WO2007142129A1 - Hybrid driver - Google Patents

Hybrid driver Download PDF

Info

Publication number
WO2007142129A1
WO2007142129A1 PCT/JP2007/061157 JP2007061157W WO2007142129A1 WO 2007142129 A1 WO2007142129 A1 WO 2007142129A1 JP 2007061157 W JP2007061157 W JP 2007061157W WO 2007142129 A1 WO2007142129 A1 WO 2007142129A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
gear
power
motor
generator
Prior art date
Application number
PCT/JP2007/061157
Other languages
French (fr)
Japanese (ja)
Inventor
Hidehiro Oba
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2007142129A1 publication Critical patent/WO2007142129A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/113Stepped gearings with two input flow paths, e.g. double clutch transmission selection of one of the torque flow paths by the corresponding input clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • F16H2037/0873Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft with switching, e.g. to change ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0043Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising four forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2005Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with one sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0806Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts
    • F16H37/0813Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts with only one input shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a hybrid drive device having a configuration in which an engine and a motor generator are coupled to a rotating element of a power split mechanism.
  • hybrid vehicles equipped with an engine and a motor generator as driving force sources are known.
  • An example of a hybrid vehicle having an engine and a motor generator as a driving force source is described in Japanese Patent Application Laid-Open No. 2005-125876.
  • the hybrid vehicle described in JP 2005-125876 A has an engine, a first motor 'generator, and a second motor' generator.
  • a power distribution mechanism to which these engines, the first motor generator and the second motor generator are connected is provided.
  • This power distribution mechanism is composed of a planetary gear mechanism.
  • a sun gear, which is a reaction force element, is connected to the first motor generator
  • a carrier, which is an input element, is connected to the engine
  • a ring gear which is an output element, is connected to the first gear. It is connected to the intermediate shaft.
  • a clutch is provided on the path from the first intermediate shaft to the axle shaft.
  • the second motor generator is connected to the first intermediate shaft gear via a reduction gear.
  • This reduction gear is constituted by a planetary gear mechanism, a second motor generator is connected to the sun gear, a ring gear is connected to the first intermediate shaft, and a carrier is fixed. Further, a second intermediate shaft is connected to the first motor 'generator, and a clutch is provided on a path from the second intermediate shaft to the axle shaft.
  • the sun gear (reaction element) or the ring gear (output element) of the power distribution mechanism can be selectively connected to the axle shaft.
  • Japanese Patent Application Laid-Open No. 2005-125876 describes that a state with a large power transmission loss such as a power circulation state is avoided. [0004]
  • the present invention has been made in the background of the above circumstances, and an object of the present invention is to provide a hybrid drive device capable of improving power transmission efficiency over a wide range of gear ratios as a whole drive device. Les.
  • the present invention comprises a power split mechanism having a first rotating element, a second rotating element, and a third rotating element that are connected so as to be differentially rotatable, An engine is coupled to the first rotating element, a first motor 'generator is coupled to the second rotating element, a second motor' generator is coupled to the third rotating element, and When the power of the engine is input to the first rotating element and output from the second rotating element or the third rotating element and transmitted to a wheel, the first motor generator or the second One of the motors / generators is configured to handle the reaction force of the engine torque, and the first motor / generator and the second rotating element are connected to the wheels so as to be capable of transmitting power.
  • Power transmission In the hybrid drive device, provided with a path, and provided with a second power transmission path for connecting the second motor generator and the third rotating element to the wheel so that power can be transmitted.
  • the first transmission provided in the first power transmission path, the second transmission provided in the second power transmission path, and the first transmission can transmit torque to the wheels.
  • a first clutch mechanism that selectively switches between a state and a state that interrupts transmission of the torque, a state that allows the second transmission to transmit torque to the wheels, and a state that blocks transmission of the torque
  • a second clutch mechanism for selectively switching to.
  • the power split mechanism can be constituted by a differential rotation mechanism in which the first to third rotation elements rotate differentially with respect to each other.
  • the power split mechanism rotates a sun gear, a ring gear arranged concentrically with the sun gear, and a pinion gear arranged between the sun gear and the ring gear. It can be constituted by a planetary gear mechanism having a carrier that can be freely and revolved.
  • the planetary gear mechanism may be a double pinion type planetary gear mechanism in which a ring gear to which the engine is connected is located in the center and a sun gear and a carrier are located on both sides of the planetary gear mechanism. .
  • the first transmission and the second transmission each include a transmission gear pair composed of a drive gear and a driven gear that are in mesh with each other, and the transmission gear ratios of these transmission gear pairs are mutually different. Different configurations can be used.
  • the present invention provides a first input shaft holding a drive gear in the first transmission, a second input shaft holding a drive gear in the second transmission, A force motor shaft holding a driven gear in the first transmission and a driven gear in the second transmission, and the first clutch mechanism includes a gear pair in the first transmission.
  • a structure that includes a mechanism for selectively transmitting torque to and from can be used.
  • the first motor / generator can receive a reaction force against the engine torque, and the first clutch mechanism can be engaged to transmit the torque to the first transmission.
  • First mode setting means for setting the first mode by setting the second clutch mechanism in a released state and not transmitting torque to the second transmission, and the second motor generator To apply a reaction force against the engine torque, and to put the second clutch mechanism in an engaged state so that the second speed changer can transmit torque and to put the first clutch mechanism in a released state.
  • second mode setting means for setting the second mode by setting the second transmission to a state where torque transmission is not performed.
  • the vehicle speed for setting the first mode in which the gear ratio of the gear pair in the first transmission is relatively larger than the gear ratio of the gear pair in the second transmission and a control means for setting the second mode when the vehicle speed is relatively high. Can do.
  • the engine power is input to the input element of the power split mechanism, and the power output from the output element of the power split mechanism is transmitted to the wheels.
  • the reaction force of the engine torque is selectively received by the first motor / generator or the second motor / generator. And the motor responsible for the reaction force
  • both the first transmission and the second transmission have a mechanism for switching between power transmission and power interruption, an increase in the number of parts can be suppressed and the structure can be simplified.
  • FIG. 1 is a conceptual diagram showing an example of a power train and a control system of a vehicle having a hybrid drive device of the present invention.
  • FIG. 2 is a chart showing the operation of the clutch mechanism in the shift control mode of the transmission shown in FIG.
  • FIG. 3 is a collinear diagram showing an operating state of the power split mechanism in a shift control mode 1;
  • FIG. 4 is a collinear diagram showing the operating state of the power split mechanism in the process of switching from shift control mode 1 to shift control mode 2.
  • FIG. 5 is an alignment chart showing an operating state of the power split mechanism in the shift control mode 2;
  • FIG. 6 is a collinear diagram showing the operating state of the power split mechanism in the process of switching from shift control mode 2 to shift control mode 3.
  • FIG. 7 is a diagram showing the relationship between the theoretical power transmission efficiency of the hybrid drive device shown in FIG. 1 and the gear ratio of the entire drive device.
  • an engine, a first motor generator, and a second motor generator are provided as driving force sources for the vehicle.
  • This engine is a power unit that converts thermal energy into kinetic energy.
  • the engine can use an internal combustion engine that is a power unit that burns fuel to generate heat energy and converts the heat energy into kinetic energy.
  • a gasoline engine, a diesel engine, an LPG engine, a methanol engine, or the like can be used as the internal combustion engine.
  • the motor generator combines a power function for converting electric energy into kinetic energy and a regeneration function for converting kinetic energy into electric power. That is, the principle of power generation differs between the engine and the motor generator.
  • a double pinion type planetary gear mechanism, a single repinion type planetary gear mechanism, a Ravigneaux type planetary gear mechanism, or the like can be used as the power split mechanism.
  • the engine, the first motor'generator and the second motor'generator are coupled to the first rotating element, the second rotating element, and the third rotating element of the power split mechanism.
  • the first rotating element functions as an input element
  • either one of the second rotating element and the third rotating element is a reaction force element
  • the other is an output element. That is, when the power of the engine is input to the input element and output from the output element, the engine is caused by either the first motor generator or the second motor generator. responsible for the reaction.
  • the power generated by the motor generator responsible for the reaction force can be supplied to other motor generators for power line control.
  • a power transmission path including the first transmission and a power transmission path including the second transmission are formed in parallel between the engine and the wheels.
  • both the first transmission and the second transmission are mechanisms that can change the speed ratio, which is the ratio between the input speed and the output speed.
  • the first transmission and the second transmission may be a stepped transmission capable of changing the gear ratio stepwise (discontinuously) or the gear ratio steplessly. Any of continuously variable transmissions that can be changed (continuously) may be used.
  • the stepped transmission for example, a selection gear type transmission, a planetary gear type transmission, or the like can be used.
  • a clutch mechanism can be used as a mechanism for switching the gear ratio.
  • the first transmission and the second transmission have a configuration in which the transmission torque is controlled by controlling the clutch mechanism.
  • the clutch mechanism for example, a meshing clutch, an electromagnetic clutch, a friction clutch, or the like can be used. Further, as the friction clutch, a wet clutch, a dry clutch, or the like can be used.
  • the continuously variable transmission a toroidal continuously variable transmission, a belt continuously variable transmission, or the like can be used.
  • the transmission ratio selected by the first transmission is different from the transmission ratio selected by the second transmission.
  • FIG. 1 shows an example of the configuration of a part train of the vehicle 1.
  • the vehicle 1 shown in FIG. 1 is a hybrid vehicle of F'F (front engine. Front drive; front wheel drive in front of the engine) type.
  • the engine 2 the motor generator MG1, and the motor generator MG2 are mounted as driving force sources.
  • the engine 2 is a power unit that burns fuel and converts the heat energy into kinetic energy.
  • the engine 2 is a known engine having an intake / exhaust device, a fuel injection device, and the like. In the case of a gasoline engine, the engine 2 is controlled by controlling the opening of the electronic throttle valve, the fuel injection amount, the fuel injection timing, the ignition timing, and the like.
  • the engine output that is, the engine speed and the engine torque can be controlled.
  • the motor generators MG1 and MG2 are rotating devices having both a power function for converting electric energy to kinetic energy and a regeneration function for converting kinetic energy to electric energy.
  • the power split mechanism 3 is a double pinion planetary gear mechanism.
  • the sun gear 4 is arranged coaxially with the sun gear 4 and is arranged so as to surround the sun gear 4.
  • a ring gear 5, a pinion gear 55 meshed with the sun gear 4, this pinion gear 55 and another pinion gear 56 meshed with the ring gear 5, and these pinion gears 5, 56 are supported in a rotatable and revolving manner.
  • Carya 57 Carya 57.
  • the first rotating element is an input element.
  • One of the second rotating element and the third rotating element serves as a reaction force element, and the other serves as an output element.
  • the number of rotating elements is not limited to three, and any one of four or more rotating elements is selected as a reaction force element.
  • Other rotation elements may be selected as output elements.
  • an input shaft 9 that rotates integrally with the sun gear 4 is provided.
  • the input shaft 9 is arranged coaxially with the crankshaft 8 of the engine 2.
  • a rotation axis B1 of the input shaft 9 and the crankshaft 8 is arranged in the width direction of the vehicle 1.
  • the motor generator MG1 has a stator 11 and a rotor 12, and the stator 11 is fixed to a casing (not shown).
  • the rotor 12 is connected to the input shaft 9.
  • the motor / generator MG2 is provided between the engine 2 and the motor / generator MG1 in the rotation axis direction of the input shaft 9.
  • the power split mechanism 3 is disposed between the engine 2 and the motor generator MG2 in the direction of the rotation axis.
  • This motor generator MG 2 has a stator 15 and a rotor 16. The stator 15 is fixed to the casing, and the rotor 16 is connected to the carrier 57 so as to rotate integrally.
  • Another input shaft 17 is provided coaxially with the input shaft 9.
  • the input shaft 17 is a hollow shaft, and the input shaft 9 is disposed in the input shaft 17. Ie 2
  • the two input shafts 9 and 17 are relatively rotatable about a common rotation axis B1.
  • the input shaft 17 is connected to the rotor 16 and the carrier 57 so as to rotate integrally.
  • a counter shaft 18 is provided that can rotate around another rotation axis C1 parallel to the rotation axis B1.
  • a first transmission 19A is provided on the power transmission path between the motor generator MG2 and the counter shaft 18, and the power transmission path between the motor generator MG1 and the counter shaft 18 is provided on the power transmission path.
  • a second transmission 19B is provided.
  • the first transmission 19A is a mechanism for controlling the ratio between the rotational speed of the motor / generator MG2 and the carrier 57 integral with each other and the rotational speed of the counter shaft 18.
  • the second transmission 19B is a mechanism for controlling the ratio between the rotation speed of the motor / generator MG1 and the sun gear 4 and the rotation speed of the counter shaft 18.
  • the first speed changer 19A includes a first speed gear pair 20 and a third speed gear pair 22, and the second transmission 19B includes a second speed gear pair 21 and a fourth speed gear pair.
  • the first speed gear pair 20 has a first speed drive gear 25 and a first speed driven gear 26 which are meshed with each other.
  • the third-speed gear pair 22 has a third-speed drive gear 27 and a third-speed driven gear 28 that are meshed with each other.
  • the first-speed drive gear 25 and the third-speed drive gear 27 are configured to rotate integrally with the input shaft 17.
  • first-speed driven gear 26 and the third-speed driven gear 28 are attached to the counter shaft 18, and the first-speed driven gear 26 and the third-speed driven gear 28 are attached to the counter shaft 18. Both of the driven gears 28 are configured to be rotatable relative to the counter shaft 18.
  • the second speed gear pair 21 has a second speed drive gear 29 and a second speed driven gear 31 that are meshed with each other, and the fourth speed gear pair 23 is mutually connected.
  • a fourth speed drive gear 30 and a fourth speed driven gear 32 are combined.
  • the second speed drive gear 29 and the fourth speed drive gear 30 are connected to the input shaft 9 so as to rotate integrally.
  • the second speed driven gear 31 and the fourth speed driven gear 32 are held by the counter shaft 18. Both the second speed driven gear 31 and the fourth speed driven gear 32 are configured to be rotatable relative to the counter shaft 18.
  • a mechanism for controlling the transmission ratio more specifically, the first speed gear pair 20 to the fourth speed gear.
  • Vs. 23 A clutch mechanism for connecting / disconnecting the counter shaft 18 so as to transmit power will be described.
  • a first clutch mechanism S1 is provided, and the power transmission state of the first speed gear pair 20 and the third speed gear pair 22 is controlled by the first clutch mechanism S1.
  • the first clutch mechanism S1 connects either the first speed driven gear 26 or the third speed driven gear 28 to the countershaft 18 so as to be able to transmit power, and Both the first speed driven gear 26 and the third speed driven gear 28 have a configuration in which power cannot be transmitted to the counter shaft 18.
  • the first clutch mechanism S1 for example, a dog clutch or other meshing clutch or clutch can be used.
  • the first speed mechanism S1 can be used with respect to the rotational speed of the counter shaft 18.
  • a clutch mechanism having a synchronizing mechanism (synchronizer mechanism) for matching the rotational speeds of the driven gear 26 for driving or the driven gear 28 for third speed is used.
  • a second clutch mechanism S2 is provided, and the power transmission state of the second speed gear pair 21 and the fourth speed gear pair 23 is controlled by the second clutch mechanism S2.
  • the second clutch mechanism S2 connects either the second speed driven gear 31 or the fourth speed driven gear 32 to the counter shaft 18 so as to be able to transmit power, and Both the second-speed driven gear 31 and the fourth-speed driven gear 32 are configured such that power cannot be transmitted to the counter shaft 18.
  • a meshing clutch such as a dog clutch can be used.
  • the second speed mechanism S 2 is used for the rotational speed of the counter shaft 18.
  • a clutch mechanism having a synchronizing mechanism (synchronizer mechanism) that matches the rotational speed of the driven gear 31 or the fourth-speed driven gear 32 is used. Further, an actuator 39 for operating the first clutch mechanism S1 and the second clutch mechanism S2 is provided. As this actuator 39, it is possible to use a hydraulically controlled actuator or an electromagnetically controlled actuator.
  • the gear ratio of the first transmission 19A is determined by the gear ratio of the first gear pair 20 and the gear ratio of the third gear pair 22.
  • the gear ratio of the second transmission 19B is determined by the gear ratio of the second speed gear pair 21 and the gear ratio of the fourth speed gear pair 23.
  • the gear ratio of the first speed gear pair 20 is maximum, and the first speed gear pair 20
  • the speed ratio of the second speed gear pair 21 is smaller than the speed ratio of the first speed gear pair 20
  • the speed ratio of the third speed gear pair 22 is the speed ratio of the second speed gear pair 21.
  • the gear ratio of the fourth speed gear pair 23 is smaller than the gear ratio of the third speed gear pair 22.
  • a final pinion gear 37 is provided on the counter shaft 18, and a ring gear 40 is engaged with the final pinion gear 37.
  • the final pinion gear 37 and the ring gear 40 constitute a final reduction gear.
  • the ring gear 40 is configured to rotate integrally with the differential case 50, and a pair of side gears (not shown) and wheels (front wheels) 51 built in the differential case 50 are moved by a drive shaft 52. It is connected to transmit power.
  • a power supply device 53 is provided for transferring power to and from the motor generators MG1 and MG2.
  • the power supply device 53 has a power storage device (not shown) such as a secondary battery, and a battery or a capacitor can be used as the power storage device.
  • This power storage device and motor generators MG1 and MG2 are connected via an inverter (not shown).
  • the power supply device 53 may include a fuel cell system (not shown) in addition to the power storage device. This fuel cell system is a system that obtains electric power by reacting hydrogen and oxygen, and can supply the generated electric power to the motor generators MG1 and MG2 or charge the power storage device.
  • the power supply device 53 has an electric circuit for connecting the motor / generator MG1 and the motor / generator MG2, and the motor / generator MG1 and the motor / generator MG2 without passing through the power storage device. It is possible to send and receive power directly to and from.
  • An electronic control unit 54 is provided as a controller.
  • the electronic control unit 54 includes detection signals from various sensors and switches, for example, acceleration requests, braking requests, and the like.
  • the request, the engine speed, the motor / generator M Gl, the rotation speed of MG2, the rotation speed of the input shafts 9, 17 and the rotation speed of the counter shaft 18 are input.
  • a signal for controlling the engine 2 a signal for controlling the motor generators MG1 and MG2, a signal indicating the power generation state / charge state / discharge state of the power supply device 53, and the actuator 39 are controlled. Signal is output.
  • the engine torque is input to the ring gear 5 of the power split mechanism 3, and the control to handle the reaction force of the engine torque is executed by one of the motor and generator. .
  • the carrier 57 serves as an output element of the power split mechanism 3.
  • the sun gear 4 serves as an output element of the power split mechanism 3.
  • the motor / generator responsible for the reaction force of the engine torque rotates in the forward direction
  • the motor / generator is regeneratively controlled.
  • the motor / generator responsible for the reaction force of the engine torque rotates in the reverse direction, the motor / generator is controlled.
  • the motor generator that handles the anti-catonolec When the motor generator that handles the anti-catonolec is regeneratively controlled, the generated electric power is charged to the power storage device or supplied to the other motor generator, and the motor generator generates the power. It is also possible to execute control. On the other hand, when the motor / generator that handles the anti-clock is controlled by the line, the power of the power storage device is supplied to the motor / generator that handles the counter-force, or the other motor / generator is regenerated. It is also possible to control and supply the generated electric power to the motor generator that handles the reaction force.
  • the power split mechanism 3 when the rotational speed of the motor / generator responsible for the reaction force of the engine torque is controlled, the differential speed of the sun gear 4, the ring gear 5, and the carrier 57 causes the engine rotational speed and output element to be The ratio to the rotational speed can be controlled steplessly (continuously). That is, the power split mechanism 3 acts as a continuously variable transmission.
  • a signal input to the electronic control unit 54 is processed to obtain a target driving force, a target engine output, and the like.
  • the target drive power is obtained based on the vehicle speed and the accelerator opening (acceleration request), and the target engine output borne by the engine 2 is obtained based on the target drive force.
  • the optimal fuel consumption curve is set so that the fuel consumption of the engine 2 becomes the optimal fuel consumption.
  • a target engine speed and a target engine torque are obtained.
  • the actual engine speed can be brought close to the target engine speed by controlling the gear ratio of the power split mechanism 3, and the actual engine torque can be controlled by controlling the opening of the electronic throttle valve. Can be made closer to the target engine torque.
  • the first shift Control of the machine 19A and the second transmission 19B is executed.
  • a forward position that can be selectively switched as a mode for controlling the first transmission 19A and the second transmission 19B will be described.
  • the forward position is a position used when generating a driving force in a direction for moving the vehicle 1 forward. In this forward position, the mode shown in Fig. 2, specifically, shift control mode 1 (1st), shift control mode 2 (2nd), shift control mode 3 (3rd) and shift control mode 4 (4th) Can be selectively switched.
  • shift control modes control the transmission ratios of the first transmission 19A and the second transmission 19B, and transmit power in the first transmission 19A and the second transmission 19B. It controls the state.
  • the shift control mode 1 and the shift control mode 3 are shift control modes that are selected when engine torque is transmitted from the ring gear 5 to the input shaft 17.
  • FIG. 2 shows the shift control mode 1 (1st), the shift control mode 2 (2nd), the shift control mode 3 (3rd), and the shift control mode 4 (4th).
  • a gear connected by engagement of the clutch mechanism S1 and a gear connected by engagement of the second clutch mechanism S2 are shown.
  • the shift control mode 3 When the shift control mode 3 is selected, the counter shaft 18 and the third speed driven gear 28 are connected by the first clutch mechanism S1, and the counter The power transmission between the shaft 18 and the first speed driven gear 26 is cut off. Further, the second clutch mechanism S2 is released, and the power transmission of the second speed driven gear 31 and the fourth speed driven gear 32 to the counter shaft 18 is interrupted. Thus, when the shift control mode 3 is selected, the torque output from the carrier 57 of the power split mechanism 3 is transmitted to the counter shaft 18 via the third speed gear pair 22. Is done.
  • the speed change control mode 2 and the speed change control mode 4 are modes that are selected when the engine torque is transmitted from the sun gear 4 to the input shaft 9, and the speed change control mode 2 or the speed change control mode 4 is selected.
  • the motor generator MG2 takes over the anti-catenol.
  • the shift control mode 2 is selected, the counter shaft 18 and the second speed driven gear 31 are connected by the second clutch mechanism S2, and the counter shaft Power transmission between 18 and the fourth speed driven gear 32 is cut off. Further, the first clutch mechanism S1 is released, and the power transmission of the first speed driven gear 26 and the third speed driven gear 28 to the counter shaft 18 is interrupted. In this way, when the shift control mode 2 is selected, the torque output from the sun gear 4 of the power dividing mechanism 3 is transmitted to the counter shaft 18 via the second speed gear pair 21. Is transmitted to.
  • the shift control mode 4 when the shift control mode 4 is selected, the counter shaft 18 and the fourth speed driven gear 32 are connected by the second clutch mechanism S2, and Power transmission between the counter shaft 18 and the second speed driven gear 31 is interrupted. Further, the first clutch mechanism S1 is released, and the power transmission of the first speed driven gear 26 and the third speed driven gear 28 to the counter shaft 18 is cut off. Thus, when the shift control mode 4 is selected, the torque output from the sun gear 4 of the power split mechanism 3 is applied to the counter shaft 18 via the fourth speed gear pair 23. Communicated. In this way, by selectively switching a plurality of shift control modes, in the first speed changer 19A, the rotation speed between the input shaft 17 and the rotation speed between the counter shaft 18 is changed.
  • the second transmission 19B is a ratio of the rotational speed between the input shaft 9 and the counter shaft 18 in the second transmission 19B.
  • the gear ratio can be changed in stages.
  • the “X” mark indicates that the first clutch mechanism S1 or the second clutch mechanism S2 is released.
  • drive mode 1 is a control mode for the entire vehicle that is selected when the gear ratio of the drive device is controlled.
  • the control range of the gear ratio of the drive device is set for each drive mode. Different. Which drive mode is selected is determined by the electronic control unit 54 based on the vehicle speed, the accelerator opening, the target drive force, and the like.
  • the control of MG2 will be described with reference to the alignment charts of FIGS.
  • the engine 2 (ENG) is arranged between the motor / generator MG1 and the motor / generator MG2 on the alignment chart.
  • the shift control mode 1 is selected when the vehicle 1 starts.
  • the gin 2 rotates in the forward direction
  • the motor / generator MG1 rotates in the forward direction, and is regeneratively controlled to handle the reaction force of the engine torque.
  • the electric power obtained by the regenerative control of the motor / generator MG1 is supplied to the motor / generator MG2 for power control, and a tonolec in the direction of forward rotation is generated. That is, the carrier 57 of the power split mechanism 3 is an output element.
  • the shift control mode 1 is changed to the shift control mode 2.
  • the first clutch mechanism S1 connects the first speed driven gear 26 and the counter shaft 18 in addition to the first clutch mechanism S1.
  • the second speed driven gear 31 and the counter shaft 18 are connected by the second clutch mechanism S2. Then, as shown in the collinear diagram of FIG. 4, control is performed so that both motor generators MG1 and MG2 idle.
  • the motor generators MG1 and MG2 are in a no-load state in which neither power nor regeneration is performed. Then, the first clutch mechanism S1 is released, and the second clutch mechanism S2 is maintained in the above-described engaged state, whereby the shift control mode 2 is achieved.
  • this shift control mode 2 is achieved, as shown in the collinear diagram of FIG. 5, the motor / generator MG2 rotates forward and is regeneratively controlled to handle the reaction force of the engine torque. 3 sun gear 4 is the output element.
  • the electric power generated by the motor / generator MG2 is supplied to the motor / generator MG1, and the motor / generator MG1 is controlled in a row.
  • the motor / generator MG1 rotates forward and is regeneratively controlled to receive the reaction force of the engine torque, and the carrier 57 of the power split mechanism 3 serves as an output element. . Further, the electric power generated by the motor / generator MG1 is supplied to the motor / generator MG2, and the motor / generator MG2 is controlled in a row.
  • the motor / generator MG2 When the shift control mode 4 is achieved, the motor / generator MG2 is regeneratively controlled to handle the reaction force of the engine torque, and the sun gear 4 of the power split mechanism 3 serves as an output element. In addition, the electric power generated by the motor / generator MG2 is supplied to the motor / generator MG1, and the motor / generator MG1 is controlled. In this embodiment, the control for changing from the shift control mode 4 to the shift control mode 3, the control for changing from the shift control mode 3 to the shift control mode 2, and the change from the shift control mode 2 to the shift control mode 1 are performed. It is also possible to execute control.
  • the transmission ratio (i), which is the ratio between the engine speed and the counter shaft 18, is shown on the horizontal axis, and the theoretical transmission efficiency is shown on the vertical axis.
  • the theoretical transmission efficiency is a rate at which the power of the engine 2 is transmitted to the counter shaft 18.
  • the theoretical transmission efficiency shown here is based on the premise that no power is supplied from the power supply device 53 to the motor generators MG1 and MG2.
  • the theoretical transmission efficiency is represented as 1.0.
  • the theoretical transmission efficiency of less than 1.0 means that the engine 2's dynamic power is converted into electric energy or the electric energy is converted into motor's generator power. In other words, it means that the amount of electricity flowing through the power supply device 53 increases, that is, the overall electrical dependency in the vehicle 1 becomes large (high).
  • drive modes 1 to 4 are indicated by characteristic lines.
  • the characteristic line corresponding to each drive mode has a mountain-shaped characteristic protruding upward.
  • the theoretical transmission efficiency of electric energy is 1.0 at the apex of the characteristic lines showing each drive mode.
  • the motor generators MG1 and MG2 carry out line control or regenerative control, conversion between mechanical energy and electrical energy is performed, so the theoretical transfer efficiency is less than 1.0. It has become.
  • the control range of the transmission ratio (i) differs for each drive mode. Specifically, the control range of the gear ratio (i) in the drive mode 2 is a region of the gear ratio smaller than the control range of the gear ratio (i) in the drive mode 1. Further, the control range of the gear ratio (i) in the drive mode 3 is a region of the gear ratio smaller than the control range of the gear ratio (i) corresponding to the drive mode 2. Further, the control range of the gear ratio (i) in the drive mode 4 is a region of the gear ratio smaller than the control range of the gear ratio (i) corresponding to the drive mode 3.
  • the transmission ratio of the power split mechanism 3 is controlled, and the reaction torque of the engine 2 is selected by the motor “generator MG1 or the motor” generator MG2.
  • Control can be executed.
  • the first transmission 19A and the second transmission 19B are provided in the power transmission path from the motor generators MG1, MG2 to the counter shaft 18, and the motor generator
  • the ratio between the rotation speed of MG1 and MG2 and the rotation speed of the counter shaft 18 can be controlled. With these controls, it is possible to expand the selection range (range) of the gear ratio (i) of the drive device.
  • the motor generator that receives the reaction force of the engine torque is controlled in a controlled manner (especially in reverse rotation), and regenerative control is performed with the motor-generator connected to the output element of the power split mechanism 3, It is possible to suppress the phenomenon that power generated by the regenerative control is supplied to the motor / generator that controls the power, and so on. Therefore, the amount of mechanical power transmitted from the engine 2 to the wheels 51 can be increased, the amount of power flow can be reduced, and the power transmission efficiency of the entire drive device can be improved.
  • the transmission torque is amplified. Therefore, the maximum torque of the motors 'generators MG1 and MG2 is reduced and the motor' The generators MG 1 and MG2 can be downsized. Further, since the power split mechanism 3 and the first transmission 19A and the second transmission 19B are used in combination, the transmission ratio of the first transmission 19A and the second transmission 19B is changed. By controlling, the maximum number of rotations of the motor generators M Gl and MG2 can be reduced.
  • the power split mechanism 3 is constituted by a double pinion type planetary gear mechanism, motors / generators MG1 and MG2 are separately arranged on both sides of the engine 2 on the collinear diagram. Has been. Therefore, even when any motor generator generates the reaction force of the engine torque, the size of the anti-catonolek can be made substantially the same. Therefore, motors / generators MG1 and MG2 having the same function and size can be used.
  • the first clutch mechanism S1 and the second clutch mechanism S2 may be wet multi-plate clutches which are a kind of friction clutch, but the hydraulic pressure for controlling the hydraulic pressure of these clutch mechanisms
  • the oil pressure source that supplies pressure oil to the chamber is an oil pump, there is little power loss due to slip of the clutch mechanism, mechanical meshing, and clutch.
  • both the first transmission 19A and the second transmission 19B have a mechanism for switching between power transmission and power interruption, an increase in the number of parts can be suppressed and the structure can be simplified.
  • the transmission shown in FIG. 1 selectively switches between shift control modes 1 to 4, and has four different gear ratios in the first transmission 19A and the second transmission 19B. It is a stepped transmission that can be switched in stages, but with both transmissions, there are three speeds or It may be a vehicle having a stepped transmission configured to be able to switch between five or more speeds. In this case, a shift control mode corresponding to the number of shift stages can be selected. Further, in the example of FIG. 1, the reverse gear train for generating the driving force in the direction of moving the vehicle backward is omitted.
  • Ring gear 5 corresponds to the first rotating element of the present invention
  • sun gear 4 corresponds to the second rotational element of the present invention
  • the carrier 57 corresponds to the rotating element
  • the carrier 57 corresponds to the third rotating element of the present invention
  • the input shaft 9 and the counter shaft 18 constitute the first power transmission path of the present invention.
  • the shaft 17 and the counter shaft 18 constitute a second power transmission path of the present invention.
  • the first clutch mechanism S1 corresponds to a mechanism that enables power transmission to the first transmission of the present invention and that interrupts power transmission
  • the second clutch mechanism S2 corresponds to the second transmission mechanism of the present invention.
  • This transmission corresponds to a mechanism that enables power transmission and interrupts power transmission.
  • the motor 'generator MG1 force corresponds to the first motor' generator of the present invention
  • the motor 'generator MG2 corresponds to the second motor generator of the present invention.

Abstract

A hybrid driver which can enhance power transmission efficiency over a wide range of change gear ratio. The hybrid driver comprises a power division mechanism coupled with an engine, a first motor generator and a second motor generator, a first power transmission passage for connecting the first motor generator with wheels such that power can be transmitted, and a second power transmission passage for connecting the second motor generator with wheels such that power can be transmitted, wherein a first gearbox is provided in the first power transmission passage, a second gearbox is provided in the second power transmission passage, the first gearbox has a mechanism which can switch between power transmission and power interruption, and the second gearbox has a mechanism for switching between power transmission and power interruption.

Description

明 細 書  Specification
ノヽイブリツド駆動装置  Noble drive system
技術分野  Technical field
[0001] この発明は、エンジンおよびモータ'ジェネレータが、動力分割機構の回転要素に 連結されている構成のハイブリッド駆動装置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a hybrid drive device having a configuration in which an engine and a motor generator are coupled to a rotating element of a power split mechanism.
背景技術  Background art
[0002] 従来、駆動力源としてエンジンおよびモータ'ジェネレータを搭載したハイブリッド車 が知られている。このようなハイブリッド車においては、エンジンおよびモータ'ジエネ レータの持つ特性を生かしつつ、燃費を向上し、かつ、排気ガスの低減を図ることが 可能である。このように、駆動力源としてエンジンおよびモータ'ジェネレータを有する ハイブリッド車の一例が、特開 2005— 125876号公報に記載されている。  Conventionally, hybrid vehicles equipped with an engine and a motor generator as driving force sources are known. In such a hybrid vehicle, it is possible to improve the fuel consumption and reduce the exhaust gas while taking advantage of the characteristics of the engine and the motor generator. An example of a hybrid vehicle having an engine and a motor generator as a driving force source is described in Japanese Patent Application Laid-Open No. 2005-125876.
[0003] この特開 2005— 125876号公報に記載されているハイブリッド車は、エンジンおよ び第 1モータ'ジェネレータおよび第 2モータ'ジェネレータを有している。また、これら のエンジンおよび第 1モータ.ジェネレータおよび第 2モータ'ジェネレータが連結され る動力分配機構が設けられている。この動力分配機構は遊星歯車機構により構成さ れており、反力要素であるサンギヤが第 1モータ'ジェネレータに連結され、入力要素 であるキヤリャがエンジンに連結され、出力要素であるリングギヤが第 1中間軸に連 結されている。この第 1中間軸からアクスル軸に至る経路にはクラッチが設けられてい る。一方、第 2モータ 'ジェネレータは、減速機を介して第 1中間軸ギヤに連結されて いる。この減速機は遊星歯車機構により構成されており、そのサンギヤに第 2モータ' ジェネレータが連結され、リングギヤが第 1中間軸に連結され、キヤリャが固定されて いる。さらに前記第 1モータ'ジェネレータには第 2中間軸が連結されており、その第 2 中間軸から前記アクスル軸に至る経路にはクラッチが設けられている。そして、 2つの クラッチの係合'解放を制御することにより、前記動力分配機構のサンギヤ(反力要素 )またはリングギヤ(出力要素)を、前記アクスル軸に対して選択的に連結することが できる。その結果、特開 2005— 125876号公報には、動力循環状態などの動力伝 達損失の大きい状態が回避される、と記載されている。 [0004] し力 ながら、上記の特開 2005— 125876号公報に記載されているハイブリッド車 においては、より広範囲な走行領域 (変速比の制御範囲)にて動力伝達効率を向上 させることが望まれる。 [0003] The hybrid vehicle described in JP 2005-125876 A has an engine, a first motor 'generator, and a second motor' generator. In addition, a power distribution mechanism to which these engines, the first motor generator and the second motor generator are connected is provided. This power distribution mechanism is composed of a planetary gear mechanism. A sun gear, which is a reaction force element, is connected to the first motor generator, a carrier, which is an input element, is connected to the engine, and a ring gear, which is an output element, is connected to the first gear. It is connected to the intermediate shaft. A clutch is provided on the path from the first intermediate shaft to the axle shaft. On the other hand, the second motor generator is connected to the first intermediate shaft gear via a reduction gear. This reduction gear is constituted by a planetary gear mechanism, a second motor generator is connected to the sun gear, a ring gear is connected to the first intermediate shaft, and a carrier is fixed. Further, a second intermediate shaft is connected to the first motor 'generator, and a clutch is provided on a path from the second intermediate shaft to the axle shaft. By controlling the engagement / release of the two clutches, the sun gear (reaction element) or the ring gear (output element) of the power distribution mechanism can be selectively connected to the axle shaft. As a result, Japanese Patent Application Laid-Open No. 2005-125876 describes that a state with a large power transmission loss such as a power circulation state is avoided. [0004] However, in the hybrid vehicle described in the above Japanese Patent Application Laid-Open No. 2005-125876, it is desired to improve the power transmission efficiency in a wider range of travel (transmission ratio control range). .
発明の開示  Disclosure of the invention
[0005] この発明は上記の事情を背景としてなされたものであり、駆動装置全体として変速 比の広範囲に亘つて、動力伝達効率を向上させることの可能なハイブリッド駆動装置 を提供することを目的としてレ、る。  [0005] The present invention has been made in the background of the above circumstances, and an object of the present invention is to provide a hybrid drive device capable of improving power transmission efficiency over a wide range of gear ratios as a whole drive device. Les.
[0006] 上記の目的を達成するために、この発明は、差動回転可能に連結された第 1の回 転要素および第 2の回転要素および第 3の回転要素を有する動力分割機構を備え、 エンジンが前記第 1の回転要素に連結され、第 1のモータ'ジェネレータが前記第 2 の回転要素に連結され、第 2のモータ'ジェネレータが前記第 3の回転要素に連結さ れているとともに、前記エンジンの動力を前記第 1の回転要素に入力し、かつ、前記 第 2の回転要素または第 3の回転要素から出力して車輪に伝達する場合に、前記第 1のモータ'ジェネレータまたは第 2のモータ'ジェネレータのいずれか一方でェンジ ントルクの反力を受け持つように構成されており、前記第 1のモータ ·ジェネレータお よび前記第 2の回転要素を前記車輪に動力伝達可能に接続する第 1の動力伝達経 路が設けられ、前記第 2のモータ'ジェネレータおよび前記第 3の回転要素を前記車 輪に動力伝達可能に接続する第 2の動力伝達経路が設けられているハイブリッド駆 動装置において、前記第 1の動力伝達経路に設けられた第 1の変速機と、前記第 2 の動力伝達経路に設けられた第 2の変速機と、前記第 1の変速機を前記車輪に対し てトルクを伝達できる状態とそのトノレクの伝達を遮断する状態とに選択的に切り替え る第 1クラッチ機構と、前記第 2の変速機を前記車輪に対してトルクを伝達できる状態 とそのトノレクの伝達を遮断する状態とに選択的に切り替える第 2クラッチ機構とを備え ている。  [0006] To achieve the above object, the present invention comprises a power split mechanism having a first rotating element, a second rotating element, and a third rotating element that are connected so as to be differentially rotatable, An engine is coupled to the first rotating element, a first motor 'generator is coupled to the second rotating element, a second motor' generator is coupled to the third rotating element, and When the power of the engine is input to the first rotating element and output from the second rotating element or the third rotating element and transmitted to a wheel, the first motor generator or the second One of the motors / generators is configured to handle the reaction force of the engine torque, and the first motor / generator and the second rotating element are connected to the wheels so as to be capable of transmitting power. Power transmission In the hybrid drive device, provided with a path, and provided with a second power transmission path for connecting the second motor generator and the third rotating element to the wheel so that power can be transmitted. The first transmission provided in the first power transmission path, the second transmission provided in the second power transmission path, and the first transmission can transmit torque to the wheels. A first clutch mechanism that selectively switches between a state and a state that interrupts transmission of the torque, a state that allows the second transmission to transmit torque to the wheels, and a state that blocks transmission of the torque And a second clutch mechanism for selectively switching to.
[0007] その動力分割機構は、前記第 1ないし第 3の回転要素が相互に差動回転する差動 回転機構によって構成することができる。  [0007] The power split mechanism can be constituted by a differential rotation mechanism in which the first to third rotation elements rotate differentially with respect to each other.
[0008] また、前記動力分割機構は、サンギヤと、該サンギヤに対して同心円上に配置され たリングギヤと、これらサンギヤとリングギヤとの間に配置されたピニオンギヤを自転 自在および公転自在に保持するキヤリャと有する遊星歯車機構によって構成するこ とができる。 [0008] The power split mechanism rotates a sun gear, a ring gear arranged concentrically with the sun gear, and a pinion gear arranged between the sun gear and the ring gear. It can be constituted by a planetary gear mechanism having a carrier that can be freely and revolved.
[0009] その遊星歯車機構は、共線図上に、前記エンジンが連結されたリングギヤが中央 に位置し、その両側にサンギヤとキヤリャとが位置するダブルピニオン型の遊星歯車 機構であってもよい。  [0009] The planetary gear mechanism may be a double pinion type planetary gear mechanism in which a ring gear to which the engine is connected is located in the center and a sun gear and a carrier are located on both sides of the planetary gear mechanism. .
[0010] 一方、前記第 1の変速機および第 2の変速機は、互いに嚙み合っている駆動ギヤと 従動ギヤとからなる変速ギヤ対をそれぞれ含み、それらの変速ギヤ対の変速比が互 レ、に異なってレ、る構成とすることができる。  [0010] On the other hand, the first transmission and the second transmission each include a transmission gear pair composed of a drive gear and a driven gear that are in mesh with each other, and the transmission gear ratios of these transmission gear pairs are mutually different. Different configurations can be used.
[0011] さらに、この発明は、前記第 1の変速機における駆動ギヤを保持している第 1入力 軸と、前記第 2の変速機における駆動ギヤを保持している第 2入力軸と、前記第 1の 変速機における従動ギヤおよび第 2の変速機における従動ギヤとを保持している力 ゥンタ軸とを更に備え、前記第 1クラッチ機構は、前記第 1の変速機におけるギヤ対を 前記第 1入力軸とカウンタ軸との間で、選択的にトルク伝達可能な状態にする機構を 含み、前記第 2クラッチ機構は、前記第 2の変速機におけるギヤ対を前記第 2入力軸 とカウンタ軸との間で、選択的にトルク伝達可能な状態にする機構を含む構成とする こと力 Sできる。  [0011] Furthermore, the present invention provides a first input shaft holding a drive gear in the first transmission, a second input shaft holding a drive gear in the second transmission, A force motor shaft holding a driven gear in the first transmission and a driven gear in the second transmission, and the first clutch mechanism includes a gear pair in the first transmission. A mechanism for selectively transmitting torque between the input shaft and the counter shaft, wherein the second clutch mechanism is configured to connect a gear pair in the second transmission to the second input shaft and the counter shaft. A structure that includes a mechanism for selectively transmitting torque to and from can be used.
[0012] さらに、この発明では、前記第 1のモータ'ジェネレータによって前記エンジントルク に対する反力を受け持たせ、かつ前記第 1クラッチ機構を係合状態にして前記第 1の 変速機をトルク伝達可能な状態にするとともに前記第 2クラッチ機構を解放状態にし て前記第 2の変速機をトルク伝達しない状態にすることにより第 1モードを設定する第 1モード設定手段と、前記第 2のモータ'ジェネレータによって前記エンジントルクに 対する反力を受け持たせ、かつ前記第 2クラッチ機構を係合状態にして前記第 2の変 速機をトルク伝達可能な状態にするとともに前記第 1クラッチ機構を解放状態にして 前記第 2の変速機をトルク伝達しない状態にすることにより第 2モードを設定する第 2 モード設定手段とを更に備えることができる。  [0012] Further, according to the present invention, the first motor / generator can receive a reaction force against the engine torque, and the first clutch mechanism can be engaged to transmit the torque to the first transmission. First mode setting means for setting the first mode by setting the second clutch mechanism in a released state and not transmitting torque to the second transmission, and the second motor generator To apply a reaction force against the engine torque, and to put the second clutch mechanism in an engaged state so that the second speed changer can transmit torque and to put the first clutch mechanism in a released state. And second mode setting means for setting the second mode by setting the second transmission to a state where torque transmission is not performed.
[0013] そして、この発明では、前記第 1の変速機におけるギヤ対の変速比が、前記第 2の 変速機におけるギヤ対の変速比より相対的に大きぐ前記第 1モードを設定する車速 より相対的に高車速の場合に前記第 2モードを設定する制御手段を更に備えること ができる。 [0013] In the present invention, the vehicle speed for setting the first mode in which the gear ratio of the gear pair in the first transmission is relatively larger than the gear ratio of the gear pair in the second transmission. And a control means for setting the second mode when the vehicle speed is relatively high. Can do.
[0014] この発明によれば、エンジンの動力が動力分割機構の入力要素に入力され、その 動力分割機構の出力要素から出力された動力が車輪に伝達される。また、前記動力 分割機構においてはエンジントルクの反力が、第 1のモータ'ジェネレータまたは第 2 のモータ ·ジェネレータにより選択的に受け持たれる。そして、反力を受け持つモータ  [0014] According to the present invention, the engine power is input to the input element of the power split mechanism, and the power output from the output element of the power split mechanism is transmitted to the wheels. In the power split mechanism, the reaction force of the engine torque is selectively received by the first motor / generator or the second motor / generator. And the motor responsible for the reaction force
•ジェネレータの回転数を制御することにより、エンジン回転数と前記動力分割機構 の出力要素の回転数との比率である変速比を無段階に制御することが可能である。 さらに、前記第 1のモータ ·ジェネレータまたは前記第 2のモータ ·ジェネレータのうち 、反力を受け持たない方のモータ'ジェネレータの動力を、変速機を経由させて前記 車輪に伝達することが可能である。前記動力分割機構における変速に加えて、第 1 の変速機または第 2の変速機でも変速をおこなうことができる。このような制御および 作用によって、前記エンジンの動力の一部を一方のモータ'ジェネレータにより電力 に変換し、その電力を、エンジントルクの反力を受け持つモータ'ジェネレータに供給 してカ行制御する現象、すなわち、動力循環を回避できる。したがって、駆動装置全 体として変速比の広範囲に亘り、動力伝達効率を向上させることができる。さらに、第 1の変速機および第 2の変速機が、共に動力伝達 ·動力遮断を切り換える機構を有し ているため、部品点数の増加が抑制されて、構造を簡素化できる。 • By controlling the number of revolutions of the generator, it is possible to steplessly control the gear ratio that is the ratio between the number of engine revolutions and the number of revolutions of the output element of the power split mechanism. Further, it is possible to transmit the power of the first motor / generator or the second motor / generator which does not receive a reaction force to the wheels via a transmission. is there. In addition to the shift in the power split mechanism, the first transmission or the second transmission can also perform a shift. By such control and action, a part of the power of the engine is converted into electric power by one motor 'generator, and the electric power is supplied to a motor' generator that is responsible for the reaction force of the engine torque to control the power. That is, power circulation can be avoided. Therefore, it is possible to improve power transmission efficiency over a wide range of gear ratios as a whole drive device. Furthermore, since both the first transmission and the second transmission have a mechanism for switching between power transmission and power interruption, an increase in the number of parts can be suppressed and the structure can be simplified.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]この発明のハイブリッド駆動装置を有する車両のパワートレーンおよび制御系 統の一例を示す概念図である。  FIG. 1 is a conceptual diagram showing an example of a power train and a control system of a vehicle having a hybrid drive device of the present invention.
[図 2]図 1に示された変速機の変速制御モードにおけるクラッチ機構の作動を示す図 表である。  2 is a chart showing the operation of the clutch mechanism in the shift control mode of the transmission shown in FIG.
[図 3]変速制御モード 1における動力分割機構の動作状態を示す共線図である。  FIG. 3 is a collinear diagram showing an operating state of the power split mechanism in a shift control mode 1;
[図 4]変速制御モード 1から変速制御モード 2に切り替える過程における動力分割機 構の動作状態を示す共線図である。  FIG. 4 is a collinear diagram showing the operating state of the power split mechanism in the process of switching from shift control mode 1 to shift control mode 2.
[図 5]変速制御モード 2における動力分割機構の動作状態を示す共線図である。  FIG. 5 is an alignment chart showing an operating state of the power split mechanism in the shift control mode 2;
[図 6]変速制御モード 2から変速制御モード 3に切り替える過程における動力分割機 構の動作状態を示す共線図である。 [図 7]図 1に示されたハイブリッド駆動装置において、動力の理論伝達効率と、駆動装 置全体の変速比との関係を示す線図である。 FIG. 6 is a collinear diagram showing the operating state of the power split mechanism in the process of switching from shift control mode 2 to shift control mode 3. FIG. 7 is a diagram showing the relationship between the theoretical power transmission efficiency of the hybrid drive device shown in FIG. 1 and the gear ratio of the entire drive device.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] この発明においては車両の駆動力源としてエンジンおよび第 1のモータ.ジエネレ ータおよび第 2のモータ'ジェネレータが設けられている。このエンジンは熱エネルギ を運動エネルギに変換する動力装置である。つまり、エンジンは燃料を燃焼させて熱 エネルギを発生させ、その熱エネルギを運動エネルギに変換する動力装置である内 燃機関を用いることが可能である。より具体的には、内燃機関として、ガソリンェンジ ン、ディーゼルエンジン、 LPGエンジン、メタノールエンジンなどを用いることができる 。前記モータ'ジェネレータは電気工ネルギを運動エネルギに変換するカ行機能と、 運動エネルギを電力に変換する回生機能とを兼備している。すなわち、エンジンとモ ータ ·ジェネレータとでは動力の発生原理が異なる。 In the present invention, an engine, a first motor generator, and a second motor generator are provided as driving force sources for the vehicle. This engine is a power unit that converts thermal energy into kinetic energy. In other words, the engine can use an internal combustion engine that is a power unit that burns fuel to generate heat energy and converts the heat energy into kinetic energy. More specifically, a gasoline engine, a diesel engine, an LPG engine, a methanol engine, or the like can be used as the internal combustion engine. The motor generator combines a power function for converting electric energy into kinetic energy and a regeneration function for converting kinetic energy into electric power. That is, the principle of power generation differs between the engine and the motor generator.
[0017] この発明では、動力分割機構としてダブルピニオン式の遊星歯車機構またはシン グノレピニオン式の遊星歯車機構、ラビニョ型遊星歯車機構などを用いることが可能で ある。また、エンジンおよび第 1のモータ'ジェネレータおよび第 2のモータ'ジエネレ ータが動力分割機構の第 1の回転要素および第 2の回転要素および第 3の回転要 素に連結される。そして、第 1の回転要素が入力要素として機能し、第 2の回転要素 と第 3の回転要素とのいずれか一方が反力要素となり、他方が出力要素となる。すな わち、前記エンジンの動力を入力要素に入力し、かつ出力要素から出力する場合に 、前記第 1のモータ ·ジェネレータまたは前記第 2のモータ ·ジェネレータのレ、ずれか 一方により、前記エンジンの反力を受け持つ。さらに、反力を受け持つモータ'ジエネ レータで発生した電力を、他のモータ 'ジェネレータに供給してカ行制御をおこなうこ とが可能である。 In the present invention, a double pinion type planetary gear mechanism, a single repinion type planetary gear mechanism, a Ravigneaux type planetary gear mechanism, or the like can be used as the power split mechanism. Further, the engine, the first motor'generator and the second motor'generator are coupled to the first rotating element, the second rotating element, and the third rotating element of the power split mechanism. The first rotating element functions as an input element, and either one of the second rotating element and the third rotating element is a reaction force element, and the other is an output element. That is, when the power of the engine is input to the input element and output from the output element, the engine is caused by either the first motor generator or the second motor generator. Responsible for the reaction. In addition, the power generated by the motor generator responsible for the reaction force can be supplied to other motor generators for power line control.
[0018] また、この発明において、エンジンと車輪との間に、第 1変速機を含む動力伝達経 路と第 2の変速機を含む動力伝達経路とが並列に形成されるようになっている。さら に、第 1の変速機および第 2の変速機は、いずれも入力回転数と出力回転数との比 である変速比を変更可能な機構である。さらに、前記第 1の変速機および第 2の変速 機は、変速比を段階的 (不連続)に変更可能な有段変速機、または変速比を無段階 (連続的)に変更可能な無段変速機のいずれでもよい。ここで、前記有段変速機とし ては、例えば、選択歯車式変速機、遊星歯車式変速機などを用いることができる。前 記選択式歯車変速機あるいは遊星歯車式変速機を用いる場合、その変速比を切り 換える機構としてクラッチ機構を用いることが可能である。さらに、第 1の変速機およ び第 2の変速機は、クラッチ機構を制御することにより伝達トルクが制御される構成を 有している。上記クラッチ機構としては、例えば、嚙み合いクラッチ、電磁クラッチ、摩 擦クラッチなどを用いることが可能である。また、前記摩擦クラッチとしては湿式クラッ チ、乾式クラッチなどを用いることが可能である。これに対して、前記無段変速機とし ては、トロイダル式無段変速機、ベルト式無段変速機などを用いることが可能である。 さらに、この発明において、前記第 1の変速機で選択される変速比と、前記第 2の変 速機で選択される変速比とが異なる。 [0018] In the present invention, a power transmission path including the first transmission and a power transmission path including the second transmission are formed in parallel between the engine and the wheels. . Furthermore, both the first transmission and the second transmission are mechanisms that can change the speed ratio, which is the ratio between the input speed and the output speed. Further, the first transmission and the second transmission may be a stepped transmission capable of changing the gear ratio stepwise (discontinuously) or the gear ratio steplessly. Any of continuously variable transmissions that can be changed (continuously) may be used. Here, as the stepped transmission, for example, a selection gear type transmission, a planetary gear type transmission, or the like can be used. When the selective gear transmission or the planetary gear transmission is used, a clutch mechanism can be used as a mechanism for switching the gear ratio. Further, the first transmission and the second transmission have a configuration in which the transmission torque is controlled by controlling the clutch mechanism. As the clutch mechanism, for example, a meshing clutch, an electromagnetic clutch, a friction clutch, or the like can be used. Further, as the friction clutch, a wet clutch, a dry clutch, or the like can be used. On the other hand, as the continuously variable transmission, a toroidal continuously variable transmission, a belt continuously variable transmission, or the like can be used. Furthermore, in the present invention, the transmission ratio selected by the first transmission is different from the transmission ratio selected by the second transmission.
実施例 1  Example 1
[0019] つぎに、この発明を図面を参照しながら具体的に説明する。図 1は、車両 1のパヮ 一トレーンの構成例を示す。図 1に示された車両 1は、 F'F (フロントエンジン.フロント ドライブ;エンジン前置き前輪駆動)形式のハイブリッド車である。図 1に示された車両 1では、エンジン 2およびモータ.ジェネレータ MG1およびモータ.ジェネレータ MG2 が、駆動力源として搭載されている。前記エンジン 2は、燃料を燃焼させてその熱ェ ネルギを運動エネルギに変換する動力装置である。このエンジン 2は、吸排気装置、 燃料噴射装置などを有する公知のものであり、ガソリンエンジンであれば、電子スロッ トルバノレブの開度、燃料噴射量、燃料噴射時期、点火時期などを制御することにより エンジン出力、すなわち、エンジン回転数およびエンジントルクを制御することが可能 である。また、モータ 'ジェネレータ MG1 , MG2は、電気工ネルギを運動エネルギに 変換するカ行機能と、運動エネルギを電気工ネルギに変換する回生機能とを兼備し た回転装置である。  Next, the present invention will be specifically described with reference to the drawings. FIG. 1 shows an example of the configuration of a part train of the vehicle 1. The vehicle 1 shown in FIG. 1 is a hybrid vehicle of F'F (front engine. Front drive; front wheel drive in front of the engine) type. In the vehicle 1 shown in FIG. 1, the engine 2, the motor generator MG1, and the motor generator MG2 are mounted as driving force sources. The engine 2 is a power unit that burns fuel and converts the heat energy into kinetic energy. The engine 2 is a known engine having an intake / exhaust device, a fuel injection device, and the like. In the case of a gasoline engine, the engine 2 is controlled by controlling the opening of the electronic throttle valve, the fuel injection amount, the fuel injection timing, the ignition timing, and the like. The engine output, that is, the engine speed and the engine torque can be controlled. The motor generators MG1 and MG2 are rotating devices having both a power function for converting electric energy to kinetic energy and a regeneration function for converting kinetic energy to electric energy.
[0020] これらの、エンジン 2および各モータ.ジェネレータ MG1 , MG2が動力分割機構 3 に動力伝達可能に連結されている。図 1において、この動力分割機構 3は、ダブルピ 二オン式の遊星歯車機構により構成されている。具体的には、サンギヤ 4と、このサン ギヤ 4と同軸上に配置され、かつ、このサンギヤ 4の周囲を取り囲むように配置された リングギヤ 5と、前記サンギヤ 4に嚙合されたピニオンギヤ 55と、このピニオンギヤ 55 および前記リングギヤ 5に嚙合された他のピニオンギヤ 56と、これらのピニオンギヤ 5 5, 56を自転可能、かつ、公転可能に支持するキヤリャ 57とを有している。これら三 個の回転要素、つまり、サンギヤ 4およびリングギヤ 5およびキヤリャ 57が、相互に差 動回転可能となっている。 These engine 2 and motor / generators MG1 and MG2 are connected to the power split mechanism 3 so as to be able to transmit power. In FIG. 1, the power split mechanism 3 is a double pinion planetary gear mechanism. Specifically, the sun gear 4 is arranged coaxially with the sun gear 4 and is arranged so as to surround the sun gear 4. A ring gear 5, a pinion gear 55 meshed with the sun gear 4, this pinion gear 55 and another pinion gear 56 meshed with the ring gear 5, and these pinion gears 5, 56 are supported in a rotatable and revolving manner. And Carya 57. These three rotating elements, that is, the sun gear 4, the ring gear 5, and the carrier 57 can be differentially rotated with respect to each other.
[0021] また、前記動力分割機構 3を構成する第 1の回転要素ないし第 3の回転要素のうち 、第 1の回転要素が入力要素である。また、第 2の回転要素および第 3の回転要素は 、いずれか一方が反力要素となり、他方が出力要素となる。この発明において、第 1 の回転要素ないし第 3の回転要素は、回転要素の個数が三個に限定されるわけでは なぐ四個以上ある回転要素のうち、いずれかが、反力要素として選択され、その他 の回転要素が出力要素として選択される構成でもよい。この動力分割機構 3の回転 要素に対する前記エンジン 2および前記モータ'ジェネレータ MG1 , MG2の連結関 係を説明する。まず、前記リングギヤ 5は、前記エンジン 2のクランクシャフト 8に動力 伝達可能に連結されている。  [0021] Of the first to third rotating elements constituting the power split mechanism 3, the first rotating element is an input element. One of the second rotating element and the third rotating element serves as a reaction force element, and the other serves as an output element. In the present invention, as the first to third rotating elements, the number of rotating elements is not limited to three, and any one of four or more rotating elements is selected as a reaction force element. Other rotation elements may be selected as output elements. The connection relationship between the engine 2 and the motor generators MG1 and MG2 with respect to the rotating elements of the power split mechanism 3 will be described. First, the ring gear 5 is connected to the crankshaft 8 of the engine 2 so that power can be transmitted.
[0022] また、前記サンギヤ 4と一体回転する入力軸 9が設けられている。この入力軸 9は、 前記エンジン 2のクランクシャフト 8と同軸上に配置されている。前記入力軸 9および 前記クランクシャフト 8の回転軸線 B1は、車両 1の幅方向に向けて配置されている。さ らに、前記モータ'ジェネレータ MG1は、ステータ 11およびロータ 12を有しており、 前記ステータ 11がケーシング(図示せず)に固定されている。また前記ロータ 12が前 記入力軸 9に連結されている。さらに、前記入力軸 9の回転軸線方向で、前記ェンジ ン 2と前記モータ ·ジェネレータ MG1との間に、前記モータ ·ジェネレータ MG2が設 けられている。また、前記回転軸線方向において、前記エンジン 2と前記モータ'ジヱ ネレータ MG2との間に前記動力分割機構 3が配置されてレ、る。このモータ ·ジヱネレ ータ MG2は、ステータ 15およびロータ 16を有している。このステータ 15がケーシン グに固定され、前記ロータ 16が前記キヤリャ 57に一体回転するように連結されている  Further, an input shaft 9 that rotates integrally with the sun gear 4 is provided. The input shaft 9 is arranged coaxially with the crankshaft 8 of the engine 2. A rotation axis B1 of the input shaft 9 and the crankshaft 8 is arranged in the width direction of the vehicle 1. Further, the motor generator MG1 has a stator 11 and a rotor 12, and the stator 11 is fixed to a casing (not shown). The rotor 12 is connected to the input shaft 9. Further, the motor / generator MG2 is provided between the engine 2 and the motor / generator MG1 in the rotation axis direction of the input shaft 9. Further, the power split mechanism 3 is disposed between the engine 2 and the motor generator MG2 in the direction of the rotation axis. This motor generator MG 2 has a stator 15 and a rotor 16. The stator 15 is fixed to the casing, and the rotor 16 is connected to the carrier 57 so as to rotate integrally.
[0023] さらに、前記入力軸 9と同軸上に他の入力軸 17が設けられている。この入力軸 17 は中空軸であって、この入力軸 17内に前記入力軸 9が配置されている。すなわち、 2 本の入力軸 9, 17は、共通の回転軸線 B1を中心として相対回転可能である。そして 、前記入力軸 17が、前記ロータ 16およびキヤリャ 57に一体回転するように連結され ている。一方、前記回転軸線 B1と平行な他の回転軸線 C1を中心として回転可能な カウンタ軸 18が設けられている。そして、前記モータ 'ジェネレータ MG2と前記カウン タ軸 18との間の動力伝達経路に第 1の変速機 19Aが設けられ、前記モータ'ジエネ レータ MG1と前記カウンタ軸 18との間の動力伝達経路に第 2の変速機 19Bが設け られている。前記第 1の変速機 19Aは、互いに一体のモータ'ジェネレータ MG2およ びキヤリャ 57の回転数と、前記カウンタ軸 18の回転数との比を制御する機構である。 また、前記第 2の変速機 19Bは、前記モータ'ジェネレータ MG1およびサンギヤ 4の 回転数と、前記カウンタ軸 18の回転数との比を制御する機構である。前記第 1の変 速機 19Aは、第 1速用ギヤ対 20および第 3速用ギヤ対 22を有し、前記第 2の変速機 19Bは、第 2速用ギヤ対 21および第 4速用ギヤ対 23を有している。前記第 1速用ギ ャ対 20は、相互に嚙合された第 1速用駆動ギヤ 25および第 1速用従動ギヤ 26を有 している。また、第 3速用ギヤ対 22は、相互に嚙合された第 3速用駆動ギヤ 27および 第 3速用従動ギヤ 28を有している。そして、前記第 1速用駆動ギヤ 25および前記第 3速用駆動ギヤ 27は、前記入力軸 17と一体回転するように構成されている。 Further, another input shaft 17 is provided coaxially with the input shaft 9. The input shaft 17 is a hollow shaft, and the input shaft 9 is disposed in the input shaft 17. Ie 2 The two input shafts 9 and 17 are relatively rotatable about a common rotation axis B1. The input shaft 17 is connected to the rotor 16 and the carrier 57 so as to rotate integrally. On the other hand, a counter shaft 18 is provided that can rotate around another rotation axis C1 parallel to the rotation axis B1. A first transmission 19A is provided on the power transmission path between the motor generator MG2 and the counter shaft 18, and the power transmission path between the motor generator MG1 and the counter shaft 18 is provided on the power transmission path. A second transmission 19B is provided. The first transmission 19A is a mechanism for controlling the ratio between the rotational speed of the motor / generator MG2 and the carrier 57 integral with each other and the rotational speed of the counter shaft 18. The second transmission 19B is a mechanism for controlling the ratio between the rotation speed of the motor / generator MG1 and the sun gear 4 and the rotation speed of the counter shaft 18. The first speed changer 19A includes a first speed gear pair 20 and a third speed gear pair 22, and the second transmission 19B includes a second speed gear pair 21 and a fourth speed gear pair. Has gear pair 23. The first speed gear pair 20 has a first speed drive gear 25 and a first speed driven gear 26 which are meshed with each other. The third-speed gear pair 22 has a third-speed drive gear 27 and a third-speed driven gear 28 that are meshed with each other. The first-speed drive gear 25 and the third-speed drive gear 27 are configured to rotate integrally with the input shaft 17.
[0024] これに対して、前記第 1速用従動ギヤ 26および前記第 3速用従動ギヤ 28が、前記 カウンタ軸 18に取り付けられており、前記第 1速用従動ギヤ 26および前記第 3速用 従動ギヤ 28は共に、前記カウンタ軸 18に対して相対回転可能に構成されている。  On the other hand, the first-speed driven gear 26 and the third-speed driven gear 28 are attached to the counter shaft 18, and the first-speed driven gear 26 and the third-speed driven gear 28 are attached to the counter shaft 18. Both of the driven gears 28 are configured to be rotatable relative to the counter shaft 18.
[0025] また、第 2速用ギヤ対 21は、相互に嚙合された第 2速用駆動ギヤ 29および第 2速 用従動ギヤ 31を有しており、第 4速用ギヤ対 23は相互に嚙合された第 4速用駆動ギ ャ 30および第 4速用従動ギヤ 32を有している。そして、第 2速用駆動ギヤ 29および 前記第 4速用駆動ギヤ 30が、前記入力軸 9に一体回転するように連結されている。こ れに対して、前記第 2速用従動ギヤ 31および前記第 4速用従動ギヤ 32が、前記カウ ンタ軸 18により保持されている。これら第 2速用従動ギヤ 31および第 4速用従動ギヤ 32は共に、カウンタ軸 18に対して相対回転可能に構成されている。  [0025] The second speed gear pair 21 has a second speed drive gear 29 and a second speed driven gear 31 that are meshed with each other, and the fourth speed gear pair 23 is mutually connected. A fourth speed drive gear 30 and a fourth speed driven gear 32 are combined. The second speed drive gear 29 and the fourth speed drive gear 30 are connected to the input shaft 9 so as to rotate integrally. On the other hand, the second speed driven gear 31 and the fourth speed driven gear 32 are held by the counter shaft 18. Both the second speed driven gear 31 and the fourth speed driven gear 32 are configured to be rotatable relative to the counter shaft 18.
[0026] つぎに、前記第 1の変速機 19Aおよび第 2の変速機 19Bにおいて、その変速比を 制御する機構、より具体的には、前記第 1速用ギヤ対 20ないし第 4速用ギヤ対 23を 、前記カウンタ軸 18に対して動力伝達可能に連結 ·遮断するクラッチ機構について 説明する。まず、第 1のクラッチ機構 S1が設けられており、この第 1のクラッチ機構 S1 により、前記第 1速用ギヤ対 20および第 3速用ギヤ対 22の動力伝達状態が制御され る。この第 1のクラッチ機構 S1は、前記第 1速用従動ギヤ 26または前記第 3速用従動 ギヤ 28のいずれか一方を、前記カウンタ軸 18に対して動力伝達可能に連結するとと もに、前記第 1速用従動ギヤ 26および前記第 3速用従動ギヤ 28の両方を、前記カウ ンタ軸 18に対して動力伝達不可能な状態とする構成を有している。この第 1のクラッ チ機構 S1としては、例えば、ドグクラッチなどの嚙み合レ、クラッチを用いることが可能 であり、この実施例では、前記カウンタ軸 18の回転数に対して、前記第 1速用従動ギ ャ 26または前記第 3速用従動ギヤ 28の回転数を一致させる同期機構(シンクロナイ ザ一機構)を有するクラッチ機構が用いられている。 Next, in the first transmission 19A and the second transmission 19B, a mechanism for controlling the transmission ratio, more specifically, the first speed gear pair 20 to the fourth speed gear. Vs. 23 A clutch mechanism for connecting / disconnecting the counter shaft 18 so as to transmit power will be described. First, a first clutch mechanism S1 is provided, and the power transmission state of the first speed gear pair 20 and the third speed gear pair 22 is controlled by the first clutch mechanism S1. The first clutch mechanism S1 connects either the first speed driven gear 26 or the third speed driven gear 28 to the countershaft 18 so as to be able to transmit power, and Both the first speed driven gear 26 and the third speed driven gear 28 have a configuration in which power cannot be transmitted to the counter shaft 18. As the first clutch mechanism S1, for example, a dog clutch or other meshing clutch or clutch can be used. In this embodiment, the first speed mechanism S1 can be used with respect to the rotational speed of the counter shaft 18. A clutch mechanism having a synchronizing mechanism (synchronizer mechanism) for matching the rotational speeds of the driven gear 26 for driving or the driven gear 28 for third speed is used.
[0027] また、第 2のクラッチ機構 S2が設けられており、この第 2のクラッチ機構 S2により、前 記第 2速用ギヤ対 21および第 4速用ギヤ対 23の動力伝達状態が制御される。この第 2のクラッチ機構 S2は、前記第 2速用従動ギヤ 31または前記第 4速用従動ギヤ 32の いずれか一方を、前記カウンタ軸 18に対して動力伝達可能に連結するとともに、前 記第 2速用従動ギヤ 31および前記第 4速用従動ギヤ 32の両方を、前記カウンタ軸 1 8に対して動力伝達不可能な状態とする構成を有している。この第 2のクラッチ機構 S 2としては、例えば、ドグクラッチなどの嚙み合いクラッチを用いることが可能であり、こ の実施例では、前記カウンタ軸 18の回転数に対して、前記第 2速用従動ギヤ 31また は前記第 4速用従動ギヤ 32の回転数を一致させる同期機構 (シンクロナイザー機構 )を有するクラッチ機構が用いられている。さらに前記第 1のクラッチ機構 S1および前 記第 2のクラッチ機構 S2を動作させるァクチユエータ 39が設けられている。このァク チユエータ 39としては、油圧制御式ァクチユエータまたは電磁制御式ァクチユエータ などを用いることが可能である。  In addition, a second clutch mechanism S2 is provided, and the power transmission state of the second speed gear pair 21 and the fourth speed gear pair 23 is controlled by the second clutch mechanism S2. The The second clutch mechanism S2 connects either the second speed driven gear 31 or the fourth speed driven gear 32 to the counter shaft 18 so as to be able to transmit power, and Both the second-speed driven gear 31 and the fourth-speed driven gear 32 are configured such that power cannot be transmitted to the counter shaft 18. As the second clutch mechanism S 2, for example, a meshing clutch such as a dog clutch can be used. In this embodiment, the second speed mechanism S 2 is used for the rotational speed of the counter shaft 18. A clutch mechanism having a synchronizing mechanism (synchronizer mechanism) that matches the rotational speed of the driven gear 31 or the fourth-speed driven gear 32 is used. Further, an actuator 39 for operating the first clutch mechanism S1 and the second clutch mechanism S2 is provided. As this actuator 39, it is possible to use a hydraulically controlled actuator or an electromagnetically controlled actuator.
[0028] 前記第 1の変速機 19Aの変速比は、前記第 1速用ギヤ対 20の歯数比、および前記 第 3速用ギヤ対 22の歯数比により決定される。また、前記第 2の変速機 19Bの変速 比は、前記第 2速用ギヤ対 21の歯数比、および前記第 4速用ギヤ対 23の歯数比に より決定される。具体的には、前記第 1速用ギヤ対 20の変速比が最大であり、前記第 2速用ギヤ対 21の変速比は前記第 1速用ギヤ対 20の変速比よりも小さく構成され、 前記第 3速用ギヤ対 22の変速比は前記第 2速用ギヤ対 21の変速比よりも小さく構成 され、前記第 4速用ギヤ対 23の変速比は前記第 3速用ギヤ対 22の変速比よりも小さ く構成されている。 [0028] The gear ratio of the first transmission 19A is determined by the gear ratio of the first gear pair 20 and the gear ratio of the third gear pair 22. The gear ratio of the second transmission 19B is determined by the gear ratio of the second speed gear pair 21 and the gear ratio of the fourth speed gear pair 23. Specifically, the gear ratio of the first speed gear pair 20 is maximum, and the first speed gear pair 20 The speed ratio of the second speed gear pair 21 is smaller than the speed ratio of the first speed gear pair 20, and the speed ratio of the third speed gear pair 22 is the speed ratio of the second speed gear pair 21. The gear ratio of the fourth speed gear pair 23 is smaller than the gear ratio of the third speed gear pair 22.
[0029] 一方、前記カウンタ軸 18にはファイナルピニオンギヤ 37が設けられており、そのフ アイナルピニオンギヤ 37にリングギヤ 40が嚙合している。このファイナルピニオンギヤ 37およびリングギヤ 40により、最終減速機が構成されている。また、このリングギヤ 4 0はデフケース 50と一体回転するように構成されており、このデフケース 50に内蔵さ れた一対のサイドギヤ(図示せず)と車輪 (前輪) 51とが、ドライブシャフト 52により動 力伝達可能に連結されてレ、る。  On the other hand, a final pinion gear 37 is provided on the counter shaft 18, and a ring gear 40 is engaged with the final pinion gear 37. The final pinion gear 37 and the ring gear 40 constitute a final reduction gear. The ring gear 40 is configured to rotate integrally with the differential case 50, and a pair of side gears (not shown) and wheels (front wheels) 51 built in the differential case 50 are moved by a drive shaft 52. It is connected to transmit power.
[0030] さらに、前記モータ.ジェネレータ MG1 , MG2との間で電力の授受をおこなう電力 供給装置 53が設けられている。この電力供給装置 53は、二次電池などの蓄電装置( 図示せず)を有しており、蓄電装置としてはバッテリまたはキャパシタを用いることがで きる。この蓄電装置と前記モータ'ジェネレータ MG1 , MG2とがインバータ(図示せ ず)を介して接続されている。また、電力供給装置 53は、蓄電装置の他に、燃料電池 システム(図示せず)を備えていてもよい。この燃料電池システムは、水素と酸素を反 応させて電力を得るシステムであり、発生した電力をモータ ·ジェネレータ MG1 , MG 2に供給し、あるいは蓄電装置に充電することができる。さらに、前記電力供給装置 5 3は、モータ ·ジェネレータ MG1とモータ ·ジェネレータ MG2とを接続する電気回路を 有しており、前記蓄電装置を経由することなぐ前記モータ'ジェネレータ MG1とモー タ 'ジェネレータ MG2との間で直接電力の授受をおこなうことが可能である。  [0030] Furthermore, a power supply device 53 is provided for transferring power to and from the motor generators MG1 and MG2. The power supply device 53 has a power storage device (not shown) such as a secondary battery, and a battery or a capacitor can be used as the power storage device. This power storage device and motor generators MG1 and MG2 are connected via an inverter (not shown). Further, the power supply device 53 may include a fuel cell system (not shown) in addition to the power storage device. This fuel cell system is a system that obtains electric power by reacting hydrogen and oxygen, and can supply the generated electric power to the motor generators MG1 and MG2 or charge the power storage device. Further, the power supply device 53 has an electric circuit for connecting the motor / generator MG1 and the motor / generator MG2, and the motor / generator MG1 and the motor / generator MG2 without passing through the power storage device. It is possible to send and receive power directly to and from.
[0031] つぎに車両の制御系統について説明すると、コントローラとしての電子制御装置 54 が設けられており、この電子制御装置 54には、各種のセンサやスィッチなどの検知 信号、例えば、加速要求、制動要求、エンジン回転数、前記モータ'ジェネレータ M Gl , MG2の回転数、前記入力軸 9, 17の回転数、前記カウンタ軸 18の回転数など が入力される一方、この電子制御装置 54からは、前記エンジン 2を制御する信号、前 記モータ'ジェネレータ MG1, MG2を制御する信号、前記電力供給装置 53におけ る発電状態 ·充電状態 ·放電状態などを示す信号、前記ァクチユエータ 39を制御す る信号などが出力される。 Next, the vehicle control system will be described. An electronic control unit 54 is provided as a controller. The electronic control unit 54 includes detection signals from various sensors and switches, for example, acceleration requests, braking requests, and the like. The request, the engine speed, the motor / generator M Gl, the rotation speed of MG2, the rotation speed of the input shafts 9, 17 and the rotation speed of the counter shaft 18 are input. A signal for controlling the engine 2, a signal for controlling the motor generators MG1 and MG2, a signal indicating the power generation state / charge state / discharge state of the power supply device 53, and the actuator 39 are controlled. Signal is output.
[0032] 図 1に示す車両 1において、エンジントルクが前記動力分割機構 3のリングギヤ 5に 入力されるとともに、レ、ずれか一方のモータ ·ジェネレータでエンジントルクの反力を 受け持つ制御が実行される。具体的には、前記サンギヤ 4に連結されたモータ'ジェ ネレータ MG1で反力を受け持つ場合は、前記キヤリャ 57が前記動力分割機構 3の 出力要素となる。これに対して、前記キヤリャ 57に連結されたモータ 'ジェネレータ M G2で反力を受け持つ場合は、前記サンギヤ 4が前記動力分割機構 3の出力要素と なる。ここで、エンジントルクの反力を受け持つモータ 'ジェネレータが正回転する場 合は、そのモータ.ジェネレータが回生制御される。これに対して、エンジントルクの 反力を受け持つモータ ·ジェネレータが逆回転する場合は、そのモータ ·ジェネレータ がカ行制御される。  [0032] In the vehicle 1 shown in Fig. 1, the engine torque is input to the ring gear 5 of the power split mechanism 3, and the control to handle the reaction force of the engine torque is executed by one of the motor and generator. . Specifically, when the motor generator MG1 connected to the sun gear 4 takes a reaction force, the carrier 57 serves as an output element of the power split mechanism 3. On the other hand, when the motor generator M G2 connected to the carrier 57 takes on a reaction force, the sun gear 4 serves as an output element of the power split mechanism 3. Here, when the motor / generator responsible for the reaction force of the engine torque rotates in the forward direction, the motor / generator is regeneratively controlled. On the other hand, when the motor / generator responsible for the reaction force of the engine torque rotates in the reverse direction, the motor / generator is controlled.
[0033] また、反カトノレクを受け持つモータ'ジェネレータが回生制御される場合は、発生し た電力を前記蓄電装置に充電したり、他方のモータ'ジェネレータに供給して、その モータ'ジェネレータでカ行制御を実行することも可能である。これに対して、反カト ルクを受け持つモータ'ジェネレータがカ行制御される場合は、前記蓄電装置の電 力を、反力を受け持つモータ'ジェネレータに供給したり、他方のモータ'ジエネレー タを回生制御して、発生した電力を反力を受け持つモータ'ジェネレータに供給する ことも可能である。そして、前記動力分割機構 3においては、エンジントルクの反力を 受け持つモータ'ジェネレータの回転数を制御すると、前記サンギヤ 4およびリングギ ャ 5およびキヤリャ 57の差動作用により、エンジン回転数と出力要素の回転数との比 を無段階 (連続的)に制御することが可能である。すなわち、前記動力分割機構 3が 無段変速機として作用する。  [0033] When the motor generator that handles the anti-catonolec is regeneratively controlled, the generated electric power is charged to the power storage device or supplied to the other motor generator, and the motor generator generates the power. It is also possible to execute control. On the other hand, when the motor / generator that handles the anti-clock is controlled by the line, the power of the power storage device is supplied to the motor / generator that handles the counter-force, or the other motor / generator is regenerated. It is also possible to control and supply the generated electric power to the motor generator that handles the reaction force. In the power split mechanism 3, when the rotational speed of the motor / generator responsible for the reaction force of the engine torque is controlled, the differential speed of the sun gear 4, the ring gear 5, and the carrier 57 causes the engine rotational speed and output element to be The ratio to the rotational speed can be controlled steplessly (continuously). That is, the power split mechanism 3 acts as a continuously variable transmission.
[0034] この動力分割機構 3の変速比の制御について簡単に説明すると、まず、前記電子 制御装置 54に入力される信号が処理され、 目標駆動力および目標エンジン出力な どが求められる。例えば、車速およびアクセル開度 (加速要求)に基づいて、 目標駆 動力が求められ、この目標駆動力に基づいて、前記エンジン 2で負担する目標ェン ジン出力が求められる。この目標エンジン出力に基づいて前記エンジン 2の出力を制 御する場合、前記エンジン 2の燃費が最適燃費となるように、最適燃費曲線に応じた 目標エンジン回転数および目標エンジントルクが求められる。そして、前記動力分割 機構 3の変速比を制御することにより、実エンジン回転数を目標エンジン回転数に近 づけることが可能であり、電子スロットルバルブの開度などを制御することにより、実ェ ンジントルクを目標エンジントルクに近づけることが可能である。 [0034] Control of the gear ratio of the power split mechanism 3 will be briefly described. First, a signal input to the electronic control unit 54 is processed to obtain a target driving force, a target engine output, and the like. For example, the target drive power is obtained based on the vehicle speed and the accelerator opening (acceleration request), and the target engine output borne by the engine 2 is obtained based on the target drive force. When the output of the engine 2 is controlled based on this target engine output, the optimal fuel consumption curve is set so that the fuel consumption of the engine 2 becomes the optimal fuel consumption. A target engine speed and a target engine torque are obtained. The actual engine speed can be brought close to the target engine speed by controlling the gear ratio of the power split mechanism 3, and the actual engine torque can be controlled by controlling the opening of the electronic throttle valve. Can be made closer to the target engine torque.
[0035] 一方、前記動力分割機構 3で反力を受け持つモータ'ジェネレータを選択したり、 目標駆動力に応じたアシストトルクをモータ 'ジェネレータで発生させることなどを目 的として、前記第 1の変速機 19Aおよび前記第 2の変速機 19Bの制御が実行される 。この第 1の変速機 19Aおよび前記第 2の変速機 19Bを制御するモードとして選択 的に切り換え可能な前進ポジションについて説明する。前記前進ポジションとは、車 両 1を前進させる向きの駆動力を発生させる場合に用いるポジションである。この前 進ポジションでは図 2に示すモード(mode)、具体的には変速制御モード 1 (1st)お よび変速制御モード 2 (2nd)および変速制御モード 3 (3rd)および変速制御モード 4 (4th)を選択的に切り替えることが可能である。これらの変速制御モードは、前記第 1 の変速機 19Aおよび前記第 2の変速機 19Bの変速比を制御し、かつ、前記第 1の変 速機 19Aおよび前記第 2の変速機 19Bにおける動力伝達状態を制御するものであ る。前記変速制御モード 1および変速制御モード 3は、エンジントルクを前記リングギ ャ 5から前記入力軸 17に伝達する場合に選択される変速制御モードである。  [0035] On the other hand, for the purpose of selecting a motor / generator responsible for the reaction force in the power split mechanism 3 or generating an assist torque corresponding to the target driving force by the motor / generator, the first shift Control of the machine 19A and the second transmission 19B is executed. A forward position that can be selectively switched as a mode for controlling the first transmission 19A and the second transmission 19B will be described. The forward position is a position used when generating a driving force in a direction for moving the vehicle 1 forward. In this forward position, the mode shown in Fig. 2, specifically, shift control mode 1 (1st), shift control mode 2 (2nd), shift control mode 3 (3rd) and shift control mode 4 (4th) Can be selectively switched. These shift control modes control the transmission ratios of the first transmission 19A and the second transmission 19B, and transmit power in the first transmission 19A and the second transmission 19B. It controls the state. The shift control mode 1 and the shift control mode 3 are shift control modes that are selected when engine torque is transmitted from the ring gear 5 to the input shaft 17.
[0036] 図 2には、変速制御モード 1 (1st)および変速制御モード 2 (2nd)および変速制御 モード 3 (3rd)および変速制御モード 4 (4th)のそれぞれにつレ、て、前記第 1のクラッ チ機構 S1の係合により連結されるギヤ、前記第 2のクラッチ機構 S2の係合により連 結されるギヤが示されている。まず、前記変速制御モード 1または変速制御モード 3 が選択された場合は、前記モータ 'ジェネレータ MG1により反力トルクが受け持たれ る。具体的に説明すると、変速制御モード 1が選択された場合は、前記第 1のクラッチ 機構 S1によって、前記カウンタ軸 18と前記第 1速用従動ギヤ 26とが連結され、かつ 、前記カウンタ軸 18と前記第 3速用従動ギヤ 28との間の動力伝達が遮断される。ま た、前記第 2のクラッチ機構 S2が解放されて、前記カウンタ軸 18に対する前記第 2速 用従動ギヤ 31および第 4速用従動ギヤ 32の動力伝達が共に遮断される。このように して、前記変速制御モード 1が選択された場合は、エンジントルクが前記第 1速用ギ ャ対 20を経由して前記カウンタ軸 18に伝達される。 FIG. 2 shows the shift control mode 1 (1st), the shift control mode 2 (2nd), the shift control mode 3 (3rd), and the shift control mode 4 (4th). A gear connected by engagement of the clutch mechanism S1 and a gear connected by engagement of the second clutch mechanism S2 are shown. First, when the shift control mode 1 or the shift control mode 3 is selected, a reaction force torque is received by the motor / generator MG1. Specifically, when the shift control mode 1 is selected, the counter shaft 18 and the first driven gear 26 are connected by the first clutch mechanism S1, and the counter shaft 18 And the third-speed driven gear 28 are interrupted. Further, the second clutch mechanism S2 is released, and the power transmission of the second speed driven gear 31 and the fourth speed driven gear 32 to the counter shaft 18 is interrupted. Thus, when the shift control mode 1 is selected, the engine torque is changed to the first speed gear. It is transmitted to the counter shaft 18 via the pair 20.
[0037] また、前記変速制御モード 3が選択された場合は、前記第 1のクラッチ機構 S1によ つて、前記カウンタ軸 18と前記第 3速用従動ギヤ 28とが連結され、かつ、前記カウン タ軸 18と前記第 1速用従動ギヤ 26との間の動力伝達が遮断される。また、前記第 2 のクラッチ機構 S2が解放されて、前記カウンタ軸 18に対する前記第 2速用従動ギヤ 31および第 4速用従動ギヤ 32の動力伝達が共に遮断される。このようにして、前記 変速制御モード 3が選択された場合は、前記動力分割機構 3のキヤリャ 57から出力 されたトルクが、前記第 3速用ギヤ対 22を経由して前記カウンタ軸 18に伝達される。  [0037] When the shift control mode 3 is selected, the counter shaft 18 and the third speed driven gear 28 are connected by the first clutch mechanism S1, and the counter The power transmission between the shaft 18 and the first speed driven gear 26 is cut off. Further, the second clutch mechanism S2 is released, and the power transmission of the second speed driven gear 31 and the fourth speed driven gear 32 to the counter shaft 18 is interrupted. Thus, when the shift control mode 3 is selected, the torque output from the carrier 57 of the power split mechanism 3 is transmitted to the counter shaft 18 via the third speed gear pair 22. Is done.
[0038] つぎに、前記変速制御モード 2および変速制御モード 4について説明する。この変 速制御モード 2および変速制御モード 4は、エンジントルクを前記サンギヤ 4から前記 入力軸 9に伝達する場合に選択されるモードであり、この変速制御モード 2または変 速制御モード 4が選択された場合は、前記モータ 'ジェネレータ MG2により反カトノレ クが受け持たれる。具体的に説明すると、前記変速制御モード 2が選択された場合は 、前記第 2のクラッチ機構 S2によって、前記カウンタ軸 18と前記第 2速用従動ギヤ 31 とが連結され、かつ、前記カウンタ軸 18と前記第 4速用従動ギヤ 32との間の動力伝 達が遮断される。また、前記第 1のクラッチ機構 S1が解放されて、前記カウンタ軸 18 に対する前記第 1速用従動ギヤ 26および第 3速用従動ギヤ 28の動力伝達が共に遮 断される。このようにして、前記変速制御モード 2が選択された場合は、前記動力分 割機構 3のサンギヤ 4から出力されたトルクが、前記第 2速用ギヤ対 21を経由して前 記カウンタ軸 18に伝達される。  [0038] Next, the shift control mode 2 and the shift control mode 4 will be described. The speed change control mode 2 and the speed change control mode 4 are modes that are selected when the engine torque is transmitted from the sun gear 4 to the input shaft 9, and the speed change control mode 2 or the speed change control mode 4 is selected. In this case, the motor generator MG2 takes over the anti-catenol. Specifically, when the shift control mode 2 is selected, the counter shaft 18 and the second speed driven gear 31 are connected by the second clutch mechanism S2, and the counter shaft Power transmission between 18 and the fourth speed driven gear 32 is cut off. Further, the first clutch mechanism S1 is released, and the power transmission of the first speed driven gear 26 and the third speed driven gear 28 to the counter shaft 18 is interrupted. In this way, when the shift control mode 2 is selected, the torque output from the sun gear 4 of the power dividing mechanism 3 is transmitted to the counter shaft 18 via the second speed gear pair 21. Is transmitted to.
[0039] これに対して、前記変速制御モード 4が選択された場合は、前記第 2のクラッチ機 構 S2によって、前記カウンタ軸 18と前記第 4速用従動ギヤ 32とが連結され、かつ、 前記カウンタ軸 18と前記第 2速用従動ギヤ 31との間の動力伝達が遮断される。また 、前記第 1のクラッチ機構 S1が解放されて、前記カウンタ軸 18に対する前記第 1速用 従動ギヤ 26および第 3速用従動ギヤ 28の動力伝達が共に遮断される。このようにし て、前記変速制御モード 4が選択された場合は、前記動力分割機構 3のサンギヤ 4か ら出力されたトルクが、前記第 4速用ギヤ対 23を経由して前記カウンタ軸 18に伝達さ れる。 [0040] このように、複数の変速制御モードを選択的に切り替えることにより、前記第 1の変 速機 19Aでは、前記入力軸 17の回転数と、前記カウンタ軸 18との間の回転数の比 である変速比を、段階的に変更することができるとともに、前記第 2の変速機 19Bで は、前記入力軸 9の回転数と、前記カウンタ軸 18との間の回転数の比である変速比 を、段階的に変更することができる。なお、図 2において「X」印は、前記第 1のクラッ チ機構 S1または前記第 2のクラッチ機構 S2が解放されることを示す。 On the other hand, when the shift control mode 4 is selected, the counter shaft 18 and the fourth speed driven gear 32 are connected by the second clutch mechanism S2, and Power transmission between the counter shaft 18 and the second speed driven gear 31 is interrupted. Further, the first clutch mechanism S1 is released, and the power transmission of the first speed driven gear 26 and the third speed driven gear 28 to the counter shaft 18 is cut off. Thus, when the shift control mode 4 is selected, the torque output from the sun gear 4 of the power split mechanism 3 is applied to the counter shaft 18 via the fourth speed gear pair 23. Communicated. In this way, by selectively switching a plurality of shift control modes, in the first speed changer 19A, the rotation speed between the input shaft 17 and the rotation speed between the counter shaft 18 is changed. The second transmission 19B is a ratio of the rotational speed between the input shaft 9 and the counter shaft 18 in the second transmission 19B. The gear ratio can be changed in stages. In FIG. 2, the “X” mark indicates that the first clutch mechanism S1 or the second clutch mechanism S2 is released.
[0041] 以上のようにして、カウンタ軸 18にトルクが伝達されるとともに、そのトルクがドライブ シャフト 52を経由して車輪 51に伝達され、駆動力が発生する。そして、図 1に示す車 両においては、前記動力分割機構 3の変速比の制御と、前記第 1の変速機 19Aまた は第 2の変速機 19Bの変速比の制御とを並行して実行することにより、エンジン回転 数と前記カウンタ軸 18の回転数との比で表される「駆動装置 (パワートレーン)全体の 変速比」を制御することができる。  [0041] As described above, torque is transmitted to the countershaft 18, and the torque is transmitted to the wheel 51 via the drive shaft 52 to generate a driving force. In the vehicle shown in FIG. 1, the control of the transmission ratio of the power split mechanism 3 and the control of the transmission ratio of the first transmission 19A or the second transmission 19B are executed in parallel. As a result, the “transmission ratio of the entire drive device (power train)” expressed by the ratio between the engine speed and the counter shaft 18 speed can be controlled.
[0042] つぎに、「駆動装置の変速比」を制御する場合に用いられる複数の駆動モードにつ いて説明する。この実施例においては、駆動モード 1ないし駆動モード 4に切替可能 である。具体的には、駆動モード 1が選択された場合は、前記変速制御モード 1が用 いられ、駆動モード 2が選択された場合は、前記変速制御モード 2が用いられ、駆動 モード 3が選択された場合は、前記変速制御モード 3が用いられ、駆動モード 4が選 択された場合は、前記変速制御モード 4が用いられる。すなわち、駆動モードとは、 前記駆動装置の変速比を制御する場合に選択される車両全体としての制御モード であり、この実施例では、各駆動モード毎に前記駆動装置の変速比の制御範囲が異 なる。いずれの駆動モードを選択するかは、車速、アクセル開度、 目標駆動力などに 基づいて電子制御装置 54により決定される。  [0042] Next, a description will be given of a plurality of drive modes used for controlling the "speed ratio of the drive device". In this embodiment, switching from drive mode 1 to drive mode 4 is possible. Specifically, when drive mode 1 is selected, the shift control mode 1 is used, and when drive mode 2 is selected, the shift control mode 2 is used and drive mode 3 is selected. If this is the case, the shift control mode 3 is used, and if the drive mode 4 is selected, the shift control mode 4 is used. That is, the drive mode is a control mode for the entire vehicle that is selected when the gear ratio of the drive device is controlled. In this embodiment, the control range of the gear ratio of the drive device is set for each drive mode. Different. Which drive mode is selected is determined by the electronic control unit 54 based on the vehicle speed, the accelerator opening, the target drive force, and the like.
[0043] つぎに、前記した前進ポジションが選択された場合に実行可能な前記第 1の変速 機 19Aおよび第 2の変速機 19Bの制御、および前記エンジン 2の制御、および前記 モータ.ジェネレータ MG1, MG2の制御を図 3ないし図 6の共線図により説明する。 これらの共線図上にぉレ、て、前記モータ ·ジェネレータ MG1と前記モータ ·ジエネレ ータ MG2との間に、前記エンジン 2 (ENG)が配置されている。まず、前記車両 1の 発進時には前記変速制御モード 1が選択される。また、図 3に示すように、前記ェン ジン 2が正回転し、かつ、前記モータ'ジェネレータ MG1が正回転し、かつ、回生制 御されてエンジントルクの反力を受け持つ。このモータ'ジェネレータ MG1の回生制 御により得られた電力を、前記モータ 'ジェネレータ MG2に供給してカ行制御し、か つ、正回転する向きのトノレクが発生される。すなわち、動力分割機構 3のキヤリャ 57 が出力要素となる。 [0043] Next, the control of the first transmission 19A and the second transmission 19B, the control of the engine 2, and the motor generator MG1, which can be executed when the forward position is selected. The control of MG2 will be described with reference to the alignment charts of FIGS. The engine 2 (ENG) is arranged between the motor / generator MG1 and the motor / generator MG2 on the alignment chart. First, the shift control mode 1 is selected when the vehicle 1 starts. In addition, as shown in FIG. The gin 2 rotates in the forward direction, and the motor / generator MG1 rotates in the forward direction, and is regeneratively controlled to handle the reaction force of the engine torque. The electric power obtained by the regenerative control of the motor / generator MG1 is supplied to the motor / generator MG2 for power control, and a tonolec in the direction of forward rotation is generated. That is, the carrier 57 of the power split mechanism 3 is an output element.
[0044] その後、車速が上昇して、前記モータ 'ジェネレータ MG1の回転数が低下するとと もに、そのモータ'ジェネレータ MG1の回転数力 その時点の車速および第 2速用ギ ャ対 21の変速比に応じた回転数に等しくなると、変速制御モード 1から変速制御モ ード 2に変更される。変速制御モード 1から変速制御モード 2に変更する途中では、 前記第 1のクラッチ機構 S1によって、前記第 1速用従動ギヤ 26と前記カウンタ軸 18と が連結されていることに加えて、前記第 2のクラッチ機構 S2によって、前記第 2速用 従動ギヤ 31と前記カウンタ軸 18とが連結される。そして、図 4の共線図に示すように 、モータ'ジェネレータ MG1, MG2を共に空転させる制御がおこなわれる。つまり、 モータ'ジェネレータ MG1, MG2はカ行も回生もおこなわない無負荷状態となる。そ して、前記第 1のクラッチ機構 S1が解放され、かつ、前記第 2のクラッチ機構 S2が上 記の係合状態に維持されて、変速制御モード 2が達成される。この変速制御モード 2 が達成された場合は、図 5の共線図に示すように、前記モータ'ジェネレータ MG2が 正回転し、かつ、回生制御されてエンジントルクの反力を受け持ち、動力分割機構 3 のサンギヤ 4が出力要素となる。また、前記モータ'ジェネレータ MG2で発生した電 力が前記モータ ·ジェネレータ MG1に供給されて、そのモータ ·ジェネレータ MG1が カ行制御される。  [0044] After that, the vehicle speed increases, the rotation speed of the motor 'generator MG1 decreases, and the rotation speed force of the motor' generator MG1 shifts the vehicle speed at that time and the second speed gear pair 21. When it becomes equal to the rotation speed corresponding to the ratio, the shift control mode 1 is changed to the shift control mode 2. In the middle of changing from the shift control mode 1 to the shift control mode 2, the first clutch mechanism S1 connects the first speed driven gear 26 and the counter shaft 18 in addition to the first clutch mechanism S1. The second speed driven gear 31 and the counter shaft 18 are connected by the second clutch mechanism S2. Then, as shown in the collinear diagram of FIG. 4, control is performed so that both motor generators MG1 and MG2 idle. That is, the motor generators MG1 and MG2 are in a no-load state in which neither power nor regeneration is performed. Then, the first clutch mechanism S1 is released, and the second clutch mechanism S2 is maintained in the above-described engaged state, whereby the shift control mode 2 is achieved. When this shift control mode 2 is achieved, as shown in the collinear diagram of FIG. 5, the motor / generator MG2 rotates forward and is regeneratively controlled to handle the reaction force of the engine torque. 3 sun gear 4 is the output element. The electric power generated by the motor / generator MG2 is supplied to the motor / generator MG1, and the motor / generator MG1 is controlled in a row.
[0045] 前記変速制御モード 2が選択された状態で車速が更に上昇することにより、モータ' ジェネレータ MG2の回転数力 S、その時点の車速および第 3速用ギヤ対 22の変速比 に応じた回転数に等しくなると、前記第 1のクラッチ機構 S1によって、第 3速用従動ギ ャ 28と前記カウンタ軸 18とが連結される。すなわち、第 1のクラッチ機構 S1および第 2のクラッチ機構 S2が共に係合状態となる。また、図 6の共線図に示すように、モータ 'ジェネレータ MG1 , MG2が共に空転する。ついで、前記第 2のクラッチ機構 S2が 解放され、かつ、前記第 1のクラッチ機構 S1が上記の係合状態に維持されて、変速 制御モード 3が達成される。この変速制御モード 3が達成された場合は、前記モータ' ジェネレータ MG1が正回転し、かつ、回生制御されてエンジントルクの反力を受け持 ち、動力分割機構 3のキヤリャ 57が出力要素となる。また、前記モータ'ジェネレータ MG1で発生した電力をモータ'ジェネレータ MG2に供給し、そのモータ'ジエネレー タ MG2がカ行制御される。 [0045] When the vehicle speed further increases in the state where the shift control mode 2 is selected, the rotational speed force S of the motor / generator MG2, the vehicle speed at that time, and the gear ratio of the third speed gear pair 22 are determined. When the rotational speed is equal, the third speed driven gear 28 and the counter shaft 18 are connected by the first clutch mechanism S1. That is, both the first clutch mechanism S1 and the second clutch mechanism S2 are engaged. Further, as shown in the collinear diagram of FIG. 6, both the motor generators MG1 and MG2 are idle. Next, the second clutch mechanism S2 is released, and the first clutch mechanism S1 is maintained in the above-described engaged state, so that the speed change is performed. Control mode 3 is achieved. When this shift control mode 3 is achieved, the motor / generator MG1 rotates forward and is regeneratively controlled to receive the reaction force of the engine torque, and the carrier 57 of the power split mechanism 3 serves as an output element. . Further, the electric power generated by the motor / generator MG1 is supplied to the motor / generator MG2, and the motor / generator MG2 is controlled in a row.
[0046] 前記変速制御モード 3が選択された状態で車速が更に上昇することにより、モータ' ジェネレータ MG1の回転数力 S、その時点の車速および第 4速用ギヤ対 23の変速比 に応じた回転数に等しくなると、前記第 2のクラッチ機構 S2によって、第 4速用従動ギ ャ 32が前記カウンタ軸 18に連結される。すなわち、第 1のクラッチ機構 S1および第 2 のクラッチ機構 S2が共に係合される。また、モータ 'ジェネレータ MG1 , MG2が共に 空転する。そして、前記第 1のクラッチ機構 S1が解放され、かつ、前記第 2のクラッチ 機構 S2が上記の係合状態に維持されて、変速制御モード 4が達成される。この変速 制御モード 4が達成された場合は、前記モータ 'ジェネレータ MG2が回生制御され てエンジントルクの反力を受け持ち、動力分割機構 3のサンギヤ 4が出力要素となる。 また、前記モータ ·ジェネレータ MG2で発生した電力をモータ ·ジェネレータ MG1に 供給し、そのモータ 'ジェネレータ MG1がカ行制御される。なお、この実施例におい て、変速制御モード 4から変速制御モード 3に変更する制御、および変速制御モード 3から変速制御モード 2に変更する制御、および変速制御モード 2から変速制御モー ド 1に変更する制御も実行可能である。  [0046] When the vehicle speed further increases in the state where the shift control mode 3 is selected, the rotational speed force S of the motor / generator MG1, the vehicle speed at that time, and the gear ratio of the fourth speed gear pair 23 are determined. When the rotation speed is equal, the fourth speed driven gear 32 is connected to the counter shaft 18 by the second clutch mechanism S2. That is, both the first clutch mechanism S1 and the second clutch mechanism S2 are engaged. Motor 'generators MG1 and MG2 both idle. Then, the first clutch mechanism S1 is released, and the second clutch mechanism S2 is maintained in the engaged state, and the shift control mode 4 is achieved. When the shift control mode 4 is achieved, the motor / generator MG2 is regeneratively controlled to handle the reaction force of the engine torque, and the sun gear 4 of the power split mechanism 3 serves as an output element. In addition, the electric power generated by the motor / generator MG2 is supplied to the motor / generator MG1, and the motor / generator MG1 is controlled. In this embodiment, the control for changing from the shift control mode 4 to the shift control mode 3, the control for changing from the shift control mode 3 to the shift control mode 2, and the change from the shift control mode 2 to the shift control mode 1 are performed. It is also possible to execute control.
[0047] つぎに、前記各駆動モードの特性を図 7の線図に基づいて説明する。図 7において は、エンジン回転数と前記カウンタ軸 18の回転数との比である変速比(i)が横軸に示 され、理論伝達効率が縦軸に示されている。ここで、理論伝達効率とは、前記ェンジ ン 2の動力がカウンタ軸 18に伝達される割合である。ここに示す理論伝達効率は、前 記電力供給装置 53からモータ ·ジェネレータ MG1 , MG2に電力が供給されなレ、こと を前提とするものである。  Next, the characteristics of each drive mode will be described with reference to the diagram of FIG. In FIG. 7, the transmission ratio (i), which is the ratio between the engine speed and the counter shaft 18, is shown on the horizontal axis, and the theoretical transmission efficiency is shown on the vertical axis. Here, the theoretical transmission efficiency is a rate at which the power of the engine 2 is transmitted to the counter shaft 18. The theoretical transmission efficiency shown here is based on the premise that no power is supplied from the power supply device 53 to the motor generators MG1 and MG2.
[0048] 前記モータ 'ジェネレータ MG1, MG2が停止された場合を、理論伝達効率が 1. 0 として表している。理論伝達効率が 1. 0未満になるということは、前記エンジン 2の動 力が電気工ネルギに変換されたり、電気工ネルギがモータ 'ジェネレータの動力に変 換されたりして、電力供給装置 53における電気流通量が増加すること、つまり、車両 1における全体としての電気依存度が大きく(高く)なることを意味する。また、図 7に は、駆動モード 1ないし駆動モード 4が特性線で示されている。各駆動モードに対応 する特性線は、上向きに突出された山形の特性を備えている。各駆動モードを示す 特性線の頂点で、いずれも、電気工ネルギの理論伝達効率が 1. 0となっている。こ れに対して、モータ 'ジェネレータ MG1 , MG2でカ行制御または回生制御が実行さ れる場合は、機械的エネルギと電気工ネルギとの変換がおこなわれるため、理論伝 達効率が 1. 0未満となっている。 [0048] When the motor generators MG1 and MG2 are stopped, the theoretical transmission efficiency is represented as 1.0. The theoretical transmission efficiency of less than 1.0 means that the engine 2's dynamic power is converted into electric energy or the electric energy is converted into motor's generator power. In other words, it means that the amount of electricity flowing through the power supply device 53 increases, that is, the overall electrical dependency in the vehicle 1 becomes large (high). In FIG. 7, drive modes 1 to 4 are indicated by characteristic lines. The characteristic line corresponding to each drive mode has a mountain-shaped characteristic protruding upward. The theoretical transmission efficiency of electric energy is 1.0 at the apex of the characteristic lines showing each drive mode. On the other hand, when the motor generators MG1 and MG2 carry out line control or regenerative control, conversion between mechanical energy and electrical energy is performed, so the theoretical transfer efficiency is less than 1.0. It has become.
[0049] また、各駆動モードを示す特性線の頂点を境として、左側の領域がモータ'ジエネ レータ MG1が逆回転し、かつ、カ行制御されることを示し、右側領域がモータ'ジヱ ネレータ MG1が正回転し、かつ、回生制御されることを示している。図 7に示すように 、各駆動モード毎に、前記変速比(i)の制御範囲が異なる。具体的には、駆動モード 2における変速比 (i)の制御範囲は、駆動モード 1における変速比 (i)の制御範囲より も小さい変速比の領域である。また、駆動モード 3における変速比 (i)の制御範囲は、 前記駆動モード 2に対応する変速比 (i)の制御範囲よりも小さい変速比の領域である 。さらに、駆動モード 4における変速比(i)の制御範囲は、前記駆動モード 3に対応す る変速比 (i)の制御範囲よりも小さい変速比の領域である。  [0049] Further, with the vertex of the characteristic line indicating each drive mode as a boundary, the left area indicates that the motor generator MG1 is rotated in reverse and the power is controlled, and the right area indicates the motor "J". This indicates that the generator MG1 rotates forward and is regeneratively controlled. As shown in FIG. 7, the control range of the transmission ratio (i) differs for each drive mode. Specifically, the control range of the gear ratio (i) in the drive mode 2 is a region of the gear ratio smaller than the control range of the gear ratio (i) in the drive mode 1. Further, the control range of the gear ratio (i) in the drive mode 3 is a region of the gear ratio smaller than the control range of the gear ratio (i) corresponding to the drive mode 2. Further, the control range of the gear ratio (i) in the drive mode 4 is a region of the gear ratio smaller than the control range of the gear ratio (i) corresponding to the drive mode 3.
[0050] 以上のように、図 1の車両 1においては、前記動力分割機構 3の変速比を制御する とともに、前記エンジン 2の反力トルクを、モータ'ジェネレータ MG1またはモータ'ジ エネレータ MG2により選択的に受け持つ制御を実行可能である。さらには、前記モ ータ'ジェネレータ MG1, MG2からカウンタ軸 18に至る動力伝達経路に、前記第 1 の変速機 19Aおよび前記第 2の変速機 19Bが設けられており、前記モータ'ジエネレ ータ MG1 , MG2の回転数とカウンタ軸 18の回転数との比をそれぞれ制御すること ができる。これらの制御により、駆動装置の変速比 (i)の選択範囲(レンジ)を拡大す ること力 Sできる。また、エンジントルクの反力を受けるモータ 'ジェネレータをカ行制御 (特に逆回転で)させ、かつ、前記動力分割機構 3の出力要素に連結されるモータ- ジェネレータで回生制御をおこなレ、、その回生制御で得られた電力を、カ行制御す るモータ ·ジェネレータに供給する現象、レ、わゆる動力循環を抑制することができる。 したがって、エンジン 2から車輪 51に伝達される機械的な動力伝達量を増加させ、電 力の流通量を低減させることができ、駆動装置全体における動力伝達効率が向上す る。 As described above, in the vehicle 1 of FIG. 1, the transmission ratio of the power split mechanism 3 is controlled, and the reaction torque of the engine 2 is selected by the motor “generator MG1 or the motor” generator MG2. Control can be executed. Furthermore, the first transmission 19A and the second transmission 19B are provided in the power transmission path from the motor generators MG1, MG2 to the counter shaft 18, and the motor generator The ratio between the rotation speed of MG1 and MG2 and the rotation speed of the counter shaft 18 can be controlled. With these controls, it is possible to expand the selection range (range) of the gear ratio (i) of the drive device. In addition, the motor generator that receives the reaction force of the engine torque is controlled in a controlled manner (especially in reverse rotation), and regenerative control is performed with the motor-generator connected to the output element of the power split mechanism 3, It is possible to suppress the phenomenon that power generated by the regenerative control is supplied to the motor / generator that controls the power, and so on. Therefore, the amount of mechanical power transmitted from the engine 2 to the wheels 51 can be increased, the amount of power flow can be reduced, and the power transmission efficiency of the entire drive device can be improved.
[0051] また、前記モータ 'ジェネレータ MG1のトルク力 第 2の変速機 19Bを経由して車輪  [0051] Further, the torque of the motor 'generator MG1 and the wheels via the second transmission 19B
51に伝達され、前記モータ 'ジェネレータ MG2のトルク力 第 1の変速機 19Aを経由 して車輪 51に伝達されるように構成されている。このため、第 1の変速機 19Aおよび 第 2の変速機 19Bで回転速度が減速される場合は伝達トルクが増幅されるため、前 記モータ'ジェネレータ MG1, MG2の最大トルクを低減し、モータ'ジェネレータ MG 1 , MG2の小型化を図ることができる。さらに、前記動力分割機構 3および第 1の変 速機 19Aおよび第 2の変速機 19Bを組み合わせて用いてレ、るため、第 1の変速機 1 9Aおよび第 2の変速機 19Bの変速比を制御することにより、モータ'ジェネレータ M Gl , MG2の最高回転数を低減することができる。  51 is transmitted to the wheel 51 via the torque transmission of the motor / generator MG2 and the first transmission 19A. For this reason, when the rotational speed is reduced by the first transmission 19A and the second transmission 19B, the transmission torque is amplified. Therefore, the maximum torque of the motors 'generators MG1 and MG2 is reduced and the motor' The generators MG 1 and MG2 can be downsized. Further, since the power split mechanism 3 and the first transmission 19A and the second transmission 19B are used in combination, the transmission ratio of the first transmission 19A and the second transmission 19B is changed. By controlling, the maximum number of rotations of the motor generators M Gl and MG2 can be reduced.
[0052] さらに、図 1においては、前記動力分割機構 3をダブルピニオン式の遊星歯車機構 により構成しているため、共線図上でエンジン 2の両側にモータ'ジェネレータ MG1 , MG2が別々に配置されている。したがって、いずれのモータ'ジェネレータによりェン ジントルクの反力を受け持つ場合でも、その反カトノレクの大きさを略同程度とすること ができる。したがって、モータ'ジェネレータ MG1 , MG2として同程度の機能や体格 を有するものを用いることができる。  Further, in FIG. 1, since the power split mechanism 3 is constituted by a double pinion type planetary gear mechanism, motors / generators MG1 and MG2 are separately arranged on both sides of the engine 2 on the collinear diagram. Has been. Therefore, even when any motor generator generates the reaction force of the engine torque, the size of the anti-catonolek can be made substantially the same. Therefore, motors / generators MG1 and MG2 having the same function and size can be used.
[0053] なお、図 1において、前記第 1のクラッチ機構 S1および第 2のクラッチ機構 S2として は、摩擦クラッチの一種である湿式多板クラッチでもよいが、これらのクラッチ機構の 油圧を制御する油圧室に圧油を供給する油圧源がオイルポンプである場合、そのク ラッチ機構のスリップによる動力損失が少なレ、機械式嚙み合レ、クラッチの方がょレ、。 さらに、第 1の変速機 19Aおよび第 2の変速機 19Bが、共に動力伝達'動力遮断を 切り換える機構を有しているため、部品点数の増加が抑制されて、構造を簡素化でき る。  In FIG. 1, the first clutch mechanism S1 and the second clutch mechanism S2 may be wet multi-plate clutches which are a kind of friction clutch, but the hydraulic pressure for controlling the hydraulic pressure of these clutch mechanisms When the oil pressure source that supplies pressure oil to the chamber is an oil pump, there is little power loss due to slip of the clutch mechanism, mechanical meshing, and clutch. Furthermore, since both the first transmission 19A and the second transmission 19B have a mechanism for switching between power transmission and power interruption, an increase in the number of parts can be suppressed and the structure can be simplified.
[0054] なお、図 1に示された変速機は、変速制御モード 1ないし 4を選択的に切り替えて、 第 1の変速機 19Aおよび第 2の変速機 19Bで、 4種類の異なる変速比を段階的に切 り替えることが可能な有段変速機であるが、両方の変速機で、 3種類の変速段または 5種類以上の変速段を切替可能に構成された有段変速機を有する車両であってもよ レ、。この場合、変速段の数に応じた変速制御モードを選択可能となる。さらに、図 1の 例では、車両を後進させる向きの駆動力を発生させるための後進用ギヤ列が省略さ れている。 [0054] Note that the transmission shown in FIG. 1 selectively switches between shift control modes 1 to 4, and has four different gear ratios in the first transmission 19A and the second transmission 19B. It is a stepped transmission that can be switched in stages, but with both transmissions, there are three speeds or It may be a vehicle having a stepped transmission configured to be able to switch between five or more speeds. In this case, a shift control mode corresponding to the number of shift stages can be selected. Further, in the example of FIG. 1, the reverse gear train for generating the driving force in the direction of moving the vehicle backward is omitted.
ここで、実施例で説明した構成と、この発明の構成との対応関係を説明すると、リン グギヤ 5が、この発明の第 1の回転要素に相当し、サンギヤ 4が、この発明の第 2の回 転要素に相当し、キヤリャ 57が、この発明の第 3の回転要素に相当し、入力軸 9およ びカウンタ軸 18により、この発明の第 1の動力伝達経路が構成されており、入力軸 1 7およびカウンタ軸 18により、この発明の第 2の動力伝達経路が構成されている。また 、第 1のクラッチ機構 S1が、この発明の第 1の変速機を動力伝達を可能とし、かつ、 動力伝達を遮断する機構に相当し、第 2のクラッチ機構 S2が、この発明の第 2の変速 機を動力伝達を可能とし、かつ、動力伝達を遮断する機構に相当する。さらにモータ 'ジェネレータ MG1力 この発明の第 1のモータ'ジェネレータに相当し、モータ'ジェ ネレータ MG2が、この発明の第 2のモータ.ジェネレータに相当する。  Here, the correspondence relationship between the configuration described in the embodiment and the configuration of the present invention will be described. Ring gear 5 corresponds to the first rotating element of the present invention, and sun gear 4 corresponds to the second rotational element of the present invention. The carrier 57 corresponds to the rotating element, the carrier 57 corresponds to the third rotating element of the present invention, and the input shaft 9 and the counter shaft 18 constitute the first power transmission path of the present invention. The shaft 17 and the counter shaft 18 constitute a second power transmission path of the present invention. The first clutch mechanism S1 corresponds to a mechanism that enables power transmission to the first transmission of the present invention and that interrupts power transmission, and the second clutch mechanism S2 corresponds to the second transmission mechanism of the present invention. This transmission corresponds to a mechanism that enables power transmission and interrupts power transmission. Further, the motor 'generator MG1 force corresponds to the first motor' generator of the present invention, and the motor 'generator MG2 corresponds to the second motor generator of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 差動回転可能に連結された第 1の回転要素および第 2の回転要素および第 3の回 転要素を有する動力分割機構を備え、エンジンが前記第 1の回転要素に連結され、 第 1のモータ ·ジェネレータが前記第 2の回転要素に連結され、第 2のモータ ·ジヱネ レータが前記第 3の回転要素に連結されているとともに、前記エンジンの動力を前記 第 1の回転要素に入力し、かつ、前記第 2の回転要素または第 3の回転要素から出 力して車輪に伝達する場合に、前記第 1のモータ'ジェネレータまたは第 2のモータ' ジェネレータのいずれか一方でエンジントルクの反力を受け持つように構成されてお り、前記第 1のモータ'ジェネレータおよび前記第 2の回転要素を前記車輪に動力伝 達可能に接続する第 1の動力伝達経路が設けられ、前記第 2のモータ'ジェネレータ および前記第 3の回転要素を前記車輪に動力伝達可能に接続する第 2の動力伝達 経路が設けられてレ、るハイブリッド駆動装置におレ、て、  [1] A power split mechanism having a first rotating element, a second rotating element, and a third rotating element that are connected to be differentially rotatable, and an engine is connected to the first rotating element, A motor generator is connected to the second rotating element, a second motor generator is connected to the third rotating element, and the engine power is input to the first rotating element. When the output from the second rotating element or the third rotating element is transmitted to the wheel, the engine torque of either the first motor 'generator or the second motor' generator is A first power transmission path is provided to connect the first motor generator and the second rotating element to the wheels so that power can be transmitted, and the second motor element is configured to receive reaction force. The motor 'Gen Over data and the third second power transmission path connecting in a power transmission is provided a rotating element to the wheel of the broken-les, Ru in the hybrid drive apparatus Te,
前記第 1の動力伝達経路に設けられた第 1の変速機と、  A first transmission provided in the first power transmission path;
前記第 2の動力伝達経路に設けられた第 2の変速機と、  A second transmission provided in the second power transmission path;
前記第 1の変速機を前記車輪に対してトルクを伝達できる状態とそのトルクの伝達 を遮断する状態とに選択的に切り替える第 1クラッチ機構と、  A first clutch mechanism that selectively switches the first transmission between a state where torque can be transmitted to the wheels and a state where transmission of the torque is interrupted;
前記第 2の変速機を前記車輪に対してトルクを伝達できる状態とそのトルクの伝達 を遮断する状態とに選択的に切り替える第 2クラッチ機構と  A second clutch mechanism that selectively switches the second transmission between a state where torque can be transmitted to the wheels and a state where transmission of the torque is interrupted.
を備えてレ、ることを特徴とするハイブリッド駆動装置。  A hybrid drive device characterized by comprising:
[2] 前記動力分割機構は、前記第 1ないし第 3の回転要素が相互に差動回転する差動 回転機構を含むことを特徴とする請求項 1のハイブリッド駆動装置。 2. The hybrid drive apparatus according to claim 1, wherein the power split mechanism includes a differential rotation mechanism in which the first to third rotation elements rotate differentially with each other.
[3] 前記動力分割機構は、サンギヤと、該サンギヤに対して同心円上に配置されたリン グギヤと、これらサンギヤとリングギヤとの間に配置されたピニオンギヤを自転自在お よび公転自在に保持するキヤリャと有する遊星歯車機構を含むことを特徴とする請求 項 1または 2のハイブリッド駆動装置。 [3] The power split mechanism includes a sun gear, a ring gear arranged concentrically with the sun gear, and a carrier that holds the pinion gear arranged between the sun gear and the ring gear in a freely rotating and revolving manner. The hybrid drive device according to claim 1, further comprising a planetary gear mechanism having the following.
[4] 前記遊星歯車機構は、共線図上に、前記エンジンが連結されたリングギヤが中央 に位置し、その両側にサンギヤとキヤリャとが位置するダブルピニオン型の遊星歯車 機構を含むことを特徴とする請求項 3のハイブリッド駆動装置。 [4] The planetary gear mechanism includes a double pinion type planetary gear mechanism in which a ring gear to which the engine is coupled is located in the center and a sun gear and a carrier are located on both sides of the planetary gear mechanism on a collinear diagram. The hybrid drive device according to claim 3.
[5] 前記第 1の変速機および第 2の変速機は、互いに嚙み合っている駆動ギヤと従動 ギヤとからなる変速ギヤ対をそれぞれ含み、それらの変速ギヤ対の変速比が互いに 異なっていることを特徴とする請求項 1ないし 4のいずれかのハイブリッド駆動装置。 [5] The first transmission and the second transmission each include a transmission gear pair composed of a drive gear and a driven gear that are intertwined with each other, and the transmission gear ratios of these transmission gear pairs are different from each other. The hybrid drive device according to claim 1, wherein the hybrid drive device is provided.
[6] 前記第 1の変速機における駆動ギヤを保持している第 1入力軸と、 [6] a first input shaft holding a drive gear in the first transmission,
前記第 2の変速機における駆動ギヤを保持している第 2入力軸と、  A second input shaft holding a drive gear in the second transmission;
前記第 1の変速機における従動ギヤおよび第 2の変速機における従動ギヤとを保 持しているカウンタ軸とを更に備え、  A counter shaft holding a driven gear in the first transmission and a driven gear in the second transmission;
前記第 1クラッチ機構は、前記第 1の変速機におけるギヤ対を前記第 1入力軸と力 ゥンタ軸との間で、選択的にトルク伝達可能な状態にする機構を含み、  The first clutch mechanism includes a mechanism for selectively transmitting torque between the gear pair in the first transmission between the first input shaft and the force motor shaft,
前記第 2クラッチ機構は、前記第 2の変速機におけるギヤ対を前記第 2入力軸と力 ゥンタ軸との間で、選択的にトルク伝達可能な状態にする機構を含むこと  The second clutch mechanism includes a mechanism that allows the gear pair in the second transmission to selectively transmit torque between the second input shaft and the force motor shaft.
を特徴とする請求項 1なレ、し 5のレ、ずれかのハイブリッド駆動装置。  The hybrid drive device according to claim 1, wherein the hybrid drive device is one of 5 and a deviation.
[7] 前記第 1のモータ'ジェネレータによつて前記エンジントルクに対する反カを受け持 たせ、かつ前記第 1クラッチ機構を係合状態にして前記第 1の変速機をトルク伝達可 能な状態にするとともに前記第 2クラッチ機構を解放状態にして前記第 2の変速機を トルク伝達しない状態にすることにより第 1モードを設定する第 1モード設定手段と、 前記第 2のモータ ·ジェネレータによつて前記エンジントルクに対する反カを受け持 たせ、かつ前記第 2クラッチ機構を係合状態にして前記第 2の変速機をトルク伝達可 能な状態にするとともに前記第 1クラッチ機構を解放状態にして前記第 2の変速機を トルク伝達しない状態にすることにより第 2モードを設定する第 2モード設定手段とを 更に備えていることを特徴とする請求項 1ないし 6のいずれかのハイブリッド駆動装置 [7] The first motor generator generates a reaction force against the engine torque, and the first clutch mechanism is engaged so that the first transmission can transmit torque. And a first mode setting means for setting the first mode by disengaging the second clutch mechanism and not transmitting torque to the second transmission, and the second motor / generator. The second clutch mechanism is brought into an engaged state so as to be able to transmit torque, and the first clutch mechanism is brought into a released state so that the engine torque is supported. 7. The apparatus according to claim 1, further comprising second mode setting means for setting the second mode by setting the second transmission to a state not transmitting torque. Hybrid drive system
[8] 前記第 1の変速機におけるギヤ対の変速比が、前記第 2の変速機におけるギヤ対 の変速比より相対的に大きぐ [8] The gear ratio of the gear pair in the first transmission is relatively larger than the gear ratio of the gear pair in the second transmission.
前記第 1モードを設定する車速より相対的に高車速の場合に前記第 2モードを設 定する制御手段を更に備えていることを特徴とする請求項 7のハイブリッド駆動装置。  8. The hybrid drive apparatus according to claim 7, further comprising control means for setting the second mode when the vehicle speed is relatively higher than the vehicle speed for setting the first mode.
PCT/JP2007/061157 2006-06-06 2007-06-01 Hybrid driver WO2007142129A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-157894 2006-06-06
JP2006157894A JP2007326422A (en) 2006-06-06 2006-06-06 Hybrid vehicle driving device

Publications (1)

Publication Number Publication Date
WO2007142129A1 true WO2007142129A1 (en) 2007-12-13

Family

ID=38801385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061157 WO2007142129A1 (en) 2006-06-06 2007-06-01 Hybrid driver

Country Status (2)

Country Link
JP (1) JP2007326422A (en)
WO (1) WO2007142129A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089841A1 (en) * 2009-02-09 2010-08-12 本田技研工業株式会社 Power transmitting device
WO2010116818A1 (en) * 2009-03-30 2010-10-14 本田技研工業株式会社 Power transmitting device for hybrid vehicle
WO2012037013A1 (en) * 2010-09-15 2012-03-22 Chrysler Llc Multi-mode drive unit
WO2012055527A1 (en) * 2010-10-25 2012-05-03 Magna Powertrain Ag & Co Kg Transmission unit and electric extension unit
CN105398323A (en) * 2015-10-28 2016-03-16 北京理工大学 Power gear-shifting hybrid gearbox for commercial vehicle
WO2017080571A1 (en) * 2015-11-09 2017-05-18 Volvo Truck Corporation A vehicle powertrain
CN107428234A (en) * 2015-04-02 2017-12-01 博格华纳瑞典公司 Electronic axle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910884B2 (en) * 2007-05-25 2012-04-04 トヨタ自動車株式会社 POWER OUTPUT DEVICE, HYBRID VEHICLE HAVING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
JP2009196533A (en) * 2008-02-22 2009-09-03 Aisin Aw Co Ltd Dynamo-electric machine control system and vehicle driving system having the dynamo-electric machine control system
JP5273069B2 (en) * 2010-03-02 2013-08-28 アイシン精機株式会社 Hybrid drive device
CN112937279A (en) * 2021-03-24 2021-06-11 王飞 Hybrid vehicle
CN114475206A (en) * 2022-03-01 2022-05-13 重庆嘉陵全域机动车辆有限公司 Range-extending hybrid power transmission mechanism of high-speed amphibious vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518458A (en) * 1974-06-12 1976-01-23 Ooshansukii Toransumitsushon C
JP2000326739A (en) * 1999-05-19 2000-11-28 Kyowa Gokin Kk Driving device for automobile
JP2004182034A (en) * 2002-12-02 2004-07-02 Toyota Motor Corp Power transmission device for vehicle
JP2005008005A (en) * 2003-06-18 2005-01-13 Honda Motor Co Ltd Power transmission device of hybrid vehicle
JP2005125876A (en) * 2003-10-22 2005-05-19 Toyota Motor Corp Hybrid vehicle driving device
JP2005155891A (en) * 2003-11-06 2005-06-16 Toyota Motor Corp Driving device of hybrid car
JP2005170227A (en) * 2003-12-10 2005-06-30 Aisin Aw Co Ltd Hybrid driving device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518458A (en) * 1974-06-12 1976-01-23 Ooshansukii Toransumitsushon C
JP2000326739A (en) * 1999-05-19 2000-11-28 Kyowa Gokin Kk Driving device for automobile
JP2004182034A (en) * 2002-12-02 2004-07-02 Toyota Motor Corp Power transmission device for vehicle
JP2005008005A (en) * 2003-06-18 2005-01-13 Honda Motor Co Ltd Power transmission device of hybrid vehicle
JP2005125876A (en) * 2003-10-22 2005-05-19 Toyota Motor Corp Hybrid vehicle driving device
JP2005155891A (en) * 2003-11-06 2005-06-16 Toyota Motor Corp Driving device of hybrid car
JP2005170227A (en) * 2003-12-10 2005-06-30 Aisin Aw Co Ltd Hybrid driving device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089841A1 (en) * 2009-02-09 2010-08-12 本田技研工業株式会社 Power transmitting device
JP2010179868A (en) * 2009-02-09 2010-08-19 Honda Motor Co Ltd Power transmission device
WO2010116818A1 (en) * 2009-03-30 2010-10-14 本田技研工業株式会社 Power transmitting device for hybrid vehicle
CN102348568A (en) * 2009-03-30 2012-02-08 本田技研工业株式会社 Power transmitting device for hybrid vehicle
US8747265B2 (en) 2009-03-30 2014-06-10 Honda Motor Co., Ltd. Power transmitting device for hybrid vehicle
CN102348568B (en) * 2009-03-30 2014-06-25 本田技研工业株式会社 Power transmitting device for hybrid vehicle
WO2012037013A1 (en) * 2010-09-15 2012-03-22 Chrysler Llc Multi-mode drive unit
WO2012055527A1 (en) * 2010-10-25 2012-05-03 Magna Powertrain Ag & Co Kg Transmission unit and electric extension unit
DE112011103566B4 (en) 2010-10-25 2023-12-14 Magna Pt B.V. & Co. Kg Additional electrical unit for a transmission
CN107428234B (en) * 2015-04-02 2021-05-11 博格华纳瑞典公司 Electric shaft
CN107428234A (en) * 2015-04-02 2017-12-01 博格华纳瑞典公司 Electronic axle
CN105398323A (en) * 2015-10-28 2016-03-16 北京理工大学 Power gear-shifting hybrid gearbox for commercial vehicle
CN108349361A (en) * 2015-11-09 2018-07-31 沃尔沃卡车集团 Vehicle engine assembly
WO2017080571A1 (en) * 2015-11-09 2017-05-18 Volvo Truck Corporation A vehicle powertrain
US11065948B2 (en) 2015-11-09 2021-07-20 Volvo Truck Corporation Vehicle powertrain
CN108349361B (en) * 2015-11-09 2021-08-17 沃尔沃卡车集团 Vehicle power assembly

Also Published As

Publication number Publication date
JP2007326422A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP4222387B2 (en) Hybrid drive device
WO2007142129A1 (en) Hybrid driver
JP3580257B2 (en) Hybrid car
JP4079186B1 (en) POWER OUTPUT DEVICE, HYBRID VEHICLE HAVING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
JP4069898B2 (en) Hybrid vehicle drive system
JP4229156B2 (en) Power output device and hybrid vehicle
JP4228954B2 (en) Hybrid vehicle drive system
JP4169081B1 (en) POWER OUTPUT DEVICE, HYBRID VEHICLE HAVING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
JP4306633B2 (en) Hybrid drive device
JP4229205B1 (en) Control device for hybrid drive
US8083016B2 (en) Vehicle with hybrid powertrain
US10017040B2 (en) Drive unit for a hybrid vehicle
WO2008050684A1 (en) Power output device, and hybrid automobile
WO2008075760A1 (en) Hybrid drive device
JP2008308012A (en) Power output device, and hybrid automobile equipped with the same
WO2008062697A1 (en) Power output device, automobile with the power output device, and method of controlling power output device
WO2007049686A1 (en) Engine start control device
JP2006283917A (en) Hybrid drive device
WO2008029707A1 (en) Power output device and hybrid vehicle
JP6243646B2 (en) Power transmission device for hybrid vehicle
JP4419988B2 (en) Hybrid drive unit
JP4179211B2 (en) Hybrid vehicle drive system
JP4127055B2 (en) Transmission control device
JP2006022933A (en) Control device of drive device for vehicle
JP2021123269A (en) Vehicle drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744545

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 07744545

Country of ref document: EP

Kind code of ref document: A1