WO2007138818A1 - 微小液滴・気泡・粒子の位置・粒径・速度測定の方法と装置 - Google Patents

微小液滴・気泡・粒子の位置・粒径・速度測定の方法と装置 Download PDF

Info

Publication number
WO2007138818A1
WO2007138818A1 PCT/JP2007/059189 JP2007059189W WO2007138818A1 WO 2007138818 A1 WO2007138818 A1 WO 2007138818A1 JP 2007059189 W JP2007059189 W JP 2007059189W WO 2007138818 A1 WO2007138818 A1 WO 2007138818A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle size
particle
measurement
optical systems
information
Prior art date
Application number
PCT/JP2007/059189
Other languages
English (en)
French (fr)
Inventor
Kazuaki Matsuura
Koichi Hishida
Konstantinos Zarogoulidis
Alexander Taylor
Yannis Hardalupas
Daisuke Sugimoto
Original Assignee
Japan Aerospace Exploration Agency
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency, Keio University filed Critical Japan Aerospace Exploration Agency
Publication of WO2007138818A1 publication Critical patent/WO2007138818A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1027Determining speed or velocity of a particle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1029Particle size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N2015/1447Spatial selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N2015/1452Adjustment of focus; Alignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N2015/1454Optical arrangements using phase shift or interference, e.g. for improving contrast

Definitions

  • the present invention relates to a measurement device for the position, particle size, and velocity of particles such as microbubbles and droplets, and more particularly to a simultaneous measurement method and device for particles distributed in space by laser interference imaging. is there.
  • the measurement of the particle size and speed of fine particles is important for improving the efficiency in various fields related to water purification, bubbles, fuel droplets, and powder transport, which are important in processes such as sparkling liquor and carbonated beverages.
  • the top it is important from an industrial point of view.
  • the main methods for measuring the particle velocity are the laser Doppler method (Laser Doppler Anemometry, An emometer, Velocimetry: LDA, LDV), the phase Dobler method, the particle image velocity meter (Particle Image Velocimetry), and the particle tracking velocity.
  • Particle tracking velocimetry PTV
  • an extension of the holographic method and the double pulse holography method.
  • the method in which the particle size and velocity of each particle simultaneously affect each other is basically a particle tracking velocimeter combined with the PDA method, the holography method, and the shadow photography method.
  • the PDA method is most frequently used. This method is a method of sampling the particles passing through one point in space from time to time, so it is necessary to move the measurement points sequentially in order to acquire spatial information. The effort is enormous.
  • the instantaneous instantaneous spatial information has no power, it was not suitable for elucidating phenomena where the instantaneous spatial structure is important, such as intermittent spraying.
  • the velocity component of such particles is usually one or two components (eg x-axis, y-axis components).
  • the third method (for example, the z-axis component) can be measured by extending this method. Measurement point so that the six laser beams cross at one point (called the measurement volume by convention) There is a problem that adjustment of the optical system requires skill and time. In addition, the cost of configuring the equipment is relatively high.
  • the PIV and PTV methods can measure the two speed components of particles or particles existing in a plane in which pulsed laser light is spread like a sheet.
  • PIV measures the speed of particle swarms, and PTV tracks each particle one by one, each of which captures a total of two images (Image 1, Image 2) taken at very small time intervals.
  • image 1, Image 2 taken at very small time intervals.
  • it is a method of obtaining the moving distance of the particle image and converting it to speed.
  • the method of stereoscopic viewing using two cameras (hereinafter referred to as the stereo method) makes it possible to measure the moving speed component in the thickness direction of the parallel laser beam in the form of a sheet, that is, it is possible to measure all three speed components. is there.
  • Stereo-PIV and Stereo-PTV are called Stereo-PIV and Stereo-PTV.
  • the PIV method cannot measure the velocity of each individual particle, and the image of each particle is usually similar in the PTV method. If pairing, which is difficult for pairing, is wrong, there is a problem of calculating a completely wrong speed.
  • the double pulse holography method a method combining shadow pictures and PTV, shows the shape of the particle's direct image shape and is also applicable to non-spherical particles.
  • the former can calculate all three velocities because of the three-dimensional position, and the latter can calculate three-component velocities by the stereo method.
  • these methods can be applied only when the concentration of particles is low, and in many cases, it is difficult to apply them to practical fuel sprays.
  • laser interference imaging (lLIDS: Intereferometric Laser Imaging for Droplet Sizing
  • Non-Patent Document 1 the scattered light from the spherical particles in the sheet-like parallel laser beam (hereinafter abbreviated as “laser sheet”) is given an appropriate stagnation angle ⁇ (laser sheet and imaging system optical axis).
  • Non-focus imaging is a method for obtaining the particle size based on the fact that the number of fringes and the particle size are in a proportional relationship.
  • This method has an important meaning as a method for capturing the instantaneous space field (the spatial distribution of the particle position 'particle size' velocity in the plane) and is a modification and extension of the method as shown below.
  • Various technologies have been proposed.
  • Non-patent document 1 Particle size measured by interference imaging for normal particle size measurement, in-plane position (two-dimensional) + VTV speed measurement technology (plane, two components):
  • Patent Document 1 In addition to the above (a), a technology that enables application to a high concentration field by optical compression: Patent Document 1
  • Non-Patent Document 2 a technology that enables application to a high concentration field by adding only a rectangular slit to the light receiving lens:
  • Non-Patent Document 4 Based on the technology described in (a) above, two cameras were used to shoot from different directions, shot with two cameras, one with focus shooting and the other with non-focus shooting. Position in the thickness direction in the laser sheet (three-dimensional position) + thickness in the laser sheet Technology for measuring the velocity in a single direction (3D velocity):
  • laser interference imaging increases the particle image on the screen due to non-focus imaging (in the form of stripes in a circle), and the particle concentration is high when the particle concentration is high.
  • the range of application has been limited because it is difficult to measure the number of interference fringes due to overlapping images, but the particle image can be made into a dotted line shape by a method using a rectangular slit and an anamorphic optical system. This prevents overlapping and enables application to high-concentration fields.
  • the current problem with the method used in the present invention is that, as described above, laser interferometry is the position of individual particles (bubbles, droplets, etc.) in a flow field.
  • laser interferometry is the position of individual particles (bubbles, droplets, etc.) in a flow field.
  • all speeds including velocity components in the direction perpendicular to the plane are applied. It was difficult to measure the degree component (three components) at the same time as the particle size. In particular, it was difficult to accurately measure the position and velocity component in the direction perpendicular to the plane, and accurately measure the particle size at the same time.
  • the conventional laser interference imaging method and the extended examples (a) to (e) have the following problems.
  • Patent Document 2 also shows a method of measuring the particle size and the speed of three components by a method using two focus photographing, but the measurement accuracy of the particle size is also low.
  • the general problem is that if the distance between the optical device and the measurement area (hereinafter referred to as the working distance) is necessary, such as spray measurement in the ⁇ chamber, in principle, the minimum particle size and particle size that can be measured are sufficient.
  • the working distance a lens with extremely large squeezing force and small aberration is required. This is because, based on the principle of this method, if the value obtained by dividing the aperture of the lens by the working distance becomes small, the condensing angle becomes small and it becomes difficult to measure a small particle size.
  • the technique (b) is used for high-concentration field measurement, the problem of aberration becomes significant.
  • the laser sheet (or laser beam) has an intensity distribution in the thickness direction, so it is more effective depending on the particle size.
  • the measurement volume is different and this can distort the measured particle size distribution. For example, if the particles are strong at the edge of the sheet, the size and particles have a strong scattering signal, so the data is valid, but small particles do not count because the scattering signal is weak, or if the particles are large at the edge of the sheet The problem is that the interference fringe signal is not clear or does not appear.
  • Patent Document 1 Japanese Patent No. 3211825 “Measurement Method and Apparatus for Diameter and Distribution of Microbubbles and Droplets” Registered July 19, 2001 Issued September 25, 2001
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2004-361291 “Droplet State Measuring Device and State Measuring Method” published on December 24, 2004
  • Non-Patent Document 1 G. Konig, K. Anders and A. Frohn, "A new light-scattering technique to measure the diameter of periodically generated moving droplets", J. Aerosol Sci. Vol. 17, No. 2, pp. 157-167 (1986)
  • Non-Patent Document 2 G. Pan, J. Shakal, W. Lai, R. Calabria, and P. Massoli, 'Simultaneous global size and velocity measurement of droplets and sprays ", Proc. 20th Annual C onference on Liquid Atomization and bpray Systems, ILASS— Europe 2005, pp.91— 96 (2005)
  • Non-Patent Document 3 N. Damaschke, H. Nobach, N. Semidetnov and C. Tropea, "Size and velocity measurement with the global phase doppler technique, 1 lth International Symposia on Applications of Laser Techniques to Fluid Mechanics (2002)
  • Non-Patent Document 4 Y. Zama, M. Kawahashi and H. Hirahara, "Simultaneous Measurement Method of Size and 3D Velocity Components of Droplets in a Spray Field Illuminate d with a Thin Laser-Light Sheet", Meas. Sci. Technol. Vol. 16, pp.1977—1986 (2005)
  • the problem to be solved by the present invention is that, as described above, in all conventional methods including laser interference imaging, the position of the particle 'particle size ⁇ three-component velocity is measured at the same time and "all quantities are accurately measured". It is to solve the problem that it was difficult to do, that is, to present a measurement method that can accurately measure all the quantities at the same time. In particular, it is intended to present a measurement method capable of accurately measuring simultaneously the position, velocity component and particle size in the direction perpendicular to the laser sheet.
  • the problem of the present invention using laser interference imaging is that when measuring a particle having a small particle size for a measurement object that requires a sufficient working distance, an expensive lens having a very large aperture and small aberration is used. It is to solve the necessary problem, that is, to solve the difficulty associated with measuring particles with a small particle size in a normal measurement system arrangement when the working distance is long.
  • the particle size ⁇ three-dimensional position measuring method of the present invention is described as follows: "A microscopic bubble irradiated with a sheet-like parallel laser beam in a space in which particles such as microbubbles or microdroplets floated and hit the laser beam.
  • a defocused image is taken with a taking optical system from the side surface direction that forms a predetermined angle (hereinafter referred to as a sag angle) with respect to the laser beam traveling direction, and the center of the defocused image is obtained.
  • the laser interference imaging method which is a ⁇ measuring method of diameter, distribution, etc. ''
  • a plurality of out-of-focus imaging systems are used, and these are arranged at different squinting angles.
  • the same particle is identified based on the interference fringe signal including multiple particle size information or particle size information for the same particle obtained for each image force.
  • the particle size was measured, and from the principle of stereoscopic vision, the three-dimensional position of each particle was measured simultaneously with the above particle size.
  • the laser sheets are arranged across the laser sheet as shown in Fig. 2, even if I ⁇ 1
  • I 0 2
  • the particle size 3D position measurement method of the present invention uses a plurality of out-of-focus imaging optical systems. Thus, based on the three-dimensional position information obtained by the method of claim 1, the measurement region range in the laser sheet thickness direction is accurately defined to improve the accuracy of particle size distribution measurement.
  • the method of measuring the particle size ⁇ three-dimensional position ⁇ three-direction velocity component of the present invention is based on the particle size and the three-dimensional position measurement principle described in claim 1. By detecting the amount of particle movement, the three-dimensional velocity component of each particle is measured simultaneously in consideration of the above-mentioned particle size and 3D position.
  • the particle size information of the present invention is a plurality of particle size information from a photographed image by a plurality of out-of-focus photographing optical systems, and The accuracy and reliability of particle size measurement was improved by comparing information on interference fringe signals including information.
  • the particle size and 3D position of the present invention ⁇ In the three-way velocity component measurement method, the number of fringes is increased by combining multiple information of interference fringe signals of the same particle obtained by multiple out-of-focus imaging optical systems.
  • the measurement range to small particle size was expanded.
  • the particle size measurement range (dynamic range) is set by deliberately setting the particle size measurement sensitivity of multiple out-of-focus imaging optical systems. Was expanded.
  • the particle size and three-dimensional position measuring apparatus of the present invention includes a laser beam irradiation unit that irradiates a space in which fine particles float, a sheet-like parallel laser beam, and a laser beam irradiated by the laser beam irradiation unit.
  • a plurality of imaging means for imaging the fine particles hit by the beam from different stagnation angles with respect to the traveling direction of the laser beam and the number of interference fringes in the defocused image are obtained, and the microbubbles are determined based on the number of the interference fringes.
  • a diameter measuring means for obtaining the diameter of the microdroplet, and a principle power of stereoscopic vision based on a plurality of photographing screens obtained by the plurality of photographing means, a means for calculating the three-dimensional position of each particle are provided. did.
  • the particle size / three-dimensional position / three-direction velocity component measuring device of the present invention detects the amount of movement of particles between two images taken at two times having a minute time interval in addition to the device according to claim 7.
  • a means for calculating the three-way velocity component of each particle divided by time is also provided.
  • the particle size and three-dimensional position measurement method of the present invention uses an imaging optical system for performing a plurality of out-of-focus imagings in the laser interference imaging method, and arranges them at different stagnation angle positions. Since multiple particle images in the images obtained by the respective photographing optical systems are used, the reliability of the particle size and position measurement is increased, and the same particles obtained from each image can be obtained. Since the same particle is identified based on multiple particle size information or interference fringe signals containing particle size information, the risk of erroneously identifying particles in the image is reduced, and the principle of stereoscopic vision is reduced. In addition, the three-dimensional position of each particle can be accurately determined simultaneously with the above particle size.
  • the particle size 3D position measurement method of the present invention uses a plurality of out-of-focus imaging optical systems. Thus, since the three-dimensional position information obtained by the method of claim 1 is used, it is possible to accurately define the measurement region range that is not influenced by the particle size, and as a result, the particle size distribution measurement. The accuracy could be improved.
  • the particle size / three-dimensional position Z3 direction velocity component measuring method according to the present invention is a method of performing imaging at two times with a minute time interval using the particle size / three-dimensional position measurement principle described in claim 1. The amount of movement of the particles during that time can also be detected, and the three-dimensional velocity component of each particle can be simultaneously measured in addition to the above-mentioned particle size • 3D position.
  • the obtained image of the same particle using a plurality of out-of-focus imaging optical systems is used.
  • the data that does not match the other data is excluded, or the data within the allowable error range is averaged. Improved reliability.
  • the information on the interference fringe signals of the same particle obtained by a plurality of out-of-focus imaging optical systems is used.
  • the measurement range can be expanded.
  • the particle size measurement range (dynamic Range) can be expanded.
  • the particle size and three-dimensional position measuring apparatus of the present invention includes a laser beam irradiation unit that irradiates a space in which microparticles float, a sheet-like parallel laser beam, and a laser beam irradiated by the laser beam irradiation unit.
  • An imaging means for imaging the minute particles hit by the beam with a predetermined stagnation angular force in the direction of laser beam traveling, and the number of interference fringes in the defocused image are obtained, and microbubbles or minute
  • a conventional measuring apparatus for measuring the diameter and distribution of microbubbles and microdroplets by laser interference imaging with a diameter measuring means for determining the diameter of a droplet, and other imaging means for imaging from different stagnation angles The principle power of stereoscopic vision based on the multiple screens obtained by the above imaging means.Measurement of the particle size and particle size distribution, etc. with high accuracy by adding a means for calculating the three-dimensional position of each particle. And 3D We were able to realize a location measurement.
  • the particle size ⁇ three-dimensional position ⁇ three-direction velocity component measuring apparatus of the present invention is based on two images taken at two times having a minute time interval. Since there is a means for calculating the three-way velocity component of each particle by detecting the amount of movement of the child and dividing by the time, photographing at two times having a minute time interval is performed by the plurality of photographing means. It becomes a device that enables three-way velocity component measurement by itself.
  • FIG. 1 is a diagram for explaining a laser interference imaging method of the present invention in which a plurality of out-of-focus imaging optical systems are arranged in a first form.
  • FIG. 2 is a diagram for explaining a laser interference imaging method of the present invention in which a plurality of out-of-focus imaging optical systems are arranged in a second form.
  • FIG. 3 is a diagram illustrating a method for obtaining a position in the laser thickness direction from the size of a particle image.
  • IV 4 This is a diagram for explaining the influence of the light intensity distribution on the particle size distribution measurement.
  • FIG. 5 is a diagram for explaining a method for improving the particle size distribution accuracy from three-dimensional position information.
  • FIG. 6 is a diagram for explaining another influence of the light intensity distribution on the particle size distribution measurement.
  • FIG. 7 is a diagram for explaining a method for enabling the particle size measurement of small-diameter particles.
  • FIG. 8 is a diagram showing a basic arrangement of a laser interference imaging apparatus.
  • FIG. 9 is a diagram showing an example of a particle image obtained by laser interference imaging.
  • FIG. 10 is a diagram for explaining the principle of particle velocity measurement by laser interference imaging.
  • FIG. 11 is a diagram showing a calibration plate for position information calibration in laser interference imaging.
  • FIG. 12 is a diagram showing a laser interference imaging apparatus using an optical compression technique.
  • a sheet-like parallel laser beam (laser sheet 3) is irradiated into the space where particles A, B, ... such as microbubbles or microdroplets float.
  • particles A, B, ... such as microbubbles or microdroplets float.
  • the microscopic droplet particles A, B, and C are taken from the lateral direction that forms a predetermined angle ⁇ with respect to the laser beam traveling direction, and an out-of-focus image is captured by the imaging optical system, and the center of the out-of-focus image is obtained.
  • the particle size can be obtained by obtaining the center position of bubbles or microdroplets A, B, and C, and obtaining the number of interference fringes of the interference fringe pattern indicated by the out-of-focus image.
  • the particles in the laser sheet 3 are arranged so as to capture an out-of-focus image. Images are captured in the form shown in Fig. 9 by the system.
  • the particle size can be obtained by counting the two-dimensional position in the particle space from the center position of these particle images and the number of interference fringes in the particle image (see Patent Document 1).
  • the relationship between the particle size and the number of fringes is the force due to the measurement object and the arrangement of the optical system.
  • is the wavelength of the laser beam
  • is the number of interference fringes in the particle image
  • the stagnation angle ⁇ is the angle between the direction of travel of the laser beam and the optical axis of the imaging optical system
  • ⁇ (> 0) is the condensing angle shown below. More generally, there is a relation that, as ⁇ increases for the same particle size, soot also increases.
  • the condensing angle ⁇ is as shown in FIG. 8, and is obtained as follows from the effective aperture diameter W of the lens and the distance L between the tip ends of the particles.
  • the size of the particle image on the screen (Lp in FIG. 9) is obtained by image processing. Furthermore, a method can be used in which the spatial frequency on the screen of fringes is analyzed by frequency analysis using discrete Fourier transform, and the number of fringes can be accurately calculated from this to the decimal point.
  • Vx dx / dt
  • Vy dy / dt
  • dx and dy are the amount of movement of particles during the time dt in the surface of the laser sheet in real space in which the amount of movement (lx, ly) in the screen and the imaging magnification force are also converted. Since a plurality of particles are captured in the screen, it is necessary to accurately associate which particle in the image at time t is the same as which particle in the image at time t + dt. As shown in Patent Document 1, this can be done accurately by calculating the cross-correlation amount of the luminance distribution of the particle image, and at the same time finding the maximum value of this cross-correlation amount, Correspondence and accurate movement measurement of 1 pixel or less can be realized.
  • the shooting magnification differs depending on the position on the screen.
  • a calibration plate that is spotted at a known position is placed so as to coincide with the laser sheet surface, and taken before the measurement, This can be solved by making the correspondence between the position of the real space and the real space known.
  • this correspondence can be obtained theoretically by optical theory such as ray tracing.
  • a technique for simultaneously measuring the three-dimensional position of the particle size with high accuracy is provided by using a plurality of out-of-focus imaging optical systems (the three-component velocity will be described later).
  • the accuracy and reliability can be improved by using a plurality of photographing systems, the number thereof is not limited.
  • the advantage is sufficiently exhibited by using two out-of-focus photographing optical systems. Therefore, the following describes the case where two out-of-focus imaging optical systems are used. These are referred to as photographing optical systems 1 and 2. It is arranged in the direction of the side that makes a different angle with respect to the laser beam traveling direction, and the particle image is taken. At this time, the two imaging optical systems may be on the same side (form in FIG.
  • an arbitrary spatial position to be imaged is determined in advance based on the relationship between the imaging magnification and geometrical optics, or on the screen of the image captured by the two imaging optical systems of an object placed at a known position. It is necessary to make the relationship between the positions of the images taken by the two photographic optical systems known.
  • a calibration plate as shown in Fig. 11 can be used as described above.
  • a calibration plate with dots drawn on both sides of the plate or a transparent plate is used. It is necessary to use a plate with dots on it.
  • this calibration plate is moved in the direction perpendicular to the sheet surface of the laser sheet 3 (z direction) and taken sequentially, the object coordinates (x, y, z) in real space and the image were taken.
  • the relational expression between the coordinates on the screen on the photographing optical system 1 (px l.pyl) and the coordinates on the screen on the photographing optical system 2 (px2, py2) can be obtained.
  • the three-dimensional position of the photographed particle can be determined from a total of two images taken simultaneously by two imaging optical systems.
  • the measurement accuracy of the position (Z) in the thickness direction of the sheet-like parallel laser beam is compared with the conventional means for measuring the size of the particle image (ie, the so-called “out-of-focus”) force.
  • the size of the particle image is related to the degree of defocus, information on the z 'coordinate in Fig. 3 can be obtained, and the coordinates on the screen in the x' and y directions can be obtained.
  • the force that can finally determine the three-dimensional position x, y, z of the particle from the size and position of the particle image The particle image due to the difference in the z 'position of the particle existing in the laser sheet.
  • the position measurement by this conventional method is generally less accurate.
  • the technology of the present invention will be described in which the particle size and 3D position are simultaneously measured by laser interference imaging using a plurality of out-of-focus imaging optical systems, and the accuracy of the particle size distribution is improved from the 3D position information obtained thereby. To do.
  • the number of interference fringes can also measure the particle size of the particles in the screen, and at the same time, the two-dimensional position and number can be measured, so in principle the particles in the measurement volume defined by the field of view and the thickness of the laser sheet Statistics such as particle size distribution and average particle size can be obtained.
  • the laser sheet has a light intensity distribution in the thickness direction, and usually has a shape close to a Gaussian distribution as shown on the left side in FIG. Therefore, consider the case where there are four small particles S and one large particle L (SI, S2, LI, L2), one near the edge and the center of the laser sheet 3, respectively.
  • the signal from the small particle S1 existing in the edge region of the weak laser sheet is weak as shown in the lower part of FIG.
  • S1 only one of four particles is not measured.
  • small particles S only particles in the region near the center of the thickness of the laser sheet are counted, whereas large particles L are counted over the entire region, and the effective measurement region varies depending on the particle size. You can see that In this way, since particles are selectively counted depending on the size, a measurement result distorting the actual particle size distribution is obtained, and an accurate particle size distribution cannot be obtained.
  • the present invention only the particles existing in the region near the center that is not affected by the particle size are picked up. That is, when the measurement is performed at the three-dimensional position of the particle, particularly the position z in the direction perpendicular to the laser sheet as in the present invention, the measurement is performed for each particle diameter. This is because the range of the z position of the particles can be drawn. Therefore, if the measurement range is newly limited to the RS region as shown in Fig. 5, the region where small particles cannot be detected is excluded, so that small particles and large particles are counted equally. become.
  • both S1 and L1 are not counted, but only S2 and L2 are counted, but the ratio of the number of small particles to large particles reflects the correct value, and the particle size distribution can be obtained accurately.
  • the particle size distribution can be measured accurately. Due to this effect, the method of the present invention can of course accurately measure various statistics such as the average particle diameter.
  • the reflected light and the refracted light are separated from each other because the large particles are separated from the incident positions of the reflected light and the refracted light. Both incident points of light are present in the laser sheet.
  • the point that should be the incident point of refracted light is from the laser sheet as shown by the broken line in the figure. Since it protrudes, refracted light does not appear, and as a result, only reflected light is captured by the photographing optical system, and interference fringes do not appear.
  • the reflected light does not appear at the opposite end of the sheet, and as a result, only the refracted light is captured by the photographing optical system, and the interference fringes do not appear.
  • the measurement volume is limited to a region near the center as described above.
  • Particle size ⁇ Simultaneous measurement of 3D position is as described above. If speed measurement is required, do as follows. The same shooting as above is performed twice at minute intervals (time t and t + dt). At this time, the three-dimensional particle at time t and t + dt by the above method Since the position is known, the velocity components in the three directions of the particles can be measured simultaneously by dividing the amount of movement of the particles in the three directions by dt. Incidentally, the particle size velocity measurement of the bi-directional component is a known technique as shown in Patent Document 1 and the like. Here, in order to improve the accuracy of speed measurement, it is promising to calculate the speed by a cross-correlation method, and this method is adopted.
  • the amount of movement on the screen as viewed from the photographing optical system 1 is obtained by taking the cross-correlation of the particle images at each time t and t + dt of the photographing optical system 1.
  • Accurately calculate and apply the same processing to the image by the photographic optical system 2 calculate the three-dimensional movement amount dx, dy, dz from the movement amount of each screen, and divide this by dt to obtain the speed.
  • the calculation method can be taken.
  • the measurement accuracy of the velocity in the thickness direction of the sheet-like parallel laser beam is determined from the size of the particle image (ie, the so-called “out-of-focus”), as in the case of 3D position measurement. It can be improved compared to conventional means of measurement.
  • the particle size information is used to explain the technique of the present invention that improves the reliability of particle correspondence.
  • the matching process for finding out which particle image in the captured image at the time t corresponds to the particle image in the captured image at the time t + dt is more accurate.
  • the correlation process to find out which particle image in the imaging optical system 1 at time t (or t + dt) corresponds to the particle image in the imaging optical system 2 at the same time is further performed. It is necessary to do exactly. Otherwise, the result is a position and speed that are completely different from reality.
  • both imaging optical systems take out-of-focus imaging, and the particle images are captured in the form of interference fringes. Therefore, the imaging optical systems 1 and 2 and Sarako have images at times t and t + dt. Therefore, the particle size is accurately measured. Therefore, by searching for particles having the same or very close particle size based on this accurate particle size information, the matching process can be performed more accurately.
  • the present invention employing a configuration in which a plurality of imaging optical systems is arranged Two shots at the same time It is characterized in that the accuracy is improved by using the particle size information when associating the captured image of the same particle with the shadow optical system.
  • the particle mapping method described above is generally applied to laser interference imaging using a plurality of out-of-focus imaging optical systems, regardless of the intention of measuring three-dimensional positions' or measuring three-way velocity components. Applicable.
  • the above used the particle size itself, but without using this, it is assumed that the interference fringe signal reflects the particle size.
  • Various techniques for improving the accuracy and reliability of association can be adopted.
  • the same particle size information is obtained by multiple defocus optical systems regardless of the intention of measuring the three-dimensional position or measuring the three-way velocity component. You can get more than one. For example, when two imaging optical systems are used, and when speed measurement is not performed, a total of two particle size measurement information forces are measured at time t. When measuring speed, imaging optical systems at time t and t + dt are used. A total of 4 particle size measurement information can be obtained. Those that show sufficiently close values are valid as highly reliable data. As a result, the accuracy and reliability of the particle size measurement itself of each particle can be improved. When improving accuracy with multiple particle size information, the accuracy and reliability of particle size measurement is improved on the assumption that the interference fringe signal reflects the particle size without using the particle size itself. Various methods can be employed.
  • the image of a certain particle obtained from the imaging optical system 1 is an interference fringe pattern according to the scattering signal of the particle in the direction from ⁇ -a / 2 to ⁇ + a / 2.
  • the direction of the scattered signal captured by the imaging optical system 1 is an area from I 0 I-a / 2 to I ⁇ I + «/ 2 in terms of the absolute value of the angle.
  • the scattered signal captured by the imaging optical system 2 The direction is an area from I 0 I-a / 2 to I 0 I + a / 2 in terms of the absolute value of the angle. Where both areas overlap
  • I 0 I 0
  • the interference fringe signal in two regions can be obtained by combining the signals, and the same effect as increasing the lens diameter can be obtained. Because of the streaking, small particle sizes can be measured.
  • the method described above is generally applicable to laser interference imaging using a plurality of out-of-focus imaging optical systems regardless of whether or not there is an intention of measuring a three-dimensional position or measuring a three-way velocity component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 本発明が解決しようとする課題は、粒子の位置・粒径・3成分速度を同時に、且つ全ての量を正確に計測することができる計測法を提示することにある。特にレーザシートに垂直方向の位置、速度成分と粒径を同時に正確に測定することができる計測法を提示することにある。  本発明の粒径・3次元位置測定方法は、レーザ干渉画像法において、複数の焦点外れ撮影を行うための撮影光学系を利用し、これらを異なる睨み角の位置に配置して撮影し、それぞれの撮影光学系により得られた画像中の複数の粒子像の中から、それぞれの画像から得られる同一粒子に関する複数の粒径情報あるいは粒径情報を含む干渉縞信号を元に同一の粒子を特定し、その粒径を計測、さらには立体視の原理から、個々の粒子の3次元位置を上記の粒径と同時に計測するようにした。  

Description

明 細 書
微小液滴 ·気泡 ·粒子の位置 ·粒径 ·速度測定の方法と装置
技術分野
[0001] 本発明は、微小気泡、液滴などの粒子の位置、粒径、速度の計測装置に関し、特 にレーザ干渉画像法により空間に分布した粒子についての同時測定方法と装置に 関するものである。
背景技術
[0002] 微小粒子の粒子径ゃ速度の計測は、水質浄化'発泡酒 ·炭酸飲料などのプロセス 等で重要な気泡、燃料噴霧内の液滴、粉体輸送関連のさまざまな分野での効率向 上のために、工業的な観点から重要である。
気泡、液滴、粉体等の微小粒子 (ここでは数ミクロン〜 lmm程度までを想定)の測 定方法は多種多様であり、特に空間に浮遊する粒子の計測法として、粒径計測法の 主なものとしてはフラウンフォーファ回折法、位相ドッブラ法(Phase Doppler Anemom eter, Anemometry, Interferometry, Interferometer: PDA, PDI, PDPA; 下これ PD Aと呼ぶ)、シャドウドッブラ法、影写真法、ホログラフィ法等がある。一方、粒子の速度 を計測する方法として主なものは、レーザドッブラ法 (Laser Doppler Anemometry, An emometer, Velocimetry: LDA, LDV)、位相ドッブラ法、粒子画像流速計 (Particle Ima ge Velocimetry),粒子追跡速度計(Particle Tracking Velocimetry: PTV) ,ホログラフ ィ法の拡張でダブルパルスホログラフィ法等などがある。
[0003] これらの中で、粒子 1個 1個の粒径と速度が同時にわ力る方法は原則的には PDA 法と、ホログラフィ法および影写真法と組み合わせた粒子追跡速度計である。このう ち、最も頻繁に用いられるのは PDA法である。し力しこの方法は空間の 1点を時々刻 々通過する粒子を時間的にサンプルする方法であるため、空間情報を取得するため には計測点を逐次移動する必要があり、計測に力かる手間が膨大となる。また、瞬時 瞬時における空間的な情報がわ力もないため、間欠噴霧など瞬時の空間構造が重 要な意味を持つ現象の解明には適していな力つた。さらに、粒子の運動を完全に把 握するためには速度の 3成分全てを同時計測する必要がある力 PDA法で計測可能 な粒子の速度成分は通常 1もしくは 2成分 (たとえば x軸、 y軸成分)である。同方法を 拡張することで 3成分目(たとえば z軸成分)の計測も可能ではある力 3色'計 6本の レーザービームを 1点で交差するように測定点 (慣例により測定体積と呼ぶ)を構成 する必要があり、光学系の調整に熟練と時間を要する等の問題があった。また、装置 の構成にかかる費用も比較的高額である。
[0004] 一方、粒径計測は不可である力 PIV、 PTV法はパルスレーザー光をシート状に広 げた平面内に存在する粒子、または粒子群の速度 2成分の計測が可能である。 PIV は粒子群の速度を計測し、 PTVは 1個 1個の粒子を追跡する方法であり、いずれも微 小時間間隔を置いて撮影された計 2枚の画像 (画像 1,画像 2)カゝら粒子像の移動距 離を求め、速度に換算する方法である。 2つのカメラを利用して立体視する方法 (以 下ステレオ法)により、シート状の平行なレーザビームの厚み方向の移動速度成分も 可能となり、即ち速度の 3成分全てを計測することも可能である。これらは Stereo-PIV , Stereo-PTVなどと呼ばれる。し力し、 PIV法は 1個 1個の粒子の速度は計測できず、 また PTV法では通常各粒子の像が類似して ヽるため、画像 1と画像 2で粒子像同士 の対応づけ (ペアリング)が難しぐペアリングを誤ると全く誤った速度を算出する問題 がある。
一方、ダブルパルスホログラフィ法、影絵写真と PTVを組み合わせた方法では粒子 の直接画像カゝら形状'粒径がわかり、また非球形粒子にも適用可能であることが特徴 である。前者は 3次元位置がわ力るので速度 3成分すベて算出可能であり、後者はス テレオ法により 3成分速度の算出が可能である。しかし、概してこれらの方法は粒子 の濃度が薄 、場合しか適用できな 、場合が多く、実用的な燃料噴霧等への適用は 困難である。
[0005] 一方、レーザ干渉画像法 (lLIDS:Intereferometric Laser Imaging for Droplet Sizing,
IPI: Intereferometric Particle Imaging, IMI: Intereferometric Mie Imaging, Out— of— f ocus Technique, etc)は 1980年代に考案された方法であり、例えば非特許文献 1に 開示された計測方法がこれである。図 8乃至図 10に示されるようにシート状の平行な レーザビーム内(以下レーザシートと略称する。 )の球形粒子からの散乱光をある適 当な睨み角 Θ (レーザシートと撮影系光軸のなす角)から非焦点撮像 (いわゆる"ピン ボケ撮影")すると、干渉縞のパターンが現れ、この縞数と粒径が比例関係にあること に基づいて粒径を求める方法である。この縞数力も粒径を求める方法は、他の方法 と比べて粒径を正確に求めることができるという利点がある。さらに、 PTV法と同様の 原理により、微小時間間隔で 2枚画像を撮影することで、平面内の速度 2成分を求め ることができる。瞬間の空間場 (平面内の粒子位置 '粒径'速度の空間分布)を捉えら れる方法として本方法は重要な意味を持ち、以下に示すように本方法の変形,拡張 である様々な技術が提案されて 、る。
(a)通常の粒径測定の干渉画像法による粒径、平面内位置(2次元) +PTV法によ る速度測定技術 (平面、 2成分):非特許文献 1
(a' )上述 (a)に加えて、粒子画像の大きさ(ピンボケ度)からレーザシート内の厚み 方向位置(3次元位置) +レーザシート内の厚み方向速度(3次元速度)の測定
(b)上述(a)に加えて、光学的圧縮法(optical compression)により高濃度場への適 用を可能とする技術:特許文献 1
( )上述(1))に加えて、粒子画像の大きさ(ピンボケ度)からレーザシート内の厚み 方向位置(3次元位置) +レーザシート内の厚み方向速度(3次元速度)の測定
(c)上述 (a)に加えて、受光レンズに矩形スリットのみを加えて高濃度場への適用を 可能とする技術:非特許文献 2
( )上述(じ)に加えて、粒子画像の大きさ(ピンボケ度)からレーザシート内の厚み 方向位置(3次元位置) +レーザシート内の厚み方向速度(3次元速度)の測定
(d)上述 (a)の技術に基礎をおき、 2つのカメラを用いて,睨み角 90degから 2つの力 メラで撮影、一方は焦点撮影、他方は非焦点撮影により撮影し、平面内速度計測の 速度精度を上げる技術:非特許文献 3
(d' )上述(d)に加えて、粒子画像の大きさ(ピンボケ度)からレーザシート内の厚み 方向位置(3次元位置) +レーザシート内の厚み方向速度(3次元速度)の測定:非特 許文献 3
(e)上述 (a)の技術に基礎をおき、 2つのカメラを用い、異なる方向から撮影し、 2つ のカメラで撮影、一方は焦点撮影、他方は非焦点撮影により撮影し、立体視 (ステレ ォ視)によってレーザシート内の厚み方向位置(3次元位置) +レーザシート内の厚 み方向速度 (3次元速度)を測定する技術:非特許文献 4
[0006] (b)につ 、て特に説明すると、レーザ干渉画像法は、非焦点撮像により画面上の粒 子像が大きくなり(丸に縞の形態)、粒子濃度の濃い場合などには粒子像の重なりに よって干渉縞の数を計測するのが難しくなるため、適用範囲が限られていたが、矩形 スリットとアナモルフィックな光学系を利用した方法により、粒子像を点線形状とするこ とで、重なり合いを防ぎ、高濃度場への適用を可能とした。
[0007] 本発明で利用する手法に関する現状の問題点は、このように、レーザ干渉画像法 は流動場中の粒子 (気泡,液滴等)の個々の粒子の位置 '粒径,速度同時計測に有 効であり、その拡張手法についても上記のように様々な方法が提案されている力 レ 一ザ干渉画像法を適用する際、「平面に垂直な方向の速度成分を含めた全ての速 度成分 (3成分)」を粒径と同時に精度よく測定することが困難であった。特に平面に 垂直な方向の位置と速度成分を正確に測定し、し力も同時に正確に粒径測定するこ とが困難であった。
また、非常に正確な粒度分布が必要な場合には、粒子の 3次元的な位置の情報が 必要になり、この問題は特にレーザシートの厚み方向に光強度分布が一様でない場 合に問題になる。したがって、粒子の 3次元的な位置の正確な測定は、正確な粒度 分布の決定には重要である力 やはりこれを正確に測定することが困難であった。 さらに、同方法において計測器を測定対象力 十分離して設置する必要がある場 合、例えば窓のある高圧容器等の中の噴霧を、噴霧に濡れないように噴霧力も十分 距離を保った窓越しに計測する場合、レーザ干渉画像法の原理上、精度よく小さい 粒径を計測するには、実用的に著しく高価な (特別注文レベルの)大口径かつ収差 の少ない光学レンズが必要になる等の問題があった。
[0008] より具体的には、従来のレーザ干渉画像法及びならびにその拡張例(a)〜(e)につ いて、それぞれ以下の課題があった。
a)速度がレーザシート平面内の 2成分しかわからな 、。粒子濃度が濃!、場合に適 用できない。
b)速度がレーザシート平面内の 2成分しかわからない。
c)速度がレーザシート平面内の 2成分しかわ力 ない。比較的高出力のレーザが 必要になる。回折による縞 (ゴーストのようなもの)ができやすい。
d)粒子濃度が濃い場合に適用できない。焦点撮影と非焦点撮影の 2つのカメラに 撮影された同じ粒子の対応付が困難。特に焦点撮影では粒径の計測精度が低 ヽ。 e)粒子濃度が濃い場合に適用できない。焦点撮影と非焦点撮影の 2つのカメラに 撮影された同じ粒子の対応付が困難。特に焦点撮影では粒径の計測精度が低 ヽ。 なお、 2つの焦点撮影を用いた方法で粒径及び 3成分の速度を計測する方法も特 許文献 2に示されているが、同じく粒径の計測精度が低い。
(a' )〜(d') ダッシュ付きのものについては、原理的には速度 3成分計測が可能で あるが、一般にはシート厚み方向速度の速度分解能 ·速度精度が悪い。同様にシー ト厚み方向の位置計測の分解能'精度が悪い。したがって実用的にはあまり広く用い られていない。
その他、全般としての問題点は、 ωチャンバ一内の噴霧計測等、光学装置と測定 領域の距離 (以下作動距離)が必要な場合、原理上、十分な計測可能最小粒径及 び粒径の分解能を確保するためには著しく大きぐし力も収差の小さいレンズが必要 になる。それは本方法の原理に基づけば、レンズの口径を作動距離で除した値が小 さくなると、集光角が小さくなり、小さい粒径の計測が困難になるためである。特に高 濃度場計測のために (b)の技術を利用した場合には収差の問題が顕著になる。
(g)—部の他の方法 (PDA法等)にも共通して言えることである力 通常レーザシー ト(あるいはレーザビーム)が厚み方向に強度分布をもっため、粒子の大きさにより有 効な測定体積が異なり、これが計測された粒度分布をゆがめる可能性がある。例え ばシートの端に粒子が力かった場合、大き 、粒子は散乱信号が強 、ので有効データ となるが、小さい粒子は散乱信号が弱くカウントされない、あるいはシートの端では大 きな粒子の場合干渉縞信号が鮮明でなくなったり、あるいは現れない等の問題が生 じる。
特許文献 1:特許第 3211825号公報「微小気泡及び微小液滴の径及び分布等の測 定方法と装置」平成 13年 7月 19日登録 平成 13年 9月 25日発行
特許文献 2:特開 2004— 361291号公報「小滴の状態計測装置、及び状態計測方 法」平成 16年 12月 24日公開 非特許文献 1 : G. Konig, K. Anders and A. Frohn, "A new light-scattering technique to measure the diameter of periodically generated moving droplets", J. Aerosol Sci. Vol.17, No.2, pp.157-167(1986)
非特許文献 2 : G. Pan, J. Shakal, W. Lai, R. Calabria, and P. Massoli, 'Simultaneous global size and velocity measurement of droplets and sprays", Proc. 20th Annual C onference on Liquid Atomization and bpray Systems, ILASS— Europe 2005, pp.91— 96 (2005)
非特許文献 3 : N. Damaschke, H. Nobach, N. Semidetnov and C. Tropea ,"Size and velocity measurement with the global phase doppler technique , 1 lth International S ymposia on Applications of Laser Techniques to Fluid Mechanics(2002)
非特許文献 4 : Y. Zama, M. Kawahashi and H. Hirahara, "Simultaneous Measurement Method of Size and 3D Velocity Components of Droplets in a Spray Field Illuminate d with a Thin Laser-Light Sheet", Meas. Sci. Technol. Vol. 16, pp.1977— 1986 (2005 )
発明の開示
発明が解決しょうとする課題
本発明が解決しょうとする課題は、前述したようにレーザ干渉画像法を含む全ての 従来法では、粒子の位置'粒径 · 3成分速度を同時に、且つ"全ての量を正確"に計 測することが困難であったという問題を解決すること、即ち粒子の位置'粒径 · 3成分 速度を同時に、且つ全ての量を正確に計測することができる計測法を提示することに ある。特にレーザシートに垂直方向の位置、速度成分と粒径を同時に正確に測定す ることができる計測法を提示することにある。
また、レーザ干渉画像法を利用した本発明の課題は、作動距離を十分保つことが 必要な計測対象について、小さい粒径の粒子を計測する場合、非常に口径の大きく 収差の小さい高価なレンズが必要となる問題を解決すること、すなわち、作動距離が 長い場合に通常の計測系配置では、小さい粒径の粒子を計測するのに伴う困難性 を解決することにある。
課題を解決するための手段 [0011] 本発明の粒径 · 3次元位置測定方法は、「微小気泡あるいは微小液滴等の粒子が 浮いた空間にシート状の平行なレーザビームを照射し、そのレーザビームが当たった 微小気泡あるいは微小液滴をレーザビーム進行方向に対して所定の角度(以下睨 み角という。)をなす側面方向から、焦点外れ像を撮影光学系により撮影し、その焦 点外れ像の中心を求めることにより、微小気泡あるいは微小液滴の中心位置を求め 、焦点外れ像が示す干渉縞パターンの干渉縞の数を求めることにより粒径を求めるこ とを特徴とする微小気泡及び微小液滴等の粒子の径及び分布等の測定方法」であ るレーザ干渉画像法にぉ ヽて、複数の焦点外れ撮影を行うための撮影光学系を利 用し、これらを異なる睨み角の位置に配置して撮影し、それぞれの撮影光学系により 得られた画像中の複数の粒子像の中から、それぞれの画像力 得られる同一粒子に 関する複数の粒径情報あるいは粒径情報を含む干渉縞信号を元に同一の粒子を特 定し、その粒径を計測、さらには立体視の原理から、個々の粒子の 3次元位置を上 記の粒径と同時に計測するようにした。但し図 2のようにレーザシートをまたぐように配 置した場合、 I Θ 1| = I 0 2|であっても"異なる"睨み角と解釈する。
本発明の粒径 · 3次元位置測定方法は、複数の焦点外れ撮影光学系を利用するレ
Figure imgf000009_0001
、て、請求項 1に記載の方法により得られた 3次元位置情報に 基づいてレーザシート厚み方向の測定領域範囲を正確に規定し、粒度分布計測の 精度を向上させるようにした。
本発明の粒径 · 3次元位置 Ζ3方向速度成分測定方法は、請求項 1に記載の粒径 •3次元位置測定原理を利用し、微小時間間隔をもつ 2時刻における撮影を行い、そ の間の粒子の移動量を検出することで、上記の粒径 · 3次元位置にカ卩えて個々の粒 子の 3方向速度成分を同時に計測するようにした。
[0012] 本発明の粒径 · 3次元位置 Ζ3方向速度成分測定方法では、得られた同一粒子に 関する複数の焦点外れ撮影光学系による撮影像からの複数の粒径情報、ある ヽは 粒径情報を含む干渉縞信号に関する情報を相互比較することにより、粒径測定の精 度と信頼性を向上させるようにした。
本発明の粒径 · 3次元位置 Ζ3方向速度成分測定方法では、複数の焦点外れ撮影 光学系により得られた同一粒子の干渉縞信号の複数情報を総合して縞数を増加さ せ、小粒径への計測範囲を拡大するようにした。
本発明の粒径 · 3次元位置 Z3方向速度成分測定方法では、特に複数の焦点外れ 撮影光学系の粒径計測感度が意図的に異なるように設置することにより、粒径計測 範囲 (ダイナミックレンジ)を拡大するようにした。
[0013] 本発明の粒径 · 3次元位置測定装置は、微小粒子が浮いた空間にシート状の平行 なレーザビームを照射するレーザビーム照射手段と、前記レーザビーム照射手段に よって照射されたレーザビームが当たった前記微小粒子をレーザビーム進行方向に 対して異なる睨み角から撮像する複数の撮影手段と、その焦点外れ像中の干渉縞の 数を求め、その干渉縞の数に基づいて微小気泡あるいは微小液滴の直径を求める 直径測定手段と、前記複数の撮影手段で得られた複数枚の撮影画面に基づき立体 視の原理力 個々の粒子の 3次元位置を演算する手段とを備えるようにした。
本発明の粒径 · 3次元位置 Ζ3方向速度成分測定装置は、請求項 7に記載の装置 に加えて微小時間間隔をもつ 2時刻における撮影した 2画像から、その間の粒子の 移動量を検出すると共に時間で除して個々の粒子の 3方向速度成分を算出する手 段を備えるものとした。
発明の効果
[0014] 本発明の粒径 · 3次元位置測定方法はレーザ干渉画像法にぉ 、て、複数の焦点外 れ撮影を行うための撮影光学系を利用し、これらを異なる睨み角の位置に配置して 撮影し、それぞれの撮影光学系により得られた画像中の複数の粒子像を用いるため 、粒径や位置計測の信頼性が増すと共に、その中から、それぞれの画像から得られ る同一粒子に関する複数の粒径情報あるいは粒径情報を含む干渉縞信号を元に同 一の粒子を特定するものであるから、画像内の粒子を誤って特定する危険性が低く なり、立体視の原理から、個々の粒子の 3次元位置を上記の粒径と同時に精度良く 柳』定することができる。
本発明の粒径 · 3次元位置測定方法は、複数の焦点外れ撮影光学系を利用するレ
Figure imgf000010_0001
、て、請求項 1に記載の方法により得られた 3次元位置情報を 利用するものであるから、粒径に左右されない測定領域範囲を正確に規定すること ができ、その結果として粒度分布計測の精度を向上させることができた。 本発明の粒径 · 3次元位置 Z3方向速度成分測定方法は、請求項 1に記載の粒径 •3次元位置測定原理を利用して微小時間間隔をもつ 2時刻における撮影を行うもの であるから、その間の粒子の移動量を撮影画像力も検出することができ、上記の粒径 • 3次元位置に加えて個々の粒子の 3方向速度成分を同時に計測することが可能と なった。
[0015] 本発明の粒径 · 3次元位置 Z3方向速度成分測定方法では、得られた同一粒子に 関する複数の焦点外れ撮影光学系による撮影像を用いるものであるから、複数の粒 径情報、あるいは粒径情報を含む干渉縞信号に関する情報を相互比較することによ り、他のデータと合わないものは排除したり、許容誤差範囲内のものは平均したりして 粒径測定の精度と信頼性を向上させるようにした。
本発明の粒径 · 3次元位置 Z3方向速度成分測定方法では、複数の焦点外れ撮影 光学系により得られた同一粒子の干渉縞信号の複数情報を採用するものであるから 、小粒径への計測範囲を拡大することができるものとなった。
本発明の粒径 · 3次元位置 Z3方向速度成分測定方法では、特に複数の焦点外れ 撮影光学系の粒径計測感度が意図的に異なるように設置するようにしたので、粒径 計測範囲 (ダイナミックレンジ)を拡大することができるものとなった。
[0016] 本発明の粒径 · 3次元位置測定装置は、微小粒子が浮いた空間にシート状の平行 なレーザビームを照射するレーザビーム照射手段と、前記レーザビーム照射手段に よって照射されたレーザビームが当たった前記微小粒子をレーザビーム進行方向に 対して所定の睨み角力 撮像する撮影手段と、その焦点外れ像中の干渉縞の数を 求め、その干渉縞の数に基づいて微小気泡あるいは微小液滴の直径を求める直径 測定手段とを備えたレーザ干渉画像法による従来の微小気泡及び微小液滴の径及 び分布等の測定装置に、異なる睨み角から撮像する他の撮影手段と前記複数の撮 影手段で得られた複数枚の撮影画面に基づき立体視の原理力 個々の粒子の 3次 元位置を演算する手段とを加えただけで、精度の良い粒径及び粒度分布等の測定 と 3次元位置測定を実現することができた。
また、本発明の粒径 · 3次元位置 Ζ3方向速度成分測定装置は、請求項 7に記載の 装置に加えて微小時間間隔をもつ 2時刻における撮影した 2画像から、その間の粒 子の移動量を検出すると共に時間で除して個々の粒子の 3方向速度成分を算出す る手段を備えるものであるから、前記複数の撮影手段によって微小時間間隔をもつ 2 時刻における撮影を行うだけで 3方向速度成分測定を可能とする装置となる。
図面の簡単な説明
[0017] [図 1]複数の焦点外れ撮影光学系を第 1の形態で配置した本発明のレーザ干渉画像 法を説明する図である。
[図 2]複数の焦点外れ撮影光学系を第 2の形態で配置した本発明のレーザ干渉画像 法を説明する図である。
[図 3]粒子像の大きさからレーザ厚み方向の位置を求める方法を説明する図である。 圆 4]光強度分布が粒度分布測定に及ぼす影響を説明する図である。
[図 5]3次元位置情報から粒度分布精度を向上させる方法を説明する図である。
[図 6]光強度分布が粒度分布測定に及ぼす他の影響を説明する図である。
[図 7]小径粒子の粒径計測を可能にする方法を説明する図である。
[図 8]レーザ干渉画像法装置の基本配置を示す図である。
[図 9]レーザ干渉画像法によって得られる粒子画像の例を示す図である。
[図 10]レーザ干渉画像法による粒子速度測定原理を説明する図である。
[図 11]レーザ干渉画像法において位置情報較正用の較正板を示す図である。
[図 12]光学的圧縮技術を利用したレーザ干渉画像法装置を示す図である。
符号の説明
[0018] 1, 2 撮像光学系 3 レーザシート
A,B,C 粒子 S,S1,S2 小粒子
L,L1,L2 大粒子 0 , Θ 1, 0 2 睨み角度
, 1, 2 集光角
発明を実施するための最良の形態
[0019] 本発明の多様な実施形態を詳細に説明する前に、その前提となる背景技術につい て少し説明をしておく。図 8に示すような基本構成のレーザ干渉画像法では、微小気 泡あるいは微小液滴等の粒子 A, B, …が浮いた空間にシート状の平行なレー ザビーム(レーザシート 3)を照射し、そのレーザビームが当たった微小気泡あるいは 微小液滴粒子 A, B, Cをレーザビーム進行方向に対して所定の角度 Θをなす側面 方向から、焦点外れ像を撮影光学系により撮影し、その焦点外れ像の中心を求める ことにより、微小気泡あるいは微小液滴 A, B, Cの中心位置を求め、焦点外れ像が 示す干渉縞パターンの干渉縞の数を求めることにより粒径を求めることができる。これ により、レーザシート 3内の粒子 (正確には粒子をとりまく相に対する粒子相の相対屈 折率 mが既知の球形'光透過性粒子)は、焦点外れ像を捉えるように配置された撮影 光学系により、図 9に示すような形態で撮像される。これらの粒子像の中心位置から 粒子の空間中の 2次元的な位置、さらにはその粒子像の干渉縞の個数を数えること により粒径が求められる (特許文献 1参照)。粒径と縞数の関係は計測対象や光学系 の配置による力 例えば、空気中の水などで m > lかつ Θが 70度付近の場合には、 以下の関係により粒径が求まる。
[数 1]
Figure imgf000013_0001
ここで、 dは粒径、 λはレーザ光の波長、 Νは粒子像内の干渉縞の数、睨み角 Θは レーザー光の進行方向と撮影光学系の光軸とのなす角、 α (> 0)は以下に示す集光 角である。より一般的にも、同じ粒径について αが大きくなると Νも増加するという関 係がある。集光角 αは図 8に示される通りであり、レンズの有効開口径 Wと粒子'レン ズ先端間距離 Lにより以下のように求められる。
a = 2tan_ 1 (W/2L) (2)
なお、縞数の計算については様々な方法が考えられるが、例えば特許文献 1に提 案されているように、粒子像の画面上における大きさ(図 9中の Lp)を画像処理により 求め、さらに縞の画面上での空間周波数を離散フーリエ変換による周波数解析を行 いもとめ、これらから縞数を小数点以下まで精度よく求める方法が利用できる。
また、速度にっ ヽては、微小時間間隔 dtで時刻 t及び t+dtにおける 2時刻で撮影を 行い、それぞれの時刻において画像を保存する。画像内の移動距離からレーザシー ト 3内の 2方向速度成分を以下によって求める。すなわち、図 10において、粒子 Bに 着目し、画像上において X方向に lx、 y方向に ly変位していたとすれば、速度成分 Vx , Vyは次式で示される。
Vx = dx/dt, Vy=dy/dt (3)
ここで、 dx,dyは画面内の移動量 (lx、 ly)と撮影倍率力も換算した実空間における レーザシート面内の時間 dt間における粒子の移動量である。画面内には複数の粒 子が撮影されて ヽるため、時刻 tにおける画像のどの粒子が時刻 t+dtにおける画像 中のどの粒子と同一なのか、対応付けを正確に行う必要がある。これは、特許文献 1 に示されるように、粒子像の輝度分布の相互相関量を計算することで正確に行うこと ができ、同時にこの相互相関量の最大値を見出すことで、正確な粒子の対応付けと 1 ピクセル以下の正確な移動量計測が実現できる。
なお、本方法において撮影睨み角 Θ力 ^Odegでない撮影を行う場合、画面上の位 置によって撮影倍率が異なることになる。これについては、例えば図 11に示すように 既知の位置に点が打たれた較正板をレーザシート面と一致するように設置し、計測 前にあら力じめ撮影しておき、画面上の点と実空間の位置の対応付けをあら力じめ 既知のものとしておくことで解決できる。あるいは、光線追跡などの光学理論により、 この対応付けを理論的に求めることも可能である。
[0021] 本発明においては、撮影光学系を特許文献 1に説明されるアナモルフィックな光学 系 (例えば図 12—右)を採用することで、粒子濃度が濃い場合の撮影像中の粒子像 の重なり合いを防ぐことができるため、より実用的な高濃度の噴霧を計測することがで きるようになる。以下に示す本発明の各技術についても、このアナモルフィックな光学 系を用いることでより実用的な効果 (即ち高濃度場の計測)を発揮するが、ここではよ り一般的に説明するために、より一般的な図 12—左に示した光学系を採用したもの として話を進める。
[0022] 複数の焦点外れ撮影光学系を利用したレーザ干渉画像法により粒径 · 3次元位置 を同時計測する本発明の技術について説明する。
本発明においては、複数の焦点外れ撮影光学系を利用することで、精度よく粒径' 3次元位置を同時計測する技術を提供する(3成分速度については後述する)。ここ で、本発明は複数個の撮影系の利用により精度や信頼性の向上が実現できるので その数は限定されないが、本質的には 2つの焦点外れ撮影光学系の利用によりその 利点が十分発揮されるため、以下では 2つの焦点外れ撮影光学系を利用した場合に ついて説明する。これらを撮影光学系 1, 2とする。レーザビーム進行方向に対して異 なる角度をなす側面方向に配置し、粒子像を撮影する。この際、シート状の平行なレ 一ザビームに対して 2つの撮影光学系は同じ側(図 1の形態)、あるいは異なる側(図 2の形態)のどちらにあってもよい。但し、図 2については、たとえ I 0 1 I = I Θ 2 I であっても、 θ 1と Θ 2の符号は異なると解釈し、この場合も「レーザビーム進行方向に 対して異なる角度をなす側面方向に配置」したと見なす。
Θ 1、 Θ 2の値については、測定対象により異なる力 例えば空気中の水滴の場合 には、両方ともその絶対値が 70deg付近に配置するのがよい。また、 3次元位置、 3方 向速度成分を計測する場合、通常の立体視と同様に、撮影光学系 1, 2の光軸のな す角の絶対値が 90deg方向に近い方が測定精度が高くなるため、測定対象にも依存 する力 測定対象への光学的なアクセスの制限があるなど他の制約条件がなければ 、一般的には図 1よりも図 2配置の方が測定精度が高い。
本方法においては、事前に、撮像倍率と幾何光学的な関係より、あるいは既知の位 置に設置した物体の 2つの撮影光学系による撮影像の画面上位置により、撮影され る任意の空間位置とその 2つの撮影光学系による像の画像上位置の関係を既知のも のとしておく必要がある。後者の方法をとる場合、先述の通り図 11に示すような較正 板を利用できるが、図 2のような配置の場合には、例えば板の両面に点などが描画さ れた較正板或いは透明板に点が描かれたものを用いる必要がある。この較正板をレ 一ザシート 3のシート面に垂直な方向(z方向)に移動させて、逐次撮影しておけば、 実空間の物体座標 (x,y,z)と、それが撮影された撮影光学系 1上の画面上の座標 (px l.pyl)と及び撮影光学系 2上の画面上の座標 (px2,py2)との関係式を求めることが できる。この立体視の原理を応用した方法により、 2つの撮影光学系による計 2つの 同時撮影像から、撮影された粒子の 3次元位置がわかる。この際、撮影光学系 1にお ける粒子画像が、同時刻における撮影光学系 2における撮影画像中のどの粒子画 像と対応するのかを探し出す、対応付けのプロセスをより正確に行うことが必要である 力 その手段は後述する。この方法によれば、シート状の平行レーザビームの厚み方 向の位置 (Z)の計測精度は、粒子像の大きさ(即ちいわゆる"ピンボケ度")力もこれを 計測する従来の手段と比較して向上する。というのは、粒子画像の大きさは焦点外れ の度合いに関係するため、図 3中の z'座標の情報が得られることになり、さらに画面 上の座標から x'方向、及び y方向の座標の情報が得られるため、最終的に粒子画像 の大きさと位置からも粒子の 3次元位置 x,y,zを求めることができる力 レーザシート内 に存在する粒子の z'位置の違いによる粒子画像の大きさの違いは小さぐこの従来 方法による位置計測は一般的に精度が低い。
次に、複数の焦点外れ撮影光学系を利用したレーザ干渉画像法により粒径 · 3次 元位置を同時計測し、これによる 3次元位置情報から粒度分布の精度を向上させる 本発明の技術について説明する。
従来法では干渉縞の数力も画面内の粒子の粒径が計測でき、同時に 2次元位置と 個数が計測できるので、原理的には視野とレーザシートの厚みで規定される測定体 積中の粒子の粒度分布、さらには平均粒径等の統計量をもとめることができる。しか し、実際にはレーザシートは厚み方向に光強度分布を持ち、通常は図 4中の左側位 置に示すようなガウシアン分布に近い形をしている。したがって、今、測定体積内に 小さい粒 Sと大きい粒 Lがそれぞれレーザシート 3の端及び中心付近にそれぞれ 1つ づっ計 4個(SI, S2, LI, L2)存在する場合を考え、粒子の存在の有無の判別を画 像上の粒子像の輝度により判定する場合を考えると、図 4の下段に示すように光の弱 いレーザシートの端領域に存在する小さい粒子 S1からの信号は微弱となり、計 4個の 粒子中この 1つのみ(S1)が計測されない場合がおこり得る。小さい粒子 Sの場合はレ 一ザシートの厚みの中心付近の領域のみの粒子しかカウントされていないのに対し、 大きい粒子 Lは全領域に渡りカウントされており、有効な測定領域が粒径で異なって いることがわかる。このように粒子が大きさに依存して選択的にカウントされてしまうた め、実際の粒度分布をゆがめた計測結果が得られ、正確な粒度分布を得ることがで きない。そこで、本発明では粒径に左右されない中心付近の領域に存在する粒子の みをピックアップするようにした。すなわち、本発明のように粒子の 3次元位置、特に レーザシートに垂直な方向の位置 zの計測が行われている場合、粒径ごとに計測さ れた粒子の z位置の範囲を描力せることができるからである。そこで、図 5に示すよう に新たに測定範囲を RSの領域に限定して設定すれば、小さい粒子が検出できない 領域を排除することになるため、小さい粒子と大きい粒子が平等にカウントされること になる。即ち、上の例では S1,L1ともにカウントされず、 S2,L2のみがカウントされるが 、小さい粒子と大きい粒子の個数の比は正しい値を反映しており、粒度分布が正確 に求められる。以上のように、 3次元位置が計測できると、粒度分布が正確に計測で きる。この効果により、本発明の方式では当然平均粒径などの各種統計量もあわせ て正確に計測できることになる。
[0025] また、粒子がレーザシートの端に存在する場合には、大き!/、粒子の場合干渉縞信 号が鮮明でなくなったり、現れないという現象に伴う問題が生じる。これは、干渉縞を 発生させる反射光と屈折光の入射点の距離が離れるため、レーザシート厚み方向に 強度分布がある場合、両者の強度の違いが大きくなり、干渉縞の鮮明度が悪化する 力もである。極端な場合には、どちらか一方の入射点がレーザシートの外にはみ出し て干渉縞があらわれなくなる。図 6は,この極端な場合の例を示す図である。図に示 すように、小粒子 (S)と大粒子 (L)の厚み方向位置が同じでも、大粒子の方が反射光と 屈折光の入射位置が離れるため、小さい粒子では反射光と屈折光の入射点が双方 ともレーザシート内に存在するが、大きい粒子では、図の破線で示されるように、屈折 光 (正確には 1次屈折光)の入射点となるべき点がレーザシートからはみ出しているの で、屈折光は現れず、結果として反射光しか撮影光学系に捉えられず、干渉縞が現 れなくなるという現象が生じる。同様に、シートの反対側の端においても、今度は反射 光が現れず、結果として屈折光しか撮影光学系に捉えられず、やはり干渉縞が現れ なくなるという現象が生じる。このような問題も、上記の通り測定体積を中心付近の領 域に限定して設定すれば、同様に解決することができる。
[0026] 次に、複数の焦点外れ撮影光学系を利用したレーザ干渉画像法により、粒径 · 3次 元位置 · 3方向速度成分を同時計測する本発明の技術について説明する。
粒径 · 3次元位置の同時計測については上記の通りである。速度の計測が必要な 場合には以下のようにする。上記と同様の撮影を微小時間間隔で 2回行う(時刻 t及 び t + dtとする)。このとき、上記の方法により時刻 t及び t+dtにおける粒子の 3次元 位置がわかるので、粒子の 3方向の移動量をそれぞれ dtで除すれば、粒子の 3方向 の速度成分が同時に計測可能となる。なお、 2方向成分の粒径速度計測については 特許文献 1などに示されるように公知の技術である。ここにおいて、速度計測の精度 を向上させるために、相互相関による方法で速度を算出することが有望であり、この 手法を採用する。即ち、本発明では複数の撮影光学系を配置するので、撮影光学系 1の各時刻 tと t+dtにおける粒子画像の相互相関を取ることで、撮影光学系 1からみ た画面上の移動量を正確に算出し、同様の処理を撮影光学系 2による画像について も施し、それぞれの画面の移動量から 3次元の移動量 dx,dy,dzを算出し、これを dt で除することで速度を算出する方法をとることができる。この方法によれば、シート状 の平行レーザビームの厚み方向の速度の計測精度は、 3次元位置計測の場合と同 様、粒子像の大きさ (即ち 、わゆる"ピンボケ度")からこれを計測する従来の手段と比 較して向上させることがでさる。
複数の焦点外れ撮影光学系を利用したレーザ干渉画像法において、粒径の情報 を利用して、粒子の対応付けの信頼性を向上させる本発明の技術について説明する 上記の過程において重要なことは、撮影光学系 1 (または 2)における時刻 tにおけ る撮影画像中のある粒子画像が、時刻 t + dtにおける撮影画像中のどの粒子画像と 対応するのかを探し出す、対応付けのプロセスをより正確に行うことである。同時に時 刻 t (あるいは t + dt)における撮影光学系 1における粒子画像が、同時刻における撮 影光学系 2における撮影画像中のどの粒子画像と対応するのかを探し出す、対応付 けのプロセスをより正確に行うことが必要である。そうでなければ、全く現実と異なる位 置と速度を算出する結果となるからである。本手法では 2つの撮影光学系とも焦点外 れ撮影を行い、粒子像を干渉縞の形で撮影しているため、撮影光学系 1, 2、さら〖こ は時刻 t及び t+dtにおいて、画像から正確に粒径が計測されている。したがって、こ の正確な粒径情報をもとに、同じ、あるいは非常に近い粒径の粒子を探すことで、対 応付けのプロセスをより正確に行うことができる。ここで、粒径の情報を利用して同一 撮影光学系の 2時刻における粒子像の対応付けを正確に行う方法は既存であるが、 複数の撮影光学系を配置する構成を採用した本発明は、同時刻における 2つの撮 影光学系による同一粒子の撮影像の対応付けを行う際に粒径情報を利用して精度 を向上させるところが特徴である。具体的なプロセスとしては、撮影光学系 1に撮影さ れたある粒子画像にっ 、て、これと同一粒子の撮影光学系 2における粒子像を特定 する場合、(a)双方の粒径計測値が同じ (あるいは非常に近い)条件、(b)最終的に求 められた粒子位置がレーザシート内部に存在する条件、(c)粒子の 3次元位置 (計 3 つの独立変数)と、その粒子像の撮影光学系 1による画像中の縦横位置 (計 2つの従 属変数)、及び同様に撮影光学系 2による位置(同じく計 2つの従属変数)が満たす べき関係式を満足する条件の 3つを満たすように対応付けを行うが、特にプロセス (a) を導入することで対応付けがより正確となる。結果として、位置、速度の計測の精度と 信頼性の向上が可能である。なお、上記で述べた粒子対応付けの方法は 3次元位 置の計測'あるいは 3方向速度成分計測の意図の有無に関わらず、一般に複数の焦 点外れ撮影光学系を利用したレーザ干渉画像法に適用できる。また、粒径情報によ り対応付けを向上させる際、上記は粒径そのものを用いたが、これを用いなくても、干 渉縞の信号が粒径を反映していることを前提に、対応付けの精度と信頼性を向上さ せる様々な手法を採用することができる。
[0028] 複数の焦点外れ撮影光学系を利用したレーザ干渉画像法により、粒径の計測精度 と信頼性を向上させる本発明の技術について説明する。
上記で述べた方法では、 3次元位置の計測 ·あるいは 3方向速度成分計測の意図 の有無に関わらず、同一粒子の粒径が複数の焦点外れ光学系によりなされるため、 同一粒子の粒径情報を複数得ることができる。例えば、 2つの撮影光学系を利用す る場合、速度計測を行わない場合には時刻 tにおいて計 2つの粒径測定情報力 速 度を計測する際には時刻 t及び t+dtにおける撮像光学系 1, 2の計 4つの粒径測定 情報が得られる。これらが十分近 ヽ値を示すものを信頼性の高 ヽデータとして有効と する。これにより、個々の粒子の粒径計測自体の精度と信頼性の向上を図ることがで きる。尚、複数の粒径情報により精度を向上させる際、粒径そのものを用いなくても、 干渉縞の信号が粒径を反映していることを前提に、粒径測定の精度と信頼性を向上 させる様々な方法を採用することができる。
[0029] 複数の焦点外れ撮影光学系を利用したレーザ干渉画像法により、得られた同一粒 子の干渉縞信号の情報から、(例えばこれらの信号を接続合成して処理することで) 、小粒径への計測範囲を拡大する本発明の技術について説明する。
複数の焦点外れ撮影光学系からの同一粒子の干渉縞信号の情報から、(例えばこ れらの信号を接続合成して処理することで)、小粒径への計測範囲を拡大することが できる。実施例の 1つを図 7に示す。撮影光学系 1から得られたある粒子の画像は、 Θ - a /2から Θ + a /2までの方向の粒子の散乱信号に応じた干渉縞のパター
1 1 1 1
ンとなる。しかし、粒子が小さい場合、干渉縞の数も減少し、図の例では縞が 2つしか 含まれない。周波数解析を用いて縞数を計測する場合、粒子信号は本質的に低周 波数の信号を含んでいるため、縞数が小さい場合には粒径に対応した周波数とそれ 以外の成分が重なり合い、その分離が難しくなる。結果として、このような小粒子の粒 径計測を可能とするには、集光角 OC を増大させ、縞数を増やす必要があるが、作動 距離 L (図 8における)を短くすることができない測定対象に対しては、大口径かっ収 差の小さい撮影レンズが必要となり、非常に高価な光学系が必要となる。ここでは、 2 つの撮影光学系の睨み角や集光角を適切に選び、それぞれの撮影光学系で得られ た同一の粒子に対する 2つの粒子像信号力 小さい粒子の粒径の計測も可能とする 技術を提供する。このために、まず、 Θ 0
1と 0 の
2 絶対値 I Θ
1 Iと I 2 Iが等しくなら ないようにとる。(粒子の光散乱のパターンは 0が負の部分と正の部分に対して対称 であるから、ここでは特に断らない限り Θの絶対値について議論する) α
1と α
2は等し くても等しくなくてもよいが、図 7の例では等しくとられている。撮影光学系 1が捉える 散乱信号の方向は、角度の絶対値で表せば I 0 I - a /2から I Θ I + « /2の 領域であり、同様に撮影光学系 2が捉える散乱信号の方向は、角度の絶対値で表せ ば I 0 I - a /2から I 0 I + a /2の領域である。ここで、両者の領域は重なり
2 2 2 2
合う部分があってもなくても良い。例えば、 I 0
2 I - I θ \ = α = α = αである
1 1 2 とすると、信号をあわせれば 2ひの領域の干渉縞信号を得られたことになり、レンズ口 径を大きくしたのと同様の効果が得られ、図 7の例 1では 2縞力 縞にふえるので、小 さい粒径の計測が可能となる。信号処理の方法は様々考えられる力 例えば a = a = a , I θ I - I θ I = a /2とした例 2では、両信号を足し合わせたものを周波
2 2 1
数解析すると、不要な低周波成分はコヒーレンスが低くなり、有効な周波数成分の寄 与が大きくなり、し力も縞数も 2から 3に増えているので、本来の粒径に対応した干渉 縞の縞数の計測が容易になる。光散乱理論による数値シミュレーション力 得られる 情報 (例えば干渉縞の周波数のみならず位相等の情報)も含めてデータ解析を行え ば、様々な処理のバリエーションが可能である。尚、上記で述べた方法は 3次元位置 の計測'あるいは 3方向速度成分計測の意図の有無に関わらず、一般に複数の焦点 外れ撮影光学系を利用したレーザ干渉画像法に適用することができる。本手法は、 例えば高圧容器内の燃料噴霧の窓を介した計測など、測定対象力も十分離して設 置する必要のある計測対象に対して実施する場合、特に重要な利点となる。
[0030] 複数の焦点外れ撮影光学系を利用したレーザ干渉画像法において、複数の焦点 外れ撮影光学系の粒径計測感度が意図的に異なるように設置することで、粒径計測 範囲 (ダイナミックレンジ)を拡大する本発明の技術について説明する。
複数の焦点外れ撮影光学系の睨み角や集光角(あるいは口径と作動距離の比)を お互いに異なるように選ぶことで、同じ粒径に対する干渉縞の本数 (即ち感度)を変 更することができる。したがって複数 (以下簡単のため 2つ)の焦点外れ撮影光学系で 粒径の測定可能範囲を異なるように与えることができる。このような光学系の配置によ り、粒径の測定可能範囲を 1つの光学系の場合と比べて拡大することができる。大小 さまざまな粒径を含む噴霧などの場合には、当方法は有効である。なお、異なる集光 角で撮影を行う場合、ある集光角をもつ撮影光学系において光量が最適であるよう にレーザの光強度を設定すると、別の撮影光学系につ 、ては光量が適切でなくなる 場合がある。このような場合には、集光角が小さい撮影光学系に最適になるようにレ 一ザの光強度を調整し、他の撮影光学系については光減衰フィルタをレンズの前に 設置するなどしてすべての撮影光学系につ 、て光量が最適になるように配慮するこ とが望ましい。
尚、上記で述べた方法は 3次元位置の計測'あるいは 3方向速度成分計測の意図 の有無に関わらず、一般に複数の焦点外れ撮影光学系を利用したレーザ干渉画像 法に適用できる。
[0031] 本発明にかかる複数の焦点外れ撮影を行うための撮影光学系を利用したレーザ干 渉画像法において、特許文献 1等に開示された光学的圧縮技術との併用による高濃 度粒子場への適用範囲の拡大について、これまで述べた上記の方法のすべては、 図 12左に示した従来の撮影光学系に基づ!/、て説明してきたが、図 12の右に示した 光学的圧縮技術を利用した撮影光学系を組み合わせることが可能である。その場合 、重なる粒子の画像情報を分離することができるので、粒子濃度の高い計測場への 適用が可能となる。

Claims

請求の範囲
[1] レーザ干渉画像法において、複数の焦点外れ撮影を行うための撮影光学系を利 用し、これらを異なる睨み角の位置に配置して撮影し、それぞれの撮影光学系により 得られた画像中の複数の粒子像の中から、それぞれの画像力 得られる同一粒子に 関する複数の粒径情報あるいは粒径情報を含む干渉縞信号を元に同一の粒子を特 定し、その粒径を計測、さらには立体視の原理から、個々の粒子の 3次元位置を上 記の粒径と同時に計測する方法。
[2] 複数の焦点外れ撮影光学系を利用するレーザ干渉画像法にお!、て、請求項 1に 記載の方法により得られた 3次元位置情報に基づいてレーザシート厚み方向の測定 領域範囲を正確に規定し、粒度分布計測の精度を向上させることを特徴とするレー ザ干渉画像法による粒径 · 3次元位置測定方法。
[3] 請求項 1に記載の粒径 · 3次元位置測定原理を利用し、微小時間間隔をもつ 2時刻 における撮影を複数の光学系で行い、その間の粒子の移動量を検出することで、上 記の粒径 · 3次元位置にカ卩えて個々の粒子の 3方向速度成分を同時に計測する方法
[4] 得られた同一粒子に関する複数の焦点外れ撮影光学系による撮影像力 の複数 の粒径情報、あるいは粒径情報を含む干渉縞信号に関する情報を相互比較すること により、粒径測定の精度と信頼性を向上させることを特徴とする請求項 1に記載の測 定方法。
[5] 得られた同一粒子に関する複数の焦点外れ撮影光学系による撮影像力 の複数 の粒径情報、あるいは粒径情報を含む干渉縞信号に関する情報を相互比較すること により、粒径測定の精度と信頼性を向上させることを特徴とする請求項 2に記載の測 定方法。
[6] 得られた同一粒子に関する複数の焦点外れ撮影光学系による撮影像力 の複数 の粒径情報、あるいは粒径情報を含む干渉縞信号に関する情報を相互比較すること により、粒径測定の精度と信頼性を向上させることを特徴とする請求項 3に記載の測 定方法。
[7] 複数の焦点外れ撮影光学系により得られた同一粒子の干渉縞信号の複数情報を 総合して縞数を増加させ、小粒径への計測範囲を拡大することを特徴とする請求項
1に記載の測定方法。
[8] 複数の焦点外れ撮影光学系により得られた同一粒子の干渉縞信号の複数情報を 総合して縞数を増加させ、小粒径への計測範囲を拡大することを特徴とする請求項 2に記載の測定方法。
[9] 複数の焦点外れ撮影光学系により得られた同一粒子の干渉縞信号の複数情報を 総合して縞数を増加させ、小粒径への計測範囲を拡大することを特徴とする請求項 3に記載の測定方法。
[10] 複数の焦点外れ撮影光学系により得られた同一粒子の干渉縞信号の複数情報を 総合して縞数を増加させ、小粒径への計測範囲を拡大することを特徴とする請求項 4に記載の測定方法。
[11] 複数の焦点外れ撮影光学系の粒径計測感度が意図的に異なるように設置すること により、粒径計測範囲 (ダイナミックレンジ)を拡大することを特徴とする請求項 1に記 載の測定方法。
[12] 複数の焦点外れ撮影光学系の粒径計測感度が意図的に異なるように設置すること により、粒径計測範囲 (ダイナミックレンジ)を拡大することを特徴とする請求項 2に記 載の測定方法。
[13] 複数の焦点外れ撮影光学系の粒径計測感度が意図的に異なるように設置すること により、粒径計測範囲 (ダイナミックレンジ)を拡大することを特徴とする請求項 3に記 載の測定方法。
[14] 複数の焦点外れ撮影光学系の粒径計測感度が意図的に異なるように設置すること により、粒径計測範囲 (ダイナミックレンジ)を拡大することを特徴とする請求項 4に記 載の測定方法。
[15] 微小粒子が浮 、た空間にシート状の平行なレーザビームを照射するレーザビーム 照射手段と、前記レーザビーム照射手段によって照射されたレーザビームが当たつ た前記微小粒子をレーザビーム進行方向に対して異なる睨み角力 撮像する複数 の撮影手段と、その焦点外れ像中の干渉縞の数を求め、その干渉縞の数に基づい て微小気泡あるいは微小液滴の直径を求める直径測定手段と、前記複数の撮影手 段で得られた複数枚の撮影画面に基づき立体視の原理カゝら個々の粒子の 3次元位 置を演算する手段とを備えたことを特徴とする請求項 1に記載の粒径 · 3次元位置測 定方法を実施する装置。
請求項 15に記載の装置に微小時間間隔をもつ 2時刻における撮影した 2画像から 、その間の粒子の移動量を検出すると共に時間で除して個々の粒子の 3方向速度成 分を算出する手段を備えたものである粒径 · 3次元位置 Z3方向速度成分測定装置
PCT/JP2007/059189 2006-05-26 2007-04-27 微小液滴・気泡・粒子の位置・粒径・速度測定の方法と装置 WO2007138818A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-147341 2006-05-26
JP2006147341A JP2007315976A (ja) 2006-05-26 2006-05-26 微小液滴・気泡・粒子の位置・粒径・速度測定の方法と装置

Publications (1)

Publication Number Publication Date
WO2007138818A1 true WO2007138818A1 (ja) 2007-12-06

Family

ID=38778340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059189 WO2007138818A1 (ja) 2006-05-26 2007-04-27 微小液滴・気泡・粒子の位置・粒径・速度測定の方法と装置

Country Status (2)

Country Link
JP (1) JP2007315976A (ja)
WO (1) WO2007138818A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105547945A (zh) * 2016-01-14 2016-05-04 天津大学 干涉粒子成像系统采样区内粒子的判别方法
CN106018201A (zh) * 2016-05-26 2016-10-12 天津大学 基于均值滤波的混合场粒径测量方法
JP2016197130A (ja) * 2011-08-29 2016-11-24 アムジェン インコーポレイテッド 流体中の非溶解粒子の非破壊的検出のための方法および装置
JP2018120874A (ja) * 2013-04-26 2018-08-02 カティーバ, インコーポレイテッド 印刷インク液滴測定および精密な公差内で流体を堆積する制御のための技法
US10088660B2 (en) 2017-02-10 2018-10-02 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels
CN109001084A (zh) * 2018-08-03 2018-12-14 天津大学 一种基于ipi聚焦像和离焦像的宽尺寸粒子场测量方法
CN109211741A (zh) * 2017-07-05 2019-01-15 大塚电子株式会社 光学测定装置以及光学测定方法
US10784470B2 (en) 2012-12-27 2020-09-22 Kateeva, Inc. Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances
US11088035B2 (en) 2013-12-12 2021-08-10 Kateeva, Inc. Fabrication of thin-film encapsulation layer for light emitting device
US11141752B2 (en) 2012-12-27 2021-10-12 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
US11673155B2 (en) 2012-12-27 2023-06-13 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
JP7436058B2 (ja) 2019-06-24 2024-02-21 オセイル オイ 粒子噴流の流れ場を監視するための方法および装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768789A (zh) 2007-12-06 2012-11-07 报知机株式会社 报警器以及报警系统
JP2011149793A (ja) * 2010-01-21 2011-08-04 Ihi Corp ゼータ電位測定装置
JP6724473B2 (ja) * 2016-03-28 2020-07-15 富士ゼロックス株式会社 デジタルホログラフィ装置
JP6759658B2 (ja) * 2016-03-28 2020-09-23 富士ゼロックス株式会社 デジタルホログラフィ装置
JP6971842B2 (ja) * 2017-12-28 2021-11-24 キオクシア株式会社 計測装置および計測方法
CN113899737B (zh) * 2021-08-12 2024-11-08 灵动智能光学(杭州)有限公司 一种海底气泡检测的方法、装置、电子设备及介质
CN115773970B (zh) * 2022-11-25 2023-06-27 西安水文水资源勘测中心 一种悬浮泥沙颗粒图像采集系统及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170910A (ja) * 2004-12-17 2006-06-29 Saitama Univ 小滴の状態計測装置及び該装置におけるカメラの校正方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170910A (ja) * 2004-12-17 2006-06-29 Saitama Univ 小滴の状態計測装置及び該装置におけるカメラの校正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UESUGI T.: "Kotonaru Nishurui no Kogakuzo o Mochiita Funmueki Shizuku no Kei oyobi Sokudo no Doji Keisokuho", KASHIKA JOHO ZENKOKU KOENKAI (NIIGATA 2005) KOEN RONBUNSHU, 2005, vol. 25, no. SUPPL. 2, 31 October 2005 (2005-10-31), pages 247 - 250, XP008093360 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11501458B2 (en) 2011-08-29 2022-11-15 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
US11803983B2 (en) 2011-08-29 2023-10-31 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
JP2016197130A (ja) * 2011-08-29 2016-11-24 アムジェン インコーポレイテッド 流体中の非溶解粒子の非破壊的検出のための方法および装置
US9842408B2 (en) 2011-08-29 2017-12-12 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
US9892523B2 (en) 2011-08-29 2018-02-13 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
US9922429B2 (en) 2011-08-29 2018-03-20 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
US10832433B2 (en) 2011-08-29 2020-11-10 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
US10950826B2 (en) 2012-12-27 2021-03-16 Kateeva, Inc. Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances
US11673155B2 (en) 2012-12-27 2023-06-13 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
US11678561B2 (en) 2012-12-27 2023-06-13 Kateeva, Inc. Nozzle-droplet combination techniques to deposit fluids in substrate locations within precise tolerances
US11233226B2 (en) 2012-12-27 2022-01-25 Kateeva, Inc. Nozzle-droplet combination techniques to deposit fluids in substrate locations within precise tolerances
US11167303B2 (en) 2012-12-27 2021-11-09 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
US10784470B2 (en) 2012-12-27 2020-09-22 Kateeva, Inc. Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances
US10797270B2 (en) 2012-12-27 2020-10-06 Kateeva, Inc. Nozzle-droplet combination techniques to deposit fluids in substrate locations within precise tolerances
US11141752B2 (en) 2012-12-27 2021-10-12 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
US11489146B2 (en) 2012-12-27 2022-11-01 Kateeva, Inc. Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances
JP2018120874A (ja) * 2013-04-26 2018-08-02 カティーバ, インコーポレイテッド 印刷インク液滴測定および精密な公差内で流体を堆積する制御のための技法
US11088035B2 (en) 2013-12-12 2021-08-10 Kateeva, Inc. Fabrication of thin-film encapsulation layer for light emitting device
US11456220B2 (en) 2013-12-12 2022-09-27 Kateeva, Inc. Techniques for layer fencing to improve edge linearity
US11551982B2 (en) 2013-12-12 2023-01-10 Kateeva, Inc. Fabrication of thin-film encapsulation layer for light-emitting device
CN105547945A (zh) * 2016-01-14 2016-05-04 天津大学 干涉粒子成像系统采样区内粒子的判别方法
CN106018201B (zh) * 2016-05-26 2018-08-21 天津大学 基于均值滤波的混合场粒径测量方法
CN106018201A (zh) * 2016-05-26 2016-10-12 天津大学 基于均值滤波的混合场粒径测量方法
US10962756B2 (en) 2017-02-10 2021-03-30 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels
US10539773B2 (en) 2017-02-10 2020-01-21 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels
US10088660B2 (en) 2017-02-10 2018-10-02 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels
CN109211741B (zh) * 2017-07-05 2022-06-17 大塚电子株式会社 光学测定装置以及光学测定方法
CN109211741A (zh) * 2017-07-05 2019-01-15 大塚电子株式会社 光学测定装置以及光学测定方法
CN109001084A (zh) * 2018-08-03 2018-12-14 天津大学 一种基于ipi聚焦像和离焦像的宽尺寸粒子场测量方法
JP7436058B2 (ja) 2019-06-24 2024-02-21 オセイル オイ 粒子噴流の流れ場を監視するための方法および装置

Also Published As

Publication number Publication date
JP2007315976A (ja) 2007-12-06

Similar Documents

Publication Publication Date Title
WO2007138818A1 (ja) 微小液滴・気泡・粒子の位置・粒径・速度測定の方法と装置
Maeda et al. Novel interferometric measurement of size and velocity distributions of spherical particles in fluid flows
Maeda et al. Improvements of the interferometric technique for simultaneous measurement of droplet size and velocity vector field and its application to a transient spray
Kawaguchi et al. Size measurements of droplets and bubbles by advanced interferometric laser imaging technique
Hardalupas et al. Simultaneous planar measurement of droplet velocity and size with gas phase velocities in a spray by combined ILIDS and PIV techniques
US6587208B2 (en) Optical system for measuring diameter, distribution and so forth of micro bubbles and micro liquid drop
CN106290256B (zh) 基于视频测量的定量背景纹影方法
JP4568800B2 (ja) 小滴の状態計測装置及び該装置におけるカメラの校正方法
JP3875653B2 (ja) 小滴の状態計測装置、及び状態計測方法
WO2014179976A1 (zh) 一维全场彩虹测量装置及测量方法
Fdida et al. Drop size distribution measured by imaging: determination of the measurement volume by the calibration of the point spread function
Zhou et al. Holographic astigmatic particle tracking velocimetry (HAPTV)
Schröder et al. Dual-volume and four-pulse tomo PIV using polarized laser lights
JP2015078969A (ja) 液滴内流動観察方法及び液滴内流動観察装置
Hess et al. Droplet imaging velocimeter and sizer: a two-dimensional technique to measure droplet size
Zama et al. Simultaneous measurement method of size and 3D velocity components of droplets in a spray field illuminated with a thin laser-light sheet
Pan et al. Simultaneous global size and velocity measurement of droplets and sprays
Zama et al. Simultaneous measurement of droplet size and three-components of velocity in spray
Anders et al. Simultaneous in situ measurements of size and velocity of burning droplets
Kobayashi et al. Measurement of spray flow by an improved interferometric laser imaging droplet sizing (ILIDS) system
Sugimoto et al. Extension of the compressed interferometric particle sizing technique for three component velocity measurements
CN206132146U (zh) 一种液体流量的测定装置
Gatete et al. EFFECTS OF REFRACTIVE INDEX AND ASPECT RATIO ON THE PARTICLE IMAGES IN A LEVITATED DROPLET
Schairer et al. Predicting camera views for image-based measurements in wind tunnels
Pan et al. Spray features investigated by gsv: a new planar laser technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742624

Country of ref document: EP

Kind code of ref document: A1