 20 is a block diagram showing a configuration of a memory system including a semiconductor memory device using a flash EEPROM. As shown in FIG. 20, in order to shorten the time required for rewriting from the host device, the memory system 700 includes a semiconductor storage device 701, a flash EEPRO M interface circuit 702, a buffer memory 703 (DRAM), and a buffer memory And an interface circuit 704. When a rewrite command having a higher-level device capability is sent, the data is once written into the buffer memory 703 via the notch memory interface circuit 704 at a high speed. When the data rewrite command for the higher-level device is completed, first, the semiconductor memory device 701 is erased in a predetermined unit. Next, the data stored in the nother memory 703 is written at high speed by the temporary write operation via the buffer memory interface circuit 704 and the flash EEPROM interface circuit 702. Finally, when the semiconductor memory device 701 is deactivated, additional write to the semiconductor memory device 701 is performed in response to an additional write command from the host device.
[0006] 上位装置力 の読み出し命令に対して、バッファメモリ 703のデータを読み出す場 合には、ノッファメモリ用インターフェース回路 704を介してデータの読み出しが行わ れる。同様に、半導体記憶装置 701を読み出す場合には、フラッシュ EEPROM用ィ ンターフェース回路 702を介してデータの読み出しが行われる。  [0006] When data in the buffer memory 703 is read in response to a read instruction from the host device, the data is read through the nother memory interface circuit 704. Similarly, when the semiconductor memory device 701 is read, data is read via the flash EEPROM interface circuit 702.
近年開発された不揮発性記憶装置としては、特許文献 2に開示された抵抗変化型 記憶装置がある。この抵抗変化型記憶装置は、マンガンを含有するべ口ブスカイト構 造の酸ィ匕物などカゝらなる抵抗変化材料を利用した抵抗変化型素子をメモリセルとし て利用する。該抵抗変化材料は、正または負電圧パルスの印加によって抵抗値が大 きく変化する。力かる物性を利用し、データを素子の抵抗値に転換して記憶させるこ とで、記憶装置として動作させることが可能となる。  As a nonvolatile memory device developed in recent years, there is a resistance change type memory device disclosed in Patent Document 2. This resistance change memory device uses, as a memory cell, a resistance change element using a resistance change material such as an oxide having a base bumite structure containing manganese. The resistance change material changes greatly in resistance value by application of a positive or negative voltage pulse. Utilizing powerful physical properties, data can be converted into element resistance values and stored to operate as a storage device.
[0007] 図 21は、特許文献 2に開示された抵抗変化材料の抵抗値と印加される電圧パルス の回数 (長さ)の関係を示す図である。図に示すように、抵抗変化材料の抵抗値は、 電圧パルスの印加開始時に大きく変化し、パルス数が増加するにつれて変化量は徐 々に減少する。  FIG. 21 is a diagram showing the relationship between the resistance value of the variable resistance material disclosed in Patent Document 2 and the number (length) of applied voltage pulses. As shown in the figure, the resistance value of the variable resistance material changes greatly at the start of voltage pulse application, and the amount of change gradually decreases as the number of pulses increases.
特許文献 1:特開 2004— 253093号公報  Patent Document 1: Japanese Patent Laid-Open No. 2004-253093
特許文献 2 :特開 2004— 185755号公報  Patent Document 2: JP 2004-185755 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 前記従来のフラッシュ EEPROMの構成においては、依然としてデータの書き換え 速度が遅いという問題があった。また、ノ ッファメモリを必要とするために回路面積が 大きくなつて高集積ィ匕が困難になるという問題も有していた。また、バッファメモリ用ィ ンターフェース回路などを必要とすることから装置構成が複雑となり、製造コストも高く なるという課題があった。 [0008] The configuration of the conventional flash EEPROM still has a problem that the data rewrite speed is still slow. In addition, the circuit area is reduced due to the need for a nother memory. There was also a problem that it was difficult to achieve a high integration density. In addition, since a buffer memory interface circuit and the like are required, the configuration of the apparatus becomes complicated and the manufacturing cost increases.
[0009] 本発明は上記のような課題を解決するためになされたもので、データの書き込み速 度が速ぐ回路面積の削減と装置構成の簡略化が可能な不揮発性記憶装置、抵抗 変化型データ記録メディア、抵抗変化型装置、および抵抗変化型素子へのデータ書 き込み方法を提供することを目的として!ヽる。  [0009] The present invention has been made to solve the above-described problems. A nonvolatile memory device, a resistance variable type, and the like, which can reduce the circuit area and simplify the device configuration with high data writing speed. For the purpose of providing data recording media, variable resistance devices, and methods for writing data to variable resistance elements! Speak.
課題を解決するための手段  Means for solving the problem
[0010] 発明者らは、不揮発性記憶装置における動作速度向上と回路設計の簡略化を目 標として鋭意検討を行った。その結果、抵抗変化型素子などを用いた上で、一時的 な書き込みと追加的な書き込みという 2段階の書き込みを行うことで、書き込み速度を 飛躍的に向上できることが明らかとなった。力かる構成によれば、一般的な揮発性記 憶装置 (DRAMなど)力もの読出し速度と同程度の速度で書き込むことができ、バッ ファメモリを備えない構成も実現可能になると期待された。かかる構成は、回路を小 型化 ·簡略ィ匕できるため、デバイスの小型化やコスト削減などに極めて有効である。 すなわち、上記課題を解決するために、本発明に係る不揮発性記憶装置は、抵抗 値が変化する不揮発性記憶素子と、前記不揮発性記憶素子の抵抗値を複数の値を 取りうるデータである複値データの値に対応する抵抗値に変化させることによって前 記複値データを前記不揮発性記憶素子に書き込むための書き込み装置とを有する 不揮発性記憶装置であって、前記書き込み装置は、書き込まれている複値データの 値を旧値と呼び、書き込むべき複値データの値を新値と呼ぶとき、前記不揮発性記 憶素子の抵抗値を旧値に対応する抵抗値力ゝら旧値に対応する抵抗値と新値に対応 する抵抗値との間にある一時書き込み抵抗値へと変化させる一時書き込みを行うた めの一時書き込み装置と、前記一時書き込み抵抗値へと変化させられた前記不揮 発性記憶素子の抵抗値を前記新値に対応する抵抗値へと変化させる追加書き込み を行うための追加書き込み装置と、前記一時書き込み装置と前記追加書き込み装置 とを切り換えて前記不揮発性記憶素子に複値データの書き込みを行うための書き込 み切換装置とを備える。 かかる構成では、データの書き込み速度が速くなり、回路面積の削減、装置構成の 簡略化が可能となる。 [0010] The inventors diligently studied for the purpose of improving the operation speed and simplifying the circuit design in the nonvolatile memory device. As a result, it has been clarified that the write speed can be dramatically improved by using two steps of writing, temporary writing and additional writing, using a resistance variable element. According to the powerful configuration, it was expected that it would be possible to write at a speed comparable to that of a general volatile storage device (DRAM, etc.), and a configuration without a buffer memory could be realized. Such a configuration is very effective for downsizing and cost reduction of the device because the circuit can be miniaturized and simplified. That is, in order to solve the above-described problem, a nonvolatile memory device according to the present invention includes a nonvolatile memory element whose resistance value changes and data that can take a plurality of values for the resistance value of the nonvolatile memory element. A non-volatile memory device having a writing device for writing the multi-value data into the non-volatile memory element by changing to a resistance value corresponding to the value data value, wherein the writing device is written When the value of multi-value data is called the old value and the value of multi-value data to be written is called the new value, the resistance value of the nonvolatile memory element corresponds to the old value, such as the resistance value corresponding to the old value. A temporary writing device for performing temporary writing to be changed to a temporary writing resistance value between the resistance value corresponding to the new value and the resistance value corresponding to the new value, and the nonvolatile device that has been changed to the temporary writing resistance value. The additional writing device for performing additional writing to change the resistance value of the volatile memory element to the resistance value corresponding to the new value, the temporary writing device, and the additional writing device are switched to duplicate the nonvolatile memory element. And a write switching device for writing value data. With such a configuration, the data writing speed is increased, and the circuit area can be reduced and the device configuration can be simplified.
[0011] 上記不揮発性記憶装置において、前記旧値に対応する抵抗値と前記一時書き込 み抵抗値との差は、前記旧値に対応する抵抗値と前記新値に対応する抵抗値との 差の 20%以上 98%以下であってもよい。  In the above nonvolatile memory device, the difference between the resistance value corresponding to the old value and the temporary write resistance value is the difference between the resistance value corresponding to the old value and the resistance value corresponding to the new value. It may be 20% or more and 98% or less of the difference.
[0012] かかる構成では、新値に対応する抵抗値との比率により、好適な一時書き込み抵 抗値の設定が可能となる。 [0012] With such a configuration, a suitable temporary write resistance value can be set according to the ratio with the resistance value corresponding to the new value.
上記不揮発性記憶装置において、前記不揮発性記憶素子は、所定の態様のエネ ルギ一の累積投入量に応じてその抵抗値が変化し、前記書き込み装置は、前記所 定の態様のエネルギーを投入することによって前記不揮発性記憶素子の抵抗値を 変化させてもよい。  In the non-volatile memory device, the non-volatile memory element has a resistance value that changes according to a cumulative amount of energy input in a predetermined mode, and the writing device inputs energy in the predetermined mode. Accordingly, the resistance value of the nonvolatile memory element may be changed.
[0013] かかる構成では、所定の態様のエネルギーの累積投入量を制御することにより、不 揮発性記憶素子の抵抗値を変化させ、複値データを該不揮発性記憶素子に記憶さ せることができる。  [0013] With such a configuration, by controlling the cumulative amount of energy input in a predetermined mode, the resistance value of the nonvolatile memory element can be changed, and multi-value data can be stored in the nonvolatile memory element. .
上記不揮発性記憶装置にお!、て、前記所定の態様のエネルギーの累積投入量が 、電圧パルスの累積印加量であり、前記書き込み装置は、前記不揮発性記憶素子に 電圧パルスを印加することによってその抵抗値を変化させてもよい。  In the non-volatile memory device, the cumulative amount of energy input in the predetermined mode is a cumulative voltage pulse application amount, and the writing device applies a voltage pulse to the non-volatile memory element. The resistance value may be changed.
[0014] かかる構成では、電圧ノ ルスの累積印加量を制御することにより、不揮発性記憶素 子の抵抗値を変化させ、複値データを該不揮発性記憶素子に記憶させることができ る。 [0014] With such a configuration, by controlling the cumulative application amount of voltage noise, the resistance value of the nonvolatile memory element can be changed, and multi-value data can be stored in the nonvolatile memory element.
上記不揮発性記憶装置において、前記不揮発性記憶素子は、所定の態様のエネ ルギ一の累積投入量に対し飽和するようにその抵抗値が変化するものであってもよ い。  In the non-volatile memory device, the resistance value of the non-volatile memory element may change so as to be saturated with respect to a cumulative amount of energy input in a predetermined mode.
[0015] かかる構成では、エネルギーの投入開始時に抵抗値が大きく変化する。この大きな 変化量を利用して、データの一時的な保持に必要なレベルまで抵抗値を変化させる 。その後に追加的な書き込みにより、データの長期的な保存に十分なレベルまで抵 抗値を変化させる。よって、見かけ上の書き込み速度が速ぐかつデータ保存性の点 でも信頼性の高 、記憶装置が実現できる。 [0016] 上記不揮発性記憶装置において、前記一時書き込みを行うために印加される電圧 パルスの幅が 60ns以下であってもよ!/、。 [0015] With such a configuration, the resistance value changes greatly at the start of energy input. Using this large amount of change, the resistance value is changed to a level necessary for temporary retention of data. Subsequent additional writes will change the resistance to a level sufficient for long-term data storage. Therefore, it is possible to realize a storage device with high apparent writing speed and high reliability in terms of data storage. [0016] In the above nonvolatile memory device, the width of a voltage pulse applied to perform the temporary writing may be 60 ns or less! /.
[0017] かかる構成では、印加される電圧パルスの幅を所定の値より小さくすることで、より 確実な、回路面積の削減、装置構成の簡略化が可能となる。 In such a configuration, by reducing the width of the applied voltage pulse below a predetermined value, it is possible to more reliably reduce the circuit area and simplify the device configuration.
[0018] 上記不揮発性記憶装置において、前記一時書き込みを行うために印加される電圧 パルスの幅力 読み出しを行うために印加される電圧パルスの幅以下であってもよい [0018] In the above nonvolatile memory device, the width of the voltage pulse applied to perform the temporary writing may be equal to or less than the width of the voltage pulse applied to perform the reading.
[0019] かかる構成では、一時書き込みの速度が読み出しの速度と同じかそれ以下となる ため、不揮発性記憶装置の間でデータの読み出しと書き込みを行う場合にバッファメ モリが不要となる。 In such a configuration, since the speed of temporary writing is the same as or lower than the speed of reading, buffer memory is not necessary when reading and writing data between nonvolatile storage devices.
[0020] また、本発明の不揮発型装置は、上述の不揮発性記憶装置と、制御装置と、揮発 型記憶装置とを備え、前記一時書き込みを行うために印加される電圧パルスの幅が 、前記揮発型記憶装置の読み出しパルスの幅以下に設定されている。  [0020] In addition, a nonvolatile device of the present invention includes the above-described nonvolatile memory device, a control device, and a volatile memory device, and the width of a voltage pulse applied to perform the temporary writing is It is set to be equal to or smaller than the width of the read pulse of the volatile memory device.
[0021] かかる構成では、不揮発性記憶装置への一時書き込みの速度が揮発型記憶装置 の読み出しの速度と同じかそれ以下となるため、抵抗変化型装置内部のバッファメモ リを減らすことができる。  In such a configuration, since the speed of temporary writing to the nonvolatile memory device is the same as or lower than the speed of reading from the volatile memory device, the buffer memory inside the resistance variable device can be reduced.
[0022] 上記不揮発性記憶装置において、前記一時書き込みを行うために印加される電圧 パルスの幅力 前記追カ卩書き込みを行うために印加される電圧パルスの幅よりも短く てもよい。さらに、前記一時書き込みを行うために印加される電圧パルスの電圧が、 前記追加書き込みを行うために印加される電圧パルスの電圧と等しくてもよ ヽ。  [0022] In the nonvolatile memory device, the width force of the voltage pulse applied to perform the temporary writing may be shorter than the width of the voltage pulse applied to perform the additional writing. Further, a voltage pulse applied to perform the temporary write may be equal to a voltage pulse applied to perform the additional write.
[0023] かかる構成では、一時書き込み用のパルス幅を短くすることで、一時書き込みをより 高速に行うことができる。また、追加書き込みを時間をかけて行うことができ、データ の長期保存が可能となり、記憶装置としての信頼性が向上する。  In such a configuration, temporary writing can be performed at higher speed by shortening the pulse width for temporary writing. In addition, additional writing can be performed over time, data can be stored for a long time, and the reliability of the storage device is improved.
[0024] 上記不揮発性記憶装置において、前記一時書き込みを行うために印加される電圧 パルスの電圧力 前記追加書き込みを行うために印加される電圧パルスの電圧よりも 高くてもよい。さらに、前記一時書き込みを行うために印加される電圧パルスの幅力 前記追加書き込みを行うために印加される電圧パルスの幅と等しくてもよ 、。  [0024] In the nonvolatile memory device, a voltage force of a voltage pulse applied to perform the temporary writing may be higher than a voltage pulse voltage applied to perform the additional writing. Further, the width force of the voltage pulse applied to perform the temporary writing may be equal to the width of the voltage pulse applied to perform the additional writing.
[0025] かかる構成では、一時書き込み用の電圧ノルスの電圧を高くすることで、一時書き 込みをより高速に行うことができる。また、追加書き込みでは電圧を低くすることで、消 費電力を低減できる。 [0025] In such a configuration, the voltage of the voltage Norse for temporary writing is increased, so that the temporary writing is performed. Can be performed at a higher speed. In addition, the power consumption can be reduced by lowering the voltage for additional writing.
[0026] また、本発明の不揮発性データ記録メディアは、上記不揮発性記憶装置と、制御 装置とを備え、前記制御装置が、前記一時書き込み装置と前記追加書き込み装置と を切り換えるように、前記書き込み切換装置を制御する。  [0026] Further, a nonvolatile data recording medium of the present invention includes the nonvolatile storage device and a control device, and the control device switches the temporary writing device and the additional writing device so as to switch between the temporary writing device and the additional writing device. Control the switching device.
[0027] かかる構成では、高速かつ小型の不揮発型データ記録メディアとして、抵抗変化型 データ記録メディアが実現可能となる。  [0027] With such a configuration, a resistance variable data recording medium can be realized as a high-speed and small non-volatile data recording medium.
上記不揮発性記憶装置は、前記不揮発性記憶素子を備えるメモリセルから成り、 複数の前記メモリセルを有するメモリセルセクションを複数有するメモリセルアレイと、 前記メモリセルセクション 1個について 1個のフラグ用不揮発性記憶素子を備え、前 記メモリセルセクションに属する不揮発性記憶素子に前記一時書き込みを行った場 合に対応するフラグ用不揮発性記憶素子にその旨が書き込まれ、前記メモリセルセ クシヨンに属する不揮発性記憶素子に前記追加書き込みを行った場合に対応するフ ラグ用不揮発性記憶素子にその旨が書き込まれる、一時書き込みフラグ領域とを備 えてもよい。また、上記不揮発性データ記録メディアは、上記不揮発性記憶装置と、 制御装置とを備え、前記制御装置が、それぞれの前記メモリセルセクションについて 、前記追加書き込みが完了していない不揮発性記憶素子を含む追加書き込み対象 メモリセルセクションである力否かを、一時書き込みフラグ領域の値に基づ 、て判定 し、前記追加書き込み対象メモリセルセクションに書き込まれて 、るデータを用いて、 前記追加書き込み対象メモリセルセクションに属する前記不揮発性記憶素子に対し て追加書き込みを行ってもょ 、。  The nonvolatile memory device includes a memory cell including a memory cell including the nonvolatile memory element, a memory cell array having a plurality of memory cell sections each having a plurality of the memory cells, and one flag nonvolatile for each memory cell section. A non-volatile memory element belonging to the memory cell section, which has a memory element, and that is written to the non-volatile memory element for flag corresponding to the temporary write to the non-volatile memory element belonging to the memory cell section In addition, a temporary write flag area may be provided in which the fact is written in the flag non-volatile memory element corresponding to the additional write. The nonvolatile data recording medium includes the nonvolatile memory device and a control device, and the control device includes a nonvolatile memory element in which the additional writing is not completed for each of the memory cell sections. Whether the memory cell section is the additional write target memory cell section is determined based on the value of the temporary write flag area, and the additional write target memory is written using the data written to the additional write target memory cell section. Additional writing may be performed on the nonvolatile memory element belonging to the cell section.
かかる構成では、一時書き込みフラグ領域の値に基づいて、それぞれのメモリセル セクションに、追加書き込みが完了して ヽな 、メモリセルが存在するかを容易に判定 できる。よって、そのメモリセルセクションに対して追加書き込みを行う必要がある力否 かを容易に判定できる。  In such a configuration, based on the value of the temporary write flag area, it is possible to easily determine whether there is a memory cell in each memory cell section after the additional write is completed. Therefore, it is possible to easily determine whether or not it is necessary to perform additional writing to the memory cell section.
[0028] 上記不揮発性記憶装置は、さらに、前記メモリセルセクションに属する不揮発性記 憶素子の少なくとも一部に書き込まれたデータを、追加書き込みのために一時的に 記録する書き込みデータ記憶装置を備えてもよい。また、上記不揮発性データ記録 メディアは、上記不揮発性記憶装置と、制御装置とを備え、前記制御装置が、それぞ れの前記メモリセルセクションにつ 、て、前記追加書き込みが完了して ヽな ヽ不揮発 性記憶素子を含む追加書き込み対象メモリセルセクションである力否かを、一時書き 込みフラグ領域の値に基づ 、て判定し、前記追加書き込み対象メモリセルセクション のデータの少なくとも一部を前記書き込みデータ記憶装置に記憶させ、前記書き込 みデータ記憶装置に記憶されたデータを用いて、前記追加書き込み対象メモリセル セクションに属する前記不揮発性記憶素子に対して追加書き込みを行ってもよい。 [0028] The nonvolatile storage device further includes a write data storage device that temporarily records data written in at least a part of the nonvolatile storage elements belonging to the memory cell section for additional writing. May be. In addition, the nonvolatile data recording A medium includes the nonvolatile memory device and a control device, and the control device includes a nonvolatile memory element that completes the additional writing for each of the memory cell sections. Whether or not the memory cell section is the additional write target memory cell section is determined based on the value of the temporary write flag area, and at least a part of the data of the additional write target memory cell section is stored in the write data storage device. Further, additional writing may be performed on the non-volatile storage element belonging to the additional write target memory cell section using data stored in the write data storage device.
[0029] かかる構成では、書き込みデータ記憶装置に追加書き込み用のデータを仮に記憶 しておくことができる。よって、効率よく追加書き込み動作を行うことができる。  [0029] With such a configuration, additional write data can be temporarily stored in the write data storage device. Therefore, the additional write operation can be performed efficiently.
上記不揮発性記憶装置は、前記一時書き込み装置と前記追加書き込み装置とを 切り換えるように、前記書き込み切換装置を制御する追加書き込みシーケンス制御 回路を備え、前記追加書き込みシーケンス制御回路は、外部装置から入力される制 御信号が、不揮発性記憶装置が選択されていない旨を示すときに、前記追加書き込 みを行うように前記書き込み切換装置を制御してもよ ヽ。  The nonvolatile storage device includes an additional write sequence control circuit that controls the write switching device so as to switch between the temporary writing device and the additional writing device, and the additional write sequence control circuit is input from an external device. The write switching device may be controlled to perform the additional writing when the control signal indicates that a non-volatile storage device is not selected.
かかる構成では、外部装置力 のデータ入力が停止したときに、自律的に追加書き 込み動作が行われる。よって、外部の制御装置による制御が簡便になり、ユーザ (不 揮発性記憶装置を用いたシステムを製造するメーカーなど)の利便性が向上する。 また、本発明の不揮発性データ記録メディアは、上記不揮発性記憶装置と、制御 装置とを備え、前記制御装置が前記外部装置である。  In such a configuration, an additional write operation is performed autonomously when data input of external device power is stopped. Therefore, the control by the external control device is simplified, and the convenience for the user (such as a manufacturer that manufactures a system using a nonvolatile storage device) is improved. A nonvolatile data recording medium of the present invention includes the nonvolatile storage device and a control device, and the control device is the external device.
かかる構成でも、外部装置力ものデータ入力が停止したときに、自律的に追加書き 込み動作が行われる。よって、外部の制御装置による制御が簡便になり、簡略な構 成で、追加書き込みを実行可能なデータ記録メディアが得られる。  Even in such a configuration, when data input by an external device is stopped, an additional write operation is performed autonomously. Therefore, control by an external control device is simplified, and a data recording medium capable of executing additional writing with a simple configuration can be obtained.
[0030] 上記不揮発性記憶装置は、前記追加書き込み装置による書き込みが行われている 場合に、外部装置からの書き込みデータの入力を禁止するための追加書き込み実 行中フラグ信号の出力機能を備えてもよい。また、上記抵抗変化型データ記録メディ ァは、上記不揮発性記憶装置と、制御装置とを備え、前記不揮発性記憶装置から出 力される前記追加書き込み実行中フラグ信号が入力禁止状態を示す場合に、前記 制御装置が前記不揮発性記憶装置へのデータ入力を停止してもよい。 かかる構成では、追加書き込み動作を行っているときには、外部の制御装置などが その旨を容易に判別できるため、誤動作を防止できる。 [0030] The nonvolatile memory device has a function of outputting an additional write execution flag signal for prohibiting input of write data from an external device when writing by the additional write device is performed. Also good. The resistance change type data recording medium includes the nonvolatile memory device and a control device, and the additional write execution flag signal output from the nonvolatile memory device indicates an input prohibited state. The control device may stop data input to the nonvolatile memory device. In such a configuration, when an additional write operation is performed, an external control device or the like can easily determine that fact, so that a malfunction can be prevented.
また、本発明の不揮発性データ記録メディアは、制御装置と、抵抗値が変化する不 揮発性記憶素子と、前記不揮発性記憶素子の抵抗値を複数の値を取りうるデータで ある複値データの値に対応する抵抗値に変化させることによって前記複値データを 前記不揮発性記憶素子に書き込むための書き込み装置とを有する不揮発性データ 記録メディアであって、書き込まれている複値データの値を旧値と呼び、書き込むベ き複値データの値を新値と呼ぶとき、前記不揮発性記憶素子に書き込まれた値を旧 値から新値に更新する際に、前記制御装置が、前記不揮発性記憶素子の抵抗値を 、旧値に対応する抵抗値から旧値に対応する抵抗値と新値に対応する抵抗値との間 にある一時書き込み抵抗値へと変化させる一時書き込みを行うように書き込み装置を 制御し、その後、前記制御装置が、前記一時書き込み抵抗値へと変化させられた前 記不揮発性記憶素子の抵抗値を、前記新値に対応する抵抗値へと変化させる追カロ 書き込みを行うように書き込み装置を制御する。  In addition, the nonvolatile data recording medium of the present invention includes a control device, a nonvolatile storage element whose resistance value changes, and multi-value data which is data that can take a plurality of resistance values of the nonvolatile storage element. A non-volatile data recording medium having a writing device for writing the multi-value data to the non-volatile memory element by changing to a resistance value corresponding to the value, wherein the value of the multi-value data being written is When the value of the multi-value data to be written is called a new value, the control device updates the value stored in the nonvolatile memory element from the old value to the new value. Write so that the resistance value of the element is changed from the resistance value corresponding to the old value to the temporary write resistance value between the resistance value corresponding to the old value and the resistance value corresponding to the new value. The controller then changes the resistance value of the nonvolatile memory element that has been changed to the temporary write resistance value to a resistance value corresponding to the new value. Control the writing device to do.
かかる構成では、データの書き込み速度が速くなるため、回路面積の削減、装置構 成の簡略ィ匕が可能となる。  In such a configuration, since the data writing speed is increased, the circuit area can be reduced and the device configuration can be simplified.
上記不揮発性データ記録メディアは、前記制御装置が、複数の前記不揮発性記憶 素子に対し一時書き込みを行うように書き込み装置を制御し、その後、前記制御装 置が、前記複数の前記不揮発性記憶素子に対し追加書き込みを行うように書き込み 装置を制御してもよい。また、本発明の不揮発性記憶装置へのデータ書き込み方法 は、複数の不揮発性記憶素子を備えた不揮発性記憶装置へのデータ書き込み方法 であって、書き込まれる複値データのそれぞれの値に対応して前記不揮発性記憶素 子の抵抗値を設定し、書き込まれている複値データの値を旧値と呼び、書き込むベ き複値データの値を新値と呼ぶとき、複数の前記不揮発性記憶素子に書き込まれて V、る旧値を新値に更新する際に、それぞれの前記不揮発性記憶素子の抵抗値を、 旧値に対応する抵抗値カゝら前記旧値に対応する抵抗値と前記新値に対応する抵抗 値との間にある一時書き込み抵抗値へと変化させる一時書き込みを行い、その後、 それぞれの前記不揮発性記憶素子について抵抗値を前記一時書き込み抵抗値から 前記新値に対応する抵抗値へと変化させる追加書き込みを行ってもよい。 In the nonvolatile data recording medium, the control device controls the writing device so as to temporarily write the plurality of nonvolatile storage elements, and then the control device includes the plurality of nonvolatile storage elements. The writing device may be controlled to perform additional writing. The data writing method to the nonvolatile memory device of the present invention is a data writing method to the nonvolatile memory device including a plurality of nonvolatile memory elements, and corresponds to each value of the multi-value data to be written. When the resistance value of the nonvolatile memory element is set, the value of the written multi-value data is referred to as an old value, and the value of the multi-value data to be written is referred to as a new value. When the old value written in the element is updated to the new value, the resistance value of each of the nonvolatile memory elements is changed from the resistance value corresponding to the old value to the resistance value corresponding to the old value. Temporary writing is performed to change to a temporary writing resistance value between the resistance value corresponding to the new value, and then the resistance value of each nonvolatile memory element is determined from the temporary writing resistance value. Additional writing may be performed to change to a resistance value corresponding to the new value.
かかる構成では、まず一時書き込みを書き込むべきデータについて行い、その後 に追加書き込みを行うため、見かけ上の書き込み速度を向上できる。  In such a configuration, since the temporary writing is first performed on the data to be written, and then additional writing is performed, the apparent writing speed can be improved.
上記不揮発性記憶装置において、前記追加書き込みを行うべく前記書き込み装置 を制御する追加書き込みシーケンス制御装置を備えてもよい。  The nonvolatile memory device may further include an additional write sequence control device that controls the writing device to perform the additional writing.
[0032] かかる構成では、追加書き込みシーケンス制御装置により自律的に追加書き込み が行われるため、ユーザ (上位システム)に対する利便性が向上する。  [0032] With such a configuration, additional writing is autonomously performed by the additional writing sequence control device, so that convenience for the user (higher system) is improved.
[0033] 上記不揮発性記憶装置にお!/、て、前記追加書き込みシーケンス制御装置は、一 定期間毎に前記追加書き込みを行うべく前記書き込み装置を制御するように構成さ れていてもよい。  [0033] In the non-volatile storage device, the additional write sequence control device may be configured to control the writing device to perform the additional writing at regular intervals.
かかる構成では、追加書き込み動作が比較的長い期間(1日、 1週間、 1年など)を おいて散発的に行われるため、見かけ上、追加書き込み時間はほとんどシステムの パフォーマンスに影響しない。すなわち、通常時には一時書き込みのみでデータが 高速に書き込まれるため、高速応答可能な不揮発型記憶装置が実現される。一方、 追加書き込みによりデータの保存性が向上するため、高い信頼性を有する不揮発型 記憶装置が実現される。  In such a configuration, additional write operations occur sporadically over a relatively long period of time (1 day, 1 week, 1 year, etc.), so apparently the additional write time has little impact on system performance. That is, normally, data is written at high speed only by temporary writing, so that a nonvolatile memory device capable of high-speed response is realized. On the other hand, since the data storability is improved by the additional writing, a highly reliable nonvolatile storage device is realized.
上記不揮発性記憶装置において、前記追加書き込みシーケンス制御装置は、前 記一定期間の周期で所定時間の間、前記書き込み動作を行わせる信号を出力する タイマーを備えてもよい。  In the non-volatile memory device, the additional write sequence control device may include a timer that outputs a signal for performing the write operation for a predetermined time in a period of the predetermined period.
力かる構成により、タイマーを用いて、自律的に追加書き込み動作を行うタイミング を調整できる。  With a powerful configuration, it is possible to adjust the timing for autonomously performing an additional write operation using a timer.
上記不揮発性記憶装置において、前記追加書き込みシーケンス制御装置は、電 源立ち下げ時に前記追加書き込みを行うべく前記書き込み装置を制御するように構 成されていてもよい。  In the non-volatile memory device, the additional write sequence control device may be configured to control the writing device to perform the additional writing when the power is turned off.
かかる構成では、電源が OFFとなった時点において、全てのデータが記録されたメ モリセルにつ 、て追カ卩書き込みが完了して 、ることになり、電源 OFF中にもデータが 確実に保存されることになる。一方、電源が ONである間(通常動作時)は追加書き込 みが行われず、データの書き込みは全て一時書き込みにより処理される。よって、見 かけ上の書き込み速度が速くなる。すなわち、通常動作時には追加書き込みが行わ れないため、追加書き込み動作がシステム全体のパフォーマンスに実質的に影響し ない。 In such a configuration, when the power is turned off, additional writing is completed for the memory cell in which all data has been recorded, and the data is reliably saved even when the power is turned off. Will be. On the other hand, no additional writing is performed while the power is on (during normal operation), and all data writing is handled by temporary writing. So look Overwriting speed becomes faster. In other words, since no additional writing is performed during normal operation, the additional writing operation does not substantially affect the performance of the entire system.
上記不揮発性記憶装置において、前記追加書き込みシーケンス制御装置は、電 源立ち上げ時に前記追加書き込みを行うべく前記書き込み装置を制御するように構 成されていてもよい。  In the non-volatile memory device, the additional write sequence control device may be configured to control the write device to perform the additional write when a power supply is turned on.
かかる構成では、電源が ONとなった時に、書き込み状態が劣化しているメモリセル を含め、全てのメモリセルについて追加書き込みが行われることになり、データの保 存性および読み取り精度が向上する。一方、電源が ONとなった後(通常動作時)は 追加書き込みが行われず、データの書き込みは全て一時書き込みにより処理される 。よって、見かけ上の書き込み速度が速くなる。すなわち、通常動作時には追加書き 込みが行われないため、追加書き込み動作がシステム全体のパフォーマンスに実質 的に影響しない。  In such a configuration, when the power is turned on, additional writing is performed on all the memory cells including the memory cell in which the writing state is deteriorated, so that data storage and reading accuracy are improved. On the other hand, after the power is turned on (during normal operation), no additional writing is performed, and all data writing is processed by temporary writing. Therefore, the apparent writing speed is increased. In other words, since no additional writing is performed during normal operation, the additional writing operation does not substantially affect the performance of the entire system.
上記不揮発性記憶装置において、前記追加書き込みシーケンス制御装置は、一 定期間毎に前記追加書き込みを行うべく前記書き込み装置を制御し、かつ、電源立 ち下げ時に前記追加書き込みを行うべく前記書き込み装置を制御するように構成さ れていてもよい。  In the nonvolatile memory device, the additional write sequence control device controls the writing device to perform the additional writing at regular intervals, and controls the writing device to perform the additional writing when the power is turned off. It may be configured to control.
かかる構成では、タイマーを利用した周期的な追加書き込みと、電源立ち下げ時の 追加書き込みとが併用される。通常動作時に周期的に追加書き込みが行われるため 、電源が ONとなっている間に、たまたまデータの書き込みがされないメモリセルにつ いて、データの劣化が発生することを防止できる。また、電源立ち下げ時に全メモリセ ルについて追加書き込みが行われるため、最後に周期的な追加書き込みを行った 後に一時書き込み状態となったメモリセルについても、電源が OFFとなる前に、追カロ 書き込み状態とすることができる。よって、電源が OFFになっている間にデータの保 存状態が許容限度以下に劣化してしまうことを確実に防止できる。  In such a configuration, periodic additional writing using a timer and additional writing when the power is turned off are used in combination. Since additional writing is performed periodically during normal operation, data deterioration can be prevented from occurring in memory cells that do not happen to be written with data while the power is on. In addition, additional writing is performed for all memory cells when the power is turned off, so additional memory writing can be performed before the power is turned off even for memory cells that have been temporarily written after the last periodic additional writing. State. Therefore, it is possible to reliably prevent the data storage state from deteriorating below the allowable limit while the power is off.
上記不揮発性記憶装置において、前記追加書き込みシーケンス制御装置は、タイ マーを備えていてもよい。  In the non-volatile memory device, the additional write sequence control device may include a timer.
力かる構成により、タイマーを用いて、自律的に追加書き込み動作を行うタイミング を調整できる。 The timing to perform an additional write operation autonomously using a timer with a powerful configuration Can be adjusted.
上記不揮発性記憶装置において、前記一定期間後における、一時書き込み状態 の不揮発性記憶素子の抵抗値と基準抵抗の抵抗値との差が読み取り保証マージン 以上となるように、前記一定期間が設定されていてもよい。  In the nonvolatile memory device, the certain period is set so that the difference between the resistance value of the nonvolatile memory element in the temporarily written state and the resistance value of the reference resistance after the certain period is equal to or greater than a read guarantee margin. May be.
かかる構成では、追加書き込みが完了した後、最初に一時書き込みがされたデー タの保存状態が劣化する前に次回の追加書き込みが行われるベぐ抵抗値や一時 書き込みのタイミングが設定され、一時書き込み状態にあるデータの保存性につき十 分は信頼性を確保することが可能となる。  In such a configuration, after the additional writing is completed, the resistance value and the timing of the temporary writing to be performed next time are set before the storage state of the data temporarily written first deteriorates, and the temporary writing is performed. Sufficient reliability can be ensured for the preservation of data in the state.
上記不揮発性記憶装置において、前記追加書き込みシーケンス制御装置は、前 記追加書き込みを行うべく前記書き込み装置を制御している間、外部装置からの書 き込みデータの入力を禁止するための追加書き込み実行中フラグ信号を出力するよ うに構成されていてもよい。  In the non-volatile memory device, the additional write sequence control device executes additional write for prohibiting input of write data from an external device while controlling the write device to perform the additional write. It may be configured to output a middle flag signal.
上記不揮発性記憶装置において、さらに、前記不揮発性記憶素子を備えるメモリ セル力 成り、複数の前記メモリセルを有するメモリセルセクションを複数有するメモリ セルアレイと、一時書き込みフラグ領域とを備え、前記一時書き込みフラグ領域は、 前記メモリセルセクション 1個について 1個のフラグ用不揮発性記憶素子を備え、前 記メモリセルセクションに属する不揮発性記憶素子に前記一時書き込みを行った場 合に、対応するフラグ用不揮発性記憶素子にその旨が書き込まれ、前記メモリセル セクションに属する不揮発性記憶素子に前記追加書き込みを行った場合に、対応す るフラグ用不揮発性記憶素子にその旨が書き込まれるように構成されていてもよい。 かかる構成では、一時書き込みフラグ領域の値に基づいて、それぞれのメモリセル セクションに、追加書き込みが完了して ヽな 、メモリセルが存在するかを容易に判定 できる。よって、そのメモリセルセクションに対して追加書き込みを行う必要がある力否 かを容易に判定できる。  The non-volatile memory device further includes a memory cell array including the non-volatile memory element, a memory cell array including a plurality of memory cell sections including the plurality of memory cells, and a temporary write flag region, and the temporary write flag The area includes one flag nonvolatile memory element for each memory cell section, and when the temporary write is performed to the nonvolatile memory element belonging to the memory cell section, the corresponding flag nonvolatile memory element When the additional writing is performed to the nonvolatile memory element belonging to the memory cell section when the fact is written to the memory element, the fact is written to the corresponding flag nonvolatile memory element. Also good. In such a configuration, based on the value of the temporary write flag area, it is possible to easily determine whether there is a memory cell in each memory cell section after the additional write is completed. Therefore, it is possible to easily determine whether or not it is necessary to perform additional writing to the memory cell section.
上記不揮発性記憶装置において、前記追加書き込みシーケンス制御装置は、前 記一時書き込みフラグ領域に書き込まれた情報に基づいて、前記追加書き込みを行 うべく前記書き込み装置を制御するように構成されて ヽてもよ ヽ。  In the nonvolatile memory device, the additional write sequence control device is configured to control the writing device to perform the additional write based on the information written in the temporary write flag area. Moyo!
かかる構成では、一時書き込みフラグ領域の値に基づいて判定を行い、追加書き 込みの必要があるメモリセルセクションに対してのみ追カ卩書き込みを行うため、追カロ 書き込み動作の効率が向上する。 In such a configuration, a determination is made based on the value of the temporary write flag area, and additional writing is performed. Since additional writing is performed only to the memory cell section that needs to be included, the efficiency of the additional writing operation is improved.
本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好 適な実施態様の詳細な説明から明らかにされる。  The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
発明の効果  The invention's effect
[0035] 本発明は、上記のような構成を有し、以下のような効果を奏する。すなわち、データ の書き込み速度が速ぐ回路面積の削減、装置構成の簡略化が可能な不揮発性記 憶装置、不揮発性データ記録メディア、不揮発型装置、および不揮発性記憶装置へ のデータ書き込み方法を提供することが可能となる。  [0035] The present invention has the above-described configuration and has the following effects. In other words, non-volatile storage devices, non-volatile data recording media, non-volatile devices, and methods for writing data to non-volatile storage devices that can reduce the circuit area that speeds up data writing and simplify the device configuration are provided. It becomes possible to do.
図面の簡単な説明  Brief Description of Drawings
[0036] [図 1]図 1は、本発明の第 1実施形態の抵抗変化型記憶装置の概略構成を示すプロ ック図である。  [0036] FIG. 1 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 1 of the present invention.
[図 2]図 2は、本発明の第 1実施形態の抵抗変化型データ記録メディアおよび抵抗変 化型装置の概略構成を示すブロック図である。  FIG. 2 is a block diagram showing a schematic configuration of a resistance change type data recording medium and a resistance change type device according to the first embodiment of the present invention.
[図 3]図 3は、本発明の第 1実施形態におけるメモリセルアレイの概略構成を示す等 価回路図である。  FIG. 3 is an equivalent circuit diagram showing a schematic configuration of the memory cell array in the first embodiment of the present invention.
[図 4]図 4は、本発明の第 1実施形態におけるメモリセルに対するデータの書き込み および読み出しを行う回路の概略構成を示す図である。  FIG. 4 is a diagram showing a schematic configuration of a circuit for writing and reading data to and from a memory cell in the first embodiment of the present invention.
[図 5]図 5は、印加される電圧パルスの長さ (Tp)と抵抗変化材料が示す抵抗値の変 化量の絶対値( Δ R)の関係を模式的に示すグラフである。  FIG. 5 is a graph schematically showing the relationship between the length (Tp) of the applied voltage pulse and the absolute value (ΔR) of the change amount of the resistance value indicated by the resistance change material.
[図 6]図 6は、本発明の第 1実施形態における一時書き込み動作の概略を示すフロー チャートである。  FIG. 6 is a flowchart showing an outline of a temporary write operation in the first embodiment of the present invention.
[図 7]図 7は、本発明の第 1実施形態における追加書き込み動作の概略を示すフロー チャートである。  FIG. 7 is a flowchart showing an outline of an additional write operation in the first embodiment of the present invention.
[図 8]図 8は、本発明の実施例におけるノ ルス印加時間と抵抗値との関係を示す図で ある。  [FIG. 8] FIG. 8 is a diagram showing a relationship between a resistance application time and a resistance value in an example of the present invention.
[図 9]図 9は、本発明の第 2実施形態の抵抗変化型記憶装置の概略構成を示すプロ ック図である。 [図 10]図 10は、本発明の第 2実施形態の抵抗変化型記憶装置による書き込み動作 を示すタイミングチャートである。 FIG. 9 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 2 of the present invention. FIG. 10 is a timing chart showing a write operation by the resistance change memory device according to the second embodiment of the present invention.
[図 11]図 11は、本発明の第 3実施形態の抵抗変化型記憶装置の概略構成を示すブ ロック図である。  FIG. 11 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 3 of the present invention.
[図 12]図 12は、抵抗変化型素子の抵抗値の経時変化の一例を示す図である。  FIG. 12 is a diagram showing an example of a change with time of the resistance value of the resistance variable element.
[図 13]図 13は、本発明の第 3実施形態における追加書き込み動作の概略を示すフ ローチャートである。  FIG. 13 is a flowchart showing an outline of an additional write operation in the third embodiment of the present invention.
[図 14]図 14は、追加書き込み動作ィネーブル信号 APおよび追加書き込み実行中フ ラグ FGのタイミングを示す図である。 FIG. 14 is a diagram showing a timing of an additional write operation enable signal AP and an additional write execution flag FG.
[図 15]図 15は、本発明の第 4実施形態の抵抗変化型記憶装置の概略構成を示すブ ロック図である。  FIG. 15 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 4 of the present invention.
[図 16]図 16は、本発明の第 5実施形態の抵抗変化型記憶装置の概略構成を示すブ ロック図である。  FIG. 16 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 5 of the present invention.
[図 17]図 17は、本発明の第 6実施形態の抵抗変化型記憶装置の概略構成を示すブ ロック図である。  FIG. 17 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 6 of the present invention.
[図 18]図 18は、フラッシュ EEPROMにおけるしきい値電圧 Vと書き込み時間 Tpの関 係を模式的に示すグラフである。  [FIG. 18] FIG. 18 is a graph schematically showing the relationship between the threshold voltage V and the write time Tp in the flash EEPROM.
[図 19]図 19は、フラッシュ EEPROMの消去状態及び書き込み状態(一時書き込み 状態及び追加書き込み状態)のしき!、値電圧分布を示した図である。  FIG. 19 is a diagram showing threshold values and value voltage distributions in the erase state and the write state (temporary write state and additional write state) of the flash EEPROM.
[図 20]図 20は、フラッシュ EEPROMを用いた半導体記憶装置を含むメモリシステム の構成を示すブロック図である。 FIG. 20 is a block diagram showing a configuration of a memory system including a semiconductor memory device using a flash EEPROM.
[図 21]図 21は、特許文献 2に開示された抵抗変化材料の抵抗値と印加される電圧パ ルスの回数 (長さ)の関係を示す図である。  FIG. 21 is a diagram showing the relationship between the resistance value of the variable resistance material disclosed in Patent Document 2 and the number (length) of applied voltage pulses.
符号の説明 Explanation of symbols
100 抵抗変化型記憶装置  100 resistance change memory
102 制御回路  102 Control circuit
104 入力データラッチ  104 Input data latch
106 一時書き込み用短パルス生成回路 108 追加書き込み用長パルス生成回路106 Short pulse generator for temporary writing 108 Long pulse generator for additional writing
110 書き込み用パルス切換回路110 Pulse switching circuit for writing
111 書き込み装置 111 Writing device
112 書き込み回路  112 Write circuit
114 ロウデコーダ  114 row decoder
116 一時書き込みフラグ領域  116 Temporary write flag area
118 メモリセルアレイ  118 Memory cell array
120 センスアンプ  120 sense amplifier
122 出力データラッチ  122 Output data latch
130 ビット線  130 bit line
132 ソース線  132 Source line
134 ワード線  134 Word line
136 選択トランジスタ  136 Select transistor
138 抵抗変化型素子  138 Resistance change element
139 メモリセノレ  139 Memory Senore
140 電圧印加回路  140 Voltage application circuit
142 電圧印加回路  142 Voltage application circuit
144 NMOSトランジスタ  144 NMOS transistor
146 比較器  146 Comparator
148 基準抵抗  148 Reference resistance
170 抵抗変化型データ記録メディア 170 Resistance change data recording media
180 制御装置 180 Controller
190 システム  190 system
192 揮発型記憶装置  192 Volatile storage devices
194 抵抗変化型装置  194 Resistance change device
200 抵抗変化型記憶装置  200 Resistance change memory
202 制御回路  202 Control circuit
204 入力データラッチ 206 一時書き込み用短パルス生成回路204 Input data latch 206 Short pulse generator for temporary writing
208 追加書き込み用長パルス生成回路208 Long pulse generator for additional writing
210 書き込み用パルス切換回路210 Pulse switching circuit for writing
211 書き込み装置 211 Writing device
212 書き込み回路  212 Write circuit
214 ロゥデ: π—ダ  214 Roude: π-da
216 一時書き込みフラグ領域  216 Temporary write flag area
218 メモリセルアレイ  218 Memory cell array
220 センスアンプ  220 sense amplifier
222 出力データラッチ  222 Output data latch
224 追加書き込みシーケンス制御回路 224 Additional write sequence control circuit
300 抵抗変化型記憶装置 300 resistance change memory
302 制御回路  302 Control circuit
304 入力テータラツチ  304 Input data latch
306 一時書き込み用短パルス生成回路 306 Short pulse generator for temporary writing
308 追加書き込み用長パルス生成回路308 Long pulse generator for additional writing
310 書き込み用パルス切換回路310 Pulse switching circuit for writing
311 書き込み装置 311 Writing device
312 書き込み回路  312 Write circuit
314 ロゥデ: Π—ダ  314 Roude: Dada
316 一時書き込みフラグ領域  316 Temporary write flag area
318 メモリセルアレイ  318 memory cell array
320 センスアンプ  320 sense amplifier
322 出力データラッチ  322 Output data latch
324 追加書き込みシーケンス制御回路 324 Additional write sequence control circuit
326 追加書き込み用タイマー 326 Additional write timer
400 抵抗変化型記憶装置  400 resistance change memory
402 制御回路 404 入力データラッチ 402 Control circuit 404 Input data latch
406 一時書き込み用短パルス生成回路 406 Short pulse generator for temporary writing
408 追加書き込み用長ノ ルス生成回路408 Long Norse Generation Circuit for Additional Writing
410 書き込み用パルス切換回路410 Pulse switching circuit for writing
411 書き込み装置 411 writing device
412 書き込み回路  412 Write circuit
414 ロウデコーダ  414 row decoder
416 一時書き込みフラグ領域  416 Temporary write flag area
418 メモリセルアレイ  418 Memory cell array
420 センスアンプ  420 sense amplifier
422 出力データラッチ  422 Output data latch
424 パワーダウンシーケンス制御回路 424 Power-down sequence control circuit
500 抵抗変化型記憶装置 500 resistance change memory
502 制御回路  502 Control circuit
504 入力データラッチ  504 Input data latch
506 —時書き込み用短パルス生成回路 506 —Short pulse generator for time writing
508 追加書き込み用長ノ ルス生成回路508 Additional writing length generation circuit
510 書き込み用パルス切換回路510 Pulse switching circuit for writing
511 書き込み装置 511 Writing device
512 書き込み回路  512 Write circuit
514 ロウデコーダ  514 row decoder
516 一時書き込みフラグ領域  516 Temporary write flag area
518 メモリセルアレイ  518 Memory cell array
520 センスアンプ  520 sense amplifier
522 出力データラッチ  522 Output data latch
524 パワーオンシーケンス制御回路 524 Power-on sequence control circuit
600 抵抗変化型記憶装置 600 resistance change memory
602 制御回路 604 入力データラッチ 602 control circuit 604 Input data latch
606 一時書き込み用短パルス生成回路  606 Short pulse generator for temporary writing
608 追加書き込み用長パルス生成回路  608 Long pulse generator for additional writing
610 書き込み用パルス切換回路  610 Write pulse switching circuit
611 書き込み装置  611 writing device
612 書き込み回路  612 writing circuit
614 ロゥデ: π—ダ  614 Roude: π-da
616 一時書き込みフラグ領域  616 Temporary write flag area
618 メモリセルアレイ  618 memory cell array
620 センスアンプ  620 sense amplifier
622 出力データラッチ  622 Output data latch
624 追加書き込みシーケンス制御回路  624 Additional write sequence control circuit
626 追加書き込み用タイマー  626 Additional write timer
628 パワーダウンシーケンス制御回路  628 Power-down sequence control circuit
700 メモリシステム  700 memory system
701 半導体記憶装置  701 Semiconductor memory device
702 フラッシュ EEPROM用インターフェース回路  702 Flash EEPROM interface circuit
703 ノ ッファメモリ  703 Nota memory
704 バッファメモリ用インターフェース回路  704 Interface circuit for buffer memory
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0038] 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
(第 1実施形態)  (First embodiment)
[装置構成]  [Device configuration]
図 1は、本発明の第 1実施形態の抵抗変化型記憶装置の概略構成を示すブロック 図である。以下、図 1を参照しながら、本実施形態の抵抗変化型記憶装置の構成お よび動作の概略につ!、て説明する。  FIG. 1 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 1 of the present invention. Hereinafter, an outline of the configuration and operation of the resistance change storage device according to the present embodiment will be described with reference to FIG.
[0039] 図 1に示す通り、本実施形態の抵抗変化型記憶装置 100 (不揮発性記憶装置)は 、制御回路 102と、入力データラッチ 104と、一時書き込み用短パルス生成回路 106 と、追加書き込み用長パルス生成回路 108と、書き込み用パルス切換回路 110と、 書き込み回路 112と、ロウデコーダ 114と、一時書き込みフラグ領域 116と、メモリセ ルアレイ 118と、センスアンプ 120と、出力データラッチ 122と、を備えている。 As shown in FIG. 1, the resistance change storage device 100 (nonvolatile storage device) of the present embodiment includes a control circuit 102, an input data latch 104, and a temporary write short pulse generation circuit 106. Additional write long pulse generation circuit 108, write pulse switching circuit 110, write circuit 112, row decoder 114, temporary write flag area 116, memory cell array 118, sense amplifier 120, and output data latch 122.
[0040] 制御回路 102は、外部にある制御装置 180 (後述)力もピンなどを介して指令 (チッ プセレクト CS、外部制御信号 CTL、アドレス AD、ライトパルス WP)を受け取り、これ をデコードして内部制御信号 (アドレス、書き込みモード、タイミング信号など)を出力 し、抵抗変化型記憶装置 100の各部を制御する。なお、制御回路 102は必ずしも 1 個でなくてもよぐ例えば、制御回路が行う機能毎に機能を特化させた複数の制御回 路により分散制御が行われてもよい。  [0040] The control circuit 102 receives a command (chip select CS, external control signal CTL, address AD, write pulse WP) via an external control device 180 (described later) via a pin, etc. Control signals (address, write mode, timing signal, etc.) are output to control each part of the resistance change memory device 100. Note that the number of control circuits 102 is not necessarily one. For example, distributed control may be performed by a plurality of control circuits specialized for each function performed by the control circuit.
[0041] 入力データラッチ 104は、制御回路 102からの内部制御信号および制御装置 180  The input data latch 104 includes an internal control signal from the control circuit 102 and a control device 180.
(後述)からデータ入力端子 DINを経由して入力される入力データ信号を受け取り、 データをラッチして、その入力データ信号を所定のタイミングで書き込みデータ信号 として書き込み回路 112へと出力する。  An input data signal input from a data input terminal DIN (described later) is received, the data is latched, and the input data signal is output to the write circuit 112 as a write data signal at a predetermined timing.
[0042] 一時書き込み用短パルス生成回路 106 (—時書き込み装置)は、制御回路 102か ら内部制御信号を受け取り、該内部制御信号が一時書き込みモードを示す場合に は、一時書き込み用短パルス (電圧ノ ルス)を出力し、それ以外の場合には消費電 力節約のため出力を停止する。  [0042] The temporary write short pulse generation circuit 106 (the time write device) receives the internal control signal from the control circuit 102, and when the internal control signal indicates the temporary write mode, the temporary write short pulse ( (Voltage voltage) is output, otherwise the output is stopped to save power consumption.
[0043] 追加書き込み用長パルス生成回路 108 (追加書き込み装置)は、制御回路 102か ら内部制御信号を受け取り、該内部制御信号が追加書き込みモードを示す場合に は、追加書き込み用長パルス (電圧ノ ルス)を出力し、それ以外の場合には消費電 力節約のため出力を停止する。  [0043] The additional write long pulse generation circuit 108 (additional write device) receives the internal control signal from the control circuit 102, and when the internal control signal indicates the additional write mode, the additional write long pulse (voltage Output), otherwise the output is stopped to save power consumption.
[0044] 書き込み用パルス切換回路 110 (書き込み切換装置)は、一時書き込み用短パル ス生成回路 106および追加書き込み用長ノ ルス生成回路 108の両方の出力を受け 取れるように、それぞれのパルス生成回路の出力端子に電気的に接続されている。 書き込み用パルス切換回路 110は制御回路 102から内部制御信号を受け取り、該 内部制御信号が一時書き込みモードを示す場合には一時書き込み用短パルス生成 回路 106の出力を選択して書き込み回路 112へと出力し、該内部制御信号が追カロ 書き込みモードを示す場合には追加書き込み用長パルス生成回路 108の出力を選 択して書き込み回路 112へと出力する。 [0044] The write pulse switching circuit 110 (write switching device) is configured to receive the outputs of both the temporary write short pulse generation circuit 106 and the additional write long pulse generation circuit 108. Is electrically connected to the output terminal. The write pulse switching circuit 110 receives the internal control signal from the control circuit 102, and when the internal control signal indicates the temporary write mode, selects the output of the temporary write short pulse generation circuit 106 and outputs it to the write circuit 112. When the internal control signal indicates the additional write mode, the output of the additional write long pulse generation circuit 108 is selected. And output to the write circuit 112.
[0045] 本実施形態では、一時書き込み用短パルス生成回路 106と、追加書き込み用長パ ルス生成回路 108と、書き込み用ノ ルス切換回路 110とで、書き込み装置 111が構 成される。 In the present embodiment, the writing device 111 includes the temporary writing short pulse generation circuit 106, the additional writing long pulse generation circuit 108, and the writing pulse switching circuit 110.
[0046] メモリセルアレイ 118は、互いに直交する複数のビット線と複数のワード線とを備え ており、ビット線とワード線との交点上に、トランジスタと抵抗変化型素子力もなるメモリ セルを有する。該抵抗変化型素子は、印加される電圧パルスによって抵抗状態 (抵 抗値)が大きく遷移する。抵抗変化型記憶装置 100は、該抵抗状態の遷移を利用し て、データを記憶する。なお、メモリセルアレイ 118の詳細な構成については後述す る。  The memory cell array 118 includes a plurality of bit lines and a plurality of word lines that are orthogonal to each other, and has a memory cell that also has a transistor and a resistance variable element force at the intersection of the bit line and the word line. In the resistance variable element, the resistance state (resistance value) is largely changed by an applied voltage pulse. The resistance change storage device 100 stores data using the transition of the resistance state. The detailed configuration of the memory cell array 118 will be described later.
[0047] 一時書き込みフラグ領域 116は、メモリセルアレイ 118と同様の構成を有しており、 メモリセルアレイ 118とワード線を共有する。一時書き込みフラグ領域 116には、メモ リセルアレイ 118のセクタ(メモリセルセクション) 1個につき 1個のメモリセル(フラグ用 抵抗変化型素子)を備えている。本実施形態においてセクタとは、メモリセルアレイ 1 18のワード線を 1本または複数本まとめてなる単位である。すなわち、一本のワード 線に接続するセルは同一のセクタに属する。  The temporary write flag area 116 has the same configuration as that of the memory cell array 118 and shares a word line with the memory cell array 118. The temporary write flag area 116 includes one memory cell (flag variable resistance element) per sector (memory cell section) of the memory cell array 118. In the present embodiment, a sector is a unit in which one or a plurality of word lines of the memory cell array 118 are collected. That is, cells connected to one word line belong to the same sector.
ロウデコーダ 114は、メモリセルアレイ 118の各ワード線に接続されている。ロウデコ ーダ 114は、制御回路 102から内部制御信号を受け取り、所定のタイミングで、書き 込みまたは読み出しを行うべきメモリセルアレイ 118および一時書き込みフラグ領域 1 16のアドレスに対応するワード線を選択して、アクティブ状態にする。  The row decoder 114 is connected to each word line of the memory cell array 118. The row decoder 114 receives the internal control signal from the control circuit 102, selects a word line corresponding to the address of the memory cell array 118 to be written or read and the temporary write flag area 1 16 at a predetermined timing, and Activate.
センスアンプ 120は、制御回路 102から受け取った内部制御信号に基づいて、メモ リセルアレイ 118からデータ信号 (ビット線データ)を検知して (読み出して)増幅し、 所定のタイミングでこの読み出したデータ信号 (読み出しデータ信号)を出力データラ ツチ 122へ出力する。  Based on the internal control signal received from the control circuit 102, the sense amplifier 120 detects (reads) and amplifies the data signal (bit line data) from the memory cell array 118, and this read data signal (at a predetermined timing) Read data signal) to output data latch 122.
[0048] 出力データラッチ 122は、制御回路 102から受け取った内部制御信号およびセン スアンプ 120から受け取った読み出しデータ信号に基づいて、データをラッチし、所 定のタイミングで出力先を切り換え、データ出力端子 DOUTを経由して制御装置 18 0 (後述)へ、または書き込み回路 112へ、読み出しデータ信号を出力する。すなわち 、該内部制御信号がデータ読み出しモードを示す場合には読み出しデータ信号を データ出力端子 DOUTへ出力データ信号として出力し、該内部制御信号が追加書 き込みモードを示す場合には読み出しデータ信号を書き込み回路 112へ書き込み データ信号として出力する。 [0048] The output data latch 122 latches data based on the internal control signal received from the control circuit 102 and the read data signal received from the sense amplifier 120, and switches the output destination at a predetermined timing. A read data signal is output to the control device 18 0 (described later) or the write circuit 112 via DOUT. Ie When the internal control signal indicates the data read mode, the read data signal is output as an output data signal to the data output terminal DOUT, and when the internal control signal indicates the additional write mode, the read data signal is written. Write to circuit 112 and output as data signal.
[0049] 書き込み回路 112は、メモリセルアレイ 118の各ビット線に接続されている。書き込 み回路 112は、制御回路 102から内部制御信号を受け取り、所定のタイミングでメモ リセルへ書き込みを行う。すなわち、該内部制御信号が一時書き込みモードを示す 場合には、入力データラッチ 104から受け取った書き込みデータ信号および該内部 制御信号に含まれるアドレス情報に基づいて、対応するビット線が選択され、書き込 み用パルス切換回路 110から入力される一時書き込み用短パルスが印加されて、デ 一タカメモリセルアレイ 118の所定のアドレスに一時書き込み(後述)される。同時に、 データの書き込みを行ったアドレスのセクタに対応する一時書き込みフラグ領域 116 のメモリセルに" 0"が書き込まれ、フラグ情報力 ' H"レベルにセットされる。また、該内 部制御信号が追加書き込みモードを示す場合には、出力データラッチ 122から受け 取った書き込みデータ信号および該内部制御信号に含まれるアドレス情報に基づい て、対応するビット線が選択され、書き込み用パルス切換回路 110から入力される追 加書き込み用長パルスが印加されて、データ力 Sメモリセルアレイ 118に追加書き込み (後述)される。該セクタに含まれるメモリセルにっ 、て追加書き込みが完了すれば、 該セクタに対応する一時書き込みフラグ領域 116に" 1"が書き込まれ、フラグ情報が "L"レベルにセットされる。書込み回路 112は、複数のメモリセルに同時に電圧パル スを印加できるように構成されて 、る。  The write circuit 112 is connected to each bit line of the memory cell array 118. The write circuit 112 receives the internal control signal from the control circuit 102 and writes to the memory cell at a predetermined timing. That is, when the internal control signal indicates the temporary write mode, the corresponding bit line is selected based on the write data signal received from the input data latch 104 and the address information included in the internal control signal, and the write data is written. The temporary write short pulse input from the read pulse switching circuit 110 is applied and temporarily written to a predetermined address in the data memory cell array 118 (described later). At the same time, “0” is written to the memory cell in the temporary write flag area 116 corresponding to the sector of the address where the data is written, and the flag information power is set to the “H” level. When the additional write mode is indicated, the corresponding bit line is selected based on the write data signal received from the output data latch 122 and the address information included in the internal control signal, and is input from the write pulse switching circuit 110. Is added to the data memory cell array 118 (described later), and if the additional writing is completed for the memory cell included in the sector, the sector is supported. “1” is written to the temporary write flag area 116 to be set, and the flag information is set to the “L” level. It is configured so as to apply a voltage pulse simultaneously to the cell, Ru.
[0050] 図 2は、本発明の第 1実施形態の抵抗変化型データ記録メディアおよび抵抗変化 型装置の概略構成を示すブロック図である。以下、図 2を参照しながら、本実施形態 の抵抗変化型データ記録メディア 170および抵抗変化型装置 194の構成および動 作の概略にっ 、て説明する。  FIG. 2 is a block diagram showing a schematic configuration of the resistance change type data recording medium and resistance change type device according to the first embodiment of the present invention. Hereinafter, the configuration and operation of the resistance change type data recording medium 170 and the resistance change type device 194 of this embodiment will be described with reference to FIG.
[0051] 図 2に示す通り、抵抗変化型データ記録メディア 170は、抵抗変化型記憶装置 100 と、制御装置 180とを備えている。また、抵抗変化型装置 194は、抵抗変化型データ 記録メディア 170と、システム 190 (例えば、モバイルコンピュータ、携帯電話など)と を備え、システム 190はその内部に揮発型記憶装置 192 (例えば、 DRAMなど)を備 えている。制御装置 180は、システム 190から入力データ信号およびアドレス信号を 受け取り、所定のタイミングで、チップセレクト CSと、外部制御信号 CTLと、アドレス A Dと、ライトパルス WPと、入力データ信号とを抵抗変化型記憶装置 100に出力する。 また、制御装置 180は、抵抗変化型記憶装置 100から出力データ信号を受け取り、 システム 190へと出力データ信号を出力する。一時書き込みフラグ領域 116の値は、 メモリセルアレイ 118の中に一時書き込みされたデータが存在することを制御装置 18 0が検知できるように、センスアンプ 120、出力データラッチ 122を介して制御装置 18 0へと出力される。システム 190は、揮発型記憶装置 192を一時的な記憶手段として 用いる。すなわち、抵抗変化型記憶装置 100への書き込みデータや抵抗変化型記 憶装置 100から読み出したデータを揮発型記憶装置 192に一時的に記憶し、揮発 型記憶装置 192から読み出したデータを抵抗変化型記憶装置 100に一時的に高速 に書き込む。その後、抵抗変化型データ記憶メディア 170が非選択時に、制御装置 180がー時書き込みデータを一時書き込みフラグ領域力もの信号に応じて、長期保 存のために追加書き込みを行う。 As shown in FIG. 2, the resistance change type data recording medium 170 includes a resistance change type storage device 100 and a control device 180. Further, the resistance change type device 194 includes a resistance change type data recording medium 170, a system 190 (for example, a mobile computer, a mobile phone, etc.) The system 190 includes a volatile storage device 192 (for example, DRAM) therein. The control device 180 receives the input data signal and the address signal from the system 190 and, at a predetermined timing, converts the chip select CS, the external control signal CTL, the address AD, the write pulse WP, and the input data signal into a resistance change type. Output to storage device 100. In addition, the control device 180 receives the output data signal from the resistance change storage device 100 and outputs the output data signal to the system 190. The value of the temporary write flag area 116 is determined by the control device 18 0 via the sense amplifier 120 and the output data latch 122 so that the control device 180 can detect the presence of temporarily written data in the memory cell array 118. Is output. The system 190 uses the volatile storage device 192 as a temporary storage means. In other words, write data to the resistance change storage device 100 and data read from the resistance change storage device 100 are temporarily stored in the volatile storage device 192, and data read from the volatile storage device 192 is stored in the resistance change storage device 192. Temporarily writes to storage device 100 at high speed. After that, when the resistance change type data storage medium 170 is not selected, the control device 180 performs additional writing for long-term storage in accordance with the signal of the temporary write flag area power in accordance with the signal of the temporary write flag area.
図 3は、本発明の第 1実施形態におけるメモリセルアレイの概略構成を示す等価回 路図である。本実施形態において、メモリセルアレイ 118は、 1T1R型(1トランジスタ 1抵抗変化型素子型)であり、所定の間隔で互いに平行に形成されたビット線 130と 、ビット線 130に平行に所定の間隔で形成されたソース線 132と、ビット線 130および ソース線 132に直交するように所定の間隔で互いに平行に形成されたワード線 134 とを備えている。ビット線 130とソース線 132は交互に 1本ずつ並ぶように形成され、 対になったビット線 130とソース線 132との間は、ビット線 130とワード線 134の交点 毎に、直列に接続された 1個の選択トランジスタ 136と 1個の抵抗変化型素子 138と 力もなるメモリセル 139で電気的に接続されている。ビット線 130は選択トランジスタ 1 36のドレイン電極に、選択トランジスタ 136のソース電極は抵抗変化型素子 138の一 端に、抵抗変化型素子 138の他端はソース線 132に、選択トランジスタ 136のゲート 電極は、ワード線 134に、それぞれ電気的に接続されている。ロウデコーダ 114はそ れぞれのワード線 134と接続されており、制御回路 102から受け取る内部制御信号 に基づいて、アクセスすべきワード線 134を選択して電圧を印加し (活性ィ匕し)、選択 トランジスタ 136を導通状態とする。データの書き込みおよび読み出しの際には、ビッ ト線 130、ソース線 132、ワード線 134の組合せにより、対象となる抵抗変化型素子 1 38が特定され、ビット線 130とソース線 132との間に電圧が印加され、あるいは両者 の間を流れる電流が検出される。メモリセル 139には、抵抗変化型素子 138の抵抗 値と対応づけられてデータが記憶され、低抵抗 (LR:約 50k Q〜62k Q )状態は 2値 データの" 0"の値に、高抵抗(HR :約 1Μ〜2Μ Ω )状態は 2値データの" 1"の値に割 り付けられる。 FIG. 3 is an equivalent circuit diagram showing a schematic configuration of the memory cell array in the first embodiment of the present invention. In this embodiment, the memory cell array 118 is a 1T1R type (one transistor, one resistance change element type), and bit lines 130 formed in parallel to each other at a predetermined interval and parallel to the bit lines 130 at a predetermined interval. A source line 132 formed and a bit line 130 and a word line 134 formed in parallel with each other at a predetermined interval so as to be orthogonal to the source line 132 are provided. The bit lines 130 and the source lines 132 are alternately arranged one by one, and the bit lines 130 and the source lines 132 are connected in series at each intersection of the bit lines 130 and the word lines 134. One select transistor 136 and one variable resistance element 138 are electrically connected to each other through a memory cell 139. The bit line 130 is the drain electrode of the selection transistor 1 36, the source electrode of the selection transistor 136 is one end of the resistance change element 138, the other end of the resistance change element 138 is the source line 132, and the gate electrode of the selection transistor 136 Are electrically connected to the word lines 134, respectively. The row decoder 114 is connected to each word line 134, and receives an internal control signal from the control circuit 102. Based on the above, the word line 134 to be accessed is selected and a voltage is applied (activated), and the selection transistor 136 is turned on. When writing and reading data, the target variable resistance element 1 38 is identified by the combination of the bit line 130, the source line 132, and the word line 134, and the bit line 130 and the source line 132 are A voltage is applied or the current flowing between them is detected. Data is stored in the memory cell 139 in association with the resistance value of the resistance variable element 138, and the low resistance (LR: about 50 kQ to 62 kQ) state is high in the binary data “0” value. The resistance (HR: approx. 1Μ to 2Μ Ω) state is assigned to the “1” value of the binary data.
[0053] 抵抗変化型素子 138は、 Ptなどの電極材料の間に抵抗変化層を介在させることで 構成される。抵抗変化型素子 138の抵抗変化材料 (抵抗変化層の材料)にはさまざ まなものが用いられ得る力 酸化鉄積層化合物(Fe O /Ye Oや ZnFe O /Ye  The resistance change element 138 is configured by interposing a resistance change layer between electrode materials such as Pt. Various materials can be used for the variable resistance material of the variable resistance element 138 (material for the variable resistance layer). Iron oxide laminated compounds (Fe 2 O 3 / Ye 2 O and ZnFe 2 O 3 / Ye)
2 3 3 4 2 4 3 2 3 3 4 2 4 3
O )等の遷移金属酸ィ匕物が特に好適に用いられる(実施例参照)。抵抗変化型素子Transition metal oxides such as O 2) are particularly preferably used (see Examples). Variable resistance element
4 Four
138は、例えば、既存の値(旧値)が" 1"であり、高抵抗状態にあるときに、負ノ ルス( 例えば、電圧: 一 3. 3V、 ノ ルス幅: 120ns)を印加することにより、高抵抗状態から 低抵抗状態に抵抗値が変化し、新しい値 (新値)である" 0"が書き込まれる。また、既 存の値(旧値)が" 0"であり、低抵抗状態にあるときに、正パルス (例えば、電圧: + 3 . 3V、パルス幅: 120ns)を印加することにより、低抵抗状態から高抵抗状態に抵抗 値が変化し、新しい値 (新値)である" 1"が書き込まれる。抵抗変化型素子には、高抵 抗状態から低抵抗状態へと遷移させるために印加される電圧パルス (低抵抗化パル ス)の極性と、低抵抗状態から高抵抗状態へと遷移させるために印カロさせる電圧パル ス(高抵抗ィ匕パルス)の極性とが、等しいものと異なるものとがある。本実施形態の構 成は、低抵抗化パルスの極性と高抵抗化パルスの極性とが等 U、場合にも適用でき ると推察されるが、低抵抗化パルスの極性と高抵抗化パルスの極性とが異なる場合 に特に有効である。  138, for example, when the existing value (old value) is "1" and in a high resistance state, apply negative noise (eg, voltage: 3.3V, noise width: 120ns). The resistance value changes from the high resistance state to the low resistance state, and a new value (new value) “0” is written. In addition, when the existing value (old value) is "0" and in a low resistance state, applying a positive pulse (eg, voltage: + 3.3V, pulse width: 120ns) reduces the resistance. The resistance value changes from the state to the high resistance state, and a new value (new value) “1” is written. In the resistance change element, the polarity of the voltage pulse (low resistance pulse) applied to make the transition from the high resistance state to the low resistance state and the transition from the low resistance state to the high resistance state are required. The polarity of the voltage pulse (high resistance pulse) to be applied is the same or different. The configuration of this embodiment can be applied to the case where the polarity of the low resistance pulse and the polarity of the high resistance pulse are equal U. This is especially effective when the polarity is different.
[0054] 図 4は、本発明の第 1実施形態におけるメモリセルに対するデータの書き込みおよ び読み出しを行う回路の概略構成を示す図である。図 1には示さなかったが、図 4に 示すように、書き込み回路 112は電圧印加回路 140および電圧印加回路 142を備え ており、センスアンプ 120は比較器 146および基準抵抗 148を備えており、メモリセル アレイ 118のソース線 132と書き込み回路 112の電圧印加回路 142との間には、 N MOSトランジスタ 144が配設されている。本実施形態では、書込み回路 112は、同 時に電圧パルスをが印加されるメモリセルの個数(1つのアドレスに対応するメモリセ ルの個数:例えば 16個)と同数の電圧印加回路 140および電圧印加回路 142を備 える。本実施形態において、 NMOSトランジスタ 144はメモリセルアレイ 118の周縁 部に設けられる。 NMOSトランジスタ 144は、複数本のソース線 132にっき 1個設け られて 、てもよ 、し、 1本のソース線 132にっき 1個設けられて!/、てもよ!/、。 FIG. 4 is a diagram showing a schematic configuration of a circuit that performs writing and reading of data with respect to the memory cell in the first embodiment of the present invention. Although not shown in FIG. 1, as shown in FIG. 4, the write circuit 112 includes a voltage application circuit 140 and a voltage application circuit 142, and the sense amplifier 120 includes a comparator 146 and a reference resistor 148. Memory cell An NMOS transistor 144 is disposed between the source line 132 of the array 118 and the voltage application circuit 142 of the write circuit 112. In the present embodiment, the write circuit 112 includes the same number of voltage application circuits 140 and voltage application circuits as the number of memory cells to which voltage pulses are applied simultaneously (the number of memory cells corresponding to one address: for example, 16). 142. In the present embodiment, the NMOS transistor 144 is provided at the peripheral edge of the memory cell array 118. One NMOS transistor 144 may be provided for a plurality of source lines 132, and one NMOS transistor 144 may be provided for one source line 132! /!
[0055] 一時書き込み用短パルス生成回路 106および追加書き込み用長パルス生成回路 108は、書き込み用パルス切換回路 110により選択的に書き込み回路 112に接続さ れる。書き込み用パルス切換回路 110から出力されるパルスは、電圧印加回路 140 および電圧印加回路 142に入力される。書き込み回路 112が受け取った内部制御 信号が一時書き込みモードおよび追加書き込みモードであるときは、電圧印加回路 140は、入力されるパルスが Hとなっている間、書き込むべきデータに応じて、選択さ れたビット線 130に高電圧( + 3. 3V)と 0Vとを切り換えて出力し、電圧印加回路 142 は、入力されるノ ルスが Hとなっている間、書き込むべきデータに応じて、選択された ビット線 130に対応するソース線 132に 0Vと高電圧( + 3. 3V)とを切り換えて出力す る。一方、書き込み回路 112が受け取った内部制御信号が読み出しモードである場 合には、電圧印加回路 140はその出力端を高インピーダンス状態 (非導通状態)とし 、電圧印加回路 142はソース線 132に 0Vを出力する。  The temporary write short pulse generation circuit 106 and the additional write long pulse generation circuit 108 are selectively connected to the write circuit 112 by the write pulse switching circuit 110. The pulse output from the write pulse switching circuit 110 is input to the voltage application circuit 140 and the voltage application circuit 142. When the internal control signal received by the write circuit 112 is in the temporary write mode and the additional write mode, the voltage application circuit 140 is selected according to the data to be written while the input pulse is H. The high voltage (+ 3.3V) and 0V are switched and output to the bit line 130, and the voltage application circuit 142 is selected according to the data to be written while the input noise is H. Switch between 0V and high voltage (+ 3.3V) and output to source line 132 corresponding to bit line 130. On the other hand, when the internal control signal received by the write circuit 112 is in the read mode, the voltage application circuit 140 sets its output terminal to a high impedance state (non-conductive state), and the voltage application circuit 142 supplies 0 V to the source line 132. Is output.
[0056] 電圧印加回路 140の出力端は、メモリセルアレイ 118のビット線 130の一端に接続 されている。ビット線 130の他端には、センスアンプ 120が有する比較器 146の入力 端子が接続されている。比較器 146の他方の入力端子には基準抵抗 148が接続さ れている。一方、電圧印加回路 142の出力端は、 NMOSトランジスタ 144を介してソ ース線 132の一端に接続されている。そして、ビット線 130とワード線 134との各交点 において、ビット線 130とソース線 132との間に選択トランジスタ 136と抵抗変化型素 子 138とが直列に接続されている。選択トランジスタ 136のゲートはワード線 134に接 続されている。また、 NMOSトランジスタ 144のゲートはロウデコーダ 114 (図 1参照) に接続されている。 [電圧パルスと抵抗変化材料の抵抗変化] The output terminal of the voltage application circuit 140 is connected to one end of the bit line 130 of the memory cell array 118. The other end of the bit line 130 is connected to the input terminal of the comparator 146 included in the sense amplifier 120. A reference resistor 148 is connected to the other input terminal of the comparator 146. On the other hand, the output terminal of the voltage application circuit 142 is connected to one end of the source line 132 via the NMOS transistor 144. A select transistor 136 and a resistance variable element 138 are connected in series between the bit line 130 and the source line 132 at each intersection of the bit line 130 and the word line 134. The gate of the selection transistor 136 is connected to the word line 134. The gate of the NMOS transistor 144 is connected to the row decoder 114 (see FIG. 1). [Voltage pulse and resistance change of variable resistance material]
図 5は、印加される電圧パルスの長さ (Tp)と抵抗変化材料が示す抵抗値の変化量 の絶対値(AR:以下、単に変化量という)の関係を模式的に示すグラフである。なお 、電圧パルスには正と負とがあるが、いずれの場合にも同様な変化パターンを示す。 すなわち、正ノ ルスを印加した場合でも、負ノ ルスを印加した場合でも、電圧パルス の印加時間が長くなると共に、抵抗値の変化量は所定の値へと飽和 (漸近)する。  FIG. 5 is a graph schematically showing the relationship between the length (Tp) of the applied voltage pulse and the absolute value of the change amount of the resistance value indicated by the resistance change material (AR: hereinafter simply referred to as the change amount). There are positive and negative voltage pulses, but the same change pattern is shown in either case. In other words, regardless of whether positive or negative noise is applied, the voltage pulse application time becomes longer and the amount of change in resistance value saturates (asymptotically) to a predetermined value.
[0057] 抵抗変化材料が示す抵抗値の変化量( AR)は、図 5に示すように、印加される電 圧パルスが長くなるにつれて(電圧パルスの累積印加量に伴って)増大する。電圧パ ルスの長さ (Tp)が Tpcを超えると、 ARは増大し始める。増大率 (傾き)は、増大開始 時 (Tpcから Tplまで)には非常に大きぐ Tplを超え Tpが長くなるにつれて増大率( 傾き)は小さくなる。すなわち、電圧ノ ルスの累積印加量に対して飽和するように抵抗 値が変化する。本実施形態は、この変化量パターンを利用して、 2段階の書き込みを 行い、見かけ上の書き込み時間を短くする。  As shown in FIG. 5, the amount of change (AR) in the resistance value indicated by the resistance change material increases as the applied voltage pulse becomes longer (according to the cumulative application amount of the voltage pulse). When the voltage pulse length (Tp) exceeds Tpc, AR begins to increase. The increase rate (slope) exceeds a very large Tpl at the start of increase (from Tpc to Tpl), and the increase rate (slope) decreases as Tp increases. In other words, the resistance value changes so as to saturate with respect to the cumulative applied voltage voltage. In the present embodiment, this change pattern is used to perform two-step writing to shorten the apparent writing time.
[0058] すなわち、短パルスとして、まず Tpl (例えば 40ns)の電圧パルスが印加される。短 パルスの印加により、抵抗値(旧値に対応する抵抗値)は AR1だけ変化して中間的 な抵抗値 (一時書き込み抵抗値)となり、データの一時的な書き込みが行われる。 Tp 1の長さは、 ARlが ARの目標値(AR2)の 20%以上 98%以下となるように調整さ れることが好ましい。 ARの目標値は、抵抗変化型素子のデータ保持特性に応じて 適宜調整される。すなわち、例えばデータ保持時間の目標値を 10年とすれば、 10年 間経過しても書き込まれたデータが十分な精度で読み出せるように、 ARの目標値が 設定される。  That is, a voltage pulse of Tpl (for example, 40 ns) is first applied as a short pulse. By applying a short pulse, the resistance value (resistance value corresponding to the old value) changes by AR1 to an intermediate resistance value (temporary writing resistance value), and data is temporarily written. The length of Tp 1 is preferably adjusted so that ARl is 20% or more and 98% or less of the AR target value (AR2). The target value of AR is appropriately adjusted according to the data retention characteristics of the resistance variable element. For example, if the target value of the data retention time is 10 years, the AR target value is set so that the written data can be read with sufficient accuracy even after 10 years.
[0059] 抵抗値は書き込まれた変化を打ち消す方向へと経時変化する。そこで、 AR1の変 化は、少なくとも、短時間(例えば、 1週間、 1ヶ月、 1年など)のデータの保存性は十 分に確保できるものであることが好ましい。すなわち、一時的に書き込まれたデータ は、少なくとも一時的な書き込みの完了力 追加的な書き込みを行うまでの時間だけ 保持されることが好ましい。実際の動作やシステムの構成にもよるが、一時書き込み によるデータの保存保証時間は 1週間以上であることが好ましい。一時的に書き込ま れたデータは、後で行われる追加的な書き込みにより、さらに保存性のよい状態に書 き込まれる。よって、 ARlの大きさは、長時間(例えば、 10年)に亘るデータの保存 性を保証するためには十分でなくてもよ ヽ。 [0059] The resistance value changes with time in a direction to cancel the written change. In view of this, it is preferable that the change in AR1 is sufficient to ensure the preservation of data for at least a short time (eg, 1 week, 1 month, 1 year, etc.). In other words, it is preferable that the temporarily written data is retained for at least the time until the additional writing is completed. Although it depends on the actual operation and system configuration, the guaranteed storage time of data by temporary writing is preferably one week or longer. Temporarily written data can be written in a more storable state by additional writes that are performed later. Get in. Therefore, the size of ARl may not be sufficient to guarantee the preservation of data over a long period of time (eg, 10 years).
[0060] また、本実施形態において、 Tplの長さはバッファメモリが不要になる長さに調整さ れることが好ましい。ノ ッファメモリが不要になる長さとは、抵抗変化型装置 194にお いて、抵抗変化型記憶装置 100の外部に配設される揮発型記憶装置 192 (DRAM など)の読み出しを行うために印加される電圧パルス幅 (読み出しサイクルに関連す る)と等しいか、それより短い長さである。より具体的には、揮発型記憶装置 192の性 能にもよるが、一般的な DRAMの読み出し速度を考慮すれば、 Tplの長さは 60ns 以下が好ましい。酸化鉄積層化合物 (Fe O /Fe O )を用いた場合には、 Tplの長 [0060] In the present embodiment, the length of Tpl is preferably adjusted to a length that eliminates the need for a buffer memory. The length that eliminates the need for the buffer memory is applied to the variable resistance device 194 for reading out the volatile storage device 192 (such as DRAM) disposed outside the variable resistance memory device 100. It is equal to or shorter than the voltage pulse width (related to the read cycle). More specifically, although depending on the performance of the volatile memory device 192, the length of Tpl is preferably 60 ns or less in consideration of the general DRAM read speed. When using iron oxide laminated compound (Fe 2 O 3 / Fe 2 O 3), the length of Tpl
2 3 3 4  2 3 3 4
さは例えば 40nsとすることができる。書き込み速度を読出し速度と同じ力 り速くなる ように Tplの長さを調整し、ノ ッファメモリを不要とすることで、回路面積を削減し、シ ステム構成を簡略ィ匕して、製造コストを削減できる。 Tplの長さは Ins以上 60ns以下 であることが好ましい。  For example, it can be 40 ns. By adjusting the length of Tpl so that the writing speed is as fast as the reading speed and eliminating the need for a noffer memory, the circuit area is reduced, the system configuration is simplified, and the manufacturing cost is reduced. it can. The length of Tpl is preferably from Ins to 60 ns.
[0061] Tplの長さと AR1の大きさは相関があり、一般に Tplを短くすれば AR1は小さくな るという関係にある。 AR1の大きさは一時的なデータ保存性を保証できるレベルが 確保され、 Tplの長さはバッファメモリが不要になるように短くされることが好ましい。 本実施形態では、電圧パルスの強さ、抵抗変化材料の組成やメモリセルの製法、構 造などを適宜調整することにより、 Tp 1と Δ R1が好適な値に決定されて!ヽる。  [0061] There is a correlation between the length of Tpl and the size of AR1, and generally there is a relationship that AR1 decreases as Tpl is shortened. The size of AR1 is secured to a level that can guarantee temporary data storage, and the length of Tpl is preferably shortened so that a buffer memory is unnecessary. In the present embodiment, Tp 1 and ΔR1 are determined to be suitable values by appropriately adjusting the intensity of the voltage pulse, the composition of the resistance change material, the manufacturing method and structure of the memory cell, and the like.
[0062] 短パルスによる一時書き込みが完了し、システムからのデータ送信がなくなると、追 加書き込みが行われる。追加書き込みでは、長パルスとして、短パルスと長パルスの 印加時間の合計が Τρ2 (例えば 120ns)になるように、所定の大きさの電圧が印加さ れる。すなわち長パルスの幅は、 Tp2— Tpl (例えば 80ns)となる。長パルスの印加 により、抵抗値の変化量は AR2となる(抵抗値が新値に対応する値となる)。 Tp2は 、 AR2が長時間(例えば、 10年)に亘るデータの保存性を保証するために十分な大 きさとなるように決定されることが好ま 、。  [0062] When the temporary writing by the short pulse is completed and the data transmission from the system is stopped, the additional writing is performed. In additional writing, as a long pulse, a voltage having a predetermined magnitude is applied so that the total application time of the short pulse and the long pulse becomes Τρ2 (for example, 120 ns). That is, the width of the long pulse is Tp2−Tpl (for example, 80 ns). By applying a long pulse, the amount of change in the resistance value becomes AR2 (the resistance value corresponds to the new value). Tp2 is preferably determined so that AR2 is large enough to guarantee the preservation of data over a long period of time (eg 10 years).
[0063] なお、一時書き込みと追加書き込みの間に経過する時間が長くなると、その間に経 時変化により ARが減少する。力かる効果が問題となる場合には、長パルスを Τρ2— Tplよりも所定量だけ長くすることが好ましい。また、長パルスを印加し始めてから、 抵抗値が変化し始めるまで時間差がある場合には、その分だけパルス幅を長くする ことが好ましい。 [0063] Note that when the time elapsed between the temporary write and the additional write becomes longer, the AR decreases due to the change over time. If the effect is a problem, it is preferable to make the long pulse longer than Τρ2−Tpl by a predetermined amount. Also, after starting to apply a long pulse, If there is a time difference until the resistance value starts to change, it is preferable to increase the pulse width accordingly.
[0064] [動作]  [0064] [Operation]
以下、図 1乃至図 4を参照しつつ、抵抗変化型記憶装置 100によるデータの読み 出しおよび書き込みの動作について詳細に説明する。  Hereinafter, data reading and writing operations by the resistance change storage device 100 will be described in detail with reference to FIGS.
[0065] まず、データの読み出し動作について説明する。データ読み出し時には、制御装 置 180から入力されるチップセレクト CSおよびアドレス ADに従って、ロウデコーダ 11 4により特定のワード線 134が活性化され、該ワード線に接続された選択トランジスタ 136が導通状態とされる。対応する NMOSトランジスタ 144もロウデコーダ 114により 導通状態とされる。次に、電圧印加回路 140が高インピーダンス状態 (非導通状態) に設定され、電圧印加回路 142が OVに設定される。かかる制御により、比較器 146 から、選択トランジスタ 136と、抵抗変化型素子 138と、 NMOSトランジスタ 144とを 通って、電圧印加回路 142に達する電流経路が形成される。比較器 146は電圧印 加回路を備えており、該電流経路と、基準抵抗 148の両方に等電圧を印加する。比 較器 146が両者に流れる電流を比較することで、メモリセルのデータ (抵抗変化型素 子 138の抵抗値)が読み出される。  First, a data read operation will be described. At the time of data reading, a specific word line 134 is activated by the row decoder 114 according to the chip select CS and address AD input from the control device 180, and the selection transistor 136 connected to the word line is turned on. The The corresponding NMOS transistor 144 is also turned on by the row decoder 114. Next, the voltage application circuit 140 is set to a high impedance state (non-conductive state), and the voltage application circuit 142 is set to OV. With this control, a current path is formed from the comparator 146 through the selection transistor 136, the resistance change element 138, and the NMOS transistor 144 to reach the voltage application circuit 142. The comparator 146 includes a voltage applying circuit, and applies an equal voltage to both the current path and the reference resistor 148. The comparator 146 compares the currents flowing through the two, whereby the memory cell data (resistance value of the resistance variable element 138) is read out.
[0066] 以下、より具体的に説明する。一例として、基準抵抗 148の値が 200k Ωに設定さ れているとする。選択されたメモリセル 139の抵抗変化型素子 138の状態が低抵抗 状態("0"の値に相当)であれば、該経路の抵抗値( = 60kQ ) <基準抵抗の抵抗値 ( = 200k Ω )となるから、該経路を流れる電流の方が基準抵抗 148を流れる電流より も大きくなり、比較器 146はハイレベルを出力する。逆に、選択されたメモリセルの状 態が高抵抗状態("1"の値に相当)であれば、該経路の抵抗値( = 1. 2Μ Ω ) >基準 抵抗の抵抗値 ( = 200k Ω )となるから、該経路を流れる電流の方が基準抵抗 148を 流れる電流よりも小さくなり、比較器 146はローレベルを出力する。力かる動作により 、選択されたメモリセルの状態力 比較器 146の出力レベル (読み出しデータ信号)と して読み出され、出力データラッチ 122を介して、出力データ信号としてデータ出力 端子 DOUTに取出され、制御装置 180を経由してシステム 190へと送られる。  [0066] Hereinafter, this will be described more specifically. As an example, assume that the value of the reference resistor 148 is set to 200 kΩ. If the resistance variable element 138 of the selected memory cell 139 is in the low resistance state (corresponding to a value of “0”), the resistance value of the path (= 60 kQ) <the resistance value of the reference resistance (= 200 kΩ) ), The current flowing through the path becomes larger than the current flowing through the reference resistor 148, and the comparator 146 outputs a high level. Conversely, if the selected memory cell is in the high resistance state (corresponding to a value of "1"), the resistance value of the path (= 1.2ΜΩ)> the resistance value of the reference resistor (= 200kΩ ), The current flowing through the path becomes smaller than the current flowing through the reference resistor 148, and the comparator 146 outputs a low level. As a result of this operation, the state level of the selected memory cell is read as the output level (read data signal) of the comparator 146, and is output to the data output terminal DOUT as the output data signal via the output data latch 122. To the system 190 via the control device 180.
[0067] 次に、抵抗変化型記憶装置 100の特徴となる、データの書き込み動作について説 明する。抵抗変化型記憶装置 100の書き込み動作は、一時書き込み動作と追加書 き込み動作に分けられる。図 6は、本発明の第 1実施形態における一時書き込み動 作の概略を示すフローチャートである。図 7は、本発明の第 1実施形態における追カロ 書き込み動作の概略を示すフローチャートである。 Next, the data write operation, which is a feature of the resistance change storage device 100, will be described. Light up. The write operation of the resistance change memory device 100 is divided into a temporary write operation and an additional write operation. FIG. 6 is a flowchart showing an outline of the temporary write operation in the first embodiment of the present invention. FIG. 7 is a flowchart showing an outline of the additional write operation in the first embodiment of the present invention.
[0068] データ書き込み時には、内部制御信号に従って、書き込み回路 112およびロウデ コーダ 114により所定のメモリセル 139が選択され、書き込みが行われる。すなわち、 該メモリセル 139の両端 (ビット線 130およびソース線 132)力 電圧印加回路 140お よび電圧印加回路 142にそれぞれ電気的に接続され、抵抗変化型素子 138に所望 の電圧パルスが印加されることで、抵抗値の切替が行われる。  At the time of data writing, a predetermined memory cell 139 is selected by the write circuit 112 and the row decoder 114 in accordance with the internal control signal, and writing is performed. That is, both ends (bit line 130 and source line 132) of the memory cell 139 are electrically connected to the voltage application circuit 140 and the voltage application circuit 142, respectively, and a desired voltage pulse is applied to the resistance variable element 138. Thus, the resistance value is switched.
[0069] まず、図 6を参照しつつ、一時書き込み動作について説明する。システム 190から 入力データ信号およびアドレス信号が制御装置 180に届くと、制御装置 180から抵 抗変化型記憶装置 100へ指令が送られる。入力データラッチ 104にデータ入力端子 DINに入力されたデータが記憶 (ラッチ)され、制御回路 102が出力する内部制御信 号が一時書き込みモードに設定され、一時書き込み動作が開始される (スタート)。  First, the temporary write operation will be described with reference to FIG. When an input data signal and an address signal reach the control device 180 from the system 190, a command is sent from the control device 180 to the resistance change memory device 100. The data input to the data input terminal DIN is stored (latched) in the input data latch 104, the internal control signal output from the control circuit 102 is set to the temporary write mode, and the temporary write operation is started (start).
[0070] 次に、アドレス ADが示すアドレスに対応するワード線 134に活性ィ匕電圧(例えば + 5V)が印加され、他のワード線 134に不活性ィ匕電圧 (例えば 0V)が印加される。かか る動作により、データを書き込むべきアドレスの選択トランジスタ 136が導通状態とな る (ステップ S101)。また、このとき対応する NMOSトランジスタ 144も導通状態にさ れる。  Next, an active voltage (eg, +5 V) is applied to the word line 134 corresponding to the address indicated by the address AD, and an inactive voltage (eg, 0 V) is applied to the other word lines 134. . With this operation, the selection transistor 136 at the address to which data is to be written is turned on (step S101). At this time, the corresponding NMOS transistor 144 is also turned on.
[0071] 書き込むべきデータは、 "1"および" 0"の 2値をとる 2進数 (ビット)で構成されており 、一つのアドレスに複数 (例えば 16個)のビットが割り当てられている。そこでまず、書 き込みデータ中に" 1"があるか否かの判定が行われ (ステップ S102)、 YESと判定さ れれば、 "1"を書き込むべきメモリセル 139に対して、書き込み回路 112が正パルス 印加用にセットされる (ステップ S 103)。すなわち、該メモリセルについては、電圧印 加回路 140側に + 3. 3Vが、電圧印加回路 142側に 0Vが印加されるように書き込み 回路 112の設定が行われる。  The data to be written is composed of binary numbers (bits) that take two values “1” and “0”, and a plurality of (for example, 16) bits are assigned to one address. Therefore, it is first determined whether or not “1” is present in the write data (step S102). If YES is determined, the write circuit 112 is written to the memory cell 139 to which “1” is to be written. Is set for positive pulse application (step S103). That is, for the memory cell, the write circuit 112 is set so that +3.3 V is applied to the voltage applying circuit 140 side and 0 V is applied to the voltage applying circuit 142 side.
[0072] 次に、書き込みデータ中に" 0"があるか否かの判定が行われ (ステップ S104)、 YE Sと判定されれば、 "0"を書き込むべきメモリセル 139に対して、書き込み回路 112が 負パルス印加用にセットされる(ステップ S105)。すなわち、該メモリセルについては 、電圧印加回路 140側に OV力 電圧印加回路 142側に + 3. 3Vが印加されるように 書き込み回路 112の設定が行われる。なお、ステップ S 102において NOと判定され た場合には、全てのセルに" 0"を書き込むことになるため、ステップ S105に進んで、 該アドレスの全てのセルに対して、書き込み回路 112が負パルス印加用にセットされ る。 Next, it is determined whether or not “0” is present in the write data (step S104). If it is determined as YE S, write to the memory cell 139 to which “0” is to be written. Circuit 112 Set for negative pulse application (step S105). That is, for the memory cell, the writing circuit 112 is set so that +3.3 V is applied to the voltage application circuit 140 side on the OV force voltage application circuit 142 side. If NO is determined in step S102, "0" is written in all the cells. Therefore, the process proceeds to step S105, and the write circuit 112 is negative for all the cells at the address. Set for pulse application.
[0073] 次に、データを書き込むべきアドレスに対応するメモリセル 139に、一時書き込み用 短パルス生成回路 106の出力する電圧ノ ルスが印加される (ステップ S106)。なお、 ステップ S104において NOと判定された場合にも、ステップ S106が実行される。  Next, the voltage noise output from the temporary writing short pulse generation circuit 106 is applied to the memory cell 139 corresponding to the address to which data is to be written (step S106). Note that step S106 is also executed when NO is determined in step S104.
[0074] ステップ S106では、 "1"を書き込むべきセルに対しては、電圧印加回路 140からビ ット線 130と選択トランジスタ 136とを経由して抵抗変化型素子 138の一端に + 3. 3 V、電圧印加回路 142から NMOSトランジスタ 144とソース線 132とを経由して抵抗 変化型素子 138の他端に 0Vの電圧が所定の時間(例えば 40ns)だけ印加される( 正パルス一時書き込み)。力かる電圧印加により、抵抗変化型素子 138の抵抗状態 は、低抵抗状態 (例えば、約 51k Q )から目標とする高抵抗状態よりも抵抗値が低い 高抵抗状態(浅い高抵抗状態:例えば、約 287k Ω )へと遷移する。このときの高抵抗 状態は、比較的浅いものであり、追加書き込み動作 (後述)においてさらに電圧を印 加することで、より抵抗値が高い状態、すなわち目標とする高抵抗状態 (深い高抵抗 状態:例えば、約 1. 2Μ Ω )へと遷移する。  [0074] In step S106, for the cell to which "1" is to be written, +3.3 from the voltage application circuit 140 via the bit line 130 and the selection transistor 136 to one end of the resistance variable element 138. A voltage of 0 V is applied from the V, voltage application circuit 142 to the other end of the resistance variable element 138 via the NMOS transistor 144 and the source line 132 for a predetermined time (for example, 40 ns) (positive pulse temporary writing). By applying a strong voltage, the resistance state of the resistance variable element 138 changes from a low resistance state (for example, about 51 kQ) to a high resistance state (shallow high resistance state: Transition to approximately 287 kΩ). The high resistance state at this time is relatively shallow, and by applying more voltage in the additional write operation (described later), the resistance value is higher, that is, the target high resistance state (deep high resistance state). : For example, about 1.2ΜΩ).
[0075] また、 "0"を書き込むべきセルに対しては、電圧印加回路 140からビット線 130と選 択トランジスタ 136とを経由して抵抗変化型素子 138の一端に 0V、電圧印加回路 14 2から NMOSトランジスタ 144とソース線 132とを経由して抵抗変化型素子 138の他 端に + 3. 3Vの電圧が所定の時間(例えば 40ns)だけ印加される。すなわち、正パ ルス書き込みと逆極性のパルスが印加される(負ノルス一時書き込み)。かかる電圧 印加により、抵抗変化型素子 138の抵抗状態は、高低抵抗状態 (例えば、約 1. 2M Ω )から目標とする低抵抗状態よりも抵抗値が高!ヽ低抵抗状態 (浅!/ヽ低抵抗状態:例 えば、約 113k Ω )へと遷移する。このときの低抵抗状態は、比較的浅いものであり、 追加書き込み動作 (後述)においてさらに電圧を印加することで、より抵抗値が低い 状態、すなわち目標とする低抵抗状態 (深 、低抵抗状態:例えば、約 60k Ω )へと遷 移する。 In addition, for a cell in which “0” is to be written, 0 V is applied to one end of the resistance variable element 138 from the voltage application circuit 140 via the bit line 130 and the selection transistor 136, and the voltage application circuit 14 2 Then, a voltage of +3.3 V is applied to the other end of the resistance variable element 138 through the NMOS transistor 144 and the source line 132 for a predetermined time (for example, 40 ns). That is, a pulse having a polarity opposite to that of the positive pulse writing is applied (temporary negative Norse writing). By applying such a voltage, the resistance state of the resistance variable element 138 has a higher resistance value than the target low resistance state from the high and low resistance state (for example, about 1.2 MΩ). Transition to a low resistance state (eg, approximately 113 kΩ). The low resistance state at this time is relatively shallow, and the resistance value is lower by applying more voltage in the additional write operation (described later). Transition to a state, that is, a target low resistance state (deep, low resistance state: for example, about 60 kΩ).
[0076] ステップ S 106が終了すると、一時書き込みを行ったアドレスを含むセクタに対応す る一時書き込みフラグ領域 116のフラグ用抵抗変化型素子に" 0"が書き込まれ、一 時書き込みフラグが" H"レベルにセットされる (ステップ S107)。なお、一時書き込み フラグ領域 116への書き込み動作はメモリセルアレイ 118のメモリセル 139に対する 書き込み動作と同様であるので、説明を省略する。  [0076] When step S106 is completed, "0" is written to the resistance variable element for flag in the temporary write flag area 116 corresponding to the sector including the temporarily written address, and the temporary write flag is set to "H". "Set to level (step S107). Note that the write operation to the temporary write flag region 116 is the same as the write operation to the memory cell 139 of the memory cell array 118, and thus description thereof is omitted.
[0077] 一時書き込みフラグへの書き込みが完了すると、該アドレスへの書き込みは終了す る(エンド)。 1回の一時書き込みには約 40nsの時間が必要である。抵抗変化型記憶 装置 100は、ステップ S 101から S 107までの一時書き込み動作を繰り返すことで、各 アドレスに対する一連のデータの一時書き込みが行われる。  When the writing to the temporary writing flag is completed, the writing to the address ends (END). One temporary write takes about 40ns. The resistance change type storage device 100 repeats the temporary write operation from steps S 101 to S 107 to perform a temporary write of a series of data for each address.
[0078] 次に、図 7を参照しつつ、追加書き込み動作について説明する。各アドレスへの一 時書き込みが終了し、システム 190から届ぐ抵抗変化型データ記録メディア 170に 対する書き込みおよび読み出しの命令が止まると、制御装置 180の制御に従って、 制御回路 102が追加書き込みモードを選択し、追加書き込み動作が開始される (スタ 一ト)。  Next, the additional write operation will be described with reference to FIG. When the temporary writing to each address is completed and the writing and reading commands to the resistance change data recording medium 170 received from the system 190 are stopped, the control circuit 102 selects the additional writing mode according to the control of the controller 180. Then, an additional write operation is started (start).
[0079] 最初に、制御装置 180により制御回路 102が制御され、各セクタに対応した一時書 き込みフラグ領域 116のデータが読み出され、値が" 0"であるフラグ (フラグ情報が" H"であるフラグ)が存在する力否かの判定が行われる(ステップ S201)。なお、一時 書き込みフラグ領域 116のデータ読み出し動作については、メモリセルアレイ 118の 読み出し動作と同様であるので説明を省略する。ステップ S201で NOと判定された 場合には、全てのメモリセルが長期保存に耐える状態にあるので、追加書き込み動 作は行われない(エンド)。一方、ステップ S201で YESと判定された場合には、制御 装置 180の制御に従って、一連の追加書き込み動作が行われる (ステップ S202〜)  First, control circuit 102 is controlled by control device 180, and data in temporary write flag area 116 corresponding to each sector is read and a flag whose value is “0” (flag information is “H”). A determination is made as to whether or not there is a force "a flag that is" (step S201). Note that the data read operation of the temporary write flag area 116 is the same as the read operation of the memory cell array 118, and thus the description thereof is omitted. If NO is determined in step S201, no additional write operation is performed (end) because all memory cells are in a state that can withstand long-term storage. On the other hand, if YES is determined in step S201, a series of additional write operations are performed under the control of control device 180 (steps S202 and after).
[0080] まず、 "0"であるフラグに対応するセクタ(以下、追加書き込み対象セクタ)に記録さ れている全てのデータ("1"または" 0")が読み出され、出力データラッチ 122 (書き込 みデータ記憶装置)に記憶される (ステップ S202)。 [0081] 次に、追加書き込み対象セクタのセクタ書き込み番地を示す変数 Nに 0が代入され (ステップ S203)、記憶されたデータのうち単位書き込みビット数分のデータ (例えば 16ビット)が取出され、出力データラッチ 122から書き込み回路 112へと転送される( ステップ S 204)。 First, all the data (“1” or “0”) recorded in the sector corresponding to the flag of “0” (hereinafter referred to as additional write target sector) is read out, and the output data latch 122. It is stored in (write data storage device) (step S202). [0081] Next, 0 is substituted for the variable N indicating the sector write address of the additional write target sector (step S203), and the data for the number of unit write bits (for example, 16 bits) is extracted from the stored data. The data is transferred from the output data latch 122 to the write circuit 112 (step S204).
データが書き込み回路 112へ送られると、該セクタの N番目のセクタ書き込み番地 に対応するワード線 134に活性ィ匕電圧 (例えば + 5V)が印加され、他のワード線 13 4に不活性ィ匕電圧 (例えば OV)が印加される。カゝかる動作により、データを追加書き 込みをすべきセルの選択トランジスタ 136が導通状態となる (ステップ S205)。また、 このとき対応する NMOSトランジスタ 144も導通状態にされる。  When data is sent to the write circuit 112, an active voltage (for example, + 5V) is applied to the word line 134 corresponding to the Nth sector write address of the sector, and an inactive signal is applied to the other word lines 134. A voltage (eg OV) is applied. With this operation, the selection transistor 136 of the cell to which additional data is to be written becomes conductive (step S205). At this time, the corresponding NMOS transistor 144 is also turned on.
次に、書き込み回路 112へ転送された書き込みデータ (セクタ書き込み番地 Nのセ ルに記憶されたデータ)中に" 1"があるか否かの判定が行われ (ステップ S206)、 YE Sと判定されれば、 "1"を追加書き込みするべきセル (メモリセルアレイ 218のセル)に 対して、書き込み回路 112が正パルス印加用にセットされる (ステップ S207)。すなわ ち、該セルについては、電圧印加回路 140側に + 3. 3Vが、電圧印加回路 142側に OVが印加されるように書き込み回路 112の設定が行われる。  Next, it is determined whether or not “1” is present in the write data transferred to the write circuit 112 (data stored in the cell at the sector write address N) (step S206). Then, the write circuit 112 is set for applying a positive pulse to a cell (a cell in the memory cell array 218) to which “1” is to be additionally written (step S207). That is, for the cell, the write circuit 112 is set so that +3.3 V is applied to the voltage application circuit 140 side and OV is applied to the voltage application circuit 142 side.
[0082] 次に、書き込みデータ中に" 0"があるか否かの判定が行われ (ステップ S208)、 YE Sと判定されれば、 "0"を追加書き込みするべきセル (メモリセルアレイ 218のセル)に 対して、書き込み回路 112が負パルス印加用にセットされる (ステップ S209)。すなわ ち、該セルについては、電圧印加回路 140側に OV力 電圧印加回路 142側に + 3. 3Vが印加されるように書き込み回路 112の設定が行われる。なお、ステップ S206に おいて NOと判定された場合には、全てのセルに" 0"を追カ卩書き込みすることになる ため、ステップ S209に進んで、全てのセルに対して、書き込み回路 112が負パルス 印加用にセットされる。 Next, it is determined whether or not “0” is present in the write data (step S 208). If it is determined as YE S, a cell to be additionally written with “0” (in the memory cell array 218). For the cell), the write circuit 112 is set to apply a negative pulse (step S209). In other words, for the cell, the write circuit 112 is set so that OV force is applied to the voltage application circuit 140 side and +3.3 V is applied to the voltage application circuit 142 side. If NO is determined in step S206, “0” is additionally written to all the cells. Therefore, the process proceeds to step S209, and the writing circuit 112 is written to all the cells. Is set for negative pulse application.
[0083] 次に、データを書き込むべきアドレスに対応するメモリセル 139に、追加書き込み用 長パルス生成回路 108の出力する電圧ノ ルスが印加される (ステップ S210)。なお、 ステップ S208において NOと判定された場合にも、ステップ S210が実行される。 ステップ S210では、 "1"を書き込むべきセルに対しては、電圧印加回路 140からビ ット線 130と選択トランジスタ 136とを経由して抵抗変化型素子 138の一端に + 3. 3 V、電圧印加回路 142から NMOSトランジスタ 144とソース線 132とを経由して抵抗 変化型素子 138の他端に 0Vの電圧が所定の時間(例えば 80ns)だけ印加される( 正パルス追加書き込み)。カゝかる電圧印加により、抵抗変化型素子 138の抵抗状態 は、浅い高抵抗状態 (例えば、約 287k Ω )から深い高抵抗状態 (例えば、約 1. 2M Ω )へと遷移する。追加書き込みにより、抵抗変化型素子 138の抵抗状態は安定して 高抵抗状態を維持することが可能となり、データの保存性が向上する。 Next, the voltage noise output from the additional write long pulse generation circuit 108 is applied to the memory cell 139 corresponding to the address to which data is to be written (step S210). Note that step S210 is also executed when it is determined NO in step S208. In step S210, for the cell to which "1" is to be written, the voltage application circuit 140 passes through the bit line 130 and the selection transistor 136 to one end of the resistance variable element 138 +3.3. A voltage of 0 V is applied from the V, voltage application circuit 142 to the other end of the resistance variable element 138 via the NMOS transistor 144 and the source line 132 for a predetermined time (for example, 80 ns) (positive pulse additional writing). By applying a voltage, the resistance state of the resistance variable element 138 changes from a shallow high resistance state (for example, about 287 kΩ) to a deep high resistance state (for example, about 1.2 MΩ). By additional writing, the resistance state of the resistance variable element 138 can be stably maintained at a high resistance state, and the data storage property is improved.
[0084] また、 "0"を書き込むべきセルに対しては、電圧印加回路 140からビット線 130と選 択トランジスタ 136とを経由して抵抗変化型素子 138の一端に 0V、電圧印加回路 14 2から NMOSトランジスタ 144とソース線 132とを経由して抵抗変化型素子 138の他 端に + 3. 3Vの電圧が所定の時間(例えば 80ns)だけ印加される。すなわち、正パ ルス追加書き込みと逆極性のパルスが印加される(負ノ ルス追加書き込み)。かかる 電圧印加により、抵抗変化型素子 138の抵抗状態は、浅い低抵抗状態 (例えば、約 113k Ω )から深い低抵抗状態 (例えば、約 60k Ω )へと遷移する。追加書き込みによ り、抵抗変化型素子 138の抵抗状態は安定して低抵抗状態を維持することが可能と なり、データの保存性が向上する。  In addition, for a cell to which “0” is to be written, 0 V is applied to one end of the resistance variable element 138 from the voltage application circuit 140 via the bit line 130 and the selection transistor 136, and the voltage application circuit 14 2 Then, a voltage of +3.3 V is applied to the other end of the resistance variable element 138 through the NMOS transistor 144 and the source line 132 for a predetermined time (for example, 80 ns). That is, a pulse having a polarity opposite to that of the positive pulse additional write is applied (negative pulse additional write). By applying such a voltage, the resistance state of the resistance variable element 138 changes from a shallow low resistance state (for example, about 113 kΩ) to a deep low resistance state (for example, about 60 kΩ). By additional writing, the resistance state of the resistance variable element 138 can be stably maintained at the low resistance state, and the data storage property is improved.
ステップ S210が終了すると、 Nに 1が加えられ (ステップ S211)、 Nが Nmaxを超え ているか否かの判定が行われ (ステップ S 212)、超えていなければステップ 204に戻 る。力かる動作により、セクタ書き込み番地 N= l、 2、 · · ·、 Nmaxまで順次、追加書 き込みが行われる。 Nが Nmaxを超えれば、該セクタについては追加書き込みが完 了したことになるため、該セクタに対応するフラグ用抵抗変化型素子に 1が書き込ま れることによりリセットされ (ステップ S213)、ステップ S201に戻る。なお、一時書き込 みフラグ領域 116への書き込み動作は、メモリセルアレイ 218のセルに対する書き込 み動作と同様であるため説明を省略する。  When step S210 ends, 1 is added to N (step S211), and it is determined whether N exceeds Nmax (step S212). If not, the process returns to step 204. By additional operation, additional writing is performed in sequence up to the sector write address N = 1, 2, ..., Nmax. If N exceeds Nmax, additional writing has been completed for the sector, so it is reset by writing 1 to the flag variable resistance element corresponding to the sector (step S213), and step S201 is entered. Return. Note that the write operation to the temporary write flag area 116 is the same as the write operation to the cells of the memory cell array 218, and thus description thereof is omitted.
[0085] 力かる動作により、抵抗変化型記憶装置 100は、ステップ S201からステップ S213 までの動作を繰り返すことによって、全てのセクタにつきフラグが 1 ("L"レベル)となる まで、順次追加書き込みを行う。  [0085] By performing the operation, the resistance change memory device 100 repeats the operations from step S201 to step S213, thereby sequentially performing additional writing until the flag becomes 1 ("L" level) for all sectors. Do.
以上のような動作および構成により、抵抗変化型記憶装置 100は、入力されたチッ プセレクト CS、外部制御信号 CTL、アドレス AD、ライトパルス WPに応じて、所望の メモリセル 139の読み出し動作および書き込み動作 (一時書き込みと追加書き込み) を行う。 By the operation and configuration as described above, the resistance change type storage device 100 can perform a desired change according to the input chip select CS, external control signal CTL, address AD, and write pulse WP. Read and write operations (temporary write and additional write) to memory cell 139 are performed.
[効果]  [Effect]
抵抗変化型記憶装置 100によれば、 1回のパルス印加により各メモリセル 139に対 して個別に(同時に、並行して) "1"または" 0"を選択的に書き込むことができるため、 従来のフラッシュメモリで必要だった一括の消去動作が不要となり、書き込み速度が 飛躍的に向上する。  According to the resistance change type memory device 100, “1” or “0” can be selectively written to each memory cell 139 individually (simultaneously and in parallel) by applying a single pulse. The batch erase operation, which was necessary with conventional flash memory, is no longer necessary, and the programming speed is dramatically improved.
[0086] また、抵抗変化型記憶装置 100では、一時書き込み用短パルス生成回路 106およ び追加書き込み用長パルス生成回路 108を設け、 2段階で書き込みを行う。すなわ ち、データの書き込みでは、まず短パルスの電圧を印加することで浅く短時間に書き 込みが行われる。一時書き込みでは、書き込むべき全てのデータについて、まず短 パルスを用いた迅速な一時書き込みが行われる。力かる動作によれば、一時書き込 みは 1単位の書き込みに極短い時間(例えば 40ns程度)しか必要とせず、書き込み 速度が読み出し速度とほぼ同程度となる。  In addition, the resistance change storage device 100 includes the temporary write short pulse generation circuit 106 and the additional write long pulse generation circuit 108 to perform writing in two stages. In other words, when writing data, first, a short pulse voltage is applied to write data in a shallow and short time. In temporary writing, all data to be written is first temporarily written using a short pulse. According to the operation, the temporary writing requires only a very short time (for example, about 40 ns) to write one unit, and the writing speed is almost the same as the reading speed.
[0087] また、本実施形態では、抵抗変化型記憶装置 100への書き込みおよび読み出しの 命令がシステム 190から来なくなると、制御装置 180の制御により、追加書き込み動 作が実行される。追加書き込み動作では、長パルスの電圧が追加書き込み対象セル に印加され、データの安定性や保存性の観点から目標とされる抵抗値レベルへとセ ルの抵抗状態が遷移する。かかる追加書き込みは、システム全体の負荷が小さい時 間帯に合わせて行うことができるため、見かけ上、追加書き込み時間はほとんどシス テムのパフォーマンスに影響しない。また、追加書き込みにより、データの保存性が 向上し、不揮発性で、かつ高い信頼性を有する記憶装置が実現される。  In the present embodiment, when a command for writing to and reading from the resistance change storage device 100 does not come from the system 190, an additional writing operation is executed under the control of the control device 180. In the additional write operation, a long pulse voltage is applied to the additional write target cell, and the cell resistance state transitions to the target resistance level from the viewpoint of data stability and storage stability. Since such additional writing can be performed in a time zone where the load on the entire system is small, apparently the additional writing time hardly affects the performance of the system. Further, additional writing improves data storability and realizes a nonvolatile storage device having high reliability.
[0088] 力かる構成および動作により、データ保証時間が維持されつつ、上位システムから 見える見かけ上の書き込み時間が大幅に短縮され、メモリシステムの飛躍的な高性 能化(高速化)が可能となる。特に、一時書き込み用の短パルスの幅を、書き込み速 度が読み出し速度とほぼ同程度になるように設定することで、従来、データのバッファ メモリとして別途必要とされていた DRAMや、 DRAM用インターフェース回路などを 不要とすることができる。よって、回路面積の圧縮、装置の小型化、製造コストの削減 が可能となる。 [0088] The powerful configuration and operation significantly reduces the apparent write time seen by the host system while maintaining the data guarantee time, enabling a dramatic improvement in memory system performance (speeding up). Become. In particular, by setting the width of the short pulse for temporary writing so that the writing speed is almost the same as the reading speed, DRAM and DRAM interface that were conventionally required separately as a buffer memory for data Circuits can be eliminated. Therefore, reduction of circuit area, downsizing of equipment, reduction of manufacturing cost Is possible.
[0089] [実施例 1]  [0089] [Example 1]
図 8は、実施例におけるパルス印加時間と抵抗値との関係を示す図である。本実施 例では、抵抗変化型素子として、酸化鉄積層化合物 (Fe O /Ye O )を用いた。図  FIG. 8 is a diagram showing the relationship between the pulse application time and the resistance value in the example. In this example, an iron oxide laminated compound (Fe 2 O 3 / Ye 2 O 3) was used as the resistance variable element. Figure
2 3 3 4  2 3 3 4
中、四角は正パルスが印加された後の抵抗値、三角は負パルスが印加された後の抵 抗値を示す。  The square indicates the resistance value after the positive pulse is applied, and the triangle indicates the resistance value after the negative pulse is applied.
[0090] 本実施例の抵抗変化型素子は、以下の方法で作成された。まず、基板上に、下部 電極 (Pt)を厚さが lOOnmとなるようにスパッタリング法により形成した。抵抗変化層 は、 Fe O力もなる層を下部電極上に厚さが 95nmになるように Fe Oのターゲット材 [0090] The resistance variable element of this example was manufactured by the following method. First, the lower electrode (Pt) was formed on the substrate by sputtering so as to have a thickness of lOOnm. The resistance change layer is a Fe O target material that has a thickness of 95 nm on the lower electrode.
3 4 3 4 料を用いたスパッタリング法により形成し、その上に Fe O力もなる層を厚さが 5nmと 3 4 3 4 Formed by sputtering using a material, and a layer with Fe O force on it has a thickness of 5 nm.
2 3  twenty three
なるように Fe Oのターゲット材料を用いたスパッタリング法により形成した。 Fe Oか  It was formed by sputtering using a Fe 2 O target material. Fe O?
2 3 2 3 らなる層の上に、上部電極 (Pt)を厚さが 50nm、となるようにスパッタリング法により形 成した。素子の直径は約 0. とした。  On the layer made of 2 3 2 3, the upper electrode (Pt) was formed by sputtering so as to have a thickness of 50 nm. The diameter of the element was about 0.
[0091] 上記方法によって得られた抵抗変化型素子に対し、複数回の正電圧の電圧パルス を印カロして、深い高抵抗状態(1. 18Μ Ω )へと変化させた。次に、深い高抵抗状態 にある抵抗変化型素子に対し、パルス幅が 20nsであって電圧値が— 3. 3Vの電圧 パルス (負パルス)が印加された。なお、電圧の極性は、下部電極を基準とした上部 電極の電圧として記載している(以下同様)。電圧ノ ルスが 2回印加されると抵抗値 は 113k Ωへと変化し、 3回印加されると抵抗値は 84k Ωへと変化し、 6回印加される と抵抗値は約 60k Ω (深い低抵抗状態)へと変化した。深い高抵抗状態カゝら深い低 抵抗状態への抵抗値の変化量を Δ R12 ( = 1120k Ω )とし、 2回のノ ルス印加による 抵抗値の変化量を Δ Rll ( = 1067k Ω )とすると、 Δ R12に対する Δ R11の割合は 95 %であり、 3回のパルス印加による抵抗値の変化量を A Rll ' ( = 1096k Q )とすると、 Δ R12に対する Δ Rll,の割合は 98%であった。  [0091] The resistance variable element obtained by the above method was subjected to multiple positive voltage pulses to change into a deep high resistance state (1.18 Ω). Next, a voltage pulse (negative pulse) with a pulse width of 20 ns and a voltage value of −3.3 V was applied to the resistance variable element in the deep high resistance state. The polarity of the voltage is described as the voltage of the upper electrode with respect to the lower electrode (the same applies hereinafter). When the voltage is applied twice, the resistance value changes to 113 kΩ, when it is applied three times, the resistance value changes to 84 kΩ, and when it is applied six times, the resistance value is about 60 kΩ (deep Changed to a low resistance state). If the amount of change in resistance from a deep high-resistance state to a deep low-resistance state is ΔR12 (= 1120kΩ), and the amount of change in resistance due to twice-applied Nors is ΔRll (= 1067kΩ) The ratio of ΔR11 to ΔR12 is 95%. If the amount of change in resistance by applying three pulses is A Rll '(= 1096k Q), the ratio of ΔRll to ΔR12 is 98%. It was.
[0092] その後、計 10回負パルスが印加された深い低抵抗状態 (約 51k Q )にある抵抗変 化型素子に対し、パルス幅が 20nsであって電圧値が + 3. 3Vの電圧パルス(正パル ス)が印加された。電圧パルスが 2回印加されると抵抗値は 287k Ωへと変化し、 3回 印加されると抵抗値は 550k Ωへと変化し、 6回印加されると抵抗値は 1. 18Μ Ω (深 V、高抵抗状態)へと変化した。深ヽ低抵抗状態から深!ヽ高抵抗状態への抵抗値の 変化量を Δ R12 ( = 1129k Ω )とし、 2回のパルス印加による抵抗値の変化量を Δ Rh l ( = 236kQ )とすると、 ARh2に対する ARhlの割合は 21%であり、 3回のパルス 印加による抵抗値の変化量を ARll ' (=499k Q )とすると、 AR12に対する ARll ' の割合は 44%であった。 [0092] Thereafter, a voltage pulse with a pulse width of 20 ns and a voltage value of +3.3 V is applied to a resistance variable element in a deep low resistance state (approximately 51 kQ) to which a negative pulse has been applied 10 times in total. (Positive pulse) was applied. When the voltage pulse is applied twice, the resistance value changes to 287 kΩ, when the voltage pulse is applied three times, the resistance value changes to 550 kΩ, and when the voltage pulse is applied six times, the resistance value becomes 1.18ΜΩ (depth V, high resistance state). If the amount of change in resistance from the deep low resistance state to the deep! High resistance state is ΔR12 (= 1129k Ω), and the amount of change in resistance due to two pulse applications is ΔRh l (= 236kQ) The ratio of ARhl to ARh2 was 21%, and the ratio of ARll 'to AR12 was 44%, assuming that the amount of change in resistance by applying three pulses was ARll' (= 499kQ).
このように、本実施例の抵抗変化型素子では、正パルスの印加時間が長くなると徐 々に抵抗値が高くなり、負パルスの印加時間が長くなると徐々に抵抗値が低くなつた 。言い換えると、電圧パルスの累積印加量に対して抵抗値が最初は急速に変化し、 その後徐々に飽和する(所定の値に収束する)ように変化した。 目標とする抵抗値の 変化量( 1129k Ω )を実現するには、例えば 120ns以上の長 、パルスを印加する必 要があることが分かった。その一方で、短いパルス(40ns、あるいは 60ns)でも、目標 とする抵抗値の変化量の 20〜98%に相当する変化量が実現できることが分力つた。  Thus, in the resistance variable element of this example, the resistance value gradually increased as the positive pulse application time increased, and the resistance value gradually decreased as the negative pulse application time increased. In other words, the resistance value first changed rapidly with respect to the cumulative amount of voltage pulses applied, and then gradually changed (saturated to a predetermined value). In order to realize the target resistance change (1129 kΩ), it was found that it was necessary to apply a pulse for a length of 120 ns or longer, for example. On the other hand, even with short pulses (40 ns or 60 ns), it was possible to achieve a change equivalent to 20 to 98% of the target change in resistance.
[0093] 力かる結果によれば、短いパルス(40ns以下、あるいは 60ns以下)で一時的に書 込むことで、高速な書込み動作が可能となると推察された。また、余分な時間が得ら れた時に 80ns程度の長いパルスで追カ卩的に書き込むことで、データの保存性を向 上させることができると推察された。  [0093] According to the results, it was inferred that high-speed write operation can be performed by temporarily writing with a short pulse (40 ns or less, or 60 ns or less). In addition, when extra time was obtained, it was speculated that additional data could be written with a long pulse of about 80 ns to improve data storage.
[0094] なお、所定の時間幅のパルスが複数に分割されて印加される場合と、単一のパル スで印加される場合とで、抵抗値の変化量はほぼ等し力つた。例えば、 20nsのパル スを 2回印加する場合と、 40nsのパルスを 1回印加する場合とでは、抵抗値の変化 量はほぼ等し力つた。  [0094] It should be noted that the amount of change in the resistance value was almost equal between the case where the pulse having a predetermined time width was divided and applied and the case where the pulse was applied with a single pulse. For example, when the 20 ns pulse is applied twice and when the 40 ns pulse is applied once, the amount of change in resistance is almost equal.
[実施例 2]  [Example 2]
実施例 2では、抵抗変化材料として、実施例 1の Fe Oの代わりに、 ZnFe Oを用  In Example 2, instead of Fe 2 O in Example 1, ZnFe 2 O was used as the resistance change material.
2 3 2 4 いた。すなわち、抵抗変化層は、 Fe O力 なる厚さが 95nmの層と、 ZnFe O力  2 3 2 4 In other words, the variable resistance layer consists of a layer with a thickness of 95 nm that is Fe O force and ZnFe O force.
3 4 2 4 なる厚さが 5nmの層として構成した (その他の構成および形成方法は実施例 1と同様 ) oかかる構成でも、実施例 1と同様の結果が得られた。すなわち、正パルスの印加時 間が長くなると徐々に抵抗値が高くなり、負パルスの印加時間が長くなると徐々に抵 抗値が低くなつた。よって、実施例 1と同様に、短パルスで一時的に書込むことで、高 速な書込み動作が可能となることが推察された。また、余分な時間が得られた時に長 パルスで追カ卩的に書き込むことで、データの保存性を向上させることができることが 推察された。 3 4 2 4 was formed as a layer having a thickness of 5 nm (other configurations and formation methods are the same as in Example 1). O With this configuration, the same results as in Example 1 were obtained. That is, the resistance value gradually increased as the positive pulse application time increased, and the resistance value gradually decreased as the negative pulse application time increased. Therefore, as in Example 1, it was presumed that a high-speed write operation could be performed by temporarily writing with a short pulse. Also, when extra time is available It was speculated that the data storage stability could be improved by writing additional pulses.
[0095] [変形例]  [0095] [Modification]
本実施形態の発明については、さまざまな変形例が可能であるが、その一例を以 下に示す。  Various modifications can be made to the invention of the present embodiment, and an example is shown below.
[0096] 上述の説明では一時書き込み用のパルス幅 (Tpl) <追加書き込み用のパルス幅  [0096] In the above description, pulse width for temporary writing (Tpl) <pulse width for additional writing
(Tp2— Tpl)とした力 2種類のパルス幅は、大小関係を含めて任意に設定できる。 例えば、上記と同様にパルスの電圧を等しくして、一時書き込み用のパルス幅を追加 書き込み用のノ ルス幅よりも短くしてもよい。かかる構成では、印加される電圧が等し いため、回路構成を簡潔にできる。あるいは、パルス幅を等しくして、一時書き込み用 のパルス電圧を追加書き込み用のノ ルス電圧よりも大きくしてもよい。かかる構成で は、一時書き込み用のパルスだけ電圧を高くすることで、一時書き込み動作の高速 化と使用電力のバランスを取ることができる。あるいは、 Tpl (—時書き込み用のパル ス幅)≥Tp2— Tpl (追加書き込み用のパルス幅)であってもよい。すなわち、パルス の幅や電圧は、所望の ARや書き込み速度を実現できるものであれば、どのような値 であってもよい。  The force of (Tp2-Tpl) The two types of pulse width can be set arbitrarily, including the magnitude relationship. For example, similarly to the above, the pulse voltage may be made equal, and the pulse width for temporary writing may be shorter than the pulse width for additional writing. In such a configuration, since the applied voltages are equal, the circuit configuration can be simplified. Alternatively, the pulse widths may be made equal to make the pulse voltage for temporary writing larger than the pulse voltage for additional writing. In such a configuration, by increasing the voltage by the pulse for temporary writing, it is possible to balance the speed of the temporary writing operation and the power consumption. Alternatively, Tpl (—pulse width for hourly writing) ≥Tp2—Tpl (pulse width for additional writing) may be used. In other words, the pulse width and voltage may be any value as long as the desired AR and writing speed can be realized.
[0097] 一時書き込みフラグは、必ずしもセクタ単位で設けられる必要はなぐワード線単位 、マット単位、バンク単位等、任意のメモリセルセクションについて一時書き込みフラ グが設けられてもよい。一時書き込みフラグ領域 116は、制御装置 180に設けられて もよい。出力データラッチ 122とは別に、別途追加書き込み専用のデータラッチが設 けられてもよい。  The temporary write flag may be provided for an arbitrary memory cell section such as a word line unit, a mat unit, or a bank unit, which is not necessarily provided for each sector. The temporary write flag area 116 may be provided in the control device 180. In addition to the output data latch 122, a data latch dedicated to additional writing may be provided separately.
[0098] 上述の説明では、追加書き込みを行うセクタを一括して、出力データラッチ 122に 記憶して、その後、書き込み単位 (セクタ書き込み番地)ごとに追加書き込みをセクタ 内の全てのセルに対して実施した。し力し、センスアンプ 120の数と同数のより小さい 出力データラッチを用意して、より小さな単位でセクタ内の対象データを読み出し、そ の都度追加書き込みが実行されてもよい。力かる構成によれば、回路面積の削減と 装置の小型化が可能となる。  [0098] In the above description, sectors to be additionally written are collectively stored in the output data latch 122, and then additional writing is performed on all cells in the sector for each writing unit (sector writing address). Carried out. However, the same number of output data latches as the number of sense amplifiers 120 may be prepared, and the target data in the sector may be read in smaller units, and additional writing may be performed each time. According to the configuration, the circuit area can be reduced and the device can be downsized.
上述の説明では、抵抗変化型素子を 2値型のデータを記憶させるメモリセルとして 用いた。しかし、抵抗値のレベル(AR2)は、印加する電圧パルスの強度 (電圧)や長 さ (パルス幅)により様々に変化しうる。よって、抵抗変化型記憶装置に保存されるデ ータは、離散的に複数の値を取りうるもの(複値データ)であれば、どのようなものであ つてもよい。例えば、 AR2を複数設定し、各メモリセルが 2より大きい値 (例えば 4や 8 )を記憶可能な、いわゆる「多値メモリ」として構成されてもよい。かかる構成では、回 路のさらなる集積ィ匕が可能となる。 In the above description, the resistance variable element is used as a memory cell for storing binary data. Using. However, the resistance level (AR2) can vary depending on the intensity (voltage) and length (pulse width) of the applied voltage pulse. Therefore, the data stored in the resistance change storage device may be any data as long as it can take a plurality of values discretely (multi-value data). For example, a plurality of AR2 may be set, and each memory cell may be configured as a so-called “multi-value memory” that can store a value larger than 2 (for example, 4 or 8). With such a configuration, further integration of the circuit becomes possible.
[0099] 一時書き込みおよび追加書き込みは、必ずしも単一の電圧パルスによる書き込み である必要はなぐそれぞれの書き込みが複数回に分けて行われてもよい。ただし、 高速の書き込みのためには、少なくとも一時書き込みでは電圧ノ ルスが 1回だけ印 カロされるように構成されて 、ることが好まし 、。  [0099] The temporary writing and the additional writing do not necessarily have to be performed by a single voltage pulse, and each writing may be performed in a plurality of times. However, for high-speed writing, it is preferable to configure voltage voltage to be printed only once, at least for temporary writing.
[0100] 一時書き込み用短パルス生成回路 106と追加書き込み用長パルス生成回路 108 の 2個のパルス生成回路を備えることは必ずしも必要ではなぐ例えば 1個のパルス 生成回路を備える構成であってもよい。力かる場合には、例えば、一時書き込み用の パルス幅と追加書き込み用のパルス幅を等しくしてもよい。同じ幅のパルスを用いて [0100] It is not always necessary to provide the two pulse generation circuits of the temporary write short pulse generation circuit 106 and the additional write long pulse generation circuit 108. For example, the configuration may include one pulse generation circuit. . For example, the pulse width for temporary writing may be equal to the pulse width for additional writing. With same width pulse
、印加する回数を変化させることで、一時書き込みと追加書き込みの深さ (抵抗値の 変化幅)が調整されてもよい。パルス生成回路が 1個の場合には書き込み用パルス 切換回路 110は必須ではない。制御回路 102の制御によって一時書き込み動作と 追加書き込み動作とが切り替えられてもよ 、。 By changing the number of times of application, the depth of the temporary write and the additional write (resistance change width) may be adjusted. When there is one pulse generation circuit, the write pulse switching circuit 110 is not essential. The temporary write operation and the additional write operation may be switched under the control of the control circuit 102.
[0101] 上述の説明では、抵抗変化型素子に電圧パルスが印加され、電圧パルスの累積 印加量に基づいて抵抗値が変化し、データの書き込みが行われた。しかし、抵抗値 を変化させる方法は必ずしも電圧パルスの印加に限られず、他の方法であってもよ V、。所定の態様のエネルギーの累積投入量に応じて抵抗値を変化させるものであれ ば、どのような方法でもよい。例えば、電流の累積通電量に基づいて抵抗値を変化さ せることでデータの書き込みが行われてもよ 、。  [0101] In the above description, a voltage pulse is applied to the resistance variable element, the resistance value changes based on the cumulative amount of voltage pulse applied, and data is written. However, the method of changing the resistance value is not necessarily limited to the application of a voltage pulse. Any method may be used as long as the resistance value is changed according to the cumulative amount of energy input in a predetermined mode. For example, data may be written by changing the resistance value based on the cumulative amount of current.
[0102] なお、抵抗値の変化パターンにはさまざまなものが考えられるが、一般的に、抵抗 値がエネルギーの累積投入量に応じて単調増加するものであればょ 、。かかる変ィ匕 パターンでは、短時間のエネルギー投入により一時書き込みを行い、システムの負 荷が減ったときに追加書き込みを行うことで、同様な効果 (見かけ上の書き込み速度 向上など)が得られる。 [0102] There are various resistance value change patterns, but generally the resistance value monotonically increases with the cumulative energy input. In such a change pattern, temporary writing is performed by short-time energy input, and additional writing is performed when the load on the system is reduced. Improvement).
2段階の書き込みは、書き込まれているデータの値を" 0"から" 1"へ、あるいは、 "1 "から" 0"へと更新 (変更)する時に行われればよぐ書き込まれるデータが同じ値で あるときは書き込みが行われなくてもよい。書き込む値と書き込まれる値が同じ力否か を書き込む前に判定し、同じ値である場合には書き込みを行わないこととしてもよい。 動作を単純ィ匕する上では、書き込まれるデータが同じ値であっても、書き込みが行わ れてもよい。力かる場合には、一時書き込み動作および追加書き込み動作によっても 、抵抗値はほぼ変化しないことになる。すなわち、一時書き込み動作および追加書き 込み動作にぉ 、て、抵抗値がほとんど変化しな 、場合もある。  In the two-stage writing, if the value of the written data is updated (changed) from "0" to "1" or from "1" to "0", the same data can be written. If it is a value, writing may not be performed. It is possible to determine before writing whether the value to be written and the value to be written have the same power or not, and if the values are the same, the writing may not be performed. In order to simplify the operation, writing may be performed even if the data to be written has the same value. In the case where power is applied, the resistance value hardly changes even by the temporary write operation and the additional write operation. That is, there are cases where the resistance value hardly changes during the temporary write operation and the additional write operation.
抵抗変化層の材料としては、印加される電圧パルスの幅が長 ヽほど抵抗値の変化 量が大きくなり、電圧パルスの累積印加量に対して抵抗値が最初は急速に変化し、 その後徐々に飽和する(所定の値に収束する)ように変化するものであればどのよう なものでもよい。本実施形態は、特に鉄酸化物からなる材料、あるいは鉄酸化物に不 純物として亜鉛 (Zn)などの遷移金属を含む材料を抵抗変化層の材料とする場合に 好適である。  As the material of the resistance change layer, as the width of the applied voltage pulse is longer, the amount of change in the resistance value becomes larger, and the resistance value first changes rapidly with respect to the cumulative applied voltage pulse, and then gradually. Any material that changes so as to saturate (converge to a predetermined value) may be used. This embodiment is particularly suitable when a material made of iron oxide or a material containing a transition metal such as zinc (Zn) as an impurity in the iron oxide is used as the material of the resistance change layer.
[0103] 追加書き込みにより達成される抵抗値や一時書き込みにより達成される抵抗値は、 必要とされるデータ保持時間や素子のデータ保持特性などに基づいて適宜決定さ れうる。追加書き込みにより達成される抵抗値は必ずしも変化量が飽和した場合の抵 抗値である必要はない。目標とする(追加書き込みにより達成される)抵抗値の変化 量よりも小さいが一時的なデータの保持には十分な抵抗値の変化量を、より短い電 圧パルスを印加することで実現することにより、高速の一時書き込みが可能となる。  [0103] The resistance value achieved by the additional writing and the resistance value achieved by the temporary writing can be appropriately determined based on the required data retention time, the data retention characteristics of the element, and the like. The resistance value achieved by additional writing does not necessarily have to be the resistance value when the amount of change is saturated. Realize the amount of change in resistance value that is smaller than the target amount of change (achieved by additional writing) but sufficient for temporary data retention by applying a shorter voltage pulse. Thus, high-speed temporary writing becomes possible.
[0104] 本実施形態では、不揮発性記憶素子として電圧パルス印加により抵抗値が変化す る抵抗変化型素子を用いていたが、不揮発性記憶素子として、磁界を用いて抵抗値 を変化させることにより情報を記憶する MRAM (Magnetic RAM)、熱を用いて抵 抗値を変化させることにより情報を記憶する OUM (Ovonic Unified Memory)や PRAM等を用いても良!ヽのは言うまでも無!、。  In this embodiment, a resistance variable element whose resistance value is changed by application of a voltage pulse is used as the nonvolatile memory element. However, by changing the resistance value using a magnetic field as the nonvolatile memory element. You can use MRAM (Magnetic RAM) to store information, OUM (Ovonic Unified Memory) or PRAM, etc. to store information by changing resistance values using heat! ,.
(第 2実施形態)  (Second embodiment)
[装置構成] 図 9は、本発明の第 2実施形態の抵抗変化型記憶装置の概略構成を示すブロック 図である。以下、図 9を参照しながら、本実施形態の抵抗変化型記憶装置の構成お よび動作の概略について説明する。なお、第 2実施形態の抵抗変化型記憶装置は、 第 1実施形態の抵抗変化型記憶装置の制御回路に追加書き込みシーケンス制御回 路 224を追加し、制御回路力も制御装置へ追加書き込み実行中フラグ FGを出力す るようにしたものであり、その他の構成については第 1実施形態と同様である。よって 、共通する構成要素については同一の名称を付して説明を省略する。 [Device configuration] FIG. 9 is a block diagram showing a schematic configuration of the resistance variable memory apparatus according to Embodiment 2 of the present invention. The outline of the configuration and operation of the resistance change type storage device of the present embodiment will be described below with reference to FIG. Note that the resistance change type storage device of the second embodiment adds an additional write sequence control circuit 224 to the control circuit of the resistance change type storage device of the first embodiment, and the control circuit power is also added to the control device as an additional write execution flag. FG is output, and other configurations are the same as in the first embodiment. Therefore, common components are given the same names and description thereof is omitted.
[0105] 追加書き込みシーケンス制御回路 224は、追加書き込み動作の制御を行うための 回路であり、第 1実施形態では制御装置 180が行っていた追加書き込み動作の制御 を、抵抗変化型記憶装置の内部で実現するものである。  [0105] The additional write sequence control circuit 224 is a circuit for controlling the additional write operation. In the first embodiment, the control of the additional write operation performed by the control device 180 is performed in the resistance change type storage device. This is what is achieved.
[0106] 追加書き込み実行中フラグ FGは、追加書き込み中であるか否かに基づいて、制御 回路 202外部の制御装置(図示せず:第 1実施形態の制御装置 180に相当)へと出 力する 2値信号である。追加書き込み実行中フラグ FG力 レベルにある場合には 、抵抗変化型記憶装置 200が追加書き込み中であって、外部からのデータ受付が不 可能であることを示す。追加書き込み実行中フラグ FGが" L"レベルにある場合には 、抵抗変化型記憶装置 200が追加書き込み中ではなぐ外部からのデータ受付 (一 時書き込み)が可能であることを示す。  The additional write execution flag FG is output to a control device outside the control circuit 202 (not shown: corresponding to the control device 180 of the first embodiment) based on whether additional writing is being performed. This is a binary signal. When the additional writing execution flag is at the FG force level, it indicates that the resistance change type storage device 200 is performing additional writing and data reception from the outside is impossible. When the additional write execution flag FG is at the “L” level, it indicates that the resistance change storage device 200 can accept data from outside (temporary write) during the additional write.
本実施形態においても、図 2に示したように、制御装置を備えた抵抗変化型データ 記録メディアや抵抗変化型記憶装置として構成することができる。  Also in this embodiment, as shown in FIG. 2, it can be configured as a resistance change type data recording medium or resistance change type storage device provided with a control device.
[動作]  [Operation]
抵抗変化型記憶装置 200によるデータの読み出し動作については、第 1実施形態 と同様であるので説明を省略する。本実施形態の抵抗変化型記憶装置 200の特徴 は、シーケンス制御回路 224および追加書き込み実行中フラグ FGを利用して、自律 的に追加書き込みを行う点にある。以下、抵抗変化型記憶装置 200の書き込み動作 について説明する。  Since the data read operation by the resistance change storage device 200 is the same as that of the first embodiment, the description thereof is omitted. A feature of the resistance change type storage device 200 of the present embodiment is that additional writing is autonomously performed using the sequence control circuit 224 and the additional writing execution flag FG. Hereinafter, the write operation of the resistance change storage device 200 will be described.
[0107] 図 10は、本発明の第 2実施形態の抵抗変化型記憶装置による書き込み動作を示 すタイミングチャートである。図に示すように、チップセレクト CSが" H"レベルであると きは、外部のシステム力 の制御装置を介した入力に従って、一時書き込みが行わ れる。すなわち、ライトパルス WPのタイミングに合わせて、入力されたアドレス AD (A 0、 Α1、 Α2· · のメモリセルに対し、入力されたデータ DIN (DO、 Dl、 D2- · が書 き込まれる。メモリセルに対する一時書き込みの動作については第 1実施形態(図 6) と同様であるので説明を省略する。 FIG. 10 is a timing chart showing a write operation by the resistance change memory device according to the second embodiment of the present invention. As shown in the figure, when chip select CS is at "H" level, temporary writing is performed according to the input via the external system power controller. It is. That is, the input data DIN (DO, Dl, D2-... Is written to the memory cell of the input address AD (A 0, Α1, Α2,...) In accordance with the timing of the write pulse WP. Since the temporary write operation to the memory cell is the same as that of the first embodiment (FIG. 6), description thereof is omitted.
チップセレクト CSが" L"レベルになると、追加書き込みシーケンス制御回路 224は 、追加書き込み動作を行う。追加書き込み動作時には、追加書き込みシーケンス制 御回路 224がー時書き込みフラグ領域 216のデータを出力データラッチ 222を介し て読み出す(図 7のステップ S201に相当)。このとき、一時書き込みフラグ領域 216 力も読み出されたデータに一つでも" 0"の値("H")が含まれている場合には、一時 書き込み状態のセルを含むセクタが少なくとも一つは存在することを意味する。そこ で、制御回路 202は追加書き込み実行中フラグ FGとして、 "H"レベルを出力し、追 加書き込み動作を行う。なお、追加書き込みの動作については第 1実施形態(図 7)と 同様であるので説明を省略する。追加書き込み動作が終了すると、制御回路 202は 追加書き込み実行中フラグ FGとして、 "L"レベルを出力する。追加書き込み実行中 フラグ FGとして、 "H"レベルが出力されている間は、外部の制御装置やシステムは 抵抗変化型記憶装置 200へのデータ入力(書き込み指令)を行わな!/ヽ。  When the chip select CS becomes “L” level, the additional write sequence control circuit 224 performs an additional write operation. During the additional write operation, the additional write sequence control circuit 224 reads the data in the normal write flag area 216 via the output data latch 222 (corresponding to step S201 in FIG. 7). At this time, if even one temporary read flag area 216 includes the value of “0” (“H”), at least one sector including a temporarily written cell is included. It means to exist. Therefore, the control circuit 202 outputs “H” level as the additional write execution flag FG, and performs the additional write operation. Note that the additional write operation is the same as that of the first embodiment (FIG. 7), and a description thereof will be omitted. When the additional write operation is completed, the control circuit 202 outputs “L” level as the additional write execution flag FG. While the “H” level is being output as the additional write execution flag FG, the external control device or system does not input data (write command) to the resistance change storage device 200! / ヽ.
以上のように、抵抗変化型記憶装置 200では、チップセレクト CSに従って一時書き 込みおよび追加書き込みが行われる。この場合、複数の抵抗変化型記憶装置 200を 備えた抵抗変化型記憶装置アレイが構成されてもよい。かかる構成では、抵抗変化 型記憶装置アレイの外部にある制御装置が、それぞれの抵抗変化型記憶装置 200 へチップセレクト CSを入力する。制御装置は、チップセレクト CSを切り換えることによ り、複数の抵抗変化型記憶装置 200のうちからいずれか一つを選択する。すなわち、 選択された抵抗変化型記憶装置 200には、チップセレクト CSとして" H"レベルの信 号が入力され、制御装置の入力に従って、一時書き込みが行われる。選択されなか つた抵抗変化型記憶装置 200には、チップセレクト CSとして" L"レベルの信号が入 力され、追加書き込みシーケンス制御回路 224により追加書き込みが行われる。  As described above, in resistance change memory device 200, temporary writing and additional writing are performed in accordance with chip select CS. In this case, a resistance change type storage device array including a plurality of resistance change type storage devices 200 may be configured. In such a configuration, a control device outside the resistance change type storage device array inputs the chip select CS to each resistance change type storage device 200. The control device selects one of the plurality of resistance change storage devices 200 by switching the chip select CS. That is, an “H” level signal is input as the chip select CS to the selected resistance change storage device 200, and temporary writing is performed according to the input of the control device. The resistance change type memory device 200 that has not been selected receives an “L” level signal as the chip select CS, and the additional write sequence control circuit 224 performs additional writing.
[効果]  [Effect]
抵抗変化型記憶装置 200は、抵抗変化型記憶装置 100と同様の効果が得られるこ とに加え、以下のような効果を奏する。すなわち、外部の制御装置により追加書き込 み動作を制御する必要がなくなるため、ユーザの利便性が向上する。また、追加書き 込み実行中フラグ FGとして、 "H"レベルが出力されている間は、外部の制御装置や システムがデータの書き込み指令を行わな 、ことで、誤動作を防止できる。 The resistance change type memory device 200 has the same effect as the resistance change type memory device 100. In addition, the following effects are achieved. That is, it is not necessary to control the additional write operation by an external control device, so that convenience for the user is improved. In addition, while the "H" level is being output as the additional write execution flag FG, malfunctions can be prevented by preventing the external controller or system from issuing a data write command.
[変形例]  [Modification]
上述の説明では、チップセレクトが" L"レベルの期間を利用して追加書き込み動作 を行うこととした力 例えば、 BGO (Back Ground Operation)のように、あるバン クを読み出しながら、ノ ックグラウンドで別のバンクを追加書き込みし、実効上、追カロ 書き込み動作が見えなくなるようにしてもょ 、。  In the above description, the power of performing an additional write operation using the period when the chip select is at the “L” level. For example, BGO (Back Ground Operation), while reading a certain bank, separate it in the knock ground. Write additional banks, and in effect, make additional write operations invisible.
[0109] また、上述の説明では、追加書き込み動作中に追加書き込み実行中フラグを利用 して、制御信号や新たな書き込みデータを受付けることができな 、ことを外部の制御 装置に伝達したが、追加書き込み動作中に読み出しまたは書き込み命令が入力され れば、追加書き込み動作を中断し、読み出しまたは一時書き込み動作を優先的に実 行し、割り込んだ読み出しや一時書き込み動作が完了後、中断していた追加書き込 み動作を再開することとしてもよい。力かる動作によれば、上位システムに書き込みデ ータが滞留することがなくなる。  [0109] In the above description, the additional write execution flag is used during the additional write operation, and the control signal and new write data cannot be received. If a read or write command is input during the additional write operation, the additional write operation is interrupted, the read or temporary write operation is preferentially executed, and interrupted after the interrupted read or temporary write operation is completed. The additional write operation may be resumed. With this powerful operation, write data does not stay in the host system.
[0110] 本実施形態についても、抵抗変化型記憶装置と制御装置を組合せることで抵抗変 化型データ記録メディアを構成してもよ ヽし、さらにシステムを加えて抵抗変化型装 置を構成してもよい。  [0110] Also in this embodiment, a resistance change type data recording medium may be configured by combining a resistance change type storage device and a control device, and a resistance change type device is configured by adding a system. May be.
[0111] なお、本発明はその要旨を逸脱しない範囲で種々変形して実施できることは言うま でもない。  [0111] Needless to say, the present invention can be variously modified and implemented without departing from the scope of the invention.
(第 3実施形態)  (Third embodiment)
[装置構成]  [Device configuration]
図 11は、本発明の第 3実施形態の抵抗変化型記憶装置の概略構成を示すブロッ ク図である。以下、図 11を参照しながら、本実施形態の抵抗変化型記憶装置の構成 および動作の概略について説明する。第 2実施形態の抵抗変化型記憶装置は、外 部からの信号に基づいて追加書き込みを行うものであつたのに対し、第 2実施形態の 抵抗変化型記憶装置は、第 3実施形態の抵抗変化型記憶装置は、その内部に備え るタイマー (カレンダー)に基づいて追加書き込みを行う。なお、第 3実施形態の抵抗 変化型記憶装置は、第 1実施形態の抵抗変化型記憶装置の制御回路に追加書き込 みシーケンス制御回路 324を追カ卩し、さらに追カ卩書き込み用タイマー 326を追カ卩した ものであり、その他の構成については第 1実施形態と同様である。よって、共通する 構成要素については同一の名称を付して説明を省略する。 FIG. 11 is a block diagram showing a schematic configuration of the resistance variable memory apparatus according to Embodiment 3 of the present invention. Hereinafter, with reference to FIG. 11, an outline of the configuration and operation of the resistance change storage device according to the present embodiment will be described. The resistance change type storage device of the second embodiment performs additional writing based on a signal from the outside, whereas the resistance change type storage device of the second embodiment is the resistance change type of the third embodiment. The changeable storage device is equipped inside Additional writing based on the timer (calendar). The resistance change type storage device of the third embodiment adds an additional write sequence control circuit 324 to the control circuit of the resistance change type storage device of the first embodiment, and further adds an additional write write timer 326. The other configurations are the same as those in the first embodiment. Therefore, common components are given the same names and description thereof is omitted.
[0112] 追加書き込みシーケンス制御回路 324は、制御回路 302に組み込まれた、追加書 き込み動作 (後述)の制御を行うための回路である。  The additional write sequence control circuit 324 is a circuit incorporated in the control circuit 302 for controlling an additional write operation (described later).
[0113] 制御回路 302は、追加書き込みシーケンス制御回路 324を備え、かつ一時書き込 み実行中フラグ FG信号を外部の制御装置へと出力する他は、制御回路 102と同様 である。  The control circuit 302 is the same as the control circuit 102 except that it includes an additional write sequence control circuit 324 and outputs a temporary write execution flag FG signal to an external control device.
[0114] 追加書き込み用タイマー 326 (例えば、奇数個のインバータを直列に接続したもの) は、制御回路 302 (追加書き込みシーケンス制御回路 324)へと追加書き込み動作ィ ネーブル信号 AP (後述)を出力する。なお、追加書き込み用タイマー 326は、バソコ ンなどのシステムが持っている日時情報などを用いて、長い周期を検出するように構 成された回路であってもよ!/、。  [0114] The additional write timer 326 (for example, an odd number of inverters connected in series) outputs an additional write operation enable signal AP (described later) to the control circuit 302 (additional write sequence control circuit 324). . The additional write timer 326 may be a circuit configured to detect a long cycle by using date and time information possessed by a system such as a personal computer! /.
[0115] 本実施形態では、追加書き込みシーケンス制御回路 324と、追加書き込み用タイ マー 326とで、追加書き込みシーケンス制御装置が構成される。  In this embodiment, the additional write sequence control circuit 324 and the additional write timer 326 constitute an additional write sequence control device.
[0116] 本実施形態においても、図 2に示したような抵抗変化型データ記憶メディアおよび 抵抗変化型装置が構成される。  Also in this embodiment, the resistance variable data storage medium and the resistance variable device as shown in FIG. 2 are configured.
[0117] 図 12は、抵抗変化型素子の抵抗値の経時変化の一例を示す図である。図 12にお いて、横軸は経過時間 (T)を対数軸 (logT)によりプロットしている。図 12に示すよう に、抵抗値は書き込まれた変化を打ち消す方向へと経時変化 (減衰)する。減衰量の 絶対値を AR'とすると、 AR'は logTにほぼ比例し、抵抗値は logTに対して直線状 に変化する。そこで、 AR1の変化は、少なくとも、短期間 (例えば、 1週間、 1ヶ月、 1 年など)のデータの保存性は十分に確保できるように設定されることが好ま 、。すな わち、一時的に書き込まれたデータは、少なくとも一時的な書き込みの完了から追カロ 的な書き込みを行うまでの期間だけ保持されることが好ましい。実際の動作やシステ ムの構成にもよるが、一時書き込み状態のままで電源が切られ、抵抗値が減衰する 場合があることも考慮すると、一時書き込みによるデータ保存の保証期間 Ttauは 1週 間以上であることが好ましい。一時的に書き込まれたデータは、後で行われる追加的 な書き込みにより、さらに保存性のよい状態に書き込まれる。よって、 ARlの大きさは 、長期間(例えば、 10年)に亘るデータの保存性を保証するためには十分でなくても よい。 FIG. 12 is a diagram showing an example of a change with time of the resistance value of the resistance variable element. In Fig. 12, the horizontal axis plots elapsed time (T) with a logarithmic axis (logT). As shown in Fig. 12, the resistance value changes (decays) with time in a direction that cancels the written change. If the absolute value of the attenuation is AR ', AR' is almost proportional to logT, and the resistance value changes linearly with respect to logT. Therefore, it is preferable that the change in AR1 is set so that at least a short period of data (for example, one week, one month, one year, etc.) can be secured. In other words, it is preferable that the temporarily written data is retained at least during the period from the completion of the temporary writing to the additional writing. Depending on the actual operation and system configuration, the power is turned off in the temporary write state, and the resistance value decreases. Considering that there may be cases, it is preferable that the guarantee period Ttau for data storage by temporary writing is one week or longer. Temporarily written data is written in a more storable state by additional writing performed later. Therefore, the size of ARl may not be sufficient to guarantee the preservation of data over a long period (eg, 10 years).
[0118] 所定の周期が到来し、短パルスによる一時書き込みが行われていない状態になる と、追加書き込みが行われる(タイミング調整の詳細については後述)。追加書き込み では、長パルスとして、短パルスと長パルスの印加時間の合計が Tp2になるように、 所定の大きさの電圧が印加される。すなわち長パルスの幅は、 Τρ2— Tplとなる。長 パルスの印加により、抵抗値の変化量は AR2となる(抵抗値が新値に対応する値と なる)。 Tp2は、 AR2が長期間(例えば、 10年)に亘るデータの保存性を保証するた めに十分な大きさとなるように決定されることが好ましい。追加書き込みが行われ、デ ータの保存性が保証された状態を、以下、追加書き込み状態と呼ぶ。  [0118] When a predetermined period arrives and temporary writing with a short pulse is not performed, additional writing is performed (details of timing adjustment will be described later). In additional writing, a voltage of a predetermined magnitude is applied as a long pulse so that the total application time of the short pulse and the long pulse is Tp2. That is, the width of the long pulse is Τρ2-Tpl. By applying a long pulse, the amount of change in the resistance value becomes AR2 (the resistance value becomes a value corresponding to the new value). Tp2 is preferably determined so that AR2 is large enough to guarantee data storage over a long period of time (eg, 10 years). A state in which additional writing is performed and data storage stability is guaranteed is hereinafter referred to as an additional writing state.
[0119] なお、一時書き込みと追加書き込みの間に経過する時間が長くなると、その間に経 時変化により が減少する(図 12参照)。力かる効果が問題となる場合には、長パ ルスを Tp2— Tplよりも所定量だけ長くすることが好ましい。また、長パルスを印加し 始めてから、抵抗値が変化し始めるまで時間差がある場合には、その分だけパルス 幅を長くすることが好ましい。  [0119] Note that if the time elapsed between the temporary write and the additional write becomes longer, will decrease due to the change over time (see Fig. 12). If the effect is strong, it is preferable to make the long pulse longer than Tp2-Tpl by a predetermined amount. If there is a time difference from the start of applying a long pulse until the resistance value starts to change, it is preferable to increase the pulse width accordingly.
[0120] 本実施形態においても、図 2に示したように、制御装置を備えた抵抗変化型データ 記録メディアや抵抗変化型記憶装置として構成することができる。  Also in the present embodiment, as shown in FIG. 2, it can be configured as a resistance change type data recording medium or resistance change type storage device provided with a control device.
[0121] [動作]  [0121] [Operation]
抵抗変化型記憶装置 300によるデータの読み出し動作については、第 1実施形態 と同様であるので説明を省略する。一時書き込み動作についても、第 1実施形態と同 様であるので、詳細な説明を省略する(図 6参照)。なお、本実施形態において一時 書き込み動作は、制御装置 180からのデータ入力によって随時行われる。  Since the data read operation by the resistance change type storage device 300 is the same as that of the first embodiment, the description thereof is omitted. Since the temporary write operation is the same as that in the first embodiment, a detailed description thereof is omitted (see FIG. 6). In the present embodiment, the temporary write operation is performed at any time by data input from the control device 180.
[0122] 本実施形態の抵抗変化型記憶装置 300の特徴は、書き込みシーケンス制御回路 1 24と追加書き込み用タイマー 126とが、外部にある制御装置 180などの指令に基づ かず、自律的に追加書き込み動作を行う点にある。 [0123] 図 13は、本発明の第 3実施形態における追加書き込み動作の概略を示すフローチ ヤートである。以下、図 13を参照しつつ、第 3実施形態における追加書き込み動作に ついて説明する。本実施形態では、追加書き込みシーケンス制御回路 324と追加書 き込み用タイマー 326とが、外部にある制御装置(図 2の制御装置 180に相当)など の指令に基づかず、自律的に追加書き込み動作を行う。すなわち、追加書き込み用 タイマー 326は、抵抗変化型記憶装置 300に電力が供給されている間、追加書き込 み動作イネ一ブル信号 APを出力する。追加書き込み動作イネ一ブル信号 APは、一 定期間(1日、 1週間、 1ヶ月、 1年など)の周期で所定時間 (数秒、数分など)の間、パ ルス状に" H"レベルにセットされ、その他は" L"レベルにセットされる。該周期は、一 時書き込み状態にある抵抗変化型素子が十分な信頼性を持ってデータを保持でき る期間に設定されることが好ましい。なお、追加書き込み動作イネ一ブル信号 APが" L"レベルになると、追カ卩書き込み動作は強制的に終了される。よって、 "H"レベルに 維持される時間は、 ^モリセル 139について追加書き込みが行うことが可能な時間 に調整されることが好ましい。制御回路 302は、追加書き込み動作イネ一ブル信号 A Pが" H"レベルになると、制御回路 302が追加書き込みモードを選択し、その内部に ある追加書き込みシーケンス制御回路 324の制御に従って、追加書き込み動作が開 始される (スタート)。 [0122] The variable resistance storage device 300 of the present embodiment is characterized in that the write sequence control circuit 124 and the additional write timer 126 are autonomously added without being based on a command from the external control device 180 or the like. The point is to perform a write operation. FIG. 13 is a flowchart showing an outline of the additional write operation in the third embodiment of the present invention. Hereinafter, the additional write operation in the third embodiment will be described with reference to FIG. In the present embodiment, the additional write sequence control circuit 324 and the additional write timer 326 are not based on a command from an external control device (corresponding to the control device 180 in FIG. 2) or the like and autonomously perform an additional write operation. I do. That is, the additional write timer 326 outputs the additional write operation enable signal AP while power is supplied to the resistance change storage device 300. The additional write operation enable signal AP is pulsed at the “H” level for a predetermined period (several seconds, minutes, etc.) with a fixed period (1 day, 1 week, 1 month, 1 year, etc.). And others are set to the "L" level. The period is preferably set to a period during which the variable resistance element in the temporarily written state can hold data with sufficient reliability. When the additional write operation enable signal AP becomes “L” level, the additional write operation is forcibly terminated. Therefore, it is preferable that the time during which the “H” level is maintained be adjusted to a time during which additional writing can be performed for the Mori cell 139. When the additional write operation enable signal AP becomes “H” level, the control circuit 302 selects the additional write mode, and the additional write operation is controlled according to the control of the additional write sequence control circuit 324 in the control circuit 302. Start (Start).
[0124] 最初に、制御回路 302から出力される追加書き込み実行中フラグ FGが" H"レベル にセットされ (ステップ S301)、各セクタに対応した一時書き込みフラグ領域 116のデ ータが読み出されて、値が" 0"であるフラグ (フラグ情報力 'Η"であるフラグ)が存在 する力否かの判定が行われる(ステップ S302)。なお、一時書き込みフラグ領域 116 のデータ読み出し動作については、メモリセルアレイ 118の読み出し動作と同様であ るので説明を省略する。ステップ S302で NOと判定された場合には、全てのメモリセ ルが追加書き込み状態にあるので、追加書き込み実行中フラグ FGが" L"レベルに セットされ (ステップ S315)、追加書き込み動作が終了される(エンド)。一方、ステツ プ S302で YESと判定された場合には、制御装置 180の制御に従って、一連の追加 書き込み動作が行われる (ステップ S303〜)。  First, the additional write execution flag FG output from the control circuit 302 is set to the “H” level (step S301), and the data in the temporary write flag area 116 corresponding to each sector is read. Thus, a determination is made as to whether or not there is a flag having a value of “0” (flag information flag “Η”) (step S302). The description is omitted because it is the same as the read operation of the memory cell array 118. If NO is determined in step S302, all the memory cells are in the additional write state, so the additional write execution flag FG is set to “ L "level is set (step S315), and the additional write operation is terminated (end). On the other hand, if YES is determined in step S302, a series of additional operations are performed according to the control of the controller 180. Operation is performed write attempts (step S303~).
[0125] まず、 "0"であるフラグに対応するセクタ(以下、追加書き込み対象セクタ)に記録さ れている全てのデータ("1"または" 0")が読み出され、出力データラッチ 122 (書き込 みデータ記憶装置)に記憶される (ステップ S303)。 [0125] First, it is recorded in the sector corresponding to the flag that is "0" (hereinafter referred to as additional write target sector). All the data (“1” or “0”) read is read and stored in the output data latch 122 (write data storage device) (step S303).
[0126] 次に、追加書き込み対象セクタのセクタ書き込み番地を示す変数 Nに 0が代入され [0126] Next, 0 is assigned to the variable N indicating the sector write address of the additional write target sector.
(ステップ S304)、記憶されたデータのうち単位書き込みビット数分のデータ(例えば 16ビット)が取出され、出力データラッチ 122から書き込み回路 112へと転送される( ステップ S305)。  (Step S304) Of the stored data, data corresponding to the number of unit write bits (for example, 16 bits) is extracted and transferred from the output data latch 122 to the write circuit 112 (Step S305).
[0127] データが書き込み回路 112へ送られると、該セクタの N番目のセクタ書き込み番地( セクタ書き込み番地 N)に対応するワード線 134に活性ィ匕電圧 (例えば 3. 3V)が印 加され、他のワード線 134に不活性ィ匕電圧 (例えば OV)が印加される。力かる動作に より、データの追加書き込みをすべきセルの選択トランジスタ 136が導通状態となる( ステップ S306)。また、このとき対応する NMOSトランジスタ 144も導通状態にされる  [0127] When data is sent to the write circuit 112, an active voltage (eg, 3.3V) is applied to the word line 134 corresponding to the Nth sector write address (sector write address N) of the sector, An inactive voltage (for example, OV) is applied to the other word line 134. With this operation, the selection transistor 136 of the cell to which additional data is to be written is turned on (step S306). At this time, the corresponding NMOS transistor 144 is also turned on.
[0128] 次に、書き込み回路 112へ転送された書き込みデータ (セクタ書き込み番地 Nのセ ルに記憶されたデータ)中に" 1"があるか否かの判定が行われ (ステップ S307)、 YE Sと判定されれば、 "1"を追加書き込みするべきセル (メモリセルアレイ 218のセル)に 対して、書き込み回路 112が正パルス印加用にセットされる (ステップ S308)。すなわ ち、該セルについては、電圧印加回路 140側に + 3. 3Vが、電圧印加回路 142側に OVが印加されるように書き込み回路 112の設定が行われる。 [0128] Next, it is determined whether or not "1" is present in the write data transferred to the write circuit 112 (data stored in the cell at the sector write address N) (step S307). If it is determined as S, the write circuit 112 is set for applying a positive pulse to the cell to which “1” is to be additionally written (cell of the memory cell array 218) (step S308). That is, for the cell, the write circuit 112 is set so that +3.3 V is applied to the voltage application circuit 140 side and OV is applied to the voltage application circuit 142 side.
[0129] 次に、書き込みデータ中に" 0"があるか否かの判定が行われ (ステップ S309)、 YE Sと判定されれば、 "0"を追加書き込みするべきセル (メモリセルアレイ 218のセル)に 対して、書き込み回路 112が負パルス印加用にセットされる (ステップ S310)。すなわ ち、該セルについては、電圧印加回路 140側に OV力 電圧印加回路 142側に + 3. 3Vが印加されるように書き込み回路 112の設定が行われる。なお、ステップ S307に おいて NOと判定された場合には、全てのセルに" 0"を追カ卩書き込みすることになる ため、ステップ S310に進んで、全てのセルに対して、書き込み回路 112が負パルス 印加用にセットされる。  Next, it is determined whether or not “0” is present in the write data (step S309). If it is determined as YE S, a cell to be additionally written with “0” (in the memory cell array 218). For the cell), the write circuit 112 is set to apply a negative pulse (step S310). In other words, for the cell, the write circuit 112 is set so that OV force is applied to the voltage application circuit 140 side and +3.3 V is applied to the voltage application circuit 142 side. If NO is determined in step S307, “0” is additionally written to all the cells. Therefore, the process proceeds to step S310, and the writing circuit 112 is written to all the cells. Is set for negative pulse application.
[0130] 次に、セクタ書き込み番地 Nに対応するメモリセル 139に、追加書き込み用長パル ス生成回路 108の出力する電圧パルスが印加される(ステップ S311)。なお、ステツ プ S309において NOと判定された場合にも、ステップ S311が実行される。 Next, the voltage pulse output from the additional write long pulse generation circuit 108 is applied to the memory cell 139 corresponding to the sector write address N (step S 311). In addition, Step S311 is also executed if NO is determined in step S309.
[0131] ステップ S311では、 "1"を書き込むべきセルに対しては、電圧印加回路 140からビ ット線 130と選択トランジスタ 136とを経由して抵抗変化型素子 138の一端に + 3. 3 V、電圧印加回路 142から NMOSトランジスタ 144とソース線 132とを経由して抵抗 変化型素子 138の他端に 0Vの電圧が印加される(正ノ ルス追カ卩書き込み)。かかる 電圧印加により、抵抗変化型素子 138の抵抗状態は、浅い高抵抗状態 (例えば、 28 7k Ω )から深い高抵抗状態 (例えば、 1. 18Μ Ω )へと遷移する。追加書き込みにより 、抵抗変化型素子 138の抵抗状態は安定して高抵抗状態を維持することが可能とな り、データの保存性が向上する。  [0131] In step S311, for the cell to which "1" is to be written, +3.3 from the voltage application circuit 140 via the bit line 130 and the selection transistor 136 to one end of the resistance variable element 138. A voltage of 0 V is applied from the V and voltage application circuit 142 to the other end of the resistance variable element 138 via the NMOS transistor 144 and the source line 132 (positive Norse tracking write). By applying such a voltage, the resistance state of the resistance variable element 138 changes from a shallow high resistance state (for example, 287 kΩ) to a deep high resistance state (for example, 1.18ΜΩ). By the additional writing, the resistance state of the resistance variable element 138 can be stably maintained in the high resistance state, and data storability is improved.
[0132] また、 "0"を書き込むべきセルに対しては、電圧印加回路 140からビット線 130と選 択トランジスタ 136とを経由して抵抗変化型素子 138の一端に 0V、電圧印加回路 14 2から NMOSトランジスタ 144とソース線 132とを経由して抵抗変化型素子 138の他 端に + 3. 3Vの電圧が印加される。すなわち、正パルス追カ卩書き込みと逆極性のパ ルスが印加される(負ノ ルス追加書き込み)。カゝかる電圧印加により、抵抗変化型素 子 138の抵抗状態は、浅い低抵抗状態 (例えば、 113k Ω )から深い低抵抗状態 (例 えば、 60k Ω )へと遷移する。追加書き込みにより、抵抗変化型素子 138の抵抗状態 は安定して低抵抗状態を維持することが可能となり、データの保存性が向上する。  [0132] For the cell to which "0" is to be written, 0 V is applied to one end of the resistance variable element 138 from the voltage application circuit 140 via the bit line 130 and the selection transistor 136, and the voltage application circuit 14 2 Then, a voltage of +3.3 V is applied to the other end of the resistance variable element 138 via the NMOS transistor 144 and the source line 132. That is, a pulse having a polarity opposite to that of the positive pulse additional write is applied (negative pulse additional write). By applying a voltage, the resistance state of the resistance variable element 138 changes from a shallow low resistance state (for example, 113 kΩ) to a deep low resistance state (for example, 60 kΩ). By additional writing, the resistance state of the resistance variable element 138 can be stably maintained at the low resistance state, and the data storability is improved.
[0133] ステップ S311が終了すると、 Nに 1が加えられ (ステップ S312)、 Nが Nmaxを超え ているか否かの判定が行われ (ステップ S313)、超えていなければステップ S305に 戻る。力かる動作により、セクタ書き込み番地 N= l、 2、 · · ·、 Nmaxまで順次、追カロ 書き込みが行われる。 Nが Nmaxを超えれば、該セクタについては追加書き込みが 完了したことになるため、該セクタに対応するフラグ用抵抗変化型素子に 1が書き込 まれることによりリセットされ (ステップ S314)、ステップ S302に戻る。なお、一時書き 込みフラグ領域 316への書き込み動作は、メモリセルアレイ 318のセルに対する書き 込み動作と同様であるため説明を省略する。  [0133] When step S311 ends, 1 is added to N (step S312), and it is determined whether or not N exceeds Nmax (step S313). If not, the process returns to step S305. Due to the operation, additional writing is performed sequentially until the sector write address N = 1, 2, ..., Nmax. If N exceeds Nmax, additional writing has been completed for the sector, so it is reset by writing 1 to the flag variable resistance element corresponding to the sector (step S314), and step S302. Return to. Note that the write operation to the temporary write flag area 316 is the same as the write operation to the cell of the memory cell array 318, and thus the description is omitted.
[0134] 力かる動作により、抵抗変化型記憶装置 300は、ステップ S302からステップ S314 までの動作を繰り返すことによって、全てのセクタにつきフラグが 1 ("L"レベル)となる まで、順次追加書き込みを行う。 [0135] 以上のような動作および構成により、抵抗変化型記憶装置 300は、入力されたチッ プセレクト CS、外部制御信号 CTL、アドレス AD、ライトパルス WPに応じて、所望の メモリセル 139の読み出し動作および一時書き込み動作を行う。また、抵抗変化型記 憶装置 300は、一定期間毎に、外部力 入力される信号に基づかずに、自律的に追 加書き込み動作を行う。 [0134] By performing the operation, the resistance change memory apparatus 300 repeats the operations from step S302 to step S314, thereby sequentially performing additional writing until the flags become 1 ("L" level) for all sectors. Do. [0135] With the operation and configuration as described above, the resistance change type storage device 300 performs the read operation of a desired memory cell 139 according to the input chip select CS, external control signal CTL, address AD, and write pulse WP. And temporary write operation. Further, the resistance change type memory device 300 autonomously performs an additional write operation at regular intervals without being based on a signal input from an external force.
[0136] [追加書き込みと一時書き込みデータ保証期間の関係]  [Relationship between additional writing and temporary writing data guarantee period]
図 14は、追加書き込み動作イネ一ブル信号 APおよび追加書き込み実行中フラグ FGのタイミングを示す図である。追加書き込み動作イネ一ブル信号 APは、定期的 に" H"レベルとされる。その周期 Tea (追加書き込み周期:追加書き込み動作イネ一 ブル信号 APが" H"レベルとなつてから、再度" H"レベルとなるまでの間隔)は、追加 書き込み動作同士の間隔に相当する。追加書き込みが完了した後、最初に一時書 き込みがされたデータの保存状態が劣化する前に、次回の追加書き込みが行われる ように、 Teaが設定される。あるいは、一時書き込みの深さ(一時書き込み抵抗値)が 、追加書き込み周期に相当する期間は少なくとも保存性を保証できるように設定され る。つまり、一時書き込みによるデータ保存の保証期間(一時書き込みデータ保証期 間)を Ttauとすれば、 Ttau>Tcaとなっている。あるいは、一時書き込み状態になつ た後、 Teaだけ経過した状態における抵抗変化型素子の抵抗値と、基準抵抗の抵抗 値との差 (ギャップ)力 読み取り保証マージン以上となるように、 Teaが設定される。 一定の読み取り保証マージンを確保することで、データの読み取りが確実に行われ る。力かる設定により、一時書き込みによるデータの保存性が十分に保証される。  FIG. 14 is a diagram showing the timing of the additional write operation enable signal AP and the additional write execution flag FG. The additional write operation enable signal AP is periodically set to the “H” level. The cycle Tea (additional write cycle: the interval from when the additional write operation enable signal AP becomes “H” level to “H” level again) corresponds to the interval between additional write operations. After additional writing is completed, Tea is set so that the next additional writing is performed before the storage state of the data that was temporarily written first deteriorates. Alternatively, the depth of temporary writing (temporary writing resistance value) is set so as to guarantee at least storability during a period corresponding to the additional writing cycle. In other words, Ttau> Tca, where Ttau is the guarantee period for data storage by temporary writing (temporary writing data guarantee period). Alternatively, after entering the temporary write state, Tea is set so that the difference (gap) force between the resistance value of the resistance variable element and the resistance value of the reference resistance in the state where only Tea has passed is equal to or greater than the reading guarantee margin. The By ensuring a certain read guarantee margin, data can be read reliably. This powerful setting guarantees sufficient data storage by temporary writing.
[0137] [効果]  [0137] [Effect]
本実施形態でも、第 1実施形態と同様の効果が得られる。  Also in this embodiment, the same effect as the first embodiment can be obtained.
[0138] また、本実施形態では、追加書き込み用タイマー 326と追加書き込みシーケンス制 御回路 324により、一定期間(追加書き込み周期)毎に、全メモリセルについて一時 書き込み状態であるのか追加書き込み状態であるのかの判定が行われ、一時書き込 み状態にあるメモリセルが存在する場合には、そのメモリセルを含むセクタにつ!、て 追加書き込み動作が行われる。追加書き込み動作では、長パルスの電圧が追加書 き込み対象セルに印加され、データの安定性や保存性の観点から目標とされる抵抗 値レベルへとセルの抵抗状態が遷移する。かかる追加書き込み動作は、比較的長い 期間(1日、 1週間、 1年など)をおいて散発的に行われるため、見力 4ナ上、追加書き 込み時間はほとんどシステムのパフォーマンスに影響しない。すなわち、通常時には 一時書き込みのみでデータが高速に書き込まれるため、高速応答可能な不揮発型 記憶装置が実現される。一方、追加書き込みによりデータの保存性が向上するため 、高い信頼性を有する不揮発型記憶装置が実現される。 Further, in this embodiment, the additional write timer 326 and the additional write sequence control circuit 324 are in a temporary write state or an additional write state for all the memory cells every predetermined period (additional write cycle). If there is a memory cell in the temporary write state, the sector containing that memory cell is selected! Then, an additional write operation is performed. In the additional write operation, a long pulse voltage is applied to the additional write target cell, and the target resistance from the viewpoint of data stability and storage stability. The resistance state of the cell transitions to the value level. Since this additional write operation is performed sporadically over a relatively long period (1 day, 1 week, 1 year, etc.), the additional write time hardly affects the system performance. That is, normally, data is written at high speed only by temporary writing, so that a nonvolatile memory device capable of high-speed response is realized. On the other hand, since the data storability is improved by the additional writing, a highly reliable nonvolatile memory device is realized.
[0139] なお、追加書き込み周期は、一時書き込みによるデータの保存性が十分保証され る期間に設定される。あるいは、一時書き込みの深さ(一時書き込み抵抗値)は、追 加書き込み動作同士の間隔に相当する期間中は少なくともデータの保存性を保証 できるように設定される。即ち、追加書き込みが完了した後、最初に一時書き込みが されたデータの保存状態が劣化する前に次回の追加書き込みが行われるベぐ抵抗 値や一時書き込みのタイミングが設定される。力かる構成により、一時書き込み状態 にあるデータの保存性につき十分は信頼性を確保することが可能となる。  [0139] Note that the additional write cycle is set to a period during which data storage by temporary writing is sufficiently guaranteed. Alternatively, the depth of temporary writing (temporary writing resistance value) is set so as to guarantee at least data storability during a period corresponding to the interval between additional writing operations. That is, after the completion of the additional writing, the resistance value and the timing of the temporary writing are set so that the next additional writing is performed before the storage state of the data temporarily written temporarily deteriorates. This powerful configuration makes it possible to ensure sufficient reliability for the storability of data that is temporarily written.
[0140] また、一時書き込み動作は外部の制御装置力 の入力に従って随時行われるが、 追加書き込み動作は外部力 の信号によらず、抵抗変化型記憶装置により自律的に 行われる。かかる構成では、外部のシステムが追加書き込みを考慮して制御を行う必 要がないため、ユーザ (システムの設計者など)の利便性が高くなる。また、追加書き 込み実行中フラグ FGを出力することで、抵抗変化型記憶装置がビジー状態 (追加書 き込み動作中:追加書き込み実行中フラグが" H"レベル)のときは外部のシステムが データ入力を停止することが可能となり、誤動作を防止できる。  [0140] The temporary write operation is performed as needed according to the input of the external control device force, but the additional write operation is autonomously performed by the resistance change type storage device regardless of the external force signal. In such a configuration, since it is not necessary for an external system to perform control in consideration of additional writing, the convenience of the user (system designer, etc.) is enhanced. In addition, when the additional write execution flag FG is output, when the resistance change type storage device is busy (additional write operation is in progress: the additional write execution flag is "H" level), the external system It becomes possible to stop input, and malfunction can be prevented.
[0141] [変形例]  [0141] [Modification]
本実施形態の発明については、さまざまな変形例が可能であるが、その一例を以 下に示す。なお、本実施形態においても、第 1実施形態で示したものと同様の変形 例が可能であることは言うまでもな 、。  Various modifications can be made to the invention of the present embodiment, and an example is shown below. Needless to say, the present embodiment can be modified in the same manner as in the first embodiment.
[0142] 上述の説明では、追カ卩書き込み動作ィネーブル信号 APが" H"レベルの時に、追 加書き込み動作を行うこととした力 "H"レベルにセットされることを契機として、 ^ モリセル 139について追カ卩書き込みが行われてもよい。すなわち、追加書き込み動 作ィネーブル信号 APが追カ卩書き込み期間中ずつど' H"レベルでなくてもよぐ "L"レ ベルに戻ってからも追加書き込みが行われてもよ 、。追加書き込み動作イネ一ブル 信号 APは、追加書き込みシーケンス制御回路 124が一定周期で追加書き込み動作 を行えるようにタイミングを制御するものであればどのような信号であってもよ 、。 [0142] In the above description, when the additional write operation enable signal AP is at the "H" level, the force for performing the additional write operation is set to the "H" level. Additional writing may be performed for. That is, the additional write operation enable signal AP does not need to be at the “H” level during the additional write period. Even after you return to the bell, additional writing may be done. The additional write operation enable signal AP can be any signal as long as it controls the timing so that the additional write sequence control circuit 124 can perform the additional write operation at a fixed period.
[0143] また、上述の説明では、追加書き込み動作中に追加書き込み実行中フラグを利用 して、制御信号や新たな書き込みデータを受付けることができな 、ことを外部の制御 装置に伝達したが、追加書き込み動作中に読み出しまたは書き込み命令が入力され れば、追加書き込み動作を中断し、読み出しまたは一時書き込み動作を優先的に実 行し、割り込んだ読み出し動作や一時書き込み動作が完了後、中断していた追加書 き込み動作を再開することとしてもよい。力かる態様によれば、上位システムに書き込 みデータが滞留することがなくなる。  [0143] In the above description, the additional write execution flag is used during the additional write operation, and the control signal and new write data cannot be received. If a read or write command is input during an additional write operation, the additional write operation is interrupted, the read or temporary write operation is preferentially executed, and the interrupted read operation or temporary write operation is completed after completion. The additional write operation may be resumed. According to this mode, write data does not stay in the host system.
[0144] 上述の説明では、追カ卩書き込み動作イネ一ブル信号 APが" H"レベルにセットされ ている期間を利用して追加書き込み動作を行うこととした力 例えば、 BGO (Back Ground Operation)のように、あるバンクを読み出しながら、バックグラウンドで別 のバンクを追加書き込みし、実効上、追加書き込み動作が見えなくなるようにしてもよ い。  [0144] In the above description, the power for performing the additional write operation using the period when the additional write operation enable signal AP is set to the "H" level. For example, BGO (Back Ground Operation) As described above, another bank may be additionally written in the background while one bank is being read, so that the additional write operation is effectively invisible.
[0145] なお、本発明はその要旨を逸脱しない範囲で種々変形して実施できることは言うま でもない。  [0145] Needless to say, the present invention can be variously modified and implemented without departing from the scope of the invention.
(第 4実施形態)  (Fourth embodiment)
[装置構成]  [Device configuration]
図 15は、本発明の第 4実施形態の抵抗変化型記憶装置の概略構成を示すブロッ ク図である。以下、図 15を参照しながら、本実施形態の抵抗変化型記憶装置の構成 および動作の概略について説明する。なお、第 4実施形態の抵抗変化型記憶装置 は、第 3実施形態の抵抗変化型記憶装置の追加書き込みシーケンス制御回路をパ ヮーダウンシーケンス制御回路に置換し、追加書き込み用タイマーを削除したもので あり、その他の構成については第 3実施形態と同様である。よって、共通する構成要 素については同一の名称を付して説明を省略する。  FIG. 15 is a block diagram showing a schematic configuration of the resistance variable memory apparatus according to Embodiment 4 of the present invention. The outline of the configuration and operation of the resistance change storage device according to the present embodiment will be described below with reference to FIG. Note that the resistance change type storage device of the fourth embodiment is obtained by replacing the additional write sequence control circuit of the resistance change type storage device of the third embodiment with a power down sequence control circuit and deleting the additional write timer. In other respects, the configuration is the same as that of the third embodiment. Therefore, common constituent elements are given the same names and description thereof is omitted.
[0146] パワーダウンシーケンス制御回路 424 (追加書き込みシーケンス制御装置)は、制 御回路 402に組み込まれた回路であり、抵抗変化型記憶装置 400の電源立ち下げ 時に、追加書き込み動作を行う回路である。抵抗変化型記憶装置 400は、外部から 供給される電力により駆動される。このため、抵抗変化型記憶装置 400の電源立ち 下げは、自律的に行われるのではなぐ外部からの制御信号に基づいて開始される 。具体的には、以下のステップにより電源立ち下げが行われる。まず、システム(図 2 のシステム 190に相当)の電源立ち下げ時に、システム力も制御装置(図 2の制御装 置 180に相当)へと電源立ち下げの通知信号が送られる。制御装置は電源立ち下げ の通知信号を受け取ると、抵抗変化型記憶装置 400に電源立ち下げ信号を送る。パ ヮーダウンシーケンス制御回路 424は、電源立ち下げ信号を受け取るとパワーダウン シーケンスを実行し、その動作の中で追加書き込みが行われる。なお、パワーダウン シーケンスにおける追加書き込み動作は、第 3実施形態における追加書き込み動作 と同様であるので、説明を省略する。 [0146] The power-down sequence control circuit 424 (additional write sequence control device) is a circuit incorporated in the control circuit 402, and the power-down sequence control circuit 400 is powered down. Sometimes it is a circuit that performs an additional write operation. The resistance change type storage device 400 is driven by electric power supplied from the outside. For this reason, the power-down of the resistance change type storage device 400 is started based on an external control signal that is not autonomously performed. Specifically, the power is turned off by the following steps. First, when the power of the system (corresponding to the system 190 in FIG. 2) is turned off, the system power is also sent to the control device (corresponding to the control device 180 in FIG. 2). When the control device receives the power-down notification signal, it sends a power-down signal to the resistance change type storage device 400. When the power-down sequence control circuit 424 receives the power-down signal, the power-down sequence control circuit 424 executes the power-down sequence, and additional writing is performed in the operation. Note that the additional write operation in the power-down sequence is the same as the additional write operation in the third embodiment, and a description thereof will be omitted.
[0147] [効果] [0147] [Effect]
本実施形態では、電源立ち下げ時に一括して追加書き込みが行われる。よって、 電源が OFFとなった時点では、全てのデータが記録されたメモリセルにつ!、て追カロ 書き込みが完了していることになり、電源 OFF中にもデータが確実に保存されること になる。一方、電源が ONである間(通常動作時)は追加書き込みが行われず、デー タの書き込みは全て一時書き込みにより処理される。よって、見かけ上の書き込み速 度が速くなる。すなわち、通常動作時には追加書き込みが行われないため、追加書 き込み動作がシステム全体のパフォーマンスに実質的に影響しない。  In this embodiment, additional writing is performed collectively when the power is turned off. Therefore, when the power is turned off, all the data is recorded in the memory cell, and the additional writing is completed, and the data is reliably saved even when the power is turned off. become. On the other hand, no additional writing is performed while the power is on (during normal operation), and all data writing is processed by temporary writing. Therefore, the apparent writing speed is increased. In other words, since no additional writing is performed during normal operation, the additional writing operation does not substantially affect the performance of the entire system.
[0148] なお、本実施形態においても、第 1実施形態と同様の効果があることは言うまでもな い。 It goes without saying that this embodiment also has the same effect as that of the first embodiment.
[0149] [変形例]  [0149] [Modification]
本実施形態においても、第 1実施形態と同様の変形例が可能である。  Also in this embodiment, the same modification as that in the first embodiment is possible.
(第 5実施形態)  (Fifth embodiment)
図 16は、本発明の第 5実施形態の抵抗変化型記憶装置の概略構成を示すブロッ ク図である。以下、図 16を参照しながら、本実施形態の抵抗変化型記憶装置の構成 および動作の概略について説明する。なお、第 5実施形態の抵抗変化型記憶装置 は、第 4実施形態の抵抗変化型記憶装置のパワーダウンシーケンス制御回路をパヮ 一オンシーケンス制御回路に置換したものであり、その他の構成にっ 、ては第 4実施 形態と同様である。よって、共通する構成要素については同一の名称を付して説明 を省略する。 FIG. 16 is a block diagram showing a schematic configuration of a resistance variable memory apparatus according to Embodiment 5 of the present invention. Hereinafter, with reference to FIG. 16, an outline of the configuration and operation of the resistance change storage device according to the present embodiment will be described. Note that the resistance change type storage device of the fifth embodiment is a power down sequence control circuit of the resistance change type storage device of the fourth embodiment. The one-on-sequence control circuit is replaced, and other configurations are the same as those in the fourth embodiment. Therefore, common components are given the same names and description thereof is omitted.
[0150] ノ ヮ一オンシーケンス制御回路 524 (追加書き込みシーケンス制御装置)は、制御 回路 502に組み込まれた回路であり、抵抗変化型記憶装置 500の電源立ち上げ時 に、追加書き込み動作を行う回路である。抵抗変化型記憶装置 500は、外部から供 給される電力により駆動される。システム(図 2のシステム 190に相当)のスィッチが O Nとなり、電源立ち上げが開始されると、システム力も制御装置(図 2の制御装置 180 に相当)および抵抗変化型記憶装置 500へと電力供給が開始される。パワーオンシ 一ケンス制御回路 524は、電力の供給開始を検知して、パワーオンシーケンスを実 行し、その動作の中で追カ卩書き込みが行われる。なお、パワーオンシーケンスにおけ る追加書き込み動作は、第 1実施形態における追加書き込み動作と同様であるので 、説明を省略する。  [0150] The No.1 on-sequence control circuit 524 (additional write sequence control device) is a circuit incorporated in the control circuit 502, and performs an additional write operation when the resistance change memory device 500 is powered on. It is. The resistance change type storage device 500 is driven by electric power supplied from the outside. When the switch of the system (equivalent to system 190 in FIG. 2) is turned on and the power is turned on, the system power is also supplied to the control unit (equivalent to control unit 180 in FIG. 2) and the resistance change type storage device 500. Is started. The power-on sequence control circuit 524 detects the start of power supply, executes a power-on sequence, and additional writing is performed in the operation. Note that the additional write operation in the power-on sequence is the same as the additional write operation in the first embodiment, and a description thereof will be omitted.
[0151] [効果]  [0151] [Effect]
本実施形態では、電源立ち上げ時に一括して追加書き込みが行われる。よって、 電源が ONとなった時に、書き込み状態が劣化しているメモリセルを含め、全てのメモ リセルについて追加書き込みが行われることになり、データの保存性および読み取り 精度が向上する。一方、電源が ONとなった後(通常動作時)は追加書き込みが行わ れず、データの書き込みは全て一時書き込みにより処理される。よって、見かけ上の 書き込み速度が速くなる。すなわち、通常動作時には追加書き込みが行われないた め、追加書き込み動作がシステム全体のパフォーマンスに実質的に影響しない。  In the present embodiment, additional writing is performed at a time when the power is turned on. Therefore, when the power is turned on, additional writing is performed on all the memory cells including the memory cell in which the writing state is deteriorated, and the data storage stability and reading accuracy are improved. On the other hand, no additional writing is performed after the power is turned on (during normal operation), and all data writing is processed by temporary writing. Therefore, the apparent writing speed is increased. In other words, since additional writing is not performed during normal operation, the additional writing operation does not substantially affect the performance of the entire system.
[0152] なお、本実施形態においても、第 1実施形態と同様の効果があることは言うまでもな い。 [0152] Needless to say, this embodiment has the same effects as those of the first embodiment.
[0153] [変形例]  [0153] [Modification]
本実施形態においても、第 1実施形態と同様の変形例が可能である。  Also in this embodiment, the same modification as that in the first embodiment is possible.
(第 6実施形態)  (Sixth embodiment)
図 17は、本発明の第 6実施形態の抵抗変化型記憶装置の概略構成を示すブロッ ク図である。以下、図 17を参照しながら、本実施形態の抵抗変化型記憶装置の構成 および動作の概略について説明する。なお、第 6実施形態の抵抗変化型記憶装置 は、第 3実施形態の抵抗変化型装置に、第 4実施形態の抵抗変化型記憶装置のパ ヮーダウンシーケンス制御回路を追加したものである。よって、第 3実施形態および 第 4実施形態と共通する構成要素については同一の名称を付して説明を省略する。 FIG. 17 is a block diagram showing a schematic configuration of the resistance variable memory apparatus according to Embodiment 6 of the present invention. Hereinafter, with reference to FIG. 17, the configuration of the resistance change storage device according to the present embodiment. An outline of the operation will be described. Note that the resistance change type storage device of the sixth embodiment is obtained by adding a power down sequence control circuit of the resistance change type storage device of the fourth embodiment to the resistance change type device of the third embodiment. Therefore, the same name is attached | subjected about the component which is common in 3rd Embodiment and 4th Embodiment, and description is abbreviate | omitted.
[0154] 本実施形態の抵抗変化型記憶装置 600においては、追加書き込み用タイマー 62 6が出力する追加書き込み動作イネ一ブル信号 AP力 S"H"レベルである場合に、追 加書き込みシーケンス制御回路 624の制御により、追加書き込み動作が行われる。 また、抵抗変化型記憶装置 600においては、電源立ち下げ時に、パワーダウンシー ケンス制御回路 628の制御により、追加書き込み動作が行われる。追加書き込み用 タイマー 626、追加書き込みシーケンス制御回路 624、パワーダウンシーケンス制御 回路 628の動作の詳細については、第 3実施形態および第 4実施形態と同様である ので説明を省略する。  In the resistance change storage device 600 of the present embodiment, the additional write operation enable signal AP force output from the additional write timer 626 AP power S When it is at the S “H” level, the additional write sequence control circuit Under the control of 624, an additional write operation is performed. In the resistance change memory device 600, an additional write operation is performed under the control of the power-down sequence control circuit 628 when the power is turned off. The details of the operations of the additional write timer 626, the additional write sequence control circuit 624, and the power-down sequence control circuit 628 are the same as those in the third and fourth embodiments, and thus the description thereof is omitted.
[0155] [効果]  [0155] [effect]
本実施形態の抵抗変化型記憶装置では、タイマーを利用した周期的な追加書き込 みと、電源立ち下げ時の追加書き込みとが併用される。かかる構成では、通常動作 時に周期的に追加書き込みが行われるため、電源が ONとなっている間に、たまたま データの書き込みがされな 、メモリセルにっ 、て、データの劣化が発生することを防 止できる。また、電源立ち下げ時に全メモリセルについて追加書き込みが行われるた め、最後に周期的な追加書き込みを行った後に一時書き込み状態となったメモリセ ルについても、電源が OFFとなる前に、追加書き込み状態とすることができる。よって 、電源が OFFになっている間にデータの保存状態が許容限度以下 (基準抵抗値との 差が読み取り保証マージン以下)に劣化してしまうことを確実に防止できる。このよう に、第 3実施形態と第 4実施形態の構成要素を組合せることにより、電源 ON時にお けるデータの保存状態劣化と、電源 OFF時におけるデータの保存状態劣化を同時 に防止できる。  In the resistance change type storage device of the present embodiment, periodic additional writing using a timer and additional writing at the time of power-off are used in combination. In such a configuration, additional writing is performed periodically during normal operation, so that data is not accidentally written while the power is on, so that data deterioration occurs due to memory cells. Can be prevented. In addition, since additional writing is performed for all memory cells when the power is turned off, additional writing can be performed before the power is turned off even for memory cells that are temporarily written after the last periodic additional writing. State. Therefore, it is possible to reliably prevent the data storage state from deteriorating to the allowable limit or less (the difference from the reference resistance value is less than the reading guarantee margin) while the power is off. In this way, by combining the components of the third embodiment and the fourth embodiment, it is possible to simultaneously prevent deterioration of the data storage state when the power is turned on and deterioration of the data storage state when the power is turned off.
[0156] なお、本実施形態においても、第 3実施形態、第 4実施形態と同様の効果があるこ とは言うまでもない。  [0156] Needless to say, this embodiment also has the same effects as those of the third and fourth embodiments.
[0157] [変形例] 本実施形態では、第 3実施形態の追加書き込み用タイマーおよび追加書き込みシ 一ケンス制御回路と、第 4実施形態のパワーダウンシーケンス制御回路とを組み合わ せたものであるが、第 3実施形態の追加書き込み用タイマーおよび追加書き込みシ 一ケンス制御回路と、第 5実施形態のパワーオンシーケンス制御回路とを組み合わ せてもよい。あるいは、第 4実施形態のパワーダウンシーケンス制御回路と、第 5実施 形態のパワーオンシーケンス制御回路とを組み合わせてもよい。 [0157] [Modification] In the present embodiment, the additional write timer and additional write sequence control circuit of the third embodiment are combined with the power down sequence control circuit of the fourth embodiment. The write timer and additional write sequence control circuit may be combined with the power-on sequence control circuit of the fifth embodiment. Alternatively, the power-down sequence control circuit of the fourth embodiment may be combined with the power-on sequence control circuit of the fifth embodiment.
[0158] また、本実施形態においても、第 3実施形態と同様の変形例が可能である。  [0158] Also in this embodiment, the same modification as in the third embodiment is possible.
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかで ある。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する 最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱 することなぐその構造及び Z又は機能の詳細を実質的に変更できる。  From the above description, many modifications and other embodiments of the present invention are obvious to one skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. Details of its structure and Z or function can be substantially changed without departing from the spirit of the present invention.
産業上の利用可能性  Industrial applicability
[0159] 本発明に係る不揮発性記憶装置は、データの書き込み速度が速ぐ回路面積の削 減と装置構成の簡略化が可能な不揮発性記憶装置、抵抗変化型データ記録メディ ァ、抵抗変化型装置、および抵抗変化型素子へのデータ書き込み方法として有用で ある。  [0159] The nonvolatile memory device according to the present invention is a nonvolatile memory device, a resistance change type data recording medium, and a resistance change type capable of reducing the circuit area where the data writing speed is high and simplifying the device configuration. It is useful as a device and a method for writing data to a resistance variable element.

Claims

請求の範囲 The scope of the claims
[1] 抵抗値が変化する不揮発性記憶素子と、  [1] a nonvolatile memory element whose resistance value changes;
前記不揮発性記憶素子の抵抗値を複数の値を取りうるデータである複値データの 値に対応する抵抗値に変化させることによって前記複値データを前記不揮発性記憶 素子に書き込むための書き込み装置とを有する不揮発性記憶装置であって、 前記書き込み装置は、  A writing device for writing the multi-value data to the non-volatile memory element by changing the resistance value of the non-volatile memory element to a resistance value corresponding to a value of multi-value data which is data that can take a plurality of values; A non-volatile storage device comprising:
書き込まれて 、る複値データの値を旧値と呼び、書き込むべき複値データの値を 新値と呼ぶとき、  When the value of multi-value data that is written is called the old value and the value of multi-value data to be written is called the new value,
前記不揮発性記憶素子の抵抗値を旧値に対応する抵抗値力ゝら旧値に対応する抵 抗値と新値に対応する抵抗値との間にある一時書き込み抵抗値へと変化させる一時 書き込みを行うための一時書き込み装置と、  Temporary writing that changes the resistance value of the nonvolatile memory element to a resistance value corresponding to the old value and a resistance value corresponding to the old value and a resistance value corresponding to the new value. A temporary writing device for performing
前記一時書き込み抵抗値へと変化させられた前記不揮発性記憶素子の抵抗値を 前記新値に対応する抵抗値へと変化させる追加書き込みを行うための追加書き込み 装置と、  An additional writing device for performing additional writing to change the resistance value of the nonvolatile memory element changed to the temporary writing resistance value to a resistance value corresponding to the new value;
前記一時書き込み装置と前記追加書き込み装置とを切り換えて前記不揮発性記憶 素子に複値データの書き込みを行うための書き込み切換装置とを備える、不揮発性 記憶装置。  A nonvolatile storage device comprising: a write switching device for switching between the temporary writing device and the additional writing device to write multi-value data to the nonvolatile storage element.
[2] 前記旧値に対応する抵抗値と前記一時書き込み抵抗値との差は、前記旧値に対 応する抵抗値と前記新値に対応する抵抗値との差の 20%以上 98%以下である、請 求項 1に記載の不揮発性記憶装置。  [2] The difference between the resistance value corresponding to the old value and the temporary write resistance value is 20% to 98% of the difference between the resistance value corresponding to the old value and the resistance value corresponding to the new value. The non-volatile memory device according to claim 1, wherein
[3] 前記不揮発性記憶素子は、所定の態様のエネルギーの累積投入量に応じてその 抵抗値が変化し、  [3] The resistance value of the nonvolatile memory element changes according to the cumulative amount of energy input in a predetermined mode,
前記書き込み装置は、前記所定の態様のエネルギーを投入することによって前記 不揮発性記憶素子の抵抗値を変化させる、請求項 1に記載の不揮発性記憶装置。  The nonvolatile memory device according to claim 1, wherein the writing device changes a resistance value of the nonvolatile memory element by inputting energy of the predetermined mode.
[4] 前記所定の態様のエネルギーの累積投入量力 電圧パルスの累積印加量であり、 前記書き込み装置は、前記不揮発性記憶素子に電圧パルスを印加することによつ てその抵抗値を変化させる、請求項 3に記載の不揮発性記憶装置。 [4] The cumulative input amount power of the energy of the predetermined mode is the cumulative application amount of the voltage pulse, and the writing device changes the resistance value by applying the voltage pulse to the nonvolatile memory element. The non-volatile storage device according to claim 3.
[5] 前記不揮発性記憶素子は、所定の態様のエネルギーの累積投入量に対し飽和す るようにその抵抗値が変化する、請求項 3に記載の不揮発性記憶装置。 [5] The nonvolatile memory element saturates with respect to the cumulative input amount of energy in a predetermined mode. The non-volatile memory device according to claim 3, wherein the resistance value thereof changes.
[6] 前記一時書き込みを行うために印加される電圧パルスの幅が 60ns以下である、請 求項 5に記載の不揮発性記憶装置。 [6] The nonvolatile memory device according to claim 5, wherein a width of a voltage pulse applied to perform the temporary writing is 60 ns or less.
[7] 前記一時書き込みを行うために印加される電圧パルスの幅力 読み出しを行うため に印加される電圧パルスの幅以下である、請求項 5に記載の不揮発性記憶装置。 7. The nonvolatile memory device according to claim 5, wherein a width force of a voltage pulse applied for performing the temporary writing is equal to or less than a width of a voltage pulse applied for performing the reading.
[8] 請求項 5に記載の不揮発性記憶装置と、 [8] The nonvolatile memory device according to claim 5,
制御装置と、  A control device;
揮発型記憶装置とを備え、  A volatile storage device,
前記一時書き込みを行うために印加される電圧パルスの幅が、前記揮発型記憶装 置の読み出しパルスの幅以下に設定されている、不揮発型装置。  A non-volatile device, wherein a width of a voltage pulse applied to perform the temporary writing is set to be equal to or less than a width of a read pulse of the volatile memory device.
[9] 前記一時書き込みを行うために印加される電圧パルスの幅力 前記追加書き込み を行うために印加される電圧パルスの幅よりも短 、、請求項 1に記載の不揮発性記憶 装置。 [9] The nonvolatile memory device according to [1], wherein a width force of a voltage pulse applied to perform the temporary writing is shorter than a width of a voltage pulse applied to perform the additional writing.
[10] 前記一時書き込みを行うために印加される電圧パルスの電圧力 前記追加書き込 みを行うために印加される電圧パルスの電圧と等しい、請求項 9に記載の不揮発性 記憶装置。  10. The nonvolatile memory device according to claim 9, wherein a voltage force of a voltage pulse applied for performing the temporary writing is equal to a voltage of a voltage pulse applied for performing the additional writing.
[11] 前記一時書き込みを行うために印加される電圧パルスの電圧力 前記追加書き込 みを行うために印加される電圧パルスの電圧よりも高 ヽ、請求項 1に記載の不揮発性 記憶装置。  11. The nonvolatile memory device according to claim 1, wherein the voltage force of the voltage pulse applied to perform the temporary write is higher than the voltage of the voltage pulse applied to perform the additional write.
[12] 前記一時書き込みを行うために印加される電圧パルスの幅力 前記追加書き込み を行うために印加される電圧パルスの幅と等 U、、請求項 11に記載の不揮発性記憶 装置。  12. The nonvolatile memory device according to claim 11, wherein the width force of the voltage pulse applied to perform the temporary writing is equal to the width of the voltage pulse applied to perform the additional writing.
[13] 請求項 1の不揮発性記憶装置と、  [13] The nonvolatile memory device according to claim 1,
制御装置とを備え、  A control device,
前記制御装置が、前記一時書き込み装置と前記追加書き込み装置とを切り換える ように、前記書き込み切換装置を制御する、不揮発性データ記録メディア。  A nonvolatile data recording medium, wherein the control device controls the write switching device so as to switch between the temporary writing device and the additional writing device.
[14] 前記不揮発性記憶素子を備えるメモリセル力 成り、複数の前記メモリセルを有す るメモリセルセクションを複数有するメモリセルアレイと、 前記メモリセルセクション 1個について 1個のフラグ用不揮発性記憶素子を備え、前 記メモリセルセクションに属する不揮発性記憶素子に前記一時書き込みを行った場 合に対応するフラグ用不揮発性記憶素子にその旨が書き込まれ、前記メモリセルセ クシヨンに属する不揮発性記憶素子に前記追加書き込みを行った場合に対応するフ ラグ用不揮発性記憶素子にその旨が書き込まれる、一時書き込みフラグ領域とを備 える、請求項 1に記載の不揮発性記憶装置。 [14] A memory cell array comprising the nonvolatile memory element, and a memory cell array having a plurality of memory cell sections each having a plurality of the memory cells; Each of the memory cell sections includes one flag non-volatile memory element, and the flag non-volatile memory element corresponding to the temporary write to the non-volatile memory element belonging to the memory cell section. And a temporary write flag area in which the fact is written to the flag non-volatile memory element when the additional writing is performed to the non-volatile memory element belonging to the memory cell section. The non-volatile storage device according to 1.
[15] 請求項 14に記載の不揮発性記憶装置と、 [15] The nonvolatile memory device according to claim 14,
制御装置とを備え、  A control device,
前記制御装置が、それぞれの前記メモリセルセクションについて、前記追加書き込 みが完了して 、な 、不揮発性記憶素子を含む追加書き込み対象メモリセルセクショ ンであるか否かを、一時書き込みフラグ領域の値に基づいて判定し、前記追加書き 込み対象メモリセルセクションに書き込まれて 、るデータを用いて、前記追加書き込 み対象メモリセルセクションに属する前記不揮発性記憶素子に対して追加書き込み を行う、不揮発性データ記録メディア。  In the temporary write flag area, the control device determines whether or not the additional write is completed for each memory cell section and is an additional write target memory cell section including a nonvolatile memory element. A determination is made based on the value, and additional writing is performed on the nonvolatile memory element belonging to the additional writing target memory cell section using the data written to the additional writing target memory cell section. Non-volatile data recording media.
[16] さらに、前記メモリセルセクションに属する不揮発性記憶素子の少なくとも一部に書 き込まれたデータを、追加書き込みのために一時的に記録する書き込みデータ記憶 装置を備える、請求項 14に記載の不揮発性記憶装置。  [16] The write data storage device according to claim 14, further comprising: a write data storage device that temporarily records data written in at least a part of the nonvolatile storage element belonging to the memory cell section for additional writing. Nonvolatile storage device.
[17] 請求項 16に記載の不揮発性記憶装置と、  [17] The nonvolatile memory device according to claim 16,
制御装置とを備え、  A control device,
前記制御装置が、それぞれの前記メモリセルセクションについて、前記追加書き込 みが完了して 、な 、不揮発性記憶素子を含む追加書き込み対象メモリセルセクショ ンであるか否かを、一時書き込みフラグ領域の値に基づいて判定し、前記追加書き 込み対象メモリセルセクションのデータの少なくとも一部を前記書き込みデータ記憶 装置に記憶させ、前記書き込みデータ記憶装置に記憶されたデータを用いて、前記 追加書き込み対象メモリセルセクションに属する前記不揮発性記憶素子に対して追 加書き込みを行う、不揮発性データ記録メディア。  In the temporary write flag area, the control device determines whether or not the additional write is completed for each memory cell section and is an additional write target memory cell section including a nonvolatile memory element. Determining based on the value, storing at least part of the data of the additional write target memory cell section in the write data storage device, and using the data stored in the write data storage device, the additional write target memory A non-volatile data recording medium for performing additional writing to the non-volatile storage element belonging to a cell section.
[18] 前記一時書き込み装置と前記追加書き込み装置とを切り換えるように、前記書き込 み切換装置を制御する追加書き込みシーケンス制御回路を備え、 前記追加書き込みシーケンス制御回路は、外部装置から入力される制御信号が、 不揮発性記憶装置が選択されていない旨を示すときに、前記追加書き込みを行うよ うに前記書き込み切換装置を制御する、請求項 1に記載の不揮発性記憶装置。 [18] An additional write sequence control circuit for controlling the write switching device so as to switch between the temporary writing device and the additional writing device, The additional write sequence control circuit controls the write switching device to perform the additional write when a control signal input from an external device indicates that a nonvolatile storage device is not selected. The non-volatile storage device according to 1.
[19] 請求項 18の不揮発性記憶装置と、 [19] The nonvolatile memory device according to claim 18,
制御装置とを備え、  A control device,
前記制御装置が前記外部装置である、不揮発性データ記録メディア。  A non-volatile data recording medium, wherein the control device is the external device.
[20] 前記追加書き込み装置による書き込みが行われている場合に、外部装置からの書 き込みデータの入力を禁止するための追加書き込み実行中フラグ信号の出力機能 を備える、請求項 14に記載の不揮発性記憶装置。 [20] The additional write execution flag signal output function for prohibiting input of write data from an external device when writing by the additional writing device is performed. Non-volatile storage device.
[21] 請求項 20の不揮発性記憶装置と、 [21] The nonvolatile memory device according to claim 20,
制御装置とを備え、  A control device,
前記不揮発性記憶装置から出力される前記追加書き込み実行中フラグ信号が入 力禁止状態を示す場合に、前記制御装置が前記不揮発性記憶装置へのデータ入 力を停止する、不揮発性データ記録メディア。  A non-volatile data recording medium in which the control device stops data input to the non-volatile storage device when the additional write execution flag signal output from the non-volatile storage device indicates an input prohibited state.
[22] 制御装置と、 [22] a control device;
抵抗値が変化する不揮発性記憶素子と、  A nonvolatile memory element having a variable resistance value;
前記不揮発性記憶素子の抵抗値を複数の値を取りうるデータである複値データの 値に対応する抵抗値に変化させることによって前記複値データを前記不揮発性記憶 素子に書き込むための書き込み装置とを有する不揮発性データ記録メディアであつ て、  A writing device for writing the multi-value data to the non-volatile memory element by changing the resistance value of the non-volatile memory element to a resistance value corresponding to a value of multi-value data which is data that can take a plurality of values; A non-volatile data recording medium having
書き込まれて 、る複値データの値を旧値と呼び、書き込むべき複値データの値を 新値と呼ぶとき、  When the value of multi-value data that is written is called the old value and the value of multi-value data to be written is called the new value,
前記不揮発性記憶素子に書き込まれた値を旧値力 新値に更新する際に、 前記制御装置が、  When the value written in the nonvolatile memory element is updated to the old value force new value, the control device
前記不揮発性記憶素子の抵抗値を、旧値に対応する抵抗値から旧値に対応する 抵抗値と新値に対応する抵抗値との間にある一時書き込み抵抗値へと変化させる一 時書き込みを行うように書き込み装置を制御し、  Temporary writing is performed to change the resistance value of the nonvolatile memory element from the resistance value corresponding to the old value to the temporary writing resistance value between the resistance value corresponding to the old value and the resistance value corresponding to the new value. Control the writing device to do and
その後、前記制御装置が、 前記一時書き込み抵抗値へと変化させられた前記不揮発性記憶素子の抵抗値を 、前記新値に対応する抵抗値へと変化させる追加書き込みを行うように書き込み装 置を制御する、 Then, the control device Controlling a writing device to perform additional writing to change the resistance value of the nonvolatile memory element changed to the temporary writing resistance value to a resistance value corresponding to the new value;
不揮発性データ記録メディア。  Non-volatile data recording media.
[23] 前記制御装置が、  [23] The control device comprises:
複数の前記不揮発性記憶素子に対し一時書き込みを行うように書き込み装置を制 御し、  Controlling a writing device to perform temporary writing to the plurality of nonvolatile memory elements;
その後、前記制御装置が、  Then, the control device
前記複数の前記不揮発性記憶素子に対し追加書き込みを行うように書き込み装置 を制御する、請求項 22に記載の不揮発性データ記録メディア。  23. The nonvolatile data recording medium according to claim 22, wherein a writing device is controlled to perform additional writing to the plurality of nonvolatile storage elements.
[24] 複数の不揮発性記憶素子を備えた不揮発性記憶装置へのデータ書き込み方法で あって、 [24] A method for writing data to a nonvolatile memory device including a plurality of nonvolatile memory elements,
書き込まれる複値データのそれぞれの値に対応して前記不揮発性記憶素子の抵 抗値を設定し、  A resistance value of the nonvolatile memory element is set corresponding to each value of the multi-value data to be written,
書き込まれて 、る複値データの値を旧値と呼び、書き込むべき複値データの値を 新値と呼ぶとき、  When the value of multi-value data that is written is called the old value and the value of multi-value data to be written is called the new value,
複数の前記不揮発性記憶素子に書き込まれている旧値を新値に更新する際に、 それぞれの前記不揮発性記憶素子の抵抗値を、旧値に対応する抵抗値カゝら前記 旧値に対応する抵抗値と前記新値に対応する抵抗値との間にある一時書き込み抵 抗値へと変化させる一時書き込みを行 ヽ、  When updating an old value written in a plurality of nonvolatile memory elements to a new value, the resistance value of each nonvolatile memory element corresponds to the old value from the resistance value corresponding to the old value. Temporary writing to change to the temporary writing resistance value between the resistance value corresponding to the new value and the resistance value corresponding to the new value,
その後、それぞれの前記不揮発性記憶素子につ!、て抵抗値を前記一時書き込み 抵抗値から前記新値に対応する抵抗値へと変化させる追加書き込みを行う、不揮発 性記憶装置へのデータ書き込み方法。  Then, additional writing is performed to change the resistance value of each of the nonvolatile memory elements from the temporary write resistance value to the resistance value corresponding to the new value.
[25] 前記追加書き込みを行うべく前記書き込み装置を制御する追加書き込みシーケン ス制御装置を備える、請求項 1に記載の不揮発性記憶装置。 25. The nonvolatile memory device according to claim 1, further comprising an additional write sequence control device that controls the writing device to perform the additional writing.
[26] 前記追加書き込みシーケンス制御装置は、一定期間毎に前記追加書き込みを行う ベく前記書き込み装置を制御するように構成されている、請求項 25に記載の不揮発 性記憶装置。 26. The nonvolatile memory device according to claim 25, wherein the additional write sequence control device is configured to control the write device to perform the additional write at regular intervals.
[27] 前記追加書き込みシーケンス制御装置は、前記一定期間の周期で所定時間の間 、前記書き込み動作を行わせる信号を出力するタイマーを備える、請求項 26に記載 の不揮発性記憶装置。 27. The nonvolatile memory device according to claim 26, wherein the additional write sequence control device includes a timer that outputs a signal for performing the write operation for a predetermined time period in the period of the predetermined period.
[28] 前記一定期間後における、一時書き込み状態の不揮発性記憶素子の抵抗値と基 準抵抗の抵抗値との差が読み取り保証マージン以上となるように、前記一定期間お よび前記一時書き込み抵抗値が設定されて!ヽる、請求項 26に記載の不揮発性記憶 装置。  [28] After the predetermined period, the temporary write resistance value and the temporary write resistance value so that a difference between the resistance value of the nonvolatile memory element in the temporarily written state and the resistance value of the reference resistance is equal to or greater than a read guarantee margin. Is set! 27. The nonvolatile memory device according to claim 26.
[29] 前記追加書き込みシーケンス制御装置は、電源立ち下げ時に前記追加書き込み を行うべく前記書き込み装置を制御するように構成されている、請求項 25に記載の 不揮発性記憶装置。  29. The nonvolatile memory device according to claim 25, wherein the additional write sequence control device is configured to control the write device to perform the additional write when a power supply is turned off.
[30] 前記追加書き込みシーケンス制御装置は、電源立ち上げ時に前記追加書き込み を行うべく前記書き込み装置を制御するように構成されている、請求項 25に記載の 不揮発性記憶装置。  30. The nonvolatile memory device according to claim 25, wherein the additional write sequence control device is configured to control the write device to perform the additional write when a power supply is turned on.
[31] 前記追加書き込みシーケンス制御装置は、一定期間毎に前記追加書き込みを行う ベく前記書き込み装置を制御し、かつ、電源立ち下げ時に前記追加書き込みを行う ベく前記書き込み装置を制御するように構成されている、請求項 25に記載の不揮発 性記憶装置。  [31] The additional writing sequence control device controls the writing device that performs the additional writing at regular intervals, and controls the writing device that performs the additional writing when the power is turned off. 26. The nonvolatile memory device according to claim 25, which is configured.
[32] 前記追加書き込みシーケンス制御装置は、タイマーを備える、請求項 31に記載の 不揮発性記憶装置。  32. The nonvolatile memory device according to claim 31, wherein the additional write sequence control device includes a timer.
[33] 前記一定期間後における、一時書き込み状態の不揮発性記憶素子の抵抗値と基 準抵抗の抵抗値との差が読み取り保証マージン以上となるように、前記一定期間が 設定されて!、る、請求項 31に記載の不揮発性記憶装置。  [33] After the predetermined period, the predetermined period is set so that a difference between the resistance value of the nonvolatile memory element in the temporarily written state and the resistance value of the reference resistance is equal to or greater than a reading guarantee margin! 32. The nonvolatile memory device according to claim 31.
[34] 前記追加書き込みシーケンス制御装置は、前記追加書き込みを行うべく前記書き 込み装置を制御している間、外部装置力 の書き込みデータの入力を禁止するため の追加書き込み実行中フラグ信号を出力するように構成されている、請求項 25に記 載の不揮発性記憶装置。  [34] While the additional write sequence control device controls the write device to perform the additional write, the additional write sequence control device outputs an additional write execution flag signal for prohibiting input of write data by an external device. The nonvolatile memory device according to claim 25, configured as described above.
[35] さらに、前記不揮発性記憶素子を備えるメモリセル力 成り、複数の前記メモリセル を有するメモリセルセクションを複数有するメモリセルアレイと、 一時書き込みフラグ領域とを備え、 [35] A memory cell array comprising the nonvolatile memory element, and a memory cell array having a plurality of memory cell sections each having a plurality of the memory cells, A temporary write flag area,
前記一時書き込みフラグ領域は、前記メモリセルセクション 1個について 1個のフラ グ用不揮発性記憶素子を備え、前記メモリセルセクションに属する不揮発性記憶素 子に前記一時書き込みを行った場合に、対応するフラグ用不揮発性記憶素子にそ の旨が書き込まれ、前記メモリセルセクションに属する不揮発性記憶素子に前記追 加書き込みを行った場合に、対応するフラグ用不揮発性記憶素子にその旨が書き込 まれるように構成されて ヽる、請求項 25に記載の不揮発性記憶装置。  The temporary write flag area includes one flag non-volatile storage element for each memory cell section, and corresponds to the case where the temporary write is performed on the non-volatile storage element belonging to the memory cell section. When the fact is written in the nonvolatile memory element for flag and the additional writing is performed on the nonvolatile memory element belonging to the memory cell section, the fact is written in the corresponding nonvolatile memory element for flag. 26. The nonvolatile memory device according to claim 25, configured to be configured as described above.
前記追加書き込みシーケンス制御装置は、前記一時書き込みフラグ領域に書き込 まれた情報に基づいて、前記追加書き込みを行うべく前記書き込み装置を制御する ように構成されて 、る、請求項 35に記載の不揮発性記憶装置。  36. The nonvolatile memory according to claim 35, wherein the additional write sequence control device is configured to control the write device to perform the additional write based on information written in the temporary write flag area. Sex memory device.
PCT/JP2007/061791 2006-06-13 2007-06-12 Nonvolatile storage device, nonvolatile data recording media, nonvolatile device, and method for writing data into nonvolatile storage device WO2007145199A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-163247 2006-06-13
JP2006-163257 2006-06-13
JP2006163257 2006-06-13
JP2006163247 2006-06-13

Publications (1)

Publication Number Publication Date
WO2007145199A1 true WO2007145199A1 (en) 2007-12-21

Family

ID=38831714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061791 WO2007145199A1 (en) 2006-06-13 2007-06-12 Nonvolatile storage device, nonvolatile data recording media, nonvolatile device, and method for writing data into nonvolatile storage device

Country Status (1)

Country Link
WO (1) WO2007145199A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8970453B2 (en) 2009-12-08 2015-03-03 Kabushiki Kaisha Toshiba Display apparatus, display method, and vehicle
JP5842912B2 (en) * 2011-03-22 2016-01-13 日本電気株式会社 Resistance memory device and writing method thereof
CN113325040A (en) * 2021-05-28 2021-08-31 中国农业大学 Sensing and computing integrated micro-nano electronic device and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106276A (en) * 1996-09-30 1998-04-24 Hitachi Ltd Semiconductor integrated circuit, and data-processing system
US6473332B1 (en) * 2001-04-04 2002-10-29 The University Of Houston System Electrically variable multi-state resistance computing
JP2003051196A (en) * 2001-05-31 2003-02-21 Semiconductor Energy Lab Co Ltd Non-volatile memory and its driving method
JP2004253093A (en) * 2003-02-21 2004-09-09 Matsushita Electric Ind Co Ltd Non-volatile semiconductor memory
JP2006120701A (en) * 2004-10-19 2006-05-11 Matsushita Electric Ind Co Ltd Variable resistance element, driving method therefor, and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106276A (en) * 1996-09-30 1998-04-24 Hitachi Ltd Semiconductor integrated circuit, and data-processing system
US6473332B1 (en) * 2001-04-04 2002-10-29 The University Of Houston System Electrically variable multi-state resistance computing
JP2003051196A (en) * 2001-05-31 2003-02-21 Semiconductor Energy Lab Co Ltd Non-volatile memory and its driving method
JP2004253093A (en) * 2003-02-21 2004-09-09 Matsushita Electric Ind Co Ltd Non-volatile semiconductor memory
JP2006120701A (en) * 2004-10-19 2006-05-11 Matsushita Electric Ind Co Ltd Variable resistance element, driving method therefor, and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8970453B2 (en) 2009-12-08 2015-03-03 Kabushiki Kaisha Toshiba Display apparatus, display method, and vehicle
JP5842912B2 (en) * 2011-03-22 2016-01-13 日本電気株式会社 Resistance memory device and writing method thereof
CN113325040A (en) * 2021-05-28 2021-08-31 中国农业大学 Sensing and computing integrated micro-nano electronic device and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4124635B2 (en) Semiconductor memory device and memory cell array erasing method
JP4129274B2 (en) Semiconductor memory device
JP4113493B2 (en) Nonvolatile semiconductor memory device and control method thereof
JP4464462B2 (en) Nonvolatile storage device and nonvolatile data recording medium
KR100554308B1 (en) Semiconductor memory device and data write method
TW200537511A (en) Nonvolatile semiconductor memory device
JPWO2009034687A1 (en) Nonvolatile memory device and data writing method to nonvolatile memory device
JP2004234707A (en) Semiconductor memory device and method for writing and erasing for memory cell
US8467245B2 (en) Non-volatile memory device with program current clamp and related method
US9208876B1 (en) Verify pulse delay to improve resistance window
JP4189269B2 (en) Nonvolatile semiconductor memory device, write / reset method thereof, and read method thereof
TWI789268B (en) Semiconductor storage device and writing method thereof
US6256702B1 (en) Nonvolatile memory device with extended storage and high reliability through writing the same data into two memory cells
WO2007145199A1 (en) Nonvolatile storage device, nonvolatile data recording media, nonvolatile device, and method for writing data into nonvolatile storage device
JP2007280591A (en) Memory cell, memory equipped with memory cell, and method for writing data inside memory cell
US8659954B1 (en) CBRAM/ReRAM with improved program and erase algorithms
JP2008310900A (en) Nonvolatile semiconductor memory device
JP4658039B2 (en) Nonvolatile memory with bias on source electrode for HCI programming
WO2004077446A1 (en) Nonvolatile semiconductor storage device
EP2498258B1 (en) Non-volatile memory device with program current clamp and related method
JP2008041157A (en) Memory cell, and nonvolatile storage device
JP5766137B2 (en) Semiconductor device
CN114927158A (en) Memristor state detection method and memristor read-write device
US20080056013A1 (en) Method and Related Apparatus Capable of Improving Endurance of Memory
JP3258945B2 (en) Nonvolatile semiconductor memory device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP