WO2007141833A1 - Hydrate post treatment apparatus and hydrate particle diameter control method - Google Patents

Hydrate post treatment apparatus and hydrate particle diameter control method Download PDF

Info

Publication number
WO2007141833A1
WO2007141833A1 PCT/JP2006/311100 JP2006311100W WO2007141833A1 WO 2007141833 A1 WO2007141833 A1 WO 2007141833A1 JP 2006311100 W JP2006311100 W JP 2006311100W WO 2007141833 A1 WO2007141833 A1 WO 2007141833A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrate
particle size
fluidized bed
bed reactor
particles
Prior art date
Application number
PCT/JP2006/311100
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Takahashi
Masahiro Takahashi
Takashi Arai
Kazuyoshi Matsuo
Original Assignee
Mitsui Engineering & Shipbuilding Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering & Shipbuilding Co., Ltd. filed Critical Mitsui Engineering & Shipbuilding Co., Ltd.
Priority to PCT/JP2006/311100 priority Critical patent/WO2007141833A1/en
Publication of WO2007141833A1 publication Critical patent/WO2007141833A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates

Definitions

  • the present invention relates to a hydrate post-treatment device and a hydrate particle size control method, and more particularly, to a hydrate post-treatment device and a hydrate post-treatment device capable of obtaining a uniform and optimum particle size.
  • the present invention relates to a hydrate particle size control method.
  • the hydrate particles in the fluidized bed reactor are sent to a molding machine and granulated and formed into a product, the hydrate particles in the fluidized bed reactor are quantitatively and There is a demand for a stable supply.
  • the particle size of hydrate particles is small! /, And the surface area of hydrate particles increases, so the hydrate formation rate increases, but atmospheric pressure, which has been studied as a hydrate storage condition, — Low stability at 20 ° C. Therefore, in the secondary generator, it is necessary to control the particle size of the hydrate particles so that the generation rate of the hydrate is increased to some extent, and the stability under the above-mentioned storage conditions is an optimal value.
  • the hydrate particles have the same particle size, and the hydrate particles flow inside the fluidized bed reactor. There is a problem that it is not stable. Therefore, in the secondary generator, it is necessary to control the generation conditions so that the uniformity of the hydrate particle size is high. However, since the fluidized bed reactor is a high-pressure vessel, it is difficult to control the particle size visually. Disclosure of the invention
  • the present invention has been made to solve the above problems, and a first object is to quantitatively convert hydrate particles, which are said to have strong adhesion and binding properties, into fluidized bed reactor force. And it is providing the hydrate post-processing apparatus which can be extracted stably.
  • a second object of the present invention is to provide a secondary generator or the like that has high uniformity without visually monitoring the particle size of the hydrate particles and can obtain hydrate particles with an optimum particle size.
  • Another object of the present invention is to provide a hydrate particle size control method for controlling the particle size of hydrate particles in the hydrate aftertreatment device and the hydrate aftertreatment device.
  • the invention described in claim 1 is a hydrate post-treatment device for post-treating hydrate particles obtained by bringing water into contact with a hydrate-forming gas, wherein the hydrate particles
  • a fluidized bed reactor that is maintained in a fluidized state by the introduced hydrate-forming gas is provided with a dispersion plate having a large number of air holes, and the upper part of the dispersion plate is used as a fluidized bed portion and the lower part of the dispersion plate is disposed below.
  • a differential pressure detecting means for detecting a differential pressure with the fluidized gas introduction part is provided, and when the pressure of the fluidized bed part becomes higher than the pressure of the fluidized gas introduction part, the rotational speed of the take-out conveyor is increased, When the pressure of Doso portion has decreased lower than the pressure of the fluidizing gas inlet is directed to hydrate post-processing apparatus, characterized in that lowering the rotational speed of the take-out conveyor.
  • the invention according to claim 2 is a hydrate post-treatment device for post-treating hydrate particles obtained by bringing water and hydrate-forming gas into contact, wherein the hydrate particles are Fluidized bed reaction maintained in a fluidized state by the introduced hydrate-forming gas
  • a dispersion plate having a large number of ventilation holes is provided in the vessel, the fluidized bed portion is provided above the dispersion plate, the fluidized gas introduction portion is provided below the dispersion plate, and a hydrate particle discharge port is provided on the dispersion plate.
  • a take-out conveyor is provided below the hydrate particle discharge port, and a differential pressure detecting means for detecting a differential pressure between the fluidized bed part and the fluidized gas introduction part is provided in the fluidized bed reactor.
  • the invention according to claim 3 is the hydrate post-processing device according to claim 1 or 2, wherein the opening width of the hydrate particle discharge port and the rotational speed of the take-out conveyor are independent or simultaneously.
  • the present invention relates to an idle post-treatment device characterized by control.
  • the opening width of the hydrate particle discharge port and the rotation speed of the take-out conveyor are controlled independently or simultaneously, so that hydrate particles having strong adhesion and binding properties are taken out. It is possible to dispense more quantitatively and stably from the fluidized bed reactor using a conveyor.
  • the invention described in claim 4 is a hydrate post-treatment device for post-treating hydrate particles obtained by bringing water into contact with hydrate-forming gas, wherein the hydrate particles are A fluidized bed reactor that is maintained in a fluidized state by the introduced hydrate forming gas, and a hydrate granule for obtaining a particle size of the hydrate particles flowing in the fluidized bed reactor. Based on the particle size of the hydrate particles obtained by the diameter measuring means and the hydrate particle diameter measuring means, the temperature of the hydrate forming gas introduced into the fluidized bed reactor and the temperature inside the fluidized bed reactor are determined.
  • hydrate particle size control means for controlling the particle size of the hydrate particles, wherein the hydrate particle size control means includes at least one of the hydrate forming gas and the fluidized bed reactor.
  • the temperature of the hydrate particles is increased when the hydrate particle size determined by the hydrate particle size control means is smaller than a predetermined range, and is decreased when the hydrate particle size is larger than the predetermined range. It relates to a hydrate post-processing device.
  • This hydrate post-treatment device is a device for applying various post-treatments such as dehydration and cooling to the nodulate produced by the primary generator to obtain a high purity hydrate.
  • various post-treatments such as dehydration and cooling to the nodulate produced by the primary generator to obtain a high purity hydrate.
  • the particle size of the hydrate particles to be produced becomes smaller.
  • the temperature inside the reactor is lowered, or the temperature of the introduced idolate forming gas is lowered, the particle size of the hydrate particles produced increases.
  • nodulate particles having a predetermined uniform particle diameter are formed in the fluidized bed reactor, so that the fluid state of the hydrate particles in the fluidized bed reactor is stabilized.
  • the hydrate particle size is controlled by the hydrate particle size control unit based on the hydrate particle size obtained by the hydrate particle size measurement unit, so that it is a high pressure vessel. In the fluidized bed reactor, the operator can visually monitor the particle size and improve the operability without having to control the reaction conditions.
  • a dehydrator that performs physical dehydration and hydration dehydration is provided in the previous stage of the fluidized bed reactor, and the hydrate particles generated in the primary generator are preliminarily processed. Therefore, excess water may be removed.
  • the hydrate-forming gas include a gas that forms hydrate with water, such as natural gas, methane, ethane, propane, butane, carbon dioxide, oxygen, nitrogen, and hydrogen.
  • the invention described in claim 5 is the hydrate post-processing device according to claim 4, wherein the hydrate particle size measuring means images the hydrate particles flowing in the fluidized bed reactor.
  • the present invention relates to a hydrate post-processing apparatus comprising: a means; and an average particle diameter calculating means for obtaining an average particle diameter of the hydrate particles based on image data of hydrate particles imaged by the imaging means.
  • the average particle size calculation means calculates the average particle size of the hydrate particles based on the image data of the hydrate particles captured by the imaging means, when the particle size distribution of the hydrate particles changes, The hydrate particle size can be measured in real time.
  • the invention according to claim 6 is a method in which hydrate particles produced by contacting water and a hydrate-forming gas are fluidized by the hydrate-forming gas in a fluidized bed reactor.
  • a hydrate particle size control method for controlling the hydrate particle size to a predetermined average particle size, the hydrate particle size measuring step for obtaining a particle size of the hydrate particles flowing in the reactor And controlling the temperature of the hydrate-forming gas introduced into the fluidized bed reactor and the temperature inside the fluidized bed reactor based on the particle size of the hydrate particles obtained in the hydrate particle size measuring step.
  • a hydrate particle size control step for controlling the particle size of the hydrate particles.
  • the hydrate forming gas and The temperature of at least one of the inside of the fluidized bed reactor is increased when the particle size of the hydrate particles obtained by the hydrate particle size measuring means is smaller than a predetermined range, and the particle size of the particles of the hydrate particles is predetermined.
  • the present invention relates to a method for controlling a hydrate particle size, characterized in that it is lowered when it is larger than the range.
  • the hydrate forming gas and the fluidized bed reactor when the particle size of the hydrate in the fluidized bed reactor is smaller than a predetermined range, the hydrate forming gas and the fluidized bed reactor The temperature of at least one of the parts is increased to increase the particle size of the hydrate particles.
  • the temperature of at least one of the hydrate forming gas and the fluidized bed reactor is lowered to reduce the particle size of the hydrate particles. Decrease.
  • a hydrate post-treatment device and a hydrate granule that can obtain hydrate particles having an optimum particle size with high uniformity without visually monitoring the particle size.
  • a diameter control method is provided. Further, hydrate particles having strong adhesion and binding properties can be discharged quantitatively and stably.
  • FIG. 1 is a schematic configuration diagram of a hydrate post-processing apparatus according to the present invention.
  • FIG. 2 An example of an image of hydrate particles in a fluidized bed reactor, which is a secondary generator, taken with a CCD camera.
  • FIG. 3 is a schematic configuration diagram showing another embodiment of the hydrate post-processing apparatus according to the present invention.
  • FIG. 4 is a cross-sectional view taken along the line XX in FIG.
  • FIG. 5 is a sectional view taken along the line Y—Y in FIG.
  • FIG. 6 is a perspective view of a shutter.
  • a hydrate production line including a secondary generator which is an example of a hydrate post-processing apparatus according to the present invention, will be described.
  • the hydrate production line 1000 includes a primary generator 100 that generates hydrate that also has water and natural gas power, and a hydrate dehydration that dehydrates the hydrate generated by the primary generator 100.
  • Tower 200 and hydrate dehydrated in hydrate dewatering tower 200 And a secondary generator 300 for increasing the purity of hydrate by contacting with natural gas.
  • the primary generator 100 includes a reaction tank 102 for generating water and natural gas by contacting water and natural gas, a water supply line 104 for supplying water to the reaction tank 102, and a natural gas for the reaction tank 102.
  • Natural gas supply line 106 for supplying water
  • a stirrer 108 for stirring water and natural gas in the reaction tank 102
  • the natural gas supplied from the natural gas supply line 106 that has not reacted with water.
  • a gas circulation line 110 for returning the natural gas of the reaction to the reaction tank 102 and a slurry circulation line 112 for extracting and circulating the hydrate slurry generated in the reaction line 102 are provided.
  • One end of the gas circulation line 110 opens near the top of the reaction tank 102, and the other end communicates with a gas outlet pipe 114 disposed near the bottom of the reaction tank 102.
  • the gas circulation line 110 is provided with a compressor 110A and a heat exchange 110B.
  • the slurry circulation line 112 is provided with a pump 112A and a heat exchange ⁇ 112B, and hydrate slurry is drawn out from between the pump 112A and the heat exchange ⁇ 112B. Hydrate extraction line 116 is branched.
  • the primary generator 100 has a gas outlet line 120 for extracting unreacted natural gas from the reaction tank 102 and introducing it into the secondary generator 300.
  • the idrate dehydration tower 200 has a substantially upright cylindrical shape, and a bottom force hydrate slurry is introduced through a hydrate extraction line 116.
  • a dewatering screen section 202 is formed in the upper half of the hydrate dewatering tower 200.
  • a dewatering screen section 202 is formed in the dewatering screen section 202.
  • a dewatering screen 204 in which a large number of holes of, for example, 50 / zm are formed on the entire surface is formed. Is provided.
  • a water recovery jacket 206 for recovering water separated from the hydrate particles by the dehydration screen 204 is provided! /.
  • a water return line 118 for returning the water accumulated in the water recovery jacket 206 to the reaction tank 102 is provided.
  • a dewatering and idrate transporting conveyor 208 which is a screw conveyor for charging the hydrate particles dehydrated in the hydrate dewatering tower 200 into the secondary generator 300. Being! /
  • the secondary generator 300 is provided in the fluidized bed reactor 302 and the bottom of the fluidized bed reactor 302, A gas blow-out pipe 304 for injecting natural gas upward, and a jacket provided on the outer wall of the fluidized bed reactor 302, in which a refrigerant flows to maintain the inside of the fluidized bed reactor 302 at a predetermined temperature 306
  • the top force of the fluidized bed reactor 302 also has a slurry circulation line 308 that draws the mixed slurry of natural gas with the nodulate particles and returns it to the bottom of the fluidized bed reactor 302.
  • a cyclone 310 for separating the slurry into natural gas and hydrate particles is provided.
  • a gas return line 312 for returning the natural gas separated from the slurry to the fluidized bed reactor 302 is branched and communicated with the gas outlet pipe 304.
  • the gas return line 312 is provided with a compressor 312A and a heat exchanger 312B.
  • a CCD camera 314C for imaging the flowing hydrate particles is installed inside the fluidized bed reactor 3.
  • the secondary generator 300 further obtains the average particle diameter of the hydrate particles based on the image force captured by the CDD camera, and the refrigerant flowing through the jacket 306 based on the obtained average particle diameter of the hydrate particles.
  • a secondary generator controller 350 is provided that controls the amount and temperature, and the temperature of the natural gas that returns the gas return line 312 back to the fluidized bed reactor 302.
  • temperature sensors 351 and 352 are provided between the heat exchange 312A of the gas return line 31 2 and the gas outlet pipe 304 and inside the fluidized bed reactor 302, respectively. In the temperature sensors 351 and 352, respectively.
  • the temperature detection result is also input to the secondary generator control unit 350. As a result, the control of the refrigerant flowing through the heat exchanger 312B and the jacket 306 is correct, and feedback is performed along the direction.
  • a screw conveyor 316 for taking out hydrate particles is provided in the vicinity of the bottom of the fluidized bed reactor 302. Downstream of the secondary generator 300, a former 400 is provided for creating and forming the nodulate particles taken out by the take-out conveyor 316.
  • reference numeral 10 is a natural gas storage tank
  • 20 is a water storage tank.
  • the natural gas supply line 106 may be provided with a compressor 12 for boosting pressure.
  • water at a predetermined temperature supplied from the water supply line 104 and natural gas at a predetermined temperature supplied from the natural gas supply line 106 are maintained at a predetermined temperature and pressure.
  • slurry of idrate is produced.
  • Excess natural gas is also blown through the gas circulation line 110 into the slurry layer in the reaction tank 102 with the gas blowing pipe 114 force.
  • the produced slurry of the noidate is returned to the reaction tank 102 through the slurry circulation line 112, while a part of the slurry is withdrawn from the nodule extraction line 116 and is fed into the hydrate dehydration tower 200. Introduced at the bottom. In the hydrate dewatering tower 200, the slurry is separated into water and hydrate particles, and the hydrate particles having a specific gravity smaller than that of the water float up in the hydrate dewatering tower 200 and gather at the top of the hydrate dewatering tower 200. . Then, water between the hydrate particles is pushed out to the water recovery jacket 206 through the dehydration screen 204 in the dehydration screen unit 202. The water pushed out to the water recovery jacket 206 is returned to the reaction tank 102 through the water return line 118.
  • the dehydrated hydrate particles are extracted from the top of the hydrate dewatering tower 200 by the dehydrated hydrate transport conveyor 208 and introduced into the fluidized bed reactor 302 of the secondary generator 300.
  • the inside of the fluidized bed reactor 302 is maintained at a predetermined temperature by the jacket 306, and at the same time, is brought to a predetermined pressure by the natural gas derived from the gas outlet line 120 and the natural gas ejected from the gas outlet pipe 304. Is retained.
  • the hydrate particles introduced into the fluidized bed reactor 302 are maintained in a fluidized state by natural gas blown out from the gas blowing pipe 304.
  • the hydrate particles come into contact with the natural gas again in the fluidized bed reactor 302, the water in the hydrate particles reacts with the natural gas to newly generate hydrate. As a result, the hydrate particles are dried and at the same time the hydrate purity is increased. Furthermore, the particle size increases and the particle size distribution is made uniform.
  • the nodulate particles having a high particle and idrate purity and having a uniform particle size are taken out of the fluidized bed reactor 302 by the take-out conveyor 316, and granulated and formed by the forming unit 400.
  • hydrate particles are continuously imaged inside the fluidized bed reactor 302 by the CCD camera 314.
  • An example of the noid rate particle R image captured by the CCD camera 314 is shown in FIG.
  • the image data of the hydrate particles is also generated by the CCD camera 314 force.
  • the relationship between the particle size d and the number n of hydrate particles is determined. Then, the average diameter D is obtained from the particle diameter d and the number n.
  • the formula for obtaining the average diameter D is as follows.
  • the area average diameter D3 is most preferred.
  • the secondary generator control unit 350 may reduce the flow rate of the refrigerant flowing through the jacket 306, or the temperature of the refrigerant. Or the temperature inside the fluidized bed reactor 302 is increased.
  • the heat exchanger 312B is controlled to increase the temperature of the natural gas ejected from the gas outlet pipe 304. Thereby, the particle size of the hydrate particles in the fluidized bed reactor 302 is increased.
  • the secondary generator control unit 350 reduces the force that increases the flow rate of the refrigerant flowing through the jacket 306 or the temperature of the refrigerant. Then, the temperature inside the fluidized bed reactor 302 is lowered. At the same time, the heat exchange 312 ⁇ ⁇ is controlled to lower the temperature of the natural gas ejected from the gas outlet pipe 304. Thereby, the particle size of the hydrate particles in the fluidized bed reactor 302 is reduced.
  • the flow rate and temperature of the refrigerant flowing through the jacket 306 and the temperature of the natural gas ejected from the gas blowing pipe 304 are maintained as they are.
  • the particles in the fluidized bed reactor 302 are real-time.
  • the average diameter D is obtained.
  • the temperature in the fluidized bed reactor 302 and the gas blowing pipe 3 04 Force Because the temperature of the natural gas to be ejected is controlled, there is no control delay in controlling the particle size of the hydrate particles.
  • a laser irradiation type particle size measuring device can also be used as the particle size measuring means.
  • the fluidized bed reactor 302 is provided with a dispersion plate 320 having a large number of vent holes 318 therein.
  • a fluidized bed portion 322 is formed above the dispersion plate 320, and a fluidized gas introduction portion 324 is formed below the dispersion plate 320.
  • the fluidized bed reactor 302 is provided with a hydrate particle inlet 326 at the top and a fluidized gas inlet 328 at the bottom.
  • Unreacted natural gas in the fluidized bed section 322 is supplied to the fluidized gas introduction section 324 via the cyclone 310, the compressor 312A, and the heat exchanger 312B. Further, the fluidized bed reactor 302 passes through the side surface of the fluidized bed reactor 302 through the lower part of the dispersion plate 320, and is provided with a take-out competitor (hereinafter referred to as a takeout competitor) provided in the radial direction of the fluidized bed reactor 302. This is called a screw conveyor.) 316A is provided.
  • the dispersion plate 320 has a rectangular hydrate particle discharge port 330 directly above the screw conveyor 316A.
  • the screw conveyor 316A is formed of a casing 332 and screw blades 334 as shown in FIG.
  • the casing 332 has an opening 336 that faces the hydrate particle discharge port 330 of the dispersion plate 320.
  • the opening 336 is formed in the same shape as the hydrate particle discharge port 330.
  • the screw conveyor 316A has a cylindrical shutter 340 between the casing 332 and the screw blades 334.
  • the shutter 340 has a notch 344 in the body 342 thereof.
  • the notch 344 is formed by a plurality of, for example, a first plurality of notch parts 344A and a notch part 344B, and the first notch part 344A is more than the first notch part 344A.
  • the notch 344B in 2 has a larger opening width.
  • the opening area of the nodule particle discharge port 330 provided in the dispersion plate 320 can be arbitrarily changed by rotating the shutter 340.
  • the notch 344 may have an opening width that increases in a stepwise manner toward the tip of the shirt 340 as described above !, but the opening width may be continuously increased. Oh ,.
  • the shutter 340 has ring-shaped gears 346 at the tip and side surfaces thereof. Each of these gears 346 is in mesh with the small gear 348. These small gears 348 are provided on a rotating shaft 354 that passes through the fluidized bed reactor 302 and are rotated by a motor 356 with a speed reducer. Further, the screw blades 334 of the screw conveyor 316A are rotated by another motor 358.
  • the present invention has a differential pressure detecting means 360 for detecting the differential pressure between the fluidized bed portion 322 and the fluidized gas introducing portion 324.
  • the differential pressure detecting means 360 includes a first pressure sensor 362 provided at the top of the fluidized bed reactor 3002, a second pressure sensor 364 provided at the bottom of the fluidized bed reactor 302, and first and second pressure sensors.
  • the controller 366 is configured to control either one of the motors 356 and 358 or both at the same time when the differential pressure between the 362 and 364 deviates from a predetermined range force.
  • the natural gas When natural gas is supplied to the fluidized gas introduction section 324 of the fluidized bed reactor 302, the natural gas is jetted from the numerous vent holes 318 provided in the dispersion plate 320 to the fluidized bed section 322 to fluidize the hydrate particles R.
  • the fluidized hydrate particles R flow into the hydrate particle discharge port 330 provided in the dispersion plate 320, and are discharged out of the fluidized bed reactor 3002 by the screw conveyor 316A.
  • the flow state of the hydrate particles is monitored by the first and second pressure sensors 362 and 364.
  • the differential pressure is increased. It is known that the differential pressure decreases as the amount of hydrate particles in the fluidized bed portion 322 decreases as it increases.
  • the same effect can be obtained by rotating the shutter 340 to control the opening area of the hydrate particle discharge port 330 provided on the dispersion plate 320 instead of controlling the rotation speed of the screw conveyor 316A. . Further, the same effect can be obtained by controlling the screw conveyor 316A rotation speed and the rotation position of the shutter 340 simultaneously.

Abstract

A dispersing plate is provided in a fluidized bed reactor in which hydrate particles are kept in a fluid state by a hydrate forming gas introduced from below. The upper part in the dispersing plate functions as a fluidized bed part, and the lower part in the dispersing plate functions as a fluidizing gas introducing part. Further, a hydrate particle discharge port is provided in the dispersing plate, and a takeout conveyor is provided below the hydrate particle discharge port. Differential pressure detection means for detecting the differential pressure between the fluidized bed part and the fluidized gas introduction part is provided in the fluidized bed reactor. When the pressure in the fluidized bed part has become higher than the pressure in the fluidized gas introduction part, the rotation speed of the takeout conveyor is increased. On the other hand, when the pressure in the fluidized bed part has become lower than the pressure in the fluidized gas introducing part, the rotation speed of the takeout conveyor is lowered.

Description

明 細 書  Specification
ハイドレート後処理装置およびノヽイドレート粒径制御方法  Hydrate post-processing apparatus and noid rate particle size control method
技術分野  Technical field
[0001] 本発明は、ハイドレート後処理装置およびハイドレート粒径制御方法に係り、特に、 均一、且つ、最適な粒径が得られるノ、イドレート後処理装置、およびハイドレート後処 理装置におけるハイドレート粒径制御方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a hydrate post-treatment device and a hydrate particle size control method, and more particularly, to a hydrate post-treatment device and a hydrate post-treatment device capable of obtaining a uniform and optimum particle size. The present invention relates to a hydrate particle size control method.
背景技術  Background art
[0002] ノ、イドレート製造ラインとしては、水とメタンガスなどのハイドレート形成ガスを所定の 温度、圧力下で接触させてハイドレートを生成させる一次生成器と、一次生成器で生 成したノ、イドレートに更にハイドレート形成ガスを接触させてハイドレートの純度を高 める二次生成器 (水和脱水器)とを備えたものが検討されている(例えば、日本国特 開 2003— 041273号公報、および日本国特開 2003— 105362号公報参照。;)。そ して、純度だけでなぐ乾燥度の高いハイドレート粒子が容易に得られるという点から 、二次生成器として流動層反応器を用いることが検討されて 、る。  [0002] As an idrate production line, water and a hydrate-forming gas such as methane gas are brought into contact with each other under a predetermined temperature and pressure to generate a hydrate, and a primary generator generates no hydrate. A secondary generator (hydration dehydrator) that further increases the purity of the hydrate by bringing the hydrate into contact with the hydrate is under investigation (for example, Japan Special 2003- 041273). Gazette, and Japanese Unexamined Patent Publication No. 2003-105362; In view of the fact that hydrate particles having a high degree of dryness as well as purity can be easily obtained, the use of a fluidized bed reactor as a secondary generator has been studied.
[0003] 流動層反応器内のハイドレート粒子は、成形器に送られて造粒、成形されて製品と なるので、流動層反応器内のハイドレート粒子は、成形器に定量的に、且つ、安定し て供給することが要望されて 、る。  [0003] Since the hydrate particles in the fluidized bed reactor are sent to a molding machine and granulated and formed into a product, the hydrate particles in the fluidized bed reactor are quantitatively and There is a demand for a stable supply.
[0004] 他方、ハイドレート粒子の粒径が小さ!/、と、ハイドレート粒子の表面積が大きくなる からハイドレートの生成速度が速くなるが、ハイドレートの保存条件として検討されて いる大気圧、— 20°Cでの安定性が低い。したがって、二次生成器では、ハイドレート 粒子の粒径を、ハイドレートの生成速度がある程度速ぐし力も、前記保存条件での 安定性も良好な最適値になるように制御する必要がある。  [0004] On the other hand, the particle size of hydrate particles is small! /, And the surface area of hydrate particles increases, so the hydrate formation rate increases, but atmospheric pressure, which has been studied as a hydrate storage condition, — Low stability at 20 ° C. Therefore, in the secondary generator, it is necessary to control the particle size of the hydrate particles so that the generation rate of the hydrate is increased to some extent, and the stability under the above-mentioned storage conditions is an optimal value.
[0005] また、二次生成器に流動層反応器を使用した場合において、ハイドレート粒子の粒 径が揃って 、な 、と、流動層反応器の内部にぉ 、てハイドレート粒子の流動が安定 しないという問題がある。したがって、二次生成器においては、ハイドレート粒子の粒 径の均一性が高くなるように生成条件を制御する必要がある。し力しながら、流動層 反応器は、高圧容器なので、目視で粒径を制御するのは困難である。 発明の開示 [0005] In addition, when a fluidized bed reactor is used as the secondary generator, the hydrate particles have the same particle size, and the hydrate particles flow inside the fluidized bed reactor. There is a problem that it is not stable. Therefore, in the secondary generator, it is necessary to control the generation conditions so that the uniformity of the hydrate particle size is high. However, since the fluidized bed reactor is a high-pressure vessel, it is difficult to control the particle size visually. Disclosure of the invention
[0006] 本発明は、上記の問題を解決すべくなされたものであり、第 1の目的は、付着性や 結合性が強いと言われているハイドレート粒子を流動層反応器力 定量的に、且つ、 安定して抜き出すことができるハイドレート後処理装置を提供することにある。  [0006] The present invention has been made to solve the above problems, and a first object is to quantitatively convert hydrate particles, which are said to have strong adhesion and binding properties, into fluidized bed reactor force. And it is providing the hydrate post-processing apparatus which can be extracted stably.
[0007] 本発明の第 2の目的は、目視でハイドレート粒子の粒径を監視することなぐ均一性 が高ぐ且つ、最適な粒径のハイドレート粒子が得られる二次生成器などのノ、ィドレ ート後処理装置、および前記ハイドレート後処理装置においてハイドレート粒子の粒 径を制御するハイドレート粒径制御方法を提供することにある。  [0007] A second object of the present invention is to provide a secondary generator or the like that has high uniformity without visually monitoring the particle size of the hydrate particles and can obtain hydrate particles with an optimum particle size. Another object of the present invention is to provide a hydrate particle size control method for controlling the particle size of hydrate particles in the hydrate aftertreatment device and the hydrate aftertreatment device.
[0008] 請求項 1に記載の発明は、水とハイドレート形成ガスとを接触させて得られたハイド レート粒子を後処理するハイドレート後処理装置であって、前記ハイドレート粒子が、 下方カゝら導入されたハイドレート形成ガスによって流動状態に保持される流動層反応 器に多数の通気孔を有する分散板を設け、前記分散板の上方を流動層部とすると 共に前記分散板の下方を流動化ガス導入部とし、更に、前記分散板にハイドレート 粒子払出し口を設けると共に、該ハイドレート粒子払出し口の下方に取出しコンベア を設け、且つ、前記流動層反応器に、前記流動層部と前記流動化ガス導入部との差 圧を検出する差圧検出手段を設け、流動層部の圧力が流動化ガス導入部の圧力よ りも高くなつたときは前記取出しコンベアの回転速度を上げ、流動層部の圧力が流動 化ガス導入部の圧力よりも低くなつたときは前記取出しコンベアの回転速度を下げる ことを特徴とするハイドレート後処理装置に関する。  [0008] The invention described in claim 1 is a hydrate post-treatment device for post-treating hydrate particles obtained by bringing water into contact with a hydrate-forming gas, wherein the hydrate particles In addition, a fluidized bed reactor that is maintained in a fluidized state by the introduced hydrate-forming gas is provided with a dispersion plate having a large number of air holes, and the upper part of the dispersion plate is used as a fluidized bed portion and the lower part of the dispersion plate is disposed below. A fluidizing gas introduction section; a hydrate particle discharge opening provided in the dispersion plate; a takeout conveyor provided below the hydrate particle discharge opening; and the fluidized bed reactor including the fluidized bed section A differential pressure detecting means for detecting a differential pressure with the fluidized gas introduction part is provided, and when the pressure of the fluidized bed part becomes higher than the pressure of the fluidized gas introduction part, the rotational speed of the take-out conveyor is increased, When the pressure of Doso portion has decreased lower than the pressure of the fluidizing gas inlet is directed to hydrate post-processing apparatus, characterized in that lowering the rotational speed of the take-out conveyor.
[0009] このハイドレート後処理装置においては、流動層部の圧力が流動化ガス導入部の 圧力よりも高くなつたときは前記取出しコンベアの回転速度を上げ、流動層部の圧力 が流動化ガス導入部の圧力よりも低くなつたときは前記取出しコンベアの回転速度を 下げる。これにより、流動層部のおけるハイドレート粒子の流動が安定するから、付着 性や結合性の強いハイドレート粒子を前記取出しコンベアを用いて流動層反応器か ら定量的に、且つ、安定的に取り出すことができる。  In this hydrate post-treatment device, when the pressure in the fluidized bed section becomes higher than the pressure in the fluidized gas introduction section, the rotational speed of the take-out conveyor is increased, and the pressure in the fluidized bed section is increased by the fluidized gas. When the pressure is lower than the pressure in the introduction section, the rotational speed of the take-out conveyor is lowered. This stabilizes the flow of hydrate particles in the fluidized bed, so that hydrate particles with strong adhesion and binding can be quantitatively and stably obtained from the fluidized bed reactor using the take-out conveyor. It can be taken out.
[0010] 請求項 2に記載の発明は、水とハイドレート形成ガスとを接触させて得られたハイド レート粒子を後処理するハイドレート後処理装置であって、前記ハイドレート粒子が、 下方カゝら導入されたハイドレート形成ガスによって流動状態に保持される流動層反応 器に多数の通気孔を有する分散板を設け、前記分散板の上方を流動層部とすると 共に前記分散板の下方を流動化ガス導入部とし、更に、前記分散板にハイドレート 粒子払出し口を設けると共に、該ハイドレート粒子払出し口の下方に取出しコンベア を設け、且つ、前記流動層反応器に、前記流動層部と前記流動化ガス導入部との差 圧を検出する差圧検出手段を設け、更に、前記取出しコンベア内に、該取出しコン ベアと軸心を同じくする筒状のシャッターを回転自在に設け、流動層部の圧力が流 動化ガス導入部の圧力よりも高くなつたときは前記シャッターによって前記ハイドレー ト粒子払出し口の開口幅を広くし、流動層部の圧力が流動化ガス導入部の圧力より も低くなつたときは前記シャッターによって前記ハイドレート粒子払出し口の開口幅を 狭くすることを特徴とするハイドレート後処理装置に関する。 [0010] The invention according to claim 2 is a hydrate post-treatment device for post-treating hydrate particles obtained by bringing water and hydrate-forming gas into contact, wherein the hydrate particles are Fluidized bed reaction maintained in a fluidized state by the introduced hydrate-forming gas A dispersion plate having a large number of ventilation holes is provided in the vessel, the fluidized bed portion is provided above the dispersion plate, the fluidized gas introduction portion is provided below the dispersion plate, and a hydrate particle discharge port is provided on the dispersion plate. In addition, a take-out conveyor is provided below the hydrate particle discharge port, and a differential pressure detecting means for detecting a differential pressure between the fluidized bed part and the fluidized gas introduction part is provided in the fluidized bed reactor. Furthermore, when a cylindrical shutter having the same axial center as that of the take-out conveyor is rotatably provided in the take-out conveyor, and the pressure in the fluidized bed is higher than the pressure in the fluidizing gas inlet When the opening of the hydrate particle discharge port is widened by the shutter and the pressure of the fluidized bed portion becomes lower than the pressure of the fluidized gas introduction portion, the hydrate particle discharge by the shutter. About hydrate aftertreatment apparatus characterized by narrowing the opening width of the mouth.
[0011] このハイドレート後処理装置においては、流動層部の圧力が流動化ガス導入部の 圧力よりも高くなつたときは前記シャッターによって前記ハイドレート粒子払出し口の 開口幅を広くし、流動層部の圧力が流動化ガス導入部の圧力よりも低くなつたときは 前記シャッターによって前記ハイドレート粒子払出し口の開口幅を狭くするから、付 着性や結合性の強いハイドレート粒子を前記取出しコンベアを用いて流動層反応器 から定量的に、且つ、安定的に取り出すことができる。  [0011] In this hydrate post-treatment device, when the pressure in the fluidized bed portion becomes higher than the pressure in the fluidized gas introduction portion, the opening width of the hydrate particle discharge port is widened by the shutter, and the fluidized bed When the pressure of the section becomes lower than the pressure of the fluidizing gas introduction section, the opening width of the hydrate particle discharge port is narrowed by the shutter, so that hydrate particles having strong adhesion and binding properties are removed from the conveyor. Can be quantitatively and stably removed from the fluidized bed reactor.
[0012] 請求項 3に記載の発明は、請求項 1又は 2に記載のハイドレート後処理装置におい て、前記ハイドレート粒子払出し口の開口幅および前記取出しコンベアの回転速度 をそれぞれ独立、或いは同時に制御することを特徴とするノ、イドレート後処理装置に 関する。  [0012] The invention according to claim 3 is the hydrate post-processing device according to claim 1 or 2, wherein the opening width of the hydrate particle discharge port and the rotational speed of the take-out conveyor are independent or simultaneously. The present invention relates to an idle post-treatment device characterized by control.
[0013] このハイドレート後処理装置においては、前記ハイドレート粒子払出し口の開口幅 および前記取出しコンベアの回転速度をそれぞれ独立、或いは同時に制御するから 、付着性や結合性の強いハイドレート粒子を取出しコンベアを用いて流動層反応器 からより一層定量的に、且つ、安定的に払い出すことができる。  In this hydrate post-processing apparatus, the opening width of the hydrate particle discharge port and the rotation speed of the take-out conveyor are controlled independently or simultaneously, so that hydrate particles having strong adhesion and binding properties are taken out. It is possible to dispense more quantitatively and stably from the fluidized bed reactor using a conveyor.
[0014] 請求項 4に記載の発明は、水とハイドレート形成ガスとを接触させて得られたハイド レート粒子を後処理するハイドレート後処理装置であって、前記ハイドレート粒子が、 下方カゝら導入されたハイドレート形成ガスによって流動状態に保持される流動層反応 器と、前記流動層反応器を流動するハイドレート粒子の粒径を求めるハイドレート粒 径測定手段と、前記ハイドレート粒径測定手段で求められたハイドレート粒子の粒径 に基づき、前記流動層反応器に導入されるハイドレート形成ガスの温度および前記 流動層反応器内部の温度を制御してノ、イドレート粒子の粒径を制御するハイドレート 粒径制御手段とを備えてなり、前記ハイドレート粒径制御手段においては、前記ハイ ドレート形成ガスおよび前記流動層反応器内部の少なくとも一方の温度を、前記ハイ ドレート粒径制御手段で求めたハイドレート粒子の粒径が所定範囲よりも小さいとき は高くし、前記ハイドレート粒子の粒径が所定範囲よりも大きなときは低くすることを特 徴とするハイドレート後処理装置に関する。 [0014] The invention described in claim 4 is a hydrate post-treatment device for post-treating hydrate particles obtained by bringing water into contact with hydrate-forming gas, wherein the hydrate particles are A fluidized bed reactor that is maintained in a fluidized state by the introduced hydrate forming gas, and a hydrate granule for obtaining a particle size of the hydrate particles flowing in the fluidized bed reactor. Based on the particle size of the hydrate particles obtained by the diameter measuring means and the hydrate particle diameter measuring means, the temperature of the hydrate forming gas introduced into the fluidized bed reactor and the temperature inside the fluidized bed reactor are determined. And hydrate particle size control means for controlling the particle size of the hydrate particles, wherein the hydrate particle size control means includes at least one of the hydrate forming gas and the fluidized bed reactor. The temperature of the hydrate particles is increased when the hydrate particle size determined by the hydrate particle size control means is smaller than a predetermined range, and is decreased when the hydrate particle size is larger than the predetermined range. It relates to a hydrate post-processing device.
[0015] このハイドレート後処理装置は、一次生成器で生成したノヽイドレートに脱水や冷却 などの各種後処理を施し、純度の高いハイドレートとするための装置である。前記流 動層反応器においては、反応器内部の温度を高くしたり、導入されるハイドレート形 成ガスの温度を高くしたりすれば、生成するハイドレート粒子の粒径は小さくなり、反 対に、反応器内部の温度を低くしたり、導入されるノ、イドレート形成ガスの温度を低く したりすれば、生成するハイドレート粒子の粒径は大きくなる。  [0015] This hydrate post-treatment device is a device for applying various post-treatments such as dehydration and cooling to the nodulate produced by the primary generator to obtain a high purity hydrate. In the fluidized bed reactor, if the temperature inside the reactor is increased or the temperature of the hydrate forming gas to be introduced is increased, the particle size of the hydrate particles to be produced becomes smaller. In addition, if the temperature inside the reactor is lowered, or the temperature of the introduced idolate forming gas is lowered, the particle size of the hydrate particles produced increases.
[0016] 前記ノ、イドレート後処理装置においては、流動層反応器内のハイドレートの粒径が 所定範囲より小さいときは、ノ、イドレート形成ガスおよび前記流動層反応器内部の少 なくとも一方の温度を高くしてハイドレート粒子の粒径を増大させる。そして、流動層 反応器内のハイドレートの粒径が所定範囲より大きなときは、ハイドレート形成ガスお よび前記流動層反応器内部の少なくとも一方の温度を低くしてハイドレート粒子の粒 径を減少させる。  [0016] In the above-mentioned no-id post-treatment device, when the particle size of the hydrate in the fluidized bed reactor is smaller than a predetermined range, at least one of the no-, idlate-forming gas and the inside of the fluidized bed reactor. The temperature is increased to increase the particle size of the hydrate particles. When the particle size of the hydrate in the fluidized bed reactor is larger than the predetermined range, the temperature of at least one of the hydrate forming gas and the fluidized bed reactor is lowered to reduce the particle size of the hydrate particles. Let
[0017] これにより、所定の均一な粒径を有するノ、イドレート粒子が流動層反応器内に形成 されるから、流動層反応器内のハイドレート粒子の流動状態は安定する。また、前述 のように、ハイドレート粒径測定手段で求めたハイドレート粒子の粒径に基づ ヽてハ イドレート粒径制御手段でハイドレート粒径を制御して 、るから、高圧容器である流 動層反応器においてオペレータが目視で粒径を監視つつ、反応条件を制御する必 要がなぐ操作性が向上する。  [0017] As a result, nodulate particles having a predetermined uniform particle diameter are formed in the fluidized bed reactor, so that the fluid state of the hydrate particles in the fluidized bed reactor is stabilized. In addition, as described above, the hydrate particle size is controlled by the hydrate particle size control unit based on the hydrate particle size obtained by the hydrate particle size measurement unit, so that it is a high pressure vessel. In the fluidized bed reactor, the operator can visually monitor the particle size and improve the operability without having to control the reaction conditions.
[0018] なお、前記ハイドレート後処理装置においては、流動層反応器の前段に物理的脱 水や水和脱水を行う脱水器を設け、一次生成器で生成したハイドレート粒子から、予 め、余分な水を除去するようにしてもよい。ここで、ハイドレート形成性ガスとしては、 天然ガス、メタン、ェタン、プロパン、ブタン、二酸化炭素、酸素、窒素、水素のように 、水とハイドレートを形成するガスを挙げることができる。 [0018] In the hydrate post-treatment device, a dehydrator that performs physical dehydration and hydration dehydration is provided in the previous stage of the fluidized bed reactor, and the hydrate particles generated in the primary generator are preliminarily processed. Therefore, excess water may be removed. Here, examples of the hydrate-forming gas include a gas that forms hydrate with water, such as natural gas, methane, ethane, propane, butane, carbon dioxide, oxygen, nitrogen, and hydrogen.
[0019] 請求項 5に記載の発明は、請求項 4に記載のハイドレート後処理装置において、前 記ハイドレート粒径測定手段が、流動層反応器中を流動するハイドレート粒子を撮像 する撮像手段と、前記撮像手段で撮像されたハイドレート粒子の画像データに基づ いて前記ハイドレート粒子の平均粒径を求める平均粒径算出手段とを備えるハイドレ ート後処理装置に関する。  [0019] The invention described in claim 5 is the hydrate post-processing device according to claim 4, wherein the hydrate particle size measuring means images the hydrate particles flowing in the fluidized bed reactor. The present invention relates to a hydrate post-processing apparatus comprising: a means; and an average particle diameter calculating means for obtaining an average particle diameter of the hydrate particles based on image data of hydrate particles imaged by the imaging means.
[0020] このハイドレート後処理装置においては、平均粒径算出手段で算出されたハイドレ ート粒子の平均粒径が所定の範囲の値になるように、導入されるハイドレート形成ガ スおよび前記流動層反応器内部の温度を制御する。平均粒径算出手段は、撮像手 段で撮像されたハイドレート粒子の画像データに基づいてハイドレート粒子の平均粒 径を算出しているから、ハイドレート粒子の粒径分布が変化したときに、リアルタイム でハイドレート粒子の粒径を行うことができる。  [0020] In this hydrate post-treatment device, the hydrate forming gas to be introduced and the above-mentioned hydrate forming gas so that the average particle size of the hydrate particles calculated by the average particle size calculating means is within a predetermined range. Control the temperature inside the fluidized bed reactor. Since the average particle size calculation means calculates the average particle size of the hydrate particles based on the image data of the hydrate particles captured by the imaging means, when the particle size distribution of the hydrate particles changes, The hydrate particle size can be measured in real time.
[0021] 請求項 6に記載の発明は、水とハイドレート形成ガスとを接触させて生成させたノ、ィ ドレート粒子を、流動層反応器内において、ハイドレート形成ガスによって流動させる ハイドレート後処理装置において、前記ハイドレートの粒径を所定の平均粒径に制御 するハイドレート粒径制御方法であって、前記反応器内を流動するハイドレート粒子 の粒径を求めるハイドレート粒径測定工程と、前記ハイドレート粒径測定工程で求め られたハイドレート粒子の粒径に基づき、前記流動層反応器に導入されるハイドレー ト形成ガスの温度および前記流動層反応器内部の温度を制御してハイドレート粒子 の粒径を制御するハイドレート粒径制御工程とを有し、前記ハイドレート粒径制御ェ 程にお 、ては、前記ハイドレート形成ガスおよび前記流動層反応器内部の少なくとも 一方の温度を、前記ハイドレート粒径測定手段で求めたハイドレート粒子の粒径が所 定範囲よりも小さいときは高くし、前記ノ、イドレート粒子の粒径が所定範囲よりも大き なときは低くすることを特徴とするハイドレート粒径制御方法に関する。  [0021] The invention according to claim 6 is a method in which hydrate particles produced by contacting water and a hydrate-forming gas are fluidized by the hydrate-forming gas in a fluidized bed reactor. In the processing apparatus, a hydrate particle size control method for controlling the hydrate particle size to a predetermined average particle size, the hydrate particle size measuring step for obtaining a particle size of the hydrate particles flowing in the reactor And controlling the temperature of the hydrate-forming gas introduced into the fluidized bed reactor and the temperature inside the fluidized bed reactor based on the particle size of the hydrate particles obtained in the hydrate particle size measuring step. A hydrate particle size control step for controlling the particle size of the hydrate particles. In the hydrate particle size control process, the hydrate forming gas and The temperature of at least one of the inside of the fluidized bed reactor is increased when the particle size of the hydrate particles obtained by the hydrate particle size measuring means is smaller than a predetermined range, and the particle size of the particles of the hydrate particles is predetermined. The present invention relates to a method for controlling a hydrate particle size, characterized in that it is lowered when it is larger than the range.
[0022] 前記ノ、イドレート粒径制御方法においては、流動層反応器内のハイドレートの粒径 が所定範囲度よりも小さ ヽときは、ハイドレート形成ガスおよび前記流動層反応器内 部の少なくとも一方の温度を高くしてハイドレート粒子の粒径を増大させる。そして、 流動層反応器内のハイドレートの粒径が所定範囲度よりも大きなときは、ハイドレート 形成ガスおよび前記流動層反応器内部の少なくとも一方の温度を低くしてハイドレー ト粒子の粒径を減少させる。 [0022] In the above-mentioned method for controlling the particle size of the hydrate, when the particle size of the hydrate in the fluidized bed reactor is smaller than a predetermined range, the hydrate forming gas and the fluidized bed reactor The temperature of at least one of the parts is increased to increase the particle size of the hydrate particles. When the particle size of the hydrate in the fluidized bed reactor is larger than a predetermined range, the temperature of at least one of the hydrate forming gas and the fluidized bed reactor is lowered to reduce the particle size of the hydrate particles. Decrease.
[0023] これにより、所定の均一な粒径を有するノ、イドレート粒子が流動層反応器内に形成 され、流動層反応器内のハイドレート粒子の流動状態は安定する。ハイドレート粒径 測定工程で求めたノヽイドレート粒子の粒径に基づ 、てハイドレート粒径を制御して!/ヽ るから、高圧容器である流動層反応器においてオペレータが目視で粒径を監視しつ つ、反応条件を制御する必要がなぐハイドレート後処理装置の操作性が向上する。  [0023] As a result, particles and id particles having a predetermined uniform particle diameter are formed in the fluidized bed reactor, and the fluid state of the hydrate particles in the fluidized bed reactor is stabilized. Hydrate particle size Since the hydrate particle size is controlled based on the particle size of the nodulate particles obtained in the measurement process, the operator visually determines the particle size in the fluidized bed reactor, which is a high-pressure vessel. This improves the operability of the hydrate after-treatment device that does not require control of reaction conditions while monitoring.
[0024] 以上、説明したように、本発明によれば、目視で粒径を監視することなぐ均一性が 高ぐ最適な粒径のハイドレート粒子が得られるハイドレート後処理装置およびハイド レート粒径制御方法が提供される。また、付着性や結合性の強いハイドレート粒子を 定量的に、且つ、安定して払い出すことができる。  [0024] As described above, according to the present invention, a hydrate post-treatment device and a hydrate granule that can obtain hydrate particles having an optimum particle size with high uniformity without visually monitoring the particle size. A diameter control method is provided. Further, hydrate particles having strong adhesion and binding properties can be discharged quantitatively and stably.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]本発明に係るハイドレート後処理装置の概略構成図である。 FIG. 1 is a schematic configuration diagram of a hydrate post-processing apparatus according to the present invention.
[図 2]二次生成器である流動層反応器内におけるハイドレート粒子を CCDカメラで撮 像した画像の一例である。  [Fig. 2] An example of an image of hydrate particles in a fluidized bed reactor, which is a secondary generator, taken with a CCD camera.
[図 3]本発明に係るハイドレート後処理装置の他の実施形態を示す概略構成図であ る。  FIG. 3 is a schematic configuration diagram showing another embodiment of the hydrate post-processing apparatus according to the present invention.
[図 4]図 3の X— X断面図である。  4 is a cross-sectional view taken along the line XX in FIG.
[図 5]図 4の Y— Y断面図である。  FIG. 5 is a sectional view taken along the line Y—Y in FIG.
[図 6]シャッターの斜視図である。  FIG. 6 is a perspective view of a shutter.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明に係るハイドレート後処理装置の一例である二次生成器を備えたハイ ドレート製造ラインにっ 、て説明する。 Hereinafter, a hydrate production line including a secondary generator, which is an example of a hydrate post-processing apparatus according to the present invention, will be described.
[0027] このハイドレート製造ライン 1000は、図 1に示すように、水と天然ガス力もなるハイド レートを生成する一次生成器 100と、一次生成器 100で生成したハイドレートを脱水 するハイドレート脱水塔 200と、ハイドレート脱水塔 200で脱水されたハイドレートに 天然ガスを接触させてハイドレートの純度を高める二次生成器 300とを備えている。 As shown in FIG. 1, the hydrate production line 1000 includes a primary generator 100 that generates hydrate that also has water and natural gas power, and a hydrate dehydration that dehydrates the hydrate generated by the primary generator 100. Tower 200 and hydrate dehydrated in hydrate dewatering tower 200 And a secondary generator 300 for increasing the purity of hydrate by contacting with natural gas.
[0028] 一次生成器 100は、水と天然ガスとを接触させてノ、イドレートを生成させる反応タン ク 102と、反応タンク 102に水を供給する給水ライン 104と、反応タンク 102に天然ガ スを供給する天然ガス供給ライン 106と、反応タンク 102内で水と天然ガスとを攪拌 する攪拌機 108と、天然ガス供給ライン 106から供給された天然ガスのうち、水と反 応しな力つた未反応の天然ガスを反応タンク 102に戻すガス循環ライン 110と、反応 ライン 102内で生成したハイドレートのスラリーを抜き出して循環させるスラリー循環ラ イン 112とを備えている。 [0028] The primary generator 100 includes a reaction tank 102 for generating water and natural gas by contacting water and natural gas, a water supply line 104 for supplying water to the reaction tank 102, and a natural gas for the reaction tank 102. Natural gas supply line 106 for supplying water, a stirrer 108 for stirring water and natural gas in the reaction tank 102, and the natural gas supplied from the natural gas supply line 106 that has not reacted with water. A gas circulation line 110 for returning the natural gas of the reaction to the reaction tank 102 and a slurry circulation line 112 for extracting and circulating the hydrate slurry generated in the reaction line 102 are provided.
[0029] ガス循環ライン 110は、一端が反応タンク 102の頂部近郊に開口し、他端は、反応 タンク 102の底部近郊に配設されたガス吹出し管 114に連通している。ガス循環ライ ン 110には、コンプレッサ 110Aおよび熱交翻 110Bが設けられている。また、スラ リー循環ライン 112には、ポンプ 112Aおよび熱交^^ 112Bが設けられていると共 に、ポンプ 112Aと熱交^^ 112Bとの間から、ハイドレートのスラリーを外部に抜き出 すハイドレート抜出ライン 116が分岐している。更に、一次生成器 100は、未反応の 天然ガスを反応タンク 102から抜き出して二次生成器 300に導入するガス導出ライン 120を有する。 [0029] One end of the gas circulation line 110 opens near the top of the reaction tank 102, and the other end communicates with a gas outlet pipe 114 disposed near the bottom of the reaction tank 102. The gas circulation line 110 is provided with a compressor 110A and a heat exchange 110B. In addition, the slurry circulation line 112 is provided with a pump 112A and a heat exchange ^^ 112B, and hydrate slurry is drawn out from between the pump 112A and the heat exchange ^^ 112B. Hydrate extraction line 116 is branched. Further, the primary generator 100 has a gas outlet line 120 for extracting unreacted natural gas from the reaction tank 102 and introducing it into the secondary generator 300.
[0030] ノ、イドレート脱水塔 200は、略直立円筒状であり、ハイドレート抜出ライン 116を介し て底部力 ハイドレートのスラリーが導入される。ハイドレート脱水塔 200の上半部に は、脱水スクリーン部 202が形成され、脱水スクリーン部 202には、平均孔径が、例え ば、 50 /z mの孔が全面に多数形成された脱水スクリーン 204が設けられている。脱 水スクリーン 204の外側には、脱水スクリーン 204でハイドレート粒子から分離された 水を回収する水回収ジャケット 206が設けられて!/、る。水回収ジャケット 206と反応タ ンク 102との間には、水回収ジャケット 206に溜まった水を反応タンク 102に戻す水 戻りライン 118が設けられて 、る。  The idrate dehydration tower 200 has a substantially upright cylindrical shape, and a bottom force hydrate slurry is introduced through a hydrate extraction line 116. In the upper half of the hydrate dewatering tower 200, a dewatering screen section 202 is formed. In the dewatering screen section 202, a dewatering screen 204 in which a large number of holes of, for example, 50 / zm are formed on the entire surface is formed. Is provided. Outside the dewatering screen 204, a water recovery jacket 206 for recovering water separated from the hydrate particles by the dehydration screen 204 is provided! /. Between the water recovery jacket 206 and the reaction tank 102, a water return line 118 for returning the water accumulated in the water recovery jacket 206 to the reaction tank 102 is provided.
[0031] ハイドレート脱水塔 200の頂部には、ハイドレート脱水塔 200で脱水されたハイドレ ート粒子を二次生成器 300に装入するスクリューコンベアである脱水ノ、イドレート搬 送コンベア 208が設けられて!/、る。  [0031] At the top of the hydrate dewatering tower 200, there is provided a dewatering and idrate transporting conveyor 208 which is a screw conveyor for charging the hydrate particles dehydrated in the hydrate dewatering tower 200 into the secondary generator 300. Being! /
[0032] 二次生成器 300は、流動層反応器 302と、流動層反応器 302の底部に設けられ、 上方に向って天然ガスを噴射するガス吹出し管 304と、流動層反応器 302の外壁に 設けられ、内部を冷媒が流通して流動層反応器 302の内部を所定の温度に保持す るジャケット 306と、流動層反応器 302の頂部力も天然ガスをノヽイドレート粒子との混 合スラリーを抜き出して流動層反応器 302の底部に戻すスラリー循環ライン 308とを 有する。スラリー循環ライン 308の途中にはスラリーを天然ガスとハイドレート粒子とに 分離するサイクロン 310が設けられている。 [0032] The secondary generator 300 is provided in the fluidized bed reactor 302 and the bottom of the fluidized bed reactor 302, A gas blow-out pipe 304 for injecting natural gas upward, and a jacket provided on the outer wall of the fluidized bed reactor 302, in which a refrigerant flows to maintain the inside of the fluidized bed reactor 302 at a predetermined temperature 306 And the top force of the fluidized bed reactor 302 also has a slurry circulation line 308 that draws the mixed slurry of natural gas with the nodulate particles and returns it to the bottom of the fluidized bed reactor 302. In the middle of the slurry circulation line 308, a cyclone 310 for separating the slurry into natural gas and hydrate particles is provided.
[0033] サイクロン 310からは、スラリーから分離された天然ガスを流動層反応器 302に戻す ガス戻りライン 312が分岐し、ガス吹出し管 304に連通している。ガス戻りライン 312 には、コンプレッサ 312Aおよび熱交^^ 312Bが設けられている。また、流動層反 応器 3えての内部には、流動するハイドレート粒子を撮像する CCDカメラ 314Cが設 けられている。 From the cyclone 310, a gas return line 312 for returning the natural gas separated from the slurry to the fluidized bed reactor 302 is branched and communicated with the gas outlet pipe 304. The gas return line 312 is provided with a compressor 312A and a heat exchanger 312B. In addition, a CCD camera 314C for imaging the flowing hydrate particles is installed inside the fluidized bed reactor 3.
[0034] 二次生成器 300には、更に、 CDDカメラで撮像された画像力もハイドレート粒子の 平均粒径を求め、求めたハイドレート粒子の平均粒径に基づいてジャケット 306を流 れる冷媒の量と温度、およびガス戻りライン 312を流動層反応器 302に戻る天然ガス の温度を制御する二次生成器制御部 350が設けられている。また、ガス戻りライン 31 2の熱交 312Aとガス吹出し管 304との間、および流動層反応器 302の内部に は、夫々、温度センサ 351および 352が設けられ、温度センサ 351および 352におけ る温度検知結果も二次生成器制御部 350に入力される。これにより、熱交 312B およびジャケット 306を流れる冷媒の制御が正し 、方向に沿って行われるようにフィ ードバックがかけられる。  [0034] The secondary generator 300 further obtains the average particle diameter of the hydrate particles based on the image force captured by the CDD camera, and the refrigerant flowing through the jacket 306 based on the obtained average particle diameter of the hydrate particles. A secondary generator controller 350 is provided that controls the amount and temperature, and the temperature of the natural gas that returns the gas return line 312 back to the fluidized bed reactor 302. Further, temperature sensors 351 and 352 are provided between the heat exchange 312A of the gas return line 31 2 and the gas outlet pipe 304 and inside the fluidized bed reactor 302, respectively. In the temperature sensors 351 and 352, respectively. The temperature detection result is also input to the secondary generator control unit 350. As a result, the control of the refrigerant flowing through the heat exchanger 312B and the jacket 306 is correct, and feedback is performed along the direction.
[0035] 流動層反応器 302の底部近傍には、ハイドレート粒子を取り出すスクリューコンベア 316が設けられている。二次生成器 300の下流には、取出しコンベア 316で取り出さ れたノヽイドレート粒子を造立、形成する形成器 400が設けられている。なお、図 1中、 符号 10は天然ガス貯蔵タンク、 20は貯水タンクである。なお、所望により、天然ガス 供給ライン 106に昇圧用のコンプレッサ 12を設けてもょ 、。  A screw conveyor 316 for taking out hydrate particles is provided in the vicinity of the bottom of the fluidized bed reactor 302. Downstream of the secondary generator 300, a former 400 is provided for creating and forming the nodulate particles taken out by the take-out conveyor 316. In FIG. 1, reference numeral 10 is a natural gas storage tank, and 20 is a water storage tank. If desired, the natural gas supply line 106 may be provided with a compressor 12 for boosting pressure.
[0036] 以下、ハイドレート製造ライン 1000の作用につ 、て説明する。  Hereinafter, the operation of the hydrate production line 1000 will be described.
一次生成器 100では、給水ライン 104から供給された所定温度の水および天然ガ ス供給ライン 106から供給された所定温度の天然ガスが、所定温度および圧力に保 持された反応タンク 102内で接触してノ、イドレートのスラリーが生成する。余剰の天然 ガスは、ガス循環ライン 110を通ってガス吹出し管 114力も反応タンク 102中のスラリ 一層中に吹き出される。 In the primary generator 100, water at a predetermined temperature supplied from the water supply line 104 and natural gas at a predetermined temperature supplied from the natural gas supply line 106 are maintained at a predetermined temperature and pressure. In contact with the reaction tank 102 held, slurry of idrate is produced. Excess natural gas is also blown through the gas circulation line 110 into the slurry layer in the reaction tank 102 with the gas blowing pipe 114 force.
[0037] 生成したノヽイドレートのスラリーは、スラリー循環ライン 112を通って反応タンク 102 に戻される一方、前記スラリーの一部は、ノ、イドレート抜出しライン 116から抜き出さ れてハイドレート脱水塔 200の底部に導入される。ハイドレート脱水塔 200において、 スラリー は、水とハイドレート粒子とに分離し、水よりも比重の小さいハイドレート粒子 は、ハイドレート脱水塔 200中を浮上し、ハイドレート脱水塔 200の頂部に集まる。そ して、脱水スクリーン部 202においてハイドレート粒子の間の水が脱水スクリーン 204 を通って水回収ジャケット 206に押し出される。水回収ジャケット 206に押し出された 水は、水戻りライン 118を通って反応タンク 102に戻される。  [0037] The produced slurry of the noidate is returned to the reaction tank 102 through the slurry circulation line 112, while a part of the slurry is withdrawn from the nodule extraction line 116 and is fed into the hydrate dehydration tower 200. Introduced at the bottom. In the hydrate dewatering tower 200, the slurry is separated into water and hydrate particles, and the hydrate particles having a specific gravity smaller than that of the water float up in the hydrate dewatering tower 200 and gather at the top of the hydrate dewatering tower 200. . Then, water between the hydrate particles is pushed out to the water recovery jacket 206 through the dehydration screen 204 in the dehydration screen unit 202. The water pushed out to the water recovery jacket 206 is returned to the reaction tank 102 through the water return line 118.
[0038] 一方、脱水後のハイドレート粒子は、脱水ハイドレート搬送コンベア 208によってハ イドレート脱水塔 200の頂部から抜き出され、二次生成器 300の流動層反応器 302 に導入される。流動層反応器 302の内部は、ジャケット 306によって所定の温度に保 持されていると同時に、ガス導出ライン 120から導出された天然ガスや、ガス吹出し 管 304から噴出する天然ガスによって所定の圧力に保持されている。そして、流動層 反応器 302に導入されたハイドレート粒子は、ガス吹出し管 304から吹き出す天然ガ スによって流動状態に保持される。  On the other hand, the dehydrated hydrate particles are extracted from the top of the hydrate dewatering tower 200 by the dehydrated hydrate transport conveyor 208 and introduced into the fluidized bed reactor 302 of the secondary generator 300. The inside of the fluidized bed reactor 302 is maintained at a predetermined temperature by the jacket 306, and at the same time, is brought to a predetermined pressure by the natural gas derived from the gas outlet line 120 and the natural gas ejected from the gas outlet pipe 304. Is retained. The hydrate particles introduced into the fluidized bed reactor 302 are maintained in a fluidized state by natural gas blown out from the gas blowing pipe 304.
[0039] 従って、前記ハイドレート粒子は、流動層反応器 302の内部で再び天然ガスと接触 するから、ハイドレート粒子中の水と前記天然ガスとが反応して新たにハイドレートが 生成する。これにより、ハイドレート粒子は、乾燥されると同時に、ハイドレート純度が 高まる。更に、粒径は増大すると共に、粒径分布も均一化される。  Accordingly, since the hydrate particles come into contact with the natural gas again in the fluidized bed reactor 302, the water in the hydrate particles reacts with the natural gas to newly generate hydrate. As a result, the hydrate particles are dried and at the same time the hydrate purity is increased. Furthermore, the particle size increases and the particle size distribution is made uniform.
[0040] このようにして、ノ、イドレート純度が高まり、粒径が均一化されたノヽイドレート粒子は 、取出しコンベア 316で流動層反応器 302の外部に取り出され、成形器 400で造粒 、成形されて製品 Pになる。ここで、流動層反応器 302の内部には、 CCDカメラ 314 によって、ハイドレート粒子が連続的に撮像される。 CCDカメラ 314で撮像されたノヽ イドレート粒子 Rの画像の一例を図 2に示す。  [0040] In this way, the nodulate particles having a high particle and idrate purity and having a uniform particle size are taken out of the fluidized bed reactor 302 by the take-out conveyor 316, and granulated and formed by the forming unit 400. Product P. Here, hydrate particles are continuously imaged inside the fluidized bed reactor 302 by the CCD camera 314. An example of the noid rate particle R image captured by the CCD camera 314 is shown in FIG.
[0041] 二次生成器 350においては、 CCDカメラ 314力もハイドレート粒子の画像データが 入力されると、 CCDカメラ 314で撮像されたハイドレート粒子の画像の夫々について ピクセル何個分に相当するかを求め、ピクセルの個数から、各ハイドレート粒子の画 像面積 Sを求める。そして、前記画像が円形であると仮定したときに画像面積 S = π (1 2Ζ4を与える直径 dを前記ハイドレート粒子の粒径とする。 [0041] In the secondary generator 350, the image data of the hydrate particles is also generated by the CCD camera 314 force. When input, the number of pixels corresponding to each of the hydrate particle images captured by the CCD camera 314 is obtained, and the image area S of each hydrate particle is obtained from the number of pixels. Then, assuming that the image is circular, the diameter d that gives an image area S = π (12 −4) is defined as the particle size of the hydrate particles.
[0042] 次に、ハイドレート粒子の粒径 dと個数 nとの関係を求める。そして、粒径 dと個数 nと から、平均径 Dを求める。平均径 Dを求める式は、以下のようなものである。 [0042] Next, the relationship between the particle size d and the number n of hydrate particles is determined. Then, the average diameter D is obtained from the particle diameter d and the number n. The formula for obtaining the average diameter D is as follows.
(a)個数平均径 Dl =∑ (nd) / Σ η  (a) Number average diameter Dl = ∑ (nd) / Σ η
(b)長さ平均径 D2 =∑ (nd2 ) /∑nd (b) Length average diameter D2 = ∑ (nd 2 ) / ∑nd
(c)面積平均径 D3 =∑ (nd3 ) /∑ nd2 (c) Area average diameter D3 = ∑ (nd 3 ) / ∑ nd 2
(d)堆積平均径 D4 =∑ (nd4 ) /∑nd3 (d) Sedimentation average diameter D4 = ∑ (nd 4 ) / ∑nd 3
これらの式のうちでは、面積平均径 D3が最も好ましい。  Of these formulas, the area average diameter D3 is most preferred.
[0043] このようにして求めた平均径 D力 予め定められた所定範囲よりも小さいときは、二 次生成器制御部 350は、ジャケット 306を流通する冷媒の流量を絞る力、または冷媒 の温度を上げるかして流動層反応器 302内部の温度を上昇させる。同時に、熱交換 器 312Bを制御し、ガス吹出し管 304から噴出される天然ガスの温度を上昇させる。 これにより、流動層反応器 302内のハイドレート粒子の粒径は増大する。  [0043] When the average diameter D force thus obtained is smaller than a predetermined range, the secondary generator control unit 350 may reduce the flow rate of the refrigerant flowing through the jacket 306, or the temperature of the refrigerant. Or the temperature inside the fluidized bed reactor 302 is increased. At the same time, the heat exchanger 312B is controlled to increase the temperature of the natural gas ejected from the gas outlet pipe 304. Thereby, the particle size of the hydrate particles in the fluidized bed reactor 302 is increased.
[0044] 反対に、平均径 Dが、前記所定範囲よりも大きなときは、二次生成器制御部 350は 、ジャケット 306を流通する冷媒の流量を増大させる力、または冷媒の温度を下げる カゝして流動層反応器 302内部の温度を下降させる。同時に、熱交 312Βを制御 し、ガス吹出し管 304から噴出される天然ガスの温度を下降させる。これにより、流動 層反応器 302内のハイドレート粒子の粒径は減少する。  On the other hand, when the average diameter D is larger than the predetermined range, the secondary generator control unit 350 reduces the force that increases the flow rate of the refrigerant flowing through the jacket 306 or the temperature of the refrigerant. Then, the temperature inside the fluidized bed reactor 302 is lowered. At the same time, the heat exchange 312 制 御 is controlled to lower the temperature of the natural gas ejected from the gas outlet pipe 304. Thereby, the particle size of the hydrate particles in the fluidized bed reactor 302 is reduced.
[0045] 一方、平均径 Dが前記所定範囲内にあるときは、ジャケット 306を流通する冷媒の 流量と温度、およびガス吹出し管 304から噴出される天然ガスの温度は、そのままに 維持される。  On the other hand, when the average diameter D is within the predetermined range, the flow rate and temperature of the refrigerant flowing through the jacket 306 and the temperature of the natural gas ejected from the gas blowing pipe 304 are maintained as they are.
[0046] この実施形態に係るハイドレート製造ライン 1000においては、流動層反応器 302 内のハイドレート粒子を CCDカメラ 314で連続的に撮影しているから、リアルタイムで 流動層反応器 302内の粒子の平均径 Dが求められる。そして、このようにリアルタイム で求められた平均径 Dに基づいて流動層反応器 302内の温度およびガス吹出し管 3 04力 噴出される天然ガスの温度を制御して 、るから、ハイドレート粒子の粒径の制 御において制御遅れがない。以上、ノ、イドレート粒径測定手段としては、レーザ照射 式の粒径測定装置も使用できる。 In the hydrate production line 1000 according to this embodiment, since the hydrate particles in the fluidized bed reactor 302 are continuously photographed by the CCD camera 314, the particles in the fluidized bed reactor 302 are real-time. The average diameter D is obtained. Based on the average diameter D thus obtained in real time, the temperature in the fluidized bed reactor 302 and the gas blowing pipe 3 04 Force Because the temperature of the natural gas to be ejected is controlled, there is no control delay in controlling the particle size of the hydrate particles. As described above, a laser irradiation type particle size measuring device can also be used as the particle size measuring means.
[0047] 次に、本発明に係るハイドレート後処理装置におけるハイドレート粒子の払出し手 段の他の実施の形態について説明する。 Next, another embodiment of the hydrate particle dispensing means in the hydrate post-processing apparatus according to the present invention will be described.
[0048] 図 3に示すように、流動層反応器 302は、その内部に多数の通気孔 318を有する 分散板 320を設けている。そして、分散板 320の上方に流動層部 322を形成し、分 散板 320の下方に流動化ガス導入部 324を形成している。また、この流動層反応器 302は、その頂部にハイドレート粒子導入口 326を設けると共に、底部に流動化ガス 導入部 328を有している。  As shown in FIG. 3, the fluidized bed reactor 302 is provided with a dispersion plate 320 having a large number of vent holes 318 therein. A fluidized bed portion 322 is formed above the dispersion plate 320, and a fluidized gas introduction portion 324 is formed below the dispersion plate 320. The fluidized bed reactor 302 is provided with a hydrate particle inlet 326 at the top and a fluidized gas inlet 328 at the bottom.
[0049] そして、流動層部 322内の未反応の天然ガスをサイクロン 310と、コンプレッサ 312 A及び熱交換器 312Bを経て流動化ガス導入部 324に供給するようになっている。更 に、この流動層反応器 302は、分散板 320の下部に流動層反応器 302の側面を貫 通すると共に、前記流動層反応器 302の半径方向に向って設けられた取出しコンペ ァ(以下、スクリューコンベアと称する。) 316Aを備えている。  [0049] Unreacted natural gas in the fluidized bed section 322 is supplied to the fluidized gas introduction section 324 via the cyclone 310, the compressor 312A, and the heat exchanger 312B. Further, the fluidized bed reactor 302 passes through the side surface of the fluidized bed reactor 302 through the lower part of the dispersion plate 320, and is provided with a take-out competitor (hereinafter referred to as a takeout competitor) provided in the radial direction of the fluidized bed reactor 302. This is called a screw conveyor.) 316A is provided.
[0050] 上記分散板 320は、図 4に示すように、スクリューコンベア 316Aの真上に長方形の ハイドレート粒子払出し口 330を有している。このスクリューコンベア 316Aは、図 5に 示すように、ケーシング 332とスクリュー羽根 334から形成されている。その上、ケー シング 332は、分散板 320のハイドレート粒子払出し口 330に対畤する開口部 336を 有している。この開口部 336は、前記ハイドレート粒子払出し口 330と同形に形成さ れている。  [0050] As shown in Fig. 4, the dispersion plate 320 has a rectangular hydrate particle discharge port 330 directly above the screw conveyor 316A. The screw conveyor 316A is formed of a casing 332 and screw blades 334 as shown in FIG. In addition, the casing 332 has an opening 336 that faces the hydrate particle discharge port 330 of the dispersion plate 320. The opening 336 is formed in the same shape as the hydrate particle discharge port 330.
[0051] ここで、スクリュー羽根 334の直径を D"とし、分散板 320のノ、イドレート粒子払出し 口 330及びケーシング 332の開口部 336の横幅を Wとすると、 W< D "となっている。  [0051] Here, if the diameter of the screw blade 334 is D "and the width of the dispersion plate 320, the idle particle discharge port 330 and the opening 336 of the casing 332 is W, W <D".
[0052] 更に、このスクリューコンベア 316Aは、ケーシング 332とスクリュー羽根 334との間 に筒状のシャッター 340を有している。このシャッター 340は、図 6に示すように、その 胴部 342に切欠き部 344を有している。この切欠き部 344は、図 6に示すように、複 数、例えば、第 1,第 2の複数の切欠き部 344A,切欠き部 344Bにより形成され、第 1 の切欠き部 344Aよりも第 2の切欠き部 344Bの方が開口幅が大きくなつて 、る。 [0053] シャッター 340は、スクリュー羽根 334と軸線が同じであるから、このシャッター 340 を回転させることにより、分散板 320に設けたノヽイドレート粒子払出し口 330の開口 面積を任意に変更することができる。なお、上記切欠き 344は、上記のように、シャツ ター 340の先端に向って開口幅が段階状に広くなるようにしてもよ!、が、開口幅を連 続的に広げるようにしてもょ 、。 Furthermore, the screw conveyor 316A has a cylindrical shutter 340 between the casing 332 and the screw blades 334. As shown in FIG. 6, the shutter 340 has a notch 344 in the body 342 thereof. As shown in FIG. 6, the notch 344 is formed by a plurality of, for example, a first plurality of notch parts 344A and a notch part 344B, and the first notch part 344A is more than the first notch part 344A. The notch 344B in 2 has a larger opening width. [0053] Since the shutter 340 has the same axis as the screw blade 334, the opening area of the nodule particle discharge port 330 provided in the dispersion plate 320 can be arbitrarily changed by rotating the shutter 340. . The notch 344 may have an opening width that increases in a stepwise manner toward the tip of the shirt 340 as described above !, but the opening width may be continuously increased. Oh ,.
[0054] また、このシャッター 340は、図 6に示すように、その先端部と側面とにそれぞれリン グ状の歯車 346を有している。これらの各歯車 346は、小歯車 348とそれぞれ嚙み 合っている。これらの小歯車 348は、流動層反応器 302を貫通する回転軸 354に設 けられ、減速機付きのモーター 356によって回転するようになっている。また、スクリュ ーコンベア 316Aのスクリュー羽根 334は、別のモーター 358によって回転される。  Further, as shown in FIG. 6, the shutter 340 has ring-shaped gears 346 at the tip and side surfaces thereof. Each of these gears 346 is in mesh with the small gear 348. These small gears 348 are provided on a rotating shaft 354 that passes through the fluidized bed reactor 302 and are rotated by a motor 356 with a speed reducer. Further, the screw blades 334 of the screw conveyor 316A are rotated by another motor 358.
[0055] 更に、この発明は、差圧検出手段 360を有し、流動層部 322と流動化ガス導入部 3 24との差圧を検出するようになっている。この差圧検出手段 360は、流動層反応器 3 02の頂部に設けた第 1圧力センサー 362と、流動層反応器 302の底部に設けた第 2 圧力センサー 364と、第 1,第 2圧力センサー 362, 364の差圧が所定の範囲力も外 れたときに前記モーター 356, 358のいずれか一方、あるいは双方同時に制御する 制御装置 366から構成されて 、る。  Further, the present invention has a differential pressure detecting means 360 for detecting the differential pressure between the fluidized bed portion 322 and the fluidized gas introducing portion 324. The differential pressure detecting means 360 includes a first pressure sensor 362 provided at the top of the fluidized bed reactor 3002, a second pressure sensor 364 provided at the bottom of the fluidized bed reactor 302, and first and second pressure sensors. The controller 366 is configured to control either one of the motors 356 and 358 or both at the same time when the differential pressure between the 362 and 364 deviates from a predetermined range force.
[0056] 次に、ハイドレート粒子の定量払出し作業について説明する。  [0056] Next, the quantitative dispensing of hydrate particles will be described.
流動層反応器 302の流動化ガス導入部 324に天然ガスを供給すると、天然ガスは 、分散板 320に設けた多数の通気孔 318から流動層部 322に噴出してハイドレート 粒子 Rを流動化させる。流動化したハイドレート粒子 Rは、分散板 320に設けたハイド レート粒子払出し口 330に流入し、スクリューコンベア 316Aによって流動層反応器 3 02の外に排出される。  When natural gas is supplied to the fluidized gas introduction section 324 of the fluidized bed reactor 302, the natural gas is jetted from the numerous vent holes 318 provided in the dispersion plate 320 to the fluidized bed section 322 to fluidize the hydrate particles R. Let The fluidized hydrate particles R flow into the hydrate particle discharge port 330 provided in the dispersion plate 320, and are discharged out of the fluidized bed reactor 3002 by the screw conveyor 316A.
[0057] 上記ノ、イドレート粒子の流動状態は、第 1,第 2の二つの圧力センサー 362, 364 によって監視されており、流動層部 322におけるハイドレート粒子の量が増加すると、 その差圧が大きくなり、流動層部 322におけるハイドレート粒子の量が減少すると、そ の差圧が小さくなることが知られて 、る。  [0057] The flow state of the hydrate particles is monitored by the first and second pressure sensors 362 and 364. When the amount of hydrate particles in the fluidized bed 322 increases, the differential pressure is increased. It is known that the differential pressure decreases as the amount of hydrate particles in the fluidized bed portion 322 decreases as it increases.
[0058] しかして、第 1,第 2の二つの圧力センサー 362, 364の差圧が設定値よりも大きく なると、制御装置 366指令によって第 1モーター 358の回転数が増加し、スクリューコ ンベア 316Aによるハイドレート粒子の払出し量が増加する。他方、第 1,第 2の二つ の圧力センサー 362, 364の差圧が設定値よりも小さくなると、制御装置 366指令に よって第 1モーター 358の回転数が抑制され、スクリューコンベア 316Aによるハイド レート粒子の払出し量が減少する。従って、流動層反応器 302からハイドレート粒子 が定量的に払い出される。 [0058] However, when the differential pressure between the first and second pressure sensors 362, 364 becomes larger than the set value, the rotational speed of the first motor 358 is increased by the controller 366 command, and the screw co Increases the amount of hydrate particles dispensed by NVEA 316A. On the other hand, when the differential pressure between the first and second pressure sensors 362 and 364 becomes smaller than the set value, the rotation speed of the first motor 358 is suppressed by the control device 366 command, and the hydrate by the screw conveyor 316A is suppressed. The amount of discharged particles is reduced. Accordingly, hydrate particles are quantitatively discharged from the fluidized bed reactor 302.
この場合、スクリューコンベア 316Aの回転数を制御する代わりにシャッター 340を 回動させて分散板 320設けたハイドレート粒子払出し口 330の開口面積を制御する ようにしても同様の効果を得ることができる。更には、スクリューコンベア 316A回転数 とシャッター 340の回動位置とを同時に制御するようにしても同様の効果を得ることが できる。  In this case, the same effect can be obtained by rotating the shutter 340 to control the opening area of the hydrate particle discharge port 330 provided on the dispersion plate 320 instead of controlling the rotation speed of the screw conveyor 316A. . Further, the same effect can be obtained by controlling the screw conveyor 316A rotation speed and the rotation position of the shutter 340 simultaneously.

Claims

請求の範囲 The scope of the claims
[1] 水とハイドレート形成ガスとを接触させて得られたハイドレート粒子を後処理するノ、 イドレート後処理装置であって、前記ハイドレート粒子が、下方力も導入されたノ、イド レート形成ガスによって流動状態に保持される流動層反応器に多数の通気孔を有す る分散板を設け、前記分散板の上方を流動層部とすると共に前記分散板の下方を 流動化ガス導入部とし、更に、前記分散板にハイドレート粒子払出し口を設けると共 に、該ハイドレート粒子払出し口の下方に取出しコンベアを設け、且つ、前記流動層 反応器に、前記流動層部と前記流動化ガス導入部との差圧を検出する差圧検出手 段を設け、流動層部の圧力が流動化ガス導入部の圧力よりも高くなつたときは前記 取出しコンベアの回転速度を上げ、流動層部の圧力が流動化ガス導入部の圧力より も低くなつたときは前記取出しコンベアの回転速度を下げることを特徴とするノ、ィドレ ート後処理装置。  [1] An idling post-treatment apparatus for post-treating hydrate particles obtained by bringing water into contact with hydrate-forming gas, wherein the hydrate particles are formed by introducing a downward force. A fluidized bed reactor that is maintained in a fluidized state by a gas is provided with a dispersion plate having a large number of vent holes. Furthermore, a hydrate particle discharge port is provided in the dispersion plate, a take-out conveyor is provided below the hydrate particle discharge port, and the fluidized bed reactor and the fluidized gas are provided in the fluidized bed reactor. A differential pressure detection means for detecting the differential pressure with the introduction part is provided, and when the pressure in the fluidized bed part becomes higher than the pressure in the fluidized gas introduction part, the rotational speed of the take-out conveyor is increased, Pressure is fluidized gas Roh time has fallen lower than the pressure of the inlet portion, characterized in that the lower the rotational speed of the take-out conveyor, Idore over preparative post-processing apparatus.
[2] 水とハイドレート形成ガスとを接触させて得られたハイドレート粒子を後処理するノ、 イドレート後処理装置であって、前記ハイドレート粒子が、下方力も導入されたノ、イド レート形成ガスによって流動状態に保持される流動層反応器に多数の通気孔を有す る分散板を設け、前記分散板の上方を流動層部とすると共に前記分散板の下方を 流動化ガス導入部とし、更に、前記分散板にハイドレート粒子払出し口を設けると共 に、該ハイドレート粒子払出し口の下方に取出しコンベアを設け、且つ、前記流動層 反応器に、前記流動層部と前記流動化ガス導入部との差圧を検出する差圧検出手 段を設け、更に、前記取出しコンベア内に、該取出しコンベアと軸心を同じくする筒 状のシャッターを回転自在に設け、流動層部の圧力が流動化ガス導入部の圧力より も高くなつたときは前記シャッターによって前記ハイドレート粒子払出し口の開口幅を 広くし、流動層部の圧力が流動化ガス導入部の圧力よりも低くなつたときは前記シャ ッターによって前記ハイドレート粒子払出し口の開口幅を狭くすることを特徴とするハ イドレート後処理装置。  [2] A post-treatment device for post-treatment of hydrate particles obtained by bringing water into contact with a hydrate-forming gas, wherein the hydrate particles are formed by introducing downward force. A fluidized bed reactor that is maintained in a fluidized state by a gas is provided with a dispersion plate having a large number of vent holes. Furthermore, a hydrate particle discharge port is provided in the dispersion plate, a take-out conveyor is provided below the hydrate particle discharge port, and the fluidized bed reactor and the fluidized gas are provided in the fluidized bed reactor. A differential pressure detection means for detecting the differential pressure with the introduction section is provided, and a cylindrical shutter having the same axis as that of the take-out conveyor is rotatably provided in the take-out conveyor so that the pressure in the fluidized bed section is reduced. Fluidization When the pressure in the fluid inlet is higher than the pressure in the fluidized gas inlet, the shutter is used to widen the opening width of the hydrate particle outlet, and when the pressure in the fluidized bed is lower than the pressure in the fluidized gas inlet. A hydrate post-processing apparatus characterized in that the opening width of the hydrate particle discharge port is narrowed by a cutter.
[3] 前記ノ、イドレート粒子払出し口の開口幅および前記取出しコンベアの回転速度を それぞれ独立、或いは同時に制御することを特徴とする請求項 1又は 2に記載のハイ ドレート後処理装置。 [3] The hydrate post-processing apparatus according to claim 1 or 2, wherein an opening width of the idle particle discharge port and a rotation speed of the take-out conveyor are controlled independently or simultaneously.
[4] 水とハイドレート形成ガスとを接触させて得られたハイドレート粒子を後処理するノ、 イドレート後処理装置であって、前記ハイドレート粒子が、下方力も導入されたノ、イド レート形成ガスによって流動状態に保持される流動層反応器と、前記流動層反応器 を流動するハイドレート粒子の粒径を求めるハイドレート粒径測定手段と、前記ハイド レート粒径測定手段で求められたハイドレート粒子の粒径に基づき、前記流動層反 応器に導入されるハイドレート形成ガスの温度および前記流動層反応器内部の温度 を制御してハイドレート粒子の粒径を制御するハイドレート粒径制御手段とを備えて なり、前記ハイドレート粒径制御手段においては、前記ハイドレート形成ガスおよび前 記流動層反応器内部の少なくとも一方の温度を、前記ハイドレート粒径制御手段で 求めたハイドレート粒子の粒径が所定範囲よりも小さいときは高くし、前記ハイドレート 粒子の粒径が所定範囲よりも大きなときは低くすることを特徴とするハイドレート後処 理装置。 [4] A post-treatment device for post-treatment of hydrate particles obtained by bringing water into contact with a hydrate-forming gas, wherein the hydrate particles are hydrate-formation in which downward force is also introduced. A fluidized bed reactor that is maintained in a fluidized state by a gas, a hydrate particle size measuring means for determining the particle size of hydrate particles flowing in the fluidized bed reactor, and a hydrate determined by the hydrate particle size measuring means. The hydrate particle size is controlled by controlling the temperature of the hydrate forming gas introduced into the fluidized bed reactor and the temperature inside the fluidized bed reactor based on the particle size of the rate particles. Control means, wherein the hydrate particle size control means is configured to control the temperature of at least one of the hydrate forming gas and the fluidized bed reactor in advance. Hydrate characterized in that it is increased when the particle size of the hydrate particles obtained by the hydrate particle size control means is smaller than a predetermined range, and is lowered when the particle size of the hydrate particles is larger than the predetermined range. Post-processing device.
[5] 前記ハイドレート粒径測定手段は、流動層反応器中を流動するハイドレート粒子を 撮像する撮像手段と、前記撮像手段で撮像されたハイドレート粒子の画像データに 基づいて前記ハイドレート粒子の平均粒径を求める平均粒径算出手段とを備える請 求項 4に記載のハイドレート後処理装置。  [5] The hydrate particle size measuring means includes an imaging means for imaging hydrate particles flowing in a fluidized bed reactor, and the hydrate particles based on image data of hydrate particles imaged by the imaging means. The hydrate post-processing apparatus according to claim 4, further comprising an average particle diameter calculating means for determining an average particle diameter of the hydrate.
[6] 水とハイドレート形成ガスとを接触させて生成させたハイドレート粒子を、流動層反 応器内において、ハイドレート形成ガスによって流動させるハイドレート後処理装置に ぉ 、て、前記ハイドレートの粒径を所定の平均粒径に制御するハイドレート粒径制御 方法であって、前記反応器内を流動するハイドレート粒子の粒径を求めるハイドレー ト粒径測定工程と、前記ハイドレート粒径測定工程で求められたハイドレート粒子の 粒径に基づき、前記流動層反応器に導入されるハイドレート形成ガスの温度および 前記流動層反応器内部の温度を制御してハイドレート粒子の粒径を制御するハイド レート粒径制御工程とを有し、前記ノ、イドレート粒径制御工程においては、前記ハイ ドレート形成ガスおよび前記流動層反応器内部の少なくとも一方の温度を、前記ハイ ドレート粒径測定手段で求めたハイドレート粒子の粒径が所定範囲よりも小さいとき は高くし、前記ハイドレート粒子の粒径が所定範囲よりも大きなときは低くすることを特 徴とするハイドレート粒径制御方法。  [6] A hydrate post-treatment device in which hydrate particles produced by contacting water and a hydrate-forming gas are caused to flow in the fluidized bed reactor by the hydrate-forming gas, and then the hydrate A hydrate particle size control method for controlling the particle size of the hydrate to a predetermined average particle size, the hydrate particle size measurement step for obtaining the particle size of the hydrate particles flowing in the reactor, and the hydrate particle size Based on the particle size of the hydrate particles obtained in the measurement process, the temperature of the hydrate forming gas introduced into the fluidized bed reactor and the temperature inside the fluidized bed reactor are controlled to control the particle size of the hydrate particles. A hydrate particle size control step for controlling the hydrate particle size control step. In either case, the temperature is increased when the particle size of the hydrate particles obtained by the hydrate particle size measuring means is smaller than a predetermined range, and is decreased when the particle size of the hydrate particles is larger than the predetermined range. A hydrate particle size control method characterized by this.
PCT/JP2006/311100 2006-06-02 2006-06-02 Hydrate post treatment apparatus and hydrate particle diameter control method WO2007141833A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/311100 WO2007141833A1 (en) 2006-06-02 2006-06-02 Hydrate post treatment apparatus and hydrate particle diameter control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/311100 WO2007141833A1 (en) 2006-06-02 2006-06-02 Hydrate post treatment apparatus and hydrate particle diameter control method

Publications (1)

Publication Number Publication Date
WO2007141833A1 true WO2007141833A1 (en) 2007-12-13

Family

ID=38801106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311100 WO2007141833A1 (en) 2006-06-02 2006-06-02 Hydrate post treatment apparatus and hydrate particle diameter control method

Country Status (1)

Country Link
WO (1) WO2007141833A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108434790A (en) * 2018-05-09 2018-08-24 常州大学 A kind of hydrate slurry gas-liquid-solid three-phase separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255945A (en) * 2004-03-15 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for producing gas hydrate
JP2006117755A (en) * 2004-10-20 2006-05-11 Mitsui Eng & Shipbuild Co Ltd Apparatus for forming high concentration gas hydrate and gas hydrate production plant using the apparatus
JP2006160820A (en) * 2004-12-03 2006-06-22 Mitsui Eng & Shipbuild Co Ltd Hydrate post-treatment apparatus and hydrate particle size-controlling method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255945A (en) * 2004-03-15 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for producing gas hydrate
JP2006117755A (en) * 2004-10-20 2006-05-11 Mitsui Eng & Shipbuild Co Ltd Apparatus for forming high concentration gas hydrate and gas hydrate production plant using the apparatus
JP2006160820A (en) * 2004-12-03 2006-06-22 Mitsui Eng & Shipbuild Co Ltd Hydrate post-treatment apparatus and hydrate particle size-controlling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108434790A (en) * 2018-05-09 2018-08-24 常州大学 A kind of hydrate slurry gas-liquid-solid three-phase separator

Similar Documents

Publication Publication Date Title
CN1301788C (en) Continuous slurry polymerization volatile removal
JPH10503971A (en) Method for producing gas hydrate
EP2800725A1 (en) Carbonation device and method of carbonation using the same
US20170241710A1 (en) Non-Thermal Drying Systems with Vacuum Throttle Flash Generators and Processing Vessels
CN101410684B (en) Spray dryer, spray dry method, and polymer powder
JP5156903B2 (en) Continuous production and dehydration apparatus and method of gas hydrate by centrifugal principle
CN107056582A (en) Coal-ethylene glycol carbonylation system reclaims the system and method for methyl nitrite
JP2007224249A (en) Cooling apparatus for gas hydrate pellet
WO2007141833A1 (en) Hydrate post treatment apparatus and hydrate particle diameter control method
JP4303666B2 (en) Fluidized bed reactor for gas hydrate slurry
JP2009029946A (en) Concentration measuring method for gas hydrate, and device therefor
CN110038503B (en) Synthesis process system and method of fluororubber
CN109588048A (en) The production method of sodium bicarbonate process units using burning waste gas and the sodium bicarbonate using the device
CN1692078A (en) Method for continuous preparation of nanometer-sized hydrous zirconia sol
WO2003076057A1 (en) Ozone water supplying apparatus
JP5101749B2 (en) Acetylene generation facility, method for controlling acetylene generation facility, and method for producing acetylene gas
CN107362765A (en) Oximation reaction feeding regulating device and adjusting method
KR101571250B1 (en) Apparatus for manufacturing for sodium bicarbonate and method for manufacturing the same
WO2007110945A1 (en) Hydrate production apparatus and method of controlling hydrate particle diameter
KR100927097B1 (en) Apparatus for continuous production a catalist
JP2006143771A (en) Method and apparatus for producing gas hydrate
JP4564836B2 (en) Hydrate post-treatment device and hydrate particle size control method
JP5426106B2 (en) Gas hydrate manufacturing apparatus and gas hydrate concentration measuring apparatus
JP2000309785A (en) Apparatus and method for producing gas hydrate
KR101648735B1 (en) Pelletizer-Integrated Stirring Reactor for Clathrate Hydrate Production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06756921

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 06756921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP