JP2006110908A - Liquid-droplets jetting apparatus and the method - Google Patents

Liquid-droplets jetting apparatus and the method Download PDF

Info

Publication number
JP2006110908A
JP2006110908A JP2004302054A JP2004302054A JP2006110908A JP 2006110908 A JP2006110908 A JP 2006110908A JP 2004302054 A JP2004302054 A JP 2004302054A JP 2004302054 A JP2004302054 A JP 2004302054A JP 2006110908 A JP2006110908 A JP 2006110908A
Authority
JP
Japan
Prior art keywords
droplet
liquid
common electrode
driving
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004302054A
Other languages
Japanese (ja)
Inventor
Yoshinori Nakajima
吉紀 中島
Satoyuki Sagara
智行 相良
Koji Matoba
宏次 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004302054A priority Critical patent/JP2006110908A/en
Publication of JP2006110908A publication Critical patent/JP2006110908A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid-droplets jetting apparatus enabling a high delivery-position accuracy, high-speed driving and densification to be realized. <P>SOLUTION: The liquid-droplets jetting apparatus, which delivers liquid droplets to a liquid-droplets reaching member 6 or media on the member 6 from a nozzle 30 by making a partition 90 shear-deformed with applying a driving voltage to a driving electrode 91, is equipped with a common electrode 2 countering the liquid-droplets reaching member 6 on both sides of two or more nozzles 30 and a power circuit 40 forming an electric field between the liquid-droplets reaching member 6 and the common electrode 2. After applying the driving voltage to the driving electrode 91 in the state of having formed the electric field between the liquid-droplets reaching member 6 and the common electrode 2 and delivering the liquid in a driving liquid chamber 9 as droplets from the nozzles 30 by a pressure fluctuation caused by the shear-deformation of the partition 90, the direction and rate of delivery are controlled by the electric field between the liquid-droplets reaching member 6 and the common electrode 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、微小な液滴を選択的にメディアに噴射し像形成を行うインクジェットプリンタ等の液滴噴射装置、及び、この液滴噴射装置における液噴射方法に関する。   The present invention relates to a droplet ejecting apparatus such as an ink jet printer that selectively ejects fine droplets onto a medium and forms an image, and a liquid ejecting method in the droplet ejecting apparatus.

プリンタに代表されるように、メディアに画像又はパターンを形成する技術として、インクジェット方式とよばれる液滴噴射技術が注目されている。インクジェット方式の画像形成は、必要な部分に必要な量だけ液滴を噴射できるオンデマンド方式であるため、省エネルギ化及び省資源化に適し、さらに、電子写真方式に比べ装置の小型化が可能で、消費電力も小さいなどの利点がある。また、インクジェット方式では液状物質であれば吐出させることが可能であるため、近年は紙面上にインクを滴下して画像を形成するのみならず、電子部品の配線パターンの描画などへの応用も検討されている。   As represented by a printer, a droplet ejection technique called an ink jet method has attracted attention as a technique for forming an image or pattern on a medium. Inkjet image formation is an on-demand method that can eject the required amount of liquid droplets to the required parts, making it suitable for energy and resource savings, and further miniaturizing the device compared to electrophotography. And there are advantages such as low power consumption. In addition, since liquid materials can be ejected with the ink jet method, in recent years, not only ink is dropped on paper to form an image, but also its application to the drawing of wiring patterns of electronic components is studied. Has been.

インクジェット方式において液滴を噴射するための具体的な手法として、膜沸騰現象を利用したサーマル方式、積層圧電体の電界による体積変化を利用した積層ピエゾ方式、帯電させた液滴を静電気力を利用して吐出する静電方式、及び、圧電体の剪断変形により生じる圧力波を利用した剪断変形方式等の複数の方式が提案されている。   Specific methods for ejecting droplets in the inkjet method include a thermal method that uses the film boiling phenomenon, a laminated piezo method that uses a volume change due to the electric field of the laminated piezoelectric material, and an electrostatic force that uses charged droplets. There have been proposed a plurality of methods such as an electrostatic method for discharging and a shear deformation method using a pressure wave generated by shear deformation of a piezoelectric body.

これらの中で、静電方式は、他の方式に比べて、液滴のメディア上への着弾精度が良いという利点を有しており、この点では、近年の画像又はパターンの高密度化、高精細化の要求に適した方式である。他の方式はノズルから液滴が飛び出す初速度のみでメディアまで到達しなければならず、飛翔中に外的な要因(例えば風など)の影響を受けて方向が傾く虞がある。また、ノズルの先端形状によって液滴の吐出方向が異なり、液滴の飛び出し角がノズル毎に異なることによる着弾位置ずれを低減する必要に迫られている。   Among these, the electrostatic method has an advantage that the landing accuracy of the droplet on the medium is better than other methods, and in this respect, the density of images or patterns in recent years has increased. This method is suitable for high definition requirements. In other methods, the medium must be reached only at the initial velocity at which the droplets are ejected from the nozzle, and the direction may be tilted due to the influence of external factors (for example, wind) during the flight. In addition, there is an urgent need to reduce the landing position deviation caused by the ejection direction of the liquid droplets depending on the tip shape of the nozzle and the ejection angle of the liquid droplets being different for each nozzle.

これに対して、静電方式は、メディアとヘッドに設けられた対向電極間に電界が印加され、電界方向に沿って液滴が進行する。このとき、液滴自体は常に電界方向に静電力を受けているために、飛翔方向は一定に保たれやすい。よって、ノズル毎の着弾位置のばらつきが少なく着弾精度が良くなる。   On the other hand, in the electrostatic method, an electric field is applied between the counter electrode provided on the medium and the head, and the droplet advances along the electric field direction. At this time, since the droplet itself always receives an electrostatic force in the direction of the electric field, the flight direction is easily kept constant. Therefore, the landing accuracy for each nozzle is small and the landing accuracy is improved.

ところが、静電方式は、前述の電界により液滴を液室内にある液体を帯電させるとともにノズル穴から凸状に突出させ、突出した液体において電界集中が生じることで、液滴を液体から引き離すため、一旦、突出した液体では、加速度的に液滴吐出動作を行うことができるが、マルチノズルによる複数ノズルの同時吐出を考慮した場合、ノズル毎に液体が突出する速度は異なってしまう。よって、最も遅い駆動速度に合わせなければならず、駆動速度に限界があった。   However, in the electrostatic method, the liquid in the liquid chamber is charged by the electric field as described above, and protrudes in a convex shape from the nozzle hole, and electric field concentration occurs in the protruding liquid, so that the liquid droplet is separated from the liquid. Once the liquid has protruded, the droplet discharge operation can be performed at an accelerated speed. However, when simultaneous discharge of a plurality of nozzles by a multi-nozzle is considered, the speed at which the liquid protrudes differs for each nozzle. Therefore, it must be adjusted to the slowest driving speed, and there is a limit to the driving speed.

また、各ノズル近傍の液体の帯電状態が均一でなければ、一定した液体の凸状に突出させることできず、液滴径を均一にすることは困難であった。   Further, if the charged state of the liquid in the vicinity of each nozzle is not uniform, the liquid cannot be projected in a constant convex shape, and it is difficult to make the droplet diameter uniform.

さらに静電方式でマルチノズル化を行うためには、各ノズル毎にその近傍に電極を設け、個々に数百Vのオンオフ制御を行わねばならず、駆動回路が高価になり、駆動速度にも限界があった。   Furthermore, in order to make a multi-nozzle by the electrostatic method, an electrode must be provided in the vicinity of each nozzle, and on / off control of several hundred volts must be performed individually, the drive circuit becomes expensive, and the drive speed is also increased. There was a limit.

加えて、個々に電極を設けることが、ノズル毎の液体の突出状態に差異を生じさせる主要因ともなり、複数ノズルから高速で連続吐出させる液滴吐出装置に適用するためには多くの課題を有していた。   In addition, providing electrodes individually is also a main factor that causes a difference in the protruding state of the liquid for each nozzle, and there are many problems to apply to a droplet discharge device that continuously discharges from multiple nozzles at high speed. Had.

そこで、圧電体駆動により液体の凸状の突出を制御するとともに、静電方式により液滴をメディアに到達させる方式として、個々のノズル毎に圧電体を具備した圧力発生室を設け、さらに全てのノズルに共通する共通電極をノズル近傍に設けたものがある(例えば、特許文献1参照。)。この構成では、静電型のインクジェットのマルチノズル制御を行うために、インク室内にノズル数に対応する圧電体を設け、吐出させたいノズルについてのみ圧電体を駆動して液体を凸状に隆起させて共通電極とメディアの間の電界により液滴を吐出させる。個々の圧電体の駆動に必要な電圧は高々数十Vであり、従来の電界を発生するための個々の電極を数百Vの電圧で制御することに比べ、コストも安価であり、吐出の安定性も良い。   Therefore, as a method of controlling the convex protrusion of the liquid by driving the piezoelectric body and causing the droplets to reach the medium by the electrostatic method, a pressure generating chamber equipped with a piezoelectric material is provided for each nozzle, and all There is one in which a common electrode common to the nozzle is provided in the vicinity of the nozzle (see, for example, Patent Document 1). In this configuration, in order to perform multi-nozzle control of electrostatic inkjet, a piezoelectric body corresponding to the number of nozzles is provided in the ink chamber, and the piezoelectric body is driven only for the nozzles to be ejected to raise the liquid in a convex shape. Then, droplets are ejected by the electric field between the common electrode and the medium. The voltage required to drive each piezoelectric body is several tens of volts at most, and the cost is low compared with the conventional case where individual electrodes for generating an electric field are controlled with a voltage of several hundred volts, and the discharge of the piezoelectric body is low. Good stability.

また、各インク室毎にそれぞれ独立して駆動制御可能なピエゾ素子を設け、ピエゾ素子の駆動によりノズル穴から隆起した凸状のインクを帯電させて静電的に吐出するものがある(例えば、特許文献2参照。)。この技術では、ピエゾ素子として高価な積層型ではなく安価な単体の圧電体で良い。さらに積層型ではノズル密度200dpi程度が限界であったのに対して、この技術では400dpi程度までの高密度化が可能としている。
特開昭62−240559号公報 特開平05−278212号公報
In addition, there is a piezoelectric element that can be independently driven and controlled for each ink chamber, and electrostatically ejects the convex ink that is raised from the nozzle hole by driving the piezoelectric element (for example, (See Patent Document 2). In this technique, an inexpensive single piezoelectric body may be used instead of an expensive laminated type as a piezo element. Furthermore, the nozzle density is limited to about 200 dpi in the stacked type, but this technique enables high density up to about 400 dpi.
JP-A-62-240559 JP 05-278212 A

しかしながら、従来技術では、高密度化と高速駆動化を両立させることは難しかった。例えば、特許文献1及び2に開示された構成では、その駆動周波数は数kHz程度であると推測され、そのノズル密度も400dpiまでである。さらに、特許文献1の構成では、それぞれのインク室毎に圧電体を実装しなければならず、高密度化が困難である上に、非常にコストが高くなる問題がある。   However, in the prior art, it has been difficult to achieve both high density and high speed driving. For example, in the configurations disclosed in Patent Documents 1 and 2, the driving frequency is estimated to be about several kHz, and the nozzle density is up to 400 dpi. Furthermore, in the configuration of Patent Document 1, it is necessary to mount a piezoelectric body for each ink chamber, and it is difficult to increase the density, and the cost is very high.

特許文献2の構成は、製造プロセスとしては比較的高密度化は容易であるが、単層からなるピエゾ素子をインク室に配置したのみであるため、液滴を吐出させるためには最低でも数十Vの駆動電圧を必要する上、高速に駆動させることができなかった。また、たとえ、ピエゾ素子を高速駆動可能なものに改良できたとしても、ピエゾ素子がインク室内の液体に与える振動を減衰させるための機構はなく、ピエゾ素子が高速で駆動できたとしても、インク室内の残留振動が自然減衰するまで待たねばならず、結果として駆動速度を上げることができない問題かある。   The configuration of Patent Document 2 is relatively easy to increase in density as a manufacturing process, but only a single-layer piezo element is arranged in the ink chamber. A drive voltage of 10V is required and the device cannot be driven at high speed. Even if the piezo element can be improved so that it can be driven at high speed, there is no mechanism for attenuating the vibration that the piezo element gives to the liquid in the ink chamber, and even if the piezo element can be driven at high speed, There is a problem that the driving speed cannot be increased as a result of waiting until the residual vibration in the room naturally attenuates.

この発明の目的は、単位時間当たりの液滴の総吐出可能数を増加させることができ、液滴噴射装置のさらなる低コスト化及び高寿命化を実現することができる液滴噴射装置を提供することにある。   An object of the present invention is to provide a droplet ejecting apparatus that can increase the total number of droplets that can be ejected per unit time, and that can further reduce the cost and life of the droplet ejecting apparatus. There is.

この発明は、上記の課題を解決するための手段として、以下の構成を備えたものである。   The present invention has the following configuration as means for solving the above-described problems.

(1)液滴到達部材に対向する複数のノズル孔と、高さ方向に分極した圧電体からなり前記複数のノズル孔の各々に前面において対向する複数の間隙を各々の間に設けて配置された複数の隔壁と、前記複数の間隙の各々の前面側で前記複数の隔壁の各々によって互いに分離された複数の駆動液室と、前記複数の隔壁における互いの対向面に形成された駆動電極と、前記駆動電極に駆動電圧を印加する駆動回路と、前記複数のノズル孔を挟んで前記液滴到達部材に対向する共通電極と、前記液滴到達部材と前記共通電極との間に電界を形成する電源回路と、を備え、
前記電源回路によって前記液滴到達部材と前記共通電極との間に電界を形成した状態で、前記駆動回路からの前記駆動電極に対する駆動電圧の印加によって前記隔壁を剪断変形させて前記駆動液室内に生じた圧力変動により前記駆動液室内の液体を前記ノズル孔から突出させた後に液滴として前記液滴到達部材に吐出させることを特徴とする。
(1) A plurality of nozzle holes facing the droplet reaching member and a piezoelectric body polarized in the height direction are arranged with a plurality of gaps facing each other at the front surface in each of the plurality of nozzle holes. A plurality of partition walls, a plurality of drive liquid chambers separated from each other by each of the plurality of partition walls on the front side of each of the plurality of gaps, and drive electrodes formed on mutually facing surfaces of the plurality of partition walls; A drive circuit for applying a drive voltage to the drive electrode, a common electrode facing the droplet reaching member across the plurality of nozzle holes, and an electric field formed between the droplet reaching member and the common electrode A power supply circuit,
In a state where an electric field is formed between the droplet reaching member and the common electrode by the power supply circuit, the partition wall is shear-deformed by application of a driving voltage to the driving electrode from the driving circuit to enter the driving liquid chamber. The liquid in the driving liquid chamber is caused to protrude from the nozzle hole by the generated pressure fluctuation and then discharged as a droplet to the droplet reaching member.

この構成においては、圧電体の剪断変形により駆動液室内に発生した圧力波と、ノズル近傍に配置した共通電極と液滴到達部材との間に形成した電界から帯電した液滴に作用する静電引力と、によって液滴を吐出するためのエネルギーが得られる。   In this configuration, the pressure wave generated in the driving liquid chamber due to the shear deformation of the piezoelectric body and the electrostatic force acting on the charged droplet from the electric field formed between the common electrode arranged near the nozzle and the droplet arrival member. The energy for discharging the droplets is obtained by the attractive force.

液体が充填された駆動液室の両隔壁を駆動液室の体積が大きくなるように変形させると、液体供給方向から圧力波が進行する。その圧力波が駆動液室内で重ね合わさるタイミングで駆動液室の体積が小さくなるように隔壁を変形させると、駆動液室の体積の変形分より多量の液体がノズル孔から高速で突出し、数十kHzの吐出周期を実現できる。   When both partition walls of the driving liquid chamber filled with the liquid are deformed so as to increase the volume of the driving liquid chamber, a pressure wave advances from the liquid supply direction. When the partition wall is deformed so that the volume of the driving liquid chamber is reduced at the timing when the pressure wave is superimposed in the driving liquid chamber, a larger amount of liquid projects from the nozzle hole at a high speed than the deformation of the volume of the driving liquid chamber. A discharge cycle of kHz can be realized.

また、半導体製造装置として汎用されているダイシング装置を用いて圧電体に溝加工を行うことによって駆動液室は高密度で低コストかつ容易に形成され、400dpi程度の吐出密度を容易に実現できる。   Further, by performing groove processing on the piezoelectric body using a dicing apparatus that is widely used as a semiconductor manufacturing apparatus, the driving liquid chamber can be easily formed at high density and low cost, and a discharge density of about 400 dpi can be easily realized.

さらに、圧電体に剪断変形を生じさせるための駆動電圧は数V〜十数Vであり、高速駆動回路を容易に作製できる。   Furthermore, the driving voltage for causing shear deformation in the piezoelectric body is several V to several tens V, and a high-speed driving circuit can be easily manufactured.

加えて、圧電体の剪断変形のみを利用した液滴噴射装置に比べ、液滴到達部材における液滴の吐出位置精度が向上し、隔壁に加える電圧を低くすることができ、液室内で発生する残留振動が小さいために待機時間を短縮できる結果高速駆動が可能となる。   In addition, compared with a droplet ejecting apparatus that uses only shear deformation of a piezoelectric body, the droplet discharge position accuracy in the droplet reaching member is improved, the voltage applied to the partition wall can be lowered, and it is generated in the liquid chamber. Since the residual vibration is small, the standby time can be shortened, resulting in high speed driving.

したがって、高密度の吐出密度及び高周波数の吐出周期を低コストで容易に実現しつつ、液滴到達部材における液滴の吐出位置精度の向上が実現される。   Therefore, it is possible to easily realize a high-density discharge density and a high-frequency discharge cycle at a low cost, and to improve the liquid droplet discharge position accuracy in the liquid droplet arrival member.

(2)上記(1)の液的噴射装置において、前記複数の間隙の各々の背面側で連通部を介して互いに連通するとともに、前記複数の駆動液室の各々に連続する複数の減衰液室を設けたことを特徴とする。   (2) In the liquid ejecting apparatus according to (1), a plurality of damping liquid chambers that communicate with each other via a communication portion on the back side of each of the plurality of gaps and that are continuous with each of the plurality of driving liquid chambers. Is provided.

この構成においては、液室の液体供給側に各駆動液室に連なり、連通部を介して互いに連通する複数の減衰液室が各間隙に設けられる。したがって、連通部の断面積を小さくすることにより、駆動液室と減衰液室との間には断面形状的な差が少なくなり、水撃作用による圧力波の反射が少なくなるとともに、圧力波が減衰液室を進行していく間に連通部を介して隣接する減衰液室に徐々に開放される。これによって、駆動液室内の圧力波の残留振動が少なくなり、200kHz程度の高速駆動が可能となる。   In this configuration, a plurality of attenuation liquid chambers that are connected to the driving liquid chambers on the liquid supply side of the liquid chamber and communicate with each other via the communication portion are provided in each gap. Therefore, by reducing the cross-sectional area of the communication portion, the difference in cross-sectional shape between the driving fluid chamber and the damping fluid chamber is reduced, the reflection of pressure waves due to the water hammer action is reduced, and the pressure waves are reduced. While proceeding through the damping liquid chamber, the damping liquid chamber is gradually opened to the adjacent damping liquid chamber via the communication portion. As a result, the residual vibration of the pressure wave in the driving fluid chamber is reduced, and high-speed driving at about 200 kHz is possible.

(3)上記(1)又は(2)の液滴噴射装置における液滴噴射方法であって、前記電源回路から前記共通電極に対して前記液滴到達部材との間に電界を形成するための電圧を印加し、この間に、前記駆動電極に駆動電圧を印加して前記隔壁を剪断変形させ、該剪断変形によって前記間隙に形成された液室内に生じた圧力変動により、前記液室内において前記共通電極によって帯電された液体を液滴として前記ノズル孔から吐出させた後、該液滴の吐出速度を前記共通電極と前記液滴到達部材との間に形成された電界によって制御することを特徴とする。   (3) A droplet ejecting method in the droplet ejecting apparatus according to (1) or (2), wherein an electric field is formed between the power supply circuit and the droplet reaching member with respect to the common electrode. A voltage is applied, and in the meantime, a driving voltage is applied to the driving electrode to shear deform the partition wall, and due to the pressure variation generated in the liquid chamber formed in the gap by the shear deformation, the common in the liquid chamber The liquid charged by the electrode is discharged as a droplet from the nozzle hole, and the discharge speed of the droplet is controlled by an electric field formed between the common electrode and the droplet reaching member. To do.

この構成においては、駆動液室内に充填された液体は各ノズル孔近傍に設けられた共通電極により帯電され、隔壁の剪断変形によって帯電した状態で液滴として吐出させ、共通電極と液滴到達部材との間の電界により吐出速度制御が行われる。したがって、帯電させた液体を隔壁の剪断変形によって駆動液室内に発生させた圧力波により、ノズル孔面から隆起させた後に液体から切り離して液滴とされ、液滴は液滴化と同時に初速度を持つ。   In this configuration, the liquid filled in the driving liquid chamber is charged by the common electrode provided in the vicinity of each nozzle hole, and is discharged as a droplet in a state of being charged by the shear deformation of the partition wall. The discharge speed is controlled by the electric field between the two. Therefore, the charged liquid is raised from the nozzle hole surface by the pressure wave generated in the driving liquid chamber by the shear deformation of the partition wall, and then separated from the liquid to form a droplet. have.

(4)上記(1)又は(2)の液滴噴射装置における液滴噴射方法であって、前記電源回路から前記共通電極に対して前記液滴到達部材との間に電界を形成するための電圧を印加し、この間に、前記駆動電極に駆動電圧を印加して前記隔壁を剪断変形させ、該剪断変形によって前記間隙に形成された液室内に生じた圧力変動により、前記液室内において前記共通電極によって帯電された液体を前記ノズル孔から突出させ、さらに、前記共通電極と前記液滴到達部材との間に形成された電界から作用する電界集中によって前記ノズル孔から液滴として吐出させた後、該液滴の吐出速度を前記共通電極と前記液滴到達部材との間に形成された電界によって制御することを特徴とする。   (4) A droplet ejecting method in the droplet ejecting apparatus according to (1) or (2), wherein an electric field is formed between the power supply circuit and the droplet reaching member with respect to the common electrode. A voltage is applied, and in the meantime, a driving voltage is applied to the driving electrode to shear deform the partition wall, and due to the pressure variation generated in the liquid chamber formed in the gap by the shear deformation, the common in the liquid chamber After the liquid charged by the electrode protrudes from the nozzle hole and is further discharged as a droplet from the nozzle hole by electric field concentration acting from the electric field formed between the common electrode and the droplet reaching member The droplet discharge speed is controlled by an electric field formed between the common electrode and the droplet reaching member.

この構成においては、隔壁の剪断変形によってノズル孔から液体を突出させ、突出部分にノズル孔近傍の共通電極と液滴到達部材との間の電界から作用する電界集中により、突出部分を液滴として吐出させ、共通電極と液滴到達部材との間の電界により吐出速度制御を行う。したがって、圧電体が発生する圧力波は液体を突出させることにのみ利用され、突出した液体から液滴を切り離す力は液体における帯電部分が静電引力を受けることにより得られるため、電界方向が液滴の初期の吐出方向を決定する。   In this configuration, the liquid is protruded from the nozzle hole by shear deformation of the partition wall, and the protruding portion is formed as a droplet by electric field concentration acting on the protruding portion from the electric field between the common electrode near the nozzle hole and the droplet reaching member. The ejection speed is controlled by an electric field between the common electrode and the droplet arrival member. Therefore, the pressure wave generated by the piezoelectric body is used only for causing the liquid to protrude, and the force for separating the droplet from the protruded liquid is obtained when the charged portion of the liquid receives electrostatic attraction, so the electric field direction is Determine the initial ejection direction of the drops.

(5)上記(3)又は(4)の液滴噴射方法において、前記ノズル孔から前記液滴が吐出した後に液滴が前記液滴到達部材に到達するまでの間に、前記共通電極と前記液滴到達部材との間の電位を前記液滴の吐出周期の整数倍の周期で反転させることを特徴とする。   (5) In the liquid droplet ejecting method according to (3) or (4), the common electrode and the liquid droplet are ejected from the nozzle hole until the liquid droplet reaches the liquid droplet arrival member. The potential between the droplet arrival member and the droplet arrival member is reversed at an integral multiple of the droplet ejection cycle.

この構成においては、ノズル孔から吐出した液滴が液滴到達部材に到達するまでの間に、共通電極と液滴到達部材の間の電位差が吐出周期の整数倍周期で反転する。したがって、数滴毎に液滴の帯電方向が変わるため、近接して液滴到達部材上に吐出された液滴の帯電がキャンセルされる。   In this configuration, the potential difference between the common electrode and the droplet reaching member is inverted at an integer multiple of the discharge cycle until the droplet discharged from the nozzle hole reaches the droplet reaching member. Therefore, since the charging direction of the droplet changes every few droplets, the charging of the droplet discharged on the droplet reaching member in the vicinity is canceled.

(6)上記(3)又は(4)の液滴噴射方法において、前記ノズル孔から前記液滴が吐出した後に液滴が前記液滴到達部材に到達するまでの間に、前記共通電極と前記液滴到達部材の間の電位を反転させることを特徴とする。   (6) In the liquid droplet ejecting method according to (3) or (4), the common electrode and the liquid droplet are ejected from the nozzle hole until the liquid droplet reaches the liquid droplet arrival member. It is characterized in that the potential between the droplet arrival members is reversed.

この構成においては、液体が吐出した後に液滴到達部材に達するまでの間に、共通電極と液滴到達部材の間の電位差が反転する。したがって、ノズル孔から液滴が吐出する際には、共通電極と液滴到達部材との間の電界が液滴に対して吐出方向に作用し、ノズル孔から吐出した後の液滴には、液滴到達部材に達する前に吐出方向とは反対方向の静電気力が作用する。   In this configuration, the potential difference between the common electrode and the droplet reaching member is reversed before the liquid reaches the droplet reaching member after the liquid is discharged. Therefore, when a droplet is ejected from the nozzle hole, the electric field between the common electrode and the droplet reaching member acts on the droplet in the ejection direction. Before reaching the droplet arrival member, an electrostatic force in the direction opposite to the discharge direction is applied.

この発明によれば、以下の効果を奏することができる。   According to the present invention, the following effects can be obtained.

(1)高密度化が容易で高速駆動が可能な液滴噴射装置において、さらに着弾位置精度の向上を図ることができる。   (1) In a droplet ejecting apparatus that can be easily densified and can be driven at a high speed, it is possible to further improve the landing position accuracy.

(2)駆動液室内の圧力波の残留振動を低減することができ、200kHz程度の高速駆動を実現することができる。   (2) The residual vibration of the pressure wave in the driving liquid chamber can be reduced, and high-speed driving at about 200 kHz can be realized.

(3)液滴の帯電量は小さくなるために静電引力が小さくなる比較的導電率の低い液体を吐出する場合にも、風などの外乱の影響を受け難くし、高い吐出位置精度を維持することができる。また、静電引力による吸引は飛翔時にのみ働けば良いため、共通電極に印加すべき電圧を下げることが可能であり、さらに、液体の帯電の時定数が低い場合に懸念される駆動周波数の低下を抑えることができる。   (3) Even when ejecting a liquid with relatively low electrical conductivity, which has a low electrostatic attraction due to a small charge amount of droplets, it is less susceptible to disturbances such as wind and maintains high ejection position accuracy. can do. In addition, since suction by electrostatic attraction only needs to work during flight, the voltage to be applied to the common electrode can be lowered, and the drive frequency is a concern when the liquid charging time constant is low. Can be suppressed.

(4)圧電体が発生する圧力波を液体を突出させることにのみ利用し、突出した液体から液滴を切り離す力を共通電極と液滴到達部材との間の電界から得ることにより、電界方向によって液滴の初期の吐出方向を決定できるようにし、各ノズル孔の吐出方向のばらつきやノズル孔の形状ばらつきに起因する吐出位置の誤差を小さくすることができ、吐出位置精度を向上させることができる。また、駆動液室内の圧力波は、ノズル孔から液体を突出させるだけで十分であるため、隔壁の剪断変形量は非常に少なくて良く、残留振動の振幅も小さくなって高速駆動が可能となるとともに、圧電体の経時劣化が少なく、駆動回路のコストも下げることができる。特に、導電率の高い液体を吐出する場合に適する。   (4) The pressure wave generated by the piezoelectric body is used only to cause the liquid to protrude, and the force for separating the liquid droplet from the protruded liquid is obtained from the electric field between the common electrode and the liquid droplet arrival member. This makes it possible to determine the initial discharge direction of droplets, and to reduce discharge position errors due to variations in the discharge direction of each nozzle hole and nozzle hole shape, thereby improving the discharge position accuracy. it can. Further, since the pressure wave in the driving liquid chamber is sufficient to cause the liquid to protrude from the nozzle hole, the amount of shear deformation of the partition wall may be very small, the amplitude of the residual vibration is reduced, and high speed driving is possible. At the same time, there is little deterioration of the piezoelectric body over time, and the cost of the drive circuit can be reduced. In particular, it is suitable for discharging a liquid with high conductivity.

(5)数滴毎に液滴の帯電方向を変えることにより、近接して液滴到達部材上に吐出された液滴の帯電をキャンセルし、複数の液滴を液滴到達部材上に高密度に吐出した際の同電位に帯電した液滴同士の反発力による液滴の吐出位置精度の低下を防止することができる。   (5) By changing the charging direction of the droplet every few drops, the charging of the droplets discharged on the droplet arrival member in the vicinity is canceled, and a plurality of droplets are densely formed on the droplet arrival member. It is possible to prevent a drop in droplet discharge position accuracy due to the repulsive force between droplets charged to the same potential when discharged at the same time.

(6)ノズル孔から液滴が吐出する際に、共通電極と液滴到達部材との間の電界が液滴に対して吐出方向に作用し、ノズル孔から吐出した後の液滴には、液滴到達部材に達する前に吐出方向とは反対方向の静電気力を作用させることにより、液滴の飛翔中に外乱による吐出方向の誤差を抑えつつ、液滴到達部材に到達するときの衝突速度を小さくして液滴が周囲に飛び散ることを防止できる。   (6) When a droplet is ejected from the nozzle hole, an electric field between the common electrode and the droplet reaching member acts on the droplet in the ejection direction. By applying an electrostatic force in the direction opposite to the discharge direction before reaching the droplet arrival member, the collision speed when reaching the droplet arrival member is suppressed while suppressing errors in the discharge direction due to disturbance during the flight of the droplet It is possible to prevent the droplets from being scattered around by reducing.

図1は、この発明の実施形態に係る液滴噴射装置の構成を示す断面図である。この実施形態に係る液滴噴射装置200では、圧力波を発生する圧電素子部1の前面1Bに、導電性のプレートに複数の孔(電極孔)20を形成した共通電極2、同じく複数の孔(ノズル孔)30を形成したポリイミドからなるノズルプレート3が、それぞれの孔20,30の中心が液室1Aの開口部の略中心に位置するように貼付されている。   FIG. 1 is a cross-sectional view showing a configuration of a droplet ejecting apparatus according to an embodiment of the present invention. In the droplet ejecting apparatus 200 according to this embodiment, a common electrode 2 in which a plurality of holes (electrode holes) 20 are formed in a conductive plate is formed on the front surface 1B of the piezoelectric element unit 1 that generates a pressure wave. A nozzle plate 3 made of polyimide in which (nozzle holes) 30 are formed is pasted so that the centers of the respective holes 20 and 30 are located at substantially the center of the opening of the liquid chamber 1A.

圧電素子部1の背面1Cには、液室1A内部に形成された駆動電極91を駆動回路50に導通するためのフレキシブル基板4、図示しない液体タンクに接続されて圧電素子部1の液室1A内に液体を供給するマニフォールド5が接続されてなる。液滴が到達するメディア自体若しくはメディアをセットする部材である液滴到達部材6は、電気的に接地されており、共通電極2には、電源回路40から矩形のパルス電圧が印加される。   On the back surface 1 </ b> C of the piezoelectric element portion 1, the liquid electrode 1 </ b> A of the piezoelectric element portion 1 is connected to the flexible substrate 4 for conducting the drive electrode 91 formed in the liquid chamber 1 </ b> A to the drive circuit 50 and a liquid tank (not shown). A manifold 5 for supplying a liquid therein is connected. The medium itself to which a droplet reaches or the droplet arrival member 6 that is a member for setting the medium is electrically grounded, and a rectangular pulse voltage is applied to the common electrode 2 from the power supply circuit 40.

マニフォールド5にある液体は、各液室1Aに共通して繋がっている共通液室7を通って、一部に微小な連結部8Aを有する減衰液室8、圧電体からなる隔壁が剪断変形して圧力波を発生する駆動液室9の順に供給される。液体は、駆動液室9の圧力波制御により正圧となった駆動液室9から、共通電極2の電極孔20を通って、ノズルプレート3のノズル孔30から液滴として吐出される。吐出された液滴は、共通電極2と液滴到達部材6との間に発生する電界により加速されて、液滴到達部材6に向けて飛翔し、液滴到達部材6又は液滴到達部材6上にセットされたメディアに到達する。   The liquid in the manifold 5 passes through the common liquid chamber 7 commonly connected to each liquid chamber 1A, and the damping liquid chamber 8 having a minute connecting portion 8A in part and the partition wall made of a piezoelectric material undergo shear deformation. Then, the driving liquid chambers 9 that generate pressure waves are supplied in this order. The liquid is ejected as droplets from the nozzle hole 30 of the nozzle plate 3 through the electrode hole 20 of the common electrode 2 from the driving liquid chamber 9 that has become positive pressure by pressure wave control of the driving liquid chamber 9. The ejected liquid droplets are accelerated by the electric field generated between the common electrode 2 and the liquid droplet arrival member 6 and fly toward the liquid droplet arrival member 6, and the liquid droplet arrival member 6 or the liquid droplet arrival member 6. Reach the media set above.

圧電素子部1の内部構造及び共通電極、ノズルプレートの配置について、図2を用いてより詳細に説明する。図2(A)は、圧電素子部の正面図であり、液滴吐出方向側の端面及び端面上の共通電極・ノズルプレートの配置を示す図である。圧電素子部1は、液室1Aとなる複数の溝が刻設された分極した圧電体からなるアクト基板10に、溝の上面を塞ぐようにセラミックス系材料からなる略平板状のカバー11をエポキシ系接着剤を用いて貼付し、溝とカバーにより略長方形状の断面を形成された空間を液室1Aとして用いる。   The internal structure of the piezoelectric element portion 1 and the arrangement of the common electrode and the nozzle plate will be described in more detail with reference to FIG. FIG. 2A is a front view of the piezoelectric element portion, and is a diagram showing the arrangement of the end face on the droplet discharge direction side and the common electrode / nozzle plate on the end face. The piezoelectric element portion 1 is formed by applying a substantially flat cover 11 made of a ceramic material to an act substrate 10 made of a polarized piezoelectric body having a plurality of grooves engraved as a liquid chamber 1A so as to close the upper surface of the grooves. A space which is pasted using a system adhesive and has a substantially rectangular cross section formed by a groove and a cover is used as the liquid chamber 1A.

アクト基板10は、厚み方向(紙面上下方向)に分極した圧電体からなる基体10Aに駆動液室9の深さの略半分の厚みを有する同材料からなる薄板10Bを貼り合わせてなり、基体10Aと薄板10Aとは分極方向が互いに反対方向になっている。溝は薄板10B方向からダイシング装置を用いて複数本加工されており、ピッチは63μm、溝幅は30μm、深さは120μmとした。これは、ノズル密度400dpiに相当し、我々の検討では、600dpiまでの狭ピッチ化(ピッチが42μm、溝幅が20μm)が可能である。   The act substrate 10 is formed by laminating a thin plate 10B made of the same material having a thickness approximately half the depth of the driving liquid chamber 9 on a base body 10A made of a piezoelectric body polarized in the thickness direction (vertical direction on the paper surface). And the thin plate 10A have opposite polarization directions. A plurality of grooves were processed using a dicing apparatus from the direction of the thin plate 10B, and the pitch was 63 μm, the groove width was 30 μm, and the depth was 120 μm. This corresponds to a nozzle density of 400 dpi, and in our study, it is possible to narrow the pitch up to 600 dpi (pitch is 42 μm, groove width is 20 μm).

隣接する駆動液室9を隔てる隔壁90の両側面には駆動電極91が形成されている。駆動電極91は駆動液室9内において対向している部分は導通して互いに同電位であり、隔壁90を挟んで対向しているものは互いに絶縁されており、各駆動液室9内の駆動電極91毎に電圧制御ができる。   Drive electrodes 91 are formed on both side surfaces of the partition wall 90 separating the adjacent drive liquid chambers 9. The driving electrodes 91 are electrically connected to each other in the driving liquid chamber 9 and have the same potential, and those facing each other across the partition wall 90 are insulated from each other. Voltage control can be performed for each electrode 91.

ここで、駆動液室9Bから液滴を吐出するための圧力波の発生方法を説明する。圧力波の発生には、高さ方向(紙面上下方向)に分極した圧電体からなる隔壁90に分極方向と直交する方向に電界を印加することによって発生する剪断変形作用を用いている。隔壁90がその高さの略半分で分極方向が反転しているため、結果的に隔壁90は<型に剪断変形する。   Here, a method of generating a pressure wave for discharging a droplet from the driving liquid chamber 9B will be described. For the generation of the pressure wave, a shear deformation action generated by applying an electric field in a direction perpendicular to the polarization direction to the partition wall 90 made of a piezoelectric body polarized in the height direction (up and down direction on the paper surface) is used. Since the partition wall 90 is approximately half the height and the polarization direction is reversed, the partition wall 90 is shear-deformed into a mold.

駆動電極91Bに対して、逆位相の電位を駆動電極91Aおよび駆動電極91Cに与えると、隔壁90ABは>型に、隔壁90BCは<型に変形し、駆動液室9Bは<>型となる。これにより、駆動液室9Bは負圧となり、共通液室7から圧力波が駆動液室9B内に進行し、その反射波と重ね合わせられ、駆動液室9B内が正圧となる。このタイミングで、駆動電極91Bと、駆動電極91A及び駆動電極90Cとの電位を反転させることにより、隔壁90ABは<型に、隔壁90BCは>型に変形し、駆動液室9Bは><型となり、駆動液室9B内は高い圧力状態が形成され、ノズル孔30から液体を凸状に突出させる力となる。なお、隔壁90が<型に剪断変形して圧力波を生成するためには、隔壁90自体の剛性が必要であり、隔壁90の上下が固定されていなければならない。   When an opposite phase potential is applied to the drive electrode 91A and the drive electrode 91C with respect to the drive electrode 91B, the partition wall 90AB is transformed into a> shape, the partition wall 90BC is transformed into a <shape, and the drive liquid chamber 9B is transformed into a <> shape. As a result, the driving liquid chamber 9B has a negative pressure, and a pressure wave from the common liquid chamber 7 travels into the driving liquid chamber 9B and is superimposed on the reflected wave, so that the driving liquid chamber 9B has a positive pressure. At this timing, the potentials of the drive electrode 91B, the drive electrode 91A, and the drive electrode 90C are inverted, so that the partition wall 90AB is transformed into a <mold, the partition wall 90BC is transformed into a mold, and the drive fluid chamber 9B is transformed into a <mold. In the driving liquid chamber 9B, a high pressure state is formed, and the liquid is projected from the nozzle hole 30 in a convex shape. In addition, in order for the partition wall 90 to shear and deform into a mold to generate a pressure wave, the partition wall 90 itself needs to have rigidity, and the upper and lower sides of the partition wall 90 must be fixed.

次に、共通電極2及びノズルプレート3の配置について説明する。図2(A)において、右から3番目までの駆動液室9A〜9Cは圧電素子部1の開口部の状態を、右から4〜6番目の駆動液室9D〜9Fは圧電素子部1の前面に共通電極2を貼り合わせた状態を、右から7〜9番目の駆動液室9G〜9Iは共通電極2の前面にノズルプレート3を貼り合わせた状態を示している。   Next, the arrangement of the common electrode 2 and the nozzle plate 3 will be described. In FIG. 2A, the third driving liquid chambers 9A to 9C from the right are in the state of the opening of the piezoelectric element portion 1, and the fourth to sixth driving liquid chambers 9D to 9F are from the piezoelectric element portion 1. The seventh to ninth drive liquid chambers 9G to 9I from the right show the state where the common electrode 2 is bonded to the front surface, and the nozzle plate 3 is bonded to the front surface of the common electrode 2.

右から4〜6番目の駆動液室9D〜9Fの前面側に現れている共通電極2は、厚み70μmの金属薄板であり、駆動液室9と略等ピッチで直径20μmの電極孔20が形成されている。共通電極2は、電極孔20の中心が液室1Aの開口部の略中央に一致するように位置決めして接着されている。電極孔20は、共通電極2となる金属薄板に、エキシマレーザ照射、打ち抜き加工、放電加工、レジストパターニングを含む化学的エッチング、又は、円形形成したレジストパターンを用いた電鋳加工するなどの様々な方法で形成することができる。これらの方法を用いると、最小直径5μm〜20μm程度の電極孔20を形成することができる。共通電極2の材料には、導電性が高い材料を用いる。   The common electrode 2 appearing on the front side of the fourth to sixth driving liquid chambers 9D to 9F from the right is a thin metal plate having a thickness of 70 μm, and electrode holes 20 having a diameter of 20 μm are formed at substantially the same pitch as the driving liquid chamber 9. Has been. The common electrode 2 is positioned and bonded so that the center of the electrode hole 20 coincides with the approximate center of the opening of the liquid chamber 1A. The electrode hole 20 is formed by performing various processes such as excimer laser irradiation, punching, electrical discharge machining, chemical etching including resist patterning, or electroforming using a circularly formed resist pattern on the metal thin plate to be the common electrode 2. Can be formed by a method. When these methods are used, the electrode hole 20 having a minimum diameter of about 5 μm to 20 μm can be formed. A material having high conductivity is used as the material of the common electrode 2.

右から7〜9番目の駆動液室9G〜9Iの前面側に現れているノズルプレート3は、厚み50μmのポリイミドからなり、駆動液室9と略等ピッチで直径15μmのノズル孔30が形成されている。ノズルプレート3は、ノズル孔30の中心が電極孔20の中心に略一致するように位置決めして接着されている。ノズル孔30は、一般に、エキシマレーザ照射によってノズルプレート3に形成される。ポリイミドの厚さにもよるが、最小直径5μm〜10μm程度のノズル孔を形成することができる。ノズルプレートの材料には、絶縁性の高い材料を用いる。ノズル孔30の形状として、前面側から背面側に広がるようにテーパーが設けられていても良いが、電極孔20の直径に比べてノズル孔10の最大径が小さい方が望ましい。   The nozzle plate 3 appearing on the front side of the seventh to ninth driving liquid chambers 9G to 9I from the right is made of polyimide having a thickness of 50 μm, and nozzle holes 30 having a diameter of 15 μm are formed at substantially the same pitch as the driving liquid chamber 9. ing. The nozzle plate 3 is positioned and bonded so that the center of the nozzle hole 30 substantially coincides with the center of the electrode hole 20. The nozzle hole 30 is generally formed in the nozzle plate 3 by excimer laser irradiation. Depending on the thickness of the polyimide, nozzle holes with a minimum diameter of about 5 μm to 10 μm can be formed. As the material for the nozzle plate, a highly insulating material is used. As the shape of the nozzle hole 30, a taper may be provided so as to spread from the front side to the back side, but it is desirable that the maximum diameter of the nozzle hole 10 is smaller than the diameter of the electrode hole 20.

次に、図1に示した減衰液室の詳細な構造を、図2(B)を用いて説明する。図2(B)は、図1におけるY−Y部端面図である。減衰液室8と駆動液室9との大きな違いは、減衰液室8を区画する減衰部隔壁80は、その上面がカバー基板11と接合されておらず、5μm〜20μmの隙間である連通部8Aを有している点である。連通部8Aは、図1の縦断面図にあるように、カバー基板11の減衰液室を構成する面を駆動液室を構成する部分に比べ5μm〜20μm凹ませることで実現する。この凹みの加工深さは、保護膜となるパラキシレン膜の膜厚を考慮したうえで決定され、例えば後述するパラキシレン膜の厚みが5μmの場合は凹み深さは15〜30μmに設定されて加工される。また、この凹みは、サンドブラスト、化学的エッチング、又は、ダイシング装置を用いた研削加工により容易に加工できる。連通部8Aは、隣接する各減衰液室8を互いに連通している。   Next, the detailed structure of the damping liquid chamber shown in FIG. 1 will be described with reference to FIG. 2B is an end view of the YY portion in FIG. The major difference between the damping liquid chamber 8 and the driving liquid chamber 9 is that the damping section partition wall 80 that divides the damping liquid chamber 8 is not connected to the cover substrate 11 on the upper surface, and is a communication section that is a gap of 5 μm to 20 μm. 8A. As shown in the longitudinal sectional view of FIG. 1, the communication portion 8 </ b> A is realized by denting the surface constituting the attenuation liquid chamber of the cover substrate 11 by 5 μm to 20 μm compared to the portion constituting the driving liquid chamber. The processing depth of the recess is determined in consideration of the thickness of the paraxylene film serving as a protective film. For example, when the thickness of the paraxylene film described later is 5 μm, the recess depth is set to 15 to 30 μm. Processed. Moreover, this dent can be easily processed by sandblasting, chemical etching, or grinding using a dicing apparatus. The communication portion 8A communicates adjacent attenuation liquid chambers 8 with each other.

通常は、複数の駆動液室9の液体供給側(背面側)には、液体を供給するために共通の大きな空間である共通液室を設ける必要があり、各駆動液室9で発生した圧力波が共通液室に向けて進行していく際に、駆動液室9と共通液室の界面で水撃作用が生じて駆動液室9内に反射して進行し、残留振動として駆動液室9内に残り、高速駆動の妨げとなっている。しかし、駆動液室9の背面側に減衰液室8を設けることにより、駆動液室9と減衰液室8との間には断面形状的な差が少なく、水撃作用による反射が少ない上に、圧力波が減衰液室8を駆動液室9に進行していく間に、この圧力波を連通部8Aを介して隣接する減衰液室8に徐々に開放することができる。これよって、減衰液室8及び駆動液室9内の圧力波の残留振動を少なくして高速駆動が可能となり、200kHz程度の高速駆動を実現することができる。   Normally, it is necessary to provide a common liquid chamber, which is a large common space for supplying liquid, on the liquid supply side (back side) of the plurality of drive liquid chambers 9, and the pressure generated in each drive liquid chamber 9. When the wave travels toward the common liquid chamber, a water hammer effect is generated at the interface between the drive liquid chamber 9 and the common liquid chamber, and the reflected light travels into the drive liquid chamber 9 to travel as residual vibration. 9, which hinders high-speed driving. However, by providing the damping liquid chamber 8 on the back side of the driving fluid chamber 9, there is little difference in cross-sectional shape between the driving fluid chamber 9 and the damping fluid chamber 8, and there is little reflection due to the water hammer effect. While the pressure wave travels through the damping liquid chamber 8 to the driving liquid chamber 9, the pressure wave can be gradually opened to the adjacent damping liquid chamber 8 via the communication portion 8A. As a result, the residual vibration of the pressure wave in the damping liquid chamber 8 and the driving liquid chamber 9 can be reduced to enable high-speed driving, and high-speed driving of about 200 kHz can be realized.

減衰部隔壁80の両側面には、駆動液室9の駆動電極91から連なる減衰部電極81が設けられており、図1の圧電素子部1の背面側端部の液室1A内に充填された導電性樹脂12に導通している。圧電素子部1の背面側端部に露出している導電性樹脂12には、フレキシブル基板4上に液室1Aと略等ピッチで形成された配線パターンが、異方性導電膜を介して電気的に接続固定されている。配線パターンは、図示しないドライバ回路に導通しており、ドライバ回路から発振された制御電圧は、フレキシブル基板4、導電性樹脂12、減衰部電極81及び駆動電極91にこの順に伝搬し、駆動液室9において圧力波を形成させる駆動電圧となる。   On both side surfaces of the attenuating section partition wall 80, there are provided attenuating section electrodes 81 connected to the driving electrode 91 of the driving liquid chamber 9, and the liquid chamber 1A is filled in the back side end of the piezoelectric element section 1 in FIG. The conductive resin 12 is electrically connected. In the conductive resin 12 exposed at the rear side end of the piezoelectric element portion 1, a wiring pattern formed on the flexible substrate 4 at a substantially equal pitch to the liquid chamber 1A is electrically connected via an anisotropic conductive film. Connection is fixed. The wiring pattern is conducted to a driver circuit (not shown), and the control voltage oscillated from the driver circuit propagates in this order to the flexible substrate 4, the conductive resin 12, the attenuation unit electrode 81, and the drive electrode 91. 9 is a drive voltage for forming a pressure wave.

なお、液室1A内に露出した電極81,91が、液質1A内を流通する水性の液体によって、時間経過とともに腐食、溶解する虞がある。そこで、この実施形態に係る液体噴射装置200では、圧電素子部1にフレキシブル基板4を接合したのち、表面をパラキシレン膜でコートしている。パラキシレン膜は、加工対象物が収納されたチャンバ内を一旦真空引きした後、パラキシレン膜の元となるダイマをチャンバ内で加熱して昇華させることで、昇華したモノマがチャンバ内に拡散し、加工対象物の表面でエネルギを奪われて高分子成長することによって形成される。よって、パラキシレン膜は、狭い隙間でも均一で安定した膜形成を行いやすく、耐水性、耐溶剤性及び絶縁性にも優れている。   The electrodes 81 and 91 exposed in the liquid chamber 1A may corrode and dissolve over time due to the aqueous liquid flowing through the liquid quality 1A. Therefore, in the liquid ejecting apparatus 200 according to this embodiment, after the flexible substrate 4 is bonded to the piezoelectric element portion 1, the surface is coated with a paraxylene film. The paraxylene film is evacuated once in the chamber in which the object to be processed is stored, and the dimer that is the source of the paraxylene film is heated in the chamber to sublimate, so that the sublimated monomer diffuses into the chamber. The polymer is grown by depriving energy on the surface of the workpiece. Therefore, the paraxylene film is easy to form a uniform and stable film even in a narrow gap, and is excellent in water resistance, solvent resistance, and insulation.

この構成の液滴噴射装置200は、次の様な工程で作製する。まず、アクト基板10にダイシング装置を用いて液室1Aとなる溝を加工する。次に、溝加工されたアクト基板10Aに、溝開口側から銅ターゲットを用いてスパッタリングを行い、隔壁90の上面、隔壁側面、溝底面に銅電極を形成する。次に、液滴噴射装置200の背面側端部に相当する部分に銀ペーストをディスペンサを用いて充填して硬化させる。その後、ダイシング装置を用いて、アクト基板10の上面を研削加工することにより、隔壁90の上面の銅電極及び溝外に残存した銀ペーストを除去する。   The droplet ejecting apparatus 200 having this configuration is manufactured by the following process. First, a groove serving as the liquid chamber 1A is processed in the act substrate 10 using a dicing apparatus. Next, sputtering is performed on the grooved Act substrate 10A using a copper target from the groove opening side, and copper electrodes are formed on the upper surface of the partition wall 90, the partition wall side surface, and the groove bottom surface. Next, a portion corresponding to the rear side end of the droplet ejecting apparatus 200 is filled with a silver paste using a dispenser and cured. Thereafter, the upper surface of the act substrate 10 is ground using a dicing apparatus, thereby removing the copper electrode on the upper surface of the partition wall 90 and the silver paste remaining outside the groove.

さらに、カバー基板11において、減衰液室7に対向する部分を、駆動液室9に対向する部分に比べて15μm〜30μm程度凹むように(パラキシレン膜の厚みが5μmの場合)、ダイシング装置を用いて研削加工し、共通液室7に対向する部分は600μm凹むように、同じくダイシング装置を用いて加工した。   Further, in the cover substrate 11, the dicing device is arranged so that the portion facing the damping liquid chamber 7 is recessed by about 15 μm to 30 μm as compared with the portion facing the driving liquid chamber 9 (when the thickness of the paraxylene film is 5 μm). Using the dicing apparatus, the part facing the common liquid chamber 7 was recessed by 600 μm.

そして、アクト基板10とカバー基板11とを位置決めした後、エポキシ系の接着剤で接着し、圧電素子部1を形成した。複数個の圧電素子部1に相当する大きなウエハの状態で一括して上記の加工処理を行った後、それぞれの圧電素子部1に切断することで、一度に大量かつ安価に作製することができる。   And after positioning the act board | substrate 10 and the cover board | substrate 11, it adhere | attached with the epoxy-type adhesive agent, and the piezoelectric element part 1 was formed. After performing the above-described processing in a large wafer state corresponding to a plurality of piezoelectric element portions 1 and then cutting each piezoelectric element portion 1, it can be manufactured in large quantities and at a low cost at a time. .

このようにして作製した圧電素子部1に液室1Aと略等ピッチで配線パターンが形成されているフレキシブル基板4を、液室1Aに充填された銀ペーストからなる導電樹脂12に位置決めしたのち、異方性導電膜を介して接続する。その後、前述のようにパラキシレン膜を形成する。   After positioning the flexible substrate 4 in which the wiring pattern is formed in the piezoelectric element portion 1 thus manufactured at a substantially equal pitch to the liquid chamber 1A on the conductive resin 12 made of silver paste filled in the liquid chamber 1A, The connection is made through an anisotropic conductive film. Thereafter, a paraxylene film is formed as described above.

さらに、圧電素子部1の前面側に、共通電極2を電極孔20と液室1Aとが略一致するように位置決めしてエポキシ系の接着剤で貼り合わせた後、ノズルプレート3をノズル孔30の中心が共通電極2の電極孔20の中心に略一致するように位置決めしてエポキシ系の接着剤で接着する。次に、圧電素子部1のノズルプレート3を貼り合わせた反対面側の共通液室7の開口部を塞ぐようにマニフォールド5を接着し、液体が漏れないように周囲を封止する。   Further, after the common electrode 2 is positioned on the front surface side of the piezoelectric element portion 1 so that the electrode hole 20 and the liquid chamber 1A substantially coincide with each other and bonded with an epoxy adhesive, the nozzle plate 3 is attached to the nozzle hole 30. Are positioned so that their centers substantially coincide with the centers of the electrode holes 20 of the common electrode 2 and bonded with an epoxy adhesive. Next, the manifold 5 is bonded so as to close the opening of the common liquid chamber 7 on the opposite surface side where the nozzle plate 3 of the piezoelectric element portion 1 is bonded, and the periphery is sealed so that the liquid does not leak.

この実施形態に係る液体噴射装置200では、駆動液室9の長手方向の長さは1.3mm、減衰部液室8の長さは0.8mmとし、全長が3.3mmの圧電素子部1を作製した。   In the liquid ejecting apparatus 200 according to this embodiment, the length of the driving liquid chamber 9 in the longitudinal direction is 1.3 mm, the length of the attenuation section liquid chamber 8 is 0.8 mm, and the total length of the piezoelectric element section 1 is 3.3 mm. Was made.

この構成では、高さ方向に分極した単層又は2層の圧電体からなる隔壁を剪断変形させることにより、隔壁で区画された駆動液室9内に圧力波を発生させる。液滴を吐出させたいノズル孔に該当する駆動液室9の両隔壁を駆動液室9の体積が大きくなるように変形させ、液体供給側(背面側)から圧力波が進行する。その圧力波が駆動液室9内で重ね合わせられるタイミングで、駆動液室9の体積が小さくなるように隔壁を変形させることにより、駆動液室9の体積の変形分以上に液体がノズル孔30から高速で突出し、数十kHzの高周波数での駆動が可能である。   In this configuration, a pressure wave is generated in the driving liquid chamber 9 partitioned by the partition wall by shearing deformation of the partition wall made of a single-layer or two-layer piezoelectric body polarized in the height direction. Both partition walls of the driving liquid chamber 9 corresponding to the nozzle hole to which the droplet is to be discharged are deformed so that the volume of the driving liquid chamber 9 is increased, and a pressure wave advances from the liquid supply side (back side). By deforming the partition so that the volume of the driving liquid chamber 9 is reduced at the timing when the pressure wave is superimposed in the driving liquid chamber 9, the liquid is more than the amount of deformation of the volume of the driving liquid chamber 9. Can be driven at a high frequency of several tens of kHz.

積層型圧電体を用いれば、ある程度の高速駆動は可能となるものの、ノズル密度は高々200dpiまでであり、一方、単層の圧電体を用いればノズル密度は最大400dpiまでは可能であるものの、高速駆動は行えない。   If a multilayer piezoelectric body is used, a certain level of high-speed driving is possible, but the nozzle density is up to 200 dpi. On the other hand, if a single-layer piezoelectric body is used, the nozzle density is possible up to a maximum of 400 dpi, but at a high speed. It cannot be driven.

また、隔壁は、半導体製造装置として汎用されているダイシング装置を用いて、圧電体に溝加工を行うものであり、その技術は低コストで容易に行うことが可能であり、ノズル密度400dpi程度は容易に実現できる。   In addition, the partition wall is for performing groove processing on the piezoelectric body by using a dicing apparatus that is widely used as a semiconductor manufacturing apparatus. The technique can be easily performed at low cost, and the nozzle density is about 400 dpi. It can be easily realized.

さらに、液滴の吐出、不吐出の制御は、圧電体の駆動により行い、その駆動電圧は数V〜十数Vで良い。これによって、マルチノズル化を考慮した場合、静電方式のように数百Vのオーダーで個々の電極を制御する必要がなく、高速駆動回路の作製が容易である。   Furthermore, droplet ejection and non-ejection control is performed by driving a piezoelectric body, and the drive voltage may be several volts to several tens of volts. Thus, when considering multi-nozzle formation, it is not necessary to control individual electrodes on the order of several hundred volts as in the electrostatic method, and a high-speed drive circuit can be easily manufactured.

次にこの発明の液滴噴射方法について、実施例を用いて説明する。   Next, the droplet jetting method of the present invention will be described using examples.

<第1の液滴噴射方法>
図3は、上記液滴噴射装置の模式図であり、図2(A)におけるX−X矢視断面図である。隔壁90の両側面には互いに絶縁された電圧制御可能な駆動電極91が形成されており、駆動電極91上にはパラキシレン膜92がある。2つの隔壁90の間に挟まれた駆動液室9内には、液体93が充填されている。液体93は、共通電極2の電極孔20及びノズルプレート3のノズル孔30にも充填されている。
<First droplet ejection method>
FIG. 3 is a schematic view of the droplet ejecting apparatus, and is a cross-sectional view taken along the line XX in FIG. Voltage controllable drive electrodes 91 that are insulated from each other are formed on both sides of the partition wall 90, and a paraxylene film 92 is on the drive electrode 91. The drive liquid chamber 9 sandwiched between the two partition walls 90 is filled with a liquid 93. The liquid 93 is also filled in the electrode holes 20 of the common electrode 2 and the nozzle holes 30 of the nozzle plate 3.

1つの液滴をノズル孔30から吐出する工程を説明すると、まず、共通電極2と液滴到達部材6との間に共通電極2が正極になるように常に100Vの電位差を印加しておく。すると、図3(A)のように、電極孔20及びノズル孔30の近傍の液体93は正極に帯電する。次に、前述のように、隔壁90の両側面に電界を印加して隔壁90を図3(A)中に示す矢印方向に剪断変形させ、液滴を吐出させるべき駆動液室9の体積を広げて負圧にすると、減衰液室8側とノズルプレート2側の両側から圧力波が進行してくる。そして、あるタイミングで、圧力波は重ね合わせられて、駆動液室9はある瞬間に正圧になる。   The process of discharging one droplet from the nozzle hole 30 will be described. First, a potential difference of 100 V is always applied between the common electrode 2 and the droplet reaching member 6 so that the common electrode 2 becomes a positive electrode. Then, as shown in FIG. 3A, the liquid 93 in the vicinity of the electrode hole 20 and the nozzle hole 30 is charged to the positive electrode. Next, as described above, an electric field is applied to both side surfaces of the partition wall 90 so that the partition wall 90 is sheared and deformed in the direction of the arrow shown in FIG. When the negative pressure is widened, pressure waves proceed from both sides of the damping liquid chamber 8 side and the nozzle plate 2 side. At a certain timing, the pressure waves are superimposed, and the driving fluid chamber 9 becomes positive pressure at a certain moment.

駆動液室9が正圧になるタイミングで隔壁90に電界を印加する方向を反転させ、駆動液室9の体積が減少するように、隔壁90を図3(B)に示す矢印方向に剪断変形させる。すると、正圧となっていた駆動液室9は、その体積を狭めるように両隔壁90から押されてさらに正圧となり、ノズル孔30から帯電した液体93が略柱状に突出し、吐出液体の表面張力作用により、途中で分断されて液滴110となる。   The partition wall 90 is shear-deformed in the direction of the arrow shown in FIG. 3B so that the direction in which the electric field is applied to the partition wall 90 is reversed at the timing when the driving liquid chamber 9 becomes positive pressure, and the volume of the driving liquid chamber 9 is reduced. Let Then, the driving liquid chamber 9 which has been in a positive pressure is pushed from both the partition walls 90 so as to reduce the volume thereof, and further becomes a positive pressure, and the liquid 93 charged from the nozzle hole 30 protrudes in a substantially columnar shape, and the surface of the discharge liquid Due to the tension action, the liquid droplets are divided in the middle to become droplets 110.

次に図3(C)のように、正極に帯電した液滴110は、共通電極2と液滴到達部材6の間に常時形成されている電界から静電引力を受け、加速されながら液滴到達部材6に飛翔して到達する。   Next, as shown in FIG. 3C, the droplet 110 charged to the positive electrode receives electrostatic attraction from the electric field that is always formed between the common electrode 2 and the droplet reaching member 6 and is accelerated while being accelerated. It reaches the reaching member 6 by flying.

共通電極2と液滴到達部材6との間の電位差を100V、両者の間の距離を0.5mmとし、隔壁90間に電圧15V、駆動周波数70kHzの駆動電圧を印加したところ、安定して連続吐出できることを確認した。さらに、液滴110の吐出速度は、8mm/s以上となった。   When the potential difference between the common electrode 2 and the droplet arrival member 6 is 100 V, the distance between the two is 0.5 mm, and a driving voltage of 15 V and a driving frequency of 70 kHz is applied between the partition walls 90, the continuous voltage is stable. It was confirmed that discharge was possible. Furthermore, the discharge speed of the droplet 110 was 8 mm / s or more.

なお、用いた液体の体積抵抗率は4×105 Ω・cm程度であった。また、共通電極2と液滴到達部材6との間の電位差が大きい(即ち、電界強度が強い)ほど、複数のノズル孔30毎の液滴110の吐出方向のばらつきが少なく、吐出速度が速くなり、結果として複数のノズル孔30から吐出される液滴110の着弾位置精度が良いことが判った。 The volume resistivity of the liquid used was about 4 × 10 5 Ω · cm. Further, the larger the potential difference between the common electrode 2 and the droplet arrival member 6 (that is, the stronger the electric field strength), the smaller the variation in the ejection direction of the droplets 110 for each of the plurality of nozzle holes 30 and the faster the ejection speed. As a result, it was found that the landing position accuracy of the droplets 110 discharged from the plurality of nozzle holes 30 is good.

一方、共通電極2と液滴到達部材6との間の電位差が0の時が、最も着弾位置精度が悪かった。さらに、耐風試験(液滴飛翔方向に対して直角方向に一定の速度の風を送りこみ、着弾位置のずれを調べる。)を行ったところ、共通電極2と液滴到達部材6との間の電位差が大きいほど、無風時からの着弾位置のずれが少なく、風などの外乱に強いことが判った。   On the other hand, when the potential difference between the common electrode 2 and the droplet reaching member 6 was 0, the landing position accuracy was the worst. Further, when a wind resistance test (a wind at a constant speed is sent in a direction perpendicular to the droplet flying direction to check the deviation of the landing position), the gap between the common electrode 2 and the droplet arrival member 6 is measured. It was found that the larger the potential difference, the smaller the deviation of the landing position from when there was no wind, and it was more resistant to wind and other disturbances.

これは、液滴110の飛翔領域中の電界強度が強いほど、帯電している液滴110が飛翔中に受ける静電引力は強くなって風などの外乱に強いこと、及び、全てのノズル孔30において電界方向は略一致しているためにノズル孔30自体の形状差による吐出方向のばらつきの影響が少なくなるためであると考えられる。   This is because the stronger the electric field strength in the flying region of the droplet 110, the stronger the electrostatic attractive force that the charged droplet 110 receives during the flight and the greater resistance to disturbances such as wind, and all nozzle holes This is probably because the electric field directions at 30 substantially coincide with each other, so that the influence of the variation in the ejection direction due to the difference in the shape of the nozzle hole 30 itself is reduced.

この液滴噴射方法においては、液体は各ノズル孔30の近傍に設けられた共通電極2により帯電され、隔壁90を両駆動電極91間に電界を印加して剪断変形させることで各ノズル孔30から帯電した液滴として吐出させ、共通電極2と液滴到達部材6との間の電界により吐出速度制御を行う。つまり、帯電した液体を駆動液室9に発生した圧力波により、ノズル孔30から突出させるとともに、液体から切り離して液滴とする。このため、帯電した液滴は、液滴化と同時に初速度を持つため、静電引力のみで吸引するのに比べて液滴速度を速めることができる。特に、比較的導電率の低い液体を吐出する場合、液滴の帯電量は小さくなるため、静電引力は小さくなり、風などの外乱を受けやすく、吐出位置精度が悪くなる虞が大きいが、液滴に初速度を与えておくことで、その悪影響を抑えることができる。さらに、液滴は予め初速度を持つため、静電引力による吸引は飛翔時にのみ働けば良く、共通電極に印加する電圧を下げることが可能であり、また、液体の帯電の時定数が低い場合に懸念される駆動周波数の低下を抑えることができる。   In this droplet jetting method, the liquid is charged by the common electrode 2 provided in the vicinity of each nozzle hole 30, and the partition wall 90 is sheared and deformed by applying an electric field between the drive electrodes 91. From the common electrode 2 and the droplet reaching member 6 and discharging speed is controlled. That is, the charged liquid is caused to protrude from the nozzle hole 30 by the pressure wave generated in the driving liquid chamber 9 and is separated from the liquid to form a droplet. For this reason, since the charged droplet has an initial velocity at the same time as the droplet formation, the droplet velocity can be increased as compared with the case where the droplet is attracted only by electrostatic attraction. In particular, when discharging a liquid with relatively low electrical conductivity, the charge amount of the liquid droplet is small, so the electrostatic attractive force is small, it is susceptible to disturbances such as wind, and the discharge position accuracy is likely to deteriorate. By giving the initial velocity to the droplet, the adverse effect can be suppressed. In addition, since the droplets have an initial velocity in advance, it is sufficient that the suction by electrostatic attraction only works during flight, the voltage applied to the common electrode can be lowered, and the liquid charging time constant is low Therefore, it is possible to suppress a decrease in drive frequency that is a concern.

さらに、この液滴噴射方法では、圧力波により液体を突出させるため、駆動速度を早くすることができる。   Furthermore, in this droplet jetting method, since the liquid is projected by the pressure wave, the driving speed can be increased.

<第2の液滴噴射方法>
図4は、本発明に係る液滴噴射装置の模式図であり、図2(A)におけるX−X部矢視断面図である。隔壁90の両側面には互いに絶縁された電圧制御可能な駆動電極91が形成されており、駆動電極91上にはパラキシレン膜92がある。2つの隔壁90の間に挟まれた駆動液室9内には、液体93が充填されている。液体93は、共通電極2の電極孔20、及びノズルプレート3のノズル孔30にも充填されている。
<Second droplet ejection method>
FIG. 4 is a schematic diagram of the droplet ejecting apparatus according to the present invention, and is a cross-sectional view taken along the line XX in FIG. Voltage controllable drive electrodes 91 that are insulated from each other are formed on both sides of the partition wall 90, and a paraxylene film 92 is on the drive electrode 91. The drive liquid chamber 9 sandwiched between the two partition walls 90 is filled with a liquid 93. The liquid 93 is also filled in the electrode holes 20 of the common electrode 2 and the nozzle holes 30 of the nozzle plate 3.

1つの液滴をノズル孔30から吐出する工程を説明すると、まず、共通電極2と液滴到達部材6との間に共通電極2が正極となるように400Vの電位差を印加しておく。すると、図4(A)のように、電極孔20及びノズル孔30の近傍の液体は正極に帯電する。次に、前述のように、隔壁90の両側面に電界を印加して、隔壁90を図4(A)中の矢印方向に剪断変形させ、液滴を吐出させるべき駆動液室9の体積を広げて負圧にすると、減衰液室8側とノズルプレート3側との両側から圧力波が進行してくる。そして、あるタイミングで重ね合わせられて、駆動液室9は瞬間的に正圧になる。   The step of discharging one droplet from the nozzle hole 30 will be described. First, a potential difference of 400 V is applied between the common electrode 2 and the droplet reaching member 6 so that the common electrode 2 becomes a positive electrode. Then, as shown in FIG. 4A, the liquid near the electrode hole 20 and the nozzle hole 30 is charged to the positive electrode. Next, as described above, an electric field is applied to both sides of the partition wall 90 to shear the partition wall 90 in the direction of the arrow in FIG. When the negative pressure is expanded, pressure waves proceed from both sides of the damping liquid chamber 8 side and the nozzle plate 3 side. Then, the driving liquid chamber 9 instantaneously becomes positive pressure by being overlapped at a certain timing.

駆動液室9が正圧になるタイミングで、隔壁90に電界を印加する方向を反転させて、液室9の体積が減少するように、隔壁90を図4(B)中の矢印方向に剪断変形させる。すると、正圧となっていた駆動液室9は、その体積を狭めるように両隔壁90から押されてさらに正圧となり、ノズル孔30から帯電した液体93がノズル孔30から略半球状に突起する。   At the timing when the driving liquid chamber 9 becomes positive pressure, the direction of applying an electric field to the partition wall 90 is reversed, and the partition wall 90 is sheared in the direction of the arrow in FIG. 4B so that the volume of the liquid chamber 9 decreases. Deform. Then, the driving liquid chamber 9 which has been in a positive pressure is pushed from both the partition walls 90 so as to reduce the volume thereof, and further becomes a positive pressure, and the liquid 93 charged from the nozzle hole 30 protrudes from the nozzle hole 30 into a substantially hemispherical shape. To do.

ここで、図4(B)のように、ノズルプレート3の表面から突起した部分は、共通電極2と液滴到達部材6の間に生じている電界からみると、平坦なノズルプレート3表面からごく一部分だけに帯電した液体93が突出した状態となり、そこに電界集中95が生じる。この電界集中作用により、液体93のノズル面から突出した部分だけ、強い電界を受け静電引力により分離されて、液滴化する。   Here, as shown in FIG. 4B, the portion protruding from the surface of the nozzle plate 3 is seen from the flat surface of the nozzle plate 3 when viewed from the electric field generated between the common electrode 2 and the droplet reaching member 6. Only a part of the charged liquid 93 protrudes, and an electric field concentration 95 is generated there. Due to this electric field concentration action, only the portion of the liquid 93 protruding from the nozzle surface receives a strong electric field and is separated by electrostatic attraction to form droplets.

次に、図4(C)のように、正極に帯電した液滴110は、共通電極2と液滴到達部材6の間に生じている電界から、常に静電引力を受け、加速されながら飛翔して液滴到達部材6に到達する。本実施例では、共通電極2と液滴到達部材6との間の電位差を400V、両者の間の距離を0.5mmとし、駆動電極91に電圧5V、駆動周波数150kHzの駆動電圧を印加したところ、液滴110を安定して連続吐出できることを確認した。さらに、その吐出速度は8mm/s以上となった。なお、液体93の体積抵抗率は4×104 Ω・cmであった。 Next, as shown in FIG. 4C, the droplet 110 charged to the positive electrode always receives electrostatic attraction from the electric field generated between the common electrode 2 and the droplet arrival member 6 and flies while being accelerated. As a result, the droplet reaching member 6 is reached. In this embodiment, the potential difference between the common electrode 2 and the droplet reaching member 6 is 400 V, the distance between the two is 0.5 mm, and a driving voltage of 5 V and a driving frequency of 150 kHz is applied to the driving electrode 91. It was confirmed that the droplet 110 can be discharged stably and continuously. Furthermore, the discharge speed became 8 mm / s or more. The volume resistivity of the liquid 93 was 4 × 10 4 Ω · cm.

また、共通電極2と液滴到達部材6との間の電位差が大きい(即ち、電界強度が強い)ほど、複数のノズル孔30毎の液滴110の吐出方向のばらつきが少なく、吐出速度が速くなり、結果として複数のノズル孔30から吐出される液滴110の着弾位置精度が良いことが判った。一方、共通電極2と液滴到達部材6との間の電位差が0では吐出は行われなかった。このことは、駆動液室9の圧力波のみでは液滴110は吐出されないことを意味している。さらに、耐風試験(液滴飛翔方向に対して直角方向に一定の速度の風を送りこみ、着弾位置のずれを調べる。)を行ったところ、共通電極2と液滴到達部材6との間の電位差が大きいほど、無風時からの着弾位置のずれが少なく、風などの外乱に強いことが判った。   Further, the larger the potential difference between the common electrode 2 and the droplet arrival member 6 (that is, the stronger the electric field strength), the smaller the variation in the ejection direction of the droplets 110 for each of the plurality of nozzle holes 30 and the faster the ejection speed. As a result, it was found that the landing position accuracy of the droplets 110 discharged from the plurality of nozzle holes 30 is good. On the other hand, when the potential difference between the common electrode 2 and the droplet arrival member 6 is 0, ejection was not performed. This means that the droplet 110 is not ejected only by the pressure wave in the driving liquid chamber 9. Further, when a wind resistance test (a wind at a constant speed is sent in a direction perpendicular to the droplet flying direction to check the deviation of the landing position), the gap between the common electrode 2 and the droplet arrival member 6 is measured. It was found that the larger the potential difference, the smaller the deviation of the landing position from when there was no wind, and it was more resistant to wind and other disturbances.

これは、液滴110の飛翔領域中の電界強度が強いほど、帯電している液滴が飛翔中に受ける静電引力が強いために風などの外乱に強いこと、及び、全てのノズル孔30において電界方向は略一致しており、電界集中作用を用いて液滴化するため、その初速方向は電界のみに依存し、ノズル孔30自体の形状差による影響を受けないためであると考えられる。   This is because the stronger the electric field strength in the flying region of the droplet 110 is, the stronger the electrostatic attractive force that the charged droplet receives during the flight is, so that it is more resistant to disturbances such as wind, and all the nozzle holes 30. In this case, the electric field directions are substantially the same, and droplets are formed using the electric field concentration action, so that the initial velocity direction depends only on the electric field and is not affected by the shape difference of the nozzle hole 30 itself. .

なお、第1の吐出制御方法と比べて、第2の吐出制御の方が液滴の着弾精度は良い。但し、共通電極2と液滴到達部材6の間の電位差が200V以下では柄規定110は吐出されなかった。この吐出限界は、(共通電極2と液滴到達部材6との間の電位差)/(共通電極2と液滴到達部材6との間の距離)=(電界強度)と、液滴110の帯電特性に依存して異なる値をとるが、電界集中により液体93から液滴110を切り離して吐出するためには、106(V/m)程度の電界強度が必要であった。   Note that the second discharge control has better droplet landing accuracy than the first discharge control method. However, when the potential difference between the common electrode 2 and the droplet reaching member 6 was 200 V or less, the pattern defining 110 was not discharged. The discharge limit is (potential difference between the common electrode 2 and the droplet arrival member 6) / (distance between the common electrode 2 and the droplet arrival member 6) = (electric field strength), and charging of the droplet 110. Although different values are obtained depending on the characteristics, an electric field strength of about 106 (V / m) is required to separate and discharge the droplet 110 from the liquid 93 due to electric field concentration.

また、駆動電圧が吐出制御1に比べて低くて良いため(吐出制御1では15Vに対して、吐出制御2では5V)、液室内の液体の残留振動自体が小さく、その振動減衰も早いために高速駆動が可能である。本実施の形態では、最高200kHz駆動まで、液体の突起の繰り返しが安定して生じ、電界集中により吐出できることを確認した。   In addition, since the drive voltage may be lower than that of the discharge control 1 (15 V in the discharge control 1 and 5 V in the discharge control 2), the residual vibration of the liquid in the liquid chamber itself is small and the vibration attenuation is fast. High-speed drive is possible. In the present embodiment, it was confirmed that the liquid protrusions were stably generated up to a maximum of 200 kHz driving, and ejection was possible due to electric field concentration.

この液滴噴射方法では、所望のノズル孔30から圧電体の圧力波を利用して液体を突出させるとともに、共通電極2を介して突出した液体を帯電させる。そして、突出した液体における電界集中作用により、液滴を吐出させる。このため、圧電体が発生する圧力波は液体を突出させることにのみ利用され、突出した液滴を切り離す力は突出部分に作用する静電引力によって得られるため、電界方向が液滴の初期の吐出方向を決定する。これによって、マルチノズルにおいて、各ノズル孔30の吐出方向のばらつきが少なく、ノズル孔30の形状ばらつきに起因する位置ずれの影響が少ない、着弾位置精度の良い液滴吐出が可能となる。   In this droplet ejection method, the liquid is projected from the desired nozzle hole 30 using the pressure wave of the piezoelectric body, and the liquid projected through the common electrode 2 is charged. Then, the droplet is ejected by the electric field concentration action in the protruding liquid. For this reason, the pressure wave generated by the piezoelectric body is used only for causing the liquid to protrude, and the force for separating the protruding droplet is obtained by the electrostatic attraction acting on the protruding portion. Determine the discharge direction. As a result, in the multi-nozzle, it is possible to discharge droplets with high landing position accuracy with little variation in the ejection direction of each nozzle hole 30 and less influence of displacement caused by variation in the shape of the nozzle hole 30.

さらに、駆動液室9内の圧力波は、ノズル孔30から液体を突出させるだけで十分であるため、隔壁90の振動幅は非常に少なくて良く、残留振動の振幅も小さく高速駆動が可能となる。   Further, since the pressure wave in the driving liquid chamber 9 is sufficient to cause the liquid to protrude from the nozzle hole 30, the vibration width of the partition wall 90 may be very small, the amplitude of the residual vibration is small, and high speed driving is possible. Become.

また、選択的に圧電体の駆動を行う駆動電圧は小さくて良いため、圧電体の経時劣化が少なく、駆動回路のコストも下げることができる。特に、この液滴噴射方法は、導電率の高い液体を吐出する場合に適する。   In addition, since the drive voltage for selectively driving the piezoelectric body may be small, the deterioration of the piezoelectric body over time is small, and the cost of the drive circuit can be reduced. In particular, this droplet jetting method is suitable for discharging a liquid with high conductivity.

<第3の液滴噴射方法>
この液滴噴射方法は、ノズル孔30にある液体を突出させるプロセスは前述の第1の液滴噴射方法又は第2の液滴噴射方法と同一であるが、複数の液滴110を連続して吐出する場合に、電源回路40から印可する共通電極2と液滴到達部材6との間の電位差を数滴毎に反転させることにより、液滴到達部材6の帯電電位をキャンセルできることに特徴がある。
<Third droplet ejection method>
In this droplet ejection method, the process of projecting the liquid in the nozzle hole 30 is the same as the first droplet ejection method or the second droplet ejection method described above, but a plurality of droplets 110 are continuously formed. When discharging, the charged potential of the droplet reaching member 6 can be canceled by inverting the potential difference between the common electrode 2 applied from the power supply circuit 40 and the droplet reaching member 6 every several drops. .

図5(A)は、共通電極2が液滴到達部材6に比べて電位が高い状態を示す。この状態では、液滴110は正極の電荷を有して液滴到達部材6又は液滴到達部材6上のメディアに到達する。一方、図5(B)は、共通電極2が液滴到達部材6に比べて電位が低い状態を示す。この状態では、液滴110は負極の電荷を有して液滴到達部材6又は液滴到達部材6上のメディアに到達する。   FIG. 5A shows a state in which the common electrode 2 has a higher potential than the droplet arrival member 6. In this state, the droplet 110 has a positive charge and reaches the droplet arrival member 6 or the medium on the droplet arrival member 6. On the other hand, FIG. 5B shows a state in which the potential of the common electrode 2 is lower than that of the droplet arrival member 6. In this state, the droplet 110 has a negative charge and reaches the droplet arrival member 6 or the medium on the droplet arrival member 6.

図6は、圧電素子部を駆動させる駆動電圧の周期と液滴到達部材に対する共通電極の電圧周期を模式的に示すものである。図6(A)に示すように、隔壁90間には、+5V〜−5Vの範囲の矩形波形の駆動電圧を駆動回路50から駆動周波数100kHzで印加する。ここでは、便宜上、液滴110を吐出すべき駆動液室9内の駆動電極91の電位を0として、隣接する駆動液室9にある駆動電極91にそれぞれ与えられる電圧を示しており、+5V→−5Vの1周期で1つの液滴を吐出できる。   FIG. 6 schematically shows a driving voltage cycle for driving the piezoelectric element portion and a voltage cycle of the common electrode with respect to the droplet reaching member. As shown in FIG. 6A, a rectangular waveform drive voltage in the range of +5 V to −5 V is applied between the partition walls 90 from the drive circuit 50 at a drive frequency of 100 kHz. Here, for the sake of convenience, the potential of the drive electrode 91 in the drive liquid chamber 9 in which the droplet 110 is to be ejected is set to 0, and the voltages given to the drive electrodes 91 in the adjacent drive liquid chamber 9 are shown. One droplet can be discharged in one cycle of −5V.

また、図6(B)に示すように、共通電極2には、電源回路40から+400V〜−400Vの範囲の矩形波形の電源電圧を駆動周波数25kHzで印加し、駆動電圧の4周期が共通電極2の電圧周期の1周期に相当するように同期させている。   As shown in FIG. 6B, a rectangular waveform power supply voltage in the range of +400 V to −400 V is applied from the power supply circuit 40 to the common electrode 2 at a driving frequency of 25 kHz, and four cycles of the driving voltage are common electrodes. They are synchronized so as to correspond to one of the two voltage cycles.

この駆動では、最初の2液滴は正極に帯電して吐出され、その後の2液滴は負極に帯電して吐出される。このように、2液滴毎にその帯電方向が異なる。   In this driving, the first two droplets are charged to the positive electrode and discharged, and the subsequent two droplets are charged to the negative electrode and discharged. Thus, the charging direction is different for every two droplets.

このような制御を行うと、数滴毎に液滴110の帯電方向が変わるため、近接して液滴110を到達部材6上に到達させると、それぞれの液滴110の帯電電位をキャンセルすることができる。同極性に帯電した液滴110のみを連続して吐出する場合、先に到達した液滴110の帯電が開放される前に次の液滴110が到達すると、同じ帯電極性を有しているためにクーロン力により反発し、着弾位置がずれる虞があるが、数滴毎に帯電極性を変えて互いに電荷をキャンセルさせることで、高密度で複数の液滴110を吐出しても、その着弾精度が悪化することがない。   When such a control is performed, the charging direction of the droplet 110 changes every few droplets. Therefore, when the droplet 110 reaches the reaching member 6 in proximity, the charging potential of each droplet 110 is canceled. Can do. In the case where only the droplets 110 charged to the same polarity are continuously discharged, if the next droplet 110 arrives before the charge of the previously reached droplet 110 is released, it has the same charging polarity. However, the landing position may be deviated by the Coulomb force. However, even if a plurality of droplets 110 are discharged at a high density by changing the charge polarity every few drops and canceling each other, the landing accuracy is high. Will not get worse.

<第4の液滴噴射方法>
この液滴噴射方法は、ノズル孔30にある液体を突出させるプロセスは前述の第1の液滴噴射方法又は第2の液滴噴射方法と同一であるが、ノズル孔30と液滴到達部材6の間を液滴110が飛翔中に、電源回路40から共通電極2と液滴到達部材6との間に印加されている電位差を反転させ、液滴110が液滴到達部材6に到達する直前に液滴の飛翔速度を減速させる点に特徴がある。
<Fourth droplet ejection method>
In this droplet ejecting method, the process of projecting the liquid in the nozzle hole 30 is the same as the first droplet ejecting method or the second droplet ejecting method described above, but the nozzle hole 30 and the droplet reaching member 6 are the same. The potential difference applied between the common electrode 2 and the droplet arrival member 6 from the power supply circuit 40 is reversed while the droplet 110 is flying between the two, and immediately before the droplet 110 reaches the droplet arrival member 6. Is characterized in that the droplet flying speed is reduced.

図7(A)は液滴110の吐出直後の状態を表す模式図であり、図7(B)は液滴110が液滴到達部材6に到達する直前の状態を表す模式図である。第1の液滴噴射方法又は第2の液滴噴射方法によりノズル孔30から吐出した液滴110は、吐出直後には図7(A)のように、電界による静電引力を受けて、液滴到達部材6に向けて加速される。次に、液滴110が液滴到達部材6に到達する直前に共通電極2と液滴到達部材6との間の電位を反転させ、液滴到達部材6を共通電極2に比べ正極の電位とすると、図7(B)のように液滴110は静電反発力により進行方向と逆の加速度を受け、液滴110の吐出速度は低下する。   FIG. 7A is a schematic diagram illustrating a state immediately after the droplet 110 is discharged, and FIG. 7B is a schematic diagram illustrating a state immediately before the droplet 110 reaches the droplet reaching member 6. The droplet 110 ejected from the nozzle hole 30 by the first droplet ejecting method or the second droplet ejecting method receives an electrostatic attractive force due to an electric field as shown in FIG. It is accelerated toward the droplet reaching member 6. Next, the potential between the common electrode 2 and the droplet arrival member 6 is reversed immediately before the droplet 110 reaches the droplet arrival member 6, and the potential of the droplet arrival member 6 is set to the positive electrode potential compared to the common electrode 2. Then, as shown in FIG. 7B, the droplet 110 receives acceleration opposite to the traveling direction due to electrostatic repulsion, and the ejection speed of the droplet 110 decreases.

このような制御を行うことにより、ノズル孔30から液滴110を分離させる際には、平行電界から受ける静電引力により各ノズル孔30毎の吐出方向のばらつきが低減する。また、液滴110の飛翔中は外乱による吐出方向のばらつきを抑えるという効果を有したまま、液滴到達部材6に到達するときの衝突速度が大き過ぎて液滴110が周囲に飛び散るなどの不具合を解消することができる。   By performing such control, when the droplet 110 is separated from the nozzle hole 30, variation in the ejection direction for each nozzle hole 30 is reduced by the electrostatic attractive force received from the parallel electric field. In addition, while the droplet 110 is flying, it has the effect of suppressing variation in the ejection direction due to disturbance, and the collision speed when reaching the droplet reaching member 6 is too high, causing the droplet 110 to scatter around. Can be eliminated.

本発明に係る液滴噴射装置の縦断面図である。It is a longitudinal cross-sectional view of the droplet ejecting apparatus according to the present invention. 上記液滴噴射装置の正面図及び図1におけるY−Y部端面図である。It is the front view of the said droplet ejecting apparatus, and the YY part end elevation in FIG. 上記液滴噴射装置における第1の液滴噴射方法を示す模式図である。It is a schematic diagram which shows the 1st droplet ejection method in the said droplet ejecting apparatus. 上記液滴噴射装置における第2の液滴噴射方法を示す模式図である。It is a schematic diagram which shows the 2nd droplet ejection method in the said droplet ejecting apparatus. 上記液滴噴射装置における第3の液滴噴射方法を示す模式図である。It is a schematic diagram which shows the 3rd droplet ejection method in the said droplet ejecting apparatus. 上記第3の液滴噴射方法における駆動電圧波形及び共通電圧波形を示す図である。It is a figure which shows the drive voltage waveform and common voltage waveform in the said 3rd droplet ejection method. 上記液滴噴射装置における第4の液滴噴射方法を示す模式図である。It is a schematic diagram which shows the 4th droplet ejection method in the said droplet ejecting apparatus.

符号の説明Explanation of symbols

1 圧電素子部
1A 液室
2 共通電極
3 ノズルプレート
4 フレキシブル基板
5 マニフォールド
6 液滴到達部材
7 共通液室
8 減衰液室
8A 連通部
9 駆動液室
10 アクト基板
11 カバー基板
20 電極孔
30 ノズル孔
90 隔壁
91 駆動電極
110 液滴
DESCRIPTION OF SYMBOLS 1 Piezoelectric element part 1A Liquid chamber 2 Common electrode 3 Nozzle plate 4 Flexible substrate 5 Manifold 6 Droplet arrival member 7 Common liquid chamber 8 Damping liquid chamber 8A Communication part 9 Drive liquid chamber 10 Act substrate 11 Cover substrate 20 Electrode hole 30 Nozzle hole 90 Partition 91 Drive electrode 110 Droplet

Claims (6)

液滴到達部材に対向する複数のノズル孔と、高さ方向に分極した圧電体からなり前記複数のノズル孔の各々に前面において対向する複数の間隙を各々の間に設けて配置された複数の隔壁と、前記複数の間隙の各々の前面側で前記複数の隔壁の各々によって互いに分離された複数の駆動液室と、前記複数の隔壁における互いの対向面に形成された駆動電極と、前記駆動電極に駆動電圧を印加する駆動回路と、前記複数のノズル孔を挟んで前記液滴到達部材に対向する共通電極と、前記液滴到達部材と前記共通電極との間に電界を形成する電源回路と、を備え、
前記電源回路によって前記液滴到達部材と前記共通電極との間に電界を形成した状態で、前記駆動回路からの前記駆動電極に対する駆動電圧の印加によって前記隔壁を剪断変形させて前記駆動液室内に生じた圧力変動により前記駆動液室内の液体を前記ノズル孔から突出させた後に液滴として前記液滴到達部材に吐出させることを特徴とする液滴噴射装置。
A plurality of nozzle holes opposed to the droplet arrival member and a plurality of gaps opposed to each other on the front surface of each of the plurality of nozzle holes are formed by a piezoelectric body polarized in the height direction. A plurality of drive liquid chambers separated from each other by each of the plurality of partition walls on the front side of each of the plurality of gaps, drive electrodes formed on mutually facing surfaces of the plurality of partition walls, and the drive A driving circuit for applying a driving voltage to the electrodes; a common electrode facing the droplet reaching member across the plurality of nozzle holes; and a power supply circuit for forming an electric field between the droplet reaching member and the common electrode And comprising
In a state where an electric field is formed between the droplet reaching member and the common electrode by the power supply circuit, the partition wall is shear-deformed by application of a driving voltage to the driving electrode from the driving circuit to enter the driving liquid chamber. A liquid droplet ejecting apparatus, wherein the liquid in the driving liquid chamber is made to protrude from the nozzle hole due to the generated pressure fluctuation and then discharged as a liquid droplet to the liquid droplet arrival member.
前記複数の間隙の各々の背面側で連通部を介して互いに連通するとともに、前記複数の駆動液室の各々に連続する複数の減衰液室を設けたことを特徴とする請求項1に記載の液滴噴射装置。   2. The plurality of damping liquid chambers are provided on the back side of each of the plurality of gaps through a communication portion, and a plurality of attenuation liquid chambers are provided in each of the plurality of driving liquid chambers. Droplet ejector. 請求項1又は2に記載の液滴噴射装置における液滴噴射方法であって、前記電源回路から前記共通電極に対して前記液滴到達部材との間に電界を形成するための電圧を印加し、この間に、前記駆動電極に駆動電圧を印加して前記隔壁を剪断変形させ、該剪断変形によって前記間隙に形成された液室内に生じた圧力変動により、前記液室内において前記共通電極によって帯電された液体を液滴として前記ノズル孔から吐出させた後、該液滴の吐出速度を前記共通電極と前記液滴到達部材との間に形成された電界によって制御することを特徴とする液滴噴射方法。   3. The droplet ejecting method in the droplet ejecting apparatus according to claim 1, wherein a voltage for forming an electric field between the power supply circuit and the droplet reaching member is applied to the common electrode. During this time, a drive voltage is applied to the drive electrode to shear the partition, and the pressure variation generated in the liquid chamber formed in the gap due to the shear deformation causes charging by the common electrode in the liquid chamber. The liquid droplet is ejected from the nozzle hole as a liquid droplet, and then the liquid droplet ejection speed is controlled by an electric field formed between the common electrode and the liquid droplet arrival member. Method. 請求項1又は2に記載の液滴噴射装置における液滴噴射方法であって、前記電源回路から前記共通電極に対して前記液滴到達部材との間に電界を形成するための電圧を印加し、この間に、前記駆動電極に駆動電圧を印加して前記隔壁を剪断変形させ、該剪断変形によって前記間隙に形成された液室内に生じた圧力変動により、前記液室内において前記共通電極によって帯電された液体を前記ノズル孔から突出させ、さらに、前記共通電極と前記液滴到達部材との間に形成された電界から作用する電界集中によって前記ノズル孔から液滴として吐出させた後、該液滴の吐出速度を前記共通電極と前記液滴到達部材との間に形成された電界によって制御することを特徴とする液滴噴射方法。   3. The droplet ejecting method in the droplet ejecting apparatus according to claim 1, wherein a voltage for forming an electric field between the power supply circuit and the droplet reaching member is applied to the common electrode. During this time, a drive voltage is applied to the drive electrode to shear the partition, and the pressure variation generated in the liquid chamber formed in the gap due to the shear deformation causes charging by the common electrode in the liquid chamber. The liquid is allowed to protrude from the nozzle hole, and is further discharged as a liquid droplet from the nozzle hole by electric field concentration acting from an electric field formed between the common electrode and the liquid droplet reaching member. The droplet ejection method is characterized in that the discharge speed of the droplet is controlled by an electric field formed between the common electrode and the droplet reaching member. 前記ノズル孔から前記液滴が吐出した後に液滴が前記液滴到達部材に到達するまでの間に、前記共通電極と前記液滴到達部材との間の電位を前記液滴の吐出周期の整数倍の周期で反転させることを特徴とする請求項3又は4に記載の液滴噴射方法。   The potential between the common electrode and the droplet reaching member is an integer of the discharge period of the droplet before the droplet reaches the droplet reaching member after the droplet is discharged from the nozzle hole. 5. The liquid droplet ejecting method according to claim 3, wherein the liquid droplets are reversed at a double cycle. 前記ノズル孔から前記液滴が吐出した後に液滴が前記液滴到達部材に到達するまでの間に、前記共通電極と前記液滴到達部材の間の電位を反転させることを特徴とする請求項3又は4に記載の液滴噴射方法。   The electric potential between the common electrode and the droplet reaching member is reversed before the droplet reaches the droplet reaching member after the droplet is discharged from the nozzle hole. 5. The droplet jetting method according to 3 or 4.
JP2004302054A 2004-10-15 2004-10-15 Liquid-droplets jetting apparatus and the method Pending JP2006110908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004302054A JP2006110908A (en) 2004-10-15 2004-10-15 Liquid-droplets jetting apparatus and the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302054A JP2006110908A (en) 2004-10-15 2004-10-15 Liquid-droplets jetting apparatus and the method

Publications (1)

Publication Number Publication Date
JP2006110908A true JP2006110908A (en) 2006-04-27

Family

ID=36379817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302054A Pending JP2006110908A (en) 2004-10-15 2004-10-15 Liquid-droplets jetting apparatus and the method

Country Status (1)

Country Link
JP (1) JP2006110908A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090608A (en) * 2007-10-11 2009-04-30 Konica Minolta Holdings Inc Electrostatic suction type ink jet head and ink jet recorder
JP2009107213A (en) * 2007-10-30 2009-05-21 Sharp Corp Manufacturing process
JP2009172921A (en) * 2008-01-25 2009-08-06 Seiko Epson Corp Setting method of discharge pulse

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090608A (en) * 2007-10-11 2009-04-30 Konica Minolta Holdings Inc Electrostatic suction type ink jet head and ink jet recorder
JP2009107213A (en) * 2007-10-30 2009-05-21 Sharp Corp Manufacturing process
JP2009172921A (en) * 2008-01-25 2009-08-06 Seiko Epson Corp Setting method of discharge pulse

Similar Documents

Publication Publication Date Title
JP6301470B2 (en) Method, apparatus and system for providing a multi-pulse waveform with meniscus control for droplet ejection
KR960015881B1 (en) Method of measuring a high density ink-jet print head array
JP2715001B2 (en) High density inkjet printer head with two U-shaped channel drives
JPS60259458A (en) Ink jet recorder
US8622498B2 (en) Liquid ejecting apparatus and liquid ejecting method
US20140217198A1 (en) Liquid discharge apparatus and manufacturing method thereof
JP5459695B2 (en) Inkjet recording apparatus and inkjet recording method
JP2016055555A (en) Liquid discharge device
JP2006110908A (en) Liquid-droplets jetting apparatus and the method
JP4930506B2 (en) Liquid discharge head and liquid discharge method
JP4075262B2 (en) Inkjet head
JPH10181016A (en) Ink-jet recording apparatus and its manufacture
JPS6068963A (en) Inkjet recorder
JP3546880B2 (en) Inkjet printer
JP2009262363A (en) Ink-jet head, its oscillating method, and image formation device
JP4412945B2 (en) Droplet discharge device
JP2858958B2 (en) Driving method of inkjet head
JPH11138794A (en) Liquid jet recorder
JPH1034910A (en) Ink jet recorder
JP6157129B2 (en) LIQUID DISCHARGE DEVICE, LIQUID DISCHARGE DEVICE MANUFACTURING METHOD, METAL WIRING MANUFACTURING METHOD, AND COLOR FILTER MANUFACTURING METHOD
JP2000025238A (en) Ink-jet recording apparatus, and ink-jet recording method
JP6015043B2 (en) Nozzle plate manufacturing method
JP2008284813A (en) Electrostatic suction type inkjet head and inkjet recording device
JP2011051199A (en) Ink-jet recorder
JP2007230018A (en) Liquid delivering apparatus and liquid delivering method