WO2007145112A1 - Liquid ejecting apparatus and liquid ejecting method - Google Patents

Liquid ejecting apparatus and liquid ejecting method Download PDF

Info

Publication number
WO2007145112A1
WO2007145112A1 PCT/JP2007/061441 JP2007061441W WO2007145112A1 WO 2007145112 A1 WO2007145112 A1 WO 2007145112A1 JP 2007061441 W JP2007061441 W JP 2007061441W WO 2007145112 A1 WO2007145112 A1 WO 2007145112A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
head
gap
substrate
liquid discharge
Prior art date
Application number
PCT/JP2007/061441
Other languages
French (fr)
Japanese (ja)
Inventor
Takehiro Murakami
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Publication of WO2007145112A1 publication Critical patent/WO2007145112A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J25/304Bodily-movable mechanisms for print heads or carriages movable towards or from paper surface
    • B41J25/308Bodily-movable mechanisms for print heads or carriages movable towards or from paper surface with print gap adjustment mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/06Ink jet characterised by the jet generation process generating single droplets or particles on demand by electric or magnetic field

Definitions

  • the present invention relates to a liquid ejection apparatus and a liquid ejection method, and more particularly to an electrostatic suction type liquid ejection apparatus and a liquid ejection method.
  • Patent Document 1 JP 2004-122112 A Disclosure of the invention
  • the gap between the liquid ejecting head and the surface of the object (hereinafter referred to as “head gap”) is kept constant. There was a problem that it was difficult to keep.
  • a head gap correction method a pre-discharge is performed in advance and correction is performed based on the result of landing on the surface of the object and the object, or based on the result of observing the flying droplet with a camera or the like. Is.
  • the head gap is corrected, there is a problem that even the posture of the liquid discharge head cannot be corrected.
  • the landing position and the like are different, and there is a problem that accurate liquid discharge cannot be performed.
  • the electrostatic attraction method has a problem that the influence of the change in the head gap is large because the electric field strength at the nozzle tip varies depending on the head gap.
  • the distance between the open end of each nozzle and the surface of the object differs depending on the inclination angle of the liquid discharge head with respect to the object surface. There was also a problem.
  • the landing position is equal to the inclination of the head and the substrate than the expected landing position.
  • the expected landing position of each nozzle varies depending on the inclination angle of the liquid discharge head with respect to the surface of the object.
  • the present invention has been made in view of these points, and an object of the present invention is to provide an electrostatic suction-type liquid ejection device that keeps the head gap constant.
  • the invention according to claim 1 provides a liquid ejecting apparatus comprising:
  • a liquid ejection head having a nozzle plate on which nozzles for ejecting liquid toward the substrate are formed, and a cavity for storing liquid ejected from the nozzles;
  • Pressure generating means for applying a driving voltage to generate pressure in the liquid stored in the cavity to form a meniscus in the nozzle;
  • a counter electrode that supports the substrate while facing the discharge surface of the liquid discharge head, and an electrostatic voltage that generates an electrostatic attraction force by applying an electrostatic voltage between the liquid discharge head and the counter electrode.
  • a gap adjusting means for adjusting a gap between the liquid discharge head and the substrate
  • Control means for controlling the gap adjusting means in accordance with the measurement result of the measuring means.
  • the plurality of measuring means measure the gaps at a plurality of different positions between the liquid discharge head and the substrate, and the control means determines the gap according to the measurement result. Adjust the head gap by adjusting means. After adjusting the head gap, the control means applies an electrostatic voltage and a driving voltage, and discharges a droplet.
  • the invention according to claim 2 is the liquid ejection device according to claim 1,
  • the gap adjusting means adjusts the distance and inclination between the substrate and the discharge surface of the liquid discharge head.
  • the gap adjusting means adjusts the distance and inclination between the base material and the discharge surface of the liquid discharge head, and the discharge surface of the liquid discharge head and the base Adjust the head gap so that the surface of the material is parallel and constant.
  • the invention described in claim 3 is the liquid discharge device according to claim 1 or 2,
  • the gap adjusting means is a piezoelectric element.
  • the gap can be adjusted accurately by using a piezoelectric element having good linearity of output with respect to the input as the gap adjusting means.
  • the measuring means measures the gap without contacting the substrate.
  • the measurement means that is not in contact with the substrate is used.
  • the liquid discharge head and the base material are discharged without conducting electricity.
  • the invention according to claim 5 is a liquid ejection method
  • a liquid discharge head having a nozzle plate on which nozzles for discharging liquid toward the substrate are formed and a cavity for storing liquid discharged from the nozzles is applied to the liquid stored in the cavity by applying a driving voltage.
  • the head gap is adjusted according to a plurality of measurement results obtained by measuring gaps at a plurality of different positions between the liquid discharge head and the substrate.
  • the control means applies an electrostatic voltage and a driving voltage to eject droplets.
  • the invention according to claim 6 is the liquid ejection method according to claim 5,
  • the gap adjusting step adjusts a distance and an inclination between the base material and an ejection surface of the liquid ejection head.
  • the distance and the inclination between the substrate and the discharge surface of the liquid discharge head are adjusted, and the discharge of the liquid discharge head is performed. Adjust the head gap so that the surface and the substrate surface are parallel and at a constant distance.
  • the head gap can be kept constant and the liquid can be discharged stably. it can. Therefore, it is possible to maintain a constant discharge speed, landing position, etc. Body discharge can be performed. Further, when the liquid is discharged, by adjusting the head gap while relatively moving the liquid discharge head and the substrate, the accuracy of droplet discharge can be improved, and further, the landing accuracy can be improved.
  • the head gap can be easily adjusted.
  • the discharge surface of the liquid discharge head and the base material can be made parallel to make the gap between the open end of each nozzle and the base material constant. Stable liquid discharge is possible.
  • it is possible to perform more accurate liquid ejection by keeping the ejection speed, landing position, and the like of droplets ejected from each nozzle constant.
  • the gap can be adjusted accurately by using a piezoelectric element having excellent linearity of output with respect to the input as the gap adjusting means.
  • the measuring means is non-contact, and it is possible to prevent electrical conduction between the liquid ejection device and the substrate.
  • the liquid discharge head is provided with a measuring means, it is possible to accurately measure the gap without being affected by the vibration caused by the movement of the substrate.
  • the head gap can be kept constant and the liquid can be discharged stably. it can. Accordingly, it is possible to keep the discharge speed, the landing position, and the like of the discharged droplets constant, so that accurate liquid discharge can be performed. Further, when the liquid is discharged, by adjusting the head gap while relatively moving the liquid discharge head and the substrate, the accuracy of droplet discharge can be improved, and further, the landing accuracy can be improved.
  • the head gap can be easily adjusted.
  • the discharge surface of the liquid discharge head and the base material can be made parallel to make the gap between the open end of each nozzle and the base material constant. Stable liquid discharge is possible.
  • it is possible to perform more accurate liquid ejection by keeping the ejection speed, landing position, and the like of droplets ejected from each nozzle constant.
  • FIG. 1 is a side view showing a schematic configuration of a liquid ejection apparatus in the present embodiment.
  • FIG. 2 is a plan view showing a schematic configuration of a liquid ejection apparatus in the present embodiment.
  • FIG. 3 is a front view showing a schematic configuration of a liquid ejection apparatus in the present embodiment.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a liquid discharge head in the present embodiment.
  • FIG. 5 is a block diagram showing a control configuration of the liquid ejection apparatus in the present embodiment.
  • FIG. 6 is an explanatory diagram showing a liquid discharge method using the liquid discharge head in the present embodiment.
  • FIG. 7 is a flowchart showing a flow of gap adjustment in the liquid ejection method of the present embodiment.
  • the liquid ejection apparatus 1 ejects liquid droplets from the liquid ejection head 10 toward the substrate K.
  • the liquid discharge apparatus 1 will be described below as a serial type.
  • the liquid ejection device 1 is provided with a vibration isolator 7 that removes vibrations of the installation position force.
  • a flat plate-like counter electrode 5 that supports the base material K is provided on the upper surface of the vibration isolation table 7.
  • the counter electrode 5 is grounded and is always kept at the ground potential.
  • a flat insulator 6 is provided below the counter electrode 5 to insulate so that current due to application of electrostatic voltage does not flow to the liquid ejection device 1.
  • a moving means 4 (see FIG. 5) for moving the counter electrode 5 supporting the base material K together with the insulator 6 is provided on the upper part of the vibration isolation table 7.
  • an X linear motor 2 and a Y linear motor 3 are provided which intermittently move the counter electrode 5 in the X direction and the Y direction, respectively. These correspond to the moving means 4.
  • Examples of the X linear motor 2 and the Y linear motor 3 include a general-purpose linear motor with a linear encoder.
  • a carriage 8 that is supported above the base material K and reciprocates in the Y direction is provided as a moving means 4 at a position facing the counter electrode 5 in FIG.
  • the carriage 8 is provided with a head holder 9 that supports the liquid discharge head 10.
  • the liquid discharge head 10 is a substantially rectangular parallelepiped, and the head holder 9 is attached to the upper surface of the liquid discharge head 10 and two adjacent side surfaces.
  • a carriage 8 is connected to the head holder 9 as a moving means 4 for roughly adjusting the position in the height direction (Z direction) so that the height of the liquid discharge head 10 can be roughly adjusted. It has become.
  • Examples of the carriage 8 include the linear motor with the linear encoder.
  • a linear encoder attached to the linear motor is used as the movement amount detection means 11 of the movement means 4.
  • the head holder 9 is provided with a sensor 15 (see FIG. 2) as a displacement meter for measuring the height of the head holder 9.
  • a known displacement meter can be used.
  • the sensor 15 detects the position of the liquid discharge head 10 relative to the counter electrode 5 that may function as the movement amount detection means 11 (see FIG. 5).
  • a gap adjusting means is provided between the head holder 9 and the liquid discharge head 10 to adjust the distance and inclination between the head holder 9 and the liquid discharge head 10.
  • Gap adjustment means It is an actuator that expands and contracts in proportion to the amount of reasoning, and has a function as a displacement generation means for adjusting the head gap by displacing the position of the liquid discharge head 10.
  • a piezoelectric element is used as an actuator in this embodiment in which a piezoelectric element is preferred because it is easy to manage an output with respect to an input of a physical quantity that can be used without any limitation.
  • At least one piezoelectric element 13 as a gap adjusting means for adjusting the distance and inclination between the head holder 9 and the liquid discharge head 10 between the head holder 9 and the liquid discharge head 10.
  • At least one of the piezoelectric elements 13 is provided in at least one of the three gaps between the liquid discharge head 10 and the head holder 9 and having different directions.
  • the piezoelectric element 13 is preferably one that can be deformed in units of several zm to make the fine adjustment of the head gap as short as possible.
  • two piezoelectric elements 13 are arranged on each of the three surfaces of the liquid ejection head 10, but the distance and inclination between the head holder 9 and the liquid ejection head 10 are adjusted, and as a result, the liquid If the height and angle of the body discharge head 10 can be adjusted, it can be changed as appropriate.
  • a plate panel or the like for amplifying expansion / contraction of the piezoelectric element 13 may be interposed between the piezoelectric element 13 and the liquid discharge head 10. In that case, it is preferable to monitor the amount of deformation of the plate panel or the like with respect to the expansion and contraction of the piezoelectric element 13 and convert it into a head gap adjustment amount for use in control.
  • a sensor 15 is disposed as a measurement unit that measures the distance to the substrate K.
  • the sensor 15 is provided with a light emitting means (not shown) that emits light toward the base material K positioned below, and a light receiving means (not shown) that receives the light reflected by the base material K. Is provided.
  • the sensor 15 is not in contact with the base material K, and measures the distance from the base material K based on the output of the light receiving means.
  • a non-contact measurement means e.g., sensor 15
  • measurement failure due to conduction between the liquid discharge head 10 and the substrate K or vibration associated with the movement of the substrate K. Etc. can be avoided.
  • the measurement result by the sensor 15 is output to the control means 14 described later.
  • the head gap is usually about 0.1 to 1 mm, it is preferable that the sensor 15 is capable of measuring with high accuracy in units of several tens / zm.
  • the sensor 15 include a C MOS type two-dimensional laser length measuring machine and a confocal type. A laser length measuring machine is mentioned.
  • the liquid discharge head 10 is provided with an angle meter 16 that measures an absolute angle of the liquid discharge head 10 with respect to the vertical direction.
  • the goniometer 16 may measure the absolute angle of the liquid ejection head 10 every time the inclination angle of the liquid ejection head 10 is adjusted by the sensor 15 which may be used to measure the absolute angle of the liquid ejection head 10 continuously.
  • the measurement result by the angle meter 16 is output to the control means 14 described later.
  • a plurality of sensors 15 may be arranged and used as a means of measuring the tilt.
  • the liquid discharge head 10 is provided with a resin nozzle plate 20 facing the substrate K.
  • the thickness of the nozzle plate 20 is preferably 75 m or more for stable droplet discharge.
  • the nozzle plate 20 is also formed with an insulating force, and its volume resistivity is 10 15 ⁇ m or more.
  • the nozzle plate 20 is provided with a plurality of nozzles 21 perforating the droplets D of the chargeable liquid L such as ink.
  • the nozzle 21 is formed so as to be tapered toward the base material K toward the base.
  • the diameter of the opening end of the nozzle 21 is preferably 15 m or less so that liquid can be stably discharged even at low electric field strength.
  • the diameter of the opening end of the nozzle 21 is 10 ⁇ m or less, and the nozzle 21 has a large diameter (opposite the opening end) of 100 m.
  • the nozzle 21 is flat so that it does not protrude from the nozzle plate 20 or the protruding amount of the nozzle 21 is about 30 m or less.
  • the cross-sectional shape of the nozzle 21 is not limited to the tapered shape and can be changed as appropriate.
  • the discharge surface 23 of the liquid discharge head 10 in the present embodiment is one surface of the liquid repellent layer 22 on the substrate K side.
  • the liquid repellent layer 22 for example, a material having water repellency is used if the liquid is aqueous, and a material having oil repellency is used if the liquid L is oily.
  • a film is formed via an intermediate layer. May be.
  • a charging electrode 24 for applying an electrostatic voltage to charge the liquid L is provided in a layered manner.
  • the charging electrode 24 is mainly formed of a conductive material such as NiP.
  • the charging electrode 24 extends to the inner peripheral surface of the nozzle 21 and comes into contact with the liquid L in the nozzle 21.
  • the charging electrode 24 is connected to an electrostatic voltage source 25 as an electrostatic voltage applying means for applying an electrostatic voltage.
  • the electrostatic voltage power supply 25 is connected with a control means 14 to be described later, and the application operation of the electrostatic voltage is controlled. Since the counter electrode 5 is grounded, an electrostatic attraction force is generated between the liquid discharge head 10 and the counter electrode 5, particularly between the liquid L and the substrate K, when the liquid L is charged. It is supposed to be. In addition, when the droplet D made of the charged liquid L lands on the substrate K, the counter electrode 5 releases the electric charge by grounding.
  • a body layer 26 is provided in a layered form.
  • a substantially cylindrical cavity 27 having the same cross section as the nozzle 21 is formed at a position facing the nozzles 21 of the body layer 26.
  • the cavity 27 communicates with a flow path (not shown) for supplying the liquid L from an external liquid tank (not shown).
  • a flexible layer 28 made of a flexible metal thin plate, silicon, or the like is provided on the other surface side of the body layer 26 .
  • Piezo elements 29 that are piezoelectric element actuators are provided at positions corresponding to the cavities 27 on the other surface side of the flexible layer 28.
  • the piezo element 29 is connected to an ejection drive power source 30 as a droplet ejection drive means for applying a drive voltage for deforming the piezo element 29.
  • the pressure generating means includes the piezo element 29 and the ejection drive power supply 30.
  • the piezo element 29 is deformed by the application of the drive voltage, and pressure is generated in the liquid L in the nozzle 21. A meniscus is formed at the end.
  • the discharge drive power supply 30 is connected to a control means 14 to be described later, and the drive voltage application operation is controlled.
  • the liquid ejection apparatus 1 includes an ejection drive power source 30, an electrostatic voltage power source 25, a moving unit 4, a piezoelectric element Control means 14 is provided which is electrically connected to the child 13, the sensor 15 and the goniometer 16 and controls them.
  • the control means 14 also has a computer power configured by connecting the CPU 14a, the ROM 14b, the RAM 14c, and the like through a BUS (not shown).
  • the control means 14 develops the power supply control program stored in the ROM 14b in the RAM 14c and executes it by the CPU 14a.
  • the control unit 14 controls the moving unit 4 so that the liquid discharge head 10 faces the droplet landing start position on the substrate K. Specifically, the counter electrode 5 is moved by the X linear motor 2 and the Y linear motor 3 so that the droplet landing start position of the substrate K is opposed to the liquid discharge head 10 and the height of the head holder 9 is roughly adjusted. At this time, the control means 14 causes the displacement and angle meter 16 to measure the height and tilt of the liquid discharge head 10.
  • control unit 14 controls the moving unit 4 to reciprocate the liquid discharge head 10 in the Y direction while facing the substrate K. Further, the control means 14 applies an electrostatic voltage from the electrostatic voltage power supply 25 to generate an electric field between the liquid L and the substrate K, and discharge driving as a pressure generating means based on the droplet discharge signal.
  • the power source 30 is controlled to generate a pressure on the liquid L and discharge the droplet D.
  • the control unit 14 controls the sensor 15 to measure the distance between the liquid discharge head 10 and the surface of the substrate K.
  • the control means 14 determines whether or not the measurement results obtained by the sensors 15 match each other, and determines whether or not the discharge surface 23 is parallel to the substrate K.
  • the control means 14 applies a voltage to each piezoelectric element 13 to deform it, and adjusts the distance between the head holder 9 and the liquid ejection head 10. Further, the control means 14 stores a specified value as a head gap in advance, and determines whether or not the measurement result of each sensor 15 matches the specified value. Is adjusted.
  • the control means 14 After applying a voltage to each piezoelectric element 13, the control means 14 causes the sensor 15 to measure the deformation amount of each piezoelectric element 13, and stores the deformation amount.
  • the control means 14 includes a liquid discharge head for an applied voltage based on the stored deformation amount.
  • Displacement amount detection means 31 for detecting the displacement amount of the ten ejection surfaces is provided.
  • the control means 14 calculates the amount of deformation of the applied voltage value of each piezoelectric element 13 by the displacement amount detecting means 31 and calculates the voltage value necessary to deform the piezoelectric element 13 by a desired amount. ing.
  • FIG. 6 is a diagram for explaining drive control of the liquid ejection head 10 by the control means 14.
  • the constant electrostatic voltage V applied to the charging electrode 24 from the electrostatic voltage power supply 25 is set to several kV, and the discharge drive power supply 30 applies to the piezo element 29.
  • the moving means 4 moves the counter electrode 5 to a position orthogonal to the X linear motor 2 and the Y linear motor 3, and makes the liquid discharge head 10 face the droplet landing start position of the substrate K (step Sl ).
  • the carriage 8 which is the moving means 4 of the liquid discharge head 10 moves the head holder 9 in the Z direction
  • the displacement meter measures the height of the head holder 9, and the head gap is about 1.0 to 3. Omm. Make coarse adjustments within the range.
  • the goniometer 16 measures the absolute angle of the liquid discharge head 10, measures the inclination of the liquid discharge head 10 with respect to the base material K, and determines whether the control means 14 is within the control range.
  • each sensor 15 measures the distance between the position where each sensor 15 is attached and the surface of the base material K. Further, the inclination of the head discharge surface 23 and the base material K is measured by the angle meter 16 (step S2). The measurement result is output to the control means 14.
  • the control means 14 calculates the head gap by subtracting the measurement result force from the distance between the mounting position of each sensor 15 and the discharge surface 23 (step S3). When the calculated head gap differs depending on each sensor 15, or when the inclination angle is detected by the goniometer 16, the control means 14 determines that the discharge surface 23 is inclined with respect to the substrate K.
  • a piezoelectric element for finely adjusting the tilt angle of the liquid discharge head 10 by expanding and contracting the piezoelectric element 13 is selected, and a voltage applied to each piezoelectric element 13 is calculated (step S4). If the measured value of the sensor 15 is different from the pre-stored V and the specified value as the head gap, the specified value A piezoelectric element for canceling the deviation is selected, and a voltage applied to each piezoelectric element 13 is calculated (step S4).
  • Step S5 the calculated voltage is amplified and applied to each selected piezoelectric element 13, and each piezoelectric element 13 is expanded and contracted to finely adjust the height and inclination angle of the liquid ejection head 10.
  • the control means 14 applies a voltage to each piezoelectric element 13 based on the amount of deviation of the measurement result calculated by each sensor 15.
  • the piezoelectric element 13 is provided between the head holder 9 and the liquid discharge head 10, and the head holder 9 is fixed to the carriage 8.
  • the head gap between the discharge surface 23 and the substrate K can be adjusted by adjusting the distance between the liquid discharge heads 10.
  • the piezoelectric elements 13 are disposed at both ends of each surface of the liquid discharge head 10, the distance and inclination of the liquid discharge head 10 with respect to the head holder 9 are changed by deformation of at least one of the paired piezoelectric elements 13.
  • the gap between the discharge surface 23 and the surface of the base material K can be adjusted.
  • step S6 After the voltage is applied to the piezoelectric element 13, the sensor 15 and the goniometer 16 measure the head gap again (step S6). The measurement result is output to the control means 14, and the measurement result is compared with the target value to determine whether it is within the target range (step S7). If it is within the target range (step S7: YES), the gap adjustment is completed and the process moves to drawing. If it is not within the target range (step S7: NO), return to step S3 and adjust the gear again.
  • Steps S3 to S7 are repeated until the measurement result falls within the target range.
  • the measurement result is output to the control unit 14, and the displacement amount of the head gap due to voltage application is detected and output to the displacement amount detection unit 31.
  • the displacement amount detection means 31 detects the displacement amount of the ejection surface of the liquid ejection head 10 with respect to the voltage amount applied to the piezoelectric element 13. The detection result is output to the control means 14 and used to calculate the voltage value to be applied in the subsequent gap adjustment step.
  • the displacement amount of the head gap is fed back to the displacement amount detecting means 31 to influence the thermal expansion of the piezoelectric element 13 and the difference between the upstream voltage and the downstream voltage.
  • the gap adjustment process can be performed in consideration.
  • the carriage 8 reciprocates the liquid ejection head 10 in the Y direction. Then, the liquid discharge head 10 applies an electrostatic voltage from the electrostatic voltage power supply 25 to generate an electric field between the liquid L and the substrate K, and stores the discharge drive power supply 30 in the cavity 27 by applying the discharge drive power supply 30. A pressure is generated on the liquid L and the droplet D is ejected. Specifically, as shown in FIG. 6, in the electrostatic voltage generation process, the electrostatic voltage power supply 25 is connected to the charging electrode 2.
  • a constant electrostatic voltage V is applied to 4 and each nozzle 21 of the liquid discharge head 10 and the counter electrode 5 and c
  • the ejection drive power supply 30 applies a pulsed drive voltage Vp to deform the piezo element 29.
  • Vp pulsed drive voltage
  • the pressure of the liquid L inside the nozzle 21 increases due to deformation of the piezo element 29, and a meniscus is formed at the open end of the nozzle 21 (see B in Fig. 6).
  • the force S is torn off and droplet D is ejected (see C in Fig. 6).
  • the ejected droplet D flies to the substrate by force, is accelerated by the electric field, and is sucked toward the counter electrode 5 (see D in FIG. 6).
  • the potential of the droplet D becomes equal to the potential of the counter electrode 5, and the same potential is obtained (see E in FIG. 6).
  • the control unit 14 When the liquid ejection head 10 and the base material K are relatively moved, the control unit 14 performs the above-described measurement process and gap adjustment process.
  • the measurement step and the gap adjustment step may be performed during intermittent conveyance of the base material, or at every elapse of a fixed time which may be performed every intermittent conveyance.
  • the liquid discharge head 10 including the plurality of nozzles 21 is provided in the liquid discharge apparatus 1 of the present embodiment, in order to adjust the distance and the inclination between the discharge surface 23 and the substrate K, By flattening the discharge surface 23, the distance between the open end of each nozzle 21 and the substrate K can be kept constant, and stable liquid discharge is possible. By adjusting the discharge speed and direction of each nozzle 21, the discharged droplet can be landed at a more accurate position.
  • a head gap can be easily adjusted by applying a voltage to the piezoelectric element 13 based on the measurement result of the sensor 15.
  • Sarako equipped with multiple piezoelectric elements 13 in the liquid discharge head 10 Therefore, the distance and inclination of the discharge surface 23 relative to the base material K can be adjusted.
  • the displacement amount detection means 31 measures and detects the distance and inclination between the discharge surface 23 and the substrate ⁇ , thereby moving the displacement means 4 according to the thermal expansion of each member including the piezoelectric element 13.
  • a correction voltage to the piezoelectric element 13 to correct the difference between the discharge surface 23 caused by the fluctuation and the substrate ⁇ ⁇ ⁇ ⁇ and the target value of the inclination, the distance and inclination between the discharge surface 23 and the substrate ⁇ Can be kept constant.
  • the pressure generating means for forming a meniscus in the nozzle 21 of the liquid discharge head 10 in addition to the piezoelectric element actuator as in the present embodiment, for example, an electrostatic actuating system is used. It is also possible to adopt.
  • the liquid ejecting apparatus 1 has been described as a serial type, but can also be applied to a line type or the like.
  • the counter electrode 5 is grounded and an electrostatic voltage is applied to the charging electrode 24 of the liquid discharge head 10.
  • the electrostatic discharge voltage is applied to the counter electrode and the liquid discharge head 10 side is grounded. It is also good to do.
  • At least one of the meniscus formed at the opening end of the nozzle 21 and the still image or moving image of the flying droplet D is formed in the gap between the liquid discharge head 10 and the base plate. It is also acceptable to provide an imaging means for imaging and detecting abnormal ejection of droplets.
  • an imaging means for imaging a known power source such as a camera can be used without particular limitation. CCD cameras are preferred because they can continuously capture an imaging target.
  • CCD cameras are preferred because they can continuously capture an imaging target.
  • the liquid discharge head 10 is provided with the sensor 15 as the measuring means, but the measuring means may be provided on the counter electrode 5 side. In that case, by disposing the measuring means outside the region of the counter electrode 5 that supports the substrate K, it is possible to measure the distance and the inclination with respect to the ejection surface of the liquid ejection head 10 without interposing the substrate K.
  • the liquid It is preferable that the head gap can be adjusted each time the droplet discharge operation of the body discharge head 10 is completed.
  • control unit 14 stores a predetermined value as a head gap in advance, but the discharge surface 23 and the base material K are used using a high-precision displacement meter at the stage of coarse adjustment. It is also possible to adjust the distance and inclination between the discharge surface 23 and the substrate K by the gap adjusting means.
  • the piezoelectric element 13 as the gap adjusting means adjusts the height and inclination of the liquid discharge head 10, but is provided below the counter electrode 5 to increase the height of the base material K. It is also possible to adjust the head gap by adjusting the tilt and tilt.
  • the liquid discharge head 10 is provided with the sensor 15, but the measurement means may be provided on the counter electrode 5 side. good.
  • the liquid discharge apparatus 1 of the present embodiment since the liquid droplet is discharged while adjusting the head gap, the head gap can be kept constant and the liquid discharge can be stably performed. Can go out. Accordingly, it is possible to keep the droplet discharge speed, the landing position, etc. constant, and to perform accurate liquid discharge. In addition, when discharging liquid droplets, the liquid discharge accuracy can be improved by adjusting the head gap while moving the liquid discharge head 10 relative to the substrate K.

Landscapes

  • Ink Jet (AREA)

Abstract

Provided is an electrostatically attracting type liquid ejecting apparatus which keeps a head gap constant. The liquid ejecting apparatus is provided with a liquid ejecting head (10) for ejecting a liquid toward a base material (K); an ejection driving power supply (30) for applying a driving voltage and forming a meniscus; a counter electrode (5) for supporting the base material (K); an electrostatic voltage power supply (8) which applies an electrostatic voltage between the liquid ejecting head (10) and the counter electrode (5) and generates an electrostatically attracting force; a plurality of sensors (15) for measuring a gap between the ejecting surface (23) and the base material (K); a piezoelectric element (13) for adjusting the gap between the ejecting surface (23) and the base material (K); and a control means (14) for controlling the piezoelectric element (13), corresponding to the measurement results obtained from the sensors (15).

Description

明 細 書  Specification
液体吐出装置及び液体吐出方法  Liquid ejection apparatus and liquid ejection method
技術分野  Technical field
[0001] 本発明は、液体吐出装置及び液体吐出方法に係り、特に、静電吸引方式の液体 吐出装置及び液体吐出方法に関する。  The present invention relates to a liquid ejection apparatus and a liquid ejection method, and more particularly to an electrostatic suction type liquid ejection apparatus and a liquid ejection method.
背景技術  Background art
[0002] 従来から、液体吐出ヘッドの微小化されたノズル力 低粘度の液体のみならず高粘 度の液体を吐出させる技術として、ノズル内の液体を帯電させ、ノズルと液体の液滴 の着弾を受ける対象物となる各種の基材との間に形成される電界から受ける静電吸 引力により吐出させる静電吸引方式の液体吐出技術が知られている。  Conventionally, as a technology for ejecting not only a low-viscosity liquid but also a high-viscosity liquid, the liquid in the nozzle is charged and the nozzle and the liquid droplets are landed. There is known an electrostatic suction type liquid discharge technique in which discharge is performed by an electrostatic suction force received from an electric field formed between various base materials that are objects to be received.
[0003] また、この液体吐出技術と、ピエゾ素子の変形や液体内部での気泡の発生による 圧力を利用して液体を吐出する技術とを組み合わせた電界アシスト法を用いた液体 吐出装置の開発が進んでいる。この電界アシスト法は、メニスカス形成手段と静電吸 引力を用 、てノズルの吐出孔に液体のメニスカスを隆起させることにより、メニスカス に対する静電吸引力を高め、液表面張力に打ち勝ってメニスカスを液滴化し吐出す る方法である。  [0003] In addition, there has been a development of a liquid discharge apparatus using an electric field assist method that combines this liquid discharge technique and a technique for discharging liquid using pressure due to deformation of a piezoelectric element or generation of bubbles inside the liquid. Progressing. This electric field assist method uses the meniscus forming means and electrostatic attraction force to raise the liquid meniscus in the nozzle discharge hole, thereby increasing the electrostatic attraction force against the meniscus and overcoming the surface tension of the meniscus. It is a method of dropletizing and discharging.
[0004] このような液体吐出装置において、安定かつ正確に液体を吐出させるために液滴 を微小化させる技術が知られている。ノズル先端部の流体吐出孔の直径を、吐出直 後の流体の液滴径と同等以下に設定することで、電荷の集中領域とメニスカス領域と を一致させ、吐出精度を向上させることができる。また、ノズルの内部流路長を内部 直径の少なくとも 10倍以上とすることにより、電界強度を高め液体吐出の安定性を高 めることが可能である。  In such a liquid ejecting apparatus, a technique for miniaturizing droplets in order to eject liquid stably and accurately is known. By setting the diameter of the fluid discharge hole at the tip of the nozzle to be equal to or less than the droplet diameter of the fluid immediately after discharge, the charge concentration region and the meniscus region can be matched to improve discharge accuracy. In addition, by setting the internal flow path length of the nozzle to at least 10 times the internal diameter, it is possible to increase the electric field strength and improve the stability of liquid discharge.
[0005] 一方、従来のピエゾ素子の変形や液体内部での気泡の発生による圧力のみを利 用して液体を吐出する液体吐出装置においては、液体吐出ヘッドと対象物表面との 間の間隙(以下、「ヘッドギャップ」)を一定に保つことが行われている(例えば、特許 文献 1参照)。  [0005] On the other hand, in a liquid ejection device that ejects liquid using only pressure due to deformation of a piezoelectric element or generation of bubbles inside the liquid, a gap between the liquid ejection head and the surface of an object ( Hereinafter, the “head gap”) is kept constant (for example, see Patent Document 1).
特許文献 1 :特開 2004— 122112号公報 発明の開示 Patent Document 1: JP 2004-122112 A Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、特許文献 1に開示された従来の液体吐出装置にぉ 、ては、液体吐 出ヘッドと対象物表面との間の間隙 (以下、「ヘッドギャップ」)を一定に保つことが難 しいという問題があった。ヘッドギャップの補正方式としては、事前に予備吐出を行い 、対象物表面と対象物に着弾した結果に基づき、又は、飛翔した液滴をカメラ等で観 察した結果に基づいて補正するものが一般的である。この場合、ヘッドギャップの補 正の際に、液体吐出ヘッドの姿勢までも補正することはできないという問題があった。 液滴吐出途中の、ヘッドギャップが不安定となると、着弾位置等が異なり、正確な液 体吐出が行えないという問題があった。特に、静電吸引方式の場合、ヘッドギャップ に応じてノズル先端部の電界強度が異なるため、ヘッドギャップの変化の影響が大き いという問題もあった。また、複数のノズルを備える液体吐出ヘッドを用いる場合、液 体吐出ヘッドの対象物表面に対する傾斜角によっては各ノズルの開口端と対象物表 面との間の距離が各ノズルで異なってしまうという問題もあった。  [0006] In contrast to the conventional liquid ejecting apparatus disclosed in Patent Document 1, the gap between the liquid ejecting head and the surface of the object (hereinafter referred to as “head gap”) is kept constant. There was a problem that it was difficult to keep. As a head gap correction method, a pre-discharge is performed in advance and correction is performed based on the result of landing on the surface of the object and the object, or based on the result of observing the flying droplet with a camera or the like. Is. In this case, when the head gap is corrected, there is a problem that even the posture of the liquid discharge head cannot be corrected. When the head gap becomes unstable during droplet discharge, the landing position and the like are different, and there is a problem that accurate liquid discharge cannot be performed. In particular, the electrostatic attraction method has a problem that the influence of the change in the head gap is large because the electric field strength at the nozzle tip varies depending on the head gap. In addition, when using a liquid discharge head having a plurality of nozzles, the distance between the open end of each nozzle and the surface of the object differs depending on the inclination angle of the liquid discharge head with respect to the object surface. There was also a problem.
[0007] さらには、ヘッドと基材の傾斜により静電吸引するヘッドあるいは基材の面に対して 垂直方向に飛翔する性質により、予想される着弾位置よりヘッドと基材の傾斜分だけ 着弾位置がずれる問題を生じさせる。複数のノズルを備える液体吐出ヘッドを用いる 場合、液体吐出ヘッドの対象物表面に対する傾斜角によっては各ノズルで予想され る着弾位置が異なる問題に発展する。  [0007] Furthermore, due to the property of flying in a direction perpendicular to the surface of the head or the substrate that is electrostatically attracted by the inclination of the head and the substrate, the landing position is equal to the inclination of the head and the substrate than the expected landing position. Cause the problem of misalignment. When a liquid discharge head having a plurality of nozzles is used, the expected landing position of each nozzle varies depending on the inclination angle of the liquid discharge head with respect to the surface of the object.
[0008] 本発明はこのような点に鑑みてなされたものであり、ヘッドギャップを一定に保つ静 電吸引方式の液体吐出装置の提供を目的とするものである。  The present invention has been made in view of these points, and an object of the present invention is to provide an electrostatic suction-type liquid ejection device that keeps the head gap constant.
課題を解決するための手段  Means for solving the problem
[0009] 前記課題を解決するために、請求の範囲第 1項に記載の発明は、液体吐出装置に おいて、 [0009] In order to solve the above-mentioned problem, the invention according to claim 1 provides a liquid ejecting apparatus comprising:
基材に向けて液体を吐出するノズルが形成されたノズルプレートと前記ノズルから 吐出される液体を貯蔵するキヤビティとを有する液体吐出ヘッドと、  A liquid ejection head having a nozzle plate on which nozzles for ejecting liquid toward the substrate are formed, and a cavity for storing liquid ejected from the nozzles;
駆動電圧を印加して前記キヤビティに貯蔵される液体に圧力を発生させて前記ノズ ルにメニスカスを形成させる圧力発生手段と、 前記基材を支持しつつ前記液体吐出ヘッドの吐出面に対向する対向電極と、 前記液体吐出ヘッドと前記対向電極の間に静電電圧を印加して静電吸引力を発 生させる静電電圧発生手段と、 Pressure generating means for applying a driving voltage to generate pressure in the liquid stored in the cavity to form a meniscus in the nozzle; A counter electrode that supports the substrate while facing the discharge surface of the liquid discharge head, and an electrostatic voltage that generates an electrostatic attraction force by applying an electrostatic voltage between the liquid discharge head and the counter electrode. Generating means;
前記吐出面と前記基材との間の複数の異なる位置の間隙を測定する複数の測定 手段と、  A plurality of measuring means for measuring gaps at a plurality of different positions between the discharge surface and the substrate;
前記液体吐出ヘッドと前記基材との間隙を調整する間隙調整手段と、  A gap adjusting means for adjusting a gap between the liquid discharge head and the substrate;
前記測定手段の測定結果に応じて前記間隙調整手段を制御する制御手段と、 を備えることを特徴とする。  Control means for controlling the gap adjusting means in accordance with the measurement result of the measuring means.
[0010] 請求の範囲第 1項に記載の発明によれば、液体吐出ヘッドと基材との複数の異なる 位置の間隙を複数の測定手段が測定し、その測定結果に応じて制御手段は間隙調 整手段によりヘッドギャップを調整する。ヘッドギャップを調整した後、制御手段は静 電電圧及び駆動電圧を印加させ、液滴を吐出させる。  [0010] According to the invention described in claim 1, the plurality of measuring means measure the gaps at a plurality of different positions between the liquid discharge head and the substrate, and the control means determines the gap according to the measurement result. Adjust the head gap by adjusting means. After adjusting the head gap, the control means applies an electrostatic voltage and a driving voltage, and discharges a droplet.
[0011] 請求の範囲第 2項に記載の発明は、請求の範囲第 1項に記載の液体吐出装置に おいて、  [0011] The invention according to claim 2 is the liquid ejection device according to claim 1,
前記間隙調整手段は、前記基材と前記液体吐出ヘッドの吐出面との距離及び傾 斜を調整することを特徴とする。  The gap adjusting means adjusts the distance and inclination between the substrate and the discharge surface of the liquid discharge head.
[0012] 請求の範囲第 2項に記載の発明によれば、間隙調整手段は、基材と液体吐出へッ ドの吐出面との距離及び傾斜を調整し、液体吐出ヘッドの吐出面と基材表面とを平 行かつ一定距離としてヘッドギャップを調整する。 [0012] According to the invention of claim 2, the gap adjusting means adjusts the distance and inclination between the base material and the discharge surface of the liquid discharge head, and the discharge surface of the liquid discharge head and the base Adjust the head gap so that the surface of the material is parallel and constant.
[0013] 請求の範囲第 3項に記載の発明は、請求の範囲第 1項又は第 2項に記載の液体吐 出装置において、 [0013] The invention described in claim 3 is the liquid discharge device according to claim 1 or 2,
前記間隙調整手段が、圧電素子であることを特徴とする。  The gap adjusting means is a piezoelectric element.
[0014] 請求の範囲第 3項に記載の発明によれば、間隙調整手段として入力に対する出力 の線形性の良 、圧電素子を用いることにより正確にギャップ調整ができる。 According to the invention described in claim 3, the gap can be adjusted accurately by using a piezoelectric element having good linearity of output with respect to the input as the gap adjusting means.
[0015] 請求の範囲第 4項に記載の発明は、請求の範囲第 1項〜第 3項のいずれか一項に 記載の液体吐出装置にぉ 、て [0015] The invention described in claim 4 is directed to the liquid ejection device according to any one of claims 1 to 3.
前記測定手段は、前記基材と非接触のまま前記間隙を測定することを特徴とする。  The measuring means measures the gap without contacting the substrate.
[0016] 請求の範囲第 4項に記載の発明によれば、基材と非接触の測定手段を用いること により、液体吐出ヘッドと基材とが導電せずに液体吐出される。 [0016] According to the invention described in claim 4 of the invention, the measurement means that is not in contact with the substrate is used. Thus, the liquid discharge head and the base material are discharged without conducting electricity.
[0017] 請求の範囲第 5項に記載の発明は、液体吐出方法において、  [0017] The invention according to claim 5 is a liquid ejection method,
基材に向けて液体を吐出するノズルが形成されたノズルプレートと前記ノズルから 吐出される液体を貯蔵するキヤビティとを有する液体吐出ヘッドに、駆動電圧を印加 して前記キヤビティに貯蔵される液体に圧力を発生させて前記ノズルにメニスカスを 形成させる圧力発生工程と、  A liquid discharge head having a nozzle plate on which nozzles for discharging liquid toward the substrate are formed and a cavity for storing liquid discharged from the nozzles is applied to the liquid stored in the cavity by applying a driving voltage. A pressure generating step of generating pressure to form a meniscus in the nozzle;
前記基材を支持しつつ前記液体吐出ヘッドの吐出面に対向する対向電極と前記 液体吐出ヘッドとの間に静電電圧を印加して静電吸引力を発生させる静電電圧発 生工程と、  An electrostatic voltage generating step of generating an electrostatic attraction force by applying an electrostatic voltage between the liquid discharge head and a counter electrode facing the discharge surface of the liquid discharge head while supporting the substrate;
前記吐出面と前記基材との間の複数の異なる位置の間隙を測定する測定工程と、 前記測定工程で得られた複数の測定結果に応じて、前記液体吐出ヘッドと前記基 材との間隙を調整する間隙調整工程と、  A measurement step of measuring a plurality of gaps at different positions between the discharge surface and the base material, and a gap between the liquid discharge head and the base material according to a plurality of measurement results obtained in the measurement step. A gap adjusting step for adjusting
を備えることを特徴とする。  It is characterized by providing.
[0018] 請求の範囲第 5項に記載の発明によれば、液体吐出ヘッドと基材との複数の異なる 位置の間隙を測定した複数の測定結果に応じてヘッドギャップを調整する。ヘッドギ ヤップを調整した後、制御手段は静電電圧及び駆動電圧を印加させ、液滴を吐出さ せる。 [0018] According to the invention described in claim 5, the head gap is adjusted according to a plurality of measurement results obtained by measuring gaps at a plurality of different positions between the liquid discharge head and the substrate. After adjusting the head gap, the control means applies an electrostatic voltage and a driving voltage to eject droplets.
[0019] 請求の範囲第 6項に記載の発明は、請求の範囲第 5項に記載の液体吐出方法に おいて、  [0019] The invention according to claim 6 is the liquid ejection method according to claim 5,
前記間隙調整工程は、前記基材と前記液体吐出ヘッドの吐出面との距離及び傾 斜を調整することを特徴とする。  The gap adjusting step adjusts a distance and an inclination between the base material and an ejection surface of the liquid ejection head.
[0020] 請求の範囲第 6項に記載の発明によれば、間隙調整工程にお!、て、基材と液体吐 出ヘッドの吐出面との距離及び傾斜を調整し、液体吐出ヘッドの吐出面と基材表面 とを平行かつ一定距離としてヘッドギャップを調整する。 [0020] According to the invention described in claim 6, in the gap adjustment step, the distance and the inclination between the substrate and the discharge surface of the liquid discharge head are adjusted, and the discharge of the liquid discharge head is performed. Adjust the head gap so that the surface and the substrate surface are parallel and at a constant distance.
発明の効果  The invention's effect
[0021] 請求の範囲第 1項に記載の発明によれば、ヘッドギャップを調整しつつ液滴の吐出 を行うので、ヘッドギャップを一定に保つことができ、安定して液体吐出を行うことがで きる。従って、吐出液滴の吐出速度、着弾位置等を一定に保つことができ、正確な液 体吐出を行うことができる。また、液体吐出の際、液体吐出ヘッドと基材とを相対移動 させつつヘッドギャップを調整することにより、液滴吐出の精度が向上し、さらには着 弹精度の向上が可能である。 [0021] According to the invention described in claim 1, since the liquid droplets are discharged while adjusting the head gap, the head gap can be kept constant and the liquid can be discharged stably. it can. Therefore, it is possible to maintain a constant discharge speed, landing position, etc. Body discharge can be performed. Further, when the liquid is discharged, by adjusting the head gap while relatively moving the liquid discharge head and the substrate, the accuracy of droplet discharge can be improved, and further, the landing accuracy can be improved.
[0022] 請求の範囲第 2項に記載の発明によれば、基材と液体吐出ヘッドの吐出面との距 離及び傾斜を調整するので、容易にヘッドギャップの調整が可能である。また、複数 のノズルを備える液体吐出ヘッドにぉ 、ても、液体吐出ヘッドの吐出面と基材とを平 行にして各ノズルの開口端と基材との間隙を一定にすることができ、安定した液体吐 出が可能である。また、各ノズルから吐出される液滴の吐出速度、着弾位置等を一定 とし、より正確な液体吐出を行うことができる。  According to the invention described in claim 2, since the distance and inclination between the base material and the ejection surface of the liquid ejection head are adjusted, the head gap can be easily adjusted. In addition, even with a liquid discharge head having a plurality of nozzles, the discharge surface of the liquid discharge head and the base material can be made parallel to make the gap between the open end of each nozzle and the base material constant. Stable liquid discharge is possible. In addition, it is possible to perform more accurate liquid ejection by keeping the ejection speed, landing position, and the like of droplets ejected from each nozzle constant.
[0023] 請求の範囲第 3項に記載の発明によれば、間隙調整手段として入力に対する出力 の線形性の良 、圧電素子を用いることにより正確にギャップ調整ができる。 According to the invention described in claim 3, the gap can be adjusted accurately by using a piezoelectric element having excellent linearity of output with respect to the input as the gap adjusting means.
[0024] 請求の範囲第 4項に記載の発明によれば、測定手段は非接触であり、液体吐出装 置と基材との導電を防止することが可能である。また、液体吐出ヘッドに測定手段を 備えると、基材の移動に伴う振動の影響を受けることなく正確な間隙の測定が可能で ある。 [0024] According to the invention as set forth in claim 4, the measuring means is non-contact, and it is possible to prevent electrical conduction between the liquid ejection device and the substrate. In addition, if the liquid discharge head is provided with a measuring means, it is possible to accurately measure the gap without being affected by the vibration caused by the movement of the substrate.
[0025] 請求の範囲第 5項に記載の発明によれば、ヘッドギャップを調整しつつ液滴の吐出 を行うので、ヘッドギャップを一定に保つことができ、安定して液体吐出を行うことがで きる。従って、吐出液滴の吐出速度、着弾位置等を一定に保つことができ、正確な液 体吐出を行うことができる。また、液体吐出の際、液体吐出ヘッドと基材とを相対移動 させつつヘッドギャップを調整することにより、液滴吐出の精度が向上し、さらには着 弹精度の向上が可能である。  [0025] According to the invention described in claim 5, since the liquid droplets are discharged while adjusting the head gap, the head gap can be kept constant and the liquid can be discharged stably. it can. Accordingly, it is possible to keep the discharge speed, the landing position, and the like of the discharged droplets constant, so that accurate liquid discharge can be performed. Further, when the liquid is discharged, by adjusting the head gap while relatively moving the liquid discharge head and the substrate, the accuracy of droplet discharge can be improved, and further, the landing accuracy can be improved.
[0026] 請求の範囲第 6項に記載の発明によれば、基材と液体吐出ヘッドの吐出面との距 離及び傾斜を調整するので、容易にヘッドギャップの調整が可能である。また、複数 のノズルを備える液体吐出ヘッドにぉ 、ても、液体吐出ヘッドの吐出面と基材とを平 行にして各ノズルの開口端と基材との間隙を一定にすることができ、安定した液体吐 出が可能である。また、各ノズルから吐出される液滴の吐出速度、着弾位置等を一定 とし、より正確な液体吐出を行うことができる。  [0026] According to the invention described in claim 6, since the distance and the inclination between the base material and the ejection surface of the liquid ejection head are adjusted, the head gap can be easily adjusted. In addition, even with a liquid discharge head having a plurality of nozzles, the discharge surface of the liquid discharge head and the base material can be made parallel to make the gap between the open end of each nozzle and the base material constant. Stable liquid discharge is possible. In addition, it is possible to perform more accurate liquid ejection by keeping the ejection speed, landing position, and the like of droplets ejected from each nozzle constant.
図面の簡単な説明 [0027] [図 1]本実施形態における液体吐出装置の概略構成を示す側面図である。 Brief Description of Drawings FIG. 1 is a side view showing a schematic configuration of a liquid ejection apparatus in the present embodiment.
[図 2]本実施形態における液体吐出装置の概略構成を示す平面図である。  FIG. 2 is a plan view showing a schematic configuration of a liquid ejection apparatus in the present embodiment.
[図 3]本実施形態における液体吐出装置の概略構成を示す正面図である。  FIG. 3 is a front view showing a schematic configuration of a liquid ejection apparatus in the present embodiment.
[図 4]本実施形態における液体吐出ヘッドの概略構成を示す断面図である。  FIG. 4 is a cross-sectional view showing a schematic configuration of a liquid discharge head in the present embodiment.
[図 5]本実施形態における液体吐出装置の制御構成を示すブロック図である。  FIG. 5 is a block diagram showing a control configuration of the liquid ejection apparatus in the present embodiment.
[図 6]本実施形態における液体吐出ヘッドを用いた液体吐出方法を示す説明図であ る。  FIG. 6 is an explanatory diagram showing a liquid discharge method using the liquid discharge head in the present embodiment.
[図 7]本実施形態の液体吐出方法におけるギャップ調整の流れを示すフローチャート である。  FIG. 7 is a flowchart showing a flow of gap adjustment in the liquid ejection method of the present embodiment.
符号の説明  Explanation of symbols
[0028] 1 液体吐出装置 [0028] 1 Liquid discharge device
4 移動手段  4 Means of transportation
8 キャリッジ  8 Carriage
9 ヘッドホノレグ  9 Head Honoreg
10 揿体吐出ヘッド  10 Housing discharge head
11 移動量検出手段  11 Movement detection method
13 圧電素子  13 Piezoelectric element
14 制御手段  14 Control means
15 センサ  15 sensors
16 角度計  16 Angle meter
21 ノズル  21 nozzles
23 吐出面  23 Discharge surface
25 静電電圧電源  25 Electrostatic voltage power supply
29 ピエゾ素子  29 Piezo elements
30 吐出駆動電源  30 Discharge drive power supply
31 変位量検出手段  31 Displacement detection means
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下に、本発明に係る液体吐出装置 1の一実施形態について、図面を参照して説 明する。ただし、発明の範囲を図示例に限定するものではない。 Hereinafter, an embodiment of a liquid ejection apparatus 1 according to the present invention will be described with reference to the drawings. Light up. However, the scope of the invention is not limited to the illustrated examples.
[0030] 本実施形態に係る液体吐出装置 1は、液体吐出ヘッド 10から基材 Kに向けて液滴 を吐出させるものである。液体吐出装置 1は、シリアル方式のものとして以下説明する 。図 1に示すように、液体吐出装置 1には、その設置位置力 の振動を除去する除振 台 7が備えられている。除振台 7の上面には、基材 Kを支持する平板状の対向電極 5 が備えられている。対向電極 5は接地されており、常時接地電位に維持されるよう〖こ なっている。対向電極 5の下部には、静電電圧の印加による電流が液体吐出装置 1 に流れな 、ように絶縁する平板状の絶縁体 6が備えられて 、る。  The liquid ejection apparatus 1 according to the present embodiment ejects liquid droplets from the liquid ejection head 10 toward the substrate K. The liquid discharge apparatus 1 will be described below as a serial type. As shown in FIG. 1, the liquid ejection device 1 is provided with a vibration isolator 7 that removes vibrations of the installation position force. A flat plate-like counter electrode 5 that supports the base material K is provided on the upper surface of the vibration isolation table 7. The counter electrode 5 is grounded and is always kept at the ground potential. A flat insulator 6 is provided below the counter electrode 5 to insulate so that current due to application of electrostatic voltage does not flow to the liquid ejection device 1.
[0031] 除振台 7の上部には、基材 Kを支持する対向電極 5を絶縁体 6とともに移動させる 移動手段 4 (図 5参照)が備えられている。図 2に示すように、対向電極 5を X方向、 Y 方向にそれぞれ間欠移動させる、 Xリニアモータ 2、 Yリニアモータ 3が備えられている 。これらは前記移動手段 4に該当する。 Xリニアモータ 2、 Yリニアモータ 3としては、例 えば、汎用性のあるリニアエンコーダ付リニアモータが挙げられる。  A moving means 4 (see FIG. 5) for moving the counter electrode 5 supporting the base material K together with the insulator 6 is provided on the upper part of the vibration isolation table 7. As shown in FIG. 2, an X linear motor 2 and a Y linear motor 3 are provided which intermittently move the counter electrode 5 in the X direction and the Y direction, respectively. These correspond to the moving means 4. Examples of the X linear motor 2 and the Y linear motor 3 include a general-purpose linear motor with a linear encoder.
[0032] 図 1中の対向電極 5に相対する位置には、図 3に示すように、基材 Kの上方で支持 されつつ Y方向に往復移動するキャリッジ 8が移動手段 4として備えられて 、る。キヤリ ッジ 8には、液体吐出ヘッド 10を支持するヘッドホルダ 9が備えられている。液体吐出 ヘッド 10は略直方体であり、ヘッドホルダ 9は、液体吐出ヘッド 10の上面及び 2つの 隣り合う側面に取り付けられている。ヘッドホルダ 9には、その高さ方向(Z方向)にお ける位置を粗調整する移動手段 4としてのキャリッジ 8が接続されており、液体吐出へ ッド 10の高さが粗調整されるようになっている。キャリッジ 8としては前記リニアェンコ ーダ付きリニアモータが挙げられる。移動手段 4の移動量検出手段 11としてリニアモ ータ付属のリニアエンコーダを用いる。また、ヘッドホルダ 9には、ヘッドホルダ 9の高 さを測定する変位計としてのセンサ 15 (図 2参照)が備えられている。変位計としては 公知のものを適用可能である。本実施形態においてはセンサ 15が移動量検出手段 11 (図 5参照)として機能しても良ぐ液体吐出ヘッド 10の対向電極 5に対する位置を 検出するようになっている。  As shown in FIG. 3, a carriage 8 that is supported above the base material K and reciprocates in the Y direction is provided as a moving means 4 at a position facing the counter electrode 5 in FIG. The The carriage 8 is provided with a head holder 9 that supports the liquid discharge head 10. The liquid discharge head 10 is a substantially rectangular parallelepiped, and the head holder 9 is attached to the upper surface of the liquid discharge head 10 and two adjacent side surfaces. A carriage 8 is connected to the head holder 9 as a moving means 4 for roughly adjusting the position in the height direction (Z direction) so that the height of the liquid discharge head 10 can be roughly adjusted. It has become. Examples of the carriage 8 include the linear motor with the linear encoder. A linear encoder attached to the linear motor is used as the movement amount detection means 11 of the movement means 4. The head holder 9 is provided with a sensor 15 (see FIG. 2) as a displacement meter for measuring the height of the head holder 9. A known displacement meter can be used. In the present embodiment, the sensor 15 detects the position of the liquid discharge head 10 relative to the counter electrode 5 that may function as the movement amount detection means 11 (see FIG. 5).
[0033] ヘッドホルダ 9と液体吐出ヘッド 10の間には、ヘッドホルダ 9と液体吐出ヘッド 10と の間の距離および傾斜を調整する間隙調整手段を備えている。間隙調整手段は物 理量に比例して伸縮するァクチユエータであり、液体吐出ヘッド 10の位置を変位させ ヘッドギャップを調整する変位量発生手段としての機能を備えて 、る。上記ァクチュ エータとしては特に制限なく用いることができる力 物理量の入力に対する出力の管 理が容易であることより、圧電素子が好ましぐ本実施形態においてはァクチユエータ として圧電素子を用いることとする。つまり、本実施形態ではヘッドホルダ 9と液体吐 出ヘッド 10との間に、ヘッドホルダ 9と液体吐出ヘッド 10との間の距離、および傾斜 を調整する間隙調整手段としての少なくとも 1つの圧電素子 13が備えられている。圧 電素子 13は、液体吐出ヘッド 10とヘッドホルダ 9との間の間隙であって方向の異なる 3つの間隙のうち少なくとも 1つの間隙に、少なくとも 1つ備えられるようになって!/、る。 圧電素子 13としては、できるだけ短くヘッドギャップの微調整を行うために数/ z m単 位で変形可能なものが好まし 、。 A gap adjusting means is provided between the head holder 9 and the liquid discharge head 10 to adjust the distance and inclination between the head holder 9 and the liquid discharge head 10. Gap adjustment means It is an actuator that expands and contracts in proportion to the amount of reasoning, and has a function as a displacement generation means for adjusting the head gap by displacing the position of the liquid discharge head 10. As the above-mentioned actuator, a piezoelectric element is used as an actuator in this embodiment in which a piezoelectric element is preferred because it is easy to manage an output with respect to an input of a physical quantity that can be used without any limitation. That is, in the present embodiment, at least one piezoelectric element 13 as a gap adjusting means for adjusting the distance and inclination between the head holder 9 and the liquid discharge head 10 between the head holder 9 and the liquid discharge head 10. Is provided. At least one of the piezoelectric elements 13 is provided in at least one of the three gaps between the liquid discharge head 10 and the head holder 9 and having different directions. The piezoelectric element 13 is preferably one that can be deformed in units of several zm to make the fine adjustment of the head gap as short as possible.
[0034] ここで、圧電素子 13は、液体吐出ヘッド 10の 3面にそれぞれ 2つずつ配置したが、 ヘッドホルダ 9と液体吐出ヘッド 10との間の距離、および傾斜を調整し、その結果液 体吐出ヘッド 10の高さと角度が調整できれば良ぐ適宜変更可能である。また、圧電 素子 13と液体吐出ヘッド 10との間に、圧電素子 13の伸縮を増幅させる板パネ等を 介在させることとしても良い。その場合、圧電素子 13の伸縮に対する板パネ等の変 形量をモニタし、ヘッドギャップ調整量へ換算して制御に用いることが好まし 、。  [0034] Here, two piezoelectric elements 13 are arranged on each of the three surfaces of the liquid ejection head 10, but the distance and inclination between the head holder 9 and the liquid ejection head 10 are adjusted, and as a result, the liquid If the height and angle of the body discharge head 10 can be adjusted, it can be changed as appropriate. Further, a plate panel or the like for amplifying expansion / contraction of the piezoelectric element 13 may be interposed between the piezoelectric element 13 and the liquid discharge head 10. In that case, it is preferable to monitor the amount of deformation of the plate panel or the like with respect to the expansion and contraction of the piezoelectric element 13 and convert it into a head gap adjustment amount for use in control.
[0035] 液体吐出ヘッド 10の側面又は吐出口周辺には、基材 Kとの間の距離を測定する測 定手段としてのセンサ 15が配置されている。センサ 15には、下方に位置する基材 K に向けて光を発光する発光手段(図示省略)が備えられており、かつ、基材 Kにより 反射された光を受光する受光手段(図示省略)が備えられている。センサ 15は基材 K と非接触であり、受光手段力もの出力に基づいて基材 Kとの距離を測定するようにな つている。測定手段として特に制限はないが、非接触の測定手段 (例えば、センサ 15 )を用いることにより、液体吐出ヘッド 10と基材 Kとの導電や、基材 Kの移動に伴う振 動による測定不良等を回避することができる。センサ 15による測定結果は、後述する 制御手段 14に出力されるようになっている。ここで、ヘッドギャップは通常 0. l〜lm m程度である事から、センサ 15は数十/ z m単位での高精度な測定が可能なものが 好ましい。センサ 15としては、例えば、 C MOS型 2次元レーザ測長機や共焦点型 レーザ測長機が挙げられる。 On the side surface of the liquid discharge head 10 or around the discharge port, a sensor 15 is disposed as a measurement unit that measures the distance to the substrate K. The sensor 15 is provided with a light emitting means (not shown) that emits light toward the base material K positioned below, and a light receiving means (not shown) that receives the light reflected by the base material K. Is provided. The sensor 15 is not in contact with the base material K, and measures the distance from the base material K based on the output of the light receiving means. There is no particular limitation on the measurement means, but by using a non-contact measurement means (e.g., sensor 15), measurement failure due to conduction between the liquid discharge head 10 and the substrate K or vibration associated with the movement of the substrate K. Etc. can be avoided. The measurement result by the sensor 15 is output to the control means 14 described later. Here, since the head gap is usually about 0.1 to 1 mm, it is preferable that the sensor 15 is capable of measuring with high accuracy in units of several tens / zm. Examples of the sensor 15 include a C MOS type two-dimensional laser length measuring machine and a confocal type. A laser length measuring machine is mentioned.
[0036] また、液体吐出ヘッド 10には、液体吐出ヘッド 10の鉛直方向に対する絶対角度を 測定する角度計 16が備えられている。角度計 16は継続して液体吐出ヘッド 10の絶 対角度を測定することとしても良ぐセンサ 15により液体吐出ヘッド 10の傾斜角が調 整される毎に測定することとしても良い。角度計 16による測定結果は、後述する制御 手段 14に出力されるようになっている。また、角度計 16の代わりに、センサ 15を複数 配置して傾斜を測定する手段として用いてもょ 、。  Further, the liquid discharge head 10 is provided with an angle meter 16 that measures an absolute angle of the liquid discharge head 10 with respect to the vertical direction. The goniometer 16 may measure the absolute angle of the liquid ejection head 10 every time the inclination angle of the liquid ejection head 10 is adjusted by the sensor 15 which may be used to measure the absolute angle of the liquid ejection head 10 continuously. The measurement result by the angle meter 16 is output to the control means 14 described later. Also, instead of the goniometer 16, a plurality of sensors 15 may be arranged and used as a means of measuring the tilt.
[0037] 次に、図 4を参照して液体吐出ヘッド 10の内部の概略構造について説明する。  Next, a schematic structure inside the liquid ejection head 10 will be described with reference to FIG.
[0038] 液体吐出ヘッド 10には、基材 Kと対向する榭脂製のノズルプレート 20が備えられて いる。本実施形態においては、安定した液滴吐出のために、ノズルプレート 20の厚さ は 75 m以上が好ましい。また、ノズルプレート 20は絶縁体力も形成されており、そ の体積抵抗率は 1015 Ω m以上である。 The liquid discharge head 10 is provided with a resin nozzle plate 20 facing the substrate K. In the present embodiment, the thickness of the nozzle plate 20 is preferably 75 m or more for stable droplet discharge. The nozzle plate 20 is also formed with an insulating force, and its volume resistivity is 10 15 Ωm or more.
[0039] ノズルプレート 20には、インク等の帯電可能な液体 Lの液滴 Dを吐出する、複数の ノズル 21が穿孔して配設されている。ノズル 21は、基材 Kに向カゝぅほどテーパ状に縮 径するように形成されている。ノズル 21の開口端の直径は、低い電界強度でも安定 して液体の吐出を行うことを可能とするため、 15 m以下が好ましい。本実施形態に おいては、ノズル 21の開口端の直径は 10 μ m以下であり、ノズル 21の大口径(開口 端の反対側)は 100 mのものを用いるものとする。また、ノズル 21はノズルプレート 20から突出しない又はノズル 21の突出量が 30 m程度以下となるように形成されて おり、フラットなものとなっている。フラットなノズルプレート 20を使用することにより、拭 き取りによるクリーニングを容易に行うことが可能であると 、う利点が挙げられる。ここ で、ノズル 21の断面形状はテーパ形状に限定されず適宜変更可能である。  [0039] The nozzle plate 20 is provided with a plurality of nozzles 21 perforating the droplets D of the chargeable liquid L such as ink. The nozzle 21 is formed so as to be tapered toward the base material K toward the base. The diameter of the opening end of the nozzle 21 is preferably 15 m or less so that liquid can be stably discharged even at low electric field strength. In this embodiment, the diameter of the opening end of the nozzle 21 is 10 μm or less, and the nozzle 21 has a large diameter (opposite the opening end) of 100 m. Further, the nozzle 21 is flat so that it does not protrude from the nozzle plate 20 or the protruding amount of the nozzle 21 is about 30 m or less. By using the flat nozzle plate 20, it is possible to easily perform cleaning by wiping. Here, the cross-sectional shape of the nozzle 21 is not limited to the tapered shape and can be changed as appropriate.
[0040] ノズルプレート 20の基材 K側には、ノズル 21からの液体 Lの滲み出しを抑制するた めの撥液層 22が設けられている。よって、本実施形態における液体吐出ヘッド 10の 吐出面 23は、撥液層 22の基材 K側の一面カゝらなる。撥液層 22は、例えば、液体 が 水性であれば撥水性を有する材料が用いられ、液体 Lが油性であれば撥油性を有 する材料が用いられる。撥液層の材料及び形成方法に特に制限は無ぐ公知のもの を適宜用いることができ、撥液層の密着性を向上させるために中間層を介して成膜し ても良い。 [0040] On the substrate K side of the nozzle plate 20, a liquid repellent layer 22 is provided for suppressing the seepage of the liquid L from the nozzle 21. Therefore, the discharge surface 23 of the liquid discharge head 10 in the present embodiment is one surface of the liquid repellent layer 22 on the substrate K side. For the liquid repellent layer 22, for example, a material having water repellency is used if the liquid is aqueous, and a material having oil repellency is used if the liquid L is oily. There are no particular restrictions on the material and formation method of the liquid repellent layer, and any known one can be used as appropriate. In order to improve the adhesion of the liquid repellent layer, a film is formed via an intermediate layer. May be.
[0041] ノズルプレート 20の上面には、静電電圧を印加されて液体 Lを帯電させる帯電用電 極 24が層状に設けられている。帯電用電極 24は、主として、 NiP等の導電素材より 形成されている。帯電用電極 24は、ノズル 21の内周面まで延設されており、ノズル 2 1内の液体 Lに接するようになって 、る。  [0041] On the upper surface of the nozzle plate 20, a charging electrode 24 for applying an electrostatic voltage to charge the liquid L is provided in a layered manner. The charging electrode 24 is mainly formed of a conductive material such as NiP. The charging electrode 24 extends to the inner peripheral surface of the nozzle 21 and comes into contact with the liquid L in the nozzle 21.
[0042] 帯電用電極 24には、静電電圧を印加する静電電圧印加手段としての静電電圧電 源 25が接続されている。静電電圧電源 25には後述する制御手段 14が接続されて おり、静電電圧の印加動作を制御されている。対向電極 5は接地されているので、液 体 Lが帯電されることにより、液体吐出ヘッド 10と対向電極 5との間、特に液体 Lと基 材 Kとの間、に静電吸引力が発生するようになっている。また、帯電した液体 Lからな る液滴 Dが基材 Kに着弾すると、対向電極 5はその電荷を接地により逃がすようにな つている。  [0042] The charging electrode 24 is connected to an electrostatic voltage source 25 as an electrostatic voltage applying means for applying an electrostatic voltage. The electrostatic voltage power supply 25 is connected with a control means 14 to be described later, and the application operation of the electrostatic voltage is controlled. Since the counter electrode 5 is grounded, an electrostatic attraction force is generated between the liquid discharge head 10 and the counter electrode 5, particularly between the liquid L and the substrate K, when the liquid L is charged. It is supposed to be. In addition, when the droplet D made of the charged liquid L lands on the substrate K, the counter electrode 5 releases the electric charge by grounding.
[0043] 帯電用電極 24の他面側には、ボディ層 26が層状に設けられている。ボディ層 26の 各ノズル 21に面する位置には、ノズル 21と同じ形状の断面を有する略筒状のキヤビ ティ 27が形成されている。キヤビティ 27内には、ノズル 21を通して吐出される液体 L がー時貯蔵されている。キヤビティ 27には、外部の液体タンク(図示省略)から液体 L を供給するための流路(図示省略)が連通されている。  [0043] On the other surface side of the charging electrode 24, a body layer 26 is provided in a layered form. A substantially cylindrical cavity 27 having the same cross section as the nozzle 21 is formed at a position facing the nozzles 21 of the body layer 26. In the cavity 27, the liquid L discharged through the nozzle 21 is stored for a long time. The cavity 27 communicates with a flow path (not shown) for supplying the liquid L from an external liquid tank (not shown).
[0044] ボディ層 26の他面側には、可撓性を有する金属薄板やシリコン等よりなる可撓層 2 8が備えられている。可撓層 28の他面側であって各キヤビティ 27に対応する位置に は、圧電素子ァクチユエータであるピエゾ素子 29が設けられている。ピエゾ素子 29 には、ピエゾ素子 29を変形させるための駆動電圧を印加する液滴吐出駆動手段とし ての吐出駆動電源 30が接続されている。本実施形態において、圧力発生手段はピ ェゾ素子 29と吐出駆動電源 30とからなり、駆動電圧の印加によってピエゾ素子 29が 変形し、ノズル 21内の液体 Lに圧力が生じ、ノズル 21の開口端にメニスカスが形成さ れるようになっている。吐出駆動電源 30には後述する制御手段 14が接続されており 、駆動電圧の印加動作を制御されている。  [0044] On the other surface side of the body layer 26, a flexible layer 28 made of a flexible metal thin plate, silicon, or the like is provided. Piezo elements 29 that are piezoelectric element actuators are provided at positions corresponding to the cavities 27 on the other surface side of the flexible layer 28. The piezo element 29 is connected to an ejection drive power source 30 as a droplet ejection drive means for applying a drive voltage for deforming the piezo element 29. In the present embodiment, the pressure generating means includes the piezo element 29 and the ejection drive power supply 30. The piezo element 29 is deformed by the application of the drive voltage, and pressure is generated in the liquid L in the nozzle 21. A meniscus is formed at the end. The discharge drive power supply 30 is connected to a control means 14 to be described later, and the drive voltage application operation is controlled.
[0045] 次に、図 4又は図 5を参照して液体吐出装置 1の制御構成について説明する。  Next, the control configuration of the liquid ejection apparatus 1 will be described with reference to FIG. 4 or FIG.
[0046] 液体吐出装置 1には、吐出駆動電源 30、静電電圧電源 25、移動手段 4、圧電素 子 13、センサ 15及び角度計 16に電気的に接続されるとともにこれらを制御する制御 手段 14が備えられている。制御手段 14は、 CPU14a、 ROM 14b及び RAM 14c等が 図示しない BUSにより接続されて構成されたコンピュータ力もなる。制御手段 14は、 ROM14bに格納された電源制御プログラムを RAM14cに展開させ、 CPU14aにより実 行させるようになつている。 The liquid ejection apparatus 1 includes an ejection drive power source 30, an electrostatic voltage power source 25, a moving unit 4, a piezoelectric element Control means 14 is provided which is electrically connected to the child 13, the sensor 15 and the goniometer 16 and controls them. The control means 14 also has a computer power configured by connecting the CPU 14a, the ROM 14b, the RAM 14c, and the like through a BUS (not shown). The control means 14 develops the power supply control program stored in the ROM 14b in the RAM 14c and executes it by the CPU 14a.
[0047] 液体吐出ヘッド 10による液体吐出の開始の際、制御手段 14は、液体吐出ヘッド 1 0を基材 K上の液滴着弾開始位置に対向させるように移動手段 4を制御する。詳しく は、 Xリニアモータ 2及び Yリニアモータ 3により対向電極 5を移動させて基材 Kの液滴 着弾開始位置を液体吐出ヘッド 10に対向させ、ヘッドホルダ 9の高さを粗調整する。 この際、制御手段 14は変位計及び角度計 16により液体吐出ヘッド 10の高さ及び傾 斜を測定させる。 When the liquid discharge head 10 starts the liquid discharge, the control unit 14 controls the moving unit 4 so that the liquid discharge head 10 faces the droplet landing start position on the substrate K. Specifically, the counter electrode 5 is moved by the X linear motor 2 and the Y linear motor 3 so that the droplet landing start position of the substrate K is opposed to the liquid discharge head 10 and the height of the head holder 9 is roughly adjusted. At this time, the control means 14 causes the displacement and angle meter 16 to measure the height and tilt of the liquid discharge head 10.
[0048] 液滴 Dを基材 Kに吐出させる際、制御手段 14は、移動手段 4により液体吐出ヘッド 10を基材 Kに対向させつつ Y方向に往復移動させるように制御している。また、制御 手段 14は、静電電圧電源 25により静電電圧を印加させて液体 Lと基材 Kとの間に電 界を生じさせ、液滴吐出信号に基づいて圧力発生手段としての吐出駆動電源 30に より液体 Lに圧力を発生させて液滴 Dを吐出させるように制御している。  [0048] When discharging the droplet D onto the substrate K, the control unit 14 controls the moving unit 4 to reciprocate the liquid discharge head 10 in the Y direction while facing the substrate K. Further, the control means 14 applies an electrostatic voltage from the electrostatic voltage power supply 25 to generate an electric field between the liquid L and the substrate K, and discharge driving as a pressure generating means based on the droplet discharge signal. The power source 30 is controlled to generate a pressure on the liquid L and discharge the droplet D.
[0049] 前記液体吐出の際、制御手段 14は、センサ 15により液体吐出ヘッド 10と基材 Kの 表面との距離を測定させるように制御している。制御手段 14は、各センサ 15による測 定結果が一致する力否かを判断し、吐出面 23が基材 Kに対して平行になって 、るか 否かを判断する。各センサ 15の測定結果が一致しない場合、制御手段 14は各圧電 素子 13に電圧を印加して変形させ、ヘッドホルダ 9と液体吐出ヘッド 10の間の距離 を調整させるようになつている。また、制御手段 14は、予めヘッドギャップとしての規 定値を記憶しており、各センサ 15による測定結果が規定値と一致するか否かを判断 し、一致しない場合は各圧電素子 13によりヘッドギャップを調整させるようになつてい る。  When the liquid is discharged, the control unit 14 controls the sensor 15 to measure the distance between the liquid discharge head 10 and the surface of the substrate K. The control means 14 determines whether or not the measurement results obtained by the sensors 15 match each other, and determines whether or not the discharge surface 23 is parallel to the substrate K. When the measurement results of the sensors 15 do not match, the control means 14 applies a voltage to each piezoelectric element 13 to deform it, and adjusts the distance between the head holder 9 and the liquid ejection head 10. Further, the control means 14 stores a specified value as a head gap in advance, and determines whether or not the measurement result of each sensor 15 matches the specified value. Is adjusted.
[0050] 制御手段 14は、各圧電素子 13に電圧を印加させた後、センサ 15によりそれぞれ の圧電素子 13の変形量を測定させ、当該変形量を記憶させるようになつている。制 御手段 14には、記憶した変形量に基づいて、印加した電圧に対する液体吐出ヘッド 10の吐出面の変位量を検出する変位量検出手段 31が備えられている。制御手段 1 4は、変位量検出手段 31により、各圧電素子 13の印加電圧値に対する変形量を算 出するとともに、圧電素子 13を所望量変形させるために必要な電圧値を算出するよ うになつている。 [0050] After applying a voltage to each piezoelectric element 13, the control means 14 causes the sensor 15 to measure the deformation amount of each piezoelectric element 13, and stores the deformation amount. The control means 14 includes a liquid discharge head for an applied voltage based on the stored deformation amount. Displacement amount detection means 31 for detecting the displacement amount of the ten ejection surfaces is provided. The control means 14 calculates the amount of deformation of the applied voltage value of each piezoelectric element 13 by the displacement amount detecting means 31 and calculates the voltage value necessary to deform the piezoelectric element 13 by a desired amount. ing.
[0051] 次に、本実施形態の液体吐出装置 1を用いた液体吐出方法について説明する。  [0051] Next, a liquid ejection method using the liquid ejection apparatus 1 of the present embodiment will be described.
[0052] 図 6は、制御手段 14による液体吐出ヘッド 10の駆動制御を説明する図である。本 実施形態においては、例えば、静電電圧電源 25から帯電用電極 24に印加される一 定の静電電圧 Vは数 kVに設定されており、吐出駆動電源 30からピエゾ素子 29に FIG. 6 is a diagram for explaining drive control of the liquid ejection head 10 by the control means 14. In the present embodiment, for example, the constant electrostatic voltage V applied to the charging electrode 24 from the electrostatic voltage power supply 25 is set to several kV, and the discharge drive power supply 30 applies to the piezo element 29.
C  C
印加されるパルス状の駆動電圧 Vは 20Vに設定されているものとして以下説明する  The following explanation assumes that the applied pulsed drive voltage V is set to 20V.
P まず、図 7に示すフローチャートの手順に従ってヤップ調整を行う。  P First, adjust the yap according to the flowchart shown in Fig. 7.
[0053] 移動手段 4は、対向電極 5を Xリニアモータ 2及び Yリニアモータ 3の直交する位置 に移動させ、液体吐出ヘッド 10を基材 Kの液滴着弾開始位置に対向させる (ステツ プ Sl)。また、液体吐出ヘッド 10の移動手段 4であるキャリッジ 8はヘッドホルダ 9を Z 方向に移動させ、変位計がヘッドホルダ 9の高さを測定し、ヘッドギャップを 1. 0〜3 . Omm程度の範囲内で粗調整する。粗調整の際、角度計 16は液体吐出ヘッド 10の 絶対角度を測定し、液体吐出ヘッド 10の基材 Kに対する傾きを測定し、制御範囲に あるカゝ否かを制御手段 14で判断する。 [0053] The moving means 4 moves the counter electrode 5 to a position orthogonal to the X linear motor 2 and the Y linear motor 3, and makes the liquid discharge head 10 face the droplet landing start position of the substrate K (step Sl ). In addition, the carriage 8 which is the moving means 4 of the liquid discharge head 10 moves the head holder 9 in the Z direction, the displacement meter measures the height of the head holder 9, and the head gap is about 1.0 to 3. Omm. Make coarse adjustments within the range. At the time of rough adjustment, the goniometer 16 measures the absolute angle of the liquid discharge head 10, measures the inclination of the liquid discharge head 10 with respect to the base material K, and determines whether the control means 14 is within the control range.
[0054] 続いて、測定工程において、各センサ 15は、各センサ 15の取付けられた位置と基 材 Kの表面との距離を測定する。また、角度計 16により、ヘッド吐出面 23と基材 Kの 傾きを計測する (ステップ S2)。測定結果は制御手段 14に出力される。制御手段 14 は、各センサ 15の取付け位置と吐出面 23との距離を測定結果力も差し引いて、へッ ドギャップを算出する (ステップ S3)。算出されたヘッドギャップが各センサ 15によつ て異なる場合、あるいは、角度計 16により傾斜角が検出された場合、制御手段 14は 吐出面 23が基材 Kに対して傾斜していると判断し、間隙調整工程において、圧電素 子 13を伸縮させて液体吐出ヘッド 10の傾斜角を微調整するための圧電素子を選択 し、各圧電素子 13に印加する電圧を算出する (ステップ S4)。また、予め記憶されて V、るヘッドギャップとしての規定値とセンサ 15の測定結果が異なる場合、該規定値と のズレ量を打ち消すための圧電素子を選択し、各圧電素子 13に印加する電圧を算 出する (ステップ S4)。 [0054] Subsequently, in the measurement process, each sensor 15 measures the distance between the position where each sensor 15 is attached and the surface of the base material K. Further, the inclination of the head discharge surface 23 and the base material K is measured by the angle meter 16 (step S2). The measurement result is output to the control means 14. The control means 14 calculates the head gap by subtracting the measurement result force from the distance between the mounting position of each sensor 15 and the discharge surface 23 (step S3). When the calculated head gap differs depending on each sensor 15, or when the inclination angle is detected by the goniometer 16, the control means 14 determines that the discharge surface 23 is inclined with respect to the substrate K. Then, in the gap adjustment step, a piezoelectric element for finely adjusting the tilt angle of the liquid discharge head 10 by expanding and contracting the piezoelectric element 13 is selected, and a voltage applied to each piezoelectric element 13 is calculated (step S4). If the measured value of the sensor 15 is different from the pre-stored V and the specified value as the head gap, the specified value A piezoelectric element for canceling the deviation is selected, and a voltage applied to each piezoelectric element 13 is calculated (step S4).
次に、間隙調整工程において、算出された電圧を増幅して選択された各圧電素子 1 3に印加して、各圧電素子 13を伸縮させて液体吐出ヘッド 10の高さ、傾斜角を微調 整する(ステップ S 5) Next, in the gap adjustment step, the calculated voltage is amplified and applied to each selected piezoelectric element 13, and each piezoelectric element 13 is expanded and contracted to finely adjust the height and inclination angle of the liquid ejection head 10. (Step S5)
上記微調整の際、制御手段 14は、各センサ 15の算出した測定結果のズレ量に基 づいて、各圧電素子 13に電圧を印加する。ここで、圧電素子 13はヘッドホルダ 9と液 体吐出ヘッド 10との間に備えられており、ヘッドホルダ 9はキャリッジ 8に固定されて いるので、圧電素子 13を変形させることによりヘッドホルダ 9と液体吐出ヘッド 10の間 の距離を調整し、吐出面 23と基材 Kとの間のヘッドギャップを調整することができる。 また、圧電素子 13は液体吐出ヘッド 10の各面の両端部に配置されているので、対と なる圧電素子 13の少なくとも一方が変形することによりヘッドホルダ 9に対する液体 吐出ヘッド 10の距離および傾斜を調整し、吐出面 23と基材 Kの表面とのギャップを 調整することができる。  During the fine adjustment, the control means 14 applies a voltage to each piezoelectric element 13 based on the amount of deviation of the measurement result calculated by each sensor 15. Here, the piezoelectric element 13 is provided between the head holder 9 and the liquid discharge head 10, and the head holder 9 is fixed to the carriage 8. The head gap between the discharge surface 23 and the substrate K can be adjusted by adjusting the distance between the liquid discharge heads 10. In addition, since the piezoelectric elements 13 are disposed at both ends of each surface of the liquid discharge head 10, the distance and inclination of the liquid discharge head 10 with respect to the head holder 9 are changed by deformation of at least one of the paired piezoelectric elements 13. The gap between the discharge surface 23 and the surface of the base material K can be adjusted.
圧電素子 13に電圧が印加された後、センサ 15、角度計 16は再びヘッドギャップを 測定する (ステップ S6)。測定結果は制御手段 14に出力され、測定結果と目標値を 比較し、目標範囲内に入っているかどうかを判断する (ステップ S7)。目標範囲内に 入っている場合は (ステップ S7 : YES)、ギャップ調整を終了し、描画に移行する。目 標範囲内に入っていない場合は (ステップ S7 : NO)、ステップ S3に戻り、再度ギヤッ プ調整を行う。  After the voltage is applied to the piezoelectric element 13, the sensor 15 and the goniometer 16 measure the head gap again (step S6). The measurement result is output to the control means 14, and the measurement result is compared with the target value to determine whether it is within the target range (step S7). If it is within the target range (step S7: YES), the gap adjustment is completed and the process moves to drawing. If it is not within the target range (step S7: NO), return to step S3 and adjust the gear again.
測定結果が目標範囲内に入るまでステップ S3〜S7の処理が繰り返される。 Steps S3 to S7 are repeated until the measurement result falls within the target range.
また、以上のフローにおいて、測定結果は制御手段 14に出力され、電圧印加による ヘッドギャップの変位量が検出されて変位量検出手段 31に出力される。変位量検出 工程において、変位量検出手段 31は、圧電素子 13に印加された電圧量に対する液 体吐出ヘッド 10の吐出面の変位量を検出する。検出結果は制御手段 14に出力され 、後の間隙調整工程において印加する電圧値の算出に利用される。また、圧電素子 13に電圧を印加して変形させる毎にヘッドギャップの変位量が変位量検出手段 31 にフィードバックされ、圧電素子 13の熱膨張や上り電圧と下り電圧の差異等の影響を 考慮して間隙調整工程を行うことができる。 In the above flow, the measurement result is output to the control unit 14, and the displacement amount of the head gap due to voltage application is detected and output to the displacement amount detection unit 31. In the displacement amount detection step, the displacement amount detection means 31 detects the displacement amount of the ejection surface of the liquid ejection head 10 with respect to the voltage amount applied to the piezoelectric element 13. The detection result is output to the control means 14 and used to calculate the voltage value to be applied in the subsequent gap adjustment step. Each time the piezoelectric element 13 is deformed by applying a voltage, the displacement amount of the head gap is fed back to the displacement amount detecting means 31 to influence the thermal expansion of the piezoelectric element 13 and the difference between the upstream voltage and the downstream voltage. The gap adjustment process can be performed in consideration.
[0056] このようにしてヘッドギャップが調整されると、キャリッジ 8は液体吐出ヘッド 10を Y方 向に往復移動させる。そして、液体吐出ヘッド 10は、静電電圧電源 25により静電電 圧を印加させて液体 Lと基材 Kとの間に電界を生じさせ、吐出駆動電源 30を印加して キヤビティ 27に貯蔵される液体 Lに圧力を発生させて液滴 Dを吐出させる。詳しくは、 図 6に示すように、静電電圧発生工程において、静電電圧電源 25は、帯電用電極 2 [0056] When the head gap is adjusted in this way, the carriage 8 reciprocates the liquid ejection head 10 in the Y direction. Then, the liquid discharge head 10 applies an electrostatic voltage from the electrostatic voltage power supply 25 to generate an electric field between the liquid L and the substrate K, and stores the discharge drive power supply 30 in the cavity 27 by applying the discharge drive power supply 30. A pressure is generated on the liquid L and the droplet D is ejected. Specifically, as shown in FIG. 6, in the electrostatic voltage generation process, the electrostatic voltage power supply 25 is connected to the charging electrode 2.
4に一定の静電電圧 Vを印加させ、液体吐出ヘッド 10の各ノズル 21と対向電極 5と c A constant electrostatic voltage V is applied to 4 and each nozzle 21 of the liquid discharge head 10 and the counter electrode 5 and c
の間に電界が生じる(図 6中 A参照)。また、圧力発生工程において、吐出駆動電源 30はパルス状の駆動電圧 Vpを印加させ、ピエゾ素子 29を変形させる。ピエゾ素子 2 9の変形によりノズル 21内部の液体 Lの圧力が上がり、ノズル 21の開口端にメニスカ スが形成される(図 6中 B参照)  An electric field is generated between them (see A in Fig. 6). In the pressure generation step, the ejection drive power supply 30 applies a pulsed drive voltage Vp to deform the piezo element 29. The pressure of the liquid L inside the nozzle 21 increases due to deformation of the piezo element 29, and a meniscus is formed at the open end of the nozzle 21 (see B in Fig. 6).
ノズル 21と対向電極 5との間に電界が生じている状態でメニスカスを形成させると、 メニスカス先端部に高度な電界集中が生じて非常に強 ヽ静電力が加わる。この状態 で駆動電圧 Vの印加を停止させると、ミストやサテライトが発生することなくメニスカス  If a meniscus is formed in a state where an electric field is generated between the nozzle 21 and the counter electrode 5, a high electric field concentration occurs at the tip of the meniscus, and a very strong electrostatic force is applied. If the application of the drive voltage V is stopped in this state, the meniscus will be generated without generating mist or satellite.
P  P
力 S引きちぎられて液滴 Dが吐出される(図 6中 C参照)。吐出された液滴 Dは基材 に 向力つて飛翔し、電界により加速されて対向電極 5の方に吸引される(図 6中 D参照) 。対向電極 5に支持された基材 Kの目標地点に液滴 Dが着弾すると、液滴 Dの電位 が対向電極 5の電位と同等となり、同電位を得る(図 6中 E参照)。  The force S is torn off and droplet D is ejected (see C in Fig. 6). The ejected droplet D flies to the substrate by force, is accelerated by the electric field, and is sucked toward the counter electrode 5 (see D in FIG. 6). When the droplet D reaches the target point of the substrate K supported by the counter electrode 5, the potential of the droplet D becomes equal to the potential of the counter electrode 5, and the same potential is obtained (see E in FIG. 6).
[0057] 液体吐出ヘッド 10と基材 Kとが相対移動される際、制御手段 14は上述した測定ェ 程及び間隙調整工程を行わせる。ここで、測定工程及び間隙調整工程は、基材 の 間欠搬送中、または、間欠搬送毎に行っても良ぐ一定時間経過毎に行っても良い。  When the liquid ejection head 10 and the base material K are relatively moved, the control unit 14 performs the above-described measurement process and gap adjustment process. Here, the measurement step and the gap adjustment step may be performed during intermittent conveyance of the base material, or at every elapse of a fixed time which may be performed every intermittent conveyance.
[0058] さらには、複数のノズル 21を備える液体吐出ヘッド 10を本実施形態の液体吐出装 置 1に備えた場合においても、吐出面 23と基材 Kとの距離及び傾斜を調整するため 、吐出面 23をフラットにすることにより各ノズル 21の開口端と基材 Kとの距離を一定 に保つことができ、安定した液体吐出が可能である。各ノズル 21の吐出速度 ·方向を 調整しておくことにより、より正確な位置に吐出液滴を着弾させることができる。  Furthermore, even when the liquid discharge head 10 including the plurality of nozzles 21 is provided in the liquid discharge apparatus 1 of the present embodiment, in order to adjust the distance and the inclination between the discharge surface 23 and the substrate K, By flattening the discharge surface 23, the distance between the open end of each nozzle 21 and the substrate K can be kept constant, and stable liquid discharge is possible. By adjusting the discharge speed and direction of each nozzle 21, the discharged droplet can be landed at a more accurate position.
[0059] センサ 15による測定結果に基づいて圧電素子 13に電圧を印加し、容易にヘッドギ ヤップを調整することができる。さら〖こ、複数の圧電素子 13を液体吐出ヘッド 10に備 えることにより、吐出面 23の基材 Kに対する距離および傾斜の調整も可能である。 [0059] A head gap can be easily adjusted by applying a voltage to the piezoelectric element 13 based on the measurement result of the sensor 15. Sarako, equipped with multiple piezoelectric elements 13 in the liquid discharge head 10 Therefore, the distance and inclination of the discharge surface 23 relative to the base material K can be adjusted.
[0060] 力!]えて、圧電素子 13に印加する電圧に対する液体吐出ヘッド 10の吐出面の変位 量を検出することにより、センサ 15による測定結果の目標値に対する差を打ち消す ために必要な電圧値の算出が可能であり、ヘッドギャップの調整が容易である。また [0060] Power! In addition, by detecting the amount of displacement of the ejection surface of the liquid ejection head 10 with respect to the voltage applied to the piezoelectric element 13, it is possible to calculate the voltage value necessary to cancel the difference between the measurement result by the sensor 15 and the target value. Yes, adjustment of the head gap is easy. Also
、変位量検出手段 31は吐出面 23と基材 Κとの距離及び傾斜を計測及び検出してお くことにより、移動手段 4ゃ圧電素子 13をはじめとする各部材の熱膨張に則した変位 変動を起因とする吐出面 23と基材 Κとの距離及び傾斜の目標値に対する差を補正 するための補正電圧を圧電素子 13に与えることにより、吐出面 23と基材 Κとの距離 及び傾斜を一定に保つことができる。 The displacement amount detection means 31 measures and detects the distance and inclination between the discharge surface 23 and the substrate Κ, thereby moving the displacement means 4 according to the thermal expansion of each member including the piezoelectric element 13. By applying a correction voltage to the piezoelectric element 13 to correct the difference between the discharge surface 23 caused by the fluctuation and the substrate に 対 す る and the target value of the inclination, the distance and inclination between the discharge surface 23 and the substrate Κ Can be kept constant.
[0061] なお、液体吐出ヘッド 10のノズル 21にメニスカスを形成させる圧力発生手段として は、本実施形態のような圧電素子ァクチユエータのほかに、例えば、静電ァクチユエ 一タゃサ一マル方式等を採用することも可能である。  [0061] As the pressure generating means for forming a meniscus in the nozzle 21 of the liquid discharge head 10, in addition to the piezoelectric element actuator as in the present embodiment, for example, an electrostatic actuating system is used. It is also possible to adopt.
[0062] 本実施形態においては、液体吐出装置 1はシリアル方式のものとして説明したが、 ライン方式などにも適用可能である。本実施形態においては、対向電極 5を接地し液 体吐出ヘッド 10の帯電用電極 24に静電電圧を印加することとした力 対向電極に静 電電圧を印加して液体吐出ヘッド 10側を接地することとしても良い。  In the present embodiment, the liquid ejecting apparatus 1 has been described as a serial type, but can also be applied to a line type or the like. In the present embodiment, the counter electrode 5 is grounded and an electrostatic voltage is applied to the charging electrode 24 of the liquid discharge head 10. The electrostatic discharge voltage is applied to the counter electrode and the liquid discharge head 10 side is grounded. It is also good to do.
[0063] 本実施形態においては、液体吐出ヘッド 10と基材 Κとの間隙には、ノズル 21の開 口端に形成されるメニスカス、飛翔液滴 Dの静止画像又は動画像の少なくとも一つを 撮像して液滴の異常吐出を検知する撮像手段を備えることとしても良 ヽ。撮像手段と しては、カメラ等公知のものを特に制限無く用いることができる力 CCDカメラは撮像 対象物を継続的に撮像でき好ま Uヽ。撮像手段によって液滴の異常吐出が検知され ると、ヘッドギャップの調整や吐出面 23のクリーニング等のメンテナンスを行うのが好 ましい。  In the present embodiment, at least one of the meniscus formed at the opening end of the nozzle 21 and the still image or moving image of the flying droplet D is formed in the gap between the liquid discharge head 10 and the base plate. It is also acceptable to provide an imaging means for imaging and detecting abnormal ejection of droplets. As a means for imaging, a known power source such as a camera can be used without particular limitation. CCD cameras are preferred because they can continuously capture an imaging target. When abnormal ejection of droplets is detected by the imaging means, it is preferable to perform maintenance such as adjusting the head gap and cleaning the ejection surface 23.
[0064] 本実施形態においては、液体吐出ヘッド 10に測定手段としてのセンサ 15を備える こととしているが、測定手段は対向電極 5側に備えることとしてもよい。その場合、対向 電極 5において基材 Kを支持する領域外に測定手段を設置することにより、基材 Kを 介在させることなく液体吐出ヘッド 10の吐出面との距離及び傾斜の測定が可能であ る。測定手段を液体吐出ヘッド 10の待機位置と対向するように備えることにより、液 体吐出ヘッド 10の液滴吐出動作が終了する度にヘッドギャップを調整することができ 好ましい。 In the present embodiment, the liquid discharge head 10 is provided with the sensor 15 as the measuring means, but the measuring means may be provided on the counter electrode 5 side. In that case, by disposing the measuring means outside the region of the counter electrode 5 that supports the substrate K, it is possible to measure the distance and the inclination with respect to the ejection surface of the liquid ejection head 10 without interposing the substrate K. The By providing the measuring means so as to face the standby position of the liquid discharge head 10, the liquid It is preferable that the head gap can be adjusted each time the droplet discharge operation of the body discharge head 10 is completed.
[0065] 本実施形態においては、制御手段 14に予めヘッドギャップとしての規定値を記憶 させておくこととしているが、粗調整の段階で高精度の変位計を用いて吐出面 23と 基材 Kとの間隙を調整させ、間隙調整手段により吐出面 23と基材 Kとの距離及び傾 斜を調整させることとしても良い。  In the present embodiment, the control unit 14 stores a predetermined value as a head gap in advance, but the discharge surface 23 and the base material K are used using a high-precision displacement meter at the stage of coarse adjustment. It is also possible to adjust the distance and inclination between the discharge surface 23 and the substrate K by the gap adjusting means.
[0066] 本実施形態においては、間隙調整手段としての圧電素子 13は液体吐出ヘッド 10 の高さ及び傾斜を調整するものとしたが、対向電極 5の下方に備えて基材 Kの高さ及 び傾斜を調整してヘッドギャップを調整することとしても良 、。液体吐出ヘッド 10の吐 出面と基材 Kとの間の間隙を測定する測定手段として、液体吐出ヘッド 10にセンサ 1 5を備えることとしたが、対向電極 5側に測定手段を備えることとしても良い。  In the present embodiment, the piezoelectric element 13 as the gap adjusting means adjusts the height and inclination of the liquid discharge head 10, but is provided below the counter electrode 5 to increase the height of the base material K. It is also possible to adjust the head gap by adjusting the tilt and tilt. As a measurement means for measuring the gap between the discharge surface of the liquid discharge head 10 and the substrate K, the liquid discharge head 10 is provided with the sensor 15, but the measurement means may be provided on the counter electrode 5 side. good.
[0067] 以上のように、本実施形態の液体吐出装置 1によれば、ヘッドギャップを調整しつ つ液滴の吐出を行うので、ヘッドギャップを一定に保つことができ、安定して液体吐 出を行うことができる。従って、液滴の吐出速度、着弾位置等を一定に保つことがで き、正確な液体吐出を行うことができる。また、液滴の吐出の際、液体吐出ヘッド 10を 基材 Kに対して移動させつつヘッドギャップを調整することにより、液体吐出精度の 向上が可能である。  As described above, according to the liquid discharge apparatus 1 of the present embodiment, since the liquid droplet is discharged while adjusting the head gap, the head gap can be kept constant and the liquid discharge can be stably performed. Can go out. Accordingly, it is possible to keep the droplet discharge speed, the landing position, etc. constant, and to perform accurate liquid discharge. In addition, when discharging liquid droplets, the liquid discharge accuracy can be improved by adjusting the head gap while moving the liquid discharge head 10 relative to the substrate K.

Claims

請求の範囲 The scope of the claims
[1] 基材に向けて液体を吐出するノズルが形成されたノズルプレートと前記ノズルから 吐出される液体を貯蔵するキヤビティとを有する液体吐出ヘッドと、  [1] A liquid discharge head having a nozzle plate on which nozzles for discharging liquid toward a substrate are formed, and a cavity for storing liquid discharged from the nozzles;
駆動電圧を印加して前記キヤビティに貯蔵される液体に圧力を発生させて前記ノズ ルにメニスカスを形成させる圧力発生手段と、  Pressure generating means for applying a driving voltage to generate pressure in the liquid stored in the cavity to form a meniscus in the nozzle;
前記基材を支持しつつ前記液体吐出ヘッドの吐出面に対向する対向電極と、 前記液体吐出ヘッドと前記対向電極の間に静電電圧を印加して静電吸引力を発 生させる静電電圧発生手段と、  A counter electrode that supports the substrate while facing the discharge surface of the liquid discharge head, and an electrostatic voltage that generates an electrostatic attraction force by applying an electrostatic voltage between the liquid discharge head and the counter electrode. Generating means;
前記吐出面と前記基材との間の複数の異なる位置の間隙を測定する複数の測定 手段と、  A plurality of measuring means for measuring gaps at a plurality of different positions between the discharge surface and the substrate;
前記液体吐出ヘッドと前記基材との間隙を調整する間隙調整手段と、  A gap adjusting means for adjusting a gap between the liquid discharge head and the substrate;
前記測定手段の測定結果に応じて前記間隙調整手段を制御する制御手段と、 を備えることを特徴とする液体吐出装置。  And a control unit that controls the gap adjusting unit according to a measurement result of the measuring unit.
[2] 前記間隙調整手段は、前記基材と前記液体吐出ヘッドの吐出面との距離及び傾 斜を調整することを特徴とする請求の範囲第 1項に記載の液体吐出装置。  [2] The liquid ejection apparatus according to [1], wherein the gap adjusting unit adjusts a distance and an inclination between the base material and an ejection surface of the liquid ejection head.
[3] 前記間隙調整手段が、圧電素子であることを特徴とする請求の範囲第 1項又は第 2 項に記載の液体吐出装置。 [3] The liquid ejection device according to [1] or [2], wherein the gap adjusting means is a piezoelectric element.
[4] 前記測定手段は、前記基材と非接触のまま前記間隙を測定することを特徴とする 請求の範囲第 1項〜第 3項のいずれか一項に記載の液体吐出装置。 [4] The liquid ejecting apparatus according to any one of [1] to [3], wherein the measurement unit measures the gap without contacting the base material.
[5] 基材に向けて液体を吐出するノズルが形成されたノズルプレートと前記ノズルから 吐出される液体を貯蔵するキヤビティとを有する液体吐出ヘッドに、駆動電圧を印加 して前記キヤビティに貯蔵される液体に圧力を発生させて前記ノズルにメニスカスを 形成させる圧力発生工程と、 [5] A drive voltage is applied to a liquid discharge head having a nozzle plate on which nozzles for discharging liquid toward the substrate are formed and a cavity for storing liquid discharged from the nozzles, and stored in the cavity. Pressure generating step of generating pressure on the liquid to form a meniscus in the nozzle;
前記基材を支持しつつ前記液体吐出ヘッドの吐出面に対向する対向電極と前記 液体吐出ヘッドとの間に静電電圧を印加して静電吸引力を発生させる静電電圧発 生工程と、  An electrostatic voltage generating step of generating an electrostatic attraction force by applying an electrostatic voltage between the liquid discharge head and a counter electrode facing the discharge surface of the liquid discharge head while supporting the substrate;
前記吐出面と前記基材との間の複数の異なる位置の間隙を測定する測定工程と、 前記測定工程で得られた複数の測定結果に応じて、前記液体吐出ヘッドと前記基 材との間隙を調整する間隙調整工程と、 A measuring step for measuring gaps at a plurality of different positions between the discharge surface and the substrate, and the liquid discharge head and the base according to a plurality of measurement results obtained in the measuring step. A gap adjusting step for adjusting the gap between the material and
を備えることを特徴とする液体吐出方法。 A liquid ejection method comprising:
前記間隙調整工程は、前記基材と前記液体吐出ヘッドの吐出面との距離及び傾 斜を調整することを特徴とする請求の範囲第 5項に記載の液体吐出方法。  6. The liquid ejection method according to claim 5, wherein the gap adjustment step adjusts a distance and an inclination between the base material and an ejection surface of the liquid ejection head.
PCT/JP2007/061441 2006-06-14 2007-06-06 Liquid ejecting apparatus and liquid ejecting method WO2007145112A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-164743 2006-06-14
JP2006164743 2006-06-14

Publications (1)

Publication Number Publication Date
WO2007145112A1 true WO2007145112A1 (en) 2007-12-21

Family

ID=38831629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061441 WO2007145112A1 (en) 2006-06-14 2007-06-06 Liquid ejecting apparatus and liquid ejecting method

Country Status (1)

Country Link
WO (1) WO2007145112A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110700A (en) * 2008-11-06 2010-05-20 Ulvac Japan Ltd Inkjet coater, and parallel degree adjustment apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244673A (en) * 1997-03-04 1998-09-14 Nec Niigata Ltd Printing head gap regulating mechanism
JPH1120263A (en) * 1997-05-08 1999-01-26 Ricoh Co Ltd Apparatus and method for ink-jet recording
JP2005279954A (en) * 2004-03-26 2005-10-13 Seiko Epson Corp Liquid ejector, and method for outputting distance between platen and nozzle surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244673A (en) * 1997-03-04 1998-09-14 Nec Niigata Ltd Printing head gap regulating mechanism
JPH1120263A (en) * 1997-05-08 1999-01-26 Ricoh Co Ltd Apparatus and method for ink-jet recording
JP2005279954A (en) * 2004-03-26 2005-10-13 Seiko Epson Corp Liquid ejector, and method for outputting distance between platen and nozzle surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110700A (en) * 2008-11-06 2010-05-20 Ulvac Japan Ltd Inkjet coater, and parallel degree adjustment apparatus

Similar Documents

Publication Publication Date Title
US7753497B2 (en) Piezoelectric element, liquid droplet ejection head, and liquid droplet ejection apparatus
JP4442715B2 (en) Actuator
JP2011051152A (en) Liquid ejecting device and ejection inspecting method
JP2009137132A (en) Liquid jet head and liquid jetting apparatus
US8632164B2 (en) Liquid ejecting apparatus
WO2007145112A1 (en) Liquid ejecting apparatus and liquid ejecting method
JP4735086B2 (en) Droplet ejection apparatus, droplet speed adjustment method, program, and recording medium
JP2007098691A (en) Liquid jet head, liquid jet device and method for manufacturing the same
JP5353334B2 (en) Liquid ejecting distance calculation method, liquid ejecting apparatus, and image forming apparatus
JP2010241063A (en) Liquid drop jet head, liquid drop jet device, and method for manufacturing nozzle substrate
JP2013159036A (en) Method for manufacturing liquid ejection head
JP2012061760A (en) Image forming system, control method for the same, and control program
WO2024024944A1 (en) Inkjet head manufacturing method and inkjet head
JP4165420B2 (en) Electrostatic actuator, method for manufacturing electrostatic actuator, droplet discharge head using these, method for manufacturing droplet discharge head, and droplet discharge apparatus
JP2006055782A (en) Coating method, coater and liquid sending head
JP2007230018A (en) Liquid delivering apparatus and liquid delivering method
JP6021303B2 (en) Liquid ejecting apparatus and control method thereof
JP5277663B2 (en) Droplet discharge device
JP2006110908A (en) Liquid-droplets jetting apparatus and the method
JP2011083937A (en) Ejection examination apparatus and printing apparatus
US20120281036A1 (en) Liquid ejecting apparatus
JP2010143011A (en) Liquid ejection head
JP2013184362A (en) Apparatus of discharging liquid, and method of switching liquid
JP2008119873A (en) Liquid droplet delivery apparatus and liquid droplet delivery method
JP2011083938A (en) Liquid ejecting device and liquid ejecting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07744784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP