WO2007141147A1 - Dispositif et procédé de magnétisation des aimants permanents d'une machine électrique - Google Patents

Dispositif et procédé de magnétisation des aimants permanents d'une machine électrique Download PDF

Info

Publication number
WO2007141147A1
WO2007141147A1 PCT/EP2007/055095 EP2007055095W WO2007141147A1 WO 2007141147 A1 WO2007141147 A1 WO 2007141147A1 EP 2007055095 W EP2007055095 W EP 2007055095W WO 2007141147 A1 WO2007141147 A1 WO 2007141147A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnets
magnetic
magnetization
pole
magnetic poles
Prior art date
Application number
PCT/EP2007/055095
Other languages
German (de)
English (en)
Inventor
Ansgar Ackva
Jacek Junak
Grzegorz Ombach
Original Assignee
Brose Fahrzeugteile Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brose Fahrzeugteile Gmbh & Co. Kg filed Critical Brose Fahrzeugteile Gmbh & Co. Kg
Publication of WO2007141147A1 publication Critical patent/WO2007141147A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the invention relates to a device and a method for magnetizing permanent magnets of an electrical machine.
  • the invention relates to the magnetization of permanent magnets of a brushless DC motor with an annular arrangement of the permanent magnet on the rotor of the DC motor.
  • the rule preferably in Ta ⁇ arranged permanent magnets forming the pole pieces of the DC motor.
  • brushless DC motors of the type mentioned adjacent pole shoes each have a magnetic north pole and a magnetic south pole. Therefore, the permanent magnets are always provided in an even number.
  • the magnetizing of the permanent magnets often takes place only after the assembly of the DC motor.
  • This purpose is usually a magnetization tool with a magnetization yoke, which has a plurality of magnetic poles for supplying a magnetic flux to the permanent magnet.
  • Each permanent magnet is assigned exactly one magnetic pole of the magnetization tool.
  • a disadvantage of these known Magneti ⁇ sation tools is that the permanent magnets are not Homo ⁇ gen magnetized. This leads to an inhomogeneous field distribution of the magnetic field and thus to a reduced performance of the DC motor.
  • An object of the present invention is therefore to find a solution with which the most homogeneous Magnetisie ⁇ tion of the permanent magnet is achieved.
  • a device for magnetizing a number of first permanent magnets of an electrical machine, each having a magnetic North pole, and a number of second permanent magnets of the electric machine, each representing a magnetic south pole, a device provided which comprises a number of magnetic poles for simultaneously supplying a magnetic flux to exclusively constant-pole permanent magnet.
  • the magnetisation is performed in other words, by simultaneously applying a magnetic flux to an on ⁇ plurality of non-adjacent permanent magnets of the electric machine, either magnetic north poles or south magnetic poles represent.
  • the number of magnetic poles is thus always smaller than the number of permanent magnets of the electric machine to be magnetized altogether.
  • the electrical machine is in particular ⁇ sondere a brushless DC motor with an annular arrangement of permanent magnets on the armature of the DC motor.
  • the invention is based on the finding that the gene inhomo ⁇ magnetization of the permanent magnet by way of the distribution of the magnetic flux at the edges of the permanent magnets during the Aufmagnetleitersvorganges polluter is gently. Since adjacent pole pieces each represent a magneti ⁇ 's north pole and a south magnetic pole, is carried out in the known from the prior art magnetization ⁇ always approximately tools, a magnetic flux around the edges of the permanent magnets of a pole piece around, towards the permanent magnet of the immediately adjacent pole piece. The field lines of the magnetic field are therefore strongly curved at the edges of the permanent magnets, so that there the magnetization differs from the Magne ⁇ tion in the middle of the permanent magnet.
  • Magnetic poles corresponding to the magnetizing tool the number of total réellemagnet mustden into ⁇ permanent magnets of the electric machine.
  • the invention idea is then set in such a way to ⁇ that not all existing magnetic poles are simultaneously used for magnetizing. For example, it is possible to single magnetic poles corresponding with pre ⁇ directions shield or not to drive if they are magnetic poles with electromagnetic operating principle. According to a preferred embodiment of the invention, however, it is also possible for the number of magnetic poles present to be smaller than the number of permanent magnets of the electrical machine to be magnetized together. In other words, not every permanent magnet is assigned a magnetic pole.
  • the solution ⁇ se is characterized in that the magnetization tool ge ⁇ geninate conventional solutions is structurally much simpler and thus more cost effective to manufacture. In addition, no shielding devices or additional control devices are required.
  • the magnetization tool actually comprises depends preferably on the number of permanent magnets of the electric machine to be magnetized, in the case of an arrangement of the permanent magnets on the rotor of the electrical machine, that is, on the number of magnetic poles of the rotor. Magnetizing tools with four magnetic poles have proved particularly suitable for magnetizing rotors with eight permanent magnets. Since only magnetic north pole ⁇ or only magnetic south poles are magnetized, however, the magnetic poles has the number not just to be there. In other words, it is not absolutely necessary for a pairwise magnetization of permanent magnets to take place during the magnetization process. For example, three or five permanent magnets can be magnetized simultaneously.
  • the position of the magnetic poles is changed relative to the permanent magnet between the Aufmagnet Deutschensvorêtn according to a further embodiment ⁇ form of the invention.
  • the connectable to the magnetisation of the electric machine tool magnetization is formed in such a way excluded that the position of the magnetic poles relative to the position of the permanent magnets is variable of the electric machine, wherein ⁇ play, by means of an electromotive drive.
  • the number of changes in position and successive ones Magnetization processes is part dependent on the number of handenen before ⁇ permanent magnets on the one hand and on the number of magnetic poles of the magnetizing tool used ⁇ other.
  • the magnetic flux can not of "North” to "South” SUC ⁇ gene, as provided in the prior art. If, for example, a magnetizing the magnetic north pole, then the magnetic south poles no constructive elements Since there is no substantial magnetic flux via air too, a magnetic flux inevitably takes place in the only possible direction, namely away from the magnetic north poles in the axial direction, to form a closed magnetic flux loop the magnetic poles are now according to a further advantageous embodiment During the magnetization, in other words, a magnetic flux from a permanent magnet of the electrical machine seen to another permanent magnet of the electric machine via connecting elements which magnetically magnetpo ⁇ le together the other link.
  • These connecting elements are preferably provided at the ends in the form of a cap or ⁇ same at the magnetic poles. So there is a magnetic flux away from the magnetic north poles in the axial direction towards the preferably end caps arranged and from there back to the north poles.
  • the magnetic poles are formed by teeth, which are arranged on a vorzugswei ⁇ se cylindrical magnetization yoke and each surrounded by a magnetizing coil to generate a magnetic ⁇ field in the desired direction.
  • the permanent magnets of the electric machine are preferably magnets in block form, which are arranged in pockets of the rotor, ie, so-called "pocket magnets".
  • Magnetizing the permanent magnets after assembly of the electrical machine leads to reduced manufacturing ⁇ costs.
  • the previous main drawback of such a subsequent magnetization namely an inhomogeneous magnetization of the permanent magnets, can be avoided in a simple manner. All you have to do is replace the magnetization tool. Power supply and control electronics, however, can continue to be used.
  • the invention is particularly suitable for the magnetisation of the permanent magnet of a brushless DC motor, as described for example in the automotive industry fin ⁇ .
  • the invention as well as individual basic inventive concepts can also be transferred to other magnetization processes.
  • FIG. 1 shows a sectional view of a rotor of a DC ⁇ electric motor with permanent magnets
  • FIG. 4 is an illustration of a permanent magnet magnetized according to a method known from the prior art with a first representation of the magnetization factor, FIG.
  • FIG. 2 shows a representation of a permanent magnet magnetized according to a method known from the prior art with a second representation of the magnetization factor
  • FIG. 3 shows a representation of a permanent magnet magnetized according to a method known from the prior art with a third representation of the magnetization factor
  • the rotor 1 is shown a brushless Gleichstrommo ⁇ tors.
  • the trained as an internal rotor cylindri ⁇ cal component of stamped sheet metal parts has in its center a circular opening 3 for a rotation axis of the DC motor ⁇ on.
  • On the circumference 4 of the rotor 1 eight pockets 5 are arranged, in which block-shaped permanent magnet 6 eino. These are rare earth permanent magnets with an energy density BH max > 200kJ / m 3 .
  • the pockets 5 are arranged in the interior of the rotor 1, so that the permanent magnets 6 remain under the surface 7 of the rotor 1.
  • the annularly arranged permanent magnets 6 form the pole pieces 8 of the DC motor. In this case, adjacent pole pieces 8 each represent a north magnetic pole (N) and a south magnetic pole (S).
  • the magnetization tool 11 comprises a cylindrical magnetization yoke 12 with eight magnetic poles 13 for supplying a magnetic flux to the permanent magnet 6 of the rotor 1. Je ⁇ the magnetic pole 13 is formed by a tooth 14, the yoke 12 of the magnetization radially inwardly, see.
  • the end faces 15 of the teeth 14 are concave in such a way that the rotor 1 in the interior of the magnetization yoke 12 can be moved with a arranged between the circumference 7 of the rotor 1 and the teeth 14 air gap constant width.
  • Each tooth 14 is surrounded by a magnetization coil 16.
  • the magnetizing coils 16 are simultaneously controlled by means of a current source and a Steuergerä ⁇ tes not described in detail (both not shown) and serve as Magnetflußttlen.
  • the magnetic poles 13 are brought into close magnetic contact with the pole pieces 7 of the rotor 1, as shown in FIG 3. Depending ⁇ the permanent magnet 6 is just an "active" magnetic pole 13 associated with the magnetizing tool.
  • the field lines of the magnetic field during the magnetization 9 are therefore at the edges 17 of Dau ermagneten, so in the areas of the permanent magnets 6, which are closest to each other, strongly curved. While ⁇ field lines 9, the center 18 of the permanent magnets 6 evenly and traverse with a regular distance from one another, the distance between the field lines takes 9 to each other at the edges 17 of the permanent magnets 6 from. This is particularly clear from FIG 4. This has the consequence that there the magnetization of the magnetization in the middle 18 of the permanent magnets 6 differs. This leads to differently magnetized regions within the permanent magnets 6, wherein the magnetization at the edges 17 is the lowest.
  • the magnetic field is stronger than 700 kA / m and less than 1000 kA / m, so that there is a magnetization factor greater than 95%, cf. FIG. 5.
  • the magnetic field is stronger than 1000 kA / m, which gives a magnetization factor greater than 97%, cf.
  • FIG. 7 Only in a magnetic volume of 53.75%, the magnetic field is stronger than 1600 kA / m, resulting ei ⁇ nen magnetization factor of 100%, see.
  • the magnetisation is performed with a innov ⁇ gen magnetization tool 21 as it is formed in the FIG 8 and 9 from ⁇ .
  • the magnetization tool 21 is characterized on the one hand by the fact that the number of magnetic poles 23 simultaneously supplying the magnetic flux is smaller than the number of permanent magnets 6 of the rotor 1 to be magnetized.
  • the magnetic poles 23 simultaneously feeding the magnetic flux are always non-adjacent permanent magnets 6 assigned, in such a way that only every second permanent magnet 6, a magnetic pole 23 is assigned. For arranging the rotor 1 in the magnetization tool 21, this can be opened (not shown).
  • the magnetization tool 21 is in turn connected only for the purpose of magnetizing with the DC motor and comprises a cylindrical magnetization yoke 22 which is positioned so that it surrounds the rotor 1.
  • the Magne ⁇ t Deutschensjoch 22 essentially consists of four magnetic poles 23, configured to supply a magnetic flux to the Permanent magnets 6 of the rotor 1, and two end vorgesehe ⁇ NEN, the magnetic poles 23 connecting cap-shaped connecting elements 31.
  • the connecting elements 31 bil the front of the magnetization tool 21 two openings 32 for the rotor 1 with the lovedmagnet atmosphereden permanent magnet 6 from.
  • Hollow cylindrical guides 33 adjoin each of the openings 32 and extend toward each other in the direction of the magnetizing tool center and serve to receive the rotor 1 during the magnetizing process.
  • a guide- free region 34 is provided in which the permanent magnets 6 arranged in the rotor 1 are located in the immediate vicinity of the magnetic poles 23 during the magnetization process.
  • Each magnetic pole 23 is in turn formed by a tooth 24, the yoke 22 of the magnetization radially inward, see. FIG. 9.
  • the teeth 24 are surrounded by a respective magnetization coil 26.
  • the teeth 24 and thus also the magnetization coils 26 are arranged symmetrically on the magnetization yoke 22 and in each case enclose an angle of 90 ° with each other.
  • the magnetization coils 26 are in turn simultaneously controllable by means of a current source and a control unit (not shown in detail) and serve as magnetic flux sources.
  • the four magnetic poles 24 are brought into close magnetic contact with four pole pieces 8 of the rotor 1. In this case have the Stirnsei ⁇ th 25 of the teeth 24 on respective pole pieces 8 of the lauter fers 1.
  • the magnetic poles 23 are arranged on the magnetization ⁇ yoke 22 so as to non-adjacent permanent magnets 6 of the DC motor are always assigned.
  • simultaneous magnetisation takes place in the example shown, all gleichpo- time pole shoes 8. For example, all a magneti ⁇ 's north pole (N) representing the permanent magnets 6 aufmagneti- Siert.
  • the intermediate, each one a magnetic south pole (S) representing permanent magnet 6 are during this Magnetizing step no magnetic poles 24 of the Magnetisie ⁇ tion tool 21 assigned.
  • the magnetic flux during the magnetization process runs, as shown in FIG. 10, from a first magnetic pole 23 (magnetic north pole) of the magnetization tool 21 in the axial direction, ie in the direction of the rotor shaft, to the ends of the teeth 24, which are connected via the connecting elements 31 are mechanically and magnetically connected to each other, and from there back over the rotor 1 and by a first magnetic pole 23 associated permanent magnet 6 toward the first magnetic pole 23, whereby the magnetic circuit is closed.
  • the end fasteners 31 thus take the magnetic flux ⁇ schematically in axial and radial direction.
  • the permanent magnets 6, 6 'to be simultaneously magnetized are not adjacent, the field lines 9 of the magnetic field are less strongly curved at the edges of the permanent magnets 6. Therefore, they pass through the permanent magnets 6 largely uniformly and at a regular distance from one another, cf. FIG. 10. This leads to a 100%, very homogeneous magnetization of the permanent magnets 6, even at the ends. Thereby, the material cost of magnetic material can be Ringert ver ⁇ by about 3%. At the same time, a reduction of the size of the DC motor, in particular in the axial direction, pos ⁇ lich.
  • FIGS. 11 to 13 Experimental results of such a method according to the invention are shown in FIGS. 11 to 13. Edge regions of the permanent magnets 6, in which no magnetization has occurred, are significantly reduced or no longer present. Ins ⁇ total the magnetized magnet volume now amounts to 99.7%. Only 0.3% remain unused.
  • the magnetic field is stronger than 700 kA / m, which corresponds to a magnetization factor greater than 95%, cf. FIG. 11.
  • the magnetic field is stronger than 1000 kA / m. This corresponds to a magnetization factor in this range of almost 97%, cf. FIG. 12.
  • the magnetic field is stronger than 1600 kA / m. The magnetization factor is 100% there, cf. FIG. 13
  • the time required to magnetize the permanent magnets 6 is comparable to conventional methods.
  • the duration of the magnetization is about one second.
  • the Aufmagneti ⁇ s istsvorêtn there is a change in position between the magnetic poles 23 of the magnetizing tool 21 and arranged in the rotor 1 permanent magnet 6.
  • this time for example, five seconds, there is also a cooling of the magnetic poles 23.
  • a rotor 1 can be magnetized with eight permanent magnets 6 in about 10 seconds.
  • the number of the magnetic poles 23 corresponds therefore always of one half of the number of pole pieces 8 of the rotor 1.
  • a simultaneous magnetization also an odd number equal pole permanent magnets 6 is possible to always only two magnetization processes erforder ⁇ is Lich.
  • the total time required for Aufmagneti ⁇ tion compared to other magnetization processes with optimal magnetization results can be significantly reduced.
  • the magnetisation may also be effected by means of a magnetizing tool 11 as Darge in FIG 2 ⁇ provides, ensures provided that not all existing magnetic poles for magnetisation 13 simultaneously, but only the magnetic south poles (S) or the magnetic north poles (N) associated magnetic poles 13 used who ⁇ the and a magnetic reflux via connecting elements or the like is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

L'invention concerne un dispositif (21) de magnétisation des aimants (6) permanents d'une machine électrique, un certain nombre de premiers aimants (6) permanents représentant à chaque fois un pôle nord (N) magnétique et un certain nombre de deuxièmes aimants (6) permanents représentant à chaque fois un pôle sud (S) magnétique, le dispositif (21) comprenant un certain nombre de pôles (23) magnétiques pour l'acheminement simultané d'un flux magnétique à des aimants (6) magnétiques ayant exclusivement la même polarité. Il est ainsi possible d'obtenir une magnétisation très rapide et homogène des aimants (6) permanents dans une machine électrique. La machine électrique est notamment un moteur à courant continu sans balais dans lequel les aimants (6) permanents sont disposés en anneau sur le rotor (1).
PCT/EP2007/055095 2006-06-02 2007-05-25 Dispositif et procédé de magnétisation des aimants permanents d'une machine électrique WO2007141147A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006025925.4 2006-06-02
DE102006025925 2006-06-02

Publications (1)

Publication Number Publication Date
WO2007141147A1 true WO2007141147A1 (fr) 2007-12-13

Family

ID=38426515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/055095 WO2007141147A1 (fr) 2006-06-02 2007-05-25 Dispositif et procédé de magnétisation des aimants permanents d'une machine électrique

Country Status (1)

Country Link
WO (1) WO2007141147A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011014506A1 (de) 2011-03-18 2012-09-20 Daimler Ag Vorrichtung und Verfahren zum Aufmagnetisieren von Dauermagneten einer elektrischen Maschine
DE102013200476A1 (de) * 2013-01-15 2014-02-27 Siemens Aktiengesellschaft Permanenterregte Synchronmaschine mit einem Rotor mit Permanentmagneten und Verfahren zur Herstellung derartiger Maschinen bzw. Rotoren
DE102014005806A1 (de) 2014-04-19 2014-11-06 Daimler Ag Verfahren und Vorrichtung zur Überwachung eines Magnetisierungsprozesses von Magnetpolen
EP3012947A3 (fr) * 2014-10-20 2016-08-10 Jtekt Corporation Procédé de fabrication d'une unité de rotor à aimant permanent intérieur et dispositif de magnétisation
EP3101786A1 (fr) * 2015-06-02 2016-12-07 Jtekt Corporation Procédé de fabrication et dispositif de magnétisation pour une unité de rotor à aimant permanent intérieur
DE102015122812A1 (de) 2015-12-23 2017-06-29 M-Pulse Gmbh & Co Kg Aufmagnetisieranordnung, Magnetisiervorrichtung und Verfahren zur Aufmagnetisierung eines eingebauten Werkstücks aus hartmagnetischem Material
DE102017011389A1 (de) 2017-12-11 2018-05-30 Daimler Ag Vorrichtung zum Prüfen einer Magnetisierung von in einer Komponente für eine elektrische Maschine angeordneten Permanentmagneten
CN108381594A (zh) * 2018-05-18 2018-08-10 广东交通职业技术学院 一种磁性夹具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195344A (ja) * 1989-12-22 1991-08-26 Shibaura Eng Works Co Ltd ステッピングモータの着磁器
GB2372885A (en) * 2000-07-06 2002-09-04 Ching Chuen Chan Flux regulated permanent magnet brushless DC motor
US20030122439A1 (en) * 2001-12-28 2003-07-03 Emerson Electric Co. Doubly salient machine with angled permanent magnets in stator teeth

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195344A (ja) * 1989-12-22 1991-08-26 Shibaura Eng Works Co Ltd ステッピングモータの着磁器
GB2372885A (en) * 2000-07-06 2002-09-04 Ching Chuen Chan Flux regulated permanent magnet brushless DC motor
US20030122439A1 (en) * 2001-12-28 2003-07-03 Emerson Electric Co. Doubly salient machine with angled permanent magnets in stator teeth

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011014506A1 (de) 2011-03-18 2012-09-20 Daimler Ag Vorrichtung und Verfahren zum Aufmagnetisieren von Dauermagneten einer elektrischen Maschine
DE102013200476A1 (de) * 2013-01-15 2014-02-27 Siemens Aktiengesellschaft Permanenterregte Synchronmaschine mit einem Rotor mit Permanentmagneten und Verfahren zur Herstellung derartiger Maschinen bzw. Rotoren
DE102014005806A1 (de) 2014-04-19 2014-11-06 Daimler Ag Verfahren und Vorrichtung zur Überwachung eines Magnetisierungsprozesses von Magnetpolen
EP3012947A3 (fr) * 2014-10-20 2016-08-10 Jtekt Corporation Procédé de fabrication d'une unité de rotor à aimant permanent intérieur et dispositif de magnétisation
EP3101786A1 (fr) * 2015-06-02 2016-12-07 Jtekt Corporation Procédé de fabrication et dispositif de magnétisation pour une unité de rotor à aimant permanent intérieur
US9985506B2 (en) 2015-06-02 2018-05-29 Jtekt Corporation Manufacturing method and magnetizing device for interior permanent magnet rotor unit
DE102015122812A1 (de) 2015-12-23 2017-06-29 M-Pulse Gmbh & Co Kg Aufmagnetisieranordnung, Magnetisiervorrichtung und Verfahren zur Aufmagnetisierung eines eingebauten Werkstücks aus hartmagnetischem Material
WO2017108566A1 (fr) * 2015-12-23 2017-06-29 M-Pulse Gmbh & Co Kg Agencement de remagnétisation, dispositif de magnétisation et procédé de remagnétisation d'une pièce à usiner montée et faite d'un matériau à magnétisme dur
DE102015122812B4 (de) 2015-12-23 2019-01-10 M-Pulse Gmbh & Co Kg Verfahren zur Aufmagnetisierung eines eingebauten Werkstücks aus hartmagnetischem Material und Aufmagnetisieranordnung
DE102017011389A1 (de) 2017-12-11 2018-05-30 Daimler Ag Vorrichtung zum Prüfen einer Magnetisierung von in einer Komponente für eine elektrische Maschine angeordneten Permanentmagneten
CN108381594A (zh) * 2018-05-18 2018-08-10 广东交通职业技术学院 一种磁性夹具

Similar Documents

Publication Publication Date Title
WO2007141147A1 (fr) Dispositif et procédé de magnétisation des aimants permanents d'une machine électrique
DE102007007578B4 (de) Elektrische Maschine
EP1955426B1 (fr) Machine electrique et rotor pour une machine electrique
DE112006002546B4 (de) Elektromotor mit asymmetrischen Polen
EP1458077A1 (fr) Moteur électrique polyphasé avec rotor à aimants incorporés
DE112007001339T5 (de) Magnet für eine dynamoelektrische Maschine, dynamoelektrische Maschine und Verfahren
EP2999087B1 (fr) Machine électrique ayant une dispersion d'encoche magnétique faible
EP3646438B1 (fr) Moteur à excitation par aimants permanents, doté de tiges magnétiques rotatives
DE112018004362T5 (de) Elektrische permanentmagnet-rotationsmaschine
WO2016020120A2 (fr) Élément en tôle ou en métal fritté pour stator ou rotor d'une machine électrique et un procédé de fabrication de celui-ci
DE102006053973B4 (de) Elektrischer Generator
DE102011105867A1 (de) Rotor für eine elektrische Maschine
WO2018095903A1 (fr) Machine synchrone à démultiplication magnétique de champ tournant et concentration de flux
EP2999090B1 (fr) Rotor excité en permanence présentant un champ magnétique guidé
EP2378646A1 (fr) Procédé et dispositif de magnétisation de machines synchrones excitées en permanence, et rotor pour de telles machines synchrones
EP2942858B1 (fr) Paquet de tôles de rotor
EP3381107B1 (fr) Tole electrique dotee d'une ame imprimee
WO2016096190A1 (fr) Dispositif et procédé de magnétisation d'aimants permanents
WO2019110173A1 (fr) Rotor ou stator d'une machine électrique
DE102012218993A1 (de) Läuferanordnung für eine permanentmagneterregte elektrische Maschine
DE10247228B4 (de) Verfahren und Vorrichtung zum Magnetisieren eines dauermagnetischen Ringmagneten mit gerader Polzahl
DE4417903C2 (de) Aufmagnetisierungsvorrichtung für elektrische Maschinen mit Dauermagnetläufer
DE102006007305A1 (de) Vorrichtung und Verfahren zum Aufmagnetisieren von Dauermagneten einer elektrischen Maschine
EP2999088A1 (fr) Pièce polaire à faible dispersion pour une machine électrique
DE10246719A1 (de) Verfahren und Vorrichtung zum Herstellen eines mehrpolig orientierten gesinterten Seltenerd-Ringmagnets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07729524

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 07729524

Country of ref document: EP

Kind code of ref document: A1