WO2010089841A1 - Power transmitting device - Google Patents

Power transmitting device Download PDF

Info

Publication number
WO2010089841A1
WO2010089841A1 PCT/JP2009/007293 JP2009007293W WO2010089841A1 WO 2010089841 A1 WO2010089841 A1 WO 2010089841A1 JP 2009007293 W JP2009007293 W JP 2009007293W WO 2010089841 A1 WO2010089841 A1 WO 2010089841A1
Authority
WO
WIPO (PCT)
Prior art keywords
input shaft
main input
power
shaft
main
Prior art date
Application number
PCT/JP2009/007293
Other languages
French (fr)
Japanese (ja)
Inventor
重 小山
真二 藤本
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN200980156154.7A priority Critical patent/CN102307744B/en
Publication of WO2010089841A1 publication Critical patent/WO2010089841A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/113Stepped gearings with two input flow paths, e.g. double clutch transmission selection of one of the torque flow paths by the corresponding input clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
    • F16H2003/0938Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts with multiple gears on the input shaft directly meshing with respective gears on the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0034Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising two forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0043Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising four forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/089Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears all of the meshing gears being supported by a pair of parallel shafts, one being the input shaft and the other the output shaft, there being no countershaft involved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a power transmission system for a hybrid vehicle including an internal combustion engine and an electric motor.
  • a power transmission device for a hybrid vehicle there is a type capable of synthesizing powers respectively output from an internal combustion engine and an electric motor and transmitting the synthesized power to drive wheels and performing regenerative operation with the electric motor.
  • the power input from the output of the internal combustion engine is selectively connected to the plurality of shafts via a plurality of shafts coaxially arranged with the output shaft of the internal combustion engine.
  • a method of outputting from an output axis parallel to the output axis is conventionally known.
  • three shafts are disposed coaxially with the output shaft of the internal combustion engine.
  • An internal combustion engine is connected to an end of the first shaft (hereinafter referred to as a first shaft) via a clutch.
  • the other one shaft (hereinafter referred to as a second shaft) is coupled to the output shaft via a gear pair, and an electric motor is connected to an end.
  • Another one shaft (hereinafter referred to as the third shaft) is selectively connected to the output shaft via a plurality of gear pairs.
  • a synchronizer is provided which selectively connects the second axis or the third axis to the first axis.
  • the present invention has been made in view of such background, and in a power transmission device for a hybrid vehicle including an internal combustion engine and a motor, the power transmission device for a hybrid vehicle capable of combining the power of the engine and the motor with high efficiency. Intended to provide.
  • a power transmission apparatus is a power transmission apparatus for a hybrid vehicle including an internal combustion engine and an electric motor to achieve the above object, and an internal combustion engine output shaft to which power is input from the internal combustion engine, and the internal combustion engine A first main input shaft disposed parallel to the engine output shaft and selectively coupled with the internal combustion engine output shaft by the main connection / disconnection device, and coaxially disposed with the first main input shaft, the first disconnection A first auxiliary input shaft selectively connected to the first main input shaft by a contact device, and a first auxiliary input shaft coaxially disposed with the first main input shaft, and selectively connected to the first main input shaft by a second disconnection device.
  • a second sub-input shaft connected to the main input shaft and a first main input shaft disposed in parallel with each other, the first sub-input shaft and the second sub-input shaft being respectively coupled via a gear pair, a counter An output shaft for outputting power to a driven part via a shaft, and a first rotating element
  • a power combining mechanism in which the second rotating element and the third rotating element are configured to be differentially rotatable with respect to each other, the first rotating element is connected to the first main input shaft, and the second rotating element is the second rotating element.
  • the third rotation element is connected to the electric motor, and the second rotation element is configured to transmit the power transmitted from the first rotation element and the power transmitted from the third rotation element.
  • the present invention is characterized in that it is synthesized and transmitted to the output shaft through the first auxiliary input shaft (first invention).
  • the power combining mechanism in which the first rotation element, the second rotation element, and the third rotation element are configured to be differentially rotatable with respect to each other is connected via the first auxiliary input shaft or the second auxiliary input shaft.
  • the power transmitted from the first rotating element connected to the internal combustion engine and the power transmitted from the third rotating element connected to the electric motor are combined, and the power is output from the output shaft to the driven part. Therefore, as in the power transmission device described in Patent Document 1, as compared with the case of synthesizing the motive power of the internal combustion engine and an electric motor in a synchronous system, it is possible to synthesize the power with high efficiency.
  • first connection device and the second connection device be disposed adjacent to the first main input shaft in the axial direction.
  • the power transmission device can be miniaturized by sharing the joint surfaces of the first and second connection devices. Further, by sharing the drive sources of the first and second connection devices, it is possible to reduce the size and cost of the power transmission device.
  • the first connection device and the second connection device are wet clutches.
  • the connection state and the disconnection state of the first main input shaft and the first sub input shaft or the second sub input shaft can be It can be switched without interruption of transmission. Therefore, it becomes possible to switch between the first connection device and the second connection device quickly and without interruption.
  • a second main input shaft disposed parallel to the first main input shaft and coaxially connected to the second main input shaft, which is always connected to the first main input shaft, and the second main input shaft
  • a third auxiliary input shaft selectively connected to the second main input shaft by a third disconnection device, and coaxially disposed with the second main input shaft, and selectively selected by a fourth disconnection device
  • a gear pair comprising: a fourth sub-input shaft connected to the second main input shaft; fixed to the output shaft; and coupling the output shaft to the first sub-input shaft and the second sub-input shaft It is preferable that a plurality of gears constituting the gear and a gear fixed to the third auxiliary input shaft and the fourth auxiliary input shaft be coupled.
  • a power transmission device of the present invention is a power transmission device for a hybrid vehicle including an internal combustion engine and a motor, and is parallel to the internal combustion engine output shaft to which power is input from the internal combustion engine and the internal combustion engine output shaft
  • a first main input shaft arranged and selectively connected to the internal combustion engine output shaft by a main connection device, a first sub input shaft coaxially arranged with the first main input shaft, and
  • a first gear group including a plurality of gears disposed on one sub input shaft and selectively coupled to the first sub input shaft via a first synchronization device, and disposed parallel to the first main input shaft
  • a second gear group including a plurality of gears fixed to the output shaft and meshed with the gears of the first gear group, and a first rotating element.
  • the second rotation element, and the third rotation element are configured to be differentially rotatable with respect to each other A force combining mechanism, the first rotating element is connected to the first main input shaft, the second rotating element is connected to the first sub-input shaft, and the third rotating element is connected to the motor
  • the second rotation element combines the power transmitted from the first rotation element and the power transmitted from the third rotation element, and transmits the combined power to the output shaft via the first auxiliary input shaft.
  • the power combining mechanism in which the first rotation element, the second rotation element, and the third rotation element are configured to be differentially rotatable with each other is connected to the internal combustion engine via the first auxiliary input shaft.
  • the power transmitted from the first rotation element and the power transmitted from the third rotation element connected to the motor are combined, and the power is output from the output shaft to the driven part. Therefore, as in the power transmission device described in Patent Document 1, as compared with the case of synthesizing the motive power of the internal combustion engine and an electric motor in a synchronous system, it is possible to synthesize the power with high efficiency. Further, since the synchronous device is used when connecting the gear coupled with the gear fixed to the output shaft to the first sub-input shaft, it is possible to make the device compact as compared with the first invention.
  • a second main input shaft disposed parallel to the first main input shaft and coaxially connected to the second main input shaft and always connected to the first main input shaft is disposed.
  • a third gear group including a plurality of gears disposed on the third sub-input shaft and selectively connected to the third sub-input shaft via the second synchronization device.
  • a gear constituting the second gear group meshes with a gear constituting the third gear group.
  • a power transmission device of the present invention is a power transmission device for a hybrid vehicle including an internal combustion engine and a motor, and is parallel to the internal combustion engine output shaft to which power is input from the internal combustion engine and the internal combustion engine output shaft
  • a first main input shaft which is disposed and selectively connected to the internal combustion engine output shaft by a first main junction device, and coaxially disposed with the first main input shaft, by a second main junction device
  • a second main input shaft coupled to the internal combustion engine output shaft, and coaxially disposed with the first main input shaft, and selectively coupled to the first main input shaft by a first disconnection device.
  • the first sub input shaft and the second sub input shaft which are disposed parallel to the first main input shaft, An intermediate shaft coupled to each other via a gear pair, a third main input shaft disposed parallel to the first main input shaft, and a third junction connected coaxially with the third main input shaft
  • a third auxiliary input shaft selectively connected to the second main input shaft by the device, and coaxial with the third main input shaft, and selectively connected to the second main input shaft by a fourth disconnection device.
  • a fourth sub-input shaft connected to the input shaft and a first main input shaft are disposed parallel to each other, and the intermediate shaft and the third main input shaft are respectively coupled via a gear pair, and via a counter shaft
  • An output shaft for outputting power to a driven part and a power combining mechanism in which a first rotation element, a second rotation element, and a third rotation element are configured to be differentially rotatable with respect to each other, the first rotation element It is connected to the first main input shaft, the second rotating element is connected to the first sub input shaft, and the third rotating element is The second rotation element is connected to the electric motor, and the second rotation element combines the power transmitted from the first rotation element and the power transmitted from the third rotation element, and the first auxiliary input shaft and the intermediate shaft are
  • a second aspect of the invention is characterized in that the transmission is performed to the output shaft.
  • the power combining mechanism can combine the power transmitted from the internal combustion engine and the power transmitted from the motor and transmit it to the output shaft, and also transmitted from the internal combustion engine Power can be distributed and regenerative operation can be performed by the motor.
  • a power transmission device of the present invention is a power transmission device for a hybrid vehicle including an internal combustion engine and a motor, and is parallel to the internal combustion engine output shaft to which power is input from the internal combustion engine and the internal combustion engine output shaft
  • a first main input shaft which is disposed and selectively connected to the internal combustion engine output shaft by a first main junction device, and coaxially disposed with the first main input shaft, by a second main junction device
  • a second main input shaft connected to the internal combustion engine output shaft, a first sub input shaft coaxially disposed with the first main input shaft, and the first sub input shaft
  • a first gear group consisting of a plurality of gears selectively coupled to the first auxiliary input shaft via a first synchronizing device, and the first auxiliary input shaft disposed parallel to the first main input shaft
  • an intermediate shaft coupled to the second auxiliary input shaft via a gear pair, and the intermediate shaft
  • a second gear group consisting of a plurality of gears fixed and meshing with the gears of the first gear group, a
  • first rotation element the second rotation element, and the third rotation element are configured to be differentially rotatable with respect to each other, the first rotation element comprising Connected to the first main input shaft, the second rotating element is connected to the first sub input shaft, Three rotary elements are connected to the motor, and the second rotary element combines the power transmitted from the first rotary element and the power transmitted from the third rotary element, and the first secondary input shaft and A transmission is performed to the output shaft via the intermediate shaft (fourth invention).
  • the power combining mechanism can combine the power transmitted from the internal combustion engine and the power transmitted from the motor and transmit it to the output shaft, and also transmitted from the internal combustion engine Power can be distributed and regenerative operation can be performed by the motor.
  • a power transmission device of the present invention is a power transmission device for a hybrid vehicle including an internal combustion engine and a motor, and is parallel to the internal combustion engine output shaft to which power is input from the internal combustion engine and the internal combustion engine output shaft
  • a first main input shaft arranged and selectively connected by the first main junction device with the internal combustion engine output shaft, and coaxially arranged with the internal combustion engine output shaft, selected by the second main junction device
  • a first minor input shaft disposed and selectively coupled to the third major input shaft by a first disconnection device
  • a second auxiliary input shaft coaxially arranged with the third main input shaft and selectively connected with the third main input shaft by a
  • An output shaft coupled to the input shaft and the fourth secondary input shaft via a gear pair and outputting power to the driven part via the counter shaft, a first rotation element, a second rotation element, and a third rotation A power combining mechanism in which the elements are configured to be differentially rotatable with respect to each other, the first rotating element being the first main input shaft or the second main
  • the second rotary element is connected to the power shaft, the second rotary element is connected to the output shaft, the third rotary element is connected to the motor, and the second rotary element is configured to transmit the power transmitted from the first rotary element and the second rotary element.
  • a power is transmitted from a third rotation element, and the power is transmitted to the first output shaft (a fifth invention).
  • the power combining mechanism can combine the power transmitted from the internal combustion engine and the power transmitted from the motor and transmit it to the output shaft, and also transmitted from the internal combustion engine Power can be distributed and regenerative operation can be performed by the motor.
  • a power transmission device of the present invention is a power transmission device for a hybrid vehicle including an internal combustion engine and a motor, and is parallel to the internal combustion engine output shaft to which power is input from the internal combustion engine and the internal combustion engine output shaft
  • a first main input shaft arranged and selectively connected by the first main junction device with the internal combustion engine output shaft, and coaxially arranged with the internal combustion engine output shaft, selected by the second main junction device
  • the first sub-input shaft to be disposed and the first sub-input shaft are disposed on the first sub-input shaft through the first synchronization device.
  • a first gear group consisting of a plurality of gears selectively connected to one secondary input shaft, a second secondary input shaft coaxially disposed with the third primary input shaft, and the second secondary input shaft
  • a second gear group comprising a plurality of gears disposed and selectively coupled to the second sub-input shaft via a second synchronizer, coaxially disposed with the first main input shaft, and having a counter shaft
  • a third gear including an output shaft for outputting power to a driven portion via the driven portion, and a plurality of gears fixed to the output shaft and in which the gear of the first gear group and the gear of the second gear group share and mesh
  • a power combining mechanism in which the first rotation element, the second rotation element, and the third rotation element are configured to be differentially rotatable with respect to each other, the first rotation element being the first main input shaft or the second Connected to the main input shaft, the second rotating element is connected to the output shaft, and the third rotating element is the motor
  • the second rotating element is connected, and combines the
  • the power combining mechanism can combine the power transmitted from the internal combustion engine and the power transmitted from the motor and transmit it to the output shaft, and also transmitted from the internal combustion engine Power can be distributed and regenerative operation can be performed by the motor.
  • the power combining mechanism includes, as three single pinion type rotary elements, a sun gear, a ring gear, and a plurality of meshed gears between the sun gear and the ring gear.
  • a planetary gear device coaxially including a carrier rotatably supporting a planetary gear, wherein the first rotation element is the carrier, the second rotation element is the sun gear, and the third rotation element is the carrier It is preferably a ring gear.
  • the power synthesis mechanism can be configured simply, and compactness and cost reduction can be achieved. Furthermore, it also becomes possible to distribute power. In addition, it is possible to improve the transmission efficiency.
  • the required power setting means for setting the required power required for the output shaft, and the required power set by the required power setting means, the internal combustion engine and the electric motor It is preferable to include control means for controlling the operation.
  • the operation of the internal combustion engine and the motor can be suitably controlled by the control means, and the required power required can be output from the output shaft.
  • control means controls the operation of the electric motor such that the internal combustion engine operates within a range from a stall region to a maximum rotation region.
  • the internal combustion engine since the internal combustion engine operates only in the range from the stall region to the maximum rotation region, the internal combustion engine can be suitably used, and the fuel consumption and the life of the internal combustion engine become good.
  • the control means operates the internal combustion engine within a proper operation range of the internal combustion engine, and the internal combustion engine transmits the first rotational element to the second rotational element.
  • the power of the engine and the required power are compared, and when the power of the internal combustion engine does not meet the required power, the electric motor performs a power running operation, and when the power of the internal combustion engine exceeds the required power, the motor It is preferable to control so as to perform regenerative operation.
  • the internal combustion engine since the internal combustion engine operates in the appropriate operating range, the internal combustion engine can be suitably used, and the fuel consumption, the life, and the like of the internal combustion engine become good. Furthermore, since the electric motor performs the power running operation or the regenerative operation depending on whether the difference between the power of the internal combustion engine and the required power is positive or negative, the required power can be always output from the output shaft.
  • control means controls the motor to operate at the rated output or the maximum rotational speed when the motor operates at the rated output or the maximum rotational speed. Is preferred.
  • the motor since the motor is operated at the rated output or less and at the maximum rotational speed or less, the motor can be suitably used, and the life of the motor can be improved.
  • an auxiliary machine is connected to the first main input shaft, and the auxiliary machine can be driven by the driving force of the first main input shaft.
  • the accessory can be driven without providing a drive for the accessory.
  • FIG. 7 is a diagram showing an operation state in a high speed stage of the EV travel mode of the power transmission device 1;
  • FIG. 6 is a diagram showing an operation state in a high speed stage of an engine travel mode of the power transmission device 1.
  • FIG. 7 is a diagram showing an operation state in a high speed stage of a combined running mode of the power transmission device 1;
  • FIG. 7 is a diagram showing an operation state in a low speed stage of an engine travel mode of the power transmission device 1.
  • FIG. 6 is a diagram showing an operating state of the power transmission device 1 in an ultra low speed stage.
  • FIG. 8 schematically shows an entire configuration of a vehicle provided with a power transmission device for hybrid vehicle 41 according to a second embodiment of the present invention.
  • FIG. 7 is a diagram showing an operation state in a high speed stage of the EV travel mode of the power transmission device 41.
  • FIG. 7 is a diagram showing an operation state in a low speed stage of a combined running mode of the power transmission device 41.
  • FIG. 7 is a diagram showing an operation state in a second gear of the engine travel mode of the power transmission device 51.
  • FIG. 7 is a diagram showing an operation state in the second gear of the synthetic traveling mode of the power transmission device 51.
  • FIG. 7 is a diagram showing an operation state of a second speed stage in an engine travel mode of the power transmission device 71.
  • FIG. 7 is a diagram showing an operation state in the second gear of the synthetic traveling mode of the power transmission device 71.
  • FIG. 16 is a diagram showing an operation state in the fifth gear of the synthetic traveling mode of the power transmission device 91.
  • FIG. 16 is a diagram showing an operation state in the second gear of the synthetic traveling mode of the power transmission device 91.
  • FIG. 7 is a diagram showing an operation state in a third gear of the engine travel mode of the power transmission device 91.
  • the power transmission device 1 is mounted on a hybrid vehicle, and includes an engine 2 and an electric motor 3 which are internal combustion engines as power generation sources.
  • the power transmission device 1 transmits the power (driving force) of the engine (internal combustion engine) 2 and / or the electric motor (motor / generator) 3 to the pair of drive wheels (driven parts) 4, 4 which are driven parts. And the drive wheels 4 and 4 can be driven.
  • the power transmission device 1 can transmit the power of the engine 2 and / or the motor 3 not only to the drive wheels 4 and 4 but also to the accessory 5 mounted on the vehicle to drive the accessory 5 Is configured.
  • the auxiliary machine 5 is, for example, a compressor of an air conditioner, a water pump, an oil pump or the like.
  • the engine 2 is an internal combustion engine that generates power (torque) by burning fuel such as gasoline, light oil, alcohol, etc., and has an output shaft (internal combustion engine output shaft) 2a for outputting the generated power to the outside .
  • This engine 2 controls the opening degree of a throttle valve provided in an intake passage (not shown) (controls the intake air amount of the engine 2) as in a normal automobile engine, thereby the engine 2 has an output shaft 2a.
  • the power output through is adjusted.
  • a fuel cell may be used instead of the engine 2.
  • the motor 3 is a three-phase DC brushless motor in the present embodiment, and is fixed to the hollow rotor (rotary member) 3a rotatably supported in its housing (not shown) and the housing around the rotor 3a. And a stator 3b. A plurality of permanent magnets are mounted on the rotor 3a, and coils (armature windings) 3ba for three phases are mounted on the stator 3b.
  • the stator 3b of the motor 3 is fixed to a housing provided at a stationary part stationary with respect to the vehicle body, such as an exterior case of the power transmission device 1.
  • the coil 3 ba of the motor 3 is electrically connected to a battery (secondary battery) 7 as a DC power supply via a power drive unit (hereinafter referred to as PDU) 6 which is a drive circuit including an inverter circuit. . Further, the PDU 6 is electrically connected to an electronic control unit (hereinafter referred to as an ECU) 8.
  • PDU power drive unit
  • ECU electronice control unit
  • the ECU 8 is electrically connected to the engine 2 and the like (not shown) in addition to the PDU 6 and performs operation control of the power transmission 1 including the engine 2.
  • the ECU 8 functions as required power setting means for setting the power required to be transmitted to the drive wheels 4, 4 from the vehicle speed, the number of revolutions of the engine 2, etc., and according to the required power set by the required power setting means. Function as control means for driving the engine 2 and the motor 3.
  • the ECU 8 controls the current flowing to the coil 3 ba through the PDU 6 to adjust the power (torque) output from the rotor 3 a by the motor 3.
  • the electric motor 3 performs a power running operation to generate a power running torque on the rotor 3a by the power supplied from the battery 7, and functions as a motor. That is, the electric power supplied to the stator 3b is converted to motive power and is output to the rotor 3a. Further, by controlling the PDU 6, the electric motor 3 generates electric power by the rotational energy given to the rotor 3a from the outside, performs the regenerative operation of generating the regenerative torque in the rotor 3a while charging the generated energy to the battery 7. Act as a generator. That is, the motive power input to the rotor 3a is converted to electric power by the stator 3b.
  • the ECU 8 is an electronic circuit unit including a CPU, a RAM, a ROM, an interface circuit, and the like, and performs operation control of the power transmission device 1 by executing control processing defined by a program mounted in advance.
  • the operation of the engine 2 is not shown through an actuator for engine control such as an actuator for throttle valve. Not shown, but the operation of the sleeves of the first clutch C1, the second clutch C2, the accessory clutch 31, the first synchronization device S1, the second synchronization device S2 and the reverse synchronization device SR to be described later. And a function to control via a circuit.
  • the power transmission device 1 includes a planetary gear unit 9 as a power combining mechanism for combining the driving force of the engine 2 and the driving force of the motor 3.
  • An output shaft 2a of the engine 2 is connected to a main input shaft (first main input shaft) 11 disposed parallel to the output shaft 2a and to which power from the engine 2 is input via the main clutch CM. .
  • the main input shaft 11 extends from the engine 2 side to the electric motor 3 side.
  • the main input shaft 11 is connected to and disconnected from the output shaft 2 a of the engine 2 by the main clutch CM.
  • the main clutch CM is a clutch mechanism that operates such that the output shaft 2a of the engine 2 is connected to or disconnected from the main input shaft 11 under the control of the ECU 8 (a clutch mechanism that can selectively operate between the connected state and the disconnected state) ).
  • the main clutch CM When the main clutch CM is operated in the connected state, the main input shaft 11 is coupled to the output shaft 2a, and power can be transmitted from the output shaft 2a to the main input shaft 11. Further, when the main clutch CM is operated in the disconnection state, the connection between the main input shaft 11 and the output shaft 2a is disconnected, and the power transmission from the output shaft 2a to the main input shaft 11 is interrupted.
  • Two sub shafts ie, a first sub input shaft 12 and a second sub input shaft 13 are coaxially arranged with respect to the main input shaft 11, respectively.
  • the main input shaft 11 and the first sub-input shaft 12 are connected via a first clutch (first disconnection device) C1 or are transmittable via a planetary gear.
  • the main input shaft 11 and the second auxiliary input shaft 13 are connected via a second clutch (second disconnection device) C2.
  • the engine 2 side portion of the main input shaft 11 and the first auxiliary input shaft 12 are rotatably supported by bearings (not shown).
  • the first clutch C1 is a clutch mechanism that operates to connect or disconnect the main input shaft 11 with the first sub input shaft 12 under the control of the ECU 8.
  • the second clutch C2 is a clutch mechanism that operates to connect or disconnect the main input shaft 11 with the second sub input shaft 13 under the control of the ECU 8.
  • the first clutch C1 when the first clutch C1 is operated in the connection state, the first auxiliary input shaft 12 is connected to the main input shaft 11. In this state, only power transmission from the main input shaft 11 to the first sub input shaft 12 is possible, and power transmission from the main input shaft 11 to the second sub input shaft 13 is interrupted. Further, when the second clutch C2 is operated in the connection state, the second sub input shaft 13 is connected to the main input shaft 11.
  • An output shaft 14 is disposed parallel to the main input shaft 11.
  • the output shaft 14 and the first auxiliary input shaft 12 are coupled via a low speed gear pair (gear pair) 15.
  • the low speed gear pair 15 is configured by meshing between a low speed gear 14 a fixed on the output shaft 14 and a low speed gear 12 a fixed on the first auxiliary input shaft 12.
  • the output shaft 14 and the second auxiliary input shaft 13 are coupled via a high speed gear pair (gear pair) 16.
  • the high speed gear pair 16 is configured by meshing between a high speed gear 14 b fixed on the output shaft 14 and a high speed gear 13 a fixed on the second auxiliary input shaft 13.
  • a gear 14 c as a final gear is fixed on the output shaft 14.
  • Both end portions of the output shaft 14 are rotatably supported by bearings (not shown).
  • the power combining mechanism 9 is provided inside the motor 3. By arranging a part or all of the rotor 3a, the stator 3b and the coil 3ba constituting the motor 3 so as to overlap the power combining mechanism 9 in a direction (circumferential direction) orthogonal to the axial direction of the main input shaft 11. The size of the power transmission device 1 can be reduced, which is preferable.
  • the power combining mechanism 9 is configured by a differential device capable of differentially rotating the first rotation element, the second rotation element, and the third rotation element.
  • the differential gear that constitutes the power combining mechanism 9 is a single pinion type planetary gear device, and as the three rotating elements, a sun gear (first element) 9s and a ring gear (third element) 9r
  • a carrier (second element) 9c rotatably supporting a plurality of planetary gears 9p meshed with the two gears 9r and 9s between the sun gear 9s and the ring gear 9r is coaxially provided.
  • These three rotating elements 9s, 9r, 9c can transmit power between each other as well known, and keep the relationship between their respective rotational speeds (rotational speeds) in a constant collinear relationship. While rotating.
  • the sun gear 9 s is fixed to one end of the main input shaft 11 on the motor 3 side so as to rotate in conjunction with the main input shaft 11, and is connected to the main input shaft 11.
  • the ring gear 9 r is connected to the inside of the rotor 3 a so as to rotate in conjunction with the rotor 3 a of the motor 3.
  • the carrier 9 c is fixed to one end of the first auxiliary input shaft 12 on the side of the motor 3 so as to rotate in conjunction with the first auxiliary input shaft 12, and is connected to the first auxiliary input shaft 12.
  • the counter shaft 17 is disposed in parallel with the main input shaft 11, and by extension, the output shaft 14.
  • the output shaft 14 and the counter shaft 17 are coupled via the counter gear pair 18.
  • the counter gear pair 18 is configured by meshing between the gear 14 c fixed on the output shaft 14 and the gear 17 a fixed on the counter shaft 17.
  • the counter shaft 17 is connected to the drive wheels 4 via a differential gear unit 19 between the drive wheels 4.
  • the differential gear unit 19 includes a gear case 19a incorporating side gears (not shown) connected to the drive wheels 4 and 4 via axles 20 and 20, respectively, and a gear 19b fixed to the outer periphery of the gear case 19a.
  • a gear 17 b fixed on the counter shaft 17 is engaged with the gear 19 b of the differential gear unit 19.
  • the counter shaft 17 is connected to the drive wheels 4 via the differential gear unit 19 so as to rotate in conjunction with the drive wheels 4.
  • a parking gear 17c engaged with a gear of a parking mechanism (not shown) is also fixed. Note that both end portions of the counter shaft 17 are rotatably supported by bearings (not shown).
  • the input shaft 5 a of the accessory 5 is disposed in parallel to the main input shaft 11.
  • the main input shaft 11 and the input shaft 5 a of the accessory 5 are coupled via a belt mechanism 21.
  • the belt mechanism 21 is configured by connecting a gear 11a fixed on the main input shaft 11 and a gear 5b fixed on the input shaft 5a via a belt 21a.
  • An auxiliary machine clutch 22 is provided on the input shaft 5a of the auxiliary machine 5, and the gear 5b and the input shaft 5a of the auxiliary machine 5 are coaxially coupled via the auxiliary machine clutch 22.
  • the accessory clutch 22 is a clutch that operates to connect or disconnect between the gear 5 b and the input shaft 5 a of the accessory 5 under the control of the ECU 8.
  • the gear 5b and the input shaft 5a of the accessory 5 are coupled via the accessory clutch 22 so as to rotate integrally with each other.
  • the accessory clutch 22 is operated in the disengaged state, the coupling between the gear 5b and the input shaft 5a of the accessory 5 by the accessory clutch 22 is It is released. In this state, power transmission to the main input shaft 11 and the input shaft 5a of the auxiliary machine 5 is interrupted.
  • the pressure storage device can function as an oil pump even if it can not be driven.
  • the power output from the output shaft 2a of the engine 2 is transmitted from the main input shaft 11 to the output shaft 14 via the first auxiliary input shaft 12 and the low speed gear pair 15. Via either the first power transmission path to be transmitted or the second power transmission path to be transmitted from the main input shaft 11 to the output shaft 14 via the second auxiliary input shaft 13 and the high speed gear pair 16 And transmitted to the drive wheels 4 and 4.
  • the power output from the output shaft 2 a of the engine 2 is transmitted to the sun gear 9 s from the main input shaft 11 and / or to the carrier 9 c via the first sub input shaft 12 and input to the power combining mechanism 9 .
  • the power output from the motor 3 is transmitted to the ring gear 9 r and input to the power combining mechanism 9.
  • these input powers are synthesized by the power synthesis mechanism 9, transmitted to the drive wheels 4 and 4 through the output shaft 14, and transmitted from the engine 2 to the output shaft 14 without the power synthesis mechanism 9. Assist the vehicle's power.
  • the ring gear 9r reversely rotates, the motor 3 performs regenerative operation.
  • the operation mode of the power transmission 1 has various operation modes. 2 to 6 visually show the operating state of the power transmission 1 in each of these types of operating modes.
  • the ON state when the operating state of the main clutch CM, the first clutch C1, the second clutch C2, and the auxiliary machine clutch 22 is in the connected state (hereinafter referred to as the ON state), the respective clutches CM, C1 , C2 and C31 are shown by thick lines, and the clutches CM, C1 and C2 and 31 are shown by normal solid lines when in the disengaged state (hereinafter referred to as the OFF state).
  • the OFF state in each type of operation mode, components of the power transmission device 1 that rotate in connection with other components are indicated by thick lines.
  • an engine travel mode in which only the engine 2 travels as a power generation source of the vehicle
  • an EV travel mode in which only the motor 3 travels as a power generation source of the vehicle
  • the engine 2 as main travel modes of the vehicle.
  • There is a combined driving mode in which both the motor 3 and the motor 3 are driven to travel.
  • an assist travel mode in which the power output from the engine 2 and the motor 3 is output to travel is synthesized, and an output of the engine 2 is distributed to the motor 3 so that the motor 3 travels while performing regenerative operation.
  • charging is performed by the battery 7 by the regenerative operation of the motor 3.
  • the electric energy stored in the battery 7 is consumed and the motor 3 outputs power.
  • the ECU 8 sets the required power (required driving force) of the vehicle using a predetermined map or the like from the accelerator operation amount of the vehicle, the vehicle speed, etc., and according to the required power Select a row. Furthermore, the ECU 8 controls the power transmission device 1 in accordance with the selected travel mode, gear position or the like.
  • the ECU 8 requires the power (hereinafter referred to as proper driving power) output from the engine 2 and input to the power combining mechanism 9 when the engine 2 is operated in a proper driving range, for example, a range where fuel consumption is good.
  • a proper driving range for example, a range where fuel consumption is good.
  • the assist travel mode is selected.
  • the ECU 8 controls the shortage with respect to the required power so that power is supplied from the battery 7.
  • the motor 3 is operated at the rated output or the maximum rotational speed to increase the output of the engine 2.
  • the ECU 8 selects the regenerative traveling mode, and charges the battery 7 with the power (energy) of the difference excluding the transmission loss due to the gear or the like. Even when the charge level (SOC) of the battery 7 is small, the ECU 8 selects the regenerative traveling mode to increase the output of the engine 2 in order to accelerate the charging of the battery 7.
  • FIG. 2 shows the operating state of the power transmission 1 at the high speed of the EV travel mode.
  • the ECU 8 sets the main clutch CM and the first clutch C1 to the OFF state, sets the second clutch C2 to the ON state, and sets the electric motor 3 so as to normally rotate the rotor 3a.
  • the carrier 9c that receives the rotational torque from the ring gear 9r tends to be normally rotated.
  • the carrier 9c is connected to the sun gear 9s via the first auxiliary input shaft 12, the first clutch C1, the second clutch C2 and the main input shaft 11, and the sun gear 9s tries to rotate normally.
  • the carrier 9c rotates in the forward direction, and the rotational torque is obtained by the first auxiliary input shaft 12, the low speed gear pair 15, the output shaft 14, the counter gear pair 18, the counter shaft 17, the gear 19b, the differential gear unit 19 and It is transmitted to the drive wheels 4, 4 via the axles 20, 20.
  • the drive wheels 4 rotate in the forward direction of the vehicle solely by the power of the motor 3.
  • the ECU 8 can start the engine 2 by setting the main clutch CM to the ON state.
  • FIG. 3 shows the operating state of the power transmission 1 at the high speed stage in the engine travel mode. After starting the engine 2 in the low speed stage of the EV travel mode, stopping the operation of the motor 3 allows the vehicle to travel at the high speed stage of the engine travel mode. In the high speed stage of the engine travel mode, the ECU 8 sets the main clutch CM and the second clutch C2 to the ON state, and sets the first clutch C1 to the OFF state.
  • the power from the output shaft 2a of the engine 2 is the main clutch CM, the main input shaft 11, the second clutch C2, the second auxiliary input shaft 13, the high speed gear pair 16, the output shaft 14, the counter gear pair 18, It is transmitted to the drive wheels 4, 4 via the counter shaft 17, the gear 17b, the differential gear unit 19, and the axles 20, 20.
  • the sun gear 9s is normally rotated with the main input shaft 11, the carrier 9c and the ring gear 9r receive no power. Therefore, although the sun gear 9s rotates, the carrier 9c and the ring gear 9r do not rotate, so the electric motor 3 does not perform the power running operation or the regenerative operation.
  • the drive wheels 4 rotate in the forward direction of the vehicle in the forward state of the high gear only by the power of the engine 2. Since the main input shaft 11 rotates forward, power is transmitted to the input shaft 5a of the accessory 5 via the belt mechanism 21 and the accessory clutch 22.
  • FIG. 4 shows the operating state of the power transmission 1 in the high speed stage of the synthetic traveling mode.
  • the electric motor 3 By operating the electric motor 3 in a state in which the vehicle is driven at the high speed level in the engine travel mode, the vehicle can be driven at the high speed speed in the combined travel mode.
  • the ECU 8 sets the motor 3 such that the rotor 3a rotates forward.
  • the carrier 9c that receives the rotational torque from the ring gear 9r tends to be normally rotated.
  • the power from the engine 2 and the power from the electric motor 3 are combined by the carrier 9 c and transmitted to the drive wheels 4, 4 via the first auxiliary input shaft 12, the output shaft 14 and the like.
  • the combined power of the engine 2 and the motor 3 is transmitted to the drive wheels 4, 4, and the drive wheels 4, 4 rotate in the forward direction of the vehicle.
  • the change from the high-speed stage of the engine travel mode to the high-speed stage of the composite travel mode is possible only by starting the operation of the motor 3, and the reverse change is also possible by simply stopping the operation of the motor 3. Both can be easily and quickly changed. And it becomes possible to respond, without changing a gear stage according to change of demand motive power. For this reason, it is possible to absorb the fluctuation of the required power by performing the power running operation and the regenerative operation of the motor 3 by appropriately switching the assist traveling mode and the regenerative traveling mode while operating the engine 2 in the appropriate operation region. The fuel consumption of the engine 2 can be reduced.
  • FIG. 5 shows the operating state of the power transmission 1 in the low speed stage of the engine travel mode.
  • the ECU 8 sets the main clutch CM and the first clutch C1 to the ON state, and sets the second clutch C2 to the OFF state.
  • the power from the output shaft 2a of the engine 2 is driven through the main clutch CM, the main input shaft 11, the first clutch C1, the first auxiliary input shaft 12, the low speed gear pair 15, the output shaft 14 etc. It is transmitted to 4,4.
  • the sun gear 9s is normally rotated with the main input shaft 11, the carrier 9c and the ring gear 9r receive no power. Therefore, although the sun gear 9s rotates, the carrier 9c and the ring gear 9r do not rotate, so the electric motor 3 does not perform the power running operation or the regenerative operation. As a result, the drive wheels 4, 4 rotate in the forward direction of the vehicle in the forward state of the low speed stage only by the power of the engine 2. Since the main input shaft 11 rotates forward, power is transmitted to the input shaft 5a of the accessory 5 via the belt mechanism 21 and the accessory clutch 22.
  • FIG. 6 shows the operation state of the power transmission 1 in the state of a lower gear (hereinafter referred to as an ultra low gear) than the low gear.
  • the ECU 8 sets the main clutch CM and the first clutch C1 to the ON state, and sets the second clutch C2 to the OFF state.
  • the power (rotational speed Ne) from the output shaft 2 a of the engine 2 is transmitted to the sun gear 9 s via the main clutch CM and the main input shaft 11.
  • the output shaft 14 is connected to the axles 20 and 20 via the counter shaft 17 etc., when the drive wheels 4 and 4 are stationary, the carrier 9c is rotated by forward rotation of the sun gear 9s due to its frictional resistance.
  • FIG. 7 is a collinear chart, in which the direction of forward rotation is indicated by “+” and the direction of reverse rotation is indicated by “ ⁇ ”.
  • the ECU 8 supplies power from the battery 7 to the stator 3 b of the motor 3 to cause the rotating magnetic field generated by the stator 3 b to rotate in the normal direction.
  • torque acting to cause the rotor 3a to rotate normally is transmitted from the stator 3b, and power acts in the direction to rotate the ring gear 9r normally.
  • the planetary gear 9p is normally rotated by the power for the engine 2 to rotate the sun gear 9s normally and the power for the electric motor 3 to rotate the ring gear 9r normally, and as shown by the alternate long and short dash line in FIG.
  • the carrier 9c rotates forward.
  • the first auxiliary input shaft 12 rotates forward, and the axles 20, 20 rotate forward.
  • the drive wheels 4 rotate in the forward direction of the vehicle in an advanced state of an ultra low speed stage where the power of the engine 2 and the electric motor 3 are combined.
  • the power transmission device 1 can start and travel the vehicle in the super low speed combined travel mode.
  • the carrier 9c resists the frictional resistance while the ring gear 9r is reversely rotated as shown by the dotted line in FIG. Rotates forward.
  • the first auxiliary input shaft 12 rotates forward
  • the axles 20, 20 rotate forward.
  • the motor 2 is in the regenerative driving state
  • the battery 7 is charging.
  • the drive wheels 4 rotate in the forward direction of the vehicle in the forward state of the ultra-low speed stage solely by the power of the engine 2.
  • the power transmission device 1 can start and travel the vehicle in the super low speed regenerative travel mode.
  • the power transmission device 1 can start and travel at an ultra low speed stage in a traveling mode different from the combined traveling mode and the regenerative traveling mode. Therefore, the traveling mode at the time of start can be appropriately used in accordance with the required power, the charge level of the battery 7, and the like.
  • the main input shaft 11 rotates forward with the sun gear 9s, and power is transmitted to the input shaft 5a of the accessory 5 via the belt mechanism 21 and the accessory clutch 22.
  • the power transmission device 41 is similar to the power transmission device 1 and thus only different configurations will be described.
  • a main input shaft (first main input shaft) 42 to which the driving force from the engine 2 is input through the main clutch CM is coupled to the output shaft 2 a of the engine 2.
  • the main input shaft 42 is connected to and disconnected from the output shaft 2 a of the engine 2 by the main clutch CM.
  • the main clutch CM is preferably a dry clutch, but may be a wet clutch.
  • the sub input shaft 43 is coaxially disposed with respect to the main input shaft 42.
  • the main input shaft 42 and the sub input shaft 43 are connected via the synchronization device S.
  • the synchronization device S is provided on the sub input shaft 43, and is configured to be able to switch connection and disconnection between the low speed gear 43a or the high speed gear 43b and the sub input shaft 43.
  • the synchronization device S is a known device such as a synchro clutch, and the low speed gear 43a or the high speed gear 43b is moved by moving the sleeve in the axial direction of the sub input shaft 43 by an actuator and shift fork not shown. Selectively connect with 43. When the sleeve moves to the right in FIG. 8, the low speed gear 43a and the sub input shaft 43 are connected. On the other hand, when the sleeve moves to the left in FIG. 8, the high speed gear 43 b and the sub input shaft 43 are connected.
  • An output shaft 14 is disposed parallel to the main input shaft 42.
  • the output shaft 14 and the sub input shaft 43 are coupled via the low speed gear pair 44.
  • the low speed gear pair 44 is configured by meshing between a low speed gear 14 a fixed on the output shaft 14 and a low speed gear 43 a fixed on the sub input shaft 43.
  • the output shaft 14 and the auxiliary input shaft 43 are coupled via a high speed gear pair 45.
  • the high-speed gear pair 45 is configured by meshing the high-speed gear 14 b fixed on the output shaft 14 and the high-speed gear 43 b fixed on the sub input shaft 43.
  • the low speed gear 43a and the high speed gear 14b correspond to a first gear group in the present invention
  • the low speed gear 14a and the high speed gear 14 correspond to a second gear group in the present invention.
  • the power combining mechanism 9 of the power transmission device 41 is a single pinion type planetary gear device, and both the sun gear 9s, the ring gear 9r, and the sun gear 9s and the ring gear 9r
  • a carrier 9c coaxially supports a plurality of planetary gears 9p meshed with 9r and 9s rotatably.
  • the sun gear 9 s is fixed to one end of the main input shaft 42 on the electric motor 3 side so as to rotate in conjunction with the main input shaft 42, and is connected to the main input shaft 42.
  • the ring gear 9 r is connected to the inside of the rotor 3 a of the motor 3.
  • the carrier 9 c is fixed to one end of the sub input shaft 43 on the motor 3 side, and is connected to the sub input shaft 43.
  • the belt mechanism 21 is configured by connecting a gear 42a fixed on the main input shaft 42 and a gear 5b fixed on the input shaft 5a via a belt 21a.
  • the power output from the output shaft 2 a of the engine 2 is the first power transmitted from the main input shaft 42 to the output shaft 14 via the low speed gear pair 44. It is transmitted to the drive wheels 4, 4 via either the transmission path or the second power transmission path transmitted from the main input shaft 42 to the output shaft 14 via the high speed gear pair 45.
  • the power output from the output shaft 2 a of the engine 2 is transmitted to the sun gear 9 s from the main input shaft 42 and / or to the carrier 9 c via the sub input shaft 43 and is input to the power combining mechanism 9.
  • the power output from the motor 3 is transmitted to the ring gear 9 r and input to the power combining mechanism 9.
  • these input powers are synthesized by the power synthesis mechanism 9, transmitted to the drive wheels 4 and 4 through the output shaft 14, and transmitted from the engine 2 to the output shaft 14 without the power synthesis mechanism 9.
  • the operation of the power transmission device 41 of the present embodiment will be described.
  • the operation of the power transmission device 41 is the same as that of the power transmission device 1, so only a part of it will be described.
  • FIG. 9 shows the operating state of the power transmission device 41 in the high speed stage of the EV travel mode.
  • the ECU 8 sets the main clutch CM in the OFF state, sets the synchronization device S in the high speed stage establishment state, and sets the motor 3 in the forward rotation of the rotor 3a.
  • the carrier 9c receiving rotational torque from the ring gear 9r tries to rotate normally.
  • the carrier 9c is connected to the sun gear 9s via the sub input shaft 43, the low speed gear pair 44, the output shaft 14, the high speed gear pair 45, and the main input shaft 42, and this sun gear 9s is rotated forward.
  • the carrier 9c rotates forward, and the rotational torque is transmitted to the drive wheels 4, 4 via the auxiliary input shaft 43, the low speed gear pair 44, the output shaft 14 and the like.
  • the drive wheels 4 rotate in the forward direction of the vehicle solely by the power of the motor 3.
  • the output shaft 2a of the engine 2 is disconnected from the main input shaft 11, power is not transmitted from the motor 3 to the output shaft 2a of the engine 2 in the EV travel mode. There is no drag.
  • the ECU 8 can start the engine 2 by setting the main clutch CM to the ON state.
  • FIG. 10 shows the operating state of the power transmission 1 in the low speed stage of the synthetic traveling mode.
  • the ECU 8 sets the main clutch CM in the ON state, sets the synchronous device S in the high speed stage establishment state, and sets the electric motor 3 in the forward rotation of the rotor 3a.
  • the power from the output shaft 2a of the engine 2 is transmitted to the drive wheels 4, 4 via the main clutch CM, the main input shaft 42, the low speed gear pair 43, the output shaft 14, and the like.
  • the carrier 9c receiving the rotational torque from the ring gear 9r tends to be normally rotated.
  • the power from the engine 2 and the power from the electric motor 3 are synthesized by the carrier 9 c and transmitted to the drive wheels 4, 4 via the auxiliary input shaft 43, the low speed gear pair 43, the output shaft 14 and the like.
  • the combined power of the engine 2 and the motor 3 is transmitted to the drive wheels 4, 4, and the drive wheels 4, 4 rotate in the forward direction of the vehicle.
  • the change from the high-speed stage of the engine travel mode to the high-speed stage of the composite travel mode is possible only by starting the operation of the motor 3, and the reverse change is also possible by simply stopping the operation of the motor 3. Both can be easily and quickly changed. And it becomes possible to respond, without changing a gear stage according to change of demand motive power. Therefore, it is possible to absorb the fluctuation of the required power by performing the power running operation and the regenerative operation of the motor 3 by appropriately switching the assist travel mode and the regenerative travel mode while operating the engine 2 in the appropriate operation region. Fuel consumption in the engine 2 can be suppressed.
  • FIGS. 11 to 13 A power transmission system 51 for a hybrid vehicle according to a third embodiment of the present invention will be described with reference to FIGS. 11 to 13. 11 to 13, the counter shaft 17, the differential gear unit 19, the axles 20 and 20, and the drive wheels 4 and 4 are omitted.
  • the configuration of the power transmission device 51 of the present embodiment will be described with reference to FIG. Since the power transmission device 51 is similar to the power transmission device 1, only different configurations will be described.
  • a first main input shaft 52 to which power from the engine 2 is input via the main clutch CM is coupled to the output shaft 2 a of the engine 2.
  • the first main input shaft 52 is connected to and disconnected from the output shaft 2 a of the engine 2 by the main clutch CM.
  • first sub input shaft 12 and a second sub input shaft 13 are coaxially arranged with respect to the first main input shaft 52, respectively.
  • the first main input shaft 52 and the first sub input shaft 12 are connected via a first clutch C1.
  • the first main input shaft 52 and the second sub input shaft 13 are connected via a second clutch C2.
  • the output shaft 14 is disposed in parallel to the first main input shaft 52.
  • the output shaft 14 and the first auxiliary input shaft 12 are coupled via a third gear pair (a low gear pair) 15.
  • the output shaft 14 and the second auxiliary input shaft 13 are coupled via a fifth gear pair (high gear pair) 16.
  • An input transmission shaft 53 is disposed parallel to the first main input shaft 52.
  • the first main input shaft 52 and the input transmission shaft 53 are coupled via a gear pair 54.
  • the gear pair 54 is configured by meshing between a gear 52 a fixed on the first main input shaft 52 and a gear 53 a fixed on the input transmission shaft 53.
  • a second main input shaft 55 is disposed parallel to the input transmission shaft 53 and hence to the first main input shaft 52.
  • the second main input shaft 55 and the input transmission shaft 53 are coupled via the gear pair 56.
  • the gear pair 56 is configured by meshing between a gear 55 a fixed on the second main input shaft 55 and the gear 53 a fixed on the input transmission shaft 53.
  • Two sub shafts ie, a third sub input shaft 57 and a fourth sub input shaft 58, are coaxially arranged with respect to the second main input shaft 55, respectively.
  • the second main input shaft 55 and the third sub input shaft 57 are connected via a third clutch (third disconnection device) C3.
  • the second main input shaft 55 and the fourth sub-input shaft 58 are connected via a fourth clutch (fourth disconnection device) C4.
  • the output shaft 14 and the third auxiliary input shaft 57 are coupled via a second gear pair (low gear pair) (gear pair) 59.
  • the second gear pair 59 is formed by meshing between the low speed gear 14 a fixed on the output shaft 14 and the second gear 57 a fixed on the third auxiliary input shaft 57.
  • the output shaft 14 and the fourth auxiliary input shaft 58 are coupled via a fourth gear pair (high gear pair) (gear pair) 60.
  • the fourth gear pair 60 is formed by meshing the high speed gear 14 b fixed on the output shaft 14 and the fourth gear 58 a fixed on the fourth auxiliary input shaft 58.
  • the power combining mechanism 9 of the power transmission device 51 is a single pinion type planetary gear device, and both the sun gear 9s, the ring gear 9r, and the sun gear 9s and the ring gear 9r
  • a carrier 9c coaxially supports a plurality of planetary gears 9p meshed with 9r and 9s rotatably.
  • the sun gear 9s is fixed to one end of the first main input shaft 52 on the electric motor 3 side so as to rotate in conjunction with the first main input shaft 52, and is connected to the first main input shaft 52.
  • the ring gear 9 r is connected to the inside of the rotor 3 a of the motor 3.
  • the carrier 9 c is fixed to one end of the first auxiliary input shaft 12 on the electric motor 3 side, and is connected to the first auxiliary input shaft 12.
  • the belt mechanism 21 is configured by connecting a gear 52b fixed on the first main input shaft 52 and a gear 5b fixed on the input shaft 5a via a belt 21a.
  • the power output from the output shaft 2 a of the engine 2 is transmitted from the first main input shaft 52 to the output shaft 14 via the third gear pair 15.
  • a second power transmission path transmitted from the first main input shaft 52 to the output shaft 14 via the fifth gear pair 16 a gear pair 54 from the first main input shaft 52, an input A third power transmission path transmitted to the output shaft 14 via the transmission shaft 53, the gear pair 56, the second main input shaft 55, and the second gear gear pair 59, and the gear pair 54 from the first main input shaft 52, Drive wheel 4 via any of the fourth power transmission path transmitted to output shaft 14 via input transmission shaft 53, gear pair 56, second main input shaft 55, and fourth speed gear pair 60. , 4 (not shown in FIG. 11).
  • the power output from the output shaft 2 a of the engine 2 is transmitted from the first main input shaft 52 to the sun gear 9 s or / and to the carrier 9 c via the first sub input shaft 12 and is input to the power combining mechanism 9 Be done.
  • the power output from the motor 3 is transmitted to the ring gear 9 r and input to the power combining mechanism 9. Then, these input powers are synthesized by the power synthesis mechanism 9, transmitted to the drive wheels 4 and 4 through the output shaft 14, and transmitted from the engine 2 to the output shaft 14 without the power synthesis mechanism 9. Support the power of When the ring gear 9r reversely rotates, the motor 3 performs regenerative operation.
  • the operation of the power transmission device 51 of the present embodiment will be described.
  • the operation of the power transmission device 51 is the same as that of the power transmission device 1, so only a part of it will be described.
  • FIG. 12 shows the operating state of the power transmission device 51 in the second gear of the engine travel mode.
  • the ECU 8 sets the main clutch CM and the third clutch C3 to the ON state, and sets the first clutch C1, the second clutch C2 and the fourth clutch C4 to the OFF state.
  • the power from the output shaft 2a of the engine 2 is the main clutch CM, the first main input shaft 52, the gear pair 54, the input transmission shaft 53, the gear pair 56, the second main input shaft 55, and the second gear gear pair It is transmitted to the output shaft 14 via 59.
  • the sun gear 9s rotates forward with the first main input shaft 52, but the carrier 9c and the ring gear 9r receive no power. Therefore, although the planetary gear 9p rotates, the carrier 9c and the ring gear 9r do not rotate, so the electric motor 3 does not perform power running operation or regenerative operation. As a result, the vehicle moves forward in the second gear only by the power of the engine 2. Since the first main input shaft 52 normally rotates, power is transmitted to the input shaft 5 a of the accessory 5 via the belt mechanism 21 and the accessory clutch 22.
  • FIG. 13 shows the operating state of the power transmission device 51 in the second gear of the synthetic traveling mode.
  • the ECU 8 turns on the main clutch CM, the first clutch C1 and the third clutch C3, turns the second clutch C2 and the fourth clutch off, and causes the motor 3a to be positive. Set to roll.
  • the motive power from the output shaft 2a of the engine 2 is transmitted to the output shaft 14 via the same power path as the second gear of the engine travel mode.
  • the carrier 9c receiving the rotational torque from the ring gear 9r tends to be normally rotated.
  • the power from the engine 2 and the power from the electric motor 3 are combined by the carrier 9 c and transmitted to the output shaft 14 via the first auxiliary input shaft 12 and the third gear pair 15.
  • the combined power of the engine 2 and the motor 3 is transmitted to the output shaft 14 to move the vehicle forward.
  • the change from the second gear of the engine drive mode to the second gear of the composite drive mode is possible only by starting the operation of the motor 3, and the change to the reverse is also possible only by stopping the operation of the motor 3. Both can be easily and quickly changed. And it becomes possible to respond, without changing a gear stage according to change of demand motive power. Therefore, it is possible to absorb the fluctuation of the required power by performing the power running operation and the regenerative operation of the motor 3 by appropriately switching the assist travel mode and the regenerative travel mode while operating the engine 2 in the appropriate operation region. Fuel consumption in the engine 2 can be suppressed.
  • a power transmission system 61 for a hybrid vehicle according to a fourth embodiment of the present invention will be described with reference to FIG. Since the power transmission device 61 is similar to the power transmission device 41, only different configurations will be described. 11 to 13, the counter shaft 17, the differential gear unit 19, the axles 20 and 20, and the drive wheels 4 and 4 are omitted.
  • a first main input shaft 62 to which a driving force from the engine 2 is input through the main clutch CM is coupled to the output shaft 2 a of the engine 2.
  • the first main input shaft 62 is connected to and disconnected from the output shaft 2 a of the engine 2 by the main clutch CM.
  • the main clutch CM is preferably a dry clutch, but may be a wet clutch.
  • a first counter shaft (a counter shaft) 43 is coaxially disposed with respect to the first main input shaft 62.
  • the first main input shaft 62 and the first sub input shaft 43 are coupled to each other via a first synchronization device (synchronization device) S.
  • the first synchronizing device S is provided on the first auxiliary input shaft 43, and can switch connection / disconnection between the third gear (low speed gear) 43a or the fifth gear (high speed gear) 43b and the first auxiliary input shaft 43. It is configured.
  • An input transmission shaft 63 is disposed in parallel to the first main input shaft 62.
  • the first main input shaft 62 and the input transmission shaft 63 are coupled via a gear pair 64.
  • the gear pair 64 is configured by meshing between a gear 62 a fixed on the first main input shaft 62 and a gear 63 a fixed on the input transmission shaft 63.
  • a second main input shaft 65 is disposed parallel to the input transmission shaft 63 and hence to the second main input shaft 62.
  • the second main input shaft 65 and the input transmission shaft 63 are coupled via a gear pair 66.
  • the gear pair 66 is configured by meshing between a gear 65 a fixed on the second main input shaft 65 and the gear 63 a fixed on the input transmission shaft 63.
  • a third countershaft 67 is coaxially arranged with respect to the second main input shaft 65.
  • the second main input shaft 65 and the third counter shaft 67 are coupled via the second synchronization device S2.
  • the second synchronization device S2 is provided on the third countershaft 67, and is configured to be able to switch connection / disconnection between the second gear (low speed gear) 67a or the fourth gear (high speed gear) 67b and the third countershaft 67. ing.
  • the output shaft 14 and the first main input shaft 65 are coupled via a two-speed gear pair (low-speed gear pair) 68.
  • the second gear pair 68 is formed by meshing of a low speed gear 14 a fixed on the output shaft 14 and a second gear 67 a fixed on the third counter shaft 67.
  • the output shaft 14 and the third countershaft 67 are coupled via a fourth speed gear pair (high speed gear pair) 69.
  • the fourth speed gear pair 45 is configured by meshing between the high speed gear 14 b fixed on the output shaft 14 and the fourth speed gear 67 b fixed on the third counter shaft 67.
  • the second gear 67a and the fourth gear 67b correspond to a third gear group in the present invention.
  • the power combining mechanism 9 of the power transmission device 61 is a single pinion type planetary gear device, and both the sun gear 9s, the ring gear 9r, and the sun gear 9s and the ring gear 9r
  • a carrier 9c coaxially supports a plurality of planetary gears 9p meshed with 9r and 9s rotatably.
  • the sun gear 9s is fixed to one end of the first main input shaft 62 on the electric motor 3 side so as to rotate in conjunction with the first main input shaft 62, and is connected to the first main input shaft 62.
  • the ring gear 9 r is connected to the inside of the rotor 3 a of the motor 3.
  • the carrier 9 c is fixed to one end of the first auxiliary input shaft 43 on the electric motor 3 side, and is connected to the first auxiliary input shaft 43.
  • the belt mechanism 21 is configured by connecting a gear 62b fixed on the first main input shaft 62 and a gear 5b fixed on the input shaft 5a via a belt 21a.
  • the power output from the output shaft 2 a of the engine 2 is transmitted from the first main input shaft 62 to the output shaft 14 via the third gear pair 44.
  • the power output from the output shaft 2 a of the engine 2 is transmitted from the first main input shaft 62 to the sun gear 9 s or / and to the carrier 9 c via the first sub input shaft 43 and is input to the power combining mechanism 9 Be done.
  • the power output from the motor 3 is transmitted to the ring gear 9 r and input to the power combining mechanism 9.
  • these input powers are synthesized by the power synthesis mechanism 9, transmitted to the drive wheels 4 and 4 through the output shaft 14, and transmitted from the engine 2 to the output shaft 14 without the power synthesis mechanism 9. Support the power of When the ring gear 9r reversely rotates, the motor 3 performs regenerative operation.
  • the operation of the power transmission device 61 of the present embodiment is the same as the operation mode of the power transmission device 51, so the description thereof will be omitted.
  • FIGS. 15 to 17 the counter shaft 17, the differential gear unit 19, the axles 20 and 20, and the drive wheels 4 and 4 are omitted.
  • a power transmission device 71 of the present embodiment will be described with reference to FIG. Since the power transmission device 71 is similar to the power transmission device 51, only different configurations will be described.
  • a power from the engine 2 is input to the output shaft 2a of the engine 2 through the first main clutch CM1, and a first main input shaft 72 disposed parallel to the output shaft 2a of the engine 2 is connected.
  • the first main input shaft 72 is connected to and disconnected from the output shaft 2a of the engine 2 by the first main clutch CM1.
  • a second main input shaft 73 is disposed coaxially with the first main input shaft 72.
  • the second main input shaft 73 is connected to and disconnected from the output shaft 2a of the engine 2 by the second main clutch CM2.
  • first main input shaft 72 two sub shafts, ie, the first sub input shaft 12 and the second sub input shaft 13, are coaxially arranged.
  • the first main input shaft 72 and the first sub input shaft 12 are connected via a first clutch C1 (first disconnection device). Further, the first main input shaft 72 and the second sub input shaft 13 are connected via a second clutch C2 (second disconnection device).
  • An intermediate shaft 74 is disposed parallel to the first main input shaft 72.
  • the intermediate shaft 74 and the first auxiliary input shaft 12 are coupled via a third gear pair 75.
  • the third gear pair 75 is configured by meshing between a third gear 74 a fixed on the intermediate shaft 74 and a third gear 12 a fixed on the first auxiliary input shaft 12.
  • the intermediate shaft 74 and the second auxiliary input shaft 13 are coupled via a fifth gear pair (gear pair) 76.
  • the fifth gear pair 76 is configured by meshing engagement of a fifth gear 74 b fixed on the intermediate shaft 74 and a third gear 13 a fixed on the second auxiliary input shaft 13.
  • a third main input shaft 77 is disposed parallel to the second main input shaft 73 and thus to the first main input shaft 72.
  • Two sub shafts, ie, a third sub input shaft 78 and a fourth sub input shaft 79 are coaxially arranged with respect to the third main input shaft 77, respectively.
  • the third main input shaft 77 and the third sub input shaft 78 are connected via a third clutch (third disconnection device) C3.
  • the first sub input shaft 77 and the fourth sub input shaft 79 are connected via a fourth clutch (fourth connection / disconnection device) C4.
  • the second main input shaft 73 and the third auxiliary input shaft 78 are coupled via a second gear pair (gear pair) 80.
  • the second gear pair 80 is formed by meshing between a second gear 73 a fixed on the second main input shaft 73 and a second gear 78 a fixed on the third auxiliary input shaft 78.
  • the second main input shaft 73 and the fourth sub input shaft 79 are coupled via a fourth gear pair (gear pair) 81.
  • the fourth gear pair 81 is formed by meshing engagement of a fourth gear 73 b fixed on the second main input shaft 73 and a fourth gear 79 a fixed on the fourth sub input shaft 79.
  • An output shaft 82 is disposed in parallel to the first main input shaft 72 and on the opposite side of the first main input shaft 72 and the motor 3.
  • the output shaft 82 and the intermediate shaft 74 are coupled via a gear pair 83.
  • the gear pair 83 is configured by meshing between a gear 82 a fixed on the output shaft 82 and a gear 74 c fixed on the intermediate shaft 74.
  • the output shaft 82 and the third main input shaft 77 are coupled via a gear pair 84.
  • the gear pair 84 is configured by meshing between the gear 82a fixed on the output shaft 82 and the gear 77a fixed on the third main input shaft 77. Both ends of the output shaft 82 are rotatably supported by bearings (not shown).
  • a counter shaft 17 (see FIG. 1), which is not shown in FIG. 15, is disposed in parallel to the first main input shaft 72 and thus the output shaft 82.
  • the output shaft 82 and the counter shaft 17 are coupled via a counter gear mechanism.
  • the counter gear mechanism is configured such that a gear 82 b as a final gear fixed on the output shaft 82 meshes with a gear 17 a fixed on the counter shaft 17.
  • the power combining mechanism 9 of the power transmission device 71 is a single pinion type planetary gear device, and both the sun gear 9s, the ring gear 9r, and the sun gear 9s and the ring gear 9r
  • a carrier 9c coaxially supports a plurality of planetary gears 9p meshed with 9r and 9s rotatably.
  • the sun gear 9s is fixed to one end of the first main input shaft 72 on the side of the motor 3 so as to rotate in conjunction with the first main input shaft 72, and is connected to the first main input shaft 72.
  • the ring gear 9 r is connected to the inside of the rotor 3 a of the motor 3.
  • the carrier 9 c is fixed to one end of the first auxiliary input shaft 12 on the electric motor 3 side, and is connected to the first auxiliary input shaft 12.
  • the third main input shaft 77 and the input shaft 5 a of the auxiliary device 5 are coupled via the belt mechanism 21.
  • the belt mechanism 21 is configured by connecting a gear 77 b fixed on the third main input shaft 77 and a gear 5 b fixed on the input shaft 5 a via a belt 21 a.
  • the operation of the power transmission device 71 of the present embodiment will be described.
  • the operation of the power transmission device 71 is the same as that of the power transmission device 51, so only part of it will be described.
  • FIG. 16 shows the operating state of the power transmission 71 in the second gear of the engine travel mode.
  • the ECU 8 turns on the second main clutch CM2 and the third clutch C3, and turns off the first main clutch CM1, the first clutch C1, the second clutch C2 and the fourth clutch C4.
  • the power from the output shaft 2a of the engine 2 is output through the second main clutch CM2, the second main input shaft 73, the second gear pair 80, the third main input shaft 77, and the gear pair 84.
  • FIG. 17 shows the operating state of the power transmission device 71 in the second gear of the synthetic traveling mode.
  • the ECU 8 turns on the second main clutch CM2, the first clutch C1 and the third clutch C3, turns off the first main clutch CM1, the second clutch C2 and the fourth clutch.
  • the motor 3 is set so that the rotor 3a rotates forward. Thereby, the motive power from the output shaft 2a of the engine 2 is transmitted to the output shaft 82 via the same power path as the second gear of the engine travel mode. Further, when the ring gear 9r is normally rotated with the rotor 3a, the carrier 9c receiving the rotational torque from the ring gear 9r tends to be normally rotated.
  • the power from the engine 2 and the power from the electric motor 3 are combined by the carrier 9c and transmitted to the output shaft 82 via the first auxiliary input shaft 12, the third gear pair 75, the intermediate shaft 74 and the gear pair 83. Ru.
  • the combined power of the engine 2 and the motor 3 is transmitted to the output shaft 82 to move the vehicle forward.
  • the change from the second gear of the engine drive mode to the second gear of the composite drive mode is possible only by starting the operation of the motor 3, and the change to the reverse is also possible only by stopping the operation of the motor 3. Both can be easily and quickly changed. And it becomes possible to respond, without changing a gear stage according to change of demand motive power. Therefore, it is possible to absorb the fluctuation of the required power by performing the power running operation and the regenerative operation of the motor 3 by appropriately switching the assist travel mode and the regenerative travel mode while operating the engine 2 in the appropriate operation region. Fuel consumption in the engine 2 can be suppressed.
  • the power transmission device 71A of this embodiment is similar to the power transmission device 71.
  • the power transmission device 71A is one that has been replaced with respect to the power transmission device 71.
  • operation of power transmission 71A is the same as operation of power transmission 71, the explanation is omitted.
  • a power transmission system 91 for a hybrid vehicle according to a seventh embodiment of the present invention will be described with reference to FIGS. 19 to 22. 19-22, the differential gear unit 19, the axles 20 and 20, the drive wheels 4, 4, the accessory 5, the belt mechanism 21 and the accessory clutch 22 are omitted.
  • a power transmission device 91 of the present embodiment will be described with reference to FIG. Since the power transmission device 91 is similar to the power transmission device 51, only different configurations will be described.
  • the driving force from the engine 2 is input to the output shaft 2a of the engine 2 through the first main clutch CM1, and a first main input shaft 92 disposed parallel to the output shaft 2a of the engine 2 is connected .
  • the first main input shaft 92 is connected to and disconnected from the output shaft 2a of the engine 2 by the first main clutch CM1.
  • a second main input shaft 93 is disposed coaxially with the first main input shaft 92.
  • the second main input shaft 93 is connected to and disconnected from the output shaft 2a of the engine 2 by the second main clutch CM2.
  • Two secondary shafts that is, a third main input shaft 94 and a fourth main input shaft 95 are disposed in parallel to the first main input shaft 92 and the second main input shaft 93, respectively.
  • the first main input shaft 92 and the third main input shaft 94 are coupled via a reduction gear pair 96.
  • the reduction gear pair 96 is configured by meshing between a gear 92 a fixed on the first main input shaft 92 and a gear 94 a fixed on the third main input shaft 94.
  • the second main input shaft 93 and the fourth main input shaft 95 are coupled via a speed increasing gear pair 97.
  • the speed increasing gear pair 97 is configured by meshing between a gear 93 a fixed on the second main input shaft 93 and a gear 95 a fixed on the fourth main input shaft 95. Both ends of the third main input shaft 94 and the fourth main input shaft 95 are rotatably supported by bearings (not shown).
  • Two sub shafts ie, a first sub input shaft 98 and a second sub input shaft 99, are coaxially arranged with respect to the third main input shaft 94, respectively.
  • the third main input shaft 94 and the first sub input shaft 98 are coupled via a first clutch (first disconnection device) C1.
  • the third main input shaft 94 and the second sub-input shaft 99 are coupled via a second clutch (second disconnection device) C2.
  • Two sub-shafts, ie, a third sub-input shaft 101 and a fourth sub-input shaft 102, are coaxially arranged with respect to the fourth main input shaft 95, respectively.
  • the fourth main input shaft 95 and the third sub input shaft 101 are coupled to each other via a third clutch (third disconnection device) C3.
  • the twenty-first countershaft 95 and the fourth sub-input shaft 102 are coupled to each other via a fourth clutch (fourth connection / disconnection device) C4.
  • An output shaft 103 is disposed coaxially with the first main input shaft 92.
  • the output shaft 103 and the first auxiliary input shaft 94 are coupled via a second gear pair (gear pair) 104 and a fourth gear pair (gear pair) 105.
  • the second gear pair 104 is configured by meshing between a first gear 103 a as a final gear fixed on the output shaft 103 and a gear 98 a fixed on the first auxiliary input shaft 98.
  • the fourth gear pair 105 is configured by meshing between a second gear 103 b fixed on the output shaft 103 and a gear 99 a fixed on the second auxiliary input shaft 99.
  • the output shaft 103 and the second auxiliary input shaft 95 are coupled via a third gear pair 106 and a fourth gear pair (gear pair) 107.
  • the third gear pair 106 is configured by meshing between the first gear 103 a fixed on the output shaft 103 and the gear 101 a fixed on the third auxiliary input shaft 101.
  • the fourth gear pair 105 is configured by meshing between the second gear 103 b fixed on the output shaft 103 and the gear 102 a fixed on the fourth auxiliary input shaft 102.
  • the power combining mechanism 9 of the power transmission device 91 is a single pinion type planetary gear device and both the sun gear 9s, the ring gear 9r, and the sun gear 9s and the ring gear 9r
  • a carrier 9c coaxially supports a plurality of planetary gears 9p meshed with 9r and 9s rotatably.
  • the sun gear 9 s is fixed to one end of the first main input shaft 92 on the motor 3 side so as to rotate in conjunction with the first main input shaft 92, and is connected to the first main input shaft 92.
  • the ring gear 9 r is connected to the inside of the rotor 3 a of the motor 3.
  • the carrier 9 c is fixed to one end of the output shaft 103 on the motor 3 side, and is connected to the output shaft 103.
  • the operation of the power transmission device 91 of the present embodiment will be described.
  • the operation of the power transmission device 91 is the same as that of the power transmission device 51, so only part of it will be described.
  • FIG. 20 shows the operating state of the power transmission device 91 in the fifth gear of the synthetic traveling mode.
  • the ECU 8 turns on the second main clutch CM2 and the fourth clutch C3, and turns off the first main clutch CM1, the first clutch C1, the second clutch C2 and the third clutch C3.
  • the motor 3 is set so that the rotor 3a rotates forward.
  • the power from the output shaft 2a of the engine 2 includes the second main clutch CM2, the second main input shaft 93, the speed increasing gear pair 97, the second intermediate shaft 95, the fifth gear gear pair 107, and the output shaft 103. It is transmitted to the counter shaft 17 via the same.
  • the carrier 9c receiving the rotational torque from the ring gear 9r tends to be normally rotated. Therefore, the power from the engine 2 and the power from the motor 3 are combined by the carrier 9 c and transmitted to the counter shaft 17 via the output shaft 103. Thus, the combined power of the engine 2 and the motor 3 is transmitted to the output shaft 103, and the vehicle advances.
  • the required power does not satisfy the appropriate driving power or the like, it is also possible to reverse the ring gear 3r to cause the motor 3 to perform the regenerative operation and to run the vehicle in the high-speed regenerative travel mode.
  • FIG. 21 shows the operating state of the power transmission device 91 in the second gear of the synthetic traveling mode.
  • the ECU 8 turns on the first main clutch CM1 and the first clutch C1, and turns off the second main clutch CM2, the second clutch C2, the third clutch C3 and the fourth clutch C4.
  • the motor 3 is set so that the rotor 3a rotates forward.
  • the power from the output shaft 2 a of the engine 2 is transmitted through the first main clutch CM 1, the first main input shaft 92, the reduction gear pair 96, the first intermediate shaft 94, the second gear pair 104 and the output shaft 103. Is transmitted to the counter shaft 17.
  • the carrier 9c receiving the rotational torque from the ring gear 9r tends to be normally rotated. Therefore, the power from the engine 2 and the power from the motor 3 are combined by the carrier 9 c and transmitted to the counter shaft 17 via the output shaft 103. Thus, the combined power of the engine 2 and the motor 3 is transmitted to the output shaft 103, and the vehicle advances.
  • the required power does not satisfy the appropriate driving power or the like, it is also possible to reverse the ring gear 3r to cause the motor 3 to perform the regenerative operation and to run the vehicle in the high-speed regenerative travel mode.
  • FIG. 22 shows the operating state of the power transmission device 71 in the third gear of the engine travel mode.
  • the ECU 8 turns on the second main clutch CM2 and the third clutch C3, and turns off the first main clutch CM1, the first clutch C1, the second clutch C2 and the fourth clutch C4.
  • the power from the output shaft 2a of the engine 2 is the second main clutch CM2, the second main input shaft 93, the speed increasing gear pair 97, the second intermediate shaft 95, the third gear pair 106, and the output shaft 103. It is transmitted to the counter shaft 17 via the same.
  • the carrier 9c receiving the rotational torque from the ring gear 9r tends to be normally rotated. Therefore, the power from the engine 2 and the power from the motor 3 are combined by the carrier 9 c and transmitted to the counter shaft 17 via the output shaft 103. Thus, the combined power of the engine 2 and the motor 3 is transmitted to the output shaft 103, and the vehicle advances.
  • the required power does not satisfy the appropriate driving power or the like, it is also possible to reverse the ring gear 3r to cause the motor 3 to perform the regenerative operation and to run the vehicle in the high-speed regenerative travel mode.
  • the power transmission device which concerns on this invention is not limited to what was mentioned above.
  • the case where the first main input shafts 52, 62, 72, 92 are connected to the sun gear 9s has been described.
  • the second main input shafts 55, 65, 73, 93 may be connected to the sun gear 9s.
  • the gears 12a and 13c for the low speed gear are disposed on the first auxiliary input shaft 12, and the gears 13a and 14c for the high speed gear are disposed on the second auxiliary input shaft 13, respectively.
  • the gear for the high speed gear may be arranged on the first auxiliary input shaft 12, and the gear for the low speed gear may be arranged on the second auxiliary input shaft 13.
  • the first sub input shaft 12 and the second sub input shaft 13 have gears 12a and 13a for odd-numbered stages
  • the third sub input shafts 57 and 78, and the fourth sub-input shafts 58 and 79 have gears 57 for even-numbered stages.
  • 58a, 78a, 79a are arranged, respectively.
  • the gears for the even gear are arranged on the first auxiliary input shaft 12 and the second auxiliary input shaft 13
  • the gears for the odd gear are arranged on the third auxiliary input shaft 57 and 78 and the fourth auxiliary input shaft 58 and 79, respectively. May be
  • the power combining mechanism 9 has been described as being configured by a planetary gear device, but a differential device other than the planetary gear device may be used. Also, connect the main input shaft 11, 42, the first main input shaft 52, 62, 72, 92 to the sun gear 9s, the output shaft 14, 82, 103 to the carrier 9c, and the rotor 3a of the motor 3 to the ring gear 9r. The case was explained. However, these connections are not limited to these, and the connections may be changed. Although the connection is made, for example, the output shaft 2a of the engine 2 may be connected to the sun gear 9s, and the rotor 3a of the motor 3 may be connected to the ring gear 9r. Also, a double pinion type planetary gear device or an electromagnetic clutch type differential device may be used as the power combining mechanism 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Structure Of Transmissions (AREA)
  • Arrangement Of Transmissions (AREA)

Abstract

A power transmitting device provided with: a main input shaft (11) connected to an engine output shaft (2a) by a main clutch (CM); sub input shafts (12, 13) selectively connected to the main input shaft (11) by clutches (C1, C2); an output shaft (14) connected to the sub input shafts (12, 13) through a pair of gears (15, 16), respectively; and a power combining mechanism (9) configured so that a sun gear (9s) connected to the main input shaft (11), a ring gear (9r) connected to an electric motor (3), and a carrier (9c) connected to the first sub input shaft (12) can rotate differentially with respect to each other and transmitting combined power to the output shaft (14). The power of the engine and the power of the electric motor can be combined at high efficiency.

Description

動力伝達装置Power transmission
 本発明は、内燃機関と電動機とを備えるハイブリッド車両用動力伝達装置に関する。 The present invention relates to a power transmission system for a hybrid vehicle including an internal combustion engine and an electric motor.
 ハイブリッド車両用動力伝達装置として、内燃機関と電動機とからそれぞれ出力された動力を合成して駆動輪に伝達可能であると共に、電動機で回生運転を行うことが可能なものがある。このようなものとして、内燃機関の出力から入力された動力を、内燃機関の出力軸と同軸心に配置された複数の軸を介して、該複数の軸と選択的に接続され、内燃機関の出力軸に平行な出力軸から出力する方式が、従来から知られている。例えば、特許文献1に記載の動力伝達装置は、内燃機関の出力軸と同軸心に3本の軸が配置されている。その1の軸(以下、第1軸という)は、端部に内燃機関がクラッチを介して接続されている。他の1の軸(以下、第2軸という)は、ギヤ対を介して出力軸に結合されると共に、端部に電動機が接続されている。さらに他の1の軸(以下、第3軸という)は、複数のギヤ対を介して選択的に出力軸に接続されている。そして、第2軸又は第3軸を選択的に第1軸に連結する同期装置が設けられている。 As a power transmission device for a hybrid vehicle, there is a type capable of synthesizing powers respectively output from an internal combustion engine and an electric motor and transmitting the synthesized power to drive wheels and performing regenerative operation with the electric motor. As such, the power input from the output of the internal combustion engine is selectively connected to the plurality of shafts via a plurality of shafts coaxially arranged with the output shaft of the internal combustion engine. A method of outputting from an output axis parallel to the output axis is conventionally known. For example, in the power transmission device described in Patent Document 1, three shafts are disposed coaxially with the output shaft of the internal combustion engine. An internal combustion engine is connected to an end of the first shaft (hereinafter referred to as a first shaft) via a clutch. The other one shaft (hereinafter referred to as a second shaft) is coupled to the output shaft via a gear pair, and an electric motor is connected to an end. Another one shaft (hereinafter referred to as the third shaft) is selectively connected to the output shaft via a plurality of gear pairs. And, a synchronizer is provided which selectively connects the second axis or the third axis to the first axis.
特開2002-114063号公報Unexamined-Japanese-Patent No. 2002-114063
 しかしながら、特許文献1に記載の動力伝達装置においては、内燃機関と電動機の動力を合成するためには、同期装置を第2軸を第1軸に連結するよう動作させる必要があるので、伝達効率が劣るという不都合がある。 However, in the power transmission device described in Patent Document 1, in order to combine the power of the internal combustion engine and the power of the motor, it is necessary to operate the synchronization device so as to connect the second shaft to the first shaft. Is a disadvantage.
 本発明はかかる背景に鑑みてなされたものであり、内燃機関と電動機とを備えるハイブリッド車両用動力伝達装置において、エンジンと電動機の動力を高効率で合成することが可能なハイブリッド車両用動力伝達装置を提供することを目的とする。 The present invention has been made in view of such background, and in a power transmission device for a hybrid vehicle including an internal combustion engine and a motor, the power transmission device for a hybrid vehicle capable of combining the power of the engine and the motor with high efficiency. Intended to provide.
 本発明の動力伝達装置は、かかる目的を達成するために、内燃機関と電動機とを備えるハイブリッド車両用動力伝達装置であって、前記内燃機関から動力が入力される内燃機関出力軸と、前記内燃機関出力軸と平行に配置され、主断接装置によって選択的に、該内燃機関出力軸と連結される第1主入力軸と、前記第1主入力軸と同軸心に配置され、第1断接装置によって選択的に、前記第1主入力軸と連結される第1副入力軸と、前記第1主入力軸と同軸心に配置され、第2断接装置によって選択的に、前記第1主入力軸と連結される第2副入力軸と、前記第1主入力軸と平行に配置され、前記第1副入力軸及び前記第2副入力軸とそれぞれギヤ対を介して結合され、カウンタ軸を介して被駆動部に動力を出力する出力軸と、第1回転要素、第2回転要素、及び第3回転要素を互いに差動回転可能に構成した動力合成機構とを備え、前記第1回転要素は前記第1主入力軸に接続され、前記第2回転要素は前記第1副入力軸に接続され、前記第3回転要素は前記電動機に接続され、前記第2回転要素は、前記第1回転要素から伝達される動力と前記第3回転要素から伝達される動力とを合成し、前記第1副入力軸を介して前記出力軸に伝達することを特徴とする(第1発明)。 A power transmission apparatus according to the present invention is a power transmission apparatus for a hybrid vehicle including an internal combustion engine and an electric motor to achieve the above object, and an internal combustion engine output shaft to which power is input from the internal combustion engine, and the internal combustion engine A first main input shaft disposed parallel to the engine output shaft and selectively coupled with the internal combustion engine output shaft by the main connection / disconnection device, and coaxially disposed with the first main input shaft, the first disconnection A first auxiliary input shaft selectively connected to the first main input shaft by a contact device, and a first auxiliary input shaft coaxially disposed with the first main input shaft, and selectively connected to the first main input shaft by a second disconnection device. A second sub-input shaft connected to the main input shaft and a first main input shaft disposed in parallel with each other, the first sub-input shaft and the second sub-input shaft being respectively coupled via a gear pair, a counter An output shaft for outputting power to a driven part via a shaft, and a first rotating element And a power combining mechanism in which the second rotating element and the third rotating element are configured to be differentially rotatable with respect to each other, the first rotating element is connected to the first main input shaft, and the second rotating element is the second rotating element. The third rotation element is connected to the electric motor, and the second rotation element is configured to transmit the power transmitted from the first rotation element and the power transmitted from the third rotation element. The present invention is characterized in that it is synthesized and transmitted to the output shaft through the first auxiliary input shaft (first invention).
 かかる第1発明によれば、第1回転要素、第2回転要素、及び第3回転要素を互いに差動回転可能に構成した動力合成機構は、第1副入力軸又は第2副入力軸を介して内燃機関に接続される第1回転要素から伝達される動力と、電動機に接続される第3回転要素から伝達される動力とを合成し、出力軸から被駆動部に動力を出力する。そのため、特許文献1に記載の動力伝達装置のように、同期装置で燃機関と電動機の動力を合成する場合に比べて、動力を高効率で合成することが可能となる。 According to the first aspect of the invention, the power combining mechanism in which the first rotation element, the second rotation element, and the third rotation element are configured to be differentially rotatable with respect to each other is connected via the first auxiliary input shaft or the second auxiliary input shaft. The power transmitted from the first rotating element connected to the internal combustion engine and the power transmitted from the third rotating element connected to the electric motor are combined, and the power is output from the output shaft to the driven part. Therefore, as in the power transmission device described in Patent Document 1, as compared with the case of synthesizing the motive power of the internal combustion engine and an electric motor in a synchronous system, it is possible to synthesize the power with high efficiency.
 さらに、主断接装置によって内燃機関出力軸に第1主入力軸を連結させると共に、第1断接装置によって該第1主入力軸に第1副入力軸を連結させた状態で、内燃機関から動力を内燃機関出力軸に入力すると共に、第3回転要素が回転するように電動機を力行運転させる。このとき、動力合成機構の第2回転要素は、内燃機関から第1主入力軸及び第1副入力軸を介して第1回転要素に伝達される動力と、電動機から第3回転要素に伝達される動力とを合成して出力軸に伝達し、この合成動力が被駆動部に出力される。 Furthermore, while connecting the first main input shaft to the internal combustion engine output shaft by the main connection / disconnection device and connecting the first sub-input shaft to the first main input shaft by the first connection / disconnection device, from the internal combustion engine Power is input to the internal combustion engine output shaft, and the electric motor is driven in a power-running mode so that the third rotating element rotates. At this time, the second rotating element of the power combining mechanism is transmitted to the first rotating element from the internal combustion engine via the first main input shaft and the first sub input shaft, and from the motor to the third rotating element. Power is combined and transmitted to the output shaft, and this combined power is output to the driven part.
 さらに、前記状態で、内燃機関から第1回転要素に伝達された動力を、第2回転要素と第3回転要素に分配することも可能である。このとき、第2回転要素を介して被駆動部に動力が出力されると共に、第3回転要素を介して電動機で回生運転が行われる。このように、第1発明においては、電動機で回生運転を行いながら、走行することができる。 Furthermore, in the above state, it is also possible to distribute the power transmitted from the internal combustion engine to the first rotating element to the second rotating element and the third rotating element. At this time, power is output to the driven portion via the second rotation element, and regenerative operation is performed by the motor via the third rotation element. As described above, according to the first aspect of the invention, it is possible to travel while performing regenerative operation with the electric motor.
 また、第1発明において、前記第1断接装置と前記第2断接装置とは前記第1主入力軸に軸心方向に隣接して配置されていることが好ましい。 In the first aspect of the invention, it is preferable that the first connection device and the second connection device be disposed adjacent to the first main input shaft in the axial direction.
 この場合、第1断接装置と第2断接装置がその接合面を共有することにより、動力伝達装置を小型化することが可能となる。また、第1断接装置と第2断接装置の駆動源を共有することにより、動力伝達装置を小型化、低コスト化することが可能となる。 In this case, the power transmission device can be miniaturized by sharing the joint surfaces of the first and second connection devices. Further, by sharing the drive sources of the first and second connection devices, it is possible to reduce the size and cost of the power transmission device.
 また、第1発明において、前記第1断接装置及び前記第2断接装置は湿式クラッチであることが好ましい。 In the first aspect of the present invention, preferably, the first connection device and the second connection device are wet clutches.
 この場合、第1断接装置及び第2断接装置は、湿式クラッチであるので、第1主入力軸と第1副入力軸又は第2副入力軸との接続状態と遮断状態を、動力の伝達が途絶えることなく切り替えることができる。そのため、第1断接装置と第2断接装置との間で素早く断続なく切り替えることが可能となる。 In this case, since the first disconnection device and the second disconnection device are wet clutches, the connection state and the disconnection state of the first main input shaft and the first sub input shaft or the second sub input shaft can be It can be switched without interruption of transmission. Therefore, it becomes possible to switch between the first connection device and the second connection device quickly and without interruption.
 また、第1発明において、前記第1主入力軸と平行に配置され、前記第1主入力軸と常時接続される第2主入力軸と、前記第2主入力軸と同軸心に配置され、第3断接装置によって選択的に、該第2主入力軸と連結される第3副入力軸と、前記第2主入力軸と同軸心に配置され、第4断接装置によって選択的に、該第2主入力軸と連結される第4副入力軸とを備え、前記出力軸に固定され、該出力軸と前記第1副入力軸及び前記第2副入力軸とをそれぞれ結合するギヤ対を構成する複数のギヤと、前記第3副入力軸及び前記第4副入力軸に固定されたギヤが結合することが好ましい。 In the first invention, a second main input shaft disposed parallel to the first main input shaft and coaxially connected to the second main input shaft, which is always connected to the first main input shaft, and the second main input shaft, A third auxiliary input shaft selectively connected to the second main input shaft by a third disconnection device, and coaxially disposed with the second main input shaft, and selectively selected by a fourth disconnection device, A gear pair comprising: a fourth sub-input shaft connected to the second main input shaft; fixed to the output shaft; and coupling the output shaft to the first sub-input shaft and the second sub-input shaft It is preferable that a plurality of gears constituting the gear and a gear fixed to the third auxiliary input shaft and the fourth auxiliary input shaft be coupled.
 この場合、第1主入力軸の軸心方向の長さを保ちながら、変速段を増加させることが可能となる。 In this case, it is possible to increase the shift speed while maintaining the axial length of the first main input shaft.
 また、本発明の動力伝達装置は、内燃機関と電動機とを備えるハイブリッド車両用動力伝達装置であって、前記内燃機関から動力が入力される内燃機関出力軸と、前記内燃機関出力軸と平行に配置され、主断接装置によって選択的に、該内燃機関出力軸と連結される第1主入力軸と、前記第1主入力軸と同軸心に配置される第1副入力軸と、前記第1副入力軸上に配置され、第1同期装置を介して該第1副入力軸に選択的に連結される複数のギヤよりなる第1ギヤ群と、前記第1主入力軸と平行に配置され、カウンタ軸を介して被駆動部に動力を出力する出力軸と、前記出力軸に固定され前記第1ギヤ群のギヤと噛合する複数のギヤよりなる第2ギヤ群と、第1回転要素、第2回転要素、及び第3回転要素を互いに差動回転可能に構成した動力合成機構とを備え、前記第1回転要素は前記第1主入力軸に接続され、前記第2回転要素は前記第1副入力軸に接続され、前記第3回転要素は前記電動機に接続され、前記第2回転要素は、前記第1回転要素から伝達される動力と前記第3回転要素から伝達される動力とを合成し、前記第1副入力軸を介して前記出力軸に伝達することを特徴とする(第2発明)。 Further, a power transmission device of the present invention is a power transmission device for a hybrid vehicle including an internal combustion engine and a motor, and is parallel to the internal combustion engine output shaft to which power is input from the internal combustion engine and the internal combustion engine output shaft A first main input shaft arranged and selectively connected to the internal combustion engine output shaft by a main connection device, a first sub input shaft coaxially arranged with the first main input shaft, and A first gear group including a plurality of gears disposed on one sub input shaft and selectively coupled to the first sub input shaft via a first synchronization device, and disposed parallel to the first main input shaft And a second gear group including a plurality of gears fixed to the output shaft and meshed with the gears of the first gear group, and a first rotating element. , The second rotation element, and the third rotation element are configured to be differentially rotatable with respect to each other A force combining mechanism, the first rotating element is connected to the first main input shaft, the second rotating element is connected to the first sub-input shaft, and the third rotating element is connected to the motor The second rotation element combines the power transmitted from the first rotation element and the power transmitted from the third rotation element, and transmits the combined power to the output shaft via the first auxiliary input shaft. (The second invention).
 かかる第2発明によれば、第1回転要素、第2回転要素、及び第3回転要素を互いに差動回転可能に構成した動力合成機構は、第1副入力軸を介して内燃機関に接続される第1回転要素から伝達される動力と、電動機に接続される第3回転要素から伝達される動力とを合成し、出力軸から被駆動部に動力を出力する。そのため、特許文献1に記載の動力伝達装置のように、同期装置で燃機関と電動機の動力を合成する場合に比べて、動力を高効率で合成することが可能となる。また、出力軸に固定されたギヤと結合するギヤを第1副入力軸と連結する際に同期装置を用いているので、第1発明と比べてコンパクト化することが可能となる。 According to the second aspect of the invention, the power combining mechanism in which the first rotation element, the second rotation element, and the third rotation element are configured to be differentially rotatable with each other is connected to the internal combustion engine via the first auxiliary input shaft. The power transmitted from the first rotation element and the power transmitted from the third rotation element connected to the motor are combined, and the power is output from the output shaft to the driven part. Therefore, as in the power transmission device described in Patent Document 1, as compared with the case of synthesizing the motive power of the internal combustion engine and an electric motor in a synchronous system, it is possible to synthesize the power with high efficiency. Further, since the synchronous device is used when connecting the gear coupled with the gear fixed to the output shaft to the first sub-input shaft, it is possible to make the device compact as compared with the first invention.
 さらに、主断接装置によって内燃機関出力軸に第1主入力軸を連結させると共に、同期装置によって該第1主入力軸に第1副入力軸をギヤ対により結合させた状態で、内燃機関から動力を内燃機関出力軸に入力すると共に、第3回転要素が回転するように電動機を力行運転させる。このとき、動力合成機構の第2回転要素は、内燃機関から第1主入力軸及び第1副入力軸を介して第1回転要素に伝達される動力と、電動機から第3回転要素に伝達される動力とを合成して出力軸に伝達し、この合成動力が被駆動部に出力される。 Furthermore, while connecting the first main input shaft to the internal combustion engine output shaft by the main connection / disconnection device and connecting the first sub-input shaft to the first main input shaft by the gear pair by the synchronization device, from the internal combustion engine Power is input to the internal combustion engine output shaft, and the electric motor is driven in a power-running mode so that the third rotating element rotates. At this time, the second rotating element of the power combining mechanism is transmitted to the first rotating element from the internal combustion engine via the first main input shaft and the first sub input shaft, and from the motor to the third rotating element. Power is combined and transmitted to the output shaft, and this combined power is output to the driven part.
 さらに、前記状態で、内燃機関から第1回転要素に伝達された動力を、第2回転要素と第3回転要素に分配することも可能である。このとき、第2回転要素を介して被駆動部に動力が出力されると共に、第3回転要素を介して電動機で回生運転が行われる。このように、第2発明においては、電動機で回生運転を行いながら、走行することができる。 Furthermore, in the above state, it is also possible to distribute the power transmitted from the internal combustion engine to the first rotating element to the second rotating element and the third rotating element. At this time, power is output to the driven portion via the second rotation element, and regenerative operation is performed by the motor via the third rotation element. Thus, in the second aspect of the invention, traveling can be performed while performing regenerative operation with the electric motor.
 また、第2発明において、前記第1主入力軸と平行に配置され、前記第1主入力軸と常時接続される第2主入力軸と、前記第2主入力軸と同軸心に配置される第3副入力軸と、前記第3副入力軸上に配置され、第2同期装置を介して該第3副入力軸に選択的に連結される複数のギヤよりなる第3ギヤ群とを備え、前記第2ギヤ群を構成するギヤと前記第3ギヤ群を構成するギヤとが噛合することが好ましい。 In the second invention, a second main input shaft disposed parallel to the first main input shaft and coaxially connected to the second main input shaft and always connected to the first main input shaft is disposed. And a third gear group including a plurality of gears disposed on the third sub-input shaft and selectively connected to the third sub-input shaft via the second synchronization device. Preferably, a gear constituting the second gear group meshes with a gear constituting the third gear group.
 この場合、第1主入力軸の軸心方向の長さを保ちながら、変速段を増加させることが可能となる。 In this case, it is possible to increase the shift speed while maintaining the axial length of the first main input shaft.
 また、本発明の動力伝達装置は、内燃機関と電動機とを備えるハイブリッド車両用動力伝達装置であって、前記内燃機関から動力が入力される内燃機関出力軸と、前記内燃機関出力軸と平行に配置され、第1主断接装置によって選択的に、該内燃機関出力軸と連結される第1主入力軸と、前記第1主入力軸と同軸心に配置され、第2主断接装置によって選択的に、該内燃機関出力軸と連結される第2主入力軸と、前記第1主入力軸と同軸心に配置され、第1断接装置によって選択的に、前記第1主入力軸と連結される第1副入力軸と、前記第1主入力軸と同軸心に配置され、第2断接装置によって選択的に、前記第1主入力軸と連結される第2副入力軸と、前記第1主入力軸と平行に配置され、前記第1副入力軸及び前記第2副入力軸とそれぞれギヤ対を介して結合される中間軸と、前記第1主入力軸と平行に配置される第3主入力軸と、前記第3主入力軸と同軸心に配置され、第3断接装置によって選択的に、前記第2主入力軸と連結される第3副入力軸と、前記第3主入力軸と同軸心に配置され、第4断接装置によって選択的に、前記第2主入力軸と連結される第4副入力軸と、前記第1主入力軸と平行に配置され、前記中間軸及び前記第3主入力軸とそれぞれギヤ対を介して結合され、カウンタ軸を介して被駆動部に動力を出力する出力軸と、第1回転要素、第2回転要素、及び第3回転要素を互いに差動回転可能に構成した動力合成機構とを備え、前記第1回転要素は前記第1主入力軸に接続され、前記第2回転要素は前記第1副入力軸に接続され、前記第3回転要素は前記電動機に接続され、前記第2回転要素は、前記第1回転要素から伝達される動力と前記第3回転要素から伝達される動力とを合成し、前記第1副入力軸及び前記中間軸を介して前記出力軸に伝達することを特徴とする(第2発明)。 Further, a power transmission device of the present invention is a power transmission device for a hybrid vehicle including an internal combustion engine and a motor, and is parallel to the internal combustion engine output shaft to which power is input from the internal combustion engine and the internal combustion engine output shaft A first main input shaft, which is disposed and selectively connected to the internal combustion engine output shaft by a first main junction device, and coaxially disposed with the first main input shaft, by a second main junction device Optionally, a second main input shaft coupled to the internal combustion engine output shaft, and coaxially disposed with the first main input shaft, and selectively coupled to the first main input shaft by a first disconnection device. A first sub-input shaft to be connected, and a second sub-input shaft coaxially disposed with the first main input shaft and selectively connected to the first main input shaft by a second disconnection device; The first sub input shaft and the second sub input shaft, which are disposed parallel to the first main input shaft, An intermediate shaft coupled to each other via a gear pair, a third main input shaft disposed parallel to the first main input shaft, and a third junction connected coaxially with the third main input shaft A third auxiliary input shaft selectively connected to the second main input shaft by the device, and coaxial with the third main input shaft, and selectively connected to the second main input shaft by a fourth disconnection device. A fourth sub-input shaft connected to the input shaft and a first main input shaft are disposed parallel to each other, and the intermediate shaft and the third main input shaft are respectively coupled via a gear pair, and via a counter shaft An output shaft for outputting power to a driven part, and a power combining mechanism in which a first rotation element, a second rotation element, and a third rotation element are configured to be differentially rotatable with respect to each other, the first rotation element It is connected to the first main input shaft, the second rotating element is connected to the first sub input shaft, and the third rotating element is The second rotation element is connected to the electric motor, and the second rotation element combines the power transmitted from the first rotation element and the power transmitted from the third rotation element, and the first auxiliary input shaft and the intermediate shaft are A second aspect of the invention is characterized in that the transmission is performed to the output shaft.
 かかる第3発明によれば、第1発明と同様に、特許文献1に記載の動力伝達装置のように、同期装置で燃機関と電動機の動力を合成する場合に比べて、動力を高効率で合成することが可能となる。さらに、第1発明と同様に、動力合成機構は、内燃機関から伝達される動力と、電動機から伝達される動力とを合成して出力軸に伝達することができると共に、内燃機関から伝達された動力を分配して、電動機で回生運転を行うことができる。 According to the third invention, similarly to the first invention, as in the power transmission device described in Patent Document 1, as compared with the case of synthesizing the motive power of the internal combustion engine and an electric motor in a synchronous system, power high efficiency Can be synthesized by Furthermore, as in the first aspect of the invention, the power combining mechanism can combine the power transmitted from the internal combustion engine and the power transmitted from the motor and transmit it to the output shaft, and also transmitted from the internal combustion engine Power can be distributed and regenerative operation can be performed by the motor.
 また、本発明の動力伝達装置は、内燃機関と電動機とを備えるハイブリッド車両用動力伝達装置であって、前記内燃機関から動力が入力される内燃機関出力軸と、前記内燃機関出力軸と平行に配置され、第1主断接装置によって選択的に、該内燃機関出力軸と連結される第1主入力軸と、前記第1主入力軸と同軸心に配置され、第2主断接装置によって選択的に、該内燃機関出力軸と連結される第2主入力軸と、前記第1主入力軸と同軸心に配置される第1副入力軸と、前記第1副入力軸上に配置され、第1同期装置を介して該第1副入力軸に選択的に連結される複数のギヤよりなる第1ギヤ群と、前記第1主入力軸と平行に配置され、前記第1副入力軸及び前記第2副入力軸とそれぞれギヤ対を介して結合される中間軸と、前記中間軸に固定され前記第1ギヤ群のギヤと噛合する複数のギヤよりなる第2ギヤ群と、前記第1主入力軸と平行に配置される第3主入力軸と、前記第3主入力軸上に配置され、第2同期装置を介して該第3主入力軸に選択的に連結される複数のギヤよりなる第3ギヤ群と、前記第2主入力軸に固定され前記第3ギヤ群のギヤと噛合する複数のギヤよりなる第4ギヤ群と、前記第1主入力軸と平行に配置され、前記中間軸及び前記第3主入力軸とそれぞれギヤ対を介して結合され、カウンタ軸を介して被駆動部に動力を出力する出力軸と、第1回転要素、第2回転要素、及び第3回転要素を互いに差動回転可能に構成した動力合成機構とを備え、前記第1回転要素は前記第1主入力軸に接続され、前記第2回転要素は前記第1副入力軸に接続され、前記第3回転要素は前記電動機に接続され、前記第2回転要素は、前記第1回転要素から伝達される動力と前記第3回転要素から伝達される動力とを合成し、前記第1副入力軸及び前記中間軸を介して前記出力軸に伝達することを特徴とする(第4発明)。 Further, a power transmission device of the present invention is a power transmission device for a hybrid vehicle including an internal combustion engine and a motor, and is parallel to the internal combustion engine output shaft to which power is input from the internal combustion engine and the internal combustion engine output shaft A first main input shaft, which is disposed and selectively connected to the internal combustion engine output shaft by a first main junction device, and coaxially disposed with the first main input shaft, by a second main junction device Optionally, a second main input shaft connected to the internal combustion engine output shaft, a first sub input shaft coaxially disposed with the first main input shaft, and the first sub input shaft A first gear group consisting of a plurality of gears selectively coupled to the first auxiliary input shaft via a first synchronizing device, and the first auxiliary input shaft disposed parallel to the first main input shaft; And an intermediate shaft coupled to the second auxiliary input shaft via a gear pair, and the intermediate shaft A second gear group consisting of a plurality of gears fixed and meshing with the gears of the first gear group, a third main input shaft disposed parallel to the first main input shaft, and the third main input shaft A third gear group including a plurality of gears disposed and selectively coupled to the third main input shaft via a second synchronization device; and gears of the third gear group fixed to the second main input shaft Is disposed parallel to the first main input shaft, and is connected to the intermediate shaft and the third main input shaft via a gear pair, respectively, via a counter shaft. And a power combining mechanism in which the first rotation element, the second rotation element, and the third rotation element are configured to be differentially rotatable with respect to each other, the first rotation element comprising Connected to the first main input shaft, the second rotating element is connected to the first sub input shaft, Three rotary elements are connected to the motor, and the second rotary element combines the power transmitted from the first rotary element and the power transmitted from the third rotary element, and the first secondary input shaft and A transmission is performed to the output shaft via the intermediate shaft (fourth invention).
 かかる第4発明によれば、第2発明と同様に、特許文献1に記載の動力伝達装置のように、同期装置で燃機関と電動機の動力を合成する場合に比べて、動力を高効率で合成することが可能となる。さらに、第1発明と同様に、動力合成機構は、内燃機関から伝達される動力と、電動機から伝達される動力とを合成して出力軸に伝達することができると共に、内燃機関から伝達された動力を分配して、電動機で回生運転を行うことができる。 According to the fourth aspect of the invention, similarly to the second invention, as in the power transmission device described in Patent Document 1, as compared with the case of synthesizing the motive power of the internal combustion engine and an electric motor in a synchronous system, power high efficiency Can be synthesized by Furthermore, as in the first aspect of the invention, the power combining mechanism can combine the power transmitted from the internal combustion engine and the power transmitted from the motor and transmit it to the output shaft, and also transmitted from the internal combustion engine Power can be distributed and regenerative operation can be performed by the motor.
 また、本発明の動力伝達装置は、内燃機関と電動機とを備えるハイブリッド車両用動力伝達装置であって、前記内燃機関から動力が入力される内燃機関出力軸と、前記内燃機関出力軸と平行に配置され、第1主断接装置によって選択的に、該内燃機関出力軸と連結される第1主入力軸と、前記内燃機関出力軸と同軸心に配置され、第2主断接装置によって選択的に、該内燃機関出力軸と連結される第2主入力軸と、前記第1主入力軸と平行に配置され、該第1主入力軸と減速ギヤ対を介して結合される第3主入力軸と、前記第1主入力軸と平行に配置され、該第1主入力軸と増速ギヤ対を介して結合される第4主入力軸と、前記第3主入力軸と同軸心に配置され、第1断接装置によって選択的に、該第3主入力軸と連結される第1副入力軸と、前記第3主入力軸と同軸心に配置され、第2断接装置によって選択的に、該第3主入力軸と連結される第2副入力軸と、前記第4主入力軸と同軸心に配置され、第3断接装置によって選択的に、該第4主入力軸と連結される第3副入力軸と、前記第4主入力軸と同軸心に配置され、第4断接装置によって選択的に、該第4主入力軸と連結される第4副入力軸と、前記内燃機関出力軸と平行に配置され、前記第1副入力軸、前記第2副入力軸、前記第3副入力軸及び前記第4副入力軸とそれぞれギヤ対を介して結合され、カウンタ軸を介して被駆動部に動力を出力する出力軸と、第1回転要素、第2回転要素、及び第3回転要素を互いに差動回転可能に構成した動力合成機構とを備え、前記第1回転要素は前記第1主入力軸又は前記第2主入力軸に接続され、前記第2回転要素は前記出力軸に接続され、前記第3回転要素は前記電動機に接続され、前記第2回転要素は、前記第1回転要素から伝達される動力と前記第3回転要素から伝達される動力とを合成し、前記第出力軸に伝達することを特徴とする(第5発明)。 Further, a power transmission device of the present invention is a power transmission device for a hybrid vehicle including an internal combustion engine and a motor, and is parallel to the internal combustion engine output shaft to which power is input from the internal combustion engine and the internal combustion engine output shaft A first main input shaft arranged and selectively connected by the first main junction device with the internal combustion engine output shaft, and coaxially arranged with the internal combustion engine output shaft, selected by the second main junction device And a third main input shaft connected to the internal combustion engine output shaft, and a third main input shaft disposed parallel to the first main input shaft and connected to the first main input shaft via a reduction gear pair An input shaft, a fourth main input shaft disposed parallel to the first main input shaft and coupled to the first main input shaft via a speed increasing gear pair, coaxially with the third main input shaft A first minor input shaft disposed and selectively coupled to the third major input shaft by a first disconnection device A second auxiliary input shaft coaxially arranged with the third main input shaft and selectively connected with the third main input shaft by a second disconnection device; and coaxial with the fourth main input shaft And a third sub-input shaft connected to the fourth main input shaft and selectively coaxially with the fourth main input shaft by the third connection device, and the fourth connection device Optionally, a fourth auxiliary input shaft connected to the fourth main input shaft, and the first auxiliary input shaft, the second auxiliary input shaft, and the third auxiliary input shaft disposed parallel to the internal combustion engine output shaft. An output shaft coupled to the input shaft and the fourth secondary input shaft via a gear pair and outputting power to the driven part via the counter shaft, a first rotation element, a second rotation element, and a third rotation A power combining mechanism in which the elements are configured to be differentially rotatable with respect to each other, the first rotating element being the first main input shaft or the second main The second rotary element is connected to the power shaft, the second rotary element is connected to the output shaft, the third rotary element is connected to the motor, and the second rotary element is configured to transmit the power transmitted from the first rotary element and the second rotary element. A power is transmitted from a third rotation element, and the power is transmitted to the first output shaft (a fifth invention).
 かかる第5発明によれば、第1発明と同様に、特許文献1に記載の動力伝達装置のように、同期装置で燃機関と電動機の動力を合成する場合に比べて、動力を高効率で合成することが可能となる。さらに、第1発明と同様に、動力合成機構は、内燃機関から伝達される動力と、電動機から伝達される動力とを合成して出力軸に伝達することができると共に、内燃機関から伝達された動力を分配して、電動機で回生運転を行うことができる。 According to the fifth aspect of the invention, similar to the first invention, as in the power transmission device described in Patent Document 1, as compared with the case of synthesizing the motive power of the internal combustion engine and an electric motor in a synchronous system, power high efficiency Can be synthesized by Furthermore, as in the first aspect of the invention, the power combining mechanism can combine the power transmitted from the internal combustion engine and the power transmitted from the motor and transmit it to the output shaft, and also transmitted from the internal combustion engine Power can be distributed and regenerative operation can be performed by the motor.
 また、本発明の動力伝達装置は、内燃機関と電動機とを備えるハイブリッド車両用動力伝達装置であって、前記内燃機関から動力が入力される内燃機関出力軸と、前記内燃機関出力軸と平行に配置され、第1主断接装置によって選択的に、該内燃機関出力軸と連結される第1主入力軸と、前記内燃機関出力軸と同軸心に配置され、第2主断接装置によって選択的に、該内燃機関出力軸と連結される第2主入力軸と、前記第1主入力軸と平行に配置され、該第1主入力軸と減速ギヤ対を介して結合される第3主入力軸と、前記第1主入力軸と平行に配置され、該第1主入力軸と増速ギヤ対を介して結合される第4主入力軸と、前記第3主入力軸と同軸心に配置される第1副入力軸と、前記第1副入力軸上に配置され、第1同期装置を介して該第1副入力軸に選択的に連結される複数のギヤよりなる第1ギヤ群と、前記第3主入力軸と同軸心に配置される第2副入力軸と、前記第2副入力軸上に配置され、第2同期装置を介して該第2副入力軸に選択的に連結される複数のギヤよりなる第2ギヤ群と、前記第1主入力軸と同軸心に配置され、カウンタ軸を介して被駆動部に動力を出力する出力軸と、前記出力軸に固定され、前記第1ギヤ群のギヤ及び前記第2ギヤ群のギヤが共有して噛合する複数のギヤよりなる第3ギヤ群と、第1回転要素、第2回転要素、及び第3回転要素を互いに差動回転可能に構成した動力合成機構とを備え、前記第1回転要素は前記第1主入力軸又は前記第2主入力軸に接続され、前記第2回転要素は前記出力軸に接続され、前記第3回転要素は前記電動機に接続され、前記第2回転要素は、前記第1回転要素から伝達される動力と前記第3回転要素から伝達される動力とを合成し、前記第出力軸に伝達することを特徴とする(第6発明)。 Further, a power transmission device of the present invention is a power transmission device for a hybrid vehicle including an internal combustion engine and a motor, and is parallel to the internal combustion engine output shaft to which power is input from the internal combustion engine and the internal combustion engine output shaft A first main input shaft arranged and selectively connected by the first main junction device with the internal combustion engine output shaft, and coaxially arranged with the internal combustion engine output shaft, selected by the second main junction device And a third main input shaft connected to the internal combustion engine output shaft, and a third main input shaft disposed parallel to the first main input shaft and connected to the first main input shaft via a reduction gear pair An input shaft, a fourth main input shaft disposed parallel to the first main input shaft and coupled to the first main input shaft via a speed increasing gear pair, coaxially with the third main input shaft The first sub-input shaft to be disposed and the first sub-input shaft are disposed on the first sub-input shaft through the first synchronization device. A first gear group consisting of a plurality of gears selectively connected to one secondary input shaft, a second secondary input shaft coaxially disposed with the third primary input shaft, and the second secondary input shaft A second gear group comprising a plurality of gears disposed and selectively coupled to the second sub-input shaft via a second synchronizer, coaxially disposed with the first main input shaft, and having a counter shaft A third gear including an output shaft for outputting power to a driven portion via the driven portion, and a plurality of gears fixed to the output shaft and in which the gear of the first gear group and the gear of the second gear group share and mesh And a power combining mechanism in which the first rotation element, the second rotation element, and the third rotation element are configured to be differentially rotatable with respect to each other, the first rotation element being the first main input shaft or the second Connected to the main input shaft, the second rotating element is connected to the output shaft, and the third rotating element is the motor The second rotating element is connected, and combines the power transmitted from the first rotating element and the power transmitted from the third rotating element, and transmits the combined power to the second output shaft 6)).
 かかる第6発明によれば、第5発明と同様に、特許文献1に記載の動力伝達装置のように、同期装置で燃機関と電動機の動力を合成する場合に比べて、動力を高効率で合成することが可能となる。さらに、第1発明と同様に、動力合成機構は、内燃機関から伝達される動力と、電動機から伝達される動力とを合成して出力軸に伝達することができると共に、内燃機関から伝達された動力を分配して、電動機で回生運転を行うことができる。 According to the sixth invention, similar to the fifth invention, as in the power transmission device described in Patent Document 1, as compared with the case of synthesizing the motive power of the internal combustion engine and an electric motor in a synchronous system, power high efficiency Can be synthesized by Furthermore, as in the first aspect of the invention, the power combining mechanism can combine the power transmitted from the internal combustion engine and the power transmitted from the motor and transmit it to the output shaft, and also transmitted from the internal combustion engine Power can be distributed and regenerative operation can be performed by the motor.
 また、第1発明乃至第6発明において、前記動力合成機構は、シングルピニオン型の3つの回転要素として、サンギヤと、リングギヤと、前記サンギヤ及び前記リングギヤの間で当該両ギヤに噛合された複数のプラネタリギヤを回転自在に支持するキャリアとを同軸心に備えた遊星歯車装置であり、前記第1回転要素は前記キャリアであり、前記第2回転要素は前記サンギヤであり、前記第3回転要素は前記リングギヤであるであることが好ましい。 In the first to sixth inventions, the power combining mechanism includes, as three single pinion type rotary elements, a sun gear, a ring gear, and a plurality of meshed gears between the sun gear and the ring gear. A planetary gear device coaxially including a carrier rotatably supporting a planetary gear, wherein the first rotation element is the carrier, the second rotation element is the sun gear, and the third rotation element is the carrier It is preferably a ring gear.
 この場合、動力合成機構を簡易な構成とすることができ、コンパクト化、低コスト化が可能となる。さらに、動力を分配することも可能となる。また、伝達効率を高効率化することが可能となる。 In this case, the power synthesis mechanism can be configured simply, and compactness and cost reduction can be achieved. Furthermore, it also becomes possible to distribute power. In addition, it is possible to improve the transmission efficiency.
 また、第1発明乃至第6発明において、前記出力軸に要求される要求動力を設定する要求動力設定手段と、該要求動力設定手段が設定した要求動力に応じて、前記内燃機関及び前記電動機の運転を制御する制御手段とを備えることが好ましい。 In the first to sixth inventions, according to the required power setting means for setting the required power required for the output shaft, and the required power set by the required power setting means, the internal combustion engine and the electric motor It is preferable to include control means for controlling the operation.
 この場合、制御手段により内燃機関及び前記電動機の運転が好適に制御され、要求される要求動力を出力軸から出力することができる。 In this case, the operation of the internal combustion engine and the motor can be suitably controlled by the control means, and the required power required can be output from the output shaft.
 また、第1発明乃至第6発明において、前記制御手段は、前記内燃機関がストール領域から最高回転領域までの範囲内で運転を行うように、前記電動機の運転を制御することが好ましい。 In the first to sixth inventions, preferably, the control means controls the operation of the electric motor such that the internal combustion engine operates within a range from a stall region to a maximum rotation region.
 この場合、内燃機関がストール領域から最高回転領域までの範囲内でのみ運転を行うので、内燃機関を好適に使用することができ、内燃機関の燃料消費や寿命等が良好なものとなる。 In this case, since the internal combustion engine operates only in the range from the stall region to the maximum rotation region, the internal combustion engine can be suitably used, and the fuel consumption and the life of the internal combustion engine become good.
 また、第1発明乃至第6発明において、前記制御手段は、前記内燃機関の適正運転領域内で前記内燃機関の運転を行い、前記第1回転要素から前記第2回転要素に伝達される前記内燃機関の動力と前記要求動力を比較し、前記内燃機関の動力が前記要求動力に満たないときは、前記電動機が力行運転を行い、前記内燃機関の動力が前記要求動力を超えるときは、前記電動機が回生運転を行うように制御することが好ましい。 In the first to sixth inventions, the control means operates the internal combustion engine within a proper operation range of the internal combustion engine, and the internal combustion engine transmits the first rotational element to the second rotational element. The power of the engine and the required power are compared, and when the power of the internal combustion engine does not meet the required power, the electric motor performs a power running operation, and when the power of the internal combustion engine exceeds the required power, the motor It is preferable to control so as to perform regenerative operation.
 この場合、内燃機関が適正運転領域内で運転を行うので、内燃機関を好適に使用することができ、内燃機関の燃料消費や寿命等が良好なものとなる。さらに、内燃機関の動力と要求動力との差分の正負に応じて、電動機が力行運転又は回生運転を行うので、常に要求動力を出力軸から出力することができる。 In this case, since the internal combustion engine operates in the appropriate operating range, the internal combustion engine can be suitably used, and the fuel consumption, the life, and the like of the internal combustion engine become good. Furthermore, since the electric motor performs the power running operation or the regenerative operation depending on whether the difference between the power of the internal combustion engine and the required power is positive or negative, the required power can be always output from the output shaft.
 また、第1発明乃至第6発明において、前記制御手段は、前記電動機が定格出力又は最高回転数を超えて運転するとき、該電動機を定格出力又は最高回転数で運転を行うように制御することが好ましい。 In the first to sixth inventions, the control means controls the motor to operate at the rated output or the maximum rotational speed when the motor operates at the rated output or the maximum rotational speed. Is preferred.
 この場合、電動機が定格出力以下及び最高回転数以下で運転を行うので、電動機を好適に使用することができ、電動機の寿命等が良好なものとなる。 In this case, since the motor is operated at the rated output or less and at the maximum rotational speed or less, the motor can be suitably used, and the life of the motor can be improved.
 また、第1発明乃至第6発明において、前記第1主入力軸に補機を連結し、該補機を前記第1主入力軸の駆動力によって駆動可能に構成するが好ましい。 In the first to sixth inventions, preferably, an auxiliary machine is connected to the first main input shaft, and the auxiliary machine can be driven by the driving force of the first main input shaft.
 この場合、補機用の駆動装置を設けることなく、補機が駆動可能となる。 In this case, the accessory can be driven without providing a drive for the accessory.
本発明の第1実施形態に係るハイブリッド車両用動力伝達装置1を備えた車両の全体構成を概略的に示す図。BRIEF DESCRIPTION OF THE DRAWINGS The figure which shows roughly the whole structure of the vehicle provided with the power transmission device 1 for hybrid vehicles which concerns on 1st Embodiment of this invention. 動力伝達装置1のEV走行モードの高速段における動作状態を示す図。FIG. 7 is a diagram showing an operation state in a high speed stage of the EV travel mode of the power transmission device 1; 動力伝達装置1のエンジン走行モードの高速段における動作状態を示す図。FIG. 6 is a diagram showing an operation state in a high speed stage of an engine travel mode of the power transmission device 1. 動力伝達装置1の合成走行モードの高速段における動作状態を示す図。FIG. 7 is a diagram showing an operation state in a high speed stage of a combined running mode of the power transmission device 1; 動力伝達装置1のエンジン走行モードの低速段における動作状態を示す図。FIG. 7 is a diagram showing an operation state in a low speed stage of an engine travel mode of the power transmission device 1. 動力伝達装置1の超低速段における動作状態を示す図。FIG. 6 is a diagram showing an operating state of the power transmission device 1 in an ultra low speed stage. 動力合成機構の動作を説明する共線図。The alignment chart explaining operation | movement of a motive power synthetic | combination mechanism. 本発明の第2実施形態に係るハイブリッド車両用動力伝達装置41を備えた車両の全体構成を概略的に示す図。FIG. 8 schematically shows an entire configuration of a vehicle provided with a power transmission device for hybrid vehicle 41 according to a second embodiment of the present invention. 動力伝達装置41のEV走行モードの高速段における動作状態を示す図。FIG. 7 is a diagram showing an operation state in a high speed stage of the EV travel mode of the power transmission device 41. 動力伝達装置41の合成走行モードの低速段における動作状態を示す図。FIG. 7 is a diagram showing an operation state in a low speed stage of a combined running mode of the power transmission device 41. 本発明の第3実施形態に係るハイブリッド車両用動力伝達装置51を備えた車両の全体構成を概略的に示す図。The figure which shows roughly the whole structure of the vehicle provided with the power transmission device 51 for hybrid vehicles which concerns on 3rd Embodiment of this invention. 動力伝達装置51のエンジン走行モードの2速段における動作状態を示す図。FIG. 7 is a diagram showing an operation state in a second gear of the engine travel mode of the power transmission device 51. 動力伝達装置51の合成走行モードの2速段における動作状態を示す図。FIG. 7 is a diagram showing an operation state in the second gear of the synthetic traveling mode of the power transmission device 51. 本発明の第4実施形態に係るハイブリッド車両用動力伝達装置61を備えた車両の全体構成を概略的に示す図。The figure which shows roughly the whole structure of the vehicle provided with the power transmission device 61 for hybrid vehicles which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係るハイブリッド車両用動力伝達装置71を備えた車両の全体構成を概略的に示す図。The figure which shows roughly the whole structure of the vehicle provided with the power transmission device 71 for hybrid vehicles which concerns on 5th Embodiment of this invention. 動力伝達装置71のエンジン走行モードの2速段における動作状態を示す図。FIG. 7 is a diagram showing an operation state of a second speed stage in an engine travel mode of the power transmission device 71. 動力伝達装置71の合成走行モードの2速段における動作状態を示す図。FIG. 7 is a diagram showing an operation state in the second gear of the synthetic traveling mode of the power transmission device 71. 本発明の第6実施形態に係るハイブリッド車両用動力伝達装置71Aを備えた車両の全体構成を概略的に示す図。The figure which shows roughly the whole structure of the vehicle provided with power transmission device 71 for hybrid vehicles which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係るハイブリッド車両用動力伝達装置91を備えた車両の全体構成を概略的に示す図。The figure which shows roughly the whole structure of the vehicle provided with the power transmission device 91 for hybrid vehicles which concerns on 7th Embodiment of this invention. 動力伝達装置91の合成走行モードの5速段における動作状態を示す図。FIG. 16 is a diagram showing an operation state in the fifth gear of the synthetic traveling mode of the power transmission device 91. 動力伝達装置91の合成走行モードの2速段における動作状態を示す図。FIG. 16 is a diagram showing an operation state in the second gear of the synthetic traveling mode of the power transmission device 91. 動力伝達装置91のエンジン走行モードの3速段における動作状態を示す図。FIG. 7 is a diagram showing an operation state in a third gear of the engine travel mode of the power transmission device 91. 本発明の第8実施形態に係るハイブリッド車両用動力伝達装置91Aを備えた車両の全体構成を概略的に示す図。The figure which shows roughly the whole structure of the vehicle provided with power transmission device 91A for hybrid vehicles which concerns on 8th Embodiment of this invention.
 [第1実施形態]
 本発明の第1実施形態に係るハイブリッド車両用動力伝達装置1を図1乃至図7を参照して説明する。
First Embodiment
A power transmission system 1 for a hybrid vehicle according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 7.
 まず、図1を参照して動力伝達装置1の構成を説明する。動力伝達装置1は、ハイブリッド車両に搭載され、動力発生源として、内燃機関であるエンジン2と電動機3とを備えている。そして、動力伝達装置1は、エンジン(内燃機関)2又は/及び電動機(モータ・ジェネレータ)3の動力(駆動力)を被駆動部である一対の駆動輪(被駆動部)4,4に伝達して、該駆動輪4,4を駆動し得るように構成されている。さらに、動力伝達装置1は、エンジン2又は/及び電動機3の動力を、駆動輪4,4だけでなく、車両に搭載された補機5に伝達して、該補機5を駆動し得るように構成されている。補機5は、例えばエアコンのコンプレッサ、ウォータポンプ、オイルポンプなどである。 First, the configuration of the power transmission device 1 will be described with reference to FIG. The power transmission device 1 is mounted on a hybrid vehicle, and includes an engine 2 and an electric motor 3 which are internal combustion engines as power generation sources. The power transmission device 1 transmits the power (driving force) of the engine (internal combustion engine) 2 and / or the electric motor (motor / generator) 3 to the pair of drive wheels (driven parts) 4, 4 which are driven parts. And the drive wheels 4 and 4 can be driven. Furthermore, the power transmission device 1 can transmit the power of the engine 2 and / or the motor 3 not only to the drive wheels 4 and 4 but also to the accessory 5 mounted on the vehicle to drive the accessory 5 Is configured. The auxiliary machine 5 is, for example, a compressor of an air conditioner, a water pump, an oil pump or the like.
 エンジン2は、ガソリン、軽油、アルコールなどの燃料を燃焼させることにより動力(トルク)を発生する内燃機関であり、発生した動力を外部に出力するための出力軸(内燃機関出力軸)2aを有する。このエンジン2は、通常の自動車のエンジンと同様に、図示しない吸気路に備えたスロットル弁の開度を制御する(エンジン2の吸入空気量を制御する)ことによって、該エンジン2が出力軸2aを介して出力する動力が調整される。また、エンジン2に代えて、燃料電池を使用してもよい。 The engine 2 is an internal combustion engine that generates power (torque) by burning fuel such as gasoline, light oil, alcohol, etc., and has an output shaft (internal combustion engine output shaft) 2a for outputting the generated power to the outside . This engine 2 controls the opening degree of a throttle valve provided in an intake passage (not shown) (controls the intake air amount of the engine 2) as in a normal automobile engine, thereby the engine 2 has an output shaft 2a. The power output through is adjusted. Also, instead of the engine 2, a fuel cell may be used.
 電動機3は、本実施形態では3相のDCブラシレスモータであり、そのハウジング(図示省略)内に回転自在に支承された中空のロータ(回転体)3aと、該ロータ3aの周囲でハウジングに固定されたステータ(固定子)3bとを有する。ロータ3aには、複数の永久磁石が装着され、ステータ3bには、3相分のコイル(電機子巻線)3baが装着されている。なお、電動機3のステータ3bは、動力伝達装置1の外装ケース等、車体に対して静止した不動部に設けられたハウジングに固設されている。 The motor 3 is a three-phase DC brushless motor in the present embodiment, and is fixed to the hollow rotor (rotary member) 3a rotatably supported in its housing (not shown) and the housing around the rotor 3a. And a stator 3b. A plurality of permanent magnets are mounted on the rotor 3a, and coils (armature windings) 3ba for three phases are mounted on the stator 3b. The stator 3b of the motor 3 is fixed to a housing provided at a stationary part stationary with respect to the vehicle body, such as an exterior case of the power transmission device 1.
 この電動機3のコイル3baは、インバータ回路を含む駆動回路であるパワー・ドライブ・ユニット(以下、PDUという)6を介して直流電源としてのバッテリ(二次電池)7に電気的に接続されている。また、PDU6は、電子制御ユニット(以下、ECUという)8に電気的に接続されている。 The coil 3 ba of the motor 3 is electrically connected to a battery (secondary battery) 7 as a DC power supply via a power drive unit (hereinafter referred to as PDU) 6 which is a drive circuit including an inverter circuit. . Further, the PDU 6 is electrically connected to an electronic control unit (hereinafter referred to as an ECU) 8.
 ECU8は、PDU6の他に、図示しないがエンジン2等に電気的に接続されており、エンジン2を含む動力伝達装置1の動作制御を行う。ECU8は、車速やエンジン2の回転数等から駆動輪4,4に伝達することが要求される動力を設定する要求動力設定手段として機能すると共に、該要求動力設定手段が設定した要求動力に応じて、エンジン2や電動機3を駆動させる制御手段として機能する。ECU8により、PDU6を介してコイル3baに流れる電流を制御することによって、電動機3がロータ3aから出力する動力(トルク)が調整される。この場合、PDU6を制御することによって、電動機3は、バッテリ7から供給される電力によってロータ3aに力行トルクを発生する力行運転を行い、モータとして機能する。即ち、ステータ3bに供給された電力が、動力に変換され、ロータ3aに出力される。また、PDU6を制御することによって、電動機3は、外部からロータ3aに与えられる回転エネルギーによって発電し、その発電エネルギーをバッテリ7に充電しつつ、ロータ3aに回生トルクを発生する回生運転を行い、ジェネレータとして機能する。即ち、ロータ3aに入力された動力が、ステータ3bで電力に変換される。 The ECU 8 is electrically connected to the engine 2 and the like (not shown) in addition to the PDU 6 and performs operation control of the power transmission 1 including the engine 2. The ECU 8 functions as required power setting means for setting the power required to be transmitted to the drive wheels 4, 4 from the vehicle speed, the number of revolutions of the engine 2, etc., and according to the required power set by the required power setting means. Function as control means for driving the engine 2 and the motor 3. The ECU 8 controls the current flowing to the coil 3 ba through the PDU 6 to adjust the power (torque) output from the rotor 3 a by the motor 3. In this case, by controlling the PDU 6, the electric motor 3 performs a power running operation to generate a power running torque on the rotor 3a by the power supplied from the battery 7, and functions as a motor. That is, the electric power supplied to the stator 3b is converted to motive power and is output to the rotor 3a. Further, by controlling the PDU 6, the electric motor 3 generates electric power by the rotational energy given to the rotor 3a from the outside, performs the regenerative operation of generating the regenerative torque in the rotor 3a while charging the generated energy to the battery 7. Act as a generator. That is, the motive power input to the rotor 3a is converted to electric power by the stator 3b.
 なお、ECU8は、CPU、RAM、ROM、インターフェイス回路等を含む電子回路ユニットであり、あらかじめ実装されたプログラムにより規定される制御処理を実行することで、動力伝達装置1の動作制御を行う。この場合、ECU8の制御処理により実現される機能として、電動機3の運転をPDU6を介して制御する機能の他、エンジン2の運転を図示しないスロットル弁用のアクチェエータ等のエンジン制御用のアクチュエータを介して制御する機能と、後述する第1クラッチC1、第2クラッチC2、補機用クラッチ31、第1同期装置S1、第2同期装置S2及び後退同期装置SRのスリーブの動作を図示しないアクチュエータもしくは駆動回路を介して制御する機能とが含まれる。 The ECU 8 is an electronic circuit unit including a CPU, a RAM, a ROM, an interface circuit, and the like, and performs operation control of the power transmission device 1 by executing control processing defined by a program mounted in advance. In this case, in addition to the function of controlling the operation of the motor 3 via the PDU 6 as a function realized by the control process of the ECU 8, the operation of the engine 2 is not shown through an actuator for engine control such as an actuator for throttle valve. Not shown, but the operation of the sleeves of the first clutch C1, the second clutch C2, the accessory clutch 31, the first synchronization device S1, the second synchronization device S2 and the reverse synchronization device SR to be described later. And a function to control via a circuit.
 動力伝達装置1は、エンジン2の駆動力と電動機3との駆動力を合成するための動力合成機構として遊星歯車装置9を備える。 The power transmission device 1 includes a planetary gear unit 9 as a power combining mechanism for combining the driving force of the engine 2 and the driving force of the motor 3.
 エンジン2の出力軸2aには、該出力軸2aに平行に配置され、エンジン2からの動力が主クラッチCMを介して入力される主入力軸(第1主入力軸)11が連結されている。主入力軸11は、エンジン2側から電動機3側に亘って延在している。主入力軸11は、主クラッチCMにより、エンジン2の出力軸2aと接続、遮断される。 An output shaft 2a of the engine 2 is connected to a main input shaft (first main input shaft) 11 disposed parallel to the output shaft 2a and to which power from the engine 2 is input via the main clutch CM. . The main input shaft 11 extends from the engine 2 side to the electric motor 3 side. The main input shaft 11 is connected to and disconnected from the output shaft 2 a of the engine 2 by the main clutch CM.
 主クラッチCMは、ECU8の制御の下で、エンジン2の出力軸2aが主入力軸11と接続又は遮断するように動作するクラッチ機構(接続状態と遮断状態とに選択的に動作可能なクラッチ機構)である。主クラッチCMを接続状態に動作させると、主入力軸11が出力軸2aと結合され、出力軸2aから主入力軸11への動力伝達が可能となる。また、主クラッチCMを遮断状態に動作させると、主入力軸11と出力軸2aとの接続が遮断され、出力軸2aから主入力軸11への動力伝達が遮断される。 The main clutch CM is a clutch mechanism that operates such that the output shaft 2a of the engine 2 is connected to or disconnected from the main input shaft 11 under the control of the ECU 8 (a clutch mechanism that can selectively operate between the connected state and the disconnected state) ). When the main clutch CM is operated in the connected state, the main input shaft 11 is coupled to the output shaft 2a, and power can be transmitted from the output shaft 2a to the main input shaft 11. Further, when the main clutch CM is operated in the disconnection state, the connection between the main input shaft 11 and the output shaft 2a is disconnected, and the power transmission from the output shaft 2a to the main input shaft 11 is interrupted.
 主入力軸11に対して、2本の副軸、すなわち第1副入力軸12及び第2副入力軸13がそれぞれ同軸心に配置されている。そして、主入力軸11と第1副入力軸12とは、第1クラッチ(第1断接装置)C1を介して連結、又はプラネタリギヤを介して伝達可能に配置されている。また、主入力軸11と第2副入力軸13とは、第2クラッチ(第2断接装置)C2を介して連結されている。なお、主入力軸11のエンジン2側部と第1副入力軸12は、それぞれ図示しない軸受に回転自在に支持されている。 Two sub shafts, ie, a first sub input shaft 12 and a second sub input shaft 13 are coaxially arranged with respect to the main input shaft 11, respectively. The main input shaft 11 and the first sub-input shaft 12 are connected via a first clutch (first disconnection device) C1 or are transmittable via a planetary gear. Further, the main input shaft 11 and the second auxiliary input shaft 13 are connected via a second clutch (second disconnection device) C2. The engine 2 side portion of the main input shaft 11 and the first auxiliary input shaft 12 are rotatably supported by bearings (not shown).
 第1クラッチC1は、ECU8の制御の下で、主入力軸11が第1副入力軸12と接続又は遮断するように動作するクラッチ機構である。第2クラッチC2は、ECU8の制御の下で、主入力軸11が第2副入力軸13と接続又は遮断するように動作するクラッチ機構である。この場合、第1クラッチC1を接続状態に動作させると、第1副入力軸12が主入力軸11と接続される。この状態では、主入力軸11から第1副入力軸12への動力伝達のみが可能となり、主入力軸11から第2副入力軸13へ動力伝達は遮断される。また、第2クラッチC2を接続状態に動作させると、第2副入力軸13が主入力軸11と接続される。この状態では、主入力軸11から第2副入力軸13へ動力伝達が可能となり、主入力軸11から第1副入力軸12へは動力伝達は抑制される。なお、第1クラッチC1と第2クラッチC2が共に接続状態に動作することはなく、第1クラッチC1と第2クラッチC2の何れか一方のみが選択的に接続状態に動作する。 The first clutch C1 is a clutch mechanism that operates to connect or disconnect the main input shaft 11 with the first sub input shaft 12 under the control of the ECU 8. The second clutch C2 is a clutch mechanism that operates to connect or disconnect the main input shaft 11 with the second sub input shaft 13 under the control of the ECU 8. In this case, when the first clutch C1 is operated in the connection state, the first auxiliary input shaft 12 is connected to the main input shaft 11. In this state, only power transmission from the main input shaft 11 to the first sub input shaft 12 is possible, and power transmission from the main input shaft 11 to the second sub input shaft 13 is interrupted. Further, when the second clutch C2 is operated in the connection state, the second sub input shaft 13 is connected to the main input shaft 11. In this state, power can be transmitted from the main input shaft 11 to the second auxiliary input shaft 13, and power transmission from the main input shaft 11 to the first auxiliary input shaft 12 is suppressed. The first clutch C1 and the second clutch C2 do not operate in the connected state, and only one of the first clutch C1 and the second clutch C2 selectively operates in the connected state.
 主入力軸11に対して平行に出力軸14が配置されている。そして、出力軸14と第1副入力軸12とは、低速段ギヤ対(ギヤ対)15を介して結合されている。この低速段ギヤ対15は、出力軸14上に固定された低速ギヤ14aと第1副入力軸12上に固定された低速ギヤ12aとが噛合して構成されている。また、出力軸14と第2副入力軸13とは、高速段ギヤ対(ギヤ対)16を介して結合されている。この高速段ギヤ対16は、出力軸14上に固定された高速ギヤ14bと第2副入力軸13上に固定された高速ギヤ13aとが噛合して構成されている。そして、出力軸14上にはファイナルギヤとしてのギヤ14cが固定されている。なお、出力軸14の両端部は、それぞれ図示しない軸受に回転自在に支持されている。 An output shaft 14 is disposed parallel to the main input shaft 11. The output shaft 14 and the first auxiliary input shaft 12 are coupled via a low speed gear pair (gear pair) 15. The low speed gear pair 15 is configured by meshing between a low speed gear 14 a fixed on the output shaft 14 and a low speed gear 12 a fixed on the first auxiliary input shaft 12. The output shaft 14 and the second auxiliary input shaft 13 are coupled via a high speed gear pair (gear pair) 16. The high speed gear pair 16 is configured by meshing between a high speed gear 14 b fixed on the output shaft 14 and a high speed gear 13 a fixed on the second auxiliary input shaft 13. A gear 14 c as a final gear is fixed on the output shaft 14. Both end portions of the output shaft 14 are rotatably supported by bearings (not shown).
 動力合成機構9は、電動機3の内側に設けられている。なお、電動機3を構成するロータ3a、ステータ3b及びコイル3baの一部又は全部を、主入力軸11の軸線方向と直交する方向(周方向)に動力合成機構9と重なるように配置することにより、動力伝達装置1の小型化を図ることが可能となり、好ましい。 The power combining mechanism 9 is provided inside the motor 3. By arranging a part or all of the rotor 3a, the stator 3b and the coil 3ba constituting the motor 3 so as to overlap the power combining mechanism 9 in a direction (circumferential direction) orthogonal to the axial direction of the main input shaft 11. The size of the power transmission device 1 can be reduced, which is preferable.
 動力合成機構9は、第1回転要素、第2回転要素、及び第3回転要素を互いに差動回転可能な差動装置により構成されている。動力合成機構9を構成する差動装置は、本実施形態では、シングルピニオン型の遊星歯車装置であり、3つの回転要素として、サンギヤ(第1要素)9sと、リングギヤ(第3要素)9rと、これらのサンギヤ9s及びリングギヤ9rの間で当該両ギヤ9r,9sに噛合された複数のプラネタリギヤ9pを回転自在に支持するキャリア(第2要素)9cとを同軸心に備えている。これらの3つの回転要素9s,9r,9cは、周知のように、互いの間で動力を伝達可能であると共に、それぞれの回転数(回転速度)の間の関係を一定の共線関係に保ちつつ回転する。 The power combining mechanism 9 is configured by a differential device capable of differentially rotating the first rotation element, the second rotation element, and the third rotation element. In the present embodiment, the differential gear that constitutes the power combining mechanism 9 is a single pinion type planetary gear device, and as the three rotating elements, a sun gear (first element) 9s and a ring gear (third element) 9r A carrier (second element) 9c rotatably supporting a plurality of planetary gears 9p meshed with the two gears 9r and 9s between the sun gear 9s and the ring gear 9r is coaxially provided. These three rotating elements 9s, 9r, 9c can transmit power between each other as well known, and keep the relationship between their respective rotational speeds (rotational speeds) in a constant collinear relationship. While rotating.
 サンギヤ9sは、主入力軸11と連動して回転するように、該主入力軸11の電動機3側の一端部に固定されて、該主入力軸11に連結されている。リングギヤ9rは、電動機3のロータ3aと連動して回転するよう、該ロータ3aの内側に連結されている。キャリア9cは、第1副入力軸12と連動して回転するよう、該第1副入力軸12の電動機3側の一端部に固定されて、該第1副入力軸12に連結されている。 The sun gear 9 s is fixed to one end of the main input shaft 11 on the motor 3 side so as to rotate in conjunction with the main input shaft 11, and is connected to the main input shaft 11. The ring gear 9 r is connected to the inside of the rotor 3 a so as to rotate in conjunction with the rotor 3 a of the motor 3. The carrier 9 c is fixed to one end of the first auxiliary input shaft 12 on the side of the motor 3 so as to rotate in conjunction with the first auxiliary input shaft 12, and is connected to the first auxiliary input shaft 12.
 なお、ファイナルギヤとしてのギヤ14c以降の構成として、例えば、主入力軸11、ひいては出力軸14に対して、カウンタ軸17が平行に配置されている。そして、出力軸14とカウンタ軸17とは、カウンタギヤ対18を介して結合されている。このカウンタギヤ対18は、出力軸14上に固定された前記ギヤ14cとカウンタ軸17上に固定されたギヤ17aとが噛合して構成されている。 In addition, as a configuration after the gear 14c as the final gear, for example, the counter shaft 17 is disposed in parallel with the main input shaft 11, and by extension, the output shaft 14. The output shaft 14 and the counter shaft 17 are coupled via the counter gear pair 18. The counter gear pair 18 is configured by meshing between the gear 14 c fixed on the output shaft 14 and the gear 17 a fixed on the counter shaft 17.
 カウンタ軸17は、駆動輪4,4の間の差動歯車ユニット19を介して該駆動輪4,4に連結されている。差動歯車ユニット19は、駆動輪4,4にそれぞれ車軸20,20を介して連結された図示しないサイドギヤを内蔵するギヤケース19aと、このギヤケース19aの外周に固定されたギヤ19bとを備える。そして、該差動歯車ユニット19のギヤ19bに、カウンタ軸17上に固定されたギヤ17bが噛合されている。これにより、カウンタ軸17は、駆動輪4,4と連動して回転するよう、差動歯車ユニット19を介して駆動輪4,4に連結されている。また、カウンタ軸17上には、図示しないパーキング機構のギヤと噛合するパーキングギヤ17cも固定されている。なお、カウンタ軸17の両端部は、それぞれ図示しない軸受に回転自在に支持されている。 The counter shaft 17 is connected to the drive wheels 4 via a differential gear unit 19 between the drive wheels 4. The differential gear unit 19 includes a gear case 19a incorporating side gears (not shown) connected to the drive wheels 4 and 4 via axles 20 and 20, respectively, and a gear 19b fixed to the outer periphery of the gear case 19a. A gear 17 b fixed on the counter shaft 17 is engaged with the gear 19 b of the differential gear unit 19. Thus, the counter shaft 17 is connected to the drive wheels 4 via the differential gear unit 19 so as to rotate in conjunction with the drive wheels 4. In addition, on the counter shaft 17, a parking gear 17c engaged with a gear of a parking mechanism (not shown) is also fixed. Note that both end portions of the counter shaft 17 are rotatably supported by bearings (not shown).
 さらに、主入力軸11に対して、補機5の入力軸5aが平行に配置されている。そして、主入力軸11と補機5の入力軸5aとは、ベルト機構21を介して結合されている。このベルト機構21は、主入力軸11上に固定されたギヤ11aと入力軸5a上に固定されたギヤ5bとがベルト21aを介して連結されて構成されている。補機5の入力軸5aには、補機用クラッチ22が設けられており、ギヤ5bと補機5の入力軸5aとが補機用クラッチ22を介して同軸心に連結されている。 Furthermore, the input shaft 5 a of the accessory 5 is disposed in parallel to the main input shaft 11. The main input shaft 11 and the input shaft 5 a of the accessory 5 are coupled via a belt mechanism 21. The belt mechanism 21 is configured by connecting a gear 11a fixed on the main input shaft 11 and a gear 5b fixed on the input shaft 5a via a belt 21a. An auxiliary machine clutch 22 is provided on the input shaft 5a of the auxiliary machine 5, and the gear 5b and the input shaft 5a of the auxiliary machine 5 are coaxially coupled via the auxiliary machine clutch 22.
 補機用クラッチ22は、ECU8の制御の下で、ギヤ5bと補機5の入力軸5aとの間を接続又は遮断するように動作するクラッチである。この場合、補機用クラッチ22を接続状態に動作させると、ギヤ5bと補機5の入力軸5aとが互いに一体に回転するように補機用クラッチ22を介して結合される。また、エアコンディショナーなどを駆動させない状態がある場合に、補機用クラッチ22を遮断状態に動作させると、該補機用クラッチ22によるギヤ5bと補機5の入力軸5aとの間の結合が解除される。この状態では、主入力軸11と補機5の入力軸5aへの動力伝達が遮断される。また、図示しないが、蓄圧装置に蓄圧しておけば、駆動不可能である場合にも、この蓄圧装置をオイルポンプとして機能することが可能となる。 The accessory clutch 22 is a clutch that operates to connect or disconnect between the gear 5 b and the input shaft 5 a of the accessory 5 under the control of the ECU 8. In this case, when the accessory clutch 22 is operated in the connected state, the gear 5b and the input shaft 5a of the accessory 5 are coupled via the accessory clutch 22 so as to rotate integrally with each other. When there is a state in which the air conditioner or the like is not driven, when the accessory clutch 22 is operated in the disengaged state, the coupling between the gear 5b and the input shaft 5a of the accessory 5 by the accessory clutch 22 is It is released. In this state, power transmission to the main input shaft 11 and the input shaft 5a of the auxiliary machine 5 is interrupted. Although not shown, if pressure storage is possible, the pressure storage device can function as an oil pump even if it can not be driven.
 以上のように構成された動力伝達装置1において、エンジン2の出力軸2aから出力された動力は、主入力軸11から第1副入力軸12、低速段ギヤ対15を介して出力軸14に伝達される第1の動力伝達経路と、主入力軸11から第2副入力軸13、高速段ギヤ対16を介して出力軸14に伝達される第2の動力伝達経路との何れかを経由して、駆動輪4,4に伝達される。 In the power transmission 1 configured as described above, the power output from the output shaft 2a of the engine 2 is transmitted from the main input shaft 11 to the output shaft 14 via the first auxiliary input shaft 12 and the low speed gear pair 15. Via either the first power transmission path to be transmitted or the second power transmission path to be transmitted from the main input shaft 11 to the output shaft 14 via the second auxiliary input shaft 13 and the high speed gear pair 16 And transmitted to the drive wheels 4 and 4.
 また、エンジン2の出力軸2aから出力された動力は、主入力軸11からサンギヤ9sに、又は/及び第1副入力軸12を介してキャリア9cに伝達されて動力合成機構9に入力される。電動機3から出力された動力は、リングギヤ9rに伝達されて動力合成機構9に入力される。そして、動力合成機構9でこれらの入力された動力が合成されて、出力軸14を介して駆動輪4,4に伝達され、エンジン2から動力合成機構9を介することなく出力軸14に伝達される動力を補助(アシスト)する。なお、リングギヤ9rが逆転するときは、電動機3で回生運転が行われることになる。 Further, the power output from the output shaft 2 a of the engine 2 is transmitted to the sun gear 9 s from the main input shaft 11 and / or to the carrier 9 c via the first sub input shaft 12 and input to the power combining mechanism 9 . The power output from the motor 3 is transmitted to the ring gear 9 r and input to the power combining mechanism 9. Then, these input powers are synthesized by the power synthesis mechanism 9, transmitted to the drive wheels 4 and 4 through the output shaft 14, and transmitted from the engine 2 to the output shaft 14 without the power synthesis mechanism 9. Assist the vehicle's power. When the ring gear 9r reversely rotates, the motor 3 performs regenerative operation.
 次に、本実施形態の動力伝達装置1の動作を説明する。動力伝達装置1の動作モードは、種々様々の動作モードを有する。図2乃至図6等は、これらの各種類の動作モードにおける動力伝達装置1の動作状態を視覚的に示している。これらの図では、主クラッチCM、第1クラッチC1、第2クラッチC2、及び補機用クラッチ22の動作状態が、接続状態(以降、ON状態という)となる場合には、各クラッチCM,C1,C2,31を太線で示し、遮断状態(以降、OFF状態という)となる場合には、各クラッチCM,C1,C2,31を通常の実線で示している。また、各種類の動作モードにおいて、他の構成要素と連結して回転する動力伝達装置1の構成要素を太線で示している。 Next, the operation of the power transmission device 1 of the present embodiment will be described. The operation mode of the power transmission 1 has various operation modes. 2 to 6 visually show the operating state of the power transmission 1 in each of these types of operating modes. In these figures, when the operating state of the main clutch CM, the first clutch C1, the second clutch C2, and the auxiliary machine clutch 22 is in the connected state (hereinafter referred to as the ON state), the respective clutches CM, C1 , C2 and C31 are shown by thick lines, and the clutches CM, C1 and C2 and 31 are shown by normal solid lines when in the disengaged state (hereinafter referred to as the OFF state). Further, in each type of operation mode, components of the power transmission device 1 that rotate in connection with other components are indicated by thick lines.
 本実施形態では、車両の主要な走行モードとして、エンジン2のみを車両の動力発生源として走行するエンジン走行モードと、電動機3のみを車両の動力発生源として走行するEV走行モードと、エンジン2と電動機3との双方を運転して走行する合成走行モードとがある。合成走行モードには、エンジン2と電動機3とから出力される動力を合成して走行するアシスト走行モードと、エンジン2の出力を電動機3に分配して電動機3が回生運転を行いながら走行する回生走行モードとがある。回生走行モードでは、電動機3の回生運転によりバッテリ7で充電が行われる。EV走行モードでは、バッテリ7に蓄積された電気エネルギーを消費して電動機3が動力を出力する。 In the present embodiment, an engine travel mode in which only the engine 2 travels as a power generation source of the vehicle, an EV travel mode in which only the motor 3 travels as a power generation source of the vehicle, and the engine 2 as main travel modes of the vehicle. There is a combined driving mode in which both the motor 3 and the motor 3 are driven to travel. In the synthetic travel mode, an assist travel mode in which the power output from the engine 2 and the motor 3 is output to travel is synthesized, and an output of the engine 2 is distributed to the motor 3 so that the motor 3 travels while performing regenerative operation. There is a driving mode. In the regenerative traveling mode, charging is performed by the battery 7 by the regenerative operation of the motor 3. In the EV drive mode, the electric energy stored in the battery 7 is consumed and the motor 3 outputs power.
 そして、本実施形態では、ECU8が車両のアクセル操作量や車速等から所定のマップ等を用いて車両の要求動力(要求駆動力)を設定し、この要求動力に応じて、各走行モードや変速段を選択する。さらに、ECU8は、選択した走行モードや変速段等に応じて、動力伝達装置1を制御する。 Then, in the present embodiment, the ECU 8 sets the required power (required driving force) of the vehicle using a predetermined map or the like from the accelerator operation amount of the vehicle, the vehicle speed, etc., and according to the required power Select a row. Furthermore, the ECU 8 controls the power transmission device 1 in accordance with the selected travel mode, gear position or the like.
 例えば、ECU8は、エンジン2を適正運転領域、例えば燃費が良好となる領域で運転させたときに該エンジン2から出力され動力合成機構9に入力される動力(以下、適正運転動力という)が要求動力に満たないとき、アシスト走行モードを選択する。このとき、ECU8は、要求動力に対する不足分をバッテリ7から電力が供給されるように制御する。ただし、不足分を補うために、定格出力又は最高回転数を超えて電動機3を運転させる必要が生じる場合、電動機3を定格出力又は最高回転数で運転させ、エンジン2の出力を増加させる。また、ECU8は、適正運転動力が要求動力を超えるとき、回生走行モードを選択し、ギヤ等による伝達ロスを除いた差分の動力(エネルギー)をバッテリ7に充電させる。ECU8は、バッテリ7の充電レベル(SOC)が小さいときも、バッテリ7の充電を促進するために、回生走行モードを選択し、エンジン2の出力を増加させる。 For example, the ECU 8 requires the power (hereinafter referred to as proper driving power) output from the engine 2 and input to the power combining mechanism 9 when the engine 2 is operated in a proper driving range, for example, a range where fuel consumption is good. When the power is not sufficient, the assist travel mode is selected. At this time, the ECU 8 controls the shortage with respect to the required power so that power is supplied from the battery 7. However, when it is necessary to operate the motor 3 over the rated output or the maximum rotational speed to compensate for the shortage, the motor 3 is operated at the rated output or the maximum rotational speed to increase the output of the engine 2. Further, when the appropriate driving power exceeds the required power, the ECU 8 selects the regenerative traveling mode, and charges the battery 7 with the power (energy) of the difference excluding the transmission loss due to the gear or the like. Even when the charge level (SOC) of the battery 7 is small, the ECU 8 selects the regenerative traveling mode to increase the output of the engine 2 in order to accelerate the charging of the battery 7.
 [EV走行モード、高速段]
 図2はEV走行モードの高速段における動力伝達装置1の動作状態を示している。EV走行モードの高速段では、ECU8は、主クラッチCM及び第1クラッチC1をOFF状態に、第2クラッチC2をON状態に、電動機3をロータ3aが正転するように設定する。これにより、ロータ3aに伴ってリングギヤ9rが正転すると、このリングギヤ9rから回転トルクを受けるキャリア9cが正転しようとする。さらに、このキャリア9cは第1副入力軸12、第1クラッチC1、第2クラッチC2及び主入力軸11を介してサンギヤ9sに接続されており、このサンギヤ9sが正転しようとする。これにより、キャリア9cが正転し、その回転トルクは、第1副入力軸12、低速段ギヤ対15、出力軸14、カウンタギヤ対18、カウンタ軸17、ギヤ19b、差動歯車ユニット19及び車軸20,20を介して駆動輪4,4に伝達される。これにより、電動機3の動力のみによって駆動輪4,4が車両の前進方向に回転する。このとき、エンジン2の出力軸2aは、主入力軸11との接続が遮断されているので、EV走行モードにおいては、エンジン2の出力軸2aに電動機3からの動力が伝達されず、エンジン2の引きずりがない。なお、主入力軸11が正転するので、ベルト機構21及び補機用クラッチ22を介して補機5の入力軸5aに動力が伝達される。さらに、図示しないが、EV走行モードの低速段に設定させた状態で車両が停止しているとき、ECU8が、主クラッチCMをON状態に設定することにより、エンジン2を始動させることができる。
[EV driving mode, high-speed gear]
FIG. 2 shows the operating state of the power transmission 1 at the high speed of the EV travel mode. In the high speed stage of the EV travel mode, the ECU 8 sets the main clutch CM and the first clutch C1 to the OFF state, sets the second clutch C2 to the ON state, and sets the electric motor 3 so as to normally rotate the rotor 3a. As a result, when the ring gear 9r is normally rotated with the rotor 3a, the carrier 9c that receives the rotational torque from the ring gear 9r tends to be normally rotated. Further, the carrier 9c is connected to the sun gear 9s via the first auxiliary input shaft 12, the first clutch C1, the second clutch C2 and the main input shaft 11, and the sun gear 9s tries to rotate normally. As a result, the carrier 9c rotates in the forward direction, and the rotational torque is obtained by the first auxiliary input shaft 12, the low speed gear pair 15, the output shaft 14, the counter gear pair 18, the counter shaft 17, the gear 19b, the differential gear unit 19 and It is transmitted to the drive wheels 4, 4 via the axles 20, 20. Thus, the drive wheels 4 rotate in the forward direction of the vehicle solely by the power of the motor 3. At this time, since the output shaft 2a of the engine 2 is disconnected from the main input shaft 11, the power from the motor 3 is not transmitted to the output shaft 2a of the engine 2 in the EV travel mode. There is no drag on the Since the main input shaft 11 rotates forward, power is transmitted to the input shaft 5a of the accessory 5 via the belt mechanism 21 and the accessory clutch 22. Furthermore, although not shown, when the vehicle is stopped in the low speed state of the EV travel mode, the ECU 8 can start the engine 2 by setting the main clutch CM to the ON state.
 [エンジン走行モード、高速段]
 図3はエンジン走行モードの高速段における動力伝達装置1の動作状態を示している。前記EV走行モードの低速段に設定させた状態でエンジン2を始動させた後、電動機3の運転を停止することにより、エンジン走行モードの高速段で車両を走行させることができる。エンジン走行モードの高速段では、ECU8は、主クラッチCM及び第2クラッチC2をON状態に、第1クラッチC1をOFF状態に設定する。これにより、エンジン2の出力軸2aからの動力は、主クラッチCM、主入力軸11、第2クラッチC2、第2副入力軸13、高速段ギヤ対16、出力軸14、カウンタギヤ対18、カウンタ軸17、ギヤ17b、差動歯車ユニット19及び車軸20,20を介して駆動輪4,4に伝達される。このとき、主入力軸11に伴ってサンギヤ9sは正転するが、キャリア9c及びリングギヤ9rは動力を受けない。そのため、サンギヤ9sは自転するが、キャリア9c及びリングギヤ9rは回転しないので、電動機3は力行運転も回生運転も行わない。これにより、エンジン2の動力のみによって高速段の前進状態で駆動輪4,4が車両の前進方向に回転する。なお、主入力軸11が正転するので、ベルト機構21及び補機用クラッチ22を介して補機5の入力軸5aに動力が伝達される。
[Engine running mode, high-speed gear]
FIG. 3 shows the operating state of the power transmission 1 at the high speed stage in the engine travel mode. After starting the engine 2 in the low speed stage of the EV travel mode, stopping the operation of the motor 3 allows the vehicle to travel at the high speed stage of the engine travel mode. In the high speed stage of the engine travel mode, the ECU 8 sets the main clutch CM and the second clutch C2 to the ON state, and sets the first clutch C1 to the OFF state. Thus, the power from the output shaft 2a of the engine 2 is the main clutch CM, the main input shaft 11, the second clutch C2, the second auxiliary input shaft 13, the high speed gear pair 16, the output shaft 14, the counter gear pair 18, It is transmitted to the drive wheels 4, 4 via the counter shaft 17, the gear 17b, the differential gear unit 19, and the axles 20, 20. At this time, although the sun gear 9s is normally rotated with the main input shaft 11, the carrier 9c and the ring gear 9r receive no power. Therefore, although the sun gear 9s rotates, the carrier 9c and the ring gear 9r do not rotate, so the electric motor 3 does not perform the power running operation or the regenerative operation. As a result, the drive wheels 4 rotate in the forward direction of the vehicle in the forward state of the high gear only by the power of the engine 2. Since the main input shaft 11 rotates forward, power is transmitted to the input shaft 5a of the accessory 5 via the belt mechanism 21 and the accessory clutch 22.
 [合成走行モード、高速段]
 図4は合成走行モードの高速段における動力伝達装置1の動作状態を示している。前記エンジン走行モードの高速段で車両を走行させた状態で電動機3を運転することにより、合成走行モードの高速段で車両を走行させることができる。ECU8は、前記設定に加えて、電動機3をロータ3aが正転するように設定する。これにより、ロータ3aに伴ってリングギヤ9rが正転すると、このリングギヤ9rから回転トルクを受けるキャリア9cが正転しようとする。そのため、エンジン2からの動力と電動機3からの動力がキャリア9cで合成され、第1副入力軸12、出力軸14等を介して駆動輪4,4に伝達される。このように、エンジン2と電動機3との合成動力が駆動輪4,4に伝達され、駆動輪4,4が車両の前進方向に回転する。また、要求動力が適正運転動力に満たない場合等には、リングギヤ9rを逆転させて、電動機3に回生運転を行わせ、高速段の回生走行モードで車両を走行させることも可能である。
[Synthetic driving mode, high-speed gear]
FIG. 4 shows the operating state of the power transmission 1 in the high speed stage of the synthetic traveling mode. By operating the electric motor 3 in a state in which the vehicle is driven at the high speed level in the engine travel mode, the vehicle can be driven at the high speed speed in the combined travel mode. In addition to the above setting, the ECU 8 sets the motor 3 such that the rotor 3a rotates forward. As a result, when the ring gear 9r is normally rotated with the rotor 3a, the carrier 9c that receives the rotational torque from the ring gear 9r tends to be normally rotated. Therefore, the power from the engine 2 and the power from the electric motor 3 are combined by the carrier 9 c and transmitted to the drive wheels 4, 4 via the first auxiliary input shaft 12, the output shaft 14 and the like. Thus, the combined power of the engine 2 and the motor 3 is transmitted to the drive wheels 4, 4, and the drive wheels 4, 4 rotate in the forward direction of the vehicle. In addition, when the required power does not satisfy the appropriate driving power, etc., it is also possible to reverse the ring gear 9r to cause the motor 3 to perform regenerative operation and to run the vehicle in the high-speed regenerative travel mode.
 エンジン走行モードの高速段から合成走行モードの高速段への変更は、電動機3の運転を開始するだけで可能であり、逆への変更も、電動機3の運転を停止するだけで可能であるため、共に容易且つ迅速に変更することができる。そして、要求動力の変更に応じて変速段を変更することなく対応することが可能となる。このため、要求動力の変動を、エンジン2を適正運転領域で運転させながら、アシスト走行モードと回生走行モードを適宜切り替えて、電動機3の力行運転、回生運転を行うことによって吸収することができるので、エンジン2における燃料消費を抑えることができる。 The change from the high-speed stage of the engine travel mode to the high-speed stage of the composite travel mode is possible only by starting the operation of the motor 3, and the reverse change is also possible by simply stopping the operation of the motor 3. Both can be easily and quickly changed. And it becomes possible to respond, without changing a gear stage according to change of demand motive power. For this reason, it is possible to absorb the fluctuation of the required power by performing the power running operation and the regenerative operation of the motor 3 by appropriately switching the assist traveling mode and the regenerative traveling mode while operating the engine 2 in the appropriate operation region. The fuel consumption of the engine 2 can be reduced.
 [エンジン走行モード、低速段]
 図5はエンジン走行モードの低速段における動力伝達装置1の動作状態を示している。前記EV走行モードの低速段に設定させた状態でエンジン2を始動させた後、電動機3の運転を停止することにより、エンジン走行モードの高速段で車両を走行させることができる。エンジン走行モードの低速段では、ECU8は、主クラッチCM及び第1クラッチC1をON状態に、第2クラッチC2をOFF状態に設定する。これにより、エンジン2の出力軸2aからの動力は、主クラッチCM、主入力軸11、第1クラッチC1、第1副入力軸12、低速段ギヤ対15、出力軸14等を介して駆動輪4,4に伝達される。このとき、主入力軸11に伴ってサンギヤ9sは正転するが、キャリア9c及びリングギヤ9rは動力を受けない。そのため、サンギヤ9sは自転するが、キャリア9c及びリングギヤ9rは回転しないので、電動機3は力行運転も回生運転も行わない。これにより、エンジン2の動力のみによって低速段の前進状態で駆動輪4,4が車両の前進方向に回転する。なお、主入力軸11が正転するので、ベルト機構21及び補機用クラッチ22を介して補機5の入力軸5aに動力が伝達される。
[Engine running mode, low speed stage]
FIG. 5 shows the operating state of the power transmission 1 in the low speed stage of the engine travel mode. After starting the engine 2 in the low speed stage of the EV travel mode, stopping the operation of the motor 3 allows the vehicle to travel at the high speed stage of the engine travel mode. In the low speed stage of the engine travel mode, the ECU 8 sets the main clutch CM and the first clutch C1 to the ON state, and sets the second clutch C2 to the OFF state. As a result, the power from the output shaft 2a of the engine 2 is driven through the main clutch CM, the main input shaft 11, the first clutch C1, the first auxiliary input shaft 12, the low speed gear pair 15, the output shaft 14 etc. It is transmitted to 4,4. At this time, although the sun gear 9s is normally rotated with the main input shaft 11, the carrier 9c and the ring gear 9r receive no power. Therefore, although the sun gear 9s rotates, the carrier 9c and the ring gear 9r do not rotate, so the electric motor 3 does not perform the power running operation or the regenerative operation. As a result, the drive wheels 4, 4 rotate in the forward direction of the vehicle in the forward state of the low speed stage only by the power of the engine 2. Since the main input shaft 11 rotates forward, power is transmitted to the input shaft 5a of the accessory 5 via the belt mechanism 21 and the accessory clutch 22.
 [1速段相当発進、走行]
 図6は低速段より低い変速段(以下、超低速段という)状態における動力伝達装置1の動作状態を示している。超低速段では、ECU8は、主クラッチCM及び第1クラッチC1をON状態に、第2クラッチC2をOFF状態に設定する。これにより、エンジン2の出力軸2aからの動力(回転数Ne)は、主クラッチCM及び主入力軸11を介してサンギヤ9sに伝達される。このとき、出力軸14はカウンタ軸17等を介して車軸20,20に接続されているので、駆動輪4,4が静止しているとその摩擦抵抗により、サンギヤ9sの正転によりキャリア9cが回転しようとしても、該キャリア9cは回転しない。そのため、図7に実線で示すように、リングギヤ9rは、回転数Nmで逆転し、電動機3は回生運転を行い、バッテリ7を充電する。このように、エンジン2がアイドリング状態であり空転しているとき、電動機3が回生運転することによって、エンジン2が出力した動力をバッテリ7に電気エネルギーとして充電することができ、省エネルギーとなる。また、従来、クラッチにスベリ機構を設けてエンジン2が発生させた動力を吸収していたが、電動機3に回生運転させることによって、第1クラッチC1及び第2クラッチC2にスベリ機構を設ける必要がなくなり、これらのクラッチC1,C2を小型化できる。なお、図7は共線図であり、正転方向を「+」で、逆転方向を「-」でそれぞれ表している。
[1st gear equivalent start, driving]
FIG. 6 shows the operation state of the power transmission 1 in the state of a lower gear (hereinafter referred to as an ultra low gear) than the low gear. At the super low speed stage, the ECU 8 sets the main clutch CM and the first clutch C1 to the ON state, and sets the second clutch C2 to the OFF state. Thus, the power (rotational speed Ne) from the output shaft 2 a of the engine 2 is transmitted to the sun gear 9 s via the main clutch CM and the main input shaft 11. At this time, since the output shaft 14 is connected to the axles 20 and 20 via the counter shaft 17 etc., when the drive wheels 4 and 4 are stationary, the carrier 9c is rotated by forward rotation of the sun gear 9s due to its frictional resistance. Even if it tries to rotate, the carrier 9c does not rotate. Therefore, as shown by the solid line in FIG. 7, the ring gear 9 r reverses at the rotational speed Nm, and the motor 3 performs the regenerative operation to charge the battery 7. As described above, when the engine 2 is idling and idling, the electric motor 3 performs regenerative operation, so that the power output from the engine 2 can be charged to the battery 7 as electric energy, which results in energy saving. Also, conventionally, the slip mechanism is provided in the clutch to absorb the power generated by the engine 2. However, it is necessary to provide the slip mechanism in the first clutch C1 and the second clutch C2 by causing the motor 3 to perform regenerative operation. As a result, these clutches C1 and C2 can be miniaturized. FIG. 7 is a collinear chart, in which the direction of forward rotation is indicated by “+” and the direction of reverse rotation is indicated by “−”.
 この状態から、ECU8は、電動機3のステータ3bにバッテリ7から電力を供給させ、ステータ3bで発生する回転磁界を正転させる。これにより、ステータ3bからロータ3aを正転させるように作用するトルクが伝達され、リングギヤ9rを正転させる方向に動力が作用する。そして、エンジン2がサンギヤ9sを正転させる動力と電動機3がリングギヤ9rを正転させる動力とにより、プラネタリギヤ9pが正転し、図7に一点鎖線で示すように、前記摩擦抵抗に抗してキャリア9cが正転する。このキャリア9cの正転に連動して第1副入力軸12が正転し、車軸20,20が正転する。これにより、エンジン2と電動機3の動力が合成された超低速段の前進状態で駆動輪4,4が車両の前進方向に回転する。このように、動力伝達装置1は、超低速段の合成走行モードで車両を発進、走行させることが可能である。 From this state, the ECU 8 supplies power from the battery 7 to the stator 3 b of the motor 3 to cause the rotating magnetic field generated by the stator 3 b to rotate in the normal direction. As a result, torque acting to cause the rotor 3a to rotate normally is transmitted from the stator 3b, and power acts in the direction to rotate the ring gear 9r normally. Then, the planetary gear 9p is normally rotated by the power for the engine 2 to rotate the sun gear 9s normally and the power for the electric motor 3 to rotate the ring gear 9r normally, and as shown by the alternate long and short dash line in FIG. The carrier 9c rotates forward. In conjunction with the forward rotation of the carrier 9c, the first auxiliary input shaft 12 rotates forward, and the axles 20, 20 rotate forward. As a result, the drive wheels 4 rotate in the forward direction of the vehicle in an advanced state of an ultra low speed stage where the power of the engine 2 and the electric motor 3 are combined. As described above, the power transmission device 1 can start and travel the vehicle in the super low speed combined travel mode.
 一方、前記状態から、エンジン2の出力軸2aからの動力(回転数Ne)を上昇させると、図7に点線で示すように、リングギヤ9rが逆転したまま、前記摩擦抵抗に抗してキャリア9cが正転する。このキャリア9cの正転に連動して第1副入力軸12が正転し、車軸20,20が正転する。このとき、リングギヤ9rは逆転するため、電動機2は回生駆動状態であり、バッテリ7で充電が行われている。これにより、電動機3が回生運転を行いながら、エンジン2の動力のみによって超低速段の前進状態で駆動輪4,4が車両の前進方向に回転する。このように、動力伝達装置1は、超低速段の回生走行モードで車両を発進、走行させることが可能である。 On the other hand, when the power (rotational speed Ne) from the output shaft 2a of the engine 2 is increased from the above state, the carrier 9c resists the frictional resistance while the ring gear 9r is reversely rotated as shown by the dotted line in FIG. Rotates forward. In conjunction with the forward rotation of the carrier 9c, the first auxiliary input shaft 12 rotates forward, and the axles 20, 20 rotate forward. At this time, since the ring gear 9r is reversely rotated, the motor 2 is in the regenerative driving state, and the battery 7 is charging. As a result, while the motor 3 performs regenerative operation, the drive wheels 4 rotate in the forward direction of the vehicle in the forward state of the ultra-low speed stage solely by the power of the engine 2. As described above, the power transmission device 1 can start and travel the vehicle in the super low speed regenerative travel mode.
 従って、動力伝達装置1は、合成走行モードと回生走行モードと異なる走行モードで、超低速段の発進、走行を行うことが可能となっている。よって、要求動力、バッテリ7の充電レベル等に応じて、発進時の走行モードを適宜使い分けることができる。なお、サンギヤ9sに伴い主入力軸11が正転し、ベルト機構21及び補機用クラッチ22を介して補機5の入力軸5aに動力が伝達される。 Therefore, the power transmission device 1 can start and travel at an ultra low speed stage in a traveling mode different from the combined traveling mode and the regenerative traveling mode. Therefore, the traveling mode at the time of start can be appropriately used in accordance with the required power, the charge level of the battery 7, and the like. The main input shaft 11 rotates forward with the sun gear 9s, and power is transmitted to the input shaft 5a of the accessory 5 via the belt mechanism 21 and the accessory clutch 22.
 [第2実施形態]
 本発明の第2実施形態に係るハイブリッド車両用動力伝達装置41を図8乃至図10を参照して説明する。
Second Embodiment
A power transmission system 41 for a hybrid vehicle according to a second embodiment of the present invention will be described with reference to FIGS. 8 to 10.
 まず、図8を参照して本実施形態の動力伝達装置41の構成を説明する。動力伝達装置41は、動力伝達装置1と類似するので、異なる構成についてのみ説明する。 First, the configuration of the power transmission device 41 of the present embodiment will be described with reference to FIG. The power transmission device 41 is similar to the power transmission device 1 and thus only different configurations will be described.
 エンジン2の出力軸2aには、エンジン2からの駆動力が主クラッチCMを介して入力される主入力軸(第1主入力軸)42が連結されている。主入力軸42は、主クラッチCMにより、エンジン2の出力軸2aと接続、遮断される。主クラッチCMは、乾式クラッチが好ましいが、湿式クラッチでもよい。 A main input shaft (first main input shaft) 42 to which the driving force from the engine 2 is input through the main clutch CM is coupled to the output shaft 2 a of the engine 2. The main input shaft 42 is connected to and disconnected from the output shaft 2 a of the engine 2 by the main clutch CM. The main clutch CM is preferably a dry clutch, but may be a wet clutch.
 主入力軸42に対して、副入力軸43が同軸心に配置されている。そして、主入力軸42と副入力軸43とは、同期装置Sを介して接続されている。同期装置Sは、副入力軸43に設けられ、低速ギヤ43a又は高速ギヤ43bと副入力軸43との接続、切断が切替可能に構成されている。同期装置Sは、シンクロクラッチなどの周知のものであり、図示しないアクチュエータ及びシフトフォークにより、スリーブを副入力軸43の軸長方向に移動させることによって、低速ギヤ43a又は高速ギヤ43bを副入力軸43と選択的に連結させる。スリーブが図8中右側へ移動した場合、低速ギヤ43aと副入力軸43とが連結される。一方、スリーブが図8中左側へ移動した場合、高速ギヤ43bと副入力軸43とが連結される。 The sub input shaft 43 is coaxially disposed with respect to the main input shaft 42. The main input shaft 42 and the sub input shaft 43 are connected via the synchronization device S. The synchronization device S is provided on the sub input shaft 43, and is configured to be able to switch connection and disconnection between the low speed gear 43a or the high speed gear 43b and the sub input shaft 43. The synchronization device S is a known device such as a synchro clutch, and the low speed gear 43a or the high speed gear 43b is moved by moving the sleeve in the axial direction of the sub input shaft 43 by an actuator and shift fork not shown. Selectively connect with 43. When the sleeve moves to the right in FIG. 8, the low speed gear 43a and the sub input shaft 43 are connected. On the other hand, when the sleeve moves to the left in FIG. 8, the high speed gear 43 b and the sub input shaft 43 are connected.
 主入力軸42に対して平行に出力軸14が配置されている。そして、出力軸14と副入力軸43とは、低速段ギヤ対44を介して結合されている。この低速段ギヤ対44は、出力軸14上に固定された低速ギヤ14aと副入力軸43上に固定された低速ギヤ43aとが噛合して構成されている。また、出力軸14と副入力軸43とは、高速段ギヤ対45を介して結合されている。この高速段ギヤ対45は、出力軸14上に固定された高速ギヤ14bと副入力軸43上に固定された高速ギヤ43bとが噛合して構成されている。低速ギヤ43aと高速ギヤ14bとで本発明における第1ギヤ群に相当し、低速ギヤ14aと高速ギヤ14とで本発明における第2ギヤ群に相当する。 An output shaft 14 is disposed parallel to the main input shaft 42. The output shaft 14 and the sub input shaft 43 are coupled via the low speed gear pair 44. The low speed gear pair 44 is configured by meshing between a low speed gear 14 a fixed on the output shaft 14 and a low speed gear 43 a fixed on the sub input shaft 43. Further, the output shaft 14 and the auxiliary input shaft 43 are coupled via a high speed gear pair 45. The high-speed gear pair 45 is configured by meshing the high-speed gear 14 b fixed on the output shaft 14 and the high-speed gear 43 b fixed on the sub input shaft 43. The low speed gear 43a and the high speed gear 14b correspond to a first gear group in the present invention, and the low speed gear 14a and the high speed gear 14 correspond to a second gear group in the present invention.
 動力伝達装置1と同様に、動力伝達装置41の動力合成機構9は、シングルピニオン型の遊星歯車装置であり、サンギヤ9sと、リングギヤ9rと、これらのサンギヤ9s及びリングギヤ9rの間で当該両ギヤ9r,9sに噛合された複数のプラネタリギヤ9pを回転自在に支持するキャリア9cとを同軸心に備えている。そして、サンギヤ9sは、主入力軸42と連動して回転するように、該主入力軸42の電動機3側の一端部に固定され、該主入力軸42に連結されている。リングギヤ9rは、電動機3のロータ3aの内側に連結されている。キャリア9cは、副入力軸43の電動機3側の一端部に固定され、副入力軸43に連結されている。 Like the power transmission device 1, the power combining mechanism 9 of the power transmission device 41 is a single pinion type planetary gear device, and both the sun gear 9s, the ring gear 9r, and the sun gear 9s and the ring gear 9r A carrier 9c coaxially supports a plurality of planetary gears 9p meshed with 9r and 9s rotatably. The sun gear 9 s is fixed to one end of the main input shaft 42 on the electric motor 3 side so as to rotate in conjunction with the main input shaft 42, and is connected to the main input shaft 42. The ring gear 9 r is connected to the inside of the rotor 3 a of the motor 3. The carrier 9 c is fixed to one end of the sub input shaft 43 on the motor 3 side, and is connected to the sub input shaft 43.
 さらに、主入力軸42と補機5の入力軸5aとは、ベルト機構21を介して結合されている。このベルト機構21は、主入力軸42上に固定されたギヤ42aと入力軸5a上に固定されたギヤ5bとがベルト21aを介して連結されて構成されている。補機用クラッチ22を遮断状態に動作させると、主入力軸42と補機5の入力軸5aへの動力伝達が遮断される。 Further, the main input shaft 42 and the input shaft 5 a of the accessory 5 are coupled via the belt mechanism 21. The belt mechanism 21 is configured by connecting a gear 42a fixed on the main input shaft 42 and a gear 5b fixed on the input shaft 5a via a belt 21a. When the accessory clutch 22 is operated in the disconnection state, power transmission to the main input shaft 42 and the input shaft 5a of the accessory 5 is disconnected.
 以上のように構成された動力伝達装置41において、エンジン2の出力軸2aから出力された動力は、主入力軸42から低速段ギヤ対44を介して出力軸14に伝達される第1の動力伝達経路と、主入力軸42から高速段ギヤ対45を介して出力軸14に伝達される第2の動力伝達経路との何れかを経由して、駆動輪4,4に伝達される。 In the power transmission device 41 configured as described above, the power output from the output shaft 2 a of the engine 2 is the first power transmitted from the main input shaft 42 to the output shaft 14 via the low speed gear pair 44. It is transmitted to the drive wheels 4, 4 via either the transmission path or the second power transmission path transmitted from the main input shaft 42 to the output shaft 14 via the high speed gear pair 45.
 また、エンジン2の出力軸2aから出力された動力は、主入力軸42からサンギヤ9sに、又は/及び副入力軸43を介してキャリア9cに伝達されて動力合成機構9に入力される。電動機3から出力された動力は、リングギヤ9rに伝達されて動力合成機構9に入力される。そして、動力合成機構9でこれらの入力された動力が合成されて、出力軸14を介して駆動輪4,4に伝達され、エンジン2から動力合成機構9を介することなく出力軸14に伝達される動力を補助する。なお、リングギヤ9rが逆転するときは、電動機3で回生運転が行われることになる。 Further, the power output from the output shaft 2 a of the engine 2 is transmitted to the sun gear 9 s from the main input shaft 42 and / or to the carrier 9 c via the sub input shaft 43 and is input to the power combining mechanism 9. The power output from the motor 3 is transmitted to the ring gear 9 r and input to the power combining mechanism 9. Then, these input powers are synthesized by the power synthesis mechanism 9, transmitted to the drive wheels 4 and 4 through the output shaft 14, and transmitted from the engine 2 to the output shaft 14 without the power synthesis mechanism 9. Support the power of When the ring gear 9r reversely rotates, the motor 3 performs regenerative operation.
 次に、本実施形態の動力伝達装置41の動作を説明する。動力伝達装置41の動作は、前記動力伝達装置1と同様であるため、その一部についてのみ説明する。 Next, the operation of the power transmission device 41 of the present embodiment will be described. The operation of the power transmission device 41 is the same as that of the power transmission device 1, so only a part of it will be described.
 [EV走行モード、高速段]
 図9はEV走行モードの高速段における動力伝達装置41の動作状態を示している。EV走行モードの高速段では、ECU8は、主クラッチCMをOFF状態に、同期装置Sを高速段確立状態に、電動機3をロータ3aが正転するように設定する。これにより、EV走行モードの高速段における動力伝達装置1と同様に、ロータ3aに伴ってリングギヤ9rが正転すると、このリングギヤ9rから回転トルクを受けるキャリア9cが正転しようとする。さらに、このキャリア9cは、副入力軸43、低速段ギヤ対44、出力軸14、高速段ギヤ対45及び主入力軸42を介してサンギヤ9sに接続されており、このサンギヤ9sが正転しようとする。これにより、キャリア9cは正転し、その回転トルクは、副入力軸43、低速段ギヤ対44、出力軸14等を介して駆動輪4,4に伝達される。これにより、電動機3の動力のみによって駆動輪4,4が車両の前進方向に回転する。このとき、エンジン2の出力軸2aは、主入力軸11との接続が遮断されているので、EV走行モードにおいては、エンジン2の出力軸2aに電動機3から動力が伝達されず、エンジン2の引きずりがない。なお、主入力軸42が正転するので、ベルト機構21及び補機用クラッチ22を介して補機5の入力軸5aに動力が伝達される。さらに、図示しないが、EV走行モードの低速段に設定させた状態で車両が停止しているとき、ECU8が、主クラッチCMをON状態に設定することにより、エンジン2を始動させることができる。
[EV driving mode, high-speed gear]
FIG. 9 shows the operating state of the power transmission device 41 in the high speed stage of the EV travel mode. In the high speed stage of the EV travel mode, the ECU 8 sets the main clutch CM in the OFF state, sets the synchronization device S in the high speed stage establishment state, and sets the motor 3 in the forward rotation of the rotor 3a. Thus, as in the power transmission device 1 at the high speed stage in the EV travel mode, when the ring gear 9r rotates forward with the rotor 3a, the carrier 9c receiving rotational torque from the ring gear 9r tries to rotate normally. Further, the carrier 9c is connected to the sun gear 9s via the sub input shaft 43, the low speed gear pair 44, the output shaft 14, the high speed gear pair 45, and the main input shaft 42, and this sun gear 9s is rotated forward. I assume. As a result, the carrier 9c rotates forward, and the rotational torque is transmitted to the drive wheels 4, 4 via the auxiliary input shaft 43, the low speed gear pair 44, the output shaft 14 and the like. Thus, the drive wheels 4 rotate in the forward direction of the vehicle solely by the power of the motor 3. At this time, since the output shaft 2a of the engine 2 is disconnected from the main input shaft 11, power is not transmitted from the motor 3 to the output shaft 2a of the engine 2 in the EV travel mode. There is no drag. Since the main input shaft 42 rotates forward, power is transmitted to the input shaft 5 a of the accessory 5 via the belt mechanism 21 and the accessory clutch 22. Furthermore, although not shown, when the vehicle is stopped in the low speed state of the EV travel mode, the ECU 8 can start the engine 2 by setting the main clutch CM to the ON state.
 [合成走行モード、低速段]
 図10は合成走行モードの低速段における動力伝達装置1の動作状態を示している。合成走行モードの低速段では、ECU8は、主クラッチCMをON状態に、同期装置Sを高速段確立状態に、電動機3をロータ3aが正転するように設定する。これにより、エンジン2の出力軸2aからの動力は、主クラッチCM、主入力軸42、低速段ギヤ対43、出力軸14等を介して駆動輪4,4に伝達される。また、ロータ3aに伴ってリングギヤ9rが正転すると、このリングギヤ9rから回転トルクを受けるキャリア9cが正転しようとする。そのため、エンジン2からの動力と電動機3からの動力がキャリア9cで合成され、副入力軸43、低速段ギヤ対43、出力軸14等を介して駆動輪4,4に伝達される。このように、エンジン2と電動機3との合成動力が駆動輪4,4に伝達され、駆動輪4,4が車両の前進方向に回転する。また、要求動力が適正運転動力に満たない場合等には、リングギヤ3rを逆転させて、電動機3に回生運転を行わせ、高速段の回生走行モードで車両を走行させることも可能である。
[Composite driving mode, low speed stage]
FIG. 10 shows the operating state of the power transmission 1 in the low speed stage of the synthetic traveling mode. In the low speed stage of the synthetic traveling mode, the ECU 8 sets the main clutch CM in the ON state, sets the synchronous device S in the high speed stage establishment state, and sets the electric motor 3 in the forward rotation of the rotor 3a. Thus, the power from the output shaft 2a of the engine 2 is transmitted to the drive wheels 4, 4 via the main clutch CM, the main input shaft 42, the low speed gear pair 43, the output shaft 14, and the like. Further, when the ring gear 9r is normally rotated with the rotor 3a, the carrier 9c receiving the rotational torque from the ring gear 9r tends to be normally rotated. Therefore, the power from the engine 2 and the power from the electric motor 3 are synthesized by the carrier 9 c and transmitted to the drive wheels 4, 4 via the auxiliary input shaft 43, the low speed gear pair 43, the output shaft 14 and the like. Thus, the combined power of the engine 2 and the motor 3 is transmitted to the drive wheels 4, 4, and the drive wheels 4, 4 rotate in the forward direction of the vehicle. In addition, when the required power does not satisfy the appropriate driving power or the like, it is also possible to reverse the ring gear 3r to cause the motor 3 to perform the regenerative operation and to run the vehicle in the high-speed regenerative travel mode.
 エンジン走行モードの高速段から合成走行モードの高速段への変更は、電動機3の運転を開始するだけで可能であり、逆への変更も、電動機3の運転を停止するだけで可能であるため、共に容易且つ迅速に変更することができる。そして、要求動力の変更に応じて変速段を変更することなく対応することが可能となる。このため、要求動力の変動を、エンジン2を適正運転領域で運転させながら、アシスト走行モードと回生走行モードを適宜切り替えて、電動機3の力行運転、回生運転を行うことによって吸収することができ、エンジン2における燃料消費を抑えることができる。 The change from the high-speed stage of the engine travel mode to the high-speed stage of the composite travel mode is possible only by starting the operation of the motor 3, and the reverse change is also possible by simply stopping the operation of the motor 3. Both can be easily and quickly changed. And it becomes possible to respond, without changing a gear stage according to change of demand motive power. Therefore, it is possible to absorb the fluctuation of the required power by performing the power running operation and the regenerative operation of the motor 3 by appropriately switching the assist travel mode and the regenerative travel mode while operating the engine 2 in the appropriate operation region. Fuel consumption in the engine 2 can be suppressed.
 [第3実施形態]
 本発明の第3実施形態に係るハイブリッド車両用動力伝達装置51を図11乃至図13を参照して説明する。なお、図11乃至図13では、カウンタ軸17、差動歯車ユニット19、車軸20,20及び駆動輪4,4を省略している。
Third Embodiment
A power transmission system 51 for a hybrid vehicle according to a third embodiment of the present invention will be described with reference to FIGS. 11 to 13. 11 to 13, the counter shaft 17, the differential gear unit 19, the axles 20 and 20, and the drive wheels 4 and 4 are omitted.
 まず、図11を参照して本実施形態の動力伝達装置51の構成を説明する。動力伝達装置51は、動力伝達装置1と類似するので、異なる構成についてのみ説明する。 First, the configuration of the power transmission device 51 of the present embodiment will be described with reference to FIG. Since the power transmission device 51 is similar to the power transmission device 1, only different configurations will be described.
 エンジン2の出力軸2aには、エンジン2からの動力が主クラッチCMを介して入力される第1主入力軸52が連結されている。第1主入力軸52は、主クラッチCMにより、エンジン2の出力軸2aと接続、遮断される。 A first main input shaft 52 to which power from the engine 2 is input via the main clutch CM is coupled to the output shaft 2 a of the engine 2. The first main input shaft 52 is connected to and disconnected from the output shaft 2 a of the engine 2 by the main clutch CM.
 第1主入力軸52に対して、2本の副軸、すなわち第1副入力軸12及び第2副入力軸13がそれぞれ同軸心に配置されている。そして、第1主入力軸52と第1副入力軸12とは、第1クラッチC1を介して連結されている。また、第1主入力軸52と第2副入力軸13とは、第2クラッチC2を介して連結されている。 Two sub shafts, ie, a first sub input shaft 12 and a second sub input shaft 13 are coaxially arranged with respect to the first main input shaft 52, respectively. The first main input shaft 52 and the first sub input shaft 12 are connected via a first clutch C1. In addition, the first main input shaft 52 and the second sub input shaft 13 are connected via a second clutch C2.
 第1主入力軸52に対して平行に出力軸14が配置されている。そして、出力軸14と第1副入力軸12とは、3速段ギヤ対(低速段ギヤ対)15を介して結合されている。また、出力軸14と第2副入力軸13とは、5速段ギヤ対(高速段ギヤ対)16を介して結合されている。 The output shaft 14 is disposed in parallel to the first main input shaft 52. The output shaft 14 and the first auxiliary input shaft 12 are coupled via a third gear pair (a low gear pair) 15. The output shaft 14 and the second auxiliary input shaft 13 are coupled via a fifth gear pair (high gear pair) 16.
 第1主入力軸52に対して平行に入力伝達軸53が配置されている。そして、第1主入力軸52と入力伝達軸53とは、ギヤ対54を介して結合されている。このギヤ対54は、第1主入力軸52上に固定されたギヤ52aと入力伝達軸53上に固定されたギヤ53aとが噛合して構成されている。 An input transmission shaft 53 is disposed parallel to the first main input shaft 52. The first main input shaft 52 and the input transmission shaft 53 are coupled via a gear pair 54. The gear pair 54 is configured by meshing between a gear 52 a fixed on the first main input shaft 52 and a gear 53 a fixed on the input transmission shaft 53.
 入力伝達軸53に対して、ひいては第1主入力軸52に対して平行に第2主入力軸55が配置されている。そして、第2主入力軸55と入力伝達軸53とは、ギヤ対56を介して結合されている。このギヤ対56は、第2主入力軸55上に固定されたギヤ55aと入力伝達軸53上に固定された前記ギヤ53aとが噛合して構成されている。 A second main input shaft 55 is disposed parallel to the input transmission shaft 53 and hence to the first main input shaft 52. The second main input shaft 55 and the input transmission shaft 53 are coupled via the gear pair 56. The gear pair 56 is configured by meshing between a gear 55 a fixed on the second main input shaft 55 and the gear 53 a fixed on the input transmission shaft 53.
 第2主入力軸55に対して、2本の副軸、すなわち第3副入力軸57及び第4副入力軸58がそれぞれ同軸心に配置されている。そして、第2主入力軸55と第3副入力軸57とは、第3クラッチ(第3断接装置)C3を介して連結されている。また、第2主入力軸55と第4副入力軸58とは、第4クラッチ(第4断接装置)C4を介して連結されている。 Two sub shafts, ie, a third sub input shaft 57 and a fourth sub input shaft 58, are coaxially arranged with respect to the second main input shaft 55, respectively. The second main input shaft 55 and the third sub input shaft 57 are connected via a third clutch (third disconnection device) C3. Further, the second main input shaft 55 and the fourth sub-input shaft 58 are connected via a fourth clutch (fourth disconnection device) C4.
 そして、出力軸14と第3副入力軸57とは、2速段ギヤ対(低速段ギヤ対)(ギヤ対)59を介して結合されている。この2速段ギヤ対59は、出力軸14上に固定された前記低速ギヤ14aと第3副入力軸57上に固定された2速ギヤ57aとが噛合して構成されている。また、出力軸14と第4副入力軸58とは、4速段ギヤ対(高速段ギヤ対)(ギヤ対)60を介して結合されている。この4速段ギヤ対60は、出力軸14上に固定された前記高速ギヤ14bと第4副入力軸58上に固定された4速ギヤ58aとが噛合して構成されている。 The output shaft 14 and the third auxiliary input shaft 57 are coupled via a second gear pair (low gear pair) (gear pair) 59. The second gear pair 59 is formed by meshing between the low speed gear 14 a fixed on the output shaft 14 and the second gear 57 a fixed on the third auxiliary input shaft 57. Further, the output shaft 14 and the fourth auxiliary input shaft 58 are coupled via a fourth gear pair (high gear pair) (gear pair) 60. The fourth gear pair 60 is formed by meshing the high speed gear 14 b fixed on the output shaft 14 and the fourth gear 58 a fixed on the fourth auxiliary input shaft 58.
 動力伝達装置1と同様に、動力伝達装置51の動力合成機構9は、シングルピニオン型の遊星歯車装置であり、サンギヤ9sと、リングギヤ9rと、これらのサンギヤ9s及びリングギヤ9rの間で当該両ギヤ9r,9sに噛合された複数のプラネタリギヤ9pを回転自在に支持するキャリア9cとを同軸心に備えている。そして、サンギヤ9sは、第1主入力軸52と連動して回転するように、該第1主入力軸52の電動機3側の一端部に固定されて、該第1主入力軸52に連結されている。リングギヤ9rは、電動機3のロータ3aの内側に連結されている。キャリア9cは、第1副入力軸12の電動機3側の一端部に固定されて、該第1副入力軸12に連結されている。 Like the power transmission device 1, the power combining mechanism 9 of the power transmission device 51 is a single pinion type planetary gear device, and both the sun gear 9s, the ring gear 9r, and the sun gear 9s and the ring gear 9r A carrier 9c coaxially supports a plurality of planetary gears 9p meshed with 9r and 9s rotatably. The sun gear 9s is fixed to one end of the first main input shaft 52 on the electric motor 3 side so as to rotate in conjunction with the first main input shaft 52, and is connected to the first main input shaft 52. ing. The ring gear 9 r is connected to the inside of the rotor 3 a of the motor 3. The carrier 9 c is fixed to one end of the first auxiliary input shaft 12 on the electric motor 3 side, and is connected to the first auxiliary input shaft 12.
 さらに、第1主入力軸52と補機5の入力軸5aとは、ベルト機構21を介して結合されている。このベルト機構21は、第1主入力軸52上に固定されたギヤ52bと入力軸5a上に固定されたギヤ5bとがベルト21aを介して連結されて構成されている。補機用クラッチ22を遮断状態に動作させると、第1主入力軸52と補機5の入力軸5aへの動力伝達が遮断される。 Furthermore, the first main input shaft 52 and the input shaft 5 a of the accessory 5 are coupled via the belt mechanism 21. The belt mechanism 21 is configured by connecting a gear 52b fixed on the first main input shaft 52 and a gear 5b fixed on the input shaft 5a via a belt 21a. When the accessory clutch 22 is operated in the disconnection state, power transmission to the first main input shaft 52 and the input shaft 5a of the accessory 5 is disconnected.
 以上のように構成された動力伝達装置51において、エンジン2の出力軸2aから出力された動力は、第1主入力軸52から3速段ギヤ対15を介して出力軸14に伝達される第1の動力伝達経路と、第1主入力軸52から5速段ギヤ対16を介して出力軸14に伝達される第2の動力伝達経路と、第1主入力軸52からギヤ対54、入力伝達軸53、ギヤ対56、第2主入力軸55及び2速段ギヤ対59を介して出力軸14に伝達される第3の動力伝達経路と、第1主入力軸52からギヤ対54、入力伝達軸53、ギヤ対56、第2主入力軸55及び4速段ギヤ対60を介して出力軸14に伝達される第4の動力伝達経路との何れかを経由して、駆動輪4,4(図11には不図示)に伝達される。 In the power transmission device 51 configured as described above, the power output from the output shaft 2 a of the engine 2 is transmitted from the first main input shaft 52 to the output shaft 14 via the third gear pair 15. 1, a second power transmission path transmitted from the first main input shaft 52 to the output shaft 14 via the fifth gear pair 16, a gear pair 54 from the first main input shaft 52, an input A third power transmission path transmitted to the output shaft 14 via the transmission shaft 53, the gear pair 56, the second main input shaft 55, and the second gear gear pair 59, and the gear pair 54 from the first main input shaft 52, Drive wheel 4 via any of the fourth power transmission path transmitted to output shaft 14 via input transmission shaft 53, gear pair 56, second main input shaft 55, and fourth speed gear pair 60. , 4 (not shown in FIG. 11).
 また、エンジン2の出力軸2aから出力された動力は、第1主入力軸52からサンギヤ9sに、又は/及び第1副入力軸12を介してキャリア9cに伝達されて動力合成機構9に入力される。電動機3から出力された動力は、リングギヤ9rに伝達されて動力合成機構9に入力される。そして、動力合成機構9でこれらの入力された動力が合成されて、出力軸14を介して駆動輪4,4に伝達され、エンジン2から動力合成機構9を介することなく出力軸14に伝達される動力を補助する。なお、リングギヤ9rが逆転するときは、電動機3で回生運転が行われることになる。 The power output from the output shaft 2 a of the engine 2 is transmitted from the first main input shaft 52 to the sun gear 9 s or / and to the carrier 9 c via the first sub input shaft 12 and is input to the power combining mechanism 9 Be done. The power output from the motor 3 is transmitted to the ring gear 9 r and input to the power combining mechanism 9. Then, these input powers are synthesized by the power synthesis mechanism 9, transmitted to the drive wheels 4 and 4 through the output shaft 14, and transmitted from the engine 2 to the output shaft 14 without the power synthesis mechanism 9. Support the power of When the ring gear 9r reversely rotates, the motor 3 performs regenerative operation.
 次に、本実施形態の動力伝達装置51の動作を説明する。動力伝達装置51の動作は、前記動力伝達装置1と同様であるため、その一部についてのみ説明する。 Next, the operation of the power transmission device 51 of the present embodiment will be described. The operation of the power transmission device 51 is the same as that of the power transmission device 1, so only a part of it will be described.
 [エンジン走行モード、2速段]
 図12はエンジン走行モードの2速段における動力伝達装置51の動作状態を示している。エンジン走行モードの2速段では、ECU8は、主クラッチCM及び第3クラッチC3をON状態に、第1クラッチC1、第2クラッチC2及び第4クラッチC4をOFF状態に設定する。これにより、エンジン2の出力軸2aからの動力は、主クラッチCM、第1主入力軸52、ギヤ対54、入力伝達軸53、ギヤ対56、第2主入力軸55及び2速段ギヤ対59を介して出力軸14に伝達される。このとき、第1主入力軸52に伴ってサンギヤ9sは正転するが、キャリア9c及びリングギヤ9rは動力を受けない。そのため、プラネタリギヤ9pは自転するが、キャリア9c及びリングギヤ9rは回転しないので、電動機3は力行運転も回生運転も行わない。これにより、エンジン2の動力のみによって車両が2速段で前進する。なお、第1主入力軸52が正転するので、ベルト機構21及び補機用クラッチ22を介して補機5の入力軸5aに動力が伝達される。
[Engine running mode, 2nd gear]
FIG. 12 shows the operating state of the power transmission device 51 in the second gear of the engine travel mode. In the second gear of the engine travel mode, the ECU 8 sets the main clutch CM and the third clutch C3 to the ON state, and sets the first clutch C1, the second clutch C2 and the fourth clutch C4 to the OFF state. Thereby, the power from the output shaft 2a of the engine 2 is the main clutch CM, the first main input shaft 52, the gear pair 54, the input transmission shaft 53, the gear pair 56, the second main input shaft 55, and the second gear gear pair It is transmitted to the output shaft 14 via 59. At this time, the sun gear 9s rotates forward with the first main input shaft 52, but the carrier 9c and the ring gear 9r receive no power. Therefore, although the planetary gear 9p rotates, the carrier 9c and the ring gear 9r do not rotate, so the electric motor 3 does not perform power running operation or regenerative operation. As a result, the vehicle moves forward in the second gear only by the power of the engine 2. Since the first main input shaft 52 normally rotates, power is transmitted to the input shaft 5 a of the accessory 5 via the belt mechanism 21 and the accessory clutch 22.
 [合成走行モード、2速段]
 図13は合成走行モードの2速段における動力伝達装置51の動作状態を示している。合成走行モードの2速段では、ECU8は、主クラッチCM、第1クラッチC1及び第3クラッチC3をON状態に、第2クラッチC2及び第4クラッチをOFF状態に、電動機3をロータ3aが正転するように設定する。これにより、エンジン2の出力軸2aからの動力は、前記エンジン走行モードの2速段と同じ動力経路を介して出力軸14に伝達される。また、ロータ3aに伴ってリングギヤ9rが正転すると、このリングギヤ9rから回転トルクを受けるキャリア9cが正転しようとする。そのため、エンジン2からの動力と電動機3からの動力がキャリア9cで合成され、第1副入力軸12、3速段ギヤ対15を介して出力軸14に伝達される。このように、エンジン2と電動機3との合成動力が出力軸14に伝達され、車両が前進する。また、要求動力が適正運転動力に満たない場合等には、リングギヤ9rを逆転させて、電動機3に回生運転を行わせ、高速段の回生走行モードで車両を走行させることも可能である。
[Combined driving mode, 2nd gear]
FIG. 13 shows the operating state of the power transmission device 51 in the second gear of the synthetic traveling mode. In the second gear of the synthetic travel mode, the ECU 8 turns on the main clutch CM, the first clutch C1 and the third clutch C3, turns the second clutch C2 and the fourth clutch off, and causes the motor 3a to be positive. Set to roll. Thereby, the motive power from the output shaft 2a of the engine 2 is transmitted to the output shaft 14 via the same power path as the second gear of the engine travel mode. Further, when the ring gear 9r is normally rotated with the rotor 3a, the carrier 9c receiving the rotational torque from the ring gear 9r tends to be normally rotated. Therefore, the power from the engine 2 and the power from the electric motor 3 are combined by the carrier 9 c and transmitted to the output shaft 14 via the first auxiliary input shaft 12 and the third gear pair 15. Thus, the combined power of the engine 2 and the motor 3 is transmitted to the output shaft 14 to move the vehicle forward. In addition, when the required power does not satisfy the appropriate driving power, etc., it is also possible to reverse the ring gear 9r to cause the motor 3 to perform regenerative operation and to run the vehicle in the high-speed regenerative travel mode.
 エンジン走行モードの2速段から合成走行モードの2速段への変更は、電動機3の運転を開始するだけで可能であり、逆への変更も、電動機3の運転を停止するだけで可能であるため、共に容易且つ迅速に変更することができる。そして、要求動力の変更に応じて変速段を変更することなく対応することが可能となる。このため、要求動力の変動を、エンジン2を適正運転領域で運転させながら、アシスト走行モードと回生走行モードを適宜切り替えて、電動機3の力行運転、回生運転を行うことによって吸収することができ、エンジン2における燃料消費を抑えることができる。 The change from the second gear of the engine drive mode to the second gear of the composite drive mode is possible only by starting the operation of the motor 3, and the change to the reverse is also possible only by stopping the operation of the motor 3. Both can be easily and quickly changed. And it becomes possible to respond, without changing a gear stage according to change of demand motive power. Therefore, it is possible to absorb the fluctuation of the required power by performing the power running operation and the regenerative operation of the motor 3 by appropriately switching the assist travel mode and the regenerative travel mode while operating the engine 2 in the appropriate operation region. Fuel consumption in the engine 2 can be suppressed.
 [第4実施形態]
 本発明の第4実施形態に係るハイブリッド車両用動力伝達装置61を図14を参照して説明する。動力伝達装置61は、前記動力伝達装置41と類似するので、異なる構成についてのみ説明する。なお、図11乃至図13では、カウンタ軸17、差動歯車ユニット19、車軸20,20及び駆動輪4,4を省略している。
Fourth Embodiment
A power transmission system 61 for a hybrid vehicle according to a fourth embodiment of the present invention will be described with reference to FIG. Since the power transmission device 61 is similar to the power transmission device 41, only different configurations will be described. 11 to 13, the counter shaft 17, the differential gear unit 19, the axles 20 and 20, and the drive wheels 4 and 4 are omitted.
 エンジン2の出力軸2aには、エンジン2からの駆動力が主クラッチCMを介して入力される第1主入力軸62が連結されている。第1主入力軸62は、主クラッチCMにより、エンジン2の出力軸2aと接続、遮断される。主クラッチCMは、乾式クラッチが好ましいが、湿式クラッチでもよい。 A first main input shaft 62 to which a driving force from the engine 2 is input through the main clutch CM is coupled to the output shaft 2 a of the engine 2. The first main input shaft 62 is connected to and disconnected from the output shaft 2 a of the engine 2 by the main clutch CM. The main clutch CM is preferably a dry clutch, but may be a wet clutch.
 第1主入力軸62に対して、第1副軸(副軸)43が同軸心に配置されている。そして、第1主入力軸62と第1副入力軸43とは、第1同期装置(同期装置)Sを介して結合されている。第1同期装置Sは、第1副入力軸43に設けられ、3速ギヤ(低速ギヤ)43a又は5速ギヤ(高速ギヤ)43bと第1副入力軸43との接続、遮断が切替可能に構成されている。 A first counter shaft (a counter shaft) 43 is coaxially disposed with respect to the first main input shaft 62. The first main input shaft 62 and the first sub input shaft 43 are coupled to each other via a first synchronization device (synchronization device) S. The first synchronizing device S is provided on the first auxiliary input shaft 43, and can switch connection / disconnection between the third gear (low speed gear) 43a or the fifth gear (high speed gear) 43b and the first auxiliary input shaft 43. It is configured.
 第1主入力軸62に対して平行に入力伝達軸63が配置されている。そして、第1主入力軸62と入力伝達軸63とは、ギヤ対64を介して結合されている。このギヤ対64は、第1主入力軸62上に固定されたギヤ62aと入力伝達軸63上に固定されたギヤ63aとが噛合して構成されている。 An input transmission shaft 63 is disposed in parallel to the first main input shaft 62. The first main input shaft 62 and the input transmission shaft 63 are coupled via a gear pair 64. The gear pair 64 is configured by meshing between a gear 62 a fixed on the first main input shaft 62 and a gear 63 a fixed on the input transmission shaft 63.
 入力伝達軸63に対して、ひいては第2主入力軸62に対して平行に第2主入力軸65が配置されている。そして、第2主入力軸65と入力伝達軸63とは、ギヤ対66を介して結合されている。このギヤ対66は、第2主入力軸65上に固定されたギヤ65aと入力伝達軸63上に固定された前記ギヤ63aとが噛合して構成されている。 A second main input shaft 65 is disposed parallel to the input transmission shaft 63 and hence to the second main input shaft 62. The second main input shaft 65 and the input transmission shaft 63 are coupled via a gear pair 66. The gear pair 66 is configured by meshing between a gear 65 a fixed on the second main input shaft 65 and the gear 63 a fixed on the input transmission shaft 63.
 第2主入力軸65に対して、第3副軸67が同軸心に配置されている。そして、第2主入力軸65と第3副軸67とは、第2同期装置S2を介して結合されている。第2同期装置S2は、第3副軸67に設けられ、2速ギヤ(低速ギヤ)67a又は4速ギヤ(高速ギヤ)67bと第3副軸67との接続、遮断が切替可能に構成されている。 A third countershaft 67 is coaxially arranged with respect to the second main input shaft 65. The second main input shaft 65 and the third counter shaft 67 are coupled via the second synchronization device S2. The second synchronization device S2 is provided on the third countershaft 67, and is configured to be able to switch connection / disconnection between the second gear (low speed gear) 67a or the fourth gear (high speed gear) 67b and the third countershaft 67. ing.
 出力軸14と第1主入力軸65とは、2速段ギヤ対(低速段ギヤ対)68を介して結合されている。この2速段ギヤ対68は、出力軸14上に固定された低速ギヤ14aと第3副軸67上に固定された2速ギヤ67aとが噛合して構成されている。また、出力軸14と第3副軸67とは、4速段ギヤ対(高速段ギヤ対)69を介して結合されている。この4速段ギヤ対45は、出力軸14上に固定された高速ギヤ14bと第3副軸67上に固定された4速ギヤ67bとが噛合して構成されている。2速ギヤ67aと4速ギヤ67bとで本発明における第3ギヤ群に相当する。 The output shaft 14 and the first main input shaft 65 are coupled via a two-speed gear pair (low-speed gear pair) 68. The second gear pair 68 is formed by meshing of a low speed gear 14 a fixed on the output shaft 14 and a second gear 67 a fixed on the third counter shaft 67. Further, the output shaft 14 and the third countershaft 67 are coupled via a fourth speed gear pair (high speed gear pair) 69. The fourth speed gear pair 45 is configured by meshing between the high speed gear 14 b fixed on the output shaft 14 and the fourth speed gear 67 b fixed on the third counter shaft 67. The second gear 67a and the fourth gear 67b correspond to a third gear group in the present invention.
 動力伝達装置41と同様に、動力伝達装置61の動力合成機構9は、シングルピニオン型の遊星歯車装置であり、サンギヤ9sと、リングギヤ9rと、これらのサンギヤ9s及びリングギヤ9rの間で当該両ギヤ9r,9sに噛合された複数のプラネタリギヤ9pを回転自在に支持するキャリア9cとを同軸心に備えている。そして、サンギヤ9sは、第1主入力軸62と連動して回転するように、該第1主入力軸62の電動機3側の一端部に固定され、該第1主入力軸62に連結されている。リングギヤ9rは、電動機3のロータ3aの内側に連結されている。キャリア9cは、第1副入力軸43の電動機3側の一端部に固定され、該第1副入力軸43に連結されている。 Like the power transmission device 41, the power combining mechanism 9 of the power transmission device 61 is a single pinion type planetary gear device, and both the sun gear 9s, the ring gear 9r, and the sun gear 9s and the ring gear 9r A carrier 9c coaxially supports a plurality of planetary gears 9p meshed with 9r and 9s rotatably. The sun gear 9s is fixed to one end of the first main input shaft 62 on the electric motor 3 side so as to rotate in conjunction with the first main input shaft 62, and is connected to the first main input shaft 62. There is. The ring gear 9 r is connected to the inside of the rotor 3 a of the motor 3. The carrier 9 c is fixed to one end of the first auxiliary input shaft 43 on the electric motor 3 side, and is connected to the first auxiliary input shaft 43.
 さらに、第1主入力軸62と補機5の入力軸5aとは、ベルト機構21を介して結合されている。このベルト機構21は、第1主入力軸62上に固定されたギヤ62bと入力軸5a上に固定されたギヤ5bとがベルト21aを介して連結されて構成されている。補機用クラッチ22を遮断状態に動作させると、第1主入力軸62と補機5の入力軸5aへの動力伝達が遮断される。 Furthermore, the first main input shaft 62 and the input shaft 5 a of the accessory 5 are coupled via the belt mechanism 21. The belt mechanism 21 is configured by connecting a gear 62b fixed on the first main input shaft 62 and a gear 5b fixed on the input shaft 5a via a belt 21a. When the accessory clutch 22 is operated in the disconnection state, power transmission to the first main input shaft 62 and the input shaft 5a of the accessory 5 is disconnected.
 以上のように構成された動力伝達装置61において、エンジン2の出力軸2aから出力された動力は、第1主入力軸62から3速段ギヤ対44を介して出力軸14に伝達される第1の動力伝達経路と、第1主入力軸62から5速段ギヤ対45を介して出力軸14に伝達される第2の動力伝達経路と、第1主入力軸52からギヤ対64、入力伝達軸63、ギヤ対66、第2主入力軸65及び2速段ギヤ対68を介して出力軸14に伝達される第3の動力伝達経路と、第1主入力軸52からギヤ対64、入力伝達軸63、ギヤ対66、第2主入力軸65及び4速段ギヤ対69を介して出力軸14に伝達される第4の動力伝達経路との何れかを経由して、駆動輪4,4(図14には不図示)に伝達される。 In the power transmission 61 configured as described above, the power output from the output shaft 2 a of the engine 2 is transmitted from the first main input shaft 62 to the output shaft 14 via the third gear pair 44. 1, a second power transmission path transmitted from the first main input shaft 62 to the output shaft 14 via the fifth gear pair 45, a gear pair 64 from the first main input shaft 52, an input A third power transmission path transmitted to the output shaft 14 via the transmission shaft 63, the gear pair 66, the second main input shaft 65 and the second gear gear pair 68, and the gear pair 64 from the first main input shaft 52, Drive wheel 4 via any of the fourth power transmission path transmitted to output shaft 14 via input transmission shaft 63, gear pair 66, second main input shaft 65 and fourth gear pair 69. , 4 (not shown in FIG. 14).
 また、エンジン2の出力軸2aから出力された動力は、第1主入力軸62からサンギヤ9sに、又は/及び第1副入力軸43を介してキャリア9cに伝達されて動力合成機構9に入力される。電動機3から出力された動力は、リングギヤ9rに伝達されて動力合成機構9に入力される。そして、動力合成機構9でこれらの入力された動力が合成されて、出力軸14を介して駆動輪4,4に伝達され、エンジン2から動力合成機構9を介することなく出力軸14に伝達される動力を補助する。なお、リングギヤ9rが逆転するときは、電動機3で回生運転が行われることになる。 Further, the power output from the output shaft 2 a of the engine 2 is transmitted from the first main input shaft 62 to the sun gear 9 s or / and to the carrier 9 c via the first sub input shaft 43 and is input to the power combining mechanism 9 Be done. The power output from the motor 3 is transmitted to the ring gear 9 r and input to the power combining mechanism 9. Then, these input powers are synthesized by the power synthesis mechanism 9, transmitted to the drive wheels 4 and 4 through the output shaft 14, and transmitted from the engine 2 to the output shaft 14 without the power synthesis mechanism 9. Support the power of When the ring gear 9r reversely rotates, the motor 3 performs regenerative operation.
 本実施形態の動力伝達装置61の動作は、動力伝達装置51の動作モードと同様であるため、その説明は省略する。 The operation of the power transmission device 61 of the present embodiment is the same as the operation mode of the power transmission device 51, so the description thereof will be omitted.
 [第5実施形態]
 本発明の第5実施形態に係るハイブリッド車両用動力伝達装置71を図15乃至図17を参照して説明する。なお、図15乃至図17では、カウンタ軸17、差動歯車ユニット19、車軸20,20及び駆動輪4,4を省略している。
Fifth Embodiment
A power transmission system 71 for a hybrid vehicle according to a fifth embodiment of the present invention will be described with reference to FIGS. In FIGS. 15 to 17, the counter shaft 17, the differential gear unit 19, the axles 20 and 20, and the drive wheels 4 and 4 are omitted.
 まず、図15を参照して本実施形態の動力伝達装置71の構成を説明する。動力伝達装置71は、前記動力伝達装置51と類似するので、異なる構成についてのみ説明する。 First, the configuration of a power transmission device 71 of the present embodiment will be described with reference to FIG. Since the power transmission device 71 is similar to the power transmission device 51, only different configurations will be described.
 エンジン2の出力軸2aには、エンジン2からの動力が第1主クラッチCM1を介して入力され、エンジン2の出力軸2aに平行に配置される第1主入力軸72が連結されている。第1主入力軸72は、第1主クラッチCM1により、エンジン2の出力軸2aと接続、遮断される。第1主入力軸72に対して同軸心に第2主入力軸73が配置されている。第2主入力軸73は、第2主クラッチCM2により、エンジン2の出力軸2aと接続、遮断される。 A power from the engine 2 is input to the output shaft 2a of the engine 2 through the first main clutch CM1, and a first main input shaft 72 disposed parallel to the output shaft 2a of the engine 2 is connected. The first main input shaft 72 is connected to and disconnected from the output shaft 2a of the engine 2 by the first main clutch CM1. A second main input shaft 73 is disposed coaxially with the first main input shaft 72. The second main input shaft 73 is connected to and disconnected from the output shaft 2a of the engine 2 by the second main clutch CM2.
 第1主入力軸72に対して、2本の副軸、すなわち第1副入力軸12及び第2副入力軸13がそれぞれ同軸心に配置されている。そして、第1主入力軸72と第1副入力軸12とは、第1クラッチC1(第1断接装置)を介して接続されている。また、第1主入力軸72と第2副入力軸13とは、第2クラッチC2(第2断接装置)を介して接続されている。 With respect to the first main input shaft 72, two sub shafts, ie, the first sub input shaft 12 and the second sub input shaft 13, are coaxially arranged. The first main input shaft 72 and the first sub input shaft 12 are connected via a first clutch C1 (first disconnection device). Further, the first main input shaft 72 and the second sub input shaft 13 are connected via a second clutch C2 (second disconnection device).
 第1主入力軸72に対して平行に中間軸74が配置されている。そして、中間軸74と第1副入力軸12とは、3速段ギヤ対75を介して結合されている。この3速段ギヤ対75は、中間軸74上に固定された3速ギヤ74aと第1副入力軸12上に固定された3速ギヤ12aとが噛合して構成されている。中間軸74と第2副入力軸13とは、5速段ギヤ対(ギヤ対)76を介して結合されている。この5速段ギヤ対76は、中間軸74上に固定された5速ギヤ74bと第2副入力軸13上に固定された3速ギヤ13aとが噛合して構成されている。 An intermediate shaft 74 is disposed parallel to the first main input shaft 72. The intermediate shaft 74 and the first auxiliary input shaft 12 are coupled via a third gear pair 75. The third gear pair 75 is configured by meshing between a third gear 74 a fixed on the intermediate shaft 74 and a third gear 12 a fixed on the first auxiliary input shaft 12. The intermediate shaft 74 and the second auxiliary input shaft 13 are coupled via a fifth gear pair (gear pair) 76. The fifth gear pair 76 is configured by meshing engagement of a fifth gear 74 b fixed on the intermediate shaft 74 and a third gear 13 a fixed on the second auxiliary input shaft 13.
 第2主入力軸73に対して、ひいては第1主入力軸72に対して平行に第3主入力軸77が配置されている。第3主入力軸77に対して、2本の副軸、すなわち第3副入力軸78及び第4副入力軸79がそれぞれ同軸心に配置されている。そして、第3主入力軸77と第3副入力軸78とは、第3クラッチ(第3断接装置)C3を介して接続されている。また、第1副入力軸77と第4副入力軸79とは、第4クラッチ(第4断接装置)C4を介して接続されている。 A third main input shaft 77 is disposed parallel to the second main input shaft 73 and thus to the first main input shaft 72. Two sub shafts, ie, a third sub input shaft 78 and a fourth sub input shaft 79 are coaxially arranged with respect to the third main input shaft 77, respectively. The third main input shaft 77 and the third sub input shaft 78 are connected via a third clutch (third disconnection device) C3. The first sub input shaft 77 and the fourth sub input shaft 79 are connected via a fourth clutch (fourth connection / disconnection device) C4.
 そして、第2主入力軸73と第3副入力軸78とは、2速段ギヤ対(ギヤ対)80を介して結合されている。この2速段ギヤ対80は、第2主入力軸73上に固定された2速ギヤ73aと第3副入力軸78上に固定された2速ギヤ78aとが噛合して構成されている。第2主入力軸73と第4副入力軸79とは、4速段ギヤ対(ギヤ対)81を介して結合されている。この4速段ギヤ対81は、第2主入力軸73上に固定された4速ギヤ73bと第4副入力軸79上に固定された4速ギヤ79aとが噛合して構成されている。 The second main input shaft 73 and the third auxiliary input shaft 78 are coupled via a second gear pair (gear pair) 80. The second gear pair 80 is formed by meshing between a second gear 73 a fixed on the second main input shaft 73 and a second gear 78 a fixed on the third auxiliary input shaft 78. The second main input shaft 73 and the fourth sub input shaft 79 are coupled via a fourth gear pair (gear pair) 81. The fourth gear pair 81 is formed by meshing engagement of a fourth gear 73 b fixed on the second main input shaft 73 and a fourth gear 79 a fixed on the fourth sub input shaft 79.
 第1主入力軸72に対して平行に、且つ該第1主入力軸72と電動機3を挟んで反対側に出力軸82が配置されている。そして、出力軸82と中間軸74とは、ギヤ対83を介して結合されている。このギヤ対83は、出力軸82上に固定されたギヤ82aと中間軸74上に固定されたギヤ74cとが噛合して構成されている。また、出力軸82と第3主入力軸77とは、ギヤ対84を介して結合されている。このギヤ対84は、出力軸82上に固定された前記ギヤ82aと第3主入力軸77上に固定されたギヤ77aとが噛合して構成されている。なお、出力軸82の両端部は、それぞれ図示しない軸受に回転自在に支持されている。 An output shaft 82 is disposed in parallel to the first main input shaft 72 and on the opposite side of the first main input shaft 72 and the motor 3. The output shaft 82 and the intermediate shaft 74 are coupled via a gear pair 83. The gear pair 83 is configured by meshing between a gear 82 a fixed on the output shaft 82 and a gear 74 c fixed on the intermediate shaft 74. Further, the output shaft 82 and the third main input shaft 77 are coupled via a gear pair 84. The gear pair 84 is configured by meshing between the gear 82a fixed on the output shaft 82 and the gear 77a fixed on the third main input shaft 77. Both ends of the output shaft 82 are rotatably supported by bearings (not shown).
 第1主入力軸72、ひいては出力軸82に対して、図15には図示しないカウンタ軸17(図1参照)が平行に配置されている。そして、出力軸82とカウンタ軸17とは、カウンタギヤ機構を介して結合されている。このカウンタギヤ機構は、出力軸82上に固定されたファイナルギヤとしてのギヤ82bとカウンタ軸17上に固定されたギヤ17aとが噛合して構成されている。 A counter shaft 17 (see FIG. 1), which is not shown in FIG. 15, is disposed in parallel to the first main input shaft 72 and thus the output shaft 82. The output shaft 82 and the counter shaft 17 are coupled via a counter gear mechanism. The counter gear mechanism is configured such that a gear 82 b as a final gear fixed on the output shaft 82 meshes with a gear 17 a fixed on the counter shaft 17.
 動力伝達装置41と同様に、動力伝達装置71の動力合成機構9は、シングルピニオン型の遊星歯車装置であり、サンギヤ9sと、リングギヤ9rと、これらのサンギヤ9s及びリングギヤ9rの間で当該両ギヤ9r,9sに噛合された複数のプラネタリギヤ9pを回転自在に支持するキャリア9cとを同軸心に備えている。そして、サンギヤ9sは、第1主入力軸72と連動して回転するように、該第1主入力軸72の電動機3側の一端部に固定され、該第1主入力軸72に連結されている。リングギヤ9rは、電動機3のロータ3aの内側に連結されている。キャリア9cは、第1副入力軸12の電動機3側の一端部に固定され、該第1副入力軸12に連結されている。 Like the power transmission device 41, the power combining mechanism 9 of the power transmission device 71 is a single pinion type planetary gear device, and both the sun gear 9s, the ring gear 9r, and the sun gear 9s and the ring gear 9r A carrier 9c coaxially supports a plurality of planetary gears 9p meshed with 9r and 9s rotatably. The sun gear 9s is fixed to one end of the first main input shaft 72 on the side of the motor 3 so as to rotate in conjunction with the first main input shaft 72, and is connected to the first main input shaft 72. There is. The ring gear 9 r is connected to the inside of the rotor 3 a of the motor 3. The carrier 9 c is fixed to one end of the first auxiliary input shaft 12 on the electric motor 3 side, and is connected to the first auxiliary input shaft 12.
 さらに、第3主入力軸77と補機5の入力軸5aとは、ベルト機構21を介して結合されている。このベルト機構21は、第3主入力軸77上に固定されたギヤ77bと入力軸5a上に固定されたギヤ5bとがベルト21aを介して連結されて構成されている。補機用クラッチ22を遮断状態に動作させると、第3主入力軸77と補機5の入力軸5aへの動力伝達が遮断される。 Furthermore, the third main input shaft 77 and the input shaft 5 a of the auxiliary device 5 are coupled via the belt mechanism 21. The belt mechanism 21 is configured by connecting a gear 77 b fixed on the third main input shaft 77 and a gear 5 b fixed on the input shaft 5 a via a belt 21 a. When the accessory clutch 22 is operated in the disconnection state, power transmission to the third main input shaft 77 and the input shaft 5a of the accessory 5 is disconnected.
 次に、本実施形態の動力伝達装置71の動作を説明する。動力伝達装置71の動作は、動力伝達装置51と同様であるため、その一部についてのみ説明する。 Next, the operation of the power transmission device 71 of the present embodiment will be described. The operation of the power transmission device 71 is the same as that of the power transmission device 51, so only part of it will be described.
 [エンジン走行モード、2速段]
 図16はエンジン走行モードの2速段における動力伝達装置71の動作状態を示している。エンジン走行モードの2速段では、ECU8は、第2主クラッチCM2及び第3クラッチC3をON状態に、第1主クラッチCM1、第1クラッチC1、第2クラッチC2及び第4クラッチC4をOFF状態に設定する。これにより、エンジン2の出力軸2aからの動力は、第2主クラッチCM2、第2主入力軸73、2速段ギヤ対80、第3主入力軸77及びギヤ対84を介して出力軸82に伝達される。このとき、動力合成機構9のサンギヤ9s、キャリア9c及びリングギヤ9rは何れも動力を受けないので、電動機3は力行運転も回生運転も行わない。これにより、エンジン2の動力のみによって車両が2速段で前進する。なお、第3主入力軸77が正転するので、ベルト機構21及び補機用クラッチ22を介して補機5の入力軸5aに動力が伝達される。
[Engine running mode, 2nd gear]
FIG. 16 shows the operating state of the power transmission 71 in the second gear of the engine travel mode. In the second speed of the engine travel mode, the ECU 8 turns on the second main clutch CM2 and the third clutch C3, and turns off the first main clutch CM1, the first clutch C1, the second clutch C2 and the fourth clutch C4. Set to Thus, the power from the output shaft 2a of the engine 2 is output through the second main clutch CM2, the second main input shaft 73, the second gear pair 80, the third main input shaft 77, and the gear pair 84. Transmitted to At this time, since neither the sun gear 9s, the carrier 9c nor the ring gear 9r of the power combining mechanism 9 receives power, the electric motor 3 does not perform power running operation or regenerative operation. As a result, the vehicle moves forward in the second gear only by the power of the engine 2. Since the third main input shaft 77 rotates forward, power is transmitted to the input shaft 5a of the accessory 5 via the belt mechanism 21 and the accessory clutch 22.
 [合成走行モード、2速段]
 図17は合成走行モードの2速段における動力伝達装置71の動作状態を示している。合成走行モードの2速段では、ECU8は、第2主クラッチCM2、第1クラッチC1及び第3クラッチC3をON状態に、第1主クラッチCM1、第2クラッチC2及び第4クラッチをOFF状態に、電動機3をロータ3aが正転するように設定する。これにより、エンジン2の出力軸2aからの動力は、前記エンジン走行モードの2速段と同じ動力経路を介して出力軸82に伝達される。また、ロータ3aに伴ってリングギヤ9rが正転すると、このリングギヤ9rから回転トルクを受けるキャリア9cが正転しようとする。そのため、エンジン2からの動力と電動機3からの動力がキャリア9cで合成され、第1副入力軸12、3速段ギヤ対75、中間軸74及びギヤ対83を介して出力軸82に伝達される。このように、エンジン2と電動機3との合成動力が出力軸82に伝達され、車両が前進する。また、要求動力が適正運転動力に満たない場合等には、リングギヤ3rを逆転させて、電動機3に回生運転を行わせ、高速段の回生走行モードで車両を走行させることも可能である。
[Combined driving mode, 2nd gear]
FIG. 17 shows the operating state of the power transmission device 71 in the second gear of the synthetic traveling mode. In the second gear of the synthetic traveling mode, the ECU 8 turns on the second main clutch CM2, the first clutch C1 and the third clutch C3, turns off the first main clutch CM1, the second clutch C2 and the fourth clutch. The motor 3 is set so that the rotor 3a rotates forward. Thereby, the motive power from the output shaft 2a of the engine 2 is transmitted to the output shaft 82 via the same power path as the second gear of the engine travel mode. Further, when the ring gear 9r is normally rotated with the rotor 3a, the carrier 9c receiving the rotational torque from the ring gear 9r tends to be normally rotated. Therefore, the power from the engine 2 and the power from the electric motor 3 are combined by the carrier 9c and transmitted to the output shaft 82 via the first auxiliary input shaft 12, the third gear pair 75, the intermediate shaft 74 and the gear pair 83. Ru. Thus, the combined power of the engine 2 and the motor 3 is transmitted to the output shaft 82 to move the vehicle forward. In addition, when the required power does not satisfy the appropriate driving power or the like, it is also possible to reverse the ring gear 3r to cause the motor 3 to perform the regenerative operation and to run the vehicle in the high-speed regenerative travel mode.
 エンジン走行モードの2速段から合成走行モードの2速段への変更は、電動機3の運転を開始するだけで可能であり、逆への変更も、電動機3の運転を停止するだけで可能であるため、共に容易且つ迅速に変更することができる。そして、要求動力の変更に応じて変速段を変更することなく対応することが可能となる。このため、要求動力の変動を、エンジン2を適正運転領域で運転させながら、アシスト走行モードと回生走行モードを適宜切り替えて、電動機3の力行運転、回生運転を行うことによって吸収することができ、エンジン2における燃料消費を抑えることができる。 The change from the second gear of the engine drive mode to the second gear of the composite drive mode is possible only by starting the operation of the motor 3, and the change to the reverse is also possible only by stopping the operation of the motor 3. Both can be easily and quickly changed. And it becomes possible to respond, without changing a gear stage according to change of demand motive power. Therefore, it is possible to absorb the fluctuation of the required power by performing the power running operation and the regenerative operation of the motor 3 by appropriately switching the assist travel mode and the regenerative travel mode while operating the engine 2 in the appropriate operation region. Fuel consumption in the engine 2 can be suppressed.
 [第6実施形態]
 本発明の第6実施形態に係るハイブリッド車両用動力伝達装置71Aを図18を参照して説明する。なお、図18では、カウンタ軸17、差動歯車ユニット19、車軸20,20及び駆動輪4,4を省略している。
Sixth Embodiment
A hybrid vehicle power transmission 71A according to a sixth embodiment of the present invention will be described with reference to FIG. In FIG. 18, the counter shaft 17, the differential gear unit 19, the axles 20 and 20, and the drive wheels 4 and 4 are omitted.
 本実施形態の動力伝達装置71Aは、動力伝達装置71と類似する。動力伝達装置61が、動力伝達装置51の第1クラッチC1及び第2クラッチC2を第1同期装置S1に、第3クラッチC3及び第4クラッチC4を第2同期装置S2に置き換えたのと同様の置き換えを、動力伝達装置71に対して行ったものが動力伝達装置71Aである。そして、動力伝達装置71Aの動作は、動力伝達装置71の動作と同様であるため、その説明は省略する。 The power transmission device 71A of this embodiment is similar to the power transmission device 71. In the same manner as the power transmission device 61 replaces the first clutch C1 and the second clutch C2 of the power transmission device 51 with the first synchronization device S1, and the third clutch C3 and the fourth clutch C4 with the second synchronization device S2. The power transmission device 71A is one that has been replaced with respect to the power transmission device 71. And since operation of power transmission 71A is the same as operation of power transmission 71, the explanation is omitted.
 [第7実施形態]
 本発明の第7実施形態に係るハイブリッド車両用動力伝達装置91を図19乃至図22を参照して説明する。なお、図19乃至図22では、差動歯車ユニット19、車軸20,20、駆動輪4,4、補機5、ベルト機構21及び補機用クラッチ22を省略している。
Seventh Embodiment
A power transmission system 91 for a hybrid vehicle according to a seventh embodiment of the present invention will be described with reference to FIGS. 19 to 22. 19-22, the differential gear unit 19, the axles 20 and 20, the drive wheels 4, 4, the accessory 5, the belt mechanism 21 and the accessory clutch 22 are omitted.
 まず、図19を参照して本実施形態の動力伝達装置91の構成を説明する。動力伝達装置91は、前記動力伝達装置51と類似するので、異なる構成についてのみ説明する。 First, the configuration of a power transmission device 91 of the present embodiment will be described with reference to FIG. Since the power transmission device 91 is similar to the power transmission device 51, only different configurations will be described.
 エンジン2の出力軸2aには、エンジン2からの駆動力が第1主クラッチCM1を介して入力され、エンジン2の出力軸2aに平行に配置される第1主入力軸92が連結されている。第1主入力軸92は、第1主クラッチCM1により、エンジン2の出力軸2aと接続、遮断される。第1主入力軸92に対して同軸心に第2主入力軸93が配置されている。第2主入力軸93は、第2主クラッチCM2により、エンジン2の出力軸2aと接続、遮断される。 The driving force from the engine 2 is input to the output shaft 2a of the engine 2 through the first main clutch CM1, and a first main input shaft 92 disposed parallel to the output shaft 2a of the engine 2 is connected . The first main input shaft 92 is connected to and disconnected from the output shaft 2a of the engine 2 by the first main clutch CM1. A second main input shaft 93 is disposed coaxially with the first main input shaft 92. The second main input shaft 93 is connected to and disconnected from the output shaft 2a of the engine 2 by the second main clutch CM2.
 第1主入力軸92及び第2主入力軸93に対して、2本の副軸、すなわち第3主入力軸94及び第4主入力軸95がそれぞれ平行に配置されている。そして、第1主入力軸92と第3主入力軸94とは、減速ギヤ対96を介して結合されている。この減速ギヤ対96は、第1主入力軸92上に固定されたギヤ92aと第3主入力軸94上に固定されたギヤ94aとが噛合して構成されている。また、第2主入力軸93と第4主入力軸95とは、増速ギヤ対97を介して結合されている。この増速ギヤ対97は、第2主入力軸93上に固定されたギヤ93aと第4主入力軸95上に固定されたギヤ95aとが噛合して構成されている。なお、第3主入力軸94、第4主入力軸95の両端部は、それぞれ図示しない軸受に回転自在に支持されている。 Two secondary shafts, that is, a third main input shaft 94 and a fourth main input shaft 95 are disposed in parallel to the first main input shaft 92 and the second main input shaft 93, respectively. The first main input shaft 92 and the third main input shaft 94 are coupled via a reduction gear pair 96. The reduction gear pair 96 is configured by meshing between a gear 92 a fixed on the first main input shaft 92 and a gear 94 a fixed on the third main input shaft 94. Further, the second main input shaft 93 and the fourth main input shaft 95 are coupled via a speed increasing gear pair 97. The speed increasing gear pair 97 is configured by meshing between a gear 93 a fixed on the second main input shaft 93 and a gear 95 a fixed on the fourth main input shaft 95. Both ends of the third main input shaft 94 and the fourth main input shaft 95 are rotatably supported by bearings (not shown).
 第3主入力軸94に対して、2本の副軸、すなわち第1副入力軸98及び第2副入力軸99がそれぞれ同軸心に配置されている。そして、第3主入力軸94と第1副入力軸98とは、第1クラッチ(第1断接装置)C1を介して結合されている。また、第3主入力軸94と第2副入力軸99とは、第2クラッチ(第2断接装置)C2を介して結合されている。第4主入力軸95に対して、2本の副軸、すなわち第3副入力軸101及び第4副入力軸102がそれぞれ同軸心に配置されている。そして、第4主入力軸95と第3副入力軸101とは、第3クラッチ(第3断接装置)C3を介して結合されている。また、第21副軸95と第4副入力軸102とは、第4クラッチ(第4断接装置)C4を介して結合されている。 Two sub shafts, ie, a first sub input shaft 98 and a second sub input shaft 99, are coaxially arranged with respect to the third main input shaft 94, respectively. The third main input shaft 94 and the first sub input shaft 98 are coupled via a first clutch (first disconnection device) C1. Further, the third main input shaft 94 and the second sub-input shaft 99 are coupled via a second clutch (second disconnection device) C2. Two sub-shafts, ie, a third sub-input shaft 101 and a fourth sub-input shaft 102, are coaxially arranged with respect to the fourth main input shaft 95, respectively. The fourth main input shaft 95 and the third sub input shaft 101 are coupled to each other via a third clutch (third disconnection device) C3. The twenty-first countershaft 95 and the fourth sub-input shaft 102 are coupled to each other via a fourth clutch (fourth connection / disconnection device) C4.
 第1主入力軸92に対して同軸心に出力軸103が配置されている。そして、出力軸103と第1副入力軸94とは、2速段ギヤ対(ギヤ対)104、4速段ギヤ対(ギヤ対)105を介して結合されている。2速段ギヤ対104は、出力軸103上に固定されたファイナルギヤとしての第1ギヤ103aと第1副入力軸98上に固定されたギヤ98aとが噛合して構成されている。4速段ギヤ対105は、出力軸103上に固定された第2ギヤ103bと第2副入力軸99上に固定されたギヤ99aとが噛合して構成されている。また、出力軸103と第2副入力軸95とは、3速段ギヤ対106、4速段ギヤ対(ギヤ対)107を介して結合されている。3速段ギヤ対106は、出力軸103上に固定された前記第1ギヤ103aと第3副入力軸101上に固定されたギヤ101aとが噛合して構成されている。4速段ギヤ対105は、出力軸103上に固定された前記第2ギヤ103bと第4副入力軸102上に固定されたギヤ102aとが噛合して構成されている。 An output shaft 103 is disposed coaxially with the first main input shaft 92. The output shaft 103 and the first auxiliary input shaft 94 are coupled via a second gear pair (gear pair) 104 and a fourth gear pair (gear pair) 105. The second gear pair 104 is configured by meshing between a first gear 103 a as a final gear fixed on the output shaft 103 and a gear 98 a fixed on the first auxiliary input shaft 98. The fourth gear pair 105 is configured by meshing between a second gear 103 b fixed on the output shaft 103 and a gear 99 a fixed on the second auxiliary input shaft 99. Further, the output shaft 103 and the second auxiliary input shaft 95 are coupled via a third gear pair 106 and a fourth gear pair (gear pair) 107. The third gear pair 106 is configured by meshing between the first gear 103 a fixed on the output shaft 103 and the gear 101 a fixed on the third auxiliary input shaft 101. The fourth gear pair 105 is configured by meshing between the second gear 103 b fixed on the output shaft 103 and the gear 102 a fixed on the fourth auxiliary input shaft 102.
 動力伝達装置51と同様に、動力伝達装置91の動力合成機構9は、シングルピニオン型の遊星歯車装置であり、サンギヤ9sと、リングギヤ9rと、これらのサンギヤ9s及びリングギヤ9rの間で当該両ギヤ9r,9sに噛合された複数のプラネタリギヤ9pを回転自在に支持するキャリア9cとを同軸心に備えている。そして、サンギヤ9sは、第1主入力軸92と連動して回転するように、該第1主入力軸92の電動機3側の一端部に固定され、該第1主入力軸92に連結されている。リングギヤ9rは、電動機3のロータ3aの内側に連結されている。キャリア9cは、出力軸103の電動機3側の一端部に固定され、該出力軸103に連結されている。 Similar to the power transmission device 51, the power combining mechanism 9 of the power transmission device 91 is a single pinion type planetary gear device and both the sun gear 9s, the ring gear 9r, and the sun gear 9s and the ring gear 9r A carrier 9c coaxially supports a plurality of planetary gears 9p meshed with 9r and 9s rotatably. The sun gear 9 s is fixed to one end of the first main input shaft 92 on the motor 3 side so as to rotate in conjunction with the first main input shaft 92, and is connected to the first main input shaft 92. There is. The ring gear 9 r is connected to the inside of the rotor 3 a of the motor 3. The carrier 9 c is fixed to one end of the output shaft 103 on the motor 3 side, and is connected to the output shaft 103.
 次に、本実施形態の動力伝達装置91の動作を説明する。動力伝達装置91の動作は、動力伝達装置51と同様であるため、その一部についてのみ説明する。 Next, the operation of the power transmission device 91 of the present embodiment will be described. The operation of the power transmission device 91 is the same as that of the power transmission device 51, so only part of it will be described.
 [合成走行モード、5速段]
 図20は合成走行モードの5速段における動力伝達装置91の動作状態を示している。合成走行モードの5速段では、ECU8は、第2主クラッチCM2及び第4クラッチC3をON状態に、第1主クラッチCM1、第1クラッチC1、第2クラッチC2及び第3クラッチC3をOFF状態に、電動機3をロータ3aが正転するように設定する。これにより、エンジン2の出力軸2aからの動力は、第2主クラッチCM2、第2主入力軸93、増速ギヤ対97、第2中間軸95、5速段ギヤ対107及び出力軸103を介してカウンタ軸17に伝達される。また、ロータ3aに伴ってリングギヤ9rが正転すると、このリングギヤ9rから回転トルクを受けるキャリア9cが正転しようとする。そのため、エンジン2からの動力と電動機3からの動力がキャリア9cで合成され、出力軸103を介してカウンタ軸17に伝達される。このように、エンジン2と電動機3との合成動力が出力軸103に伝達され、車両が前進する。また、要求動力が適正運転動力に満たない場合等には、リングギヤ3rを逆転させて、電動機3に回生運転を行わせ、高速段の回生走行モードで車両を走行させることも可能である。
[Combined driving mode, 5th gear]
FIG. 20 shows the operating state of the power transmission device 91 in the fifth gear of the synthetic traveling mode. In the fifth gear of the combined travel mode, the ECU 8 turns on the second main clutch CM2 and the fourth clutch C3, and turns off the first main clutch CM1, the first clutch C1, the second clutch C2 and the third clutch C3. Then, the motor 3 is set so that the rotor 3a rotates forward. Thus, the power from the output shaft 2a of the engine 2 includes the second main clutch CM2, the second main input shaft 93, the speed increasing gear pair 97, the second intermediate shaft 95, the fifth gear gear pair 107, and the output shaft 103. It is transmitted to the counter shaft 17 via the same. Further, when the ring gear 9r is normally rotated with the rotor 3a, the carrier 9c receiving the rotational torque from the ring gear 9r tends to be normally rotated. Therefore, the power from the engine 2 and the power from the motor 3 are combined by the carrier 9 c and transmitted to the counter shaft 17 via the output shaft 103. Thus, the combined power of the engine 2 and the motor 3 is transmitted to the output shaft 103, and the vehicle advances. In addition, when the required power does not satisfy the appropriate driving power or the like, it is also possible to reverse the ring gear 3r to cause the motor 3 to perform the regenerative operation and to run the vehicle in the high-speed regenerative travel mode.
 [合成走行モード、2速段]
 図21は合成走行モードの2速段における動力伝達装置91の動作状態を示している。合成走行モードの5速段では、ECU8は、第1主クラッチCM1及び第1クラッチC1をON状態に、第2主クラッチCM2、第2クラッチC2、第3クラッチC3及び第4クラッチC4をOFF状態に、電動機3をロータ3aが正転するように設定する。これにより、エンジン2の出力軸2aからの動力は、第1主クラッチCM1、第1主入力軸92、減速ギヤ対96、第1中間軸94、2速段ギヤ対104及び出力軸103を介してカウンタ軸17に伝達される。また、ロータ3aに伴ってリングギヤ9rが正転すると、このリングギヤ9rから回転トルクを受けるキャリア9cが正転しようとする。そのため、エンジン2からの動力と電動機3からの動力がキャリア9cで合成され、出力軸103を介してカウンタ軸17に伝達される。このように、エンジン2と電動機3との合成動力が出力軸103に伝達され、車両が前進する。また、要求動力が適正運転動力に満たない場合等には、リングギヤ3rを逆転させて、電動機3に回生運転を行わせ、高速段の回生走行モードで車両を走行させることも可能である。
[Combined driving mode, 2nd gear]
FIG. 21 shows the operating state of the power transmission device 91 in the second gear of the synthetic traveling mode. In the fifth gear of the combined travel mode, the ECU 8 turns on the first main clutch CM1 and the first clutch C1, and turns off the second main clutch CM2, the second clutch C2, the third clutch C3 and the fourth clutch C4. Then, the motor 3 is set so that the rotor 3a rotates forward. Thereby, the power from the output shaft 2 a of the engine 2 is transmitted through the first main clutch CM 1, the first main input shaft 92, the reduction gear pair 96, the first intermediate shaft 94, the second gear pair 104 and the output shaft 103. Is transmitted to the counter shaft 17. Further, when the ring gear 9r is normally rotated with the rotor 3a, the carrier 9c receiving the rotational torque from the ring gear 9r tends to be normally rotated. Therefore, the power from the engine 2 and the power from the motor 3 are combined by the carrier 9 c and transmitted to the counter shaft 17 via the output shaft 103. Thus, the combined power of the engine 2 and the motor 3 is transmitted to the output shaft 103, and the vehicle advances. In addition, when the required power does not satisfy the appropriate driving power or the like, it is also possible to reverse the ring gear 3r to cause the motor 3 to perform the regenerative operation and to run the vehicle in the high-speed regenerative travel mode.
 [合成走行モード、3速段]
 図22はエンジン走行モードの3速段における動力伝達装置71の動作状態を示している。エンジン走行モードの3速段では、ECU8は、第2主クラッチCM2及び第3クラッチC3をON状態に、第1主クラッチCM1、第1クラッチC1、第2クラッチC2及び第4クラッチC4をOFF状態に設定する。これにより、エンジン2の出力軸2aからの動力は、第2主クラッチCM2、第2主入力軸93、増速ギヤ対97、第2中間軸95、3速段ギヤ対106及び出力軸103を介してカウンタ軸17に伝達される。また、ロータ3aに伴ってリングギヤ9rが正転すると、このリングギヤ9rから回転トルクを受けるキャリア9cが正転しようとする。そのため、エンジン2からの動力と電動機3からの動力がキャリア9cで合成され、出力軸103を介してカウンタ軸17に伝達される。このように、エンジン2と電動機3との合成動力が出力軸103に伝達され、車両が前進する。また、要求動力が適正運転動力に満たない場合等には、リングギヤ3rを逆転させて、電動機3に回生運転を行わせ、高速段の回生走行モードで車両を走行させることも可能である。
[Combined driving mode, 3rd gear]
FIG. 22 shows the operating state of the power transmission device 71 in the third gear of the engine travel mode. In the third gear of the engine travel mode, the ECU 8 turns on the second main clutch CM2 and the third clutch C3, and turns off the first main clutch CM1, the first clutch C1, the second clutch C2 and the fourth clutch C4. Set to Thus, the power from the output shaft 2a of the engine 2 is the second main clutch CM2, the second main input shaft 93, the speed increasing gear pair 97, the second intermediate shaft 95, the third gear pair 106, and the output shaft 103. It is transmitted to the counter shaft 17 via the same. Further, when the ring gear 9r is normally rotated with the rotor 3a, the carrier 9c receiving the rotational torque from the ring gear 9r tends to be normally rotated. Therefore, the power from the engine 2 and the power from the motor 3 are combined by the carrier 9 c and transmitted to the counter shaft 17 via the output shaft 103. Thus, the combined power of the engine 2 and the motor 3 is transmitted to the output shaft 103, and the vehicle advances. In addition, when the required power does not satisfy the appropriate driving power or the like, it is also possible to reverse the ring gear 3r to cause the motor 3 to perform the regenerative operation and to run the vehicle in the high-speed regenerative travel mode.
 なお、本発明に係る動力伝達装置は、上述したものに限定されない。例えば、前記各実施形態では、第1主入力軸52,62,72,92がサンギヤ9sに接続されている場合について説明した。しかし、第2主入力軸55,65,73,93をサンギヤ9sに接続してもよい。また、第1副入力軸12に低速段用のギヤ12a,13cが、第2副入力軸13に高速数段用のギヤ13a,14cが、それぞれ配置されている場合について説明した。しかし、第1副入力軸12に高速段用のギヤを、第2副入力軸13に低速段用のギヤをそれぞれ配置してもよい。また、第1副入力軸12、第2副入力軸13に奇数段用のギヤ12a,13aが、第3副入力軸57,78、第4副入力軸58,79に偶数段用のギヤ57a,58a,78a,79aが、それぞれ配置されている場合について説明した。しかし、第1副入力軸12、第2副入力軸13に偶数段用のギヤを、第3副入力軸57,78、第4副入力軸58,79に奇数段用のギヤをそれぞれ配置してもよい。 In addition, the power transmission device which concerns on this invention is not limited to what was mentioned above. For example, in the above-described embodiments, the case where the first main input shafts 52, 62, 72, 92 are connected to the sun gear 9s has been described. However, the second main input shafts 55, 65, 73, 93 may be connected to the sun gear 9s. Also, the case has been described where the gears 12a and 13c for the low speed gear are disposed on the first auxiliary input shaft 12, and the gears 13a and 14c for the high speed gear are disposed on the second auxiliary input shaft 13, respectively. However, the gear for the high speed gear may be arranged on the first auxiliary input shaft 12, and the gear for the low speed gear may be arranged on the second auxiliary input shaft 13. The first sub input shaft 12 and the second sub input shaft 13 have gears 12a and 13a for odd-numbered stages, and the third sub input shafts 57 and 78, and the fourth sub-input shafts 58 and 79 have gears 57 for even-numbered stages. , 58a, 78a, 79a are arranged, respectively. However, the gears for the even gear are arranged on the first auxiliary input shaft 12 and the second auxiliary input shaft 13, and the gears for the odd gear are arranged on the third auxiliary input shaft 57 and 78 and the fourth auxiliary input shaft 58 and 79, respectively. May be
 また、動力合成機構9は、遊星歯車装置により構成する場合について説明したが、遊星歯車装置以外の差動装置を使用してもよい。また、サンギヤ9sに主入力軸11,42、第1主入力軸52,62,72,92を、キャリア9cに出力軸14,82,103を、リングギヤ9rに電動機3のロータ3aをそれぞれ接続する場合について説明した。しかし、これらの接続は、これらに限定するものではなく、その接続を変更してもよい。連結するようにしたが、例えば、サンギヤ9sにエンジン2の出力軸2aを連結し、リングギヤ9rに電動機3のロータ3aを連結するようにしてもよい。また、動力合成機構9をダブルピニオン型の遊星歯車装置や電磁クラッチ式の差動装置を使用してもよい。
              
The power combining mechanism 9 has been described as being configured by a planetary gear device, but a differential device other than the planetary gear device may be used. Also, connect the main input shaft 11, 42, the first main input shaft 52, 62, 72, 92 to the sun gear 9s, the output shaft 14, 82, 103 to the carrier 9c, and the rotor 3a of the motor 3 to the ring gear 9r. The case was explained. However, these connections are not limited to these, and the connections may be changed. Although the connection is made, for example, the output shaft 2a of the engine 2 may be connected to the sun gear 9s, and the rotor 3a of the motor 3 may be connected to the ring gear 9r. Also, a double pinion type planetary gear device or an electromagnetic clutch type differential device may be used as the power combining mechanism 9.

Claims (16)

  1.  内燃機関と電動機とを備えるハイブリッド車両用動力伝達装置であって、
     前記内燃機関から動力が入力される内燃機関出力軸と、
     前記内燃機関出力軸と平行に配置され、主断接装置によって選択的に、該内燃機関出力軸と連結される第1主入力軸と、
     前記第1主入力軸と同軸心に配置され、第1断接装置によって選択的に、前記第1主入力軸と連結される第1副入力軸と、
     前記第1主入力軸と同軸心に配置され、第2断接装置によって選択的に、前記第1主入力軸と連結される第2副入力軸と、
     前記第1主入力軸と平行に配置され、前記第1副入力軸及び前記第2副入力軸とそれぞれギヤ対を介して結合され、カウンタ軸を介して被駆動部に動力を出力する出力軸と、
     第1回転要素、第2回転要素、及び第3回転要素を互いに差動回転可能に構成した動力合成機構とを備え、
     前記第1回転要素は前記第1主入力軸に接続され、
     前記第2回転要素は前記第1副入力軸に接続され、
     前記第3回転要素は前記電動機に接続され、
     前記第2回転要素は、前記第1回転要素から伝達される動力と前記第3回転要素から伝達される動力とを合成し、前記第1副入力軸を介して前記出力軸に伝達することを特徴とするハイブリッド車両用動力伝達装置。
    A power transmission device for a hybrid vehicle comprising an internal combustion engine and an electric motor, comprising:
    An internal combustion engine output shaft to which power is input from the internal combustion engine;
    A first main input shaft disposed parallel to the internal combustion engine output shaft and selectively connected to the internal combustion engine output shaft by a main connection / disconnection device;
    A first auxiliary input shaft coaxially disposed with the first main input shaft and selectively coupled with the first main input shaft by a first connection / disconnection device;
    A second auxiliary input shaft disposed coaxially with the first main input shaft and selectively connected to the first main input shaft by a second connection / disconnection device;
    An output shaft disposed parallel to the first main input shaft, coupled to the first sub input shaft and the second sub input shaft via a gear pair, and outputting power to a driven portion via a counter shaft When,
    A power combining mechanism in which the first rotation element, the second rotation element, and the third rotation element are differentially rotatable with each other,
    The first rotating element is connected to the first main input shaft,
    The second rotating element is connected to the first auxiliary input shaft,
    The third rotating element is connected to the motor,
    The second rotation element combines the power transmitted from the first rotation element and the power transmitted from the third rotation element, and transmits the power to the output shaft through the first auxiliary input shaft. A power transmission apparatus for a hybrid vehicle characterized by the present invention.
  2.  前記第1断接装置と前記第2断接装置とは前記第1主入力軸に軸心方向に隣接して配置されていることを特徴とする請求項1に記載のハイブリッド車両用動力伝達装置。 The power transmission device for a hybrid vehicle according to claim 1, wherein the first disconnection device and the second disconnection device are disposed adjacent to the first main input shaft in the axial direction. .
  3.  前記第1断接装置及び前記第2断接装置は湿式クラッチであることを特徴とする請求項1又は2に記載のハイブリッド車両用動力伝達装置。 The power transmission device for a hybrid vehicle according to claim 1 or 2, wherein the first connection device and the second connection device are wet clutches.
  4.  前記第1主入力軸と平行に配置され、前記第1主入力軸と常時接続される第2主入力軸と、
     前記第2主入力軸と同軸心に配置され、第3断接装置によって選択的に、該第2主入力軸と連結される第3副入力軸と、
     前記第2主入力軸と同軸心に配置され、第4断接装置によって選択的に、該第2主入力軸と連結される第4副入力軸とを備え、
     前記出力軸に固定され、該出力軸と前記第1副入力軸及び前記第2副入力軸とをそれぞれ結合するギヤ対を構成する複数のギヤと、前記第3副入力軸及び前記第4副入力軸に固定されたギヤが結合することを特徴とする請求項1から3の何れか1項に記載のハイブリッド車両用動力伝達装置。
    A second main input shaft disposed parallel to the first main input shaft and constantly connected to the first main input shaft;
    A third sub-input shaft coaxially disposed with the second main input shaft and selectively connected to the second main input shaft by a third disconnection device;
    And a fourth sub-input shaft coaxially disposed with the second main input shaft and selectively coupled to the second main input shaft by a fourth connection / disconnection device,
    A plurality of gears that are fixed to the output shaft and that constitute a gear pair that couples the output shaft to the first sub input shaft and the second sub input shaft, and the third sub input shaft and the fourth sub The power transmission device for a hybrid vehicle according to any one of claims 1 to 3, characterized in that a gear fixed to the input shaft is coupled.
  5.  内燃機関と電動機とを備えるハイブリッド車両用動力伝達装置であって、
     前記内燃機関から動力が入力される内燃機関出力軸と、
     前記内燃機関出力軸と平行に配置され、主断接装置によって選択的に、該内燃機関出力軸と連結される第1主入力軸と、
     前記第1主入力軸と同軸心に配置される第1副入力軸と、
     前記第1副入力軸上に配置され、第1同期装置を介して該第1副入力軸に選択的に連結される複数のギヤよりなる第1ギヤ群と、
     前記第1主入力軸と平行に配置され、カウンタ軸を介して被駆動部に動力を出力する出力軸と、
     前記出力軸に固定され前記第1ギヤ群のギヤと噛合する複数のギヤよりなる第2ギヤ群と、
     第1回転要素、第2回転要素、及び第3回転要素を互いに差動回転可能に構成した動力合成機構とを備え、
     前記第1回転要素は前記第1主入力軸に接続され、
     前記第2回転要素は前記第1副入力軸に接続され、
     前記第3回転要素は前記電動機に接続され、
     前記第2回転要素は、前記第1回転要素から伝達される動力と前記第3回転要素から伝達される動力とを合成し、前記第1副入力軸を介して前記出力軸に伝達することを特徴とするハイブリッド車両用動力伝達装置。
    A power transmission device for a hybrid vehicle comprising an internal combustion engine and an electric motor, comprising:
    An internal combustion engine output shaft to which power is input from the internal combustion engine;
    A first main input shaft disposed parallel to the internal combustion engine output shaft and selectively connected to the internal combustion engine output shaft by a main connection / disconnection device;
    A first sub-input shaft coaxially arranged with the first main input shaft;
    A first gear group including a plurality of gears disposed on the first secondary input shaft and selectively coupled to the first secondary input shaft via a first synchronization device;
    An output shaft disposed parallel to the first main input shaft and outputting power to the driven portion via the counter shaft;
    A second gear group including a plurality of gears fixed to the output shaft and engaged with the gears of the first gear group;
    A power combining mechanism in which the first rotation element, the second rotation element, and the third rotation element are differentially rotatable with each other,
    The first rotating element is connected to the first main input shaft,
    The second rotating element is connected to the first auxiliary input shaft,
    The third rotating element is connected to the motor,
    The second rotation element combines the power transmitted from the first rotation element and the power transmitted from the third rotation element, and transmits the power to the output shaft through the first auxiliary input shaft. A power transmission apparatus for a hybrid vehicle characterized by the present invention.
  6.  前記第1主入力軸と平行に配置され、前記第1主入力軸と常時接続される第2主入力軸と、
     前記第2主入力軸と同軸心に配置される第3副入力軸と、
     前記第3副入力軸上に配置され、第2同期装置を介して該第3副入力軸に選択的に連結される複数のギヤよりなる第3ギヤ群とを備え、
     前記第2ギヤ群を構成するギヤと前記第3ギヤ群を構成するギヤとが噛合することを特徴とする請求項5に記載のハイブリッド車両用動力伝達装置。
    A second main input shaft disposed parallel to the first main input shaft and constantly connected to the first main input shaft;
    A third sub-input shaft coaxially arranged with the second main input shaft;
    A third gear group including a plurality of gears disposed on the third sub-input shaft and selectively coupled to the third sub-input shaft via a second synchronization device;
    The power transmission apparatus for a hybrid vehicle according to claim 5, characterized in that a gear constituting the second gear group meshes with a gear constituting the third gear group.
  7.  内燃機関と電動機とを備えるハイブリッド車両用動力伝達装置であって、
     前記内燃機関から動力が入力される内燃機関出力軸と、
     前記内燃機関出力軸と平行に配置され、第1主断接装置によって選択的に、該内燃機関出力軸と連結される第1主入力軸と、
     前記第1主入力軸と同軸心に配置され、第2主断接装置によって選択的に、該内燃機関出力軸と連結される第2主入力軸と、
     前記第1主入力軸と同軸心に配置され、第1断接装置によって選択的に、前記第1主入力軸と連結される第1副入力軸と、
     前記第1主入力軸と同軸心に配置され、第2断接装置によって選択的に、前記第1主入力軸と連結される第2副入力軸と、
     前記第1主入力軸と平行に配置され、前記第1副入力軸及び前記第2副入力軸とそれぞれギヤ対を介して結合される中間軸と、
     前記第1主入力軸と平行に配置される第3主入力軸と、
     前記第3主入力軸と同軸心に配置され、第3断接装置によって選択的に、前記第2主入力軸と連結される第3副入力軸と、
     前記第3主入力軸と同軸心に配置され、第4断接装置によって選択的に、前記第2主入力軸と連結される第4副入力軸と、
     前記第1主入力軸と平行に配置され、前記中間軸及び前記第3主入力軸とそれぞれギヤ対を介して結合され、カウンタ軸を介して被駆動部に動力を出力する出力軸と、
     第1回転要素、第2回転要素、及び第3回転要素を互いに差動回転可能に構成した動力合成機構とを備え、
     前記第1回転要素は前記第1主入力軸に接続され、
     前記第2回転要素は前記第1副入力軸に接続され、
     前記第3回転要素は前記電動機に接続され、
     前記第2回転要素は、前記第1回転要素から伝達される動力と前記第3回転要素から伝達される動力とを合成し、前記第1副入力軸及び前記中間軸を介して前記出力軸に伝達することを特徴とするハイブリッド車両用動力伝達装置。
    A power transmission device for a hybrid vehicle comprising an internal combustion engine and an electric motor, comprising:
    An internal combustion engine output shaft to which power is input from the internal combustion engine;
    A first main input shaft disposed parallel to the internal combustion engine output shaft and selectively connected to the internal combustion engine output shaft by a first main connecting and disconnecting device;
    A second main input shaft coaxially disposed with the first main input shaft and selectively connected to the internal combustion engine output shaft by a second main connection / disconnection device;
    A first auxiliary input shaft coaxially disposed with the first main input shaft and selectively coupled with the first main input shaft by a first connection / disconnection device;
    A second auxiliary input shaft disposed coaxially with the first main input shaft and selectively connected to the first main input shaft by a second connection / disconnection device;
    An intermediate shaft disposed parallel to the first main input shaft and coupled to the first sub input shaft and the second sub input shaft via a gear pair respectively;
    A third main input shaft disposed parallel to the first main input shaft;
    A third auxiliary input shaft coaxially disposed with the third main input shaft and selectively connected to the second main input shaft by a third connection / disconnection device;
    A fourth sub-input shaft coaxially disposed with the third main input shaft and selectively connected to the second main input shaft by a fourth connection / disconnection device;
    An output shaft disposed parallel to the first main input shaft, coupled to the intermediate shaft and the third main input shaft via a gear pair, and outputting power to a driven portion via a counter shaft;
    A power combining mechanism in which the first rotation element, the second rotation element, and the third rotation element are differentially rotatable with each other,
    The first rotating element is connected to the first main input shaft,
    The second rotating element is connected to the first auxiliary input shaft,
    The third rotating element is connected to the motor,
    The second rotating element combines the power transmitted from the first rotating element and the power transmitted from the third rotating element, and is connected to the output shaft via the first auxiliary input shaft and the intermediate shaft. A power transmission device for a hybrid vehicle characterized by transmitting.
  8.  内燃機関と電動機とを備えるハイブリッド車両用動力伝達装置であって、
     前記内燃機関から動力が入力される内燃機関出力軸と、
     前記内燃機関出力軸と平行に配置され、第1主断接装置によって選択的に、該内燃機関出力軸と連結される第1主入力軸と、
     前記第1主入力軸と同軸心に配置され、第2主断接装置によって選択的に、該内燃機関出力軸と連結される第2主入力軸と、
     前記第1主入力軸と同軸心に配置される第1副入力軸と、
     前記第1副入力軸上に配置され、第1同期装置を介して該第1副入力軸に選択的に連結される複数のギヤよりなる第1ギヤ群と、
     前記第1主入力軸と平行に配置され、前記第1副入力軸及び前記第2副入力軸とそれぞれギヤ対を介して結合される中間軸と、
     前記中間軸に固定され前記第1ギヤ群のギヤと噛合する複数のギヤよりなる第2ギヤ群と、
     前記第1主入力軸と平行に配置される第3主入力軸と、
     前記第3主入力軸上に配置され、第2同期装置を介して該第3主入力軸に選択的に連結される複数のギヤよりなる第3ギヤ群と、
     前記第2主入力軸に固定され前記第3ギヤ群のギヤと噛合する複数のギヤよりなる第4ギヤ群と、
     前記第1主入力軸と平行に配置され、前記中間軸及び前記第3主入力軸とそれぞれギヤ対を介して結合され、カウンタ軸を介して被駆動部に動力を出力する出力軸と、
     第1回転要素、第2回転要素、及び第3回転要素を互いに差動回転可能に構成した動力合成機構とを備え、
     前記第1回転要素は前記第1主入力軸に接続され、
     前記第2回転要素は前記第1副入力軸に接続され、
     前記第3回転要素は前記電動機に接続され、
     前記第2回転要素は、前記第1回転要素から伝達される動力と前記第3回転要素から伝達される動力とを合成し、前記第1副入力軸及び前記中間軸を介して前記出力軸に伝達することを特徴とするハイブリッド車両用動力伝達装置。
    A power transmission device for a hybrid vehicle comprising an internal combustion engine and an electric motor, comprising:
    An internal combustion engine output shaft to which power is input from the internal combustion engine;
    A first main input shaft disposed parallel to the internal combustion engine output shaft and selectively connected to the internal combustion engine output shaft by a first main connecting and disconnecting device;
    A second main input shaft coaxially disposed with the first main input shaft and selectively connected to the internal combustion engine output shaft by a second main connection / disconnection device;
    A first sub-input shaft coaxially arranged with the first main input shaft;
    A first gear group including a plurality of gears disposed on the first secondary input shaft and selectively coupled to the first secondary input shaft via a first synchronization device;
    An intermediate shaft disposed parallel to the first main input shaft and coupled to the first sub input shaft and the second sub input shaft via a gear pair respectively;
    A second gear group including a plurality of gears fixed to the intermediate shaft and meshed with the gears of the first gear group;
    A third main input shaft disposed parallel to the first main input shaft;
    A third gear group including a plurality of gears disposed on the third main input shaft and selectively coupled to the third main input shaft via a second synchronization device;
    A fourth gear group including a plurality of gears fixed to the second main input shaft and engaged with the gears of the third gear group;
    An output shaft disposed parallel to the first main input shaft, coupled to the intermediate shaft and the third main input shaft via a gear pair, and outputting power to a driven portion via a counter shaft;
    A power combining mechanism in which the first rotation element, the second rotation element, and the third rotation element are differentially rotatable with each other,
    The first rotating element is connected to the first main input shaft,
    The second rotating element is connected to the first auxiliary input shaft,
    The third rotating element is connected to the motor,
    The second rotating element combines the power transmitted from the first rotating element and the power transmitted from the third rotating element, and is connected to the output shaft via the first auxiliary input shaft and the intermediate shaft. A power transmission device for a hybrid vehicle characterized by transmitting.
  9.  内燃機関と電動機とを備えるハイブリッド車両用動力伝達装置であって、
     前記内燃機関から動力が入力される内燃機関出力軸と、
     前記内燃機関出力軸と平行に配置され、第1主断接装置によって選択的に、該内燃機関出力軸と連結される第1主入力軸と、
     前記内燃機関出力軸と同軸心に配置され、第2主断接装置によって選択的に、該内燃機関出力軸と連結される第2主入力軸と、
     前記第1主入力軸と平行に配置され、該第1主入力軸と減速ギヤ対を介して結合される第3主入力軸と、
     前記第1主入力軸と平行に配置され、該第1主入力軸と増速ギヤ対を介して結合される第4主入力軸と、
     前記第3主入力軸と同軸心に配置され、第1断接装置によって選択的に、該第3主入力軸と連結される第1副入力軸と、
     前記第3主入力軸と同軸心に配置され、第2断接装置によって選択的に、該第3主入力軸と連結される第2副入力軸と、
     前記第4主入力軸と同軸心に配置され、第3断接装置によって選択的に、該第4主入力軸と連結される第3副入力軸と、
     前記第4主入力軸と同軸心に配置され、第4断接装置によって選択的に、該第4主入力軸と連結される第4副入力軸と、
     前記内燃機関出力軸と平行に配置され、前記第1副入力軸、前記第2副入力軸、前記第3副入力軸及び前記第4副入力軸とそれぞれギヤ対を介して結合され、カウンタ軸を介して被駆動部に動力を出力する出力軸と、
     第1回転要素、第2回転要素、及び第3回転要素を互いに差動回転可能に構成した動力合成機構とを備え、
     前記第1回転要素は前記第1主入力軸又は前記第2主入力軸に接続され、
     前記第2回転要素は前記出力軸に接続され、
     前記第3回転要素は前記電動機に接続され、
     前記第2回転要素は、前記第1回転要素から伝達される動力と前記第3回転要素から伝達される動力とを合成し、前記第出力軸に伝達することを特徴とするハイブリッド車両用動力伝達装置。
    A power transmission device for a hybrid vehicle comprising an internal combustion engine and an electric motor, comprising:
    An internal combustion engine output shaft to which power is input from the internal combustion engine;
    A first main input shaft disposed parallel to the internal combustion engine output shaft and selectively connected to the internal combustion engine output shaft by a first main connecting and disconnecting device;
    A second main input shaft disposed coaxially with the internal combustion engine output shaft and selectively connected to the internal combustion engine output shaft by a second main connecting and disconnecting device;
    A third main input shaft disposed parallel to the first main input shaft and coupled to the first main input shaft via a reduction gear pair;
    A fourth main input shaft disposed parallel to the first main input shaft and coupled to the first main input shaft via a speed increasing gear pair;
    A first sub-input shaft coaxially disposed with the third main input shaft and selectively connected to the third main input shaft by a first connection / disconnection device;
    A second sub-input shaft coaxially disposed with the third main input shaft and selectively connected to the third main input shaft by a second connection / disconnection device;
    A third sub-input shaft coaxially arranged with the fourth main input shaft and selectively connected to the fourth main input shaft by a third connection / disconnection device;
    A fourth sub-input shaft coaxially arranged with the fourth main input shaft and selectively connected to the fourth main input shaft by a fourth connection / disconnection device;
    The first auxiliary input shaft, the second auxiliary input shaft, the third auxiliary input shaft, and the fourth auxiliary input shaft are disposed parallel to the output shaft of the internal combustion engine, and are respectively coupled to the fourth auxiliary input shaft via a gear pair. An output shaft that outputs power to the driven part via
    A power combining mechanism in which the first rotation element, the second rotation element, and the third rotation element are differentially rotatable with each other,
    The first rotating element is connected to the first main input shaft or the second main input shaft,
    The second rotating element is connected to the output shaft,
    The third rotating element is connected to the motor,
    The second rotating element combines the power transmitted from the first rotating element and the power transmitted from the third rotating element, and transmits the combined power to the first output shaft. apparatus.
  10.  内燃機関と電動機とを備えるハイブリッド車両用動力伝達装置であって、
     前記内燃機関から動力が入力される内燃機関出力軸と、
     前記内燃機関出力軸と平行に配置され、第1主断接装置によって選択的に、該内燃機関出力軸と連結される第1主入力軸と、
     前記内燃機関出力軸と同軸心に配置され、第2主断接装置によって選択的に、該内燃機関出力軸と連結される第2主入力軸と、
     前記第1主入力軸と平行に配置され、該第1主入力軸と減速ギヤ対を介して結合される第3主入力軸と、
     前記第1主入力軸と平行に配置され、該第1主入力軸と増速ギヤ対を介して結合される第4主入力軸と、
     前記第3主入力軸と同軸心に配置される第1副入力軸と、
     前記第1副入力軸上に配置され、第1同期装置を介して該第1副入力軸に選択的に連結される複数のギヤよりなる第1ギヤ群と、
     前記第3主入力軸と同軸心に配置される第2副入力軸と、
     前記第2副入力軸上に配置され、第2同期装置を介して該第2副入力軸に選択的に連結される複数のギヤよりなる第2ギヤ群と、
     前記第1主入力軸と同軸心に配置され、カウンタ軸を介して被駆動部に動力を出力する出力軸と、
     前記出力軸に固定され、前記第1ギヤ群のギヤ及び前記第2ギヤ群のギヤが共有して噛合する複数のギヤよりなる第3ギヤ群と、
     第1回転要素、第2回転要素、及び第3回転要素を互いに差動回転可能に構成した動力合成機構とを備え、
     前記第1回転要素は前記第1主入力軸又は前記第2主入力軸に接続され、
     前記第2回転要素は前記出力軸に接続され、
     前記第3回転要素は前記電動機に接続され、
     前記第2回転要素は、前記第1回転要素から伝達される動力と前記第3回転要素から伝達される動力とを合成し、前記第出力軸に伝達することを特徴とするハイブリッド車両用動力伝達装置。
    A power transmission device for a hybrid vehicle comprising an internal combustion engine and an electric motor, comprising:
    An internal combustion engine output shaft to which power is input from the internal combustion engine;
    A first main input shaft disposed parallel to the internal combustion engine output shaft and selectively connected to the internal combustion engine output shaft by a first main connecting and disconnecting device;
    A second main input shaft disposed coaxially with the internal combustion engine output shaft and selectively connected to the internal combustion engine output shaft by a second main connecting and disconnecting device;
    A third main input shaft disposed parallel to the first main input shaft and coupled to the first main input shaft via a reduction gear pair;
    A fourth main input shaft disposed parallel to the first main input shaft and coupled to the first main input shaft via a speed increasing gear pair;
    A first sub-input shaft coaxially disposed with the third main input shaft;
    A first gear group including a plurality of gears disposed on the first secondary input shaft and selectively coupled to the first secondary input shaft via a first synchronization device;
    A second sub-input shaft coaxially arranged with the third main input shaft;
    A second gear group including a plurality of gears disposed on the second auxiliary input shaft and selectively coupled to the second auxiliary input shaft via a second synchronization device;
    An output shaft coaxially disposed with the first main input shaft and outputting power to the driven portion via the counter shaft;
    A third gear group including a plurality of gears fixed to the output shaft and in which the gears of the first gear group and the gears of the second gear group share and mesh;
    A power combining mechanism in which the first rotation element, the second rotation element, and the third rotation element are differentially rotatable with each other,
    The first rotating element is connected to the first main input shaft or the second main input shaft,
    The second rotating element is connected to the output shaft,
    The third rotating element is connected to the motor,
    The second rotating element combines the power transmitted from the first rotating element and the power transmitted from the third rotating element, and transmits the combined power to the first output shaft. apparatus.
  11.  前記動力合成機構は、シングルピニオン型の3つの回転要素として、サンギヤと、リングギヤと、前記サンギヤ及び前記リングギヤの間で当該両ギヤに噛合された複数のプラネタリギヤを回転自在に支持するキャリアとを同軸心に備えた遊星歯車装置であり、
     前記第1回転要素は前記キャリアであり、前記第2回転要素は前記サンギヤであり、前記第3回転要素は前記リングギヤであるであることを特徴とする請求項1から10の何れか1項に記載のハイブリッド車両用動力伝達装置。
    The power combining mechanism coaxially has, as three single pinion type rotating elements, a sun gear, a ring gear, and a carrier rotatably supporting a plurality of planetary gears meshed with the both gears between the sun gear and the ring gear. Planetary gear set in the heart,
    11. The vehicle according to any one of claims 1 to 10, wherein the first rotating element is the carrier, the second rotating element is the sun gear, and the third rotating element is the ring gear. Power transmission device for a hybrid vehicle as described.
  12.  前記出力軸に要求される要求動力を設定する要求動力設定手段と、
     該要求動力設定手段が設定した要求動力に応じて、前記内燃機関及び前記電動機の運転を制御する制御手段とを備えることを特徴とする請求項1から11の何れか1項に記載のハイブリッド車両用動力伝達装置。
    Required power setting means for setting the required power required for the output shaft;
    The hybrid vehicle according to any one of claims 1 to 11, further comprising: control means for controlling the operation of the internal combustion engine and the electric motor according to the required power set by the required power setting means. Power transmission device.
  13.  前記制御手段は、前記内燃機関がストール領域から最高回転領域までの範囲内で運転を行うように、前記電動機の運転を制御することを特徴とする請求項12に記載のハイブリッド車両用動力伝達装置。 The power transmission device for a hybrid vehicle according to claim 12, wherein the control means controls the operation of the electric motor such that the internal combustion engine operates within a range from a stall region to a maximum rotation region. .
  14.  前記制御手段は、前記内燃機関の適正運転領域内で前記内燃機関の運転を行い、
     前記第1回転要素から前記第2回転要素に伝達される前記内燃機関の動力と前記要求動力を比較し、前記内燃機関の動力が前記要求動力に満たないときは、前記電動機が力行運転を行い、前記内燃機関の動力が前記要求動力を超えるときは、前記電動機が回生運転を行うように制御することを特徴とする請求項12又は13に記載のハイブリッド車両用動力伝達装置。
    The control means operates the internal combustion engine within a proper operating range of the internal combustion engine;
    The power of the internal combustion engine transmitted from the first rotating element to the second rotating element is compared with the required power, and when the power of the internal combustion engine does not meet the required power, the electric motor performs a power running operation The power transmission device for a hybrid vehicle according to claim 12 or 13, wherein when the power of the internal combustion engine exceeds the required power, the electric motor is controlled to perform regenerative operation.
  15.  前記制御手段は、前記電動機が定格出力又は最高回転数を超えて運転するとき、該電動機を定格出力又は最高回転数で運転を行うように制御することを特徴とする請求項12から14の何れか1項に記載のハイブリッド車両用動力伝達装置。 The controller according to any one of claims 12 to 14, wherein the control means controls the motor to operate at the rated output or the maximum rotational speed when the motor operates at the rated output or the maximum rotational speed. The power transmission apparatus for a hybrid vehicle according to any one of the preceding claims.
  16.  前記第1主入力軸に補機を連結し、該補機を前記第1主入力軸の駆動力によって駆動可能に構成したことを特徴とする請求項1から15の何れか1項に記載のハイブリッド車両用動力伝達装置。 The accessory according to any one of claims 1 to 15, wherein an accessory is connected to the first main input shaft, and the accessory is drivable by the driving force of the first main input shaft. Power transmission for hybrid vehicles.
PCT/JP2009/007293 2009-02-09 2009-12-25 Power transmitting device WO2010089841A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980156154.7A CN102307744B (en) 2009-02-09 2009-12-25 Power transmitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009027090A JP4610654B2 (en) 2009-02-09 2009-02-09 Power transmission device
JP2009-027090 2009-02-09

Publications (1)

Publication Number Publication Date
WO2010089841A1 true WO2010089841A1 (en) 2010-08-12

Family

ID=42541765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007293 WO2010089841A1 (en) 2009-02-09 2009-12-25 Power transmitting device

Country Status (3)

Country Link
JP (1) JP4610654B2 (en)
CN (1) CN102307744B (en)
WO (1) WO2010089841A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2457760A3 (en) * 2010-11-24 2013-07-03 ZF Friedrichshafen AG Power transmission and method for operating same
CN103619627A (en) * 2011-06-27 2014-03-05 斯堪尼亚商用车有限公司 Powertrain for a vehicle and method for controlling a powertrain
CN111845317A (en) * 2020-07-29 2020-10-30 重庆青山工业有限责任公司 Hybrid power system
FR3106090A1 (en) * 2020-01-15 2021-07-16 Punch Powerglide Strasbourg Transmission for hybrid vehicle and its control method
US20220216765A1 (en) * 2021-01-07 2022-07-07 Toyota Jidosha Kabushiki Kaisha Drive unit for electric vehicle

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392885A (en) * 2011-06-24 2012-03-28 重庆大学 Automatic transmission of pure electromobile double clutch
DE102011089466A1 (en) * 2011-12-21 2013-06-27 Zf Friedrichshafen Ag Hybrid drive of a motor vehicle and method for operating the same
KR20150071604A (en) * 2013-12-18 2015-06-26 현대자동차주식회사 Power transmission apparatus for hybrid electric vehicle
CN103978885B (en) * 2014-04-17 2016-08-17 河南科技大学 Load vehicle and hybrid power system thereof
CN103978884B (en) * 2014-04-17 2017-01-25 河南科技大学 Torque coupling power system and vehicle using power system
JP6251805B2 (en) * 2014-06-11 2017-12-20 Gknドライブラインジャパン株式会社 Power transmission device
KR101637279B1 (en) * 2014-09-23 2016-07-21 현대자동차 주식회사 Power transmission apparatus for hybrid electric vehicle
JP6587674B2 (en) * 2017-12-27 2019-10-09 本田技研工業株式会社 Reducer for electric motor
JP2019166939A (en) * 2018-03-23 2019-10-03 本田技研工業株式会社 Drive device for hybrid vehicle
DE102019123367A1 (en) * 2019-08-30 2021-03-04 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Powertrain for a vehicle
US20230025121A1 (en) * 2021-07-21 2023-01-26 Dana Heavy Vehicle Systems Group, Llc Transmission and method for operation of the transmission

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503183A (en) * 1998-03-27 2002-01-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Drive train for automobiles
JP2002165304A (en) * 2000-11-24 2002-06-07 Honda Motor Co Ltd Power transmission device
JP2003072403A (en) * 2001-08-31 2003-03-12 Honda Motor Co Ltd Power transmission device for hybrid vehicle and its control method
JP2003127681A (en) * 2001-10-22 2003-05-08 Toyota Motor Corp Hybrid vehicle drive structure with transmission
JP2004182034A (en) * 2002-12-02 2004-07-02 Toyota Motor Corp Power transmission device for vehicle
JP2007290677A (en) * 2006-03-29 2007-11-08 Toyota Motor Corp Hybrid drive device
WO2007142129A1 (en) * 2006-06-06 2007-12-13 Toyota Jidosha Kabushiki Kaisha Hybrid driver
WO2008156197A1 (en) * 2007-06-19 2008-12-24 Toyota Jidosha Kabushiki Kaisha Power transmission device
WO2008156193A1 (en) * 2007-06-19 2008-12-24 Toyota Jidosha Kabushiki Kaisha Vehicular power transmission system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845618B1 (en) * 1996-11-30 2003-05-14 Volkswagen Aktiengesellschaft Contiuously-variable multi-speed transmission

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503183A (en) * 1998-03-27 2002-01-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Drive train for automobiles
JP2002165304A (en) * 2000-11-24 2002-06-07 Honda Motor Co Ltd Power transmission device
JP2003072403A (en) * 2001-08-31 2003-03-12 Honda Motor Co Ltd Power transmission device for hybrid vehicle and its control method
JP2003127681A (en) * 2001-10-22 2003-05-08 Toyota Motor Corp Hybrid vehicle drive structure with transmission
JP2004182034A (en) * 2002-12-02 2004-07-02 Toyota Motor Corp Power transmission device for vehicle
JP2007290677A (en) * 2006-03-29 2007-11-08 Toyota Motor Corp Hybrid drive device
WO2007142129A1 (en) * 2006-06-06 2007-12-13 Toyota Jidosha Kabushiki Kaisha Hybrid driver
WO2008156197A1 (en) * 2007-06-19 2008-12-24 Toyota Jidosha Kabushiki Kaisha Power transmission device
WO2008156193A1 (en) * 2007-06-19 2008-12-24 Toyota Jidosha Kabushiki Kaisha Vehicular power transmission system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2457760A3 (en) * 2010-11-24 2013-07-03 ZF Friedrichshafen AG Power transmission and method for operating same
CN103619627A (en) * 2011-06-27 2014-03-05 斯堪尼亚商用车有限公司 Powertrain for a vehicle and method for controlling a powertrain
FR3106090A1 (en) * 2020-01-15 2021-07-16 Punch Powerglide Strasbourg Transmission for hybrid vehicle and its control method
CN111845317A (en) * 2020-07-29 2020-10-30 重庆青山工业有限责任公司 Hybrid power system
CN111845317B (en) * 2020-07-29 2022-07-19 重庆青山工业有限责任公司 Hybrid power system
US20220216765A1 (en) * 2021-01-07 2022-07-07 Toyota Jidosha Kabushiki Kaisha Drive unit for electric vehicle

Also Published As

Publication number Publication date
JP2010179868A (en) 2010-08-19
JP4610654B2 (en) 2011-01-12
CN102307744B (en) 2014-12-10
CN102307744A (en) 2012-01-04

Similar Documents

Publication Publication Date Title
WO2010089841A1 (en) Power transmitting device
JP5786051B2 (en) Hybrid vehicle
US8747265B2 (en) Power transmitting device for hybrid vehicle
JP4607222B2 (en) Hybrid vehicle
JP6058622B2 (en) Hybrid transmission and control method for automobile
JP5138803B2 (en) Power transmission device
CN111699101A (en) Hybrid drive train with combustion powertrain and electric powertrain
CN112166046B (en) Hybrid transmission and hybrid vehicle
JP6542779B2 (en) Automotive transmission with hybrid propulsion and related control techniques
JP2023501661A (en) Reduction gearboxes, electric vehicle drive systems, and electric vehicles
JP2002325308A (en) Hybrid vehicle
US20190255942A1 (en) Power transmission system and vehicle having same
CN116215213A (en) Low drag loss hybrid transmission in hybrid configuration
JP5198357B2 (en) Power transmission device for hybrid vehicle
JP2015020725A (en) Drive apparatus for hybrid vehicle
CN216374160U (en) Speed changer
CN118269620A (en) Hybrid power system and vehicle
CN115427247A (en) Hybrid powertrain comprising two electric motors and one combustion engine, which are not coaxial, and three couplings, and method for controlling same
CN118494163A (en) Longitudinally-arranged precursor double-motor hybrid power structure
CN115891614A (en) Hybrid drive system for vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156154.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839619

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 5110/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839619

Country of ref document: EP

Kind code of ref document: A1