WO2007141182A2 - Verwendung von vinylacetat-sulfonat-copolymeren als solubilisatoren für in wasser schwerlösliche verbindungen - Google Patents

Verwendung von vinylacetat-sulfonat-copolymeren als solubilisatoren für in wasser schwerlösliche verbindungen Download PDF

Info

Publication number
WO2007141182A2
WO2007141182A2 PCT/EP2007/055309 EP2007055309W WO2007141182A2 WO 2007141182 A2 WO2007141182 A2 WO 2007141182A2 EP 2007055309 W EP2007055309 W EP 2007055309W WO 2007141182 A2 WO2007141182 A2 WO 2007141182A2
Authority
WO
WIPO (PCT)
Prior art keywords
copolymers
water
soluble
use according
preparations
Prior art date
Application number
PCT/EP2007/055309
Other languages
English (en)
French (fr)
Other versions
WO2007141182A3 (de
Inventor
Rainer Dobrawa
Nathalie Bouillo
Ronald Frans Maria Lange
Kathrin MEYER-BÖHM
Murat Mertoglu
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to JP2009513652A priority Critical patent/JP2009540032A/ja
Priority to EP07729716A priority patent/EP2029107A2/de
Priority to US12/303,509 priority patent/US20090258953A1/en
Publication of WO2007141182A2 publication Critical patent/WO2007141182A2/de
Publication of WO2007141182A3 publication Critical patent/WO2007141182A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/30Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8147Homopolymers or copolymers of acids; Metal or ammonium salts thereof, e.g. crotonic acid, (meth)acrylic acid; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/382Esters containing sulfur and containing oxygen, e.g. 2-sulfoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F228/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
    • C08F228/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a bond to sulfur

Definitions

  • the invention relates to the use of vinyl acetate-sulfonate copolymers as solubilizers of sparingly soluble in water biologically active substances. Furthermore, the invention relates to corresponding preparations for human, animal and plant use and to specific copolymers.
  • Solubilization is understood to mean the solubilization of substances which are soluble or insoluble in a particular solvent, in particular water, by surface-active compounds, the solubilizers. Such solublisers are able to convert poorly water-soluble or water-insoluble substances into clear, at most opalescent aqueous solutions, without the chemical structure of these substances undergoing any change (cf. Römpp Chemie Lexikon, 9th edition, Bd.5. P. 4203, Thieme Verlag, Stuttgart, 1992).
  • solubilizates prepared are characterized in that the poorly water-soluble or water-insoluble substance is colloidally dissolved in the molecular associates of the surface-active compounds which form in aqueous solution-for example the so-called micelles.
  • the resulting solutions are stable single-phase systems that appear optically clear to opalescent and can be prepared without energy input.
  • solubilizers can improve the appearance of cosmetic formulations as well as food preparations by rendering the formulations transparent.
  • the bioavailability and thus the effect of drugs can be increased by the use of solubilizers.
  • solubilizers for pharmaceutical drugs and cosmetic active ingredients surfactants such as ethoxylated (hydrogenated) castor oil, ethoxylated sorbitan fatty acid esters or ethoxylated hydroxystearic acid are mainly used.
  • solubilizers described above, used so far show a number of application disadvantages.
  • the known solubilizers have only a small solubilizing effect for some sparingly soluble drugs such as clotrimazole.
  • solubilizers are usually liquid or semi-solid compounds, which have unfavorable processing properties as a result.
  • Vinyl acetate-sulfonate copolymers are known per se. Corresponding copolymers and their use as textile finishing agents are described, for example, in US Pat. No. 2,834,759.
  • JP-A 51003383 discloses copolymers of vinyl acetate and allylsulfonates and their use as emulsifiers for epoxy resins.
  • Copolymers of vinyl acetate and allylsulfonates and their use as emulsifiers for acrylic resin coating compositions are known from JP-A 50160334.
  • JP-A 09202812 discloses the preparation of polyvinyl esters in the presence of small amounts of allylsulfonates, the allyl sulfonates being known as phase transfer agents.
  • the object was to provide novel solubilizers for pharmaceutical, cosmetic, food-technical as well as agrotechnical applications, which are able to act in aqueous medium as a solubilizer for corresponding sparingly water-soluble active ingredients.
  • the object was achieved by the use of vinyl acetate sulfonate copolymers as solubilizers for sparingly soluble in water substances.
  • Vinyl acetate-sulfonate copolymers according to the invention are copolymers of vinyl acetate and sulfonate-containing monoethylenically unsaturated monomers and optionally further comonomers.
  • Suitable monomers containing sulfonate groups according to the invention are monoethylenically unsaturated sulfonic acid compounds.
  • Suitable sulfonic acid compounds are, for example, sulfonic acid alkyl esters of acrylic acid or methacrylic acid, such as sulfopropyl acrylate or sulfopropyl methacrylate.
  • sulfonic acid-C 1 -C 10 -alkylamides of acrylic acid or of methacrylic acid for example acrylamide-methylpropanesulfonic acid (AMPS).
  • AMPS acrylamide-methylpropanesulfonic acid
  • ⁇ -alkene-1-sulfonic acids having 2 to 10 carbon atoms.
  • Preferred monomers are selected from the group consisting of vinyl sulfonate, allyl sulfonate, methallyl sulfonate (2-methyl-2-propene sulfonate), sulfopropyl acrylate and sulfopropyl methacrylate.
  • the sulfonate monomers are usually used in the form of their salts. Suitable salts are, in particular, the alkali metal salts, for example lithium, potassium or sodium salts, the sodium salts and potassium salts being preferred.
  • the sulfonate monomers are usually fed to the polymerization in the form of aqueous solutions, it being possible for the concentration of the sulfonate monomer to be from 10 to 70% by weight, preferably from 20 to 40% by weight.
  • the sulfonic acid-containing monomers can also be used as solids and dissolved or suspended in the solvent. In the course of the polymerization, the monomer dissolves slowly.
  • the sulfonate group-bearing copolymers are obtainable by copolymerizing a) 80 to 99.5% by weight of vinyl acetate and b) 0.5 to 20% by weight of the sulfonate monomer. Preference is given to using a) 85 to 98% by weight and b) 2 to 15% by weight, particularly preferably a) 85 to 95% by weight and b) 5 to 15% by weight.
  • Suitable solvents are, for example, alcohols, such as methanol, ethanol, n-propanol, and isopropanol, and also glycols, such as ethylene glycol and glycerol. Further suitable solvents are acetic acid esters such as, for example, ethyl acetate or butyl acetate. Preferred solvent is n-propanol.
  • the polymerization is preferably carried out at temperatures of 60 to 100 ° C.
  • the polymerization may be carried out under atmospheric pressure or under an overpressure of up to 1.5 MPa, with atmospheric pressure being preferred.
  • free-radical initiators are used as radical initiators.
  • the amounts of initiator or initiator mixtures used based on the monomer used are between 0.01 and 10 wt .-%, preferably between 0.3 and 5 wt .-%.
  • the polymerization is carried out in such a way that initially an oil-soluble radical initiator, which according to the invention comprises a free-radical initiator which is soluble in organic solvents and insoluble in water, is used. is stood, and at the beginning of the postpolymerization, a water-soluble radical initiator is used.
  • the post-polymerization phase begins in the feed process after the monomer feeds are completely added. In the batch process, the postpolymerization phase is generally considered to account for two-thirds of the total reaction time.
  • Suitable free-radical initiators are both organic and inorganic peroxides such as sodium persulfate or azo initiators such as 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis (2-methylpropionamide) dihydrochloride ), 2,2'-azo bis (2-aminidinopropan) dihydrochloride, 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis [2- (2-imidazolin-2-yl) propane], 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), dimethyl 2,2'-azobis ( 2-methylpropionate), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile).
  • azo initiators such as 2,2'-azobis [2- (2-imidazolin-2-yl
  • Peroxidic initiators are, for example, dibenzoyl peroxide, diacetyl peroxide, succinic peroxide, tert-butyl perpivalate, tert-butyl 2-ethylhexanoate, tert-butylperneodecanoate, tert-butyl permalate, bis (tert-butylperoxy) cyclohexane, tert.
  • the initiators mentioned can also be used in combination with redox components such as ascorbic acid.
  • Solvent-soluble radical initiators include, for example, 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), dimethyl 2,2'-azobis - (2-methylpropionate), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), dibenzoyl peroxide, diacetyl peroxide, succinyl peroxide, tert-butyl perpivalate, tert-butyl 2-ethylhexanoate, tert-Butylperneodecanoat, tert Butylpermaleinate, bis (tert-butylperoxy) cyclohexane, tert-butylperoxy-isopropylcarbonate, tert-butylperacetate, 2,2-bis (tert-butylperoxy) -butane, dicumylper
  • the free-radical polymerization can take place in the presence of emulsifiers, if appropriate further protective colloids, if appropriate buffer systems and, if appropriate, subsequent pH adjustment by means of bases or acids.
  • Suitable molecular weight regulators are hydrogen sulfide compounds such as alkyl mercaptans, for example n-dodecyl mercaptan, tert-dodecyl mercaptan, thioglycolic acid and their esters, mercaptoalkanols such as mercaptoethanol. Further suitable regulators are mentioned, for example, in DE 197 12 247 A1, page 4.
  • the required amount of the molecular weight regulator is in the range from 0 to 5% by weight, based on the amount of monomer to be polymerized, in particular 0.05 to 2% by weight, particularly preferably 0.1 to 1.5% by weight.
  • Mercaptoethanol is preferably used.
  • the preparation of the copolymers which can be used according to the invention can also be carried out in the presence of suitable difunctional crosslinker components (crosslinkers) and / or in the presence of suitable regulators.
  • Suitable crosslinkers are those monomers which have a crosslinking function, for example compounds having at least two ethylenically unsaturated, non-conjugated double bonds in the molecule.
  • Examples include acrylic esters, methacrylic esters, allyl ethers or vinyl ethers of at least dihydric alcohols.
  • the OH groups of the underlying alcohols may be completely or partially etherified or esterified; however, the crosslinkers contain at least two ethylenically unsaturated groups.
  • Examples of the underlying alcohols are dihydric alcohols such as 1, 2
  • Ethanediol 1, 2-propanediol, 1, 3-propanediol, 1, 2-butanediol, 1, 3-butanediol, 2,3-butanediol, 1, 4-butanediol, but-2-en-1, 4-diol, 1, 2-pentanediol, 1, 5-pentanediol, 1, 2-hexanediol, 1, 6-hexanediol, 1, 10-decanediol, 1, 2-dodecanediol, 1, 12-dodecanediol, neopentyl glycol, 3-methylpentan-1, 5-diol, 2,5-dimethyl-1,3-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,4-bis (hydroxymethyl)
  • the ethylene oxide - and Propy contained incorporated lenoxid groups.
  • underlying alcohols having more than two OH groups are trimethylolpropane, glycerol, pentaerythritol, 1, 2,5-pentanetriol, 1, 2,6-hexanetriol, triethoxycyanuric acid, sorbitan, sugars such as sucrose, glucose,
  • the polyhydric alcohols can also be used after reaction with ethylene oxide or propylene oxide as the corresponding ethoxylates or propoxylates.
  • the polyhydric alcohols can also be first converted by reaction with epichlorohydrin in the corresponding glycidyl ether.
  • crosslinkers are the vinyl esters or the esters of monohydric, unsaturated alcohols with ethylenically unsaturated C3 to C6 carboxylic acids, for example Acrylic acid, methacrylic acid, itaconic acid, maleic acid or fumaric acid.
  • examples of such alcohols are allyl alcohol, 1-buten-3-ol, 5-hexen-1-ol, 1-octene-3-ol, 9-decene-1-ol, dicyclopentenyl alcohol, 10-undecen-1-ol, cinnamyl alcohol , Citronellol, crotyl alcohol or cis-9-octadecen-1-ol.
  • esterify the monohydric, unsaturated alcohols with polybasic carboxylic acids for example malonic acid, tartaric acid, trimellitic acid, phthalic acid, terephthalic acid, citric acid or succinic acid.
  • crosslinkers are esters of unsaturated carboxylic acids with the polyhydric alcohols described above, for example oleic acid, crotonic acid, cinnamic acid or 10-undecenoic acid.
  • Suitable crosslinkers are also straight-chain or branched, linear or cyclic, aliphatic or aromatic hydrocarbons which have at least two double bonds which may not be conjugated to aliphatic hydrocarbons, e.g. Divinylbenzene, divinyltoluene, 1, 7-octadiene, 1, 9-decadiene, 4-vinyl-1-cyclohexene, trivinylcyclohexane or polybutadienes having molecular weights from 200 to 20,000.
  • crosslinkers are the acrylic acid amides, methacrylic acid amides and N-allylamines of at least dihydric amines.
  • Such amines are, for example, 1,2-diaminomethane, 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, 1,12-dodecanediamine, piperazine, diethylenetriamine or isophoronediamine.
  • amides of allylamine and unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, or at least divalent carboxylic acids, as described above.
  • triallylamine and triallylmonoalkylammonium salts e.g. Triallylmethylammonium chloride or methylsulfate, suitable as a crosslinker.
  • N-vinyl compounds of urea derivatives at least difunctional amides, cyanurates or urethanes, for example of urea, ethylene urea, propylene urea or tartaramide, e.g. N, N'-divinylethyleneurea or N, N'-divinylpropyleneurea.
  • crosslinkers are divinyldioxane, tetraallylsilane or tetravinylsilane.
  • the monomer or a monomer mixture or the monomer (s) emulsion together with the initiator which is usually in solution, in a stirred reactor at the polymerization temperature presents (batch process), or optionally continuously or in several successive stages in the polymerization reactor metered (feed process).
  • feed process it is customary that the reactor before the actual polymerization in addition to the organic solvent or water (to allow stirring of the reactor) already with subsets, rarely the total amount intended for the polymerization, the starting materials such as emulsifiers, protective colloids , Monomeren, regulators etc. or subsets of the feeds (ia monomer or emulsion feed and initiator feed) is filled.
  • the copolymers thus obtained are water-soluble or water-dispersible.
  • the copolymers may have Fikentscher K values, measured at 1% strength by weight in water, of from 4 to 30, preferably from 5 to 25, particularly preferably from 5 to 15.
  • copolymers to be used according to the invention can in principle be used in all fields in which only sparingly soluble or insoluble substances are to be used in water either in aqueous preparations or should have their effect in an aqueous medium.
  • the copolymers accordingly find use as solubilizers of water-sparingly soluble substances, in particular biologically active substances.
  • the term "sparingly soluble in water” also encompasses practically insoluble substances and means that a solution of the substance in water requires at least 30 to 100 g of water per g of substance at 20 ° C. In the case of practically insoluble substances, at least 10,000 g of water per g substance needed.
  • water-sparingly soluble biologically active substances are pharmaceutical active substances for humans and animals, cosmetic or agrochemical active substances or dietary supplements or dietary active substances.
  • Also suitable as the sparingly soluble substances to be solubilized are also dyes such as inorganic or organic pigments.
  • amphiphilic compounds for use as solubilizers for pharmaceutical and cosmetic preparations and food preparations are provided. They have the property of poorly soluble active ingredients in the field of pharmacy and cosmetics, sparingly soluble supplements, for example, vitamins and carotenoids but also to solubilize sparingly soluble active ingredients for use in plant protection products and veterinary active ingredients.
  • the copolymers can be used as solubilizers in cosmetic formulations.
  • they are suitable as solubilizers for cosmetic oils. They have good solubility for fats and oils such as peanut oil, jojoba oil, coconut oil, almond oil, olive oil, palm oil, castor oil, soybean oil or wheat germ oil or for essential oils such as mountain pine oil, lavender oil, rosemary oil, pine needle oil, pine needle oil, eucalyptus oil, peppermint oil, sage oil, bergamot oil , Turpentine oil, lemon balm oil, juniper oil, lemon oil, aniseed oil, cardamom oil; Camphor oil etc. or for mixtures of these oils.
  • fats and oils such as peanut oil, jojoba oil, coconut oil, almond oil, olive oil, palm oil, castor oil, soybean oil or wheat germ oil or for essential oils such as mountain pine oil, lavender oil, rosemary oil, pine needle oil, pine needle oil, eucalyptus oil, peppermint oil, sage oil,
  • the polymers according to the invention can be used as solubilizers for water-insoluble or insoluble UV absorbers such as, for example, 2-hydroxy-4-methoxybenzophenone (Uvinul® M 40, BASF), 2,2 ', 4,4'-tetrahydroxybenzophenone (Uvinul® D 50), 2,2'-dihydroxy-4,4'-dimethoxybenzophenone (Uvinul® D49), 2,4-dihydroxybenzophenone (Uvinul® 400), 2-cyano-3,3-diphenylacrylic acid 2'-ethylhexyl ester (Uvinul ® N 539), 2,4,6-trianilino-p- (carbo-2'-ethylhexyl-1 '-oxi) -1, 3,5-triazine (Uvinul ® T 150), 3- (4-methoxybenzylidene) -camphor (Eusolex ® 6300, Fa.
  • water-insoluble or insoluble UV absorbers such
  • the present invention therefore also cosmetic preparations containing at least one of the copolymers of the invention mentioned above as solubilizers. Preference is given to those preparations which, in addition to the solubilizer, contain one or more sparingly soluble cosmetic active ingredients, for example the abovementioned oils or UV absorbers.
  • formulations are water or water / alcohol based solubilisates.
  • the solubilizers according to the invention are used in a ratio of 0.2: 1 to 20: 1, preferably 1: 1 to 15: 1, more preferably 2: 1 to 12: 1 to the sparingly soluble cosmetic active ingredient.
  • the content of solubilizer according to the invention in the cosmetic preparation is, depending on the active ingredient, in the range of 1 to 50 wt .-%, preferably 3 to 40 wt .-%, particularly preferably 5 to 30 wt .-%.
  • auxiliaries may be added to this formulation, for example nonionic, cationic or anionic surfactants such as alkylpolyglycosides, fatty alcohol sulfates, fatty alcohol ether sulfates, alkanesulfonates, fatty alcohol ethoxylates, fatty alcohol phosphates, alkylbetaines, sorbitan esters, POE sorbitan esters, sugar fatty acid esters, fatty acid polyglycerol esters, fatty acid partial glycerides, fatty acid carboxylates, fatty alcohol sulfosuccinates, fatty acid sarcosinates , Fatty acid isethionates, fatty acid taurinates, citric acid esters, silicone copolymers, fatty acid polyglycol esters, fatty acid amides, fatty acid alkanolamides, quaternary ammonium compounds, alkylphenol oxethylates, fatty oxe
  • natural or synthetic compounds e.g. Lanolin derivatives, cholesterol derivatives, isopropyl myristate, isopropyl palmitate, electrolytes, dyes, preservatives, acids (e.g., lactic acid, citric acid).
  • formulations are used, for example, in bath-supplement preparations such as bath oils, shaving waters, face lotions, hair lotions, colognes, toilet water and in sunscreens.
  • bath-supplement preparations such as bath oils, shaving waters, face lotions, hair lotions, colognes, toilet water and in sunscreens.
  • Another field of application is the field of oral care, for example in mouthwashes, toothpastes, denture detersive creams and the like.
  • copolymers are also suitable for industrial applications, for example for preparations of sparingly soluble colorants, in toners, preparations of magnetic pigments and the like.
  • the copolymers according to the invention can be used as a 100% substance or preferably as an aqueous solution.
  • the solubilizer is usually dissolved in water and intensively mixed with the sparingly soluble cosmetic active ingredient to be used in each case.
  • solubilizer it is also possible for the solubilizer to be intensively mixed with the sparingly soluble cosmetic active ingredient to be used in each case and then mixed with demineralized water with constant stirring.
  • Solubilizers for pharmaceutical applications are also suitable for use as solubilizers in pharmaceutical preparations of any kind, which are characterized in that they may contain one or more sparingly soluble in water or insoluble in water drugs and vitamins and / or carotenoids. In particular, these are aqueous solutions or solubilisates for oral administration.
  • the claimed copolymers are suitable for use in oral dosage forms such as tablets, capsules, powders, solutions.
  • oral dosage forms such as tablets, capsules, powders, solutions.
  • solid solutions of active ingredient and solubilizer find use.
  • emulsions for example fat emulsions
  • the claimed copolymers are suitable for processing a sparingly soluble drug.
  • compositions of the above type may be obtained by processing the claimed copolymers with pharmaceutically active agents by conventional methods and using known and novel drugs.
  • the application according to the invention may additionally contain pharmaceutical excipients and / or diluents.
  • adjuvants cosolvents, stabilizers, preservatives are particularly listed.
  • the pharmaceutical active ingredients used are water-insoluble or sparingly soluble substances. According to DAB 9 (German Pharmacopoeia), the solubility of pharmaceutical active ingredients is classified as follows: sparingly soluble (soluble in 30 to 100 parts of solvent); poorly soluble (soluble in 100 to 1000 parts of solvent); practically insoluble (soluble in more than 10,000 parts solvent).
  • the active ingredients can come from any indication.
  • Examples include benzodiazepines, antihypertensives, vitamins, cytostatics - especially taxol, anesthetics, neuroleptics, antidepressants, antibiotics, antimycotics, fungicides, chemotherapeutics, urologics, antiplatelet agents, sulfa drugs, spasmolytics, hormones, immunoglobulins, sera, thyroid drugs, psychotropic drugs, Parkinson's and others Anti-hyperkinetics, ophthalmics, neuropathic preparations, calcium metabolism regulators, muscle relaxants, anesthetics,
  • Lipid-lowering agents liver therapeutics, coronary agents, cardiac drugs, immunotherapeutics, regulatory peptides and their inhibitors, hypnotics, sedatives, gynecologics, gout, fibrinolytics, enzyme preparations and transport proteins, enzyme inhibitors, emetics, circulation-enhancing agents, diuretics, diagnostics, corticoids, cholinergics, gallium pathogens, antiasthmatics , Broncholytics, beta-blockers, calcium antagonists, ACE inhibitors, atherosclerosis agents, antiphlogistics, anticoagulants, antihypotonics, antihypoglycemics, antihypertensives, antifibrinolytics, anticonvulsants, Antiemetics, antidotes, antidiabetics, antiarrhythmics, antianemics, antiallergic drugs, anthelmintics, analgesics, analeptics, aldosterone antagonists, emaciation agents.
  • a possible preparation variant is the dissolution of the solubilizer in the aqueous phase, optionally with gentle heating and the subsequent dissolution of the active ingredient in the aqueous solubilizer solution.
  • the simultaneous dissolution of solubilizer and active ingredient in the aqueous phase is also possible.
  • copolymers according to the invention as a solubilizer can also be carried out, for example, by dispersing the active ingredient in the solubilizer, if appropriate with heating, and mixing it with water while stirring.
  • solubilizers can also be processed in the melt with the active ingredients.
  • solid solutions can be obtained in this way.
  • the method of melt extrusion is suitable for this purpose.
  • Another possibility for the preparation of solid solutions is also to prepare solutions of solubilizer and active ingredient in suitable organic solvents and then to remove the solvent by conventional methods.
  • injection molding processes and melt granulation processes are also suitable for the production of solid solutions.
  • the invention therefore also relates generally to pharmaceutical preparations which contain at least one of the copolymers according to the invention as a solubilizer. Preference is given to those preparations which, in addition to the solubilizer, contain a sparingly soluble or water-insoluble pharmaceutical active substance, for example from the above-mentioned indications.
  • Particularly preferred of the abovementioned pharmaceutical preparations are those which are orally administrable formulations.
  • the content of solubilizer according to the invention in the pharmaceutical preparation is, depending on the active ingredient, in the range of 1 to 75 wt .-%, preferably 5 to 60 wt .-%, particularly preferably 5 to 50 wt .-%.
  • Another particularly preferred embodiment relates to pharmaceutical preparations in which the active ingredients and the solubilizer are present as a solid solution.
  • the weight ratio of solubilizer to active ingredient is preferably from 1: 1 to 4: 1.
  • copolymers according to the invention are also suitable as solubilizers in the food industry for nutrients, auxiliaries or additives which are sparingly soluble in water or which are insoluble in water, for example.
  • fat-soluble vitamins or carotenoids examples include clear, colored with carotenoids drinks.
  • compositions include pesticides, herbicides, fungicides or insecticides, especially those preparations of pesticides used as spray or pouring broths.
  • the sulfonate copolymers used according to the invention are distinguished by a particularly good solubilizing effect.
  • Feed 1 156.9 g of sodium vinyl sulfonate (25% strength by weight in water)
  • Feed 2 1.2 g of tert-butylperneodecanoate, 50 g of methanol
  • the preparation was carried out in a 2 liter stirred tank under a nitrogen atmosphere.
  • the original was heated to 65 ° C at a stirrer speed of 100 rpm.
  • feed 1 was added over a period of 2 hours and feed 2 over a period of 3 hours.
  • it was postpolymerized for 2 hours.
  • the organic solvent was removed by steam distillation and a cloudy aqueous solution having a solids content of 25.4 wt .-% was obtained.
  • the K value of the polymer was 25.5 (1 wt% in water).
  • the preparation was carried out analogously to Example 2. After the steam distillation, the polymer was isolated by freeze-drying. The K value was 7.6 (1% strength by weight in water).
  • Feed 1 250 g of methanol, 20 g of potassium sulfopropyl methacrylate (25% strength by weight in water)
  • Feed 2 1.5 g of tert-butylperneodecanoate, 50 g of methanol
  • Feed 3 1.5 g of tert-butyl perneodecanoate
  • the preparation was carried out in a 2 liter stirred tank under a nitrogen atmosphere.
  • the original was heated to 64 ° C internal temperature at a stirrer speed of 100 rpm. Then Feed 1 was added over a period of 4 hours and Feed 2 over a period of 5 hours. Subsequently, feed 3 was added for 2 hours at 64 ° C postpolymerized. Thereafter, the organic solvent was removed by means of steam distillation and a white turbid aqueous solution having a solids content of 27.8 wt .-% was obtained.
  • Feed 1 114, 3 g of sodium allylsulfonate (35% by weight in water)
  • Feed 4 4.00 g of 2,2'-azobis (2-amidinopropane) dihydrochloride
  • Example 6 The preparation of Example 6 was carried out analogously to Example 5, except that the sodium allylsulfonate solution used was not neutralized with sulfuric acid.
  • the resulting aqueous solution has a solids content of 22.1%, the K value of the polymer was 9.1 (1 wt .-% in water).
  • Each batch of drug is given as follows to obtain a supersaturated solution. (If the weighed mass dissolved in the medium, the weight was increased until the formation of a sediment).
  • phosphate buffer pH 7.0 was added until solubilizer and phosphate buffer in the weight ratio of 1:10 were present. With the aid of a magnetic stirrer, this mixture was stirred at 20 ° C for 72 hours. Then at least a 1 hour rest period. After filtration of the batch, this was measured photometrically and determines the content of active ingredient.
  • Piroxicam Copolymer according to Example no. / Solubilization at 20 ° C. in [g / 100 ml]
  • the active ingredient and the polymer were weighed into a suitable glass vessel in a weight ratio of 1: 1 (in each case 2 g) and then 16 ml of dimethylformamide were added as solvent.
  • the batch was stirred at 20 ° C for 24 hours on a magnetic stirrer.
  • the solution was then pulled out on a glass plate with the aid of a 120 ⁇ m doctor blade. This was dried for 0.5 hours at RT in a fume hood and then dried in a drying oven at 50 ° C. and 10 mbar for a further 0.5 hours in order to remove the solvent quantitatively.
  • the samples were then visually inspected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Toxicology (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Dentistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Preparation (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Cosmetics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Verwendung von Copolymeren, erhältlich durch radikalisch initiierte Copolymerisation von a) 80 bis 99,5 Gew.-% Vinylacetat und b) 0,5 bis 20 Gew.-% eines Sulfonat-Gruppen tragenden monoolefinisch unge- sättigten Monomeren als Solubilisatoren für in Wasser schwerlösliche Substanzen.

Description

Verwendung von Vinylacetat-Sulfonat-Copolymeren als Solubilisatoren für in Wasser schwerlösliche Verbindungen
Beschreibung
Die Erfindung betrifft die Verwendung von Vinylacetat-Sulfonat-Copolymeren als Solubilisatoren von in Wasser schwerlöslichen biologisch aktiven Substanzen. Weiterhin betrifft die Erfindung entsprechende Zubereitungen für die Anwendung an Mensch, Tier und Pflanze sowie spezielle Copolymere.
Bei der Herstellung homogener Zubereitungen biologisch aktiven Substanzen hat die Solubilisierung von hydrophoben, also in Wasser schwerlöslichen Stoffen, eine sehr große praktische Bedeutung erlangt.
Unter Solubilisierung ist das Löslichmachen von in einem bestimmtem Lösungsmittel, insbesondere Wasser, schwer- oder unlöslichen Substanzen durch grenzflächenaktive Verbindungen, die Solubilisatoren, zu verstehen. Solche Solublisatoren sind in der Lage, schlecht wasserlösliche oder wasserunlösliche Stoffe in klare, höchstens opaleszierende wäßrige Lösungen zu überführen, ohne daß hierbei die chemische Struktur die- ser Stoffe eine Veränderung erfährt (Vgl. Römpp Chemie Lexikon, 9. Auflage, Bd.5. S. 4203, Thieme Verlag, Stuttgart, 1992).
Die hergestellten Solubilisate sind dadurch gekennzeichnet, daß der schlecht wasserlösliche oder wasserunlösliche Stoff in den Molekülassoziaten der oberflächenaktiven Verbindungen, die sich in wäßriger Lösung bilden - beispielsweise den sogenannten Mizellen - kolloidal gelöst vorliegt. Die resultierenden Lösungen sind stabile einphasige Systeme, die optisch klar bis opaleszent erscheinen und ohne Energieeintrag hergestellt werden können.
Solubilisatoren können beispielsweise das Aussehen von kosmetischen Formulierungen sowie von Lebensmittelzubereitungen verbessern, indem sie die Formulierungen transparent machen. Außerdem kann im Falle von pharmazeutischen Zubereitungen auch die Bioverfügbarkeit und damit die Wirkung von Arzneistoffen durch die Verwendung von Solubilisatoren gesteigert werden.
Als Solubilisatoren für pharmazeutische Arzneistoffe und kosmetische Wirkstoffe werden hauptsächlich Tenside wie ethoxiliertes (hydriertes) Ricinusöl, ethoxilierte Sorbi- tanfettsäureester oder ethoxilierte Hydroxystearinsäure eingesetzt,. Die oben beschriebenen, bisher eingesetzten Solubilisatoren zeigen jedoch eine Reihe anwendungstechnischer Nachteile. Die bekannten Solubilisatoren besitzen für einige schwerlösliche Arzneistoffe wie z.B. Clotrimazol nur eine geringe lösungsvermittelnde Wirkung.
Weiterhin sind die bisher bekannten Solubilisatoren meist flüssige oder halbfeste Ver- bindungen, die aufgrund dessen ungünstigere Verarbeitungseigenschaften aufweisen.
Vinylacetat-Sulfonat-Copolymere sind an sich bekannt. Entsprechende Copolymere und deren Verwendung als Textilausrüstungsmittel sind beispielsweise in der US 2,834,759 beschrieben.
Aus der JP-A 51003383 sind Copolymere aus Vinylacetat und Allylsulfonaten und deren Verwendung als Emulgatoren für Epoxyharze bekannt.
Aus der JP-A 50160334 sind Copolymere aus Vinylacetat und Allylsulfonaten und de- ren Verwendung als Emulgatoren für Acrylharz-Beschichtungsmittel bekannt.
Aus der JP-A 09202812 ist die Herstellung von Polyvinylestern in Gegenwart von ge- reingen Mengen an Allylsulfonaten bekannt, wobei die Allylsulfonate als Phasentrans- fermittel bekannt.
Aus der GB 1350282 ist die Verwendung von Copolymeren aus Vinylacetat und geringen Mengen an ungesättigten Sulfonaten als Beschichtungsmittel bekannt.
Es bestand die Aufgabe, neue Solubilisatoren für pharmazeutische, kosmetische, Ie- bensmitteltechnische sowie agrotechnische Anwendungen bereitzustellen, die in der Lage sind in wässrigem Medium als Lösungsvermittler für entsprechende in Wasser schwerlösliche Wirkstoffe zu wirken .
Die Aufgabe wurde erfindungsgemäß gelöst durch die Verwendung von Vinylacetat- Sulfonat-Copolymeren als Solubilisatoren für in Wasser schwerlösliche Stoffe.
Als Vinylacetat-Sulfonat-Copolymere werden erfindungsgemäß Copolymere aus Vinylacetat und Sulfonatgruppen enthaltenden monoethylenisch ungesättigten Monomeren sowie gegebenenfalls weiteren Comonomeren bezeichnet.
Als Sulfonatgruppen enthaltende Monomere kommen erfindungsgemäß monoethylenisch ungesättigte Sulfonsäureverbindungen in Betracht. Geeignete Sulfonsäurever- bindungen sind beispielsweise Sulfonsäurealkylester der Acrylsäure oder der Methac- rylsäure wie Sulfopropylacrylat oder Sulfopropylmethacrylat. Ebenso eignen sich linea- re oder verzweigte Sulfonsäure-Ci-Cio-alkylamide der Acrylsäure oder der Methacryl- säure wie beispielsweise Acrylamidmethylpropansulfonsäure (AMPS). Weiterhin eignen sich ω-Alken-1-Sulfonsäuren mit 2 bis 10 C-Atomen. Bevorzugte Monomere sind ausgewählt aus der Gruppe bestehend aus Vinylsulfonat, Allylsulfonat, Methallylsulfonat (2-Methyl-2-propen-sulfonat ), Sulfopropylacrylat und Sulfopropylmethacrylat.
Die Sulfonat-Monomere werden üblicherweise in Form ihrer Salze eingesetzt. Als Salze eignen sich insbesondere die Alkalisalze, beispielsweise Lithium-, Kalium- oder Natriumsalze, wobei die Natriumsalze und Kaliumsalze bevorzugt sind. Die Sulfonat- Monomere werden der Polymerisation üblicherweise in Form wässriger Lösungen zugeführt, wobei die Konzentration des Sulfonatmonomeren 10 bis 70 Gew.-% betragen kann, bevorzugt 20 bis 40 Gew.-%.
Gemäß einer alternativen Ausführungsform können die sulfonsäurehaltigen Monomere auch als Feststoffe eingesetzt und im Lösungsmittel gelöst oder suspendiert werden. Im Zuge der Polymerisation löst sich das Monomer langsam auf.
Die Sulfonatgruppen tragenden Copolymere sind erhältlich durch Copolymerisation von a) 80 bis 99,5Gew.-% Vinylacetat und b) 0,5 bis 20 Gew.-% des Sulfonatmonomeren. Bevorzugt werden a) 85 bis 98 Gew.-% und b) 2 bis 15 Gew.-%, besonders bevorzugt a) 85 bis 95 Gew.-% und b) 5 bis 15 Gew.-% eingesetzt.
Allgemeine Verfahren zur Herstellung der Vinylacetat-Sulfonat-Copolymeren sind an sich bekannt. Die Herstellung erfolgt als radikalisch initiierte Polymerisation unter Ver- wendung von mit Wasser mischbaren organischen Lösungsmitteln. Geeignete Lösungsmittel sind beispielsweise Alkohole wie Methanol, Ethanol, n-Propanol, und I- sopropanol sowie Glykole, wie Ethylenglykol und Glycerin. Weiterhin eignen sich als Lösungsmittel Essigsäureester wie beispielsweise Ethylacetat oder Butylacetat. Bevorzugtes Lösungsmittel ist n-Propanol.
Die Polymerisation wird vorzugsweise bei Temperaturen von 60 bis 100°C durchgeführt. Die Polymerisation kann unter Atmosphärendruck oder unter einem Überdruck von bis zu 1 ,5 MPa durchgeführt werden, wobei Atmosphärendruck bevorzugt ist.
Zur Initiierung der Polymerisation werden radikalische Initiatoren als Radikalstarter eingesetzt. Die verwendeten Mengen an Initiator bzw. Initiatorgemischen bezogen auf eingesetztes Monomer liegen zwischen 0,01 und 10 Gew.-%, vorzugsweise zwischen 0,3 und 5 Gew.-%.
Gemäß einer bevorzugten Ausführungsform der Erfindung wird die Polymerisation so ausgeführt, dass zunächst ein öllöslicher Radikalstarter, worunter erfindungsgemäß ein in organischen Lösungsmitteln löslicher und in Wasser unlöslicher Radikalstarter ver- standen wird, und zu Beginn der Nachpolymerisation ein wasserlöslicher Radikalstarter eingesetzt wird. Die Phase der Nachpolymerisation beginnt im Zulaufverfahren nachdem die Monomerzuläufe vollständig zugegeben sind. Im Batchverfahren setzt die Phase der Nachpolymerisation nach allgemeiner Auffassung nach zwei Drittel der ge- samten Reaktionszeit ein.
Als Radikalstarter eignen sich sowohl organische als auch anorganische Peroxide wie Natriumpersulfat oder Azostarter wie 2,2'-Azobis[2-(2-imidazolin-2- yl)propan]dihydrochlorid, 2,2'-Azobis-(2-methylpropionamid)dihydrochlorid), 2,2'-Azo bis(2-aminidinopropan)-dihydrochlorid, 2,2'-Azobis(2-methylbutyronitril), 2,2'-Azobis[2- (2-imidazolin-2-yl)propan], 2,2'-Azo-bis-(2-methylbutyronitril), 2,2'-Azo-bis- isobutyronitril, 2,2'-Azobis(2,4-dimethylvaleronitril), Dimethyl-2,2'-azobis-(2- methylpropionate), 2,2'-Azobis(4-methoxy-2,4-dimethylvaleronitril).
Peroxidische Initiatoren sind beispielsweise Dibenzoylperoxid, Diacetylperoxid, Succin- ylperoxid, tert.-Butylperpivalat, tert.-Butyl-2-ethylhexanoat, , tert.-Butylperneodecanoat, tert.-Butylpermaleinat, Bis-(tert.-Butylperoxi)-cyclohexan, tert.-Butylperoxi- isopropylcarbonat, tert.-Butylperacetat, 2,2-Bis-(tert.-butylperoxi)-butan, Dicumylpero- xid, Di-tert.-amylperoxid, Di-tert.-butylperoxid, p-Menthanhydroperoxid, Pinanhydrope- roxid, Cumolhydroperoxid, tert.-Butylhydroperoxid, Wasserstoffperoxid sowie Mischungen der genannten Initiatoren. Die genannten Initiatoren können auch in Kombination mit Redoxkomponenten wie Ascorbinsäure verwendet werden.
Besonders bevorzugt ist die Verwendung von lösungsmittellöslichen (und damit schlecht wasserlöslichen) Radikalstartern während der Polymerisation. Bevorzugte
Lösungsmittellösliche Radikalstarter sind beispielsweise 2,2'-Azobisisobutyronitril, 2,2'- Azo-bis-(2-methyl-butyronitril), 2,2'-Azobis(2,4-dimethylvaleronitril), Dimethyl-2,2'- azobis-(2-methylpropionate), 2,2'-Azobis(4-methoxy-2,4-dimethylvaleronitril), Dibenzoylperoxid, Diacetylperoxid, Succinylperoxid, tert.-Butylperpivalat, tert.-Butyl-2- ethylhexanoat, tert-Butylperneodecanoat, tert.-Butylpermaleinat, Bis-(tert.-Butylperoxi)- cyclohexan, tert.-Butylperoxi-isopropylcarbonat, tert.-Butylperacetat, 2,2-Bis-(tert- butylperoxi)-butan, Dicumylperoxid, Di-tert.-amylperoxid, Di-tert.-butylperoxid, p- Menthanhydroperoxid, Pinanhydroperoxid, Cumolhydroperoxid.
Die radikalische Polymerisation kann gegebenenfalls in Gegenwart von Emulgatoren, gegebenenfalls weiteren Schutzkolloiden, gegebenenfalls Puffersystemen und gegebenenfalls nachfolgender pH-Einstellung mittels Basen oder Säuren stattfinden.
Als Molekulargewichtsregler eignen sich Schwefelwasserstoffverbindungen wie Alkyl- mercaptane, z.B. n-Dodecylmercaptan, tert.-Dodecylmercaptan, Thioglykolsäure und deren Ester, Mercaptoalkanole wie Mercaptoethanol. Weitere geeignete Regler sind z.B. in der DE 197 12 247 A1 , Seite 4, genannt. Die erforderliche Menge der Molekulargewichtsregler liegt im Bereich von 0 bis 5 Gew.-% bezogen auf die zu polymeri- sierenden Monomerenmenge, insbesondere 0,05 bis 2 Gew.-%, besonders bevorzugt 0,1 bis 1 ,5 Gew.-%. Bevorzugt wird Mercaptoethanol eingesetzt.
Die Herstellung der erfindungsgemäß verwendbaren Copolymere kann auch in gege- wart von geeigneten difunktioneller Vernetzerkomponenten (Vernetzern) und/oder in Gegenwart von geeigneten Reglern durchgeführt werden.
Geeignete Vernetzer sind solche Monomere, die eine vernetzende Funktion besitzen, beispielsweise Verbindungen mit mindestens zwei ethylenisch ungesättigten, nichtkon- jugierten Doppelbindungen im Molekül.
Beispiele hierfür sind Acrylester, Methacrylester, Allylether oder Vinylether von mindestens zweiwertigen Alkoholen. Die OH-Gruppen der zugrundeliegenden Alkohole können dabei ganz oder teilweise verethert oder verestert sein; die Vernetzer enthalten aber mindestens zwei ethylenisch ungesättigte Gruppen.
Beispiele für die zugrundeliegenden Alkohole sind zweiwertige Alkohole wie 1 ,2-
Ethandiol, 1 ,2-Propandiol, 1 ,3-Propandiol, 1 ,2-Butandiol, 1 ,3-Butandiol, 2,3-Butandiol, 1 ,4-Butandiol, But-2-en-1 ,4-diol, 1 ,2-Pentandiol, 1 ,5-Pentandiol, 1 ,2-Hexandiol, 1 ,6- Hexandiol, 1 ,10-Decandiol, 1 ,2-Dodecandiol, 1 ,12-Dodecandiol, Neopentylglykol, 3- Methylpentan-1 ,5-diol, 2,5-Dimethyl-1 ,3-hexandiol, 2,2,4-Trimethyl-1 ,3-pentandiol, 1 ,2- Cyclohexandiol, 1 ,4-Cyclohexandiol, 1 ,4-Bis(hydroxymethyl)cyclohexan, Hydroxypiva- linsäure-neopentylglykolmonoester, 2,2-Bis(4-hydroxyphenyl)-propan, 2,2-Bis[4-(2- hydroxypropyl)phenyl]propan, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Dipropylenglykol, Tripropylenglykol, Tetrapropylenglykol, 3-Thio-pentan-1 ,5-diol, sowie Polyethylenglykole, Polypropylenglykole und Polytetrahydrofurane mit Molekularge- wichten von jeweils 200 bis 10000. Außer den Homopolymerisaten des Ethylenoxids bzw. Propylenoxids können auch Blockcopolymerisate aus Ethylenoxid oder Propyle- noxid oder Copolymerisate, die Ethylenoxid- und Propylenoxid-Gruppen eingebaut enthalten, eingesetzt werden. Beispiele für zugrundeliegende Alkohole mit mehr als zwei OH-Gruppen sind Trimethylolpropan, Glycerin, Pentaerythrit, 1 ,2,5-Pentantriol, 1 ,2,6-Hexantriol, Triethoxycyanursäure, Sorbitan, Zucker wie Saccharose, Glucose,
Mannose. Selbstverständlich können die mehrwertigen Alkohole auch nach Umsetzung mit Ethylenoxid oder Propylenoxid als die entsprechenden Ethoxylate bzw. Propoxyla- te eingesetzt werden. Die mehrwertigen Alkohole können auch zunächst durch Umsetzung mit Epichlorhydrin in die entsprechenden Glycidylether überführt werden.
Weitere geeignete Vernetzer sind die Vinylester oder die Ester einwertiger, ungesättigter Alkohole mit ethylenisch ungesättigten C3- bis Cβ-Carbonsäuren, beispielsweise Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure oder Fumarsäure. Beispiele für solche Alkohole sind Allylalkohol, 1-Buten-3-ol, 5-Hexen-1-ol, 1-Octen-3-ol, 9-Decen-1- ol, Dicyclopentenylalkohol, 10-Undecen-1-ol, Zimtalkohol, Citronellol, Crotylalkohol oder cis-9-Octadecen-1-ol. Man kann aber auch die einwertigen, ungesättigten Alkoho- Ie mit mehrwertigen Carbonsäuren verestern, beispielsweise Malonsäure, Weinsäure, Trimellitsäure, Phthalsäure, Terephthalsäure, Citronensäure oder Bernsteinsäure.
Weitere geeignete Vernetzer sind Ester ungesättigter Carbonsäuren mit den oben beschriebenen mehrwertigen Alkoholen, beispielsweise der Ölsäure, Crotonsäure, Zimt- säure oder 10-Undecensäure.
Geeignete Vernetzer sind außerdem geradkettige oder verzweigte, lineare oder cycli- sche, aliphatische oder aromatische Kohlenwasserstoffe, die über mindestens zwei Doppelbindungen verfügen, die bei aliphatischen Kohlenwasserstoffen nicht konjugiert sein dürfen, z.B. Divinylbenzol, Divinyltoluol, 1 ,7-Octadien, 1 ,9-Decadien, 4-Vinyl-1- cyclohexen, Trivinylcyclohexan oder Polybutadiene mit Molekulargewichten von 200 bis 20000.
Als Vernetzer sind ferner geeignet die Acrylsäureamide, Methacrylsäureamide und N- Allylamine von mindestens zweiwertigen Aminen. Solche Amine sind zum Beispiel 1 ,2- Diaminomethan, 1 ,2-Diaminoethan, 1 ,3-Diaminopropan, 1 ,4-Diaminobutan, 1 ,6- Diaminohexan, 1 ,12-Dodecandiamin, Piperazin, Diethylentriamin oder Isophorondia- min. Ebenfalls geeignet sind die Amide aus Allylamin und ungesättigten Carbonsäuren wie Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure, oder mindestens zweiwerti- gen Carbonsäuren, wie sie oben beschrieben wurden.
Ferner sind Triallylamin und Triallylmonoalkylammoniumsalze, z.B. Triallylmethylam- moniumchlorid oder -methylsulfat, als Vernetzer geeignet.
Geeignet sind auch N-Vinyl-Verbindungen von Harnstoffderivaten, mindestens zweiwertigen Amiden, Cyanuraten oder Urethanen, beispielsweise von Harnstoff, Ethylen- harnstoff, Propylenharnstoff oder Weinsäurediamid, z.B. N,N'-Divinylethylenharnstoff oder N,N'-Divinylpropylenharnstoff.
Weitere geeignete Vernetzer sind Divinyldioxan, Tetraallylsilan oder Tetravinylsilan.
Selbstverständlich können auch Mischungen der vorgenannten Verbindungen eingesetzt werden. Vorzugsweise werden solche Vernetzer eingesetzt, die in der Monomer- mischung löslich sind.
Das Monomere bzw. eine Monomerenmischung oder die Monomer(en)emulsion werden zusammen mit dem Initiator, der üblicherweise in Lösung vorliegt, in einem Rühr- reaktor bei der Polymerisationstemperatur vorlegt (Batch-Prozess), oder gegebenenfalls kontinuierlich oder in mehreren aufeinanderfolgenden Stufen in den Polymerisationsreaktor zudosiert (Zulaufverfahren). Beim Zulaufverfahren ist es üblich, dass der Reaktor vor Beginn der eigentlichen Polymerisation neben dem organischen Lösungs- mittel oder Wasser (um eine Rührung des Reaktors zu ermöglichen) bereits mit Teilmengen, selten der gesamten für die Polymerisation vorgesehenen Menge, der Einsatzstoffe wie Emulgatoren, Schutzkolloiden, Monomeren, Regler usw. oder Teilmengen der Zuläufe (i.a. Monomer- oder Emulsionszulauf sowie Initiatorzulauf) befüllt wird.
Die so erhaltenen Copolymere sind wasserlöslich oder wasserdispergierbar. Die Copo- lymerisate können K-Werte nach Fikentscher, gemessen 1 gew.-%ig in Wasser, von 4 bis 30, bevorzugt 5 bis 25, besonders bevorzugt 5 bis 15, aufweisen.
Anwendungen:
Die erfindungsgemäß zu verwendenden Copolymere lassen sich grundsätzlich auf allen Gebieten einsetzen, bei denen in Wasser nur schwerlösliche oder unlösliche Sub- stanzen entweder in wässrigen Zubereitungen zum Einsatz kommen sollen oder ihre Wirkung in wässrigem Milieu entfalten sollen. Die Copolymere finden demgemäß Verwendung als Solubilisatoren von in Wasser schwerlöslichen Substanzen, insbesondere biologisch aktiven Substanzen.
Der Begriff „in Wasser schwerlöslich" umfasst erfindungsgemäß auch praktisch unlösliche Substanzen und bedeutet, dass für eine Lösung der Substanz in Wasser bei 20 °C mindestens 30 bis 100 g Wasser pro g Substanz benötigt wird. Bei praktisch unlöslichen Substanzen werden mindestens 10.000 g Wasser pro g Substanz benötigt.
Im Sinne der vorliegenden Erfindung sind unter in Wasser schwerlösliche biologisch aktive Substanzen pharmazeutische Wirkstoffe für Mensch und Tier, kosmetische oder agrochemische Wirkstoffe oder Nahrungsergänzungsmittel oder diätetische Wirkstoffe zu verstehen.
Weiterhin kommen als zu solubilisierende schwerlösliche Substanzen auch Farbstoffe wie anorganische oder organische Pigmente in Betracht.
Durch die vorliegende Erfindung werden insbesondere amphiphile Verbindungen für die Anwendung als Lösungsvermittler für pharmazeutische und kosmetische Zubereitungen sowie für Lebensmittelzubereitungen zur Verfügung gestellt. Sie besitzen die Eigenschaft, schwer lösliche Wirkstoffe auf dem Gebiet der Pharmazie und Kosmetik, schwerlösliche Nahrungsergänzungsmittel, beispielsweise Vitamine und Carotinoide aber auch schwerlösliche Wirkstoffe für den Einsatz in Pflanzenschutzmitteln sowie veterinärmedizinische Wirkstoffe zu solubilisieren.
Solubilisatoren für Kosmetik:
Erfindungsgemäßen können die Copolymere als Solubilisatoren in kosmetischen Formulierungen eingesetzt werden. Beispielsweise eignen sie sich als Solubilisatoren für kosmetische Öle. Sie besitzen ein gutes Solubilisiervermögen für Fette und Öle, wie Erdnußöl, Jojobaöl, Kokosnußöl, Mandelöl, Olivenöl, Palmöl, Ricinusöl, Sojaöl oder Weizenkeimöl oder für etherische Öle wie Latschenkiefernöl, Lavendelöl, Rosmarinöl, Fichtennadelöl, Kiefernnadelöl, Eukalyptusöl, Pfefferminzöl, Salbeiöl, Bergamottöl, Terpentinöl, Melissenöl, Wacholderöl, Zitronenöl, Anisöl, Kardamonöl; Campheröl etc. oder für Mischungen aus diesen Ölen.
Weiterhin können die erfindungsgemäßen Polymere als Solubilisatoren für in Wasser schwerlösliche oder unlösliche UV-Absorber wie beispielsweise 2-Hydroxy-4- methoxybenzophenon (Uvinul® M 40, Fa. BASF), 2,2',4,4'-Tetrahydroxybenzophenon (Uvinul® D 50), 2,2'-Dihydroxy-4,4'-dimethoxybenzophenon (Uvinul®D49), 2,4- Dihydroxybenzophenon (Uvinul® 400), 2-Cyano-3,3-diphenylacrylsäure-2'- ethylhexylester (Uvinul® N 539), 2,4,6-Trianilino-p-(carbo-2'-ethylhexyl-1 '-oxi)-1 ,3,5- triazin (Uvinul® T 150), 3-(4-Methoxybenzyliden)-campher (Eusolex® 6300, Fa. Merck), N,N-Dimethyl-4-aminobenzoesäure-2-ethylhexylester (Eusolex® 6007), Salicylsäure- 3,3,5-trimethylcyclohexylester, 4-lsopropyl-dibenzoylmethan (Eusolex® 8020), p- Methoxyzimtsäure-2-ethylhexylester und p-Methoxyzimtsäure-2-isoamylester sowie Mischungen davon verwendet werden.
Gegenstand der vorliegenden Erfindung sind daher auch kosmetische Zubereitungen, die mindestens einen der erfindungsgemäßen Copolymere der eingangs genannten Zusammensetzung als Solubilisatoren enthalten. Bevorzugt sind solche Zubereitungen, die neben dem Solubilisator einen oder mehrere schwerlösliche kosmetische Wirkstoffe, beispielsweise die oben genannten Öle oder UV-Absorber enthalten.
Bei diesen Formulierungen handelt es sich um Solubilisate auf Wasser oder Wasser/Alkohol Basis. Die erfindungsgemäßen Solubilisatoren werden im Verhältnis von 0,2:1 bis 20:1 , bevorzugt 1 :1 bis 15:1 , besonders bevorzugt 2:1 bis 12:1 zum schwerlöslichen kosmetischen Wirkstoff eingesetzt.
Der Gehalt an erfindungsgemäßem Solubilisator in der kosmetischen Zubereitung liegt, abhängig vom Wirkstoff, im Bereich von 1 bis 50 Gew.-%, bevorzugt 3 bis 40 Gew.-%, besonders bevorzugt 5 bis 30 Gew.-%.
Zusätzlich können dieser Formulierung weitere Hilfsstoffe zugesetzt werden, beispielsweise nichtionische, kationische oder anionische Tenside wie Alkylpolyglycoside, Fettalkoholsulfate, Fettalkoholethersulfate, Alkansulfonate, Fettalkoholethoxilate, Fettalkoholphosphate, Alkylbetaine, Sorbitanester, POE-Sorbitanester, Zuckerfettsäureester, Fettsäurepolyglycerinester, Fettsäurepartialglyceride, Fettsäurecarboxylate, Fettal- koholsulfosuccinate, Fettsäuresarcosinate, Fettsäureisethionate, Fettsäuretaurinate, Zitronensäureester, Silikon-Copolymere, Fettsäurepolyglykolester, Fettsäureamide, Fettsäurealkanolamide, quartäre Ammoniumverbindungen, Alkylphenoloxethylate, Fet- taminoxethylate, Cosolventien wie Ethylenglykol, Propylenglykol, Glycerin u.a..
Als weitere Bestandteile können natürliche oder synthetische Verbindungen, z.B. Lanolinderivate, Cholesterinderivate, Isopropylmyristat, Isopropylpalmitat, Elektrolyte, Farb- Stoffe, Konservierungsmittel, Säuren (z.B. Milchsäure, Zitronensäure) zugesetzt werden.
Diese Formulierungen finden beispielsweise in Badezusatzpräparaten wie Badeölen, Rasierwässern, Gesichtswässern, Haarwässern, Eau de Cologne, Eau de Toilette so- wie in Sonnenschutzmitteln Verwendung. Ein weiteres Einsatzgebiet ist der Bereich Oral Care, beispielsweise in Mundwässern, Zahnpasten, Haftcremes für Zahnprothesen und dergleichen.
Weiterhin eignen sich die Copolymerisate auch für technische Anwendungen, bei- spielsweise für Zubereitungen von schwerlöslichen Farbmitteln, in Tonern, Zubereitungen von Magnetpigmenten und dergleichen.
Beschreibung der Solubilisierungsmethode:
Bei der Herstellung der Solubilisate für kosmetische Formulierugen können die erfindungsgemäßen Copolymere als 100%ige Substanz oder bevorzugt als wäßrige Lösung eingesetzt werden.
Üblicherweise wird der Solubilisator in Wasser gelöst und mit dem jeweils zu verwen- denden schwerlöslichen kosmetischen Wirkstoff intensiv vermischt.
Es kann aber auch der Solubilisator mit dem jeweils zu verwendenden schwerlöslichen kosmetischen Wirkstoff intensiv vermischt werden und anschließend unter ständigem Rühren mit demineralisiertem Wasser versetzt werden.
Solubilisatoren für pharmazeutische Anwendungen: Die beanspruchten Copolymerisate eignen sich ebenso für die Verwendung als Solubi- lisator in pharmazeutischen Zubereitungen jeder Art, die dadurch gekennzeichnet sind, daß sie einen oder mehrere in Wasser schwer lösliche oder wasserunlösliche Arzneistoffe sowie Vitamine und/oder Carotinoide enthalten können. Insbesondere handelt es sich dabei um wäßrige Lösungen bzw. Solubilisate zur oralen Applikation.
So eignen sich die beanspruchten Copolymere zum Einsatz in oralen Darreichungsformen wie Tabletten, Kapseln, Pulvern, Lösungen. Hier können Sie den schwerlöslichen Arzneistoff mit einer erhöhten Bioverfügbarkeit zur Verfügung stellen. Insbesondere finden feste Lösungen aus Wirkstoff und Solubilisator Verwendung.
Bei der parenteralen Applikation können neben Solubilisaten auch Emulsionen, beispielsweise Fettemulsionen eingesetzt werden. Auch für diesen Zweck eignen sich die beanspruchten Copolymere um einen schwerlöslichen Arzneistoff zu verarbeiten.
Pharmazeutische Formulierungen der oben genannten Art können durch Verarbeiten der beanspruchten Copolymere mit pharmazeutischen Wirkstoffen nach herkömmlichen Methoden und unter Einsatz bekannter und neuer Wirkstoffe erhalten werden.
Die erfindungsgemäße Anwendung kann zusätzlich pharmazeutische Hilfsstoffe und/oder Verdünnungsmittel enthalten. Als Hilfsstoffe werden Cosolventien, Stabilisatoren, Konservierungsmittel besonders aufgeführt.
Die verwendeten pharmazeutischen Wirkstoffe sind in Wasser unlösliche bzw. wenig lösliche Substanzen. Gemäß DAB 9 (Deutsches Arzneimittelbuch) erfolgt die Einstu- fung der Löslichkeit pharmazeutischer Wirkstoffe wie folgt: wenig löslich (löslich in 30 bis 100 Teilen Lösungsmittel); schwer löslich (löslich in 100 bis 1000 Teilen Lösungsmittel); praktisch unlöslich (löslich in mehr als 10000 Teilen Lösungsmittel). Die Wirkstoffe können dabei aus jedem Indikationsbereich kommen.
Als Beispiele seien hier Benzodiazepine, Antihypertensiva, Vitamine, Cytostatika - insbesondere Taxol, Anästhetika, Neuroleptika, Antidepressiva, Antibiotika, Antimykotika, Fungizide, Chemotherapeutika, Urologika, Thrombozytenaggregationshemmer, Sulfonamide, Spasmolytika, Hormone, Immunglobuline, Sera, Schilddrüsentherapeutika, Psychopharmaka, Parkinsonmittel und andere Antihyperkinetika, Ophthalmika, Neuro- pathiepräparate, Calciumstoffwechselregulatoren, Muskelrelaxantia, Narkosemittel,
Lipidsenker, Lebertherapeutika, Koronarmittel, Kardiaka, Immuntherapeutika, regulatorische Peptide und ihre Hemmstoffe, Hypnotika, Sedativa, Gynäkologika, Gichtmittel, Fibrinolytika, Enzympräparate und Transportproteine, Enzyminhibitoren, Emetika, Durchblutungsfördernde Mittel, Diuretika, Diagnostika, Corticoide, Cholinergika, GaI- lenwegstherapeutika, Antiasthmatika, Broncholytika, Betarezeptorenblocker, Calciumantagonisten, ACE-Hemmer, Arteriosklerosemittel, Antiphlogistika, Antikoagulantia, Antihypotonika, Antihypoglykämika, Antihypertonika, Antifibrinolytika, Antiepileptika, Antiemetika, Antidote, Antidiabetika, Antiarrhythmika, Antianämika, Antiallergika, Anthelmintika, Analgetika, Analeptika, Aldosteronantagonisten, Abmagerungsmittel genannt.
Eine mögliche Herstellvariante ist das Auflösen des Solubilisators in der wäßrigen Phase, gegebenenfalls unter leichtem Erwärmen und das anschließende Lösen des Wirkstoffs in der wäßrigen Solubilisatorlösung. Das gleichzeitige Auflösen von Solubili- sator und Wirkstoff in der wäßrigen Phase ist ebenfalls möglich.
Die Verwendung der erfindungsgemäßen Copolymere als Solubilisator kann beispielsweise auch in der Weise erfolgen, daß der Wirkstoff in dem Solubilisator, gegebenenfalls unter Erwärmen, dispergiert wird und unter Rühren mit Wasser vermischt wird.
Weiterhin können die Solubilisatoren auch in der Schmelze mit den Wirkstoffen verar- beitet werden. Insbesondere können auf diese Weise feste Lösungen erhalten werden. Hierfür eignet sich unter anderem auch das Verfahren der Schmelzextrusion. Eine weitere Möglichkeit zur Herstellung von festen Lösungen ist auch, Lösungen von Solubilisator und Wirkstoff in geeigneten organischen Lösungsmitteln herzustellen und das Lösungsmittel anschliessend durch übliche Verfahren zu entfernen. Weiterhin eignen sich zur Herstellung von festen Lösungen auch Spritzgussverfahren und Schmelzgranulationsverfahren.
Gegenstand der Erfindung sind daher auch allgemein pharmazeutische Zubereitungen, die mindestens einen der erfindungsgemäßen Copolymere als Solubilisator enthalten. Bevorzugt sind solche Zubereitungen, die neben dem Solubilisator einen in Wasser schwerlöslichen oder wasserunlöslichen pharmazeutischen Wirkstoff, beispielsweise aus den oben genannten Indikationsgebieten enthalten.
Besonders bevorzugt sind von den oben genannten pharmazeutischen Zubereitungen solche, bei denen es sich um oral applizierbare Formulierungen handelt.
Der Gehalt an erfindungsgemäßem Solubilisator in der pharmazeutischen Zubereitung liegt, abhängig vom Wirkstoff, im Bereich von 1 bis 75 Gew.-%, bevorzugt 5 bis 60 Gew.-%, besonders bevorzugt 5 bis 50 Gew.-%.
Eine weitere besonders bevorzugte Ausführungsform bezieht sich auf pharmazeutische Zubereitungen, bei denen die Wirkstoffe und der Solubilisator als feste Lösung vorliegen. Hierbei beträgt das Gewichtsverhältnis von Solubilisator zu Wirkstoff vor- zugsweise von 1 :1 bis 4:1 . Solubilisatoren für Lebensmittelzubereitungen:
Neben der Anwendung in der Kosmetik und Pharmazie eignen sich die erfindungsgemäßen Copolymeren auch als Solubilisatoren im Lebensmittelbereich für schwer was- serlösliche oder wasserunlösliche Nähr-, Hilfs- oder Zusatzstoffe, wie z.B. fettlösliche Vitamine oder Carotinoide. Als Beispiele seien klare, mit Carotinoiden gefärbte Getränke genannt.
Solubilisatoren für Pflanzenschutzzubereitungen:
Die Anwendung der erfindungsgemäßen Copolymere als Solubilisatoren in der Agrochemie kann u.a. Formulierungen umfassen, die Pestizide, Herbizide, Fungizide oder Insectizide enthalten, vor allem auch solche Zubereitungen von Pflanzenschutzmitteln, die als Spritz- oder Gießbrühen zum Einsatz kommen.
Die erfindungsgemäß verwendeten Sulfonatcopolymere zeichnen sich durch eine besonders gute solubilisierende Wirkung aus.
In den folgenden Beispielen wird die Herstellung und Verwendung der erfindungsge- mäßen Copolymere näher erläutert.
Beispiel 1 VAc/ Sulfonat 90:10
Vorlage: 120 g Methanol, 360 g Vinylacetat
Zulauf 1 : 156.9 g Natriumvinylsulfonat (25 gew.-%ig in Wasser)
Zulauf 2: 1.2 g tert-Butylperneodecanoat, 50 g Methanol
Die Herstellung erfolgte in einem 2-Liter-Rührkessel unter einer Stickstoffatmosphäre. Die Vorlage wurde bei einer Rührerdrehzahl von 100 UpM auf 65 °C erwärmt. Dann wurden Zulauf 1 über einen Zeitraum von 2 Stunden und Zulauf 2 über einen Zeitraum von 3 Stunden zugegeben. Anschliessend wurde 2 Stunden bei nachpolymerisiert. Danach wurde das organische Lösungsmittel mittels Wasserdampfdestillation entfernt und eine trübe wässrige Lösung mit einem Feststoffgehalt von 25.4 Gew.-% erhalten. Der K-Wert des Polymers betrug 25.5 (1 gew.-%ig in Wasser).
Beispiel 2 VAc/ Sulfonat 90:10
Vorlage: 153.6 g Methanol, 360 g Vinylacetat, 160 g Natriumallylsulfonat (25 gew.-%ig in Wasser), 1.37 g 2,2'-Azobis(isobutyronitril). Die Herstellung erfolgte in einem 2-Liter-Rührkessel unter einer Stickstoffatmosphäre. Die Vorlage wurde bei einer Rührerdrehzahl von 100 UpM auf 65 °C erwärmt. Dann wurde 8 Stunden bei 65 °C polymerisiert und anschliessend das organische Lösungsmittel mittels Wasserdampfdestillation entfernt und die wässrige Lösung wurde auf einen Freststoffgehalt von 32 Gew.-% eingestellt. Der K-Wert des Polymers betrug 5.9 (1 gew.-%ig in Wasser).
Beispiel 3
VAc/ Sulfonat 80:20
Vorlage: 150 g Methanol, 160 g Vinylacetat, 160 g Natriumallylsulfonat (25 gew.-%ig in
Wasser), 0.69 g 2,2'-Azobis(isobutyronitril).
Die Herstellung erfolgte analog Beispiel 2. Nach der Wasserdampfdestillation wurde das Polymer durch Gefriertrocknung isoliert. Der K-Wert betrug 7.6 (1 gew.-%ig in Wasser).
Beispiel 4 VAc/ Sulfonat 90:10
Vorlage: 300 g Methanol, 180 g Vinylacetat
Zulauf 1 : 250 g Methanol, 20 g Kaliumsulfopropylmethacrylat (25 gew.-%ig in Wasser)
Zulauf 2: 1.5 g tert-Butylperneodecanoat, 50 g Methanol
Zulauf 3: 1.5 g tert-Butylperneodecanoat
Die Herstellung erfolgte in einem 2-Liter-Rührkessel unter einer Stickstoffatmosphäre.
Die Vorlage wurde bei einer Rührerdrehzahl von 100 UpM auf 64 °C Innentemperatur erwärmt. Dann wurden Zulauf 1 über einen Zeitraum von 4 Stunden und Zulauf 2 über einen Zeitraum von 5 Stunden zugegeben. Anschliessend wurde Zulauf 3 zugegeben 2 Stunden bei 64 °C nachpolymerisiert. Danach wurde das organische Lösungsmittel mittels Wasserdampfdestillation entfernt und eine weisse trübe wässrige Lösung mit einem Feststoffgehalt von 27.8 Gew.-% erhalten.
Beispiel 5
Vorlage: 120 g 1-Propanol
Zulauf 1 : 114, 3 g Natriumallylsulfonat (35 Gew% in Wasser)
3,40 g Schwefelsäure
Zulauf 2: 1 ,20 g 2,2'-azobis(methyl-isobutyrat)
50 g 1-Propanol
Zulauf 3: 360 g Vinylacetat
Zulauf 4: 4,00 g 2,2'-Azobis(2-amidinopropan)dihydrochlorid
50 g Wasser Die Herstellung erfolgte in einem 2-Liter-Rührkessel unter einer Stickstoffatmosphäre. Die Vorlage wurde bei einer Rührerdrehzahl von 100 UpM auf 72°C Innentemperatur erwärmt. Dann wurden Zulauf 1 und Zulauf 3 über einen Zeitraum von 3 Stunden und Zulauf 2 über einen Zeitraum von 4 Stunden zugegeben. Anschliessend wurde eine Stunde bei 72°C nachpolymerisiert. Danach wurde Zulauf 4 zugegeben und weitere 2 Stunden bei bei 72°C nachpolymerisiert. Im Anschluss wurde das organische Lösungsmittel mittels Wasserdampfdestillation entfernt und eine weisse trübe wässrige Lösung mit einem Feststoffgehalt von 26 Gew.-% erhalten. Der K-Wert des Polymers betrug 9,4 (1 gew.-%ig in Wasser).
Beispiel 6
Die Herstellung von Beispiel 6 erfolgte analog Beispiel 5, nur dass die verwendete Natriumallylsulfonat-Lösung nicht mit Schwefelsäure neutralisiert wurde. Die erhaltene wässrige Lösung hat einen Feststoffgehalt von 22.1 %, der K-Wert des Polymers betrug 9,1 (1 gew.-%ig in Wasser).
Herstellung von Solubilisaten In ein Becherglas wurden 2g des Copolymers eingewogen. Anschließend wurde dem
Ansatz jeweils ein Arzneistoff wie folgt zugewogen, um eine übersättigte Lösung zu erhalten. (Falls sich die eingewogene Masse im Medium auflöste, wurde die Einwaage bis zur Ausbildung eines Bodensatzes erhöht).
Zugewogene Menge an Wirkstoff: 17-ß-Estradiol 0,2 g; Piroxicam 0,2 ; Clotrimazol 0,2 g; Carbamazepin 0,3 g; Ketoconazol 0,25 g; Griseofulvin 0,25 g; Cinnarizin 0,25 g.
Anschließend wurde Phosphatpuffer pH 7,0 hinzugegeben, bis Solubilisator und Phosphatpuffer im Gewichtsverhältnis von 1 :10 vorlagen. Mit Hilfe eines Magnetrührers wurde dieser Ansatz bei 20°C 72 Stunden gerührt. Danach erfolgte mindestens eine 1 stündige Ruhezeit. Nach der Filtration des Ansatzes wurde dieser photometrisch vermessen und der Gehalt an Wirkstoff bestimmt.
Copolymer gemäß Bsp.nr. / Solubilisierung bei 20 0C in
Carbamazepin [g/100 ml]
1/ 0.13 2/ 0.16 3/ 0.12 4/ 0.15 5/ 0.15
Copolymer gemäß Bsp.nr. / Solubilisierung bei 20 0C in
Estradiol [g/100 ml]
1/ 0.09 2/0.07 3/ 0.04 4/ 0.06 5/ 0.12 6/ 0.11
Piroxicam Copolymer gemäß Bsp.nr. / Solubilisierung bei 20 0C in [g/100 ml]
1/ 0.30 2/ 0.21 3/ 0.18 4/ 0.19 5/ 0.22 6/ 0.20 Copolymer gemäß Bsp.nr./ Solubilisierung bei 20 0C in [g/100 ml]
Clotrimazol 1/ 0.08 2/ 0.17 3/ 0.08 4/ 0.12 5/ 0.17 6/ 0.16
Herstellung von festen Lösungen: Allgemeine Vorschrift
Zur Herstellung des Polymer-Wirkstoff-Gemischs wurden der Wirkstoff und das Polymer im Gewichtsverhältnis 1 :1 in ein geeignetes Glasgefäß eingewogen (jeweils 2g) und anschließend 16ml Dimethylformamid als Lösungsmittel hinzugefügt. Der Ansatz wurde bei 20°C 24 Stunden auf einem Magnetrührer gerührt. Die Lösung wurde anschließend mit Hilfe eines 120μm-Rakels auf einer Glasplatte ausgezogen. Diese wurde 0,5 Stunden bei RT im Abzug getrocknet und anschließend im Trockenschrank bei 50°C und 10mbar für weitere 0,5 Stunden getrocknet, um das Lösungsmittel quantitativ zu entfernen. Die Proben wurden anschließend visuell begutachtet. Wenn die Filme klar waren und der Wirkstoff nach 7 Tagen nicht auskristallisierte, wurde der Wirkstoff als stabil im Polymer gelöst beurteilt (Angabe in Tabelle 1 : 50 % gelöst). Wenn mit einem Wirkstoffanteil von 50 Gew.-% keine feste Lösung zu erzielen war, wurde der Versuch mit einer Wirkstoffbeladung von 33 Gew.-% wiederholt (Angabe in Tabelle: 33 % gelöst). Die erfindungsgemäßen Copolymere zeigten insgesamt eine höhere Kapazität zur Ausbildung einer festen Lösung.
Tabelle: Stabilität einer festen Lösung
Figure imgf000016_0001

Claims

Patentansprüche
1. Verwendung von Copolymeren, erhältlich durch radikalisch initiierte Copolymeri- sation von
a) 80 bis 99,5 Gew.-% Vinylacetat und
b) 0,5 bis 20 Gew.-% eines Sulfonat-Gruppen tragenden monoolefinisch ungesättigten Monomeren
als Solubilisatoren für in Wasser schwerlösliche Substanzen.
2. Verwendung nach Anspruch 1 , wobei als Monomere b) ω-Alken-1-sulfonsäuren oder
Sulfoalkylester der Acrylsäure oder der Methacrylsäure eingesetzt werden.
3. Verwendung nach Anspruch 1 oder 2, wobei die Copolymeren aus
a) 85 bis 98 Gew.-% Vinylacetat,
b) 2 bis 15 Gew.-% mindestens eines Sulfonat-gruppen tragenden monoolefinisch ungesättigten Monomeren
erhältlich sind.
4. Verwendung nach einem der Ansprüche 1 bis 3, wobei die Monomere b) in Form ihrer Salze eingesetzt werden.
5. Verwendung nach einem der Ansprüche 1 bis 4, wobei die Copolymeren als Monomer b) Sulfopropylester der Acrylsäure oder der Methacrylsäure enthalten.
6. Verwendung nach einem der Ansprüche 1 bis 5, wobei die Copolymeren als Monomer b) Vinylsulfonat enthalten.
7. Verwendung nach einem der Ansprüche I bis 6, wobei die Copolymeren als Monomer b) Allylsulfonat enthalten.
8. Verwendung nach einem der Ansprüche 1 bis 7, wobei die Copolymeren als Mo- nomer c) 2-Methyl-propensulfonat enthalten.
9. Verwendung nach einem der Ansprüche 1 bis 8 wobei die Copolymeren einen K- Wert von 4 bis 25 aufweisen.
10. Verwendung nach einem der Ansprüche 1 bis 9, wobei es sich bei den in Wasser schwerlöslichen Substanzen um biologisch aktive Substanzen handelt.
1 1. Verwendung nach einem der Ansprüche 1 bis 10, zur Herstellung von pharma- zeutischen Zubereitungen für die Behandlung von Krankheiten
12 . Verwendung nach einem der Ansprüche 1 bis 10 für kosmetische Zubereitungen.
13. Verwendung nach einem der Ansprüche 1 bis 10 für agrochemische Zubereitun- gen.
14. Verwendung nach einem der Ansprüche 1 bis 10 für Nahrungsergänzungsmittel oder dietätische Mittel.
15. Verwendung nach einem der Ansprüche 1 bis 10 für Lebensmittel.
16. Verwendung nach einem der Ansprüche 1 bis 10 für Zubereitungen von Farbstoffen.
17. Zubereitungen von in Wasser schwerlöslichen Substanzen, enthaltend als SoIu- bilisatoren Copolymere, erhältlich durch radikalisch initiierte Copolymerisation von
a) 85 bis 98 Gew.-% Vinylacetat
b) 2 bis 15 Gew.-% mindestens eines Sulfonat-Gruppen tragenden monoole- finisch ungesättigten Monomeren.
18. Zubereitungen nach Anspruch 17 , in denen die in Wasser schwerlösliche Sub- stanz in den Copolymeren in Form einer festen Lösung vorliegen.
19. Zubereitungen nach einem der Ansprüche 17 oder 18, enthaltend als in Wasser schwerlösliche Substanz eine biologisch aktive Substanz.
20. Zubereitungen nach einem der Ansprüche 17 bis 19, enthaltend als in Wasser schwerlösliche biologisch aktive Substanz einen pharmazeutischen Wirkstoff.
21. Zubereitungen nach Anspruch 20, in Form oral applizierbarer Darreichungsformen.
22. Zubereitungen nach einem der Ansprüche 17 bis 20, enthaltend als in Wasser schwerlösliche biologisch aktive Substanz einen kosmetischen Wirkstoff.
23 Zubereitungen nach einem der Ansprüche 17 bis 19, enthaltend als in Wasser schwerlösliche biologisch aktive Substanz einen agrochemischen Wirkstoff.
24. Zubereitungen nach einem der Ansprüche 17 bis 19, enthaltend als in Wasser schwerlösliche biologisch aktive Substanz ein Nahrungsergänzungsmittel oder einen dietätischen Wirkstoff.
25. Zubereitungen nach Anspruch 17 oder 18, enthaltend als in Wasser schwerlösliche Substanz einen Farbstoff.
26. Verfahren zur Herstellung von Copolymeren aus Vinylacetat und Sulfonat- gruppen tragenden Monomeren durch radikalisch initiierte Copolymerisation, dadruch gekennzeichnet, dass man die Polymerisation zunächst in Gegenwart eines in Wasser schwerlöslichen Radikalstarters durchführt und anschliessend eine Nachpolymerisation in Gegenwart eines wasserlöslichen Radikal Starters durchführt.
27. Copolymere, erhältlich durch radikalisch initiierte Copolymerisation von
a) 85 bis 98 Gew.-% Vinylacetat
b) 2 bis 15 Gew.-% mindestens eines Sulfoalkylesters der Acrylsäure oder der Methacrylsäure.
28. Copolymere nach Anspruch 27, enthaltend als Monomere b) Sulfopropylester der Acrylsäure oder Methacrylsäure.
29. Copolymere nach Anspruch 27 oder 28, wobei die Monomere b) in Form ihrer Kaliumsalze eingesetzt werden.
PCT/EP2007/055309 2006-06-07 2007-05-31 Verwendung von vinylacetat-sulfonat-copolymeren als solubilisatoren für in wasser schwerlösliche verbindungen WO2007141182A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009513652A JP2009540032A (ja) 2006-06-07 2007-05-31 酢酸ビニル−スルホナート共重合体の、水への溶解度が低い化合物のための可溶化剤としての使用
EP07729716A EP2029107A2 (de) 2006-06-07 2007-05-31 Verwendung von vinylacetat-sulfonat-copolymeren als solubilisatoren für in wasser schwerlösliche verbindungen
US12/303,509 US20090258953A1 (en) 2006-06-07 2007-05-31 Use of vinyl acetate-sulfonate copolymers as solubilizers for slightly water-solubable compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06115089.2 2006-06-07
EP06115089 2006-06-07

Publications (2)

Publication Number Publication Date
WO2007141182A2 true WO2007141182A2 (de) 2007-12-13
WO2007141182A3 WO2007141182A3 (de) 2008-05-08

Family

ID=38276937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/055309 WO2007141182A2 (de) 2006-06-07 2007-05-31 Verwendung von vinylacetat-sulfonat-copolymeren als solubilisatoren für in wasser schwerlösliche verbindungen

Country Status (5)

Country Link
US (1) US20090258953A1 (de)
EP (1) EP2029107A2 (de)
JP (1) JP2009540032A (de)
CN (1) CN101460149A (de)
WO (1) WO2007141182A2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009074609A1 (de) * 2007-12-12 2009-06-18 Basf Se Salze von wirkstoffen mit polymeren gegenionen
WO2009120182A2 (en) * 2007-12-20 2009-10-01 Eastman Chemical Company Sulfo-polymer powder and sulfo-polymer powder blends with carriers and/or actives
WO2017032651A1 (de) 2015-08-21 2017-03-02 Basf Se Salze von wirkstoffen mit polymeren gegenionen
US10106635B2 (en) 2014-03-28 2018-10-23 Synthomer (Uk) Limited Secondary suspending agent for suspension polymerisation reaction
US10647793B2 (en) 2014-03-28 2020-05-12 Synthomer (Uk) Limited Use of a sulphur or phosphorous-containing polymer as a processing aid in a polyvinyl chloride polymer composition

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10026698A1 (de) 2000-05-30 2001-12-06 Basf Ag Selbstemulgierende Wirkstoffformulierung und Verwendung dieser Formulierung
US8377952B2 (en) 2003-08-28 2013-02-19 Abbott Laboratories Solid pharmaceutical dosage formulation
US8025899B2 (en) 2003-08-28 2011-09-27 Abbott Laboratories Solid pharmaceutical dosage form
MX2009013810A (es) * 2007-07-06 2010-01-27 Basf Se Uso de homo y copolimeros para la estabilizacion de formulaciones de principios activos.
CN103158206A (zh) * 2013-03-19 2013-06-19 太仓市佳玲塑料制品有限公司 一种醋酸乙烯造粒的制备工艺
US11254620B2 (en) * 2013-08-05 2022-02-22 Verdesian Life Sciences U.S., Llc Micronutrient-enhanced polymeric seed coatings
GB201405624D0 (en) 2014-03-28 2014-05-14 Synthomer Uk Ltd Method of making a branched polymer, a branched polymer and uses of such a polymer
CA2996680C (en) * 2015-09-04 2023-05-16 Sumitomo Chemical Company, Limited Composition, method for producing composition, and pesticide composition
CN107793520B (zh) * 2016-09-07 2020-10-23 中国石油化工股份有限公司 一种制备聚乙烯-聚乙酸乙烯酯弹性体无皂微乳液的方法
GB201918030D0 (en) 2019-12-09 2020-01-22 Synthomer Uk Ltd Improvements in, or relating to, binders and/or coatings

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2834759A (en) * 1954-07-08 1958-05-13 Du Pont Water soluble copolymers of vinyl acetate and allyl sulfonic acid salts and process for producing same
GB1350282A (en) * 1971-04-21 1974-04-18 Reed International Ltd Emulsion polymers
US4469839A (en) * 1981-06-18 1984-09-04 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Process for preparing an aqueous emulsion of a polymer by emulsion polymerization in the presence of an emulsifier
JPH09202812A (ja) * 1995-11-21 1997-08-05 Unitika Chem Kk 脂肪族ポリビニルエステルおよびポリビニルアルコールの製造方法
WO1998025976A2 (en) * 1996-12-09 1998-06-18 Rhodia Inc. Method for making a polyvinyl acetate emulsion of high solids content and the resulting emulsion
US6787512B1 (en) * 2003-03-19 2004-09-07 Monosol, Llc Water-soluble copolymer film packet
US6818709B1 (en) * 2003-07-11 2004-11-16 Celanese International Corporation Production of vinyl alcohol copolymers

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859191A (en) * 1954-07-08 1958-11-04 Du Pont Stable aqueous dispersions of copolymers of vinyl acetate with salts of allylsulfonic acid and methallylsulfonic acid and process for preparing same
JPS515871B2 (de) * 1973-01-19 1976-02-23 Nippon Synthetic Chem Ind
JPS5324106B2 (de) * 1974-05-25 1978-07-19
JP3046346B2 (ja) * 1990-03-12 2000-05-29 昭和電工株式会社 外用剤基剤又は補助剤とそれを含有する人又は動物の外用剤
JPH0530106A (ja) * 1991-07-23 1993-02-05 Nec Corp Fm多重放送システムの特定者データ通信方式
US5487776A (en) * 1994-03-17 1996-01-30 Nimni; Marcel Anti-fungal nail lacquer and method therefor
DE19504832A1 (de) * 1995-02-14 1996-08-22 Basf Ag Feste Wirkstoff-Zubereitungen
EP0893165A3 (de) * 1997-06-28 2000-09-20 Degussa-Hüls Aktiengesellschaft Bioaktive Beschichtung von Oberflächen unter Verwendung von Makroinitiatoren
DE19815127A1 (de) * 1998-04-03 1999-10-07 Basf Ag Mittel mit Copolymerisaten aus N-Vinylcarbonsäureamiden und Monomeren mit hydrophobem Rest, und Verwendung dieser Copolymerisate
US20050255157A1 (en) * 2004-05-11 2005-11-17 Glenmark Pharmaceuticals Limited Sustained release, mucoadhesive vaginal pharmaceutical compositions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2834759A (en) * 1954-07-08 1958-05-13 Du Pont Water soluble copolymers of vinyl acetate and allyl sulfonic acid salts and process for producing same
GB1350282A (en) * 1971-04-21 1974-04-18 Reed International Ltd Emulsion polymers
US4469839A (en) * 1981-06-18 1984-09-04 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Process for preparing an aqueous emulsion of a polymer by emulsion polymerization in the presence of an emulsifier
JPH09202812A (ja) * 1995-11-21 1997-08-05 Unitika Chem Kk 脂肪族ポリビニルエステルおよびポリビニルアルコールの製造方法
WO1998025976A2 (en) * 1996-12-09 1998-06-18 Rhodia Inc. Method for making a polyvinyl acetate emulsion of high solids content and the resulting emulsion
US6787512B1 (en) * 2003-03-19 2004-09-07 Monosol, Llc Water-soluble copolymer film packet
US6818709B1 (en) * 2003-07-11 2004-11-16 Celanese International Corporation Production of vinyl alcohol copolymers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE CA CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; XP002471991 gefunden im STN Database accession no. 74: 32 763 & JP 45 030106 A (KAO SOAP CORP.) 30. September 1970 (1970-09-30) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009074609A1 (de) * 2007-12-12 2009-06-18 Basf Se Salze von wirkstoffen mit polymeren gegenionen
WO2009120182A2 (en) * 2007-12-20 2009-10-01 Eastman Chemical Company Sulfo-polymer powder and sulfo-polymer powder blends with carriers and/or actives
WO2009120182A3 (en) * 2007-12-20 2010-10-14 Eastman Chemical Company Sulfo-polymer powder and sulfo-polymer powder blends with carriers and/or actives
US10106635B2 (en) 2014-03-28 2018-10-23 Synthomer (Uk) Limited Secondary suspending agent for suspension polymerisation reaction
US10647793B2 (en) 2014-03-28 2020-05-12 Synthomer (Uk) Limited Use of a sulphur or phosphorous-containing polymer as a processing aid in a polyvinyl chloride polymer composition
WO2017032651A1 (de) 2015-08-21 2017-03-02 Basf Se Salze von wirkstoffen mit polymeren gegenionen
US10610487B2 (en) 2015-08-21 2020-04-07 Basf Se Salts of active ingredients with polymeric counterions

Also Published As

Publication number Publication date
US20090258953A1 (en) 2009-10-15
JP2009540032A (ja) 2009-11-19
CN101460149A (zh) 2009-06-17
WO2007141182A3 (de) 2008-05-08
EP2029107A2 (de) 2009-03-04

Similar Documents

Publication Publication Date Title
WO2007141182A2 (de) Verwendung von vinylacetat-sulfonat-copolymeren als solubilisatoren für in wasser schwerlösliche verbindungen
EP1945183B1 (de) Verwendung von copolymeren als solubilisatoren für in wasser schwerlösliche verbindungen
EP0953347B1 (de) Verwendung von Polyalkylenoxid-haltigen Pfropfpolymerisaten als Solubilisatoren
EP1959998B1 (de) Copolymere auf basis von polyalkylenoxid-modifizierten n-vinyllactam-copolymeren
EP1913038B1 (de) Ampholytisches copolymer, dessen herstellung und verwendung
EP2066705B1 (de) Kationische polymere als verdicker für wässrige und alkoholische zusammensetzungen
WO2009013202A1 (de) Verfahren zur herstellung von durch pfropfpolymerisation in lösung erhaltenen copolymeren auf basis von polyethern in fester form
EP1915407A2 (de) Copolymere auf basis von n-vinylcaprolactam und deren verwendung als solubilisatoren
EP1503722A2 (de) Kosmetisches mittel enthaltend wenigstens ein wasserlösliches copolymer mit (meth)acrylsäureamideinheiten
EP0948957B1 (de) Verwendung von Copolymerisaten monoethylenisch ungesättigter Carbonsäuren als Solubilisatoren
WO2007065846A2 (de) Verwendung von polyvinyllactam-polyoxyalkylen-blockcopolymeren als solubilisatoren für in wasser schwerlösliche verbindungen
EP1781719A1 (de) Verwendung von amphiphilen copolymerisaten als solubilisatoren
US20090036551A1 (en) Copolymers based on n-vinyl lactams and olefins as their use as solubilizers for slightly water-soluble compounds
WO2007012623A1 (de) Copolymere auf basis von n-vinylpyrrolidon und verzweigten aliphatischen carbonsäuren und deren verwendung als solubilisatoren
DE19812152A1 (de) Verwendung von polymerisierten Fettsäurederivaten und Fettalkoholderivaten als Solubilisatoren
WO2005041909A1 (de) Kosmetisches mittel enthaltend ein copolymer mit (meth) acrylsäureamideinheiten und einen ester der p-aminobenzoesäure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780021044.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07729716

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007729716

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12303509

Country of ref document: US

Ref document number: 2009513652

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: RU