WO2007138785A1 - Hard coat film and optically functional film - Google Patents

Hard coat film and optically functional film Download PDF

Info

Publication number
WO2007138785A1
WO2007138785A1 PCT/JP2007/057404 JP2007057404W WO2007138785A1 WO 2007138785 A1 WO2007138785 A1 WO 2007138785A1 JP 2007057404 W JP2007057404 W JP 2007057404W WO 2007138785 A1 WO2007138785 A1 WO 2007138785A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
phase
hard coat
adhesive
Prior art date
Application number
PCT/JP2007/057404
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Mizuno
Hideki Sugihara
Shigenori Iwade
Yasuhiro Nishino
Katsuhiko Nose
Toshitake Suzuki
Chikao Morishige
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to CN2007800200769A priority Critical patent/CN101460308B/en
Publication of WO2007138785A1 publication Critical patent/WO2007138785A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0833Manufacture of polymers containing ionic or ionogenic groups containing cationic or cationogenic groups together with anionic or anionogenic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes

Definitions

  • the present invention relates to a hard coat film and an antireflection film, a light diffusion sheet, a prismatic lens sheet, a near-infrared ray shielding film, a transparent conductive film, an antireflection film, which are mainly used for display members, and the film. It relates to optical functional films such as glare films. Specifically, adhesion between the base film and the hard coat layer containing inorganic fine particles, and other optical functional layers (hard coat layer, light diffusion layer, prism layer, infrared absorption layer, transparent conductive layer, antiglare layer, etc.) The present invention relates to a hard coat film having excellent properties and excellent scratch resistance, and an optical functional film using the same.
  • hard coat films used for display components such as liquid crystal displays (LCDs) and plasma display panels (PDPs) are made of thermoplastic resin films and hard coat (HC) layers that have improved adhesion. It is laminated via a resin layer.
  • the optical functional film for display is generally used by bonding optical functional films having different functions through an adhesive layer.
  • demands for large flat displays have been increasing in recent years due to low-price market power. Therefore, composite films in which other optical functional layers are laminated on one hard coat film are being developed for display materials.
  • a hard coat film has an antireflection layer (AR layer) that prevents reflection of external light, a prism-like lens layer that is used to collect and diffuse light, and light that improves brightness.
  • AR layer antireflection layer
  • prism-like lens layer that is used to collect and diffuse light
  • light that improves brightness examples include an optical composite functional film in which optical functional layers such as a diffusion layer are laminated.
  • the thermoplastic resin film used as the base material of the hard coat film includes a transparent film having polyethylene terephthalate (PET), polyamide, acrylic, polycarbonate (PC), triacetyl cellulose (TAC), cyclic polyolefin, etc. Is used.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • TAC triacetyl cellulose
  • cyclic polyolefin etc.
  • the biaxially oriented polyester film is used as a thermoplastic resin film for various optical functional films from the viewpoint of excellent transparency, dimensional stability, and chemical resistance. Widely used.
  • the film does not have a polar group like a polyolefin film! /, And the film has very poor adhesion to various paints, adhesives, inks, etc., so corona discharge treatment, flame treatment, etc. in advance
  • thermoplastic resin film by providing an adhesive modified layer containing an adhesive modified resin such as film, polyester, acrylic, polyurethane, and acrylic graft polyester on the surface of a thermoplastic resin film by a coating method, A method for imparting easy adhesion to a plastic resin film is generally known.
  • these coating methods the thermoplastic resin film before completion of crystal orientation was subjected to corona discharge treatment directly or as needed, and then the above-mentioned solution or resin was dispersed with a dispersion medium.
  • thermoplastic resin film A method in which an aqueous coating solution containing a dispersion is applied to a substrate film, dried, stretched at least in a uniaxial direction, and then subjected to a heat treatment to complete the crystal orientation of the thermoplastic resin film (so-called inline A coating method) and a method of drying a water-based or solvent-based coating liquid after manufacturing a thermoplastic resin film (so-called off-line coating method) are widely used industrially.
  • the processing agent used for forming the functional layer such as the prism layer or the diffusion layer described above is directly applied to the base film without being diluted with an organic solvent from the viewpoint of reducing the environmental load. Is often applied. For this reason, since the effect of improving the wettability of the adhesion modified layer by the organic solvent may not be sufficiently obtained, higher adhesion is required.
  • the processing agent is often diluted with an organic solvent in order to reduce the viscosity of the processing agent and obtain a good leveling effect. In this case, an appropriate solvent resistance is required for the adhesion modified layer of the adhesion modified substrate film.
  • the processing machine for laminating functional layers such as a hard coat layer and a diffusion layer on a base film has been increased in size, so that it can be easily used as a base film.
  • the roll diameter of the adhesive film is also increasing. Along with this, when winding with high tension in order to prevent roll misalignment, blocking is more likely to occur, especially because the core of the roll is pressed with high pressure.
  • a method is generally employed in which irregularities are imparted to the surface of the adhesive modified base film to reduce the contact area.
  • a method of increasing the content of inorganic particles or organic particles contained in the adhesive modified layer or the substrate film, or using particles having a large particle size is used.
  • the method is common.
  • the refractive index of commercially available particles is generally different from the refractive index of the resin used for the adhesive reforming layer, and voids are formed around the particles as the film is stretched. Therefore, in these methods, the light transmittance of the film is lowered and the haze is raised. In particular, the transparency required for the base film of the optical functional film is lowered. In other words, in the conventional method, the high speed of the process is low. Due to new problems associated with the increase in the diameter of the rod, it was extremely difficult to improve the adhesion and the blocking resistance while maintaining transparency while maintaining the transparency.
  • the optical functional film is provided with a hard coat layer on both sides of the base film for the purpose of preventing adhesion with the light guide plate, increasing the transmittance, or reducing the curl.
  • a hard coat layer is also laminated on the surface opposite to the optical functional layer such as a prism lens layer or a light diffusion layer.
  • a hard coat film is usually a thin cured film having a thickness of 3 to 10 ⁇ m on a thermoplastic resin film using an ionizing radiation curable resin such as a thermosetting resin or an ultraviolet curable resin.
  • a coating film (node coat layer) is formed.
  • the hard coat layer is thinner than that of the base film, the hardness of the hard coat film itself is affected by the base film and does not become sufficiently high. Therefore, in order to further improve the scratch resistance of the node coat, it has been studied to contain inorganic particles in the hard coat layer.
  • the ratio of the curable resin in the hard coat layer decreases, so the adhesive modified base film and the hard coat layer of the adhesive modified base film Adhesiveness at the interface decreases.
  • a resin composition comprising a copolymer film and polyurethane as main components on a base film made of biaxially oriented polyethylene terephthalate by an in-line coating method.
  • Patent Document 2 Japanese Patent Publication No. 64-6025
  • the substrate film and the hard coat layer are recently required as a substrate film for use in an optical functional film.
  • the adhesiveness at the interface between the functional layer such as the diffusion layer, particularly the adhesion modified layer and the hard coat layer containing inorganic particles is insufficient.
  • the applicant provided a resin composition layer in which a copolyester, polyurethane, and inorganic particles having an appropriate particle diameter were added on a base film made of biaxially oriented polyethylene terephthalate, and further optical
  • a laminated polyester film that can sufficiently satisfy the required level of adhesion while maintaining transparency, which is an extremely important property for a substrate film for use in a film, and has few optical defects (for example, , See Patent Documents 3 and 4).
  • An easy-adhesive biaxially oriented polyester film obtained by applying a water-dispersible coating solution containing it, guiding it to a tenter, drying, transverse stretching, and heat setting at 240 ° C. was disclosed.
  • Patent Document 3 Japanese Patent Laid-Open No. 11 323271
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-246855
  • the applicant of the present invention has proposed an invention relating to an easy-adhesive film roll in which the variation in coating amount is reduced in order to improve the uniformity of adhesion (see, for example, Patent Document 5).
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-10669
  • an ionizing radiation curable hard disk containing about 40 parts by mass of ultrafine silica particles having a particle size of about 50 nm or less on 100 parts by mass of a resin on an easily adhesive polyethylene terephthalate film.
  • a hard coat film in which a coating agent is applied to a dry thickness of about 15 m and cured with an electron beam has been proposed (for example, see Patent Document 6).
  • this hard coat film has high hardness in the hard coat layer and excellent scratch resistance.
  • the hard coat film has good resistance to adhesion at the interface between the adhesive modified layer and the hard coat layer containing inorganic particles. As a result, the required quality of the current factory will not be fully satisfied.
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2000-112379
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2004-160774 That is, in the prior art, while maintaining high hardness, a hard coat film excellent in adhesiveness that can withstand high-speed cutting required in recent years, in particular, adhesiveness with a hard coat layer containing inorganic particles. Is obtained. Disclosure of the invention
  • An object of the present invention is to provide a hard coat film having a high hardness and a high hardness at the interface between the adhesion modified layer and the hard coat layer containing inorganic particles, and an optical functional film using the same. Is to provide.
  • the first invention in the present invention is an adhesive modified base film in which an adhesive modified layer B containing a copolymerized polyester and polyurethane is formed on one side or both sides of a thermoplastic resin film A, and A hard coat film having a layer structure of AZBZC or BZAZBZC, in which a hard coat layer C containing inorganic fine particles is laminated on the surface of an adhesive modified layer B on one side of the film, the adhesive modified Layer B has a micro phase separation structure or a nano phase separation structure of a polyester (PEs) phase and a polyurethane (PU) phase, and the cutting surface of the hard coat film was observed in a phase measurement mode using a scanning probe microscope.
  • PEs polyester
  • PU polyurethane
  • the interface force between the adhesive modified layer B and the hard coat layer C is within the range of a depth of 20 nm, and the polyurethane phase (phase image) of the adhesive modified layer B is defined by the following formula (1).
  • Show light hue Area ratio of) is a hard coat film, characterized in that 60% or less than 30%.
  • PU phase area ratio (%) (PU phase area Z measurement area) X 100 ⁇ ⁇ ⁇ (1)
  • the second invention is an adhesive modified base film in which an adhesive modified layer B containing a copolymerized polyester and polyurethane is formed on one or both sides of a thermoplastic resin film A, and the film A hard coat film having a layer structure of AZBZC or BZAZBZC, in which a hard coat layer c containing inorganic fine particles is laminated on the surface of one of the adhesive modified layers B, the adhesive modified layer B , Having a micro phase separation structure or a nano phase separation structure of polyester (PEs) phase and polyurethane (PU) phase, and using a scanning probe microscope
  • the hard coat film is characterized by having an area ratio of 35% or more and less than 90% in the range of 5 m ⁇ 5 m.
  • PEs phase area ratio (%) (PEs phase area Z measurement area) X 100 ⁇ ⁇ ⁇ (2)
  • a third invention is the hard coat film according to the first or second invention, wherein the content of inorganic fine particles in the hard coat layer C is 20 to 80% by mass.
  • thermoplastic resin film does not contain particles or contains 50 ppm or less, and the adhesive modified layer contains 0.1 to 20% by mass of particles.
  • a fifth invention is the hard coat film according to the fourth invention, wherein the particles are silica particles.
  • the sixth invention provides a hard coat layer, a light diffusing layer, a prismatic lens layer, an electromagnetic wave absorbing layer, a near-surface on the surface opposite to the hard coat layer C of the hard coat film described in the first or second invention.
  • An optical functional film in which at least one optical functional layer selected from an infrared ray blocking layer and a transparent conductive layer is laminated.
  • a seventh invention is an optical functional film in which an antireflection layer or an antifouling layer is laminated on the hard coat layer C of the hard coat film described in the first or second invention.
  • the hard coat film of the present invention has a specific microphase separation structure or nanophase separation structure in the polyester phase and the polyurethane phase as an intermediate layer between the thermoplastic resin film and the hardcoat layer, and is bonded.
  • the area ratio of the polyurethane phase in the vicinity of the interface with the hard coat layer on the cut surface of the property modified layer is in a specific range. Therefore, even when a hard coat layer containing inorganic fine particles is laminated, adhesion to the hard coat layer can be improved while maintaining high hardness. Furthermore, the adhesiveness with optical function layers, such as a diffusion layer and a prism layer, is also excellent.
  • a specific amount of particles having a specific particle size is contained only in the adhesive modified layer, or particles are formed in either the polyester phase or the polyurethane phase on the surface of the adhesive modified layer.
  • the material unevenly distributed, it is possible to improve blocking resistance, handling property, and scratch resistance while maintaining high transparency. Therefore, it is useful as a hard coat film or an optical functional film requiring high transparency.
  • silica particles when silica particles are contained in the adhesion modified layer, the silica particles can be unevenly distributed in the polyurethane phase, so that the disadvantage of polyurethane having poor blocking resistance can be compensated.
  • FIG. 1 is an explanatory diagram of a phase image obtained by observing the surface of an adhesion modified layer of an adhesion modified substrate film used in the hard coat film of the present invention in a phase measurement mode of a scanning probe microscope.
  • FIG. 2 is an explanatory diagram of a phase image in which the contour of the interface between the light hue and the dark hue is emphasized by image processing software in the phase image of FIG.
  • FIG. 3 is an explanatory diagram of a phase image in which the outline of the interface between the light hue and the dark hue in FIG. 2 is emphasized and the dark hue is filled with image processing software.
  • FIG. 4 is an explanatory diagram showing a boundary line between a light hue and a dark hue in the phase image in which the outline of the interface between the light hue and the dark hue in FIG. 2 is emphasized.
  • FIG. 5 is an explanatory diagram showing the difference in level of scratches when the surface shape of a scratch attached to the surface of an adhesive modified layer is measured in a wave mode using a three-dimensional non-contact surface shape measuring device.
  • FIG. 7 is an explanatory diagram showing a coating liquid receiving tray, a circulation tank of a circulation tank, an arrangement of a preparation tank, and a circulation path of the coating liquid.
  • FIG. 8 The cut surface of the adhesive modified layer when the hard coat film of the present invention was cut was observed in a phase measurement mode of a scanning probe microscope, and the color was equalized to enhance the contrast. It is explanatory drawing of a phase image.
  • FIG. 9 is an explanatory diagram showing the range in which the phase separation structure is to be observed with two red lines in the phase image subjected to the color homogenization process in FIG.
  • FIG. 10 is an explanatory diagram of a phase image obtained by binarizing the phase image of FIG. 8 with image processing software.
  • FIG. 11 is an explanatory diagram of a phase image in which the two red lines in FIG. 9 are pasted at the same position on the binary phase image in FIG.
  • FIG. 12 is an explanatory diagram of a phase image in which the portion surrounded by two red lines is painted red with an image processing software.
  • adhesion refers to a hard coat layer after repeating a cross-cut peel test (100 squares) with an adhesive tape on a hard coat layer containing inorganic fine particles 10 times. It means the adhesion at the interface between the substrate and the adhesion modified layer of the substrate film.
  • an adhesive having an adhesion of 80% or more defined by the following formula is accepted. It is preferably 85% or more, particularly preferably 90% or more.
  • Adhesion (%) (1—Number of peeled Z100) X 100
  • the adhesion refers to a hard coat layer obtained by curing a solvent-diluted photocurable acrylic resin with ultraviolet rays, and the adhesion of the film. Means the adhesion of the interface between the acrylic hard coat layer and the film adhesion modified layer after 10 times of cross-cut peel test (100 squares) with adhesive tape. To do.
  • an adhesive having an adhesion defined by the following formula of 80% or more is considered acceptable. Preferably it is 85% or more, particularly preferably 90% or more.
  • Adhesion (%) (1—Number of peeled Z100) X 100
  • the hardness in the present invention means "pencil hardness” evaluated by a pencil hardness test in accordance with JIS-K5400.
  • the pencil hardness test was repeated 5 times on the surface of the hard coat layer of the hard coat film. If any abnormalities such as scratches were observed in any test, the pencil used for the test.
  • the hardness of the pencil is the pencil hardness. For example, using a 3H pencil, perform 5 test operations, and if there is no appearance abnormality even once, set the pencil hardness of the material to 3H.
  • the anti-blocking property of the adhesive modified base film used in the present invention is that two film samples are laminated so that the adhesive modified layers face each other, and a pressure of lkgfZcm 2 is applied thereto. After adhering for 24 hours in an atmosphere of 50 ° C and 60% RH, the film is peeled off, and the peeled state is “those that can be peeled lightly with no adhesion-modified layer transition”.
  • the film having high transparency in the present invention means a film having a haze of 1.5% or less.
  • the haze is 1.0% or less.
  • a microphase separation structure or nanostructure specific to the surface of the adhesive modified layer In order to obtain excellent adhesion and blocking resistance in the adhesive modified base film used in the present invention, a microphase separation structure or nanostructure specific to the surface of the adhesive modified layer. It is important to develop a phase separation structure.
  • the hard coat film of the present invention in order to improve the adhesion between the adhesive modified layer of the adhesive modified base film and the hard coat layer containing inorganic fine particles, It is important to develop a specific microphase separation structure or nanophase separation structure on the surface, that is, the interface with the hard coat layer.
  • the adhesion modified layer B becomes an intermediate layer between the thermoplastic resin film A and the hard coat layer C. That is, the phase separation structure on the surface of the adhesion modified layer B cannot be observed from the surface of the hard coat film. Therefore, in the present invention, the hard coat film was cut, and the phase separation structure of the adhesion modified layer near the interface with the hard coat layer was observed from the cut surface.
  • the specific phase separation structure of the adhesion modified layer in the present invention includes the composition of the coating liquid used for forming the adhesion modified layer, the type and concentration of the surfactant, the coating amount, the adhesion It can be formed by selectively adopting and controlling the drying conditions and heat setting conditions of the property-modified layer.
  • PET polyethylene terephthalate
  • the PET pellets were sufficiently vacuum-dried, then fed to an extruder, melt-extruded into a sheet at 280 ° C, Cool and solidify to form an unoriented PET sheet.
  • high-precision filtration is performed at any place where the molten resin is kept at about 280 ° C. in order to remove foreign substances contained in the resin.
  • the obtained unoriented sheet is stretched in the longitudinal direction 2.5 to 5.0 times with a roll heated at 80 to 120 ° C. to obtain a uniaxially oriented PET film.
  • the copolymer polyester and polyurethane aqueous solution is applied to one side or both sides of the uniaxially oriented PET film.
  • aqueous coating solution for example, reverse roll 'coating method, gravure' coating method, kiss' coating method, roll brushing method, Examples include a play coat method, an air knife coat method, a wire barber coat method, a pipe doctor method, an impregnation 'coat method, and a curtain' coat method, and these methods can be performed alone or in combination.
  • the end of the film is gripped with a clip, guided to a hot air zone heated to 80 to 180 ° C, and stretched 2.5 to 5.0 times in the width direction after drying.
  • a heat treatment zone 220-240 ° C and heat-treat for 1-20 seconds to complete crystal orientation.
  • this heat treatment process if necessary, apply a 1 to 12% relaxation treatment in the width direction or longitudinal direction.
  • phase separation structure of the adhesion modified layer of the adhesion modified substrate film used in the present invention will be described.
  • the raw materials and production conditions used for the hard coat film and optical functional film of the present invention will be described in detail, including the condition factors for controlling the phase separation structure.
  • the adhesion-modified layer is composed of a polyester phase mainly composed of a copolyester (hereinafter sometimes abbreviated as PEs phase) and a polyurethane phase mainly composed of polyurethane (hereinafter PU phase).
  • PEs phase a copolyester
  • PU phase a polyurethane phase mainly composed of polyurethane
  • the adhesive modification layer B is used for the purpose of improving the adhesion between the hard coat layer containing inorganic fine particles and the thermoplastic resin film. Furthermore, when the same coating layer or other optical functional layer is laminated on the surface opposite to the hard coat layer, it is also used for the purpose of improving the adhesion between these layers and the thermoplastic resin film. It is done.
  • the adhesive modification layer B has a structure in which a polyester (PEs) phase and a polyurethane (PU) phase are microphase-separated or nanophase-separated, and is hard-coated using a scanning probe microscope.
  • the interface force between the adhesion modified layer B and the hard coat layer C is defined by the following formula in the range up to a depth of 20 nm. It is an important feature that the area ratio (PU area ratio) of the polyurethane phase (showing a light hue in the phase image) is 30% or more and 60% or less.
  • PU phase area ratio (%) (PU phase area Z measurement area) X 100
  • the area ratio of the PU phase is determined as follows.
  • a method for exposing the adhesive modified layer to the surface a method of cutting a film from an oblique direction using a surface interface property analyzer (SAICAS, manufactured by Dybla Wintes Co., Ltd.) is preferable.
  • SAICAS surface interface property analyzer
  • SPM scanning probe microscope
  • the area ratio of the polyurethane phase in the vicinity of the interface with the hard coat layer on the cut surface of the adhesive modified layer has the following technical significance.
  • the area ratio of the polyurethane phase exceeds 60%, the ratio of the polyurethane phase on the surface of the adhesive modified layer becomes relatively large during the production of the adhesive modified base film, and the frequency with which blocking resistance decreases. Will increase.
  • the area ratio of the polyurethane phase is less than 30%, the frequency of decrease in adhesion increases. In particular, the adhesiveness to solventless hard coat agents and lens forming resins is significantly reduced.
  • the upper limit of the area ratio of the polyurethane phase in the adhesion modified layer near the interface with the hard coat layer is preferably 50% from the viewpoint of blocking resistance.
  • the lower limit of the area ratio of the PU phase is preferably 35% from the viewpoint of adhesion to the hard coat layer and other optical functional layers made of acrylic resin.
  • any adhesive property modification layer has the area ratio of the polyester phase similar to the above.
  • PEs phase area ratio (%) (PEs phase area Z measurement area) X 100
  • the area ratio of the PEs phase on the surface of the adhesion modified layer has the following technical significance.
  • the area ratio of the PEs phase is less than 35%, the area ratio of the polyurethane phase on the surface of the adhesive modified layer becomes relatively large, and the frequency of the decrease in blocking resistance increases.
  • the area ratio of the PEs phase is 90% or more, the frequency of decrease in adhesion increases. In particular, the adhesion with respect to the solventless hard coat agent is significantly reduced.
  • the lower limit of the area ratio of the PEs phase on the surface of the adhesive modified layer is preferably 40%, more preferably 45%, and particularly preferably 50%, from the viewpoint of blocking resistance.
  • the upper limit of the area ratio of the PEs phase on the surface of the adhesive modified layer is preferably 85%, more preferably 80%, particularly preferably, from the viewpoint of adhesion to the functional layer made of acrylic resin. 75%.
  • phase mode phase mode
  • SPM scanning probe microscope
  • phase measurement mode phase mode of the scanning probe microscope
  • phase mode it detects the phase lag of cantilever vibration when DFM operation is performed.
  • DFM operation the shape is measured by controlling the distance between the probe and the sample so that the vibration amplitude of the resonated cantilever is constant.
  • an effective cantilever vibration signal for this “input signal” is used in the phase measurement mode.
  • the phase lag is detected simultaneously with the vibration amplitude.
  • the phase delay responds sensitively to the effects of surface properties, and the softer the sample surface, the greater the delay. By visualizing the magnitude of this phase lag, it is possible to observe the distribution of surface properties (called a phase image or phase image).
  • the phase separation structure of the adhesion modified layer is not limited to the phase measurement mode, but the friction force measurement mode, the viscosity measurement mode, etc. It is important to select an observation mode that can evaluate the phase-separated structure with the highest sensitivity, which is acceptable in other modes. In the phase measurement mode, it is possible to detect the phase lag due to the difference in surface properties such as the magnitude of the adsorption force as well as the phase lag due to the difference in viscoelasticity of the adhesive modified layer.
  • phase image is obtained with SPIP software (Image Metrology, Version 4.1). It is preferable to increase the contrast by reading and performing color equalization. The reason is as follows.
  • SAICAS surface interface property analyzer
  • the PU component is more susceptible to deformation compared to the PEs component, the difference between the physical properties of the PEs component and the thermoplastic resin film adjacent to the adhesive modified layer is small, and cutting is performed from an oblique direction.
  • the difference in contrast is estimated to be small because the thickness of the adhesive modified layer is extremely thin.
  • the phase separation structure of the adhesion modified layer corresponds to a micro phase separation structure or a nano phase separation structure from the viewpoint of size.
  • the phase contrast image of the surface of the adhesive modified layer (interface with the node coat layer) in the adhesive modified substrate film used in the present invention is observed, it has the following phase separation structure. I understand that
  • the width in the minor axis direction is at most 1
  • the area of the portion having the continuous structure is 80% or more, preferably 85% or more, and more preferably 90% or more with respect to the entire area of the PEs phase. Also, in the above definition Even in the PEs phase dispersed in islands, which does not correspond to the continuous structure described, there are some which have a continuous structure inside the adhesive modified layer, but the ends appear on the surface.
  • the size of the continuous structure of the PEs phase is preferably 1 m at the maximum in the minor axis direction, more preferably 0.8 ⁇ m, and even more preferably 0.6 ⁇ m. m, particularly preferably 0.
  • the width in the minor axis direction is not particularly limited, but in order to maintain a continuous structure, the narrowest part is preferably 0.01 m, particularly preferably 0.05 ⁇ m.
  • the size of the continuous structure of the PEs phase is preferably 1 or more, more preferably 2 or more, and particularly preferably 2 or more, preferably the length in the major axis direction exceeds 1 ⁇ m. More than 5 m.
  • phase separation structure on the surface of the adhesion-modified layer is seen in nature, as shown by the representative example shown in FIG. It shows a complex structure that cannot be defined, and it is difficult to uniquely define the form of phase separation.
  • the phase separation structure can also be expressed in many ways as follows.
  • phase separation structure when expressed as a pattern, it is described in the literature as “pied structure” (“Dictionary of Chemical Languages”, page 226, June 1979 15 Japan, Sankyo Publishing Co., Ltd.), “Rippled Structure” (“Pattern”, pp. 168-169, published by Nobara Inc., 2002. 10.1), “Camouflage” .
  • phase separation structure on the surface of such an adhesion modified layer is similar to what is expressed as a co-continuous structure in the field of morphology in a polymer blend system. Furthermore, it can also be expressed as an inter-network intrusion structure formed by co-polyester and self-crosslinking polyurethane.
  • the self-similarity of the PEs phase can also be quantitatively expressed using the fractal dimension.
  • the surface of the adhesive modified layer is observed in the phase measurement mode of a scanning probe microscope, and the phase outline that emphasizes the interface between the light hue (polyurethane phase) and the dark hue (polyester phase).
  • the image is quantified using the box counting method and the fractal dimension obtained from the interface contour. Can be expressed.
  • the fractal dimension in the unit area is 1, it means a straight line (one dimension), 2 is a solid surface Means (two-dimensional). In other words, the closer the fractal dimension is to 2, the denser the structure. On the other hand, a fractal dimension closer to 1 means a sparse structure
  • the surface of the adhesion-modified layer of the adhesion-modified base film is emphasized to emphasize the outline of the interface between the light hue (polyurethane phase) and the dark hue (polyester phase).
  • the fractal dimension of the boundary line (interface contour) between the light hue and the dark hue is preferably 1.60 to L95 in the measurement area of 5 / ⁇ ⁇ 5 / ⁇ ⁇ .
  • the upper limit of the fractal dimension is more preferably 1.93, particularly preferably 1.90.
  • the lower limit of the fractal dimension is more preferably 1.65, and particularly preferably 1.70.
  • the fractal dimension of the boundary line (interface contour) between the light hue (polyurethane phase) and the dark hue (polyester phase) on the surface of the modified adhesive layer shown in Fig. 4 is 1.89 and 1 respectively.
  • FIG. 4 is a phase image of FIG. 1 showing a typical phase separation structure on the surface of the adhesive modified layer in the present invention, with the outline of the interface between the light hue and the dark hue emphasized, and the light hue and the dark hue. It is the figure which showed the boundary line.
  • the adhesive modified layer in order to maximize the functions of the copolyester and polyurethane used as the raw material of the adhesive modified layer, the adhesive modified layer has a micro phase separation structure. It is important to have a nanophase separation structure. This is because when the two resins are completely compatible, the properties of the two resins are offset, and overall, excellent properties of the copolyester or polyurethane cannot be expected.
  • Other phase separation structures that can be adopted by the PEs phase and PU phase in the adhesion modified layer include those in which the PU phase is dispersed in the PEs phase, and so-called composite forms in which the PES phase is dispersed in the PU phase. It is also possible to show a typical sea-island structure.
  • this sea-island structure is an incompatible state of coconut resin. If one cocoon phase is increased, the other inevitably decreases, and so-called islands are formed. Also in the present invention, if the production conditions are controlled, it is possible to provide an adhesion modified layer composed of a separated phase having such a sea-island structure.
  • a core-shell structure can be formed.
  • the PEs phase is surrounded by a PU phase, which is further surrounded by a P Es phase.
  • PU phase which is further surrounded by a P Es phase.
  • P Es phase a phase separation structure of the adhesion modified layer in the present invention
  • phase separation structure a laminated structure in which PEs phases and PU phases are regularly arranged alternately can be adopted.
  • the phases are arranged in parallel at approximately equal intervals. If the width of the force phase increases, it becomes difficult to uniformly distribute the PEs phase and the PU phase at the interface of the adhesive reforming layer. In this case, the quality of the adhesion-modified base film may be affected. Due to subtle disparity in manufacturing conditions, they may take the form of a sea-island structure, a core-shell structure, and a laminated structure, but they may be mixed. However, the adhesion modified layer has a certain size of PEs phase and PU phase 1S, and it is important to keep them uniformly mixed to maintain quality.
  • the phase separation structure on the surface or the cutting surface of the adhesive property-modified layer has an irregular form in each of the polyester phase mainly comprising a copolyester and the polyurethane phase mainly comprising a polyurethane.
  • These rosin phases form a complex array structure in which the surface of the adhesive reforming layer and the inside thereof are irregularly and densely arranged. Further, a structure in which the surface of one rosin phase is bitten in an incompatible state with the other rosin phase may be employed. In FIG. 3, the black portion indicates the polyester phase and the white portion indicates the polyurethane phase.
  • the PEs phase has a short axis width of 1 ⁇ m at maximum.
  • the length in the axial direction is preferably 1 ⁇ m or more.
  • a relatively large structure with a maximum width of 6 ⁇ m in the minor axis direction is possible.
  • the phase separation structure of this continuous phase (PEs phase) consists of the resin composition of the coating solution used to form the adhesion modified layer, the type and concentration of the surfactant, the coating amount, the drying conditions of the coating layer, and the heat By selectively adopting and controlling the fixing conditions and the like, it can be expressed as a microphase separation structure or a nanophase separation structure specific to the adhesion modified layer.
  • the mode force of the phase separation structure of the polyester phase and the polyurethane phase on the surface of the adhesive reforming layer shown in FIG. 1 is a representative model for expressing the effect of the adhesive modified base film of the present invention. It is.
  • the adhesive modified layer in the adhesive modified base film used in the present invention is composed of a copolymer polyester component and a polyurethane component as a resin component, and a PEs phase mainly composed of a copolymer polyester and a polyurethane as a major component. It is preferable that the phase is separated into PU phases and each phase has a continuous structure. It is possible to phase-separate the above two types of resin without uniformly mixing them, thereby having excellent adhesion to a base film that has thermoplastic resin film strength and relatively good solvent resistance.
  • the copolyester having the property and polyurethane with excellent adhesion to many types of resin such as hard coat layer, diffusion layer, and attalylate type resin are inferior to each other. This makes it possible to make full use of the characteristics of each coconut oil.
  • co the polymerization polyester is preferably composed solely may a 0.01 to 40 mass 0/0 comprise polyurethane. More
  • the polyester phase may contain 0.001 to 20 mass% of particles.
  • a surfactant may be attached to or contained in the above-mentioned rosin.
  • the polyurethane phase can contain particles, surfactants, and the like that are preferably composed solely of polyurethane in an amount as described in the above-mentioned copolymer polyester.
  • particles having a high affinity for polyurethane it can be preferentially unevenly distributed in the polyurethane phase rather than the polyester phase in the process of forming the adhesive modification layer.
  • the chemical supplementary function is usually that both are chemically uniform materials and complement each other's properties or functions. Often manifests.
  • the adhesion modified layer composed of the polyester phase and the polyurethane phase of the present invention is largely related to the presence of the resin phase by physically separating the polyester phase and the polyurethane phase as described above. As a result, the structure of a state in which both oleaginous phases are separated and uniformly dispersed is maintained. The properties of each rosin can be controlled through the surface of each rosin phase. Sharing. In other words, it is a manifestation of a physical supplementary function, and this function or principle is completely recognized in the prior art! It can be said that it is a new technical matter.
  • the detailed generation mechanism of the phase separation structure of the adhesion modified layer is not clear.
  • the composition ratio of the copolyester and polyurethane the ratio of water / alcohol dispersion medium, the type of surfactant, the impurities in the surfactant, the pH of the aqueous coating solution, the coating amount, etc.
  • a specific micro phase separation structure or nano phase separation structure appears in the adhesion modified layer. This can be easily understood from the comparison between each example and the comparative example.
  • the reaction initiation temperature of the isocyanate group possessed by the polyurethane has a subtle effect.
  • the phase separation structure means that the so-called PEs phase and PU phase are in contact with each other without taking a distance. A large amount of copolyester gathers in the PEs phase and is biased. It should be seen that a lot of tongues are gathered and biased, and the boundaries between the two layers appear to be separated as if the force is clearly distinguishable. In the case of the present invention, there is a possibility that an isocyanate group of polyurethane reacts at the boundary, indicating a complicated separation structure.
  • Adhesive modified base film force used in the present invention Having an adhesive reformed layer composed of a PEs phase and a PU phase means that, for example, a base material that also has thermoplastic film strength, a hard coat layer, It plays the role of an interfacial function that acts equally on both the base material surface and the functional layer surface, which is interposed between the functional layer such as the diffusion layer.
  • both the PEs phase and the PU phase have a separate structure, and the PEs phase exhibits the excellent properties of the copolyester inherent to both sides of the adhesive modified layer (the base material and the adhesive modified layer).
  • the PU phase is in a state where it is exerted to the maximum extent with respect to the interface and the interface between the adhesion modified layer and the functional layer such as the hard coat layer.
  • the PU phase is in a state where the excellent properties of the inherent polyurethane are fully exerted on both sides.
  • the surface of the adhesive modified layer has a microphase separation structure or nanophase separation composed of PEs phase and PU phase. Due to the structure, the PEs phase copolyester is exposed and performs the properties or functions of the copolyester to the maximum, and similarly, the PU phase polyurethane is exposed and the polyurethane is inherently This is to maximize the properties or functions possessed. Therefore, if each of the PEs phase and the PU phase on the surface of the adhesion modified layer is distributed within a specific range, the properties or functions of the both resins can be maximized. This is because of the unique structure of the laminate, it acts rationally at the interface between the base material and the adhesive modified layer and at the interface between the adhesive modified layer and the functional layer.
  • silica particles when particles are contained in the rosin composition constituting the PEs phase and the PU phase, for example, silica particles can be unevenly distributed in the PU phase. This is presumably because the surface energy is closer to the silica particles in the PU phase than in the PEs phase.
  • silica particles unevenly distributed in the PU phase it is possible to improve the blocking resistance, which is a disadvantage of polyurethane, and to reduce the particle content of the entire adhesive modification layer, thus maintaining transparency. It is a useful structure to fulfill the function of [0091] Similarly, it is suggested that if particles having a surface energy closer to that of the copolyester are selected, the particles can be selectively unevenly distributed in the PEs phase.
  • the prior art ability to unevenly distribute particles in either the PEs phase or the PU phase phase separation structure is an unprecedented technique that can improve slipperiness and blocking properties while maintaining transparency. Can do. Therefore, the present invention is also meaningful in that the application range of the material design of the micro phase separation structure or the nano phase separation structure can be expanded.
  • thermoplastic resin film used in the present invention an unoriented sheet obtained by melt extrusion or solution extrusion of thermoplastic resin is stretched in the longitudinal direction or the uniaxial direction in the width direction, or two as required.
  • a biaxially stretched thermoplastic resin film that is successively biaxially stretched in the axial direction or simultaneously biaxially stretched and subjected to heat setting treatment is preferable.
  • thermoplastic resin film does not detract from the object of the present invention!
  • the film is subjected to corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation within the range of You can also apply surface activation treatments such as treatment and ozone treatment!
  • the thickness of the thermoplastic resin film used in the present invention can be arbitrarily determined in the range of 30 to 300 ⁇ m according to the specification of the application to be used.
  • the upper limit of the thickness of the thermoplastic resin film is preferably 250 ⁇ m, particularly preferably 200 ⁇ m.
  • the lower limit of the film thickness is preferably 50 ⁇ m, particularly preferably 75 ⁇ m. If the film thickness is less than 50 ⁇ m, rigidity and mechanical strength tend to be insufficient.
  • the film thickness exceeds 300 m the absolute amount of foreign matter present in the film increases, and the frequency of optical defects increases.
  • the slitting property when the film is cut to a predetermined width is deteriorated, and the manufacturing cost is increased. Furthermore, since the rigidity is increased, it is difficult to wind a long film into a roll.
  • Thermoplastic resin includes polyethylene (PE), polypropylene (PP), polymethylpentene (TPX) and other polyolefins, polyethylene terephthalate (PET), polyethylene 2,6-naphthalate (PEN), polytetramethylene Polyester resin such as terephthalate (PTT), polybutylene terephthalate (PBT), polyamide (PA) resin such as nylon 6, nylon 4, nylon 66, nylon 12, polyimide (PI), polyamideimide (PAI) , Polyether Sulphone (PES), Polyetheretherketone (PEEK), Polycarbonate (PC), Polyarylate (PAR), Cellulose propionate, Polychlorinated butyl (PVC), Polyvinylidene chloride, Polybutylalcohol (PVA), Poly Examples include ether imide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide, polystyrene (PS), syndiotactic polystyrene, and
  • thermoplastic resins polyethylene terephthalate, polypropylene terephthalate, polyethylene 2,6 naphthalate, syndiotactic polystyrene, norbornene polymer, polycarbonate, polyarylate and the like are preferable.
  • a resin having a polar functional group such as polyester or polyamide is preferable from the viewpoint of adhesion to the adhesive property modified layer.
  • polyethylene terephthalate polyethylene 2,6 naphthalate, polybutylene terephthalate, polypropylene terephthalate, or a copolymer mainly composed of these resin components is more preferable, and particularly formed from polyethylene terephthalate.
  • a biaxially oriented film is particularly suitable.
  • the ratio of the copolymer component is preferably less than 20 mol%. If it is 20 mol% or more, the film strength, transparency, and heat resistance may be poor.
  • Dicarboxylic acid components that can be used as copolymerization components include aliphatic dicarboxylic acids such as adipic acid and sebacic acid, isophthalic acid, phthalic acid, and aromatic dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid, trimellilot Examples thereof include polyfunctional carboxylic acids such as acids and pyromellitic acid.
  • glycol component that can be used as a copolymer component
  • fatty acid glycols such as diethylene glycol, 1,4 butanediol, propylene glycol, and neopentyl glycol
  • aromatic glycols such as p-xylene glycol
  • 1,4-cyclohexene examples include alicyclic glycols such as sandimethanol; polyethylene glycol having an average molecular weight of 150 to 20000, and the like.
  • each of the above-described thermoplastic resins is not limited to the effects of the present invention.
  • Seed additives can be included.
  • additives for example, inorganic particles, heat-resistant high molecular particles, alkali metal compounds, alkaline earth metal compounds, phosphorus compounds, antistatic agents, ultraviolet absorbers, light resistant agents, flame retardants, heat stabilizers, antioxidants, Examples thereof include an antigelling agent and a surfactant.
  • the particles described above may be handled in the production of a thermoplastic resin film, when wound into a roll, or handled when unrolled (sliding property, running property, blocking property, associated air in winding) From the standpoint of exfoliation, etc., it is used to impart moderate surface irregularities to the film surface.
  • Inorganic particles include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide particles, barium sulfate, calcium fluoride, Examples include lithium fluoride, zeolite, molybdenum sulfate, and my power.
  • the heat-resistant polymer particles include crosslinked polystyrene particles, crosslinked acrylic resin particles, crosslinked methyl methacrylate particles, benzoguanamine 'formaldehyde condensate particles, melamine' formaldehyde condensate particles, polytetrafluoroethylene particles. Etc.
  • the silica particles are relatively close to the polyester resin and have a high refractive index, so that high transparency is easily obtained. It is most suitable for certain applications. On the other hand, white pigments such as titanium oxide are preferred for applications that require concealment.
  • the particles contained in the thermoplastic resin film may be used alone or in combination.
  • the average particle size is 0.01-2 / ⁇ ⁇ , and the content of particles in the film is 0. In the range of 01 to 5.0% by mass, it may be determined according to the use of the film.
  • the adhesion-modified base film used in the present invention is used for applications in which transparency is highly required, particles that cause a decrease in transparency are substantially contained in the thermoplastic resin film. It is preferable that the adhesive modified layer contains particles without containing them.
  • substantially free of particles means, for example, in the case of inorganic particles, when inorganic elements are quantified by key X-ray diffraction, 50 ppm or less, preferably 10 ppm or less, most preferably Means the content that is below the detection limit. This is because even if particles are not actively added to the base film, contaminants derived from foreign substances, raw material grease, or dirt attached to lines and equipment in the film manufacturing process can be peeled off. This is because it may be mixed in.
  • the layer structure of the thermoplastic resin film used in the present invention may be a single layer, or may be a laminated structure having a function that cannot be obtained with a single layer. In the case of a laminated structure, a coextrusion method is preferable.
  • polyester is used as a raw material for the thermoplastic resin film
  • a method for producing the base material film will be described in detail below.
  • the intrinsic viscosity of the polyester pellets used as the film raw material is preferably in the range of 0.45 to 0.70 dl / g. If the intrinsic viscosity is less than 0.45 dlZg, breakage tends to occur frequently during film production. On the other hand, if the intrinsic viscosity exceeds 0.70 dlZg, the filtration pressure increases greatly, making it difficult to perform high-precision filtration, and the productivity tends to decrease.
  • the filter medium used for high-precision filtration of molten resin is not particularly limited, but in the case of a sintered stainless steel filter medium, the removal performance of aggregates and high-melting-point organic substances mainly composed of Si, Ti, Sb, Ge, Cu Excellent and suitable.
  • the filter particle size (initial filtration efficiency 95%) of the filter medium used for high-precision filtration of the molten resin is preferably 15 ⁇ m or less.
  • the filter particle size of the filter medium exceeds 15 ⁇ m, the removal of foreign matters of 20 ⁇ m or more tends to be insufficient.
  • Productivity may be reduced by high-precision filtration of molten resin using a filter medium with a filtration particle size (initial filtration efficiency 95%) of 15 m or less.To obtain a film with few optical defects is important.
  • thermoplastic resin film In order to obtain a highly transparent film, it is preferable not to contain particles in the thermoplastic resin film. However, the lower the particle content and the higher the transparency, the clearer the optical defects due to minute irregularities. It tends to be. In addition, since the surface of a thick film is less likely to be cooled more rapidly than a thin film and tends to proceed with crystallization, it is necessary to rapidly cool the entire film when manufacturing an unoriented sheet.
  • molten resin is extruded into a sheet form from a slit portion of a die on a rotating cooling drum, and the sheet-like melt is brought into close contact with the rotating cooling drum and rapidly cooled to form a sheet. Is preferred.
  • a method for cooling the air surface (the surface opposite to the surface in contact with the cooling drum) of this unoriented sheet a method of cooling by blowing a high-speed air stream is effective.
  • the adhesive property-modified base film used in the present invention is a thermoplastic resin that travels with an aqueous coating liquid mainly composed of a resin containing a copolyester and polyurethane, a dispersion medium containing water and alcohol, and a surfactant. Coating process for continuous coating on one or both sides of the grease film, drying process for drying the coating layer (adhesive modified layer), stretching process for stretching in at least uniaxial direction, and heat-fixing treatment for the stretched coating film An adhesive modified substrate film provided with an adhesive modified layer having a microphase separation structure or a nanophase separation structure, which is obtained by continuously forming through a heat setting treatment step is manufactured.
  • At least one crosslinking agent selected from epoxy-based crosslinking agents, melamine-based crosslinking agents, and oxazoline-based crosslinking agents is mixed in the coating liquid and heat-treated to form a crosslinked structure in the copolymerized polyester. Also good.
  • the copolymer polyester (PEs) and the polyester The mass ratio (PEsZPU) of letane (PU) is 30Z70 to 70Z30, and it is preferable to satisfy the following conditions (a) to (f). The same applies when the coating solution contains a crosslinking agent.
  • (d) Heat setting process power The first heat setting zone through which the film passes is divided into a plurality of heat setting zones, and each zone is partitioned so that the temperature can be controlled independently.
  • the temperature of the heat setting zone set at the maximum temperature is 190 to 200 ° C
  • the heat fixing zone set at the maximum temperature from the outlet of the first heat setting zone is S210 to 240 ° C. (If there is more than one heat transfer zone on the most entrance side), the film transit time is 10 seconds or less.
  • the final coating amount of the adhesion modified layer is 0.005-0.20 g / m 2
  • the film transit time from immediately after application of the coating solution to the entrance of the drying process is less than 1.5 seconds.
  • the temperature of the heat setting zone set to the maximum temperature is 225 to 235 ° C, and the heat setting zone set to the maximum temperature from the outlet of the first heat setting zone (note that If there are several, the passage time of the film to the heat setting zone on the most inlet side) is 5 seconds or less
  • the adhesive modified layer laminated by the in-line coating method contains fine particles having an appropriate particle size to form appropriate irregularities on the surface of the adhesive modified layer, It can provide slipping property, winding property, and scratch resistance. For this reason, the high transparency which does not need to contain microparticles
  • the adhesive modified base film used in the present invention has a three-dimensional center on the surface of the adhesive modified layer.
  • the surface average surface roughness (SRa) is preferably smoothed to 0.002 to 0.001 m.
  • the upper limit of SRa is more preferably 0.0080 ⁇ m force, particularly preferably 0.0060 ⁇ m, based on the point of transparency.
  • the lower limit of SRa is preferably more than 0.0025 m force S, particularly preferably 0.030 m, and more preferably a handling force such as sliding property and rollability, and scratch resistance.
  • the surface of the adhesive modified layer has a smooth surface with an SRa of less than 0.002 ⁇ m, blocking resistance when winding the adhesive modified substrate film into a roll, or during film production or processing Handling properties such as slipping and winding properties and scratch resistance are reduced, which is not preferable.
  • the SRa on the surface of the adhesion modified layer exceeds 0.000 / zm, the haze increases and the transparency deteriorates. Therefore, the base of the hard coat film or the optical functional film using the hard coat film is deteriorated. Preferred as a material film.
  • the adhesive modified layer has the following four structural and structural characteristics, and can be obtained by the following means.
  • the polyester phase mainly composed of a copolyester observed on the surface of the adhesive modified layer may have a continuous structure having a maximum width of 1 ⁇ m and a length exceeding 1 m. More preferably, the copolymer polyester phase and the polyurethane phase have a co-continuous structure. Within the range of the area ratio of the PEs phase on the surface of the adhesive reforming layer, a fine continuous structure with a maximum polyester interfacial width of 1 ⁇ m and a length exceeding 1 ⁇ m based on copolymer polyester By having this, microscopically uniform adhesion can be obtained.
  • the phase separation structure where the width exceeds 1 ⁇ m at the maximum is locally functioning as a hard coat layer, diffusion layer, or prism layer.
  • the location inferior to adhesiveness arises with respect to a layer. If there is a location with poor adhesion on the surface of the modified adhesive layer, it may lead to macroscopic peeling starting from that location.
  • the phase separation of the adhesive modified layer proceeds too much, resulting in a polyester mainly composed of a copolyester.
  • the narrowest part of the phase is scattered with the part exceeding 1 ⁇ m.
  • the evaporation rate of the solvent in the drying step described later and the subsequent heat treatment are extremely important.
  • the composition ratio of the polyester component and the polyurethane component on the surface of the adhesive modified layer can be changed.
  • the ratio of water increases in the solvent remaining on the surface in the late drying process under mildly dry conditions. For this reason, the proportion of polyurethane having relatively high hydrophilicity existing on the surface of the adhesive modified layer is higher than when the adhesive modified layer is dried under strong conditions. Also, changing the coating amount has the same effect as controlling the evaporation rate of the solvent. In other words, when the coating amount is increased, drying takes time, and the residual solvent existing on the coating surface immediately before drying increases the ratio of water. That is, the ratio of the polyurethane component on the surface of the adhesive property modification layer can be increased compared to when the coating amount is small.
  • phase separation of the polyester component and the polyurethane component proceeds.
  • thermal crosslinking of either one of the coconut resins begins, the mobility of each phase is greatly reduced and the progress of phase separation is suppressed. That is, the phase separation structure can be controlled by controlling the heating conditions in the stretching process and the heat setting process.
  • the adhesion modified layer contains a copolymerized polyester and polyurethane as the main resin component.
  • the copolyester alone has sufficient adhesion to the polyester-based substrate film, but is inferior to adhesion to the hard coat layer containing inorganic fine particles.
  • polyurethane alone is relatively excellent in adhesion to a hard coat layer containing inorganic fine particles. It is inferior in adhesiveness with a polyester-type base film, although it is strong. Furthermore, it is inferior in blocking resistance when the adhesive modified substrate film is wound into a roll. Therefore, the quality of hard coat films and optical functional films produced using an adhesive modified base film having an adhesive modified layer of a polyurethane alone system is remarkably lowered. In order to avoid such a problem, it is necessary to include a large amount of particles, a particle having a large particle size, or an increase in the content of particles in the adhesive property-modified layer. As a result, the haze of the film is increased, which is not preferable as a base film for a hard coat film or an optical functional film that is particularly demanding for transparency.
  • the adhesion modified layer is formed using a coating method.
  • the material used for the coating solution is a resin and a dispersion medium or a solvent.
  • the coating solution used for forming the adhesion modified layer is aqueous.
  • grains and surfactant together in addition to a resin component.
  • additives such as antistatic agents, ultraviolet absorbers, organic lubricants, antibacterial agents and photooxidation catalysts can be used as necessary.
  • a catalyst may be added to the coating solution to promote the thermal crosslinking reaction of the resin, such as inorganic substances, salts, organic substances, alkaline substances, acidic substances and metal-containing organic compounds.
  • an alkaline substance or an acidic substance may be added to adjust the pH of the aqueous solution.
  • the coating liquid disperses or dissolves the resin in a dispersion medium or solvent under stirring, and then, in addition to the particles and surfactant, various additives are used in combination as required to obtain the desired solid content concentration. Dilute until adjusted.
  • the type of filter medium for microfiltration of the coating solution is not particularly limited as long as it has the above-mentioned performance.
  • Examples thereof include a filament type, a felt type, and a mesh type.
  • the material of the filter medium for finely filtering the coating solution is not particularly limited as long as it has the above-described performance and does not adversely affect the coating solution. Examples thereof include stainless steel, polyethylene, polypropylene, and nylon.
  • the filter medium for microfiltration of the coating solution is preferably a filter medium having a filtration particle size (initial filtration efficiency: 95%) of 25 ⁇ m or less, more preferably a filter medium having a filtration performance of 5 ⁇ m or less, particularly Preferably, the filter medium has a filtration performance of 1 ⁇ m or less. Most preferred is a method of using a combination of filters having different filtration performance. When filter media with a filter particle size exceeding 25 m is used, removal of coarse aggregates tends to be insufficient. Therefore, coarse agglomerates that could not be removed by filtration spread due to orientation stress in the uniaxial or biaxial orientation process after coating and drying, and are recognized as agglomerates of 100 m or more, which is likely to cause optical defects. .
  • copolymerized polyesters (PEs) and polyurethane (PU) are used as the resin constituting the adhesive modification layer.
  • the resin constituting the adhesive modified layer can be used in combination with the above-described copolymer polyester and a third resin other than polyurethane. In addition, a cross-linking agent is not used together.
  • the area ratio of the polyester phase on the surface of the adhesive modified layer and the mass ratio of the copolyester to the resin component of the adhesive modified layer are as shown in FIG. Not done.
  • the PEs surface fraction of the surface of the adhesive modified layer varies from 30 to 91% even when the mass ratio of the copolyester to the resin component of the adhesive modified layer is 50%. Is clearly shown. This suggests that the composition ratio of the copolyester and polyurethane is different between the surface and the inside of the adhesive modified layer. That is, This suggests that the composition ratio of the copolyester and the polyurethane can be arbitrarily controlled in the thickness direction of the adhesive modified layer.
  • the surface hardness index of the adhesive modified layer is set to 3.0 15. Onm. S can.
  • the hardness index of the surface of the adhesive modified layer is less than 3. Onm, the adhesive modified layer becomes brittle. Therefore, after forming functional layers such as hard coat layer, diffusion layer, prism layer, etc. containing acrylic resin as a constituent component, in the processing process of high-speed cutting to a predetermined size, the shearing force during high-speed cutting is reduced. Thus, sufficient adhesion is obtained. Also. When the hardness index of the surface of the adhesion modified layer exceeds 15. Onm, the blocking resistance tends to decrease. Furthermore, there is a tendency that the coating property, adhesion and solvent resistance to the substrate film are insufficient.
  • phase separation structure of the water-dispersed copolyester component and the hydrophilic polyurethane component is formed as follows. Both rosin components mixed with a common solvent are in a state of being uniformly dispersed or dissolved in the coating solution. After coating on the PET film, the coated surface after the drying process is in a uniform state without a clear phase separation structure. After that, the phase separation structure is developed by heat treatment in the stretching process and the heat setting process. That is, it is separated into a phase mainly composed of copolymer polyester and a phase mainly composed of polyurethane. As the phase separation progresses, it is considered that the ratio of the copolymerized polyester component having a lower surface energy is increased near the surface of the adhesive modified layer.
  • the copolyester used in the adhesive modification layer used in the present invention preferably comprises an aromatic dicarboxylic acid component and a glycol branched with ethylene glycol as the glycol component.
  • the branched glycol component include 2,2-dimethyl 1,3 propanediol, 2-methyl-2-ethyl-1,3-propanediol, 2-methyl-2-butyl-1,3-propanediol, 2-methyl-2-propyl 1, 3 Propanediol, 2-methyl-2-isopropyl 1, 3 Propanediol, 2-Methyl-2-n Xylou 1, 3 Propanediol, 2, 2 Jetyl 1,3 Pro Pandiol, 2 ethyl 2-n-butyl-1,3 propanediol, 2 ethyl 2-n xylu 1,3 propanediol, 2,2 di-n-butyl-1,3 propanediol, 2-n-butyl-2-propyl
  • the molar ratio of the branched glycol component is preferably 20 mol%, with the lower limit being preferably 10 mol% with respect to the total glycol component.
  • the upper limit is preferably 80 mol%, more preferably 70 mol%, and particularly preferably 60 mol%. If necessary, diethylene glycol, propylene glycol, butanediol, hexanediol, or 1,4 cyclohexanedimethanol may be used in combination!
  • aromatic dicarboxylic acid component terephthalic acid and isophthalic acid are most preferable. Addition of other aromatic dicarboxylic acids, especially aromatic dicarboxylic acids such as diphenylcarboxylic acid and 2,6-naltalenedicarboxylic acid, within a range of 10 mol% or less to the total dicarboxylic acid component Moyo!
  • the copolyester used as the resin component of the adhesive modified layer in the present invention is preferably a water-soluble or water-dispersible resin. Therefore, it is preferable to use 5-sulfoisophthalic acid or an alkali metal salt thereof in the range of 110 mol% in order to impart water dispersibility to the polyester in addition to the dicarboxylic acid component. Mention may be made of terephthalic acid, 5-sulfoisophthalic acid, 4 sulfonaphthalene isophthalic acid 2,7 dicarboxylic acid and 5- (4-sulfophenoxy) isophthalic acid or alkali metal salts thereof.
  • the polyurethane used for the adhesive modification layer it is preferable to use water-soluble or water-dispersible resin.
  • it is a resin containing a block type isocyanate group, in which the terminal isocyanate group is blocked with a hydrophilic group (hereinafter abbreviated as “block”), a heat-reactive water-soluble urethane, and the like.
  • Examples of the blocking agent for the isocyanate group include bisulphites and sulfonic acid group-containing phenols, alcohols, ratata oximes, or active methylene compounds.
  • Blocked isocyanate groups are urethane precursors Is made hydrophilic or water-soluble.
  • the blocking agent is detached from the isocyanate group, so that the resin is mixed with a water-dispersible oil mixed into a self-cross-linked stitch. While immobilizing the copolymerized polyester, it reacts with the end groups of the above-mentioned resin.
  • the resin used during preparation of the coating solution is poor in water resistance because it is hydrophilic.However, when the thermal reaction is completed after application, drying, and heat setting, the hydrophilic group of the urethane resin, i.e., the blocking agent, is released. A good coating film can be obtained.
  • the blocking agent is released from the isocyanate group at the heat treatment temperature and heat treatment time in the film production process, and is commercially available.
  • the chemical composition of the urethane prepolymer used in the above-mentioned resin includes (1) organic polyisocyanate having two or more active hydrogen atoms in the molecule, or at least two active hydrogen atoms in the molecule. (2) an organic polyisocyanate having two or more isocyanate groups in the molecule, or (3) at least two active hydrogen atoms in the molecule. It is a compound having a terminal isocyanate group, which is obtained by reacting a chain extender.
  • the compound (1) is a compound containing two or more hydroxyl groups, carboxyl groups, amino groups or mercapto groups at the terminal or in the molecule.
  • the compound include polyether polyol and polyether ester polyol.
  • the polyether polyol include ethylene oxide and alkylene oxides such as propylene oxide, or compounds obtained by polymerizing styrene oxide and epichlorohydrin, or random polymerization, block polymerization or the like. Examples include compounds obtained by addition polymerization to polyhydric alcohols.
  • polyester polyol and the polyether ester polyol include mainly linear or branched compounds.
  • Polyvalent saturated or unsaturated carboxylic acids such as succinic acid, adipic acid, phthalic acid, and anhydrous maleic acid, or carboxylic acid anhydrous, ethylene glycol, diethylene glycol, 1,4 butanediol, neopentyl Multivalents such as glycol, 1, 6 hexanediol and trimethylolpropane It can be obtained by condensing with a saturated and unsaturated alcohol, polyalkylene ether glycols such as polyethylene glycol and polypropylene glycol having a relatively low molecular weight, or a mixture of these alcohols.
  • polyester polyol examples include latatones and polyesters capable of obtaining hydroxy acidity.
  • polyether ester polyol polyether esters obtained by adding ethylene oxide or propylene oxide or the like to previously produced polyesters can be used.
  • Examples of the organic polyisocyanate (2) include isomers of toluylene diisocyanate, aromatic diisocyanates such as 4,4-diphenylmethane diisocyanate, and xylylene diisocyanate.
  • Alicyclic diisocyanates such as aromatic aliphatic diisocyanates, isophorone diisocyanate, and 4,4-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate, and 2, 2, 4 to trimethyl Aliphatic diisocyanates such as xamethylene diisocyanate, or polyisocyanates obtained by intensive addition of these compounds with trimethylolpropane, etc.
  • Examples of the chain extender having at least two active hydrogens in (3) above include dalicols such as ethylene glycol, diethylene glycol, 1,4 butanediol, and 1,6 hexanediol, glycerin, Polymethyl alcohols such as trimethylolpropane and pentaerythritol, diamins such as ethylenediamine, hexamethylenediamine, and piperazine, amino alcohols such as monoethanolamine and diethanolamine, thiojetylene Examples include thiodiglycols such as dalcole, or water.
  • a urethane prepolymer In order to synthesize a urethane prepolymer, it is usually at a temperature of 150 ° C or less, preferably 70 to 120 ° C, by a single-stage or multi-stage isocyanate polyaddition method using the chain extender described above. React for 5 minutes to several hours. If the ratio of isocyanate groups to active hydrogen atoms is 1 or more, it is necessary for free isocyanate groups to remain in the urethane prepolymer obtained. Furthermore, the content of free isocyanate groups may be 10% by mass or less, but considering the stability of the urethane polymer aqueous solution after being blocked, it is preferably 7% by mass or less.
  • the obtained urethane prepolymer is preferably blocked using bisulfite.
  • the reaction temperature is preferably 60 ° C or lower.
  • it is diluted with water to an appropriate concentration to obtain a heat-reactive water-soluble urethane composition.
  • the composition is prepared to an appropriate concentration and viscosity.
  • the bisulfite of the blocking agent is dissociated and the active isocyanate group is regenerated.
  • a polyurethane polymer is produced by a polyaddition reaction that occurs within or between molecules of the prepolymer, or has the property of causing addition to other functional groups.
  • the resin (B) containing the block type isocyanate group described above a trade name Elastron manufactured by Daiichi Kogyo Seiyaku Co., Ltd. is typically exemplified.
  • Elastolone is a water-soluble because the isocyanate group is blocked with sodium bisulfite, and there is a strong rubamoyl sulfonate group with strong hydrophilicity at the molecular end.
  • solvent broadly includes a dispersion medium used to disperse the resin in a particulate form, which is not only the liquid that dissolves the resin.
  • various solvents such as an organic solvent and an aqueous solvent can be used.
  • the solvent used in the coating solution is preferably a mixed solution in which water and alcohols such as ethanol, isopropyl alcohol, and benzyl alcohol are mixed within a range of 30 to 50% by mass in the total coating solution. Furthermore, if it is less than 10% by mass, an organic solvent other than alcohols may be mixed in a range that can be dissolved. However, the total of alcohols and other organic solvents in the coating solution should be less than 50% by mass.
  • the addition amount of the organic solvent is less than 50% by mass with respect to the total solvent, there is an advantage that the drying property is improved during coating and drying, and the appearance of the coating layer is improved as compared with the case of water alone.
  • the addition amount of the organic solvent is 50% by mass or more based on the total solvent, the evaporation rate of the solvent is increased and the concentration of the coating solution is likely to change during coating. As a result, the viscosity of the coating solution increases and the coating property is lowered, which may cause a poor appearance of the coating film. Furthermore, due to the volatilization of the organic solvent, the risk of fire and the like increases.
  • the organic solvent When the added amount is less than 30% by mass with respect to the total solvent, the ratio of water is relatively increased, and the highly hydrophilic polyurethane component segregates near the surface of the adhesive modified layer. As a result, it is difficult to make the area ratio of the PEs phase on the surface of the adhesive modified layer, or the area ratio of the PU phase near the interface with the hard coat layer in the cutting surface of the adhesive modified layer within an appropriate range. .
  • the coating solution used for forming the adhesive modified layer in the present invention preferably has a pH in the range of 5 or more and less than 8.
  • the pH of the coating solution is less than 5, the area ratio of the PEs phase on the surface of the adhesive modified layer increases, or the area ratio of the PU phase near the interface with the hard coat layer on the cut surface of the adhesive modified layer increases. It tends to be small and inferior in adhesion.
  • the pH of the coating solution is 8 or more, depending on the type of particles, significant aggregation occurs, haze increases, and transparency becomes poor.
  • the pH adjuster is not particularly limited as long as it does not adversely affect adhesion, blocking resistance, and coatability or can be ignored.
  • sodium bicarbonate or sodium carbonate can be used to increase pH, and acetic acid or the like can be used to lower pH.
  • a surfactant is generally used to improve the wettability of the film and uniformly apply the coating solution.
  • a surfactant can be used as one of means for controlling the surface of the adhesive modified layer and the internal phase separation structure.
  • the type of the surfactant is not particularly limited as long as it has good coatability and an appropriate phase separation structure can be obtained on the surface or inside of the adhesion-modified layer.
  • a fluorosurfactant is preferable in order to obtain good coatability by adding a small amount.
  • the compatibility with the above-mentioned copolymerized polyester and polyurethane may be increased, and the phase separation structure defined in the present invention may not be obtained.
  • the addition amount of the surfactant can be appropriately selected as long as it does not inhibit the adhesion with a functional layer such as a hard coat layer or a diffusion layer and can provide good coating properties.
  • the critical micelle concentration force with respect to pure water is preferably 30 times or less.
  • the critical micelle concentration is 30 times or more, the particles contained in the coating solution are easily aggregated, so that the haze of the obtained laminated film is increased, which is not preferable as a base film for an optical functional film.
  • the surfactant component may bleed out on the surface of the adhesion modified layer, and adversely affect the adhesion.
  • good coatability cannot be obtained at a critical micelle concentration or less.
  • the area ratio of the PEs phase on the surface of the adhesive modified layer, or the area ratio of the PU phase near the interface with the hard coat layer on the cutting surface of the adhesive modified layer can be controlled within an appropriate range. It becomes difficult.
  • the surfactant used in the present invention is preferably a purified one.
  • the surfactants listed above often contain a small amount of impurities.
  • impure polyethylene glycol may inhibit obtaining a good phase separation structure depending on the content thereof.
  • the pretreatment process for removing impurities is not particularly limited as long as the impurities can be removed without altering the surfactant.
  • the following method is mentioned.
  • a method is mentioned.
  • a surfactant with improved purity can be obtained.
  • Adhesive modified base film has a haze of 1.5% or less, but for applications that require a high degree of transparency, a node coat film should be used as an optical functional film. Especially preferred.
  • the haze is more preferably 1.0% or less. Heichi If the film thickness exceeds 1.5%, it is not preferable because the sharpness of the screen will be reduced if the film is used for LCD lens film or backlight substrate film.
  • thermoplastic resin film In order to reduce the haze of the adhesive modified base film to 1.5% or less, it is preferable not to include particles in the thermoplastic resin film. When particles are not included in the thermoplastic resin film, scratch resistance and handling properties when squeezed into rolls (sliding property, running property, blocking property, air escape from the air during removal) In order to improve the property, it is preferable to include a specific amount of particles having an appropriate size in the adhesive modified layer to form appropriate irregularities on the surface of the adhesive modified layer.
  • the particles particles having a high affinity with copolymerized polyester or polyurethane are preferable, and it is preferable that there is a difference that the affinity for both is unevenly distributed in either phase.
  • the particles are gathered moderately, and by adding relatively few particles, that is, without significantly increasing haze, excellent blocking resistance can be obtained. It can be done.
  • Particles to be included in the adhesion modified layer include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica monoalumina composite oxide particles, Inorganic particles such as barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfate, My power, crosslinked polystyrene particles, crosslinked acrylic resin particles, crosslinked methyl methacrylate particles, benzoguanamine 'formaldehyde condensate particles And heat-resistant polymer particles such as melamine 'formaldehyde condensate particles and polytetrafluoroethylene particles.
  • silica particles are suitable for the following point power.
  • the first advantage is that a highly transparent film can be easily obtained because the refractive index of the adhesive modified layer is relatively close to that of the resin component.
  • the second advantage is that silica particles tend to be unevenly distributed in the phase-separated polyurethane phase, and the polyurethane phase existing on the surface of the adhesive modified layer has poor blocking resistance. It is a point that can complement the nature of. This is presumably because the surface energy between the silica particles and the polyurethane is closer to that of the copolymer polyester and has a higher affinity.
  • the shape of the particles is not particularly limited. Particles are preferred.
  • the content of particles in the adhesive modified layer is preferably 20% by mass or less, more preferably 15% by mass or less, particularly preferably 10% by mass or less, based on the adhesive modified layer. Make it. If the content of particles in the modified adhesive layer exceeds 20% by mass, the transparency will deteriorate and the film adhesion will tend to be insufficient. On the other hand, the lower limit of the content of particles is preferably 0.1% by mass, more preferably 1% by mass, and particularly preferably 3% by mass with respect to the adhesive modified layer.
  • two or more kinds of particles having different average particle diameters may be contained in the adhesion modified layer.
  • the average particle size and the total content of the particles may be in the above ranges.
  • the average particle size of the particles is preferably 20 to 150 nm, more preferably 40 to 60 nm. If the average particle size is less than 20 nm, it is difficult to obtain sufficient blocking resistance, and scratch resistance tends to deteriorate. On the other hand, if the average particle diameter of the particles exceeds 150 nm, the haze increases and the particles easily fall off.
  • sufficient blocking resistance and scratch resistance may not be obtained with only particles A having an average particle diameter of 20 to 150 nm. Therefore, in order to further improve the blocking resistance and scratch resistance, it is preferable to use a small amount of particles B having a larger average particle size.
  • the average particle size of particles B having a large average particle size is preferably 160 to 1000 nm, more preferably 200 to 800 nm.
  • scratch resistance, slipping property and winding property may be deteriorated.
  • the average particle size of the particle B exceeds 1 OOOnm, the haze tends to increase.
  • the particle B is an aggregate particle in which primary particles are aggregated, and it is preferable to use a particle having a ratio of the average particle size in the aggregated state to the average particle size of the primary particle of 4 times or more.
  • U who also likes the point of scratch.
  • the content ratio (P1ZP2) of particle A (average particle size: 20 to 15 Onm) and particle B (average particle size: 160 to 1000 nm) in the adhesive modified layer 5 to 30 and the content of the particles B is 0.1 to 1% by mass with respect to the solid content of the adhesive modified layer.
  • Two kinds Controlling the content of particles with a specific particle size within the above range optimizes the three-dimensional center plane average surface roughness of the surface of the adhesive modified layer, and achieves both transparency and handling resistance and blocking resistance. It is suitable for making it.
  • the content of the particle B exceeds 1% by mass with respect to the adhesion modified layer the haze tends to increase remarkably.
  • the average primary particle diameter and the average particle diameter of the particles are measured by the following method.
  • the average particle size of particle B which has agglomeration force, is measured by taking 300-500 cross sections of the adhesive-modified layer of the laminated film at a magnification of 200 using an optical microscope and measuring the maximum diameter. .
  • a crosslinking agent is added to the coating solution and then heat treatment is performed in order to improve the wet heat resistance of the adhesive modified layer.
  • an adhesion modified layer containing rosin having a crosslinked structure is formed.
  • the crosslinking agent at least one selected from an epoxy crosslinking agent, a melamine crosslinking agent, and an oxazoline crosslinking agent is used.
  • the cross-linking agent can be selected in consideration of the affinity with the copolymerized polyester resin used in the coating solution and the moisture and heat resistance required for the adhesion-modified layer.
  • an epoxy-based crosslinking agent or a melamine-based crosslinking agent is preferable among the above-mentioned crosslinking agents.
  • the epoxy-based crosslinking agent is not particularly limited.
  • a water-soluble epoxy crosslinking agent manufactured by Nagase Kasei Kogyo Co., Ltd. (Deconal series; EX-521, EX-512, EX-421, EX-810, EX-811, EX—85 1) etc. are available as commercial products.
  • melamine-based cross-linking agents examples include Sumitomo Chemical's Smitex Resin Series (M-3, MK, M-6, MC, etc.) and Miwa Chemical Co., Ltd. methylated melamine rosin (MW-22). MX-706, etc.) are commercially available.
  • oxazoline-based cross-linking agents Nippon Shokubai Co., Ltd. Epocros series (WS-700), Shin-Nakamura Igaku Kogyo Co., Ltd. NX Linker FX, etc. are commercially available.
  • the crosslinking agent is preferably 5 to 40% by mass, more preferably 10 to 30%, based on the total amount (100% by mass) of the copolymerized polyester resin and the crosslinking agent in the adhesive property-modified layer. It is preferable that it be contained in the coating solution for forming an adhesive modification layer so as to be mass%. If the content of the cross-linking agent exceeds 40% by mass, the adhesion-modified layer becomes brittle, and high-speed processing is required after forming a functional layer such as a hard coat layer or a diffusion layer made of attalylate resin. Adhesion sufficient to withstand cutting may not be obtained. On the other hand, if the content of the crosslinking agent is less than 5% by mass, it may be difficult to obtain the durability required in recent years. In the coating solution, a catalyst may be added as necessary to promote crosslinking.
  • the step of applying the aqueous coating solution is preferably an inline coating method applied during the production process of the film. More preferably, it is applied to the base film before crystal orientation is completed.
  • the solid content concentration in the aqueous coating solution is preferably 30% by mass or less, particularly preferably 10% by mass or less.
  • the lower limit of the solid content concentration is preferably 1% by mass, more preferably 3% by mass, and particularly preferably 5% by mass.
  • Coating amount of the aqueous coating solution The film coated with the aqueous coating solution is guided to a tenter for orientation and heat setting, and heated there to form a stable film by a thermal crosslinking reaction. It becomes a film.
  • the coating amount when not dried is preferably 2 gZm 2 or more and less than lOgZm 2 .
  • wet coating amount the coating amount of the final adhesion modified layer
  • the wet coating amount is lOgZm 2 or more, coating spots are easily generated due to the influence of the drying air in the drying furnace.
  • the coating amount of the final adhesive modifying layer (solid content per film unit area) is preferably managed to 0. 005-0. 20g / m 2.
  • the coating amount is less than 0.05 g Zm 2
  • the adhesive modified layer has a specific phase separation structure, a laminated film having excellent adhesion to the functional layer and the substrate can be obtained even when the coating amount is less than 0.05 gZm 2 . is there.
  • the coating amount is less than 0.005 g / m 2, adhesion will be insufficient.
  • the coating amount is less than 0.05 gZm 2, it is preferable to use particles having an average particle size of 60 nm or less.
  • the average particle diameter exceeds 60 nm, the particles easily fall off the adhesive modified layer during the production or processing of the adhesive base film.
  • the particles are unevenly distributed in the polyurethane phase, the particles are unlikely to fall off if the coating amount is 0.005 gZm 2 or more.
  • the coating amount exceeds 0.20 gZm 2 , the polyurethane component that segregates on the surface of the adhesive modified layer increases, and the blocking resistance decreases.
  • the thickness of the adhesive modified layer can be measured by cutting the cross section of the adhesive modified layer with a microtome and observing with an electron microscope. There is a case. For simplicity, if the coating amount is known, the density force of the adhesive modified layer can be converted into thickness. For example, if the density of the adhesion modified layer is lgZcm 3 and the coating amount is lgZm 2 , the thickness corresponds to 1 ⁇ m.
  • the density of the adhesive modified layer is obtained by calculating the density of each material from the types of the resin and particles constituting the adhesive modified layer, and multiplying the density of each material by the mass ratio of the material to obtain the sum. Thus, the thickness of the adhesion modified layer can be estimated.
  • a coating solution is applied to a thermoplastic resin film, and then a thinly applied coating film is dried.
  • a coating film is dried after applying a coating solution, it is often dried using a preheating zone of a tenter. In this case, film formation
  • the force that depends on the running speed of the size of the film Generally, the coating force It takes at least about 5 seconds to start drying. During this time, the balance between water and alcohol as the solvent of the coating solution is lost, and the highly hydrophilic polyurethane component segregates on the surface of the adhesive modified layer.
  • the area ratio of the PEs phase on the surface of the adhesive modified layer or the PU phase near the interface with the hard coat layer on the cut surface of the adhesive modified layer It is difficult to control the area ratio within an appropriate range.
  • a drying oven (pre-dryer) dedicated to drying the coating film is disposed as close as possible to the exit of the coating apparatus in the film traveling direction, and the coating liquid is applied to the polyester film and dried immediately. It is.
  • the temperature of the drying air on the coating surface is preferably 120 ° C or higher and lower than 150 ° C.
  • the wind speed is preferably 30 mZ seconds or more.
  • a more preferable drying temperature is 130 ° C or higher and lower than 150 ° C.
  • the area ratio of the PEs phase on the surface of the adhesive modified layer, or the PU phase near the interface with the hard coat layer on the cutting surface of the adhesive modified layer It becomes difficult to control the area ratio of the area within an appropriate range.
  • the drying temperature is 150 ° C or higher, crystallization of the thermoplastic resin film tends to occur, and the frequency of breakage during transverse stretching increases.
  • the drying furnace it is preferable to dry for 0.1 to 5 seconds while maintaining the temperature at 120 ° C or higher and lower than 150 ° C.
  • the drying time is more preferably 0.5 to 3 seconds. If the drying time is less than 0.1 second, the coating film will be insufficiently dried, and when passing through the roll disposed between the drying process and the transverse stretching process, the roll is applied with an insufficiently dried coating surface. Dirty. On the other hand, if the drying time exceeds 5 seconds, the thermoplastic resin film tends to crystallize and the frequency of breakage during transverse stretching increases.
  • the adhesive modified base film having an adhesively modified layer may be immediately cooled to near room temperature. Preferred ⁇ . Drying oven is maintained with the surface temperature of the adhesive modified substrate film at a high temperature of 100 ° C or higher. When the adhesive modified substrate film comes out of contact with a roll near room temperature, scratches are likely to occur due to film shrinkage.
  • the wind speed in the drying furnace is usually 30 mZ seconds or more, strong drying air is applied to the undried coated surface in the drying furnace, and drying unevenness is likely to occur.
  • the transit time of the film from immediately after coating to entering the drying oven is less than 2 seconds, preferably 1.
  • the coating force takes more than 2 seconds to enter the drying furnace, the balance between water and alcohol, which are the solvent of the coating solution, will be lost during this time, and this will cause the highly hydrophilic polyurethane component to adhere to the modified adhesive layer. Segregated on the surface of the surface. Therefore, the finally obtained adhesion-modified base film is close to the area ratio of the PEs phase on the surface of the adhesion-modified layer or the interface with the hard coat layer on the cutting surface of the adhesion-modified layer. It becomes difficult to control the area ratio of the PU phase within an appropriate range.
  • the drying process also includes a drying zone force divided into V, so-called 2 to 8 zones, in which the conditions of the drying temperature and the drying time are sequentially changed.
  • a multistage drying apparatus divided into 3 to 6 zones is employed.
  • the coating solution is applied to one or both sides of a uniaxially oriented thermoplastic resin film and dried in a multi-stage drying furnace arranged just above the coater, the following method is suitable.
  • drying is performed in a drying furnace divided into four drying zones.
  • the first drying zone at a temperature of 125-140 ° C for 0.1-4 seconds
  • the second drying zone At a temperature of 55-100 ° C for 0.1-4 seconds
  • in the third drying zone at a temperature of 35-55 ° C for 0.1-4 seconds
  • in a fourth drying zone at a temperature of 25-35 ° C.
  • a method of drying for 1 to 4 seconds is mentioned.
  • the numerical range of the drying conditions varies somewhat depending on the solid content concentration of the coating solution, and is not limited to the above typical conditions. In addition, when performing hot air drying, it is important to change the air volume at each stage.
  • the wind speed of the drying wind is set to 20 to 50mZ seconds
  • the supply air volume of the drying wind is set to 100 to 150m 3 / sec
  • the exhaust air volume is set to 150 to 200m 3 / sec.
  • the supply air volume is set to 60 to 140 m 3 Z seconds and the exhaust air volume to 100 to 180 m 3 Z seconds until the fourth drying zone.
  • any drying zone set so that the drying air does not flow to the coater side, and then grip the edge of the film with a clip, hot air at a temperature of 100 to 140 ° C and a wind speed of 10 to 20 mZ seconds. Lead to the zone and stretch 2-6 times in the width direction.
  • the drying temperature and the total drying time are appropriately adjusted within a period of 0.1 to 5 seconds, preferably 0.5 to less than 3 seconds. do it.
  • Each stage (zone) in the drying process is determined at the manufacturing site in consideration of various conditions such as the concentration of the dispersion, the coating amount, the traveling speed of the coated traveling film, the temperature of the hot air, the wind speed, and the amount of air. Appropriate values can be determined as appropriate.
  • the transverse stretching process, heat setting process, and cooling process are divided into 10 to 30 zones continuously, and each zone can be controlled independently. Designed so that there is no sudden temperature change between zones. In particular, a rapid temperature change between adjacent zones can be suppressed by raising the temperature stepwise from the latter half of the transverse stretching zone to the heat setting maximum temperature setting zone.
  • temperature control is very important particularly in the drying process and the heat setting process when producing an adhesive-modified base film having a specific phase separation structure on the surface or inside of the adhesive modified layer. is there.
  • the temperature in the heat setting process is very important in order to form a crosslinked structure in the resin constituting the adhesive modified layer, and this temperature is the speed of the crosslinking reaction. Greatly affects the degree.
  • the heat treatment condition affects the phase separation state of the adhesive property modified layer. That is, the maximum temperature in the heat-fixing treatment step is reached from the maximum temperature in the heat-fixing treatment step, the time required to reach the maximum temperature, and the temperature at which the phase separation of the adhesive property modified layer starts to proceed remarkably. It is important to set the time required.
  • the temperature in each heat setting zone in the heat setting process may vary slightly depending on the type of the resin constituting the thermoplastic resin film, and may be set appropriately within a temperature range of 100 to 260 ° C. Good.
  • polyethylene terephthalate which is a typical thermoplastic resin
  • thermoplastic resin film will be described as an example.
  • the maximum temperature in the heat setting treatment step is preferably controlled to 210 to 240 ° C, more preferably the lower limit is 225 ° C and the upper limit is 235 ° C.
  • heat fixing is performed at a relatively high temperature of 210 to 240 ° C in the initial stage of the heat setting treatment, and the temperature is gradually decreased to 100 to 200 ° C in the subsequent stage. ,.
  • the maximum temperature in the heat setting treatment step is less than 210 ° C, it is difficult to form a mixed phase separation structure or a nanophase separation structure in the adhesive modified layer. Therefore, it is difficult to obtain sufficient adhesion between the base material and the functional layer, which can withstand the peeling of the interface due to impact during high-speed cutting, which has been demanded in recent years. Furthermore, the heat-shrinkage rate of the obtained adhesive modified base film becomes large, which is not preferable.
  • the time required to reach the maximum temperature of the heat setting treatment from the temperature at which the phase separation of the adhesive property modified layer starts to proceed remarkably is preferably set as follows.
  • the passage time of the film from the temperature setting zone where the phase separation of the adhesive reforming layer starts to proceed remarkably to the maximum temperature setting zone entrance of the heat setting process is 3 seconds or more and less than 20 seconds. Particularly preferred is 4 seconds or more and less than 15 seconds.
  • the passage time is less than 3 seconds, the time for developing the phase separation structure defined in the present invention may be insufficient.
  • the passage time is 20 seconds or more, the phase separation proceeds excessively, and the thinnest part of the phase mainly composed of the copolyester tends to be scattered in places where the width exceeds 1 ⁇ m.
  • a part having poor adhesion to a functional layer such as a hard coat layer, a diffusion layer, a prism layer, or a printing layer printed with UV ink is locally generated, which may lead to macroscopic peeling starting from that part. is there.
  • the temperature at which phase separation of the adhesive modified layer starts to proceed remarkably is estimated to be about 200 ° C within the composition range of the coating liquid shown in the examples of the present invention. Yes.
  • the temperature is naturally not limited to this temperature because it varies depending on the resin component of the adhesive modified layer.
  • the transverse stretching process, heat setting process, and cooling process are divided into 10 to 30 zones in the tenter to suppress rapid temperature changes in adjacent zones, and temperature control is independent in each zone. Has been made.
  • the second half force of the transverse stretching zone is also set to the zone where the maximum temperature of the heat setting treatment process is set. It is preferable to prevent a sudden temperature change between the two.
  • the temperature setting zone force at which the phase separation starts to progress remarkably can be rapidly and uniformly increased in the passage time of the film to the maximum temperature setting zone inlet of the heat setting treatment step. is important. In order to quickly raise the temperature, it is effective to increase the heat transfer efficiency in each heat setting zone, for example, to increase the velocity of hot air blown onto the film. However, this method generally causes temperature spots. Because it is easy to produce, when the phase separation state of the adhesive reforming layer is uneven, or foreign matters such as oligomers slightly adhering to the inside of the device in the heat setting zone rise, and the raised foreign matter adheres to the film This may lead to optical defects.
  • the wind speed is preferably 10 mZ seconds or more and less than 20 mZ seconds.
  • the nozzles for blowing hot air are set to 500 mm or less, for example, when the nozzle spacing is set to 300 mm, 350 mm, or 400 mm, it is an unfavorable force for equipment maintenance. is there.
  • the number of nozzles per zone corresponding to one stage is about 6 to 12, and the number is determined in consideration of the state of nozzle spacing, ventilation rate, and ventilation time.
  • the wind speed described in the present invention means the wind speed on the film surface facing the outlet of the hot air blowing nozzle and is measured using a thermal anemometer (manufactured by Nippon Kanomax, Anemo Master Model 6161).
  • the heat setting process is divided into a plurality of heat setting zones continuously, and each zone is partitioned so that the temperature can be controlled independently.
  • the heat setting zone is divided into 2 to: processes where LO heat setting zones are continuously arranged, preferably 4 to 8 steps, and this multi-stage heat setting zone is used to improve adhesion. It is preferable to control the temperature of the base film.
  • the heat setting zone divided into six steps as shown below is successively passed, and a subtle temperature difference is given to each step.
  • An example is a method in which heat fixing treatment is performed, and both ends of the film are coated and trimmed.
  • the heat setting temperature is 200 ° C in the first heat setting zone, 225 ° C in the second heat setting zone, 230 ° C in the third heat setting zone, 230 ° C in the fourth heat setting zone,
  • the temperature is 210 ° C in the 5th heat setting zone, 170 ° C in the 6th heat setting zone, and 120 ° C in the 7th heat setting zone.
  • 3% relaxation treatment is performed in the width direction in the sixth heat setting zone.
  • the above-mentioned stage corresponds to one heat setting zone.
  • the temperature of the thermosetting zone at each stage has a subtle temperature difference, that is, a temperature difference of about 5 to 40 ° C.
  • the setting of this temperature difference is arbitrarily determined in consideration of various factors such as the running speed, the air volume, and the thickness of the adhesive modified layer of the thermoplastic resin film having the adhesive modified layer.
  • the film length is usually at least 1000 m or more, even if it is a relatively thick film having a film thickness of 100 m or more. Sometimes it is used in the process of laminating a prism layer and a diffusion layer in the form of a roll of 2000 m or more.
  • the area ratio of the PEs phase (indicating a dark hue in the phase image) on the surface of the adhesive modified layer, or the hard coat layer on the cutting surface of the adhesive modified layer.
  • the difference between the maximum and minimum area ratios in the longitudinal direction is 15% or less More preferably, it is 10% or less.
  • the film forming conditions such as the composition of the coating liquid, the coating conditions, the drying conditions, and the heat setting conditions It is important to keep the same constant when continuously manufacturing the long adhesive modified base film roll used in the present invention.
  • the ratio of the mixed solvent used in the coating solution fluctuates, and it is easy to keep the ratio of the mixed solvent constant.
  • the area ratio of the surface PEs phase in the longitudinal direction of the film roll and the PU phase of the cutting surface It is important to reduce the fluctuation of the area ratio.
  • the range of fluctuation of the area ratio of the PEs phase on the surface of the adhesive modified layer and the area ratio of the PU phase on the cutting surface can be controlled to 15% or less by the following means.
  • the means for keeping the ratio of the mixed solvent constant is not limited to the following method.
  • Increasing the capacity of the circulation tank (13 in Fig. 7) relative to the volume of the coating solution tray (11 in Fig. 7) is effective in stabilizing the concentration ratio of the mixed solvent. It is.
  • the ratio of the capacity of the circulation tank is preferably 10 or more, particularly preferably 50 or more. If the volume ratio (circulation tank capacity Z coating liquid tray capacity) is less than 10, that is, the circulation tank capacity is too small, the concentration ratio fluctuation of the mixed solvent tends to increase.
  • the ratio of the capacity of the mixing tank (14 in Fig. 7) is preferably 10 or more, and particularly preferably 20 or more.
  • the capacity of the circulation tank can be kept constant during operation when supplying the coating liquid to the circulation tank.
  • Increasing the accuracy (roundness and cylindricity) of the applicator roll in the coating apparatus is also effective from the viewpoint of reducing coating thickness unevenness of the adhesive modified layer in the longitudinal direction of the film roll. Furthermore, it is also effective in reducing fluctuations in characteristics due to fluctuations in the area ratio of the PEs phase on the surface of the adhesive reforming layer or the PU phase of the cutting surface in the longitudinal direction of the film roll.
  • the roundness of the applicator roll is the difference between the radii of two concentric circles determined by the minimum area method determined using a recording roundness measuring instrument. It is an index represented by The unit of roundness of the roll is mm.
  • the applicator roll cylindricity can be measured in various measurement planes over the entire length by placing the roll on a surface plate, moving the stand with a measuring instrument in the axial direction, and placing a probe on the upper surface of the cylinder. This is an index expressed by 1Z2 of the maximum difference in reading at the time of measurement.
  • the unit of cylindricity is mm.
  • variation in the thickness of the coating layer in the lengthwise direction can be reduced by improving the roll accuracy (roundness and cylindricity).
  • the roll accuracy (roundness and cylindricity) is preferably less than 5ZlOOOmm.
  • the surface finish of each roll of the reverse coater should be 0.3S or less, and the accuracy of the applicator roll and metering roll (roundness and cylindricity) should be less than 5ZlOOOmm, 2Zl000mm
  • the applicator roll and metering roll have a precision (roundness and cylindricity) of 3ZlOOOmm A roll should be used.
  • the film may be deformed or broken.
  • the flatness of the film during application may be insufficient, or the film may meander.
  • the transfer amount of the coating liquid becomes non-uniform in the length direction of the film, and the variation in the thickness of the coating layer becomes larger due to the large variation in the wet coating amount of the film.
  • the change in the area ratio of the PEs phase on the surface of the adhesion modified layer or the PU phase on the cutting surface is controlled to 10% or less in the width direction of the film roll.
  • it is effective to improve the flatness in the width direction during coating Specifically, just after coating with a reverse roll, grip only the both end faces of the film using a pinch roll (16 in FIG. 7). By holding the both ends of the film with the pinch roll, the flatness in the width direction of the film is improved on an industrial scale, and the wet coating amount in the width direction of the film is stabilized.
  • the hard coat film of the present invention comprises an adhesive modified base film in which an adhesive modified layer B containing a copolymerized polyester and polyurethane is formed on one side or both sides of a thermoplastic resin film A, and the adhesion of the film.
  • This is a hard coat film having a layer structure of AZBZC or BZAZBZC in which a hard coat layer C containing inorganic fine particles is laminated on one side of the property-improving layer B.
  • curable resin constituting the hard coat layer ionizing radiation hard Chemicalized rosin is preferred. Examples of the ionizing radiation curable resin include the following resins.
  • the ionizing radiation curable resin is preferably a resin having an acrylate functional group, and particularly preferably a polyester acrylate or a urethane acrylate.
  • Polyester acrylate is also composed of polyester polyol oligomer acrylate or methacrylate (hereinafter, acrylate and Z or metatalate may be referred to as (meth) acrylate), or a mixture thereof.
  • Urethane (meth) acrylate is composed of (meth) acrylated oligomers that also have the ability to produce poly-poly and di-isocyanate compounds.
  • Monomers constituting (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethyl hexyl (meth) acrylate, Examples include methoxy shetil (meth) acrylate, butoxy chill (meth) acrylate, and phenol (meth) acrylate.
  • the polyfunctional monomers include trimethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri ( Examples thereof include meta) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and neopentyl dallicol di (meth) acrylate.
  • Polyester polyol oligomers include adipic acid and glycol (ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, butylene glycol, polybutylene glycol, etc.) and triol (glycerin, trimethylolpropane, etc.), sebacic acid and glycol And polyadipate polyol, which is a condensation product with triol, and polysebacate polyol.
  • some or all of the aliphatic dicarboxylic acids can be substituted with other organic acids.
  • isophthalic acid, terephthalic acid, or phthalic anhydride can be used as a component that increases the hardness of the hard coat layer.
  • Diluents include aromatic hydrocarbons such as benzene, toluene, and xylene, aliphatic hydrocarbons such as hexane, heptane, octane, nonane, and decane, and ketones such as methyl ethyl ketone, jetyl ketone, and disopropyl ketone. Is mentioned.
  • the blending amount of the diluent should be selected as appropriate so as to obtain an appropriate viscosity.
  • the inorganic fine particles to be contained in the hard coat layer C include, for example, amorphous silica, crystalline glass filler, inorganic oxides such as silica, zirconium oxide, titanium dioxide, alumina, and silica-alumina composite.
  • the hard coat layer C By providing layer C with a high refractive index, the antireflective layer strength high refractive index layer can be omitted. As a result, cost can be reduced.
  • the content of the inorganic fine particles in the hard coat layer is important to be 20% by mass or more and 80% by mass or less.
  • the scratch resistance is insufficient.
  • the content of the inorganic fine particles exceeds 80% by mass, the transparency tends to decrease.
  • the average particle diameter of the inorganic fine particles is preferably 5 to: LOOnm from the viewpoint of transparency.
  • such inorganic fine particles having a small average particle diameter are easy to aggregate and are unstable. Therefore, in order to increase the dispersion stability of the inorganic fine particles, it is preferable to add a photosensitive group to the surface of the inorganic fine particles to increase the affinity with the curable resin.
  • hard coat agents containing such inorganic fine particles are available.
  • ultraviolet curable resin (Desolite; Z7400A, Z7410A, Z7400B, Z7410B, Z7400C, Z7410C, Z7410D, Z7410E, Z7501, Z7503, Z7521, Z7527) manufactured by JSR Corporation may be mentioned.
  • the ionizing radiation curable resin is cured by irradiation with ultraviolet rays or electron beams.
  • a scanning or curtain type electron beam accelerator is used to irradiate an electron beam having an acceleration voltage of lOOOOkeV or less, preferably 100 to 300 keV and having a wavelength region of lOOnm or less.
  • the thickness of the hard coat layer may be determined in the range of 0.1 to 30 / ⁇ ⁇ depending on the application. More preferably, it is 1 to 15 m. When the thickness of the hard coat layer is within the above range, the surface of the hard coat layer has a high hardness and is hardly damaged. Furthermore, when the hard coat film is bent, the hard coat layer does not easily become brittle.
  • the optical functional film described in the present invention is a film in which an optical functional layer is laminated on the surface opposite to or on the surface of the hard coat film C of the hard coat film of the present invention.
  • an optical functional layer is laminated on the surface opposite to or on the surface of the hard coat film C of the hard coat film of the present invention.
  • a lens film using a lens layer as an optical functional layer and a light diffusion film using a light diffusion layer will be described below as representative examples.
  • a prism lens film or a Fresnel lens film is an ionizing radiation curable hard coat containing inorganic fine particles on one side of an adhesive modified base film having an adhesive modified layer mainly composed of copolymer polyester and polyurethane.
  • the layers are laminated, and a prism lens layer or a Fresnel lens layer is laminated on the opposite surface.
  • the lens film may be called a lens sheet. In the present invention, a sheet is also included in the film.
  • At least one of radically polymerizable monomer or oligomer determines the performance of the produced lens sheet, and is appropriately selected according to the performance of the target lens film.
  • the resin component is a radically polymerizable monomer or oligomer used alone or in combination of two or more.
  • the mechanical strength, impact resistance, heat resistance, surface hardness, and chemical resistance required for the lens film can be imparted.
  • a compound having an attalyloyl group or a methacryloyl group as a radical polymerizable functional group with respect to the composition, when the active energy ray is irradiated, it partially copolymerizes and instantaneously To become fluidized. Therefore, optical distortion due to convection is reduced when the lens layer is formed.
  • the resin component includes an ester-type (meth) acrylate, a component obtained by a condensation reaction of an aliphatic, alicyclic, or aromatic mono- or polyalcohol with acrylic acid or methacrylic acid.
  • Urethane poly (meth) acrylates and molecules obtained by urethane reaction of isocyanate compounds having two or more isocyanate groups in the element and (meth) acrylates containing hydroxyl groups or thiol groups Epoxy poly (meth) acrylate, saturated or unsaturated polyvalent carboxylic acid, polyhydric alcohol obtained by ring opening reaction of glycidyl group with compound having at least two epoxy groups and acrylic acid or methacrylic acid , And (meth) atallyloyl functional monomers such as polyester (meth) ate lylate obtained by condensation reaction with (meth) acrylate.
  • butyl compounds such as styrene, chlorostyrene, bromostyrene, dibutyl styrene, dibutylbenzene, and (meth) aryl compounds such as diethylene glycol bisallyl carbonate, diallyl phthalate, and diallyl biphosphate. .
  • Phenol Phenol 2 Metaloxychetyl (Meth) Atalylate, 2 —Naphthyl (Meth) Atalylate, 2 Bromo Phenol (Meth) Atalylate, 4 Bromo Phenol (Meth) Atalylate, 2 , 4 Dibromophenol (meth) acrylate, 2, 4, 6 Tribromophenol (meth) acrylate, Phenolthioethyl (meth) acrylate, Phenolthioethoxyethyl (meth) acrylate
  • a catalyst that generates a radical source mainly in response to an active energy ray having a wavelength of 200 to 400 nm is more preferable.
  • Specific examples include benzoin, benzoin monomethyl ether, benzoin isopropyl ether, acetoin, benzil, benzophenone, p-methoxybenzophenone, methoxyacetophenone, benzyl dimethyl ketal, 2, 2-methoxyacetophenone, 1- Carboxylic compounds such as hydroxycyclohexylphenol ketone, methylphenol glyoxylate, ethylphenylglyoxylate, 2-hydroxy-2-methyl-1-phenolpropanone, tetramethylthiuram monosulfide, tetramethyl Sulfur compounds such as thiuram disulfide, and acylphosphine oxides such as 2,4,6 trimethylbenzoyldiphenylphosphine oxide.
  • benzophenone benzoin isopropyl ether, methyl phenol glycolate, 1-hydroxycyclohexyl phenol ketone, benzyl dimethyl ketal, and 2,4,6 trimethylbenzoyldiphenylphosphine oxide are more preferable.
  • the content of the active energy ray-sensitive catalyst is 0.005 to 5 parts by mass, and more preferably 0.02 to 2 parts by mass with respect to 100 parts by mass of the total amount of the resin components.
  • the function as a lens is not impaired, and various additives within the range, for example, an antioxidant, a heat stabilizer, a weather stabilizer, an ultraviolet absorber, a yellowing inhibitor , Organic lubricants, pigments, dyes, bluing agents, organic or inorganic fine particles, fillers, belts
  • an antistatic agent, a surfactant, a leveling agent, a nucleating agent, a diffusing agent and the like may be blended.
  • the method of laminating the actinic radiation curable resin as a constituent component of the lens layer on the surface of the adhesive modified layer of the adhesive modified base film includes various methods depending on required characteristics and applications. Select a method. For example, a method of applying the resin with a bar cut into a prism shape, or pouring the resin into a mold having a lens layer shape such as a prism, Use the method of superimposing on the surface.
  • the actinic rays mean electromagnetic waves that polymerize acrylic vinyl groups such as ultraviolet rays, electron beams, and radiation ( ⁇ rays, j8 rays, ⁇ rays, etc.).
  • ultraviolet light is convenient.
  • an ultraviolet ray source for example, an ultraviolet fluorescent lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, or a carbon arc lamp is used.
  • the electron beam method is advantageous in that the apparatus is expensive and needs to be operated under an inert gas, but it does not need to contain a photopolymerization initiator or a photosensitizer.
  • the thickness of the lens layer is arbitrarily selected depending on the purpose of the lens film and the shape of the lens unit. In general, the thickness of the lens layer is preferably 0.1 to 5 mm, more preferably 0.2 to 3 mm. When the thickness of the lens layer is thinner than 0.1 mm, there is a tendency that the effect as the lens layer cannot be obtained. On the other hand, when the lens layer is thicker than 5 mm, it tends to be insufficient in terms of luminance.
  • the pitch of the lens unit is arbitrarily selected depending on the purpose of the lens film and the shape of the lens unit.
  • the distance between the centers of the lens layers is preferably 0.03-0. 5 mm, more preferably 0.05-0.3 mm.
  • a prismatic lens film in which prismatic lens layers are laminated is preferable in terms of luminance and ease of formation.
  • the apex angle of the prism is preferably 80 to 150 degrees, more preferably 85 to 130 degrees.
  • the light diffusing film is an ionizing radiation curable hard coat containing inorganic fine particles on one side of an adhesive modified base film having an adhesive modified layer mainly composed of copolymer polyester and polyurethane. There is also a constitutional force by laminating layers and stacking a light diffusion layer on the opposite side.
  • the light diffusing film is sometimes called a light diffusing sheet. For clarity, sheets are also included in the film.
  • the light diffusion layer is composed of a composition containing a binder resin and a light diffusing agent.
  • a resin an optically transparent resin is suitable.
  • acrylic resin, polyester resin, polychlorinated butyl, polyurethane, and silicone resin is commercially available, for example, from Mitsubishi Rayon Co., Ltd. under the trade name “Dianar Series”.
  • transparent particles are suitable, for example, silicone resin particles, acrylic resin particles, nylon resin particles, urethane resin particles, styrene resin particles. , Polyethylene resin particles, silica particles, and polyester resin particles. These particles may be used alone or in combination of two or more. The fine particles may be crosslinked on the entire surface or on the whole.
  • the mixing ratio of the particles to the resin is preferably 5 to 150 parts by mass with respect to 100 parts by mass of the resin from the viewpoint of obtaining sufficient light diffusibility while ensuring light transmittance.
  • the average particle diameter of the above-mentioned particles is usually 1 to 70 ⁇ m, preferably 5 to 50 ⁇ m.
  • each spherical particle acts as one kind of lens and can have a more effective light diffusion effect.
  • spherical particles are effective.
  • Spherical silica particles are commercially available, for example, from Nippon Shokubai Co., Ltd. under the trade name Eposta.
  • the adhesive modified layer of the adhesive modified base film (opposite to the surface on which the hard coat layer is laminated) with a coating liquid in which binder resin, solvent, and particles are mixed and dispersed at a specific ratio Further, it is applied by a known application method.
  • the coating layer is dried and cured by a drying method such as natural drying or hot air heating drying to form a light diffusion layer on the surface of the adhesive base film.
  • a suitable method for preparing the coating solution is as follows.
  • the binder resin is dissolved in a solvent at a specific ratio. Disperse particles and other subcomponents as necessary in this solution at a specific ratio to prepare a mixed dispersion. .
  • the viscosity of the mixed dispersion is adjusted to be in the range of 1 to 500 boise.
  • the viscosity of the liquid can be measured using a Brookfield viscometer (B type viscometer).
  • the above-mentioned coating solution is applied to the surface of the adhesion-modified layer of the adhesion-modified base film and dried.
  • the method for applying the coating solution is selected according to the viscosity of the solution and the desired thickness of the coating layer.
  • examples of the coating method include a comma direct method, a roll coating method, a dipping method, a knife coating method, a curtain flow method, a spray coating method, a spin coating method, and a laminating method.
  • the thickness of the adhesion-modified base film is preferably 50 to 200 ⁇ m from the viewpoint of use and workability.
  • the thickness of the light diffusion layer is preferably 2 to 30 / ⁇ ⁇ .
  • the solvent include toluene, methyl ethyl ketone, xylene, cyclohexane, and ethyl acetate.
  • the mixing ratio of the solvent with respect to the binder resin is appropriately set depending on the coating method, workability, type of solvent, etc., but 50 to 500 parts by mass of the solvent with respect to 100 parts by mass of the binder resin. Is preferred.
  • the mixing ratio of the solvent with respect to the particles is appropriately set in the range of 20 to 500 parts by mass of the solvent with respect to 100 parts by mass of the particles, depending on the coating method, workability, type of solvent, and the like. More preferably, it is 50-300 mass parts of solvent with respect to 100 mass parts of particle
  • an isocyanate compound for example, an epoxy resin, a methylolated melamine resin, a methylol urea resin, a metal salt, a metal hydroxide, or a crosslinking agent, Guazine derivatives, phosphate anion activators, sulfonic acids, quaternary ammonium salts, pyridinium salts, imidazoline derivatives, morpholine derivatives, polyoxyethylene alkylphenols, alkylamide ethers, sorbitan fatty acids
  • Antistatic agents such as esters and silane coupling agents can be contained alone or in combination of two or more.
  • Phase separation mode was evaluated using a scanning probe microscope (SPI3800N system ZSPA300, manufactured by SII Nano Technology) on the surface of the adhesive modified layer. I went there. In the phase image, the brighter the phase delay, the darker the phase delay. A small phase lag means that it is harder or has a relatively lower adsorption force than the other phases.
  • the dark hue is a polyester phase and the light hue is a polyurethane phase.
  • phase measurement mode in the scanning probe microscope is “1-2.Up” on the website of S'Nano Technology Co., Ltd. (http: ZZwww. Siint. Com / technology / probe—applications, html). It is described in the PDF file of “1. Phase measurement by SPM” in the Phase column in “Recations (by mode)”.
  • the cantilever used for the measurement was mainly DF3 (panel constant: about 1.6 NZm), and a new cantilever was always used to prevent deterioration of sensitivity and resolution due to probe contamination.
  • the scanner used was FS-20A.
  • the phase image was observed with a resolution of 512 x 512 pixels or higher, and the observation field of view was 5 m x 5 m.
  • the measurement parameters such as the amplitude attenuation rate of the cantilever, the running speed, and the scanning frequency during the measurement were set to the conditions where the line was scanned and the sensitivity was highest and the resolution was good.
  • phase mode image (bitmap format, 512 X 512 pixels) is read by image processing software (Adobe, Photoshop ver. 7.0) and displayed on the display so that the image size is 205 mm x 205 mm. Displayed (see Figure 1).
  • image processing software Adobe, Photoshop ver. 7.0
  • a black A line was drawn to clarify the boundary between the two phases (see Figure 2).
  • the paint tool of the software the dark hue was painted black and the light hue was painted white, giving a binary value (see Figure 3).
  • dark portions with a diameter of 2 mm or less in the light hue with the size on the screen were judged to be unevenly distributed in the light hue, and were painted white. For example, when silica particles are used, it can be confirmed that they are unevenly distributed in a light hue.
  • the measurement of the area ratio of the polyester phase on the surface of the adhesive modified layer can be carried out using a paper weight method in addition to the image analysis method.
  • the measurement procedure is as follows.
  • the obtained phase mode image was stored as a digital image in bitmap format.
  • this image was printed out on A4 quality paper using a printer (Xerox, DocuPrintC830).
  • the boundary between light and dark hues in the image was clarified with a 4B pencil in a bright room under 500 lux illumination. At this time, it has been confirmed that the dark color portion having a diameter of 0.1 m or less present in the light hue is a particle contained in the adhesive modified layer unevenly distributed in the light hue.
  • a roll made of an adhesive modified base film having a length of 1000 m or more and a width of 50 mm or more was unwound.
  • the area ratio of the polyester phase (indicating a dark hue in the phase image) on the surface of the adhesive modified layer was measured at the following locations. Next At each location, the area ratio of the polyester phase on the surface of the adhesive modified layer was determined. Furthermore, the difference between the maximum value and the minimum value was obtained from these area ratios.
  • the area ratio of the polyester phase on the surface of the modified adhesive layer is measured by taking the first end as the first end and the second end as the first end of the steady region where the film properties are stable.
  • the first measurement is performed at 2 m or less on the inner side
  • the final measurement is performed at 2 m or less on the inner side of the second end, and every 100 m from the first measurement point.
  • An adhesive-modified base film roll having a length of 1000 m or more and a width of 50 mm or more was unwound, and the film was divided into four equal parts in the width direction (TD).
  • the area ratio of the polyester phase (indicating a dark hue in the phase image) on the surface of the adhesive modified layer was measured at each central portion.
  • the difference between the maximum value and the minimum value of the area ratio of the polyester phase on the surface of the adhesive modified layer in the width direction was determined. This measurement may be performed with a jumbo roll before slitting the width direction of the film into a small width size.
  • the adhesive modification layer B is an intermediate layer between the thermoplastic resin film A and the hard coat layer C. Therefore, the phase separation structure of the resin should be observed directly at the interface between the adhesive modified layer B and the hard coat layer C (the surface of the adhesive modified layer in the adhesive modified substrate film). Is difficult. Accordingly, the present inventors have found that a hard coat film can be cut in the thickness direction, and the phase separation structure of the resin in the thickness direction of the adhesive modified layer can be measured from the cut surface. In addition, since the thickness of the adhesive modified layer is generally thin, it is difficult to observe the phase separation structure of the resin from the cut surface of the adhesive modified layer. Therefore, the hard coat film was cut obliquely and at a shallow angle with respect to the thickness direction. As a result, the observation area in the thickness direction of the adhesive modification layer could be expanded. By this technique, the phase separation structure of the resin constituting the adhesive modified layer in the vicinity of the interface between the adhesive modified layer B and the hard coat layer C could be observed.
  • the hard coat film of the present invention has a layer structure of A / B / C or BZA / B / C, where A is the thermoplastic resin film, B is the adhesive modification layer, and C is the hard coat layer. It is a stacked body containing.
  • the optical functional film using the hard coat film is a laminate including a layer structure of D (including C) ZBZAZBZC, where D is the other optical functional layer.
  • thermoplastic resin film A or optical functional layer D from the surface of thermoplastic resin film A or optical functional layer D, using cutting device 1 (SAICAS DN20-S type), diagonally under the conditions shown below Cut from.
  • cutting device 1 SAICAS DN20-S type
  • Cutting means Diamond knife (rake angle: 40 degrees)
  • predetermined depth means a depth at which most of the thermoplastic resin film is cut and does not reach the adhesive property modified layer.
  • cision limit means that the moving speed of the blade in the vertical direction is set to zero and cutting is performed only in the horizontal direction.
  • Cutting means Diamond knife (scoop, angle: 40 degrees)
  • the above cutting conditions are typical conditions for cutting the node coat films obtained in the examples and comparative examples described in the present invention.
  • a three-dimensional cutting method using a three-dimensional cutting tool may be effective.
  • the blade width of diamond knives is usually lmm, but 0.3mm may be effective.
  • a diamond knife having a blade width of 1 mm was used.
  • the surface force of the optical functional layer D (including the hard coat layer C) is also cut, depending on the physical properties of the optical functional layer, it may be necessary to heat or cool during cutting.
  • Caro For heat or cooling, use a low / high temperature gas spray device (TTFC-L type, Dybra “Wintes Co., Ltd.”). The temperature or gas flow rate when heating or cooling is appropriately adjusted according to the state of the cutting surface.
  • phase mode phase measurement mode
  • SPM scanning probe microscope
  • the phase mode is a phase lag measurement mode that is usually performed simultaneously with the morphological observation in the dynamic force mode (DFM mode; when using SPM manufactured by SII Nanotechnology).
  • DFM mode dynamic force mode
  • the dark hue is the polyester phase
  • the light hue is the polyurethane phase.
  • the cantilever used for the measurement was mainly DF3 (panel constant: about 1.6 NZm), and a new cantilever was always used to prevent deterioration of sensitivity and resolution due to probe contamination.
  • the scanner used was FS-100A.
  • the observation field of the phase image was 3 m ⁇ 3 m. Measurement parameters such as the amplitude attenuation rate of the cantilever, the scanning speed, and the scanning frequency during measurement were set to the conditions where line scanning was performed and the sensitivity was highest and the resolution was observable.
  • Drawings attached to application documents include drawings that are displayed in color images, but for convenience of electronic filing, color images are saved in JPEG file format and displayed in grayscale. Yes. Black-and-white images are also saved in JPEG file format and displayed in grayscale to prevent image quality degradation.
  • this interface (BZC) force is also directed to the adhesive modified layer B, and the red line indicating the above interface is copied and pasted in parallel at a depth of 20 nm in the vertical direction (Fig. 9 lines 21).
  • the laminated body is cut from the diagonal direction. Therefore, in the cutting conditions shown above, the position at the depth of 2 Onm is equivalent to the position of 500 nm from the interface in FIG.
  • the range surrounded by these two red lines that is, the range from the interface (BZC) to the depth of 20 nm of the adhesive modified layer B is reduced on the cutting surface of the adhesive modified layer B.
  • the range for observation of the phase separation structure of fat is reduced.
  • FIG. 10 is pasted on the screen of presentation software (Microsoft PowerPoint 2002). Then, the two red lines (20, 21) shown in Fig. 9 are displayed on the image of Fig. 10 so as to overlap with the image of Fig. 9 (see Fig. 11).
  • the image in Fig. 11 is displayed on the screen of image processing software (Adobe, Photoshop ver6. 0.1). In addition, use the brush tool to paint the area other than the adhesive modification layer B in red (see Figure 12). Using the same software, white, black, and red ternary images were displayed as a histogram with luminance (black, white) on the horizontal axis and frequency on the vertical axis.
  • the black part means the polyester phase and particles
  • the white part means the polyurethane phase.
  • the adhesion force modification layer B and the hard coat layer C have an interfacial force with a depth of 20 nm.
  • the area ratio of the tan phase (white part) is calculated by the following formula.
  • the “measurement area” on the right side of the following equation means the range surrounded by the line 20 (interface BZC) and the line 21 in the phase image of FIG.
  • Area ratio of polyurethane phase (%) (white area Z measurement area) X 100
  • phase-mode images (bitmap format, 512 X 512 pixels) obtained in phase measurement mode (phase mode) are processed.
  • the software Ad obe, Photoshop ver7.0
  • the lead brush tool master diameter: 3px
  • a black line was drawn at the boundary between the light and dark hues to clarify the boundary between the two phases (see Figure 2).
  • the dark portion with a diameter of 2 mm or less in the light hue with the size on the screen is judged to be a particle that is unevenly distributed in the light hue, and the operation of drawing the boundary line is not performed on this portion. I got it.
  • silica particles when silica particles are used, it can be confirmed that they are unevenly distributed in a light hue.
  • An image with a clear boundary line is saved as a bitmap format image, and then the fractal dimension analysis is performed by the box counting method, and the obtained fractal dimension value is used to determine the complexity of the boundary line of phase separation.
  • the index is shown.
  • Image analysis software (AT— Image ver. 3.2) was used for analysis by the box counting method. Specifically, the saved bitmap image was opened on the image analysis software (AT- Image ver3.2), and binary image processing was performed using the luminance histogram from image extraction on the menu (see Fig. 6). The threshold for binarization was 8. For the binarized image, the fractal dimension was selected by selecting the fractal dimension from the image measurement cursor on the menu. At this time, for the calculation of the fractal dimension by the method of least squares, the counting result of a box having a side length of 6 to 63 pixels was used.
  • the analysis of the fractal dimension by the box counting method is a known method.
  • the use of other image analysis software or programs for the original analysis may use other software having the same function as long as the reproducibility of the analysis results is sufficiently obtained.
  • Other software includes, for example, “Agricultural Technology Research Organization, National Institute of Livestock and Grassland Research, Fractal Analysis System Version 3.33”, “Digital 'Being'Kids'
  • Image analysis software such as “Poplmaging Ver. 3.40”.
  • a hard coat film sample is embedded in a visible light curable resin (eg, epoxy resin).
  • a visible light curable resin eg, epoxy resin
  • an ultrathin section was prepared using an ultramicrotome equipped with a diamond knife and stained with ruthenium tetroxide.
  • the stained ultrathin section was observed with a transmission electron microscope (manufactured by JEOL Ltd., TEM2010) for observing the cross section of the hard coat layer C and taking a photograph.
  • the magnification of the photograph is appropriately set in the range of 10,000 to 100000 times according to the observed particle size of the inorganic particles.
  • the magnification was set to 80,000 (acceleration voltage 200 kv). From this photograph, the average particle diameter based on the number of inorganic fine particles in the hard coat layer C was determined.
  • the adhesion modified layers of the two adhesive modified substrate films were superposed on each other. Next, they were subjected to a pressure of lkgfZcm 2 and adhered in an atmosphere of 50 ° C. and 60% RH for 24 hours. After that, peeling was performed at the interface between the adhesive modified layer and the adhesive modified layer of the two adhesive modified base films adhered, and the peeled state was judged according to the following criteria.
  • a surface property measuring instrument (Shintoa Chemical Co., Ltd.) Made by HEIDON14) and scratched. At this time, a genuine needle with a 75 ⁇ m diameter sapphire at the tip was used as a scratching needle. The traveling speed of the needle was 150 mmZ, and the weight was 5 gf.
  • the surface shape of the scratches attached to the adhesion modified layer was measured using a three-dimensional non-contact surface shape measuring device (Micromap, Micromap550) under the following conditions, and the profile mode data was displayed. .
  • Figure 5 shows a typical example. From the obtained shape data of the scratch, the height difference between the adjacent convex and concave was measured at 30 locations, and the average value thereof was obtained and used as the hardness index of the adhesive modified layer. At this time, protrusions having a height of 30 nm or more were judged to be protrusions caused by particles contained in the adhesive modified layer or the thermoplastic resin film, and the measurement data power was excluded. In addition, protrusions with a height of 1 nm or less were also excluded from measurement data because they are affected by noise.
  • a surface opposite to the hard coat layer C of the hard coat film or optical functional film obtained in Examples and Comparative Examples was attached to a glass plate having a thickness of 5 mm to which a double-sided tape was attached.
  • 100 grid-like cuts that penetrated through the hard coat layer C and the adhesive modified layer B and reached the thermoplastic resin film A were made using a cutter guide with a gap interval of 2 mm.
  • an adhesive tape manufactured by Nichiban Co., Ltd., No. 405; width of 24 mm
  • the air remaining at the interface at the time of pasting was pushed with an eraser to bring it into close contact, and then the adhesive tape was peeled off vertically.
  • Adhesion (%) (1—Number of peeled Zioo pieces) X 100
  • a sample for evaluating the adhesion of the adhesion-modified base film to the hard coat layer was prepared according to the following method.
  • a hard coat agent manufactured by Dainichi Seika Co., Ltd.
  • About 5 g is placed on top of the film sample so that the surface of the adhesion modified layer and the hard coat agent are in contact with each other, and a manual load rubber with a width of 10 cm and a diameter of 4 cm from the top of the film sample. Crimping was performed so as to extend the coating agent with a roller.
  • the hard coat layer was cured by irradiating with ultraviolet rays under conditions of 500 mjZcm 2 , irradiation distance 15 cm, and traveling speed 5 mZ with a high-pressure mercury lamp.
  • the film sample having the hard coat layer was peeled off from the glass plate to obtain a hard coat film.
  • the surface of hard coat layer C is measured by a pencil hardness test.
  • the pencil hardness test the test was repeated 5 times. If all the tests showed that the surface of the hard coat layer C did not show any abnormal appearance such as scratches, the hardness of the pencil used in the test was determined.
  • Use pencil hardness For example, if a 3H pencil is used and 5 tests are performed, and no abnormal appearance occurs in all tests, the material has a pencil hardness of at least 3H. In this evaluation, 3H or higher was given as ⁇ , and 2H or lower was taken as X. [0310] (Example 1)
  • the coating solution used in the present invention was prepared according to the following method.
  • Dimethyl terephthalate (95 parts by mass), dimethyl isophthalate (95 parts by mass), ethylene glycol (35 parts by mass), neopentyl dallicol (145 parts by mass), zinc acetate (0.1 mass part) and antimony trioxide ( (0.1 part by mass) was charged into a reaction vessel and subjected to a transesterification reaction at 180 ° C for 3 hours.
  • Sarasuko colloidal silica (manufactured by NISSAN CHEMICAL INDUSTRY CO., LTD.), 0.6 parts by mass of 10% by weight aqueous solution of fluoro-based surfactant (Dainippon Ink and Chemicals, MegaFuck F142D) OL: 2.3 parts by weight of a 20% by weight aqueous dispersion with an average particle size of 40 nm), 3 parts of dry process silica (Nippon Aerosil, Aerosil OX50; average particle size 200 nm, average primary particle size 40 nm) as particles B 0.5 mass part of 5 mass% aqueous dispersion was added.
  • the pH of the coating solution is adjusted to 6.2 with 5% by weight aqueous sodium bicarbonate solution, and the solution is microfiltered with a felt-type polypropylene filter with a filtration particle size (initial filtration efficiency: 95%) of 10 ⁇ m. A was adjusted.
  • the surfactant used was pretreated by the following method.
  • IPA isopropyl alcohol
  • IPA solution was filtered through a quantitative filter paper (Advantech Toyo, No. 5C) to remove insolubles and dust in the solution. After filtering the solution, the solution was put in a sealed glass container and allowed to stand in a freezer at 0 ° C. for 24 hours. After the elapse of 24 hours, the solution containing the precipitated solid is removed using the above quantitative filter paper. And suction filtered. The solid on the filter paper was vacuum-dried to obtain a solid, diluted with water to a 10% by weight aqueous solution, and used as a pretreated surfactant.
  • IPA isopropyl alcohol
  • the surfactant obtained in the pretreatment was analyzed with a TLC-coated plastic sheet (manufactured by Merck, silica gel 60) using methanol as a developing solution. As a result of coloring the sample spot with iodine vapor, it was confirmed that no spot equivalent to polyethylene glycol was detected.
  • PET resin pellets containing no particles and having an intrinsic viscosity of 0.62 dlZg as a raw material polymer were dried under reduced pressure (lTorr) at 135 ° C. for 6 hours.
  • the dried PET resin pellets are supplied to an extruder, melted and extruded into a sheet at about 285 ° C, rapidly cooled and solidified on a metal roll maintained at a surface temperature of 20 ° C, and cast film Got.
  • a stainless sintered filter medium having a filtration particle size (initial filtration efficiency: 95%) force of 15 m was used as a filter medium for removing foreign substances in the molten resin.
  • the obtained cast film was heated to 95 ° C with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed, and a uniaxially oriented PET film.
  • the coating liquid A was finely filtered with a felt type polypropylene filter medium having a filtration particle size (initial filtration efficiency: 95%) of 10 ⁇ m, and applied to one side of a uniaxially oriented PET film by a reverse roll method.
  • the application roll and metering roll of the coater were rolls with an ultra-hard chrome finish surface of 0.2S or less and roundness and cylindricity of 3Zl000mm.
  • the wind speed of the drying air in the first zone is 3 OmZ seconds
  • the supply air flow of the drying air is 130 m 3 Z seconds
  • the exhaust air flow is 170 m 3 Z seconds
  • the air supply from the second zone to the fourth zone The air volume was set to 100m 3 Z seconds and the exhaust air volume was set to 150m 3 Z seconds so that dry air did not flow to one side of the coater.
  • the film tension is 7000 NZ
  • the coating force was held between both ends of the film with a pinch roll until the entrance to the drying furnace.
  • the film was guided to a hot air zone at a temperature of 120 ° C and a wind speed of 15 mZ seconds, and stretched 4.3 times in the width direction.
  • the first heat setting zone temperature: 200 ° C
  • the second heat setting zone temperature: 225 ° C
  • the third heat setting zone temperature: 230 ° C
  • 4th heat fixation zone temperature: 230 ° C
  • 5th heat fixation zone temperature: 210 ° C
  • 6th heat fixation zone temperature: 170 ° C
  • 7th heat fixation zone temperature: 120 ° C
  • 3% relaxation treatment was performed in the width direction in the sixth heat setting zone.
  • the uncoated portions of both ends of the film are trimmed, wound up by a winder, further divided into four equal parts in the width direction, slitted, and the width is 1000 mm, the film length is 1000 m, and the film thickness is 125.
  • a roll of adhesive modified polyester film of ⁇ m was obtained.
  • the hot air velocity in the heat setting zone was 15 mZ seconds, the passage time was 4.5 seconds in each zone, the nozzle spacing for blowing hot air was 350 mm, and the number of nozzles per zone was 8.
  • Table 4 shows the physical properties and properties of the adhesion-modified base film.
  • Table 5 shows the maximum and minimum adhesion to the coated layer. In addition, all the measurement points were anti-blocking.
  • a hard coat film was obtained by laminating a hard coat layer C containing inorganic fine particles on one surface of the adhesive modified layer B of the above-mentioned adhesive modified base film by the following method.
  • an ultraviolet curable acrylate monomer Mono-, Sani ⁇ zirconium ultrafine particles, mainly composed of methyl E chill ketone, organic Z inorganic Ha Iburitsudo based hard coating agent CFSR Co., DeSolite Z7410B; solid concentration: 50 mass 0/0) were prepared.
  • This hard coat agent was applied to the surface of the adhesion modified layer B of the adhesion modified substrate film so as to have a dry thickness of 8 m, and dried at 40 ° C. for 1 minute. Subsequently, ultraviolet rays were irradiated with a high-pressure mercury lamp under the condition of lOOOmiZcm 2 to cure the resin and form a hard coat layer c.
  • the obtained hard coat layer contained 31 parts by mass of ultrafine zirconium oxide particles having an average particle diameter of 10 nm with respect to 100 parts by mass of attalylate resin.
  • Example 1 as the surfactant used in the coating solution, a 10% by mass aqueous solution of a fluorine-based cationic surfactant (manufactured by Neos Co., Ltd., Footgent 310) pretreated by the same method as in Example 1 was used. An adhesive modified polyester film was obtained in the same manner as in Example 1 except that the coating solution B was changed.
  • a fluorine-based cationic surfactant manufactured by Neos Co., Ltd., Footgent 310
  • each heat setting zone is 190 ° C in the first heat setting zone, 205 ° C in the second heat setting zone, 220 ° C in the third heat setting zone, 4
  • An adhesion-modified polyester film was obtained in the same manner as in Example 1 except that the heat setting zone was set to 220 ° C.
  • Example 1 the adhesive modified polyester was prepared in the same manner as in Example 1 except that the mass ratio of the copolyester and polyurethane in the coating solution was changed to the following coating solution C, which was changed to 60 Z40. A film was obtained. (Preparation of coating solution c)
  • particles B as a dry process silica (manufactured by Nippon Aerosil Co., Ltd., Aerosil OX50; average particle size 200 nm, average primary particle size 4 Onm)
  • the pH was adjusted with a 5% by weight aqueous sodium bicarbonate solution, and a filter with a filtration performance of 5 m and 1 m was passed in this order to obtain coating solution C.
  • Example 1 the adhesive modified polyester was prepared in the same manner as in Example 1 except that the coating solution D was changed to the following coating solution D in which the mass ratio of the copolyester and polyurethane in the coating solution was changed to 40 Z60. A film was obtained.
  • Example 2 0.6% by mass of a 10% by mass aqueous solution of the surfactant used in Example 1 and 20% by mass aqueous dispersion of colloidal silica (Nissan Chemical Industries, Snowtex OL; average particle size 40 nm) as particles A 2.3 parts by weight, 0.5 parts by weight of a 3.5% by weight aqueous dispersion of dry-process silica (manufactured by Nippon Aerosil Co., Ltd., Aerosil OX50; average particle diameter 200 nm, average primary particle diameter 40 nm) Then, the pH was adjusted to 6.2 with a 5% by weight aqueous sodium bicarbonate solution, and a filter with a filtration performance of 5 ⁇ m and 1 ⁇ m was passed in this order to obtain coating solution D. [0327] Next, in the same manner as in Example 1, a hard coat film in which a hard coat layer C containing inorganic fine particles is laminated on one surface is formed on the surface of the adhesive modified layer B of the adhesive
  • Example 1 an adhesive modified polyester film was obtained in the same manner as in Example 1 except that the coating amount was 0.12 gZm 2 as the final solid content.
  • a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
  • the adhesive modified polyester film was prepared in the same manner as in Example 1 except that the following coating solution E was used, in which the amount of the surfactant in the coating solution was changed to 0.03% by mass in Example 1. Got.
  • Example 1 In preparation of the coating liquid of Example 1, 0.3 parts by mass of a 10% by mass aqueous solution of a fluorine-based nonionic surfactant (manufactured by Dainippon Ink and Chemicals, MegaFuck F142D) and 38 parts of water was added. 2 Mass parts and isopropyl alcohol were changed to 39.3 parts by mass.
  • a fluorine-based nonionic surfactant manufactured by Dainippon Ink and Chemicals, MegaFuck F142D
  • Example 1 the amount of the surfactant in the coating solution was changed to 0.10% by mass, except that the following coating solution F was used. Le film was obtained.
  • Example 1 In preparation of the coating liquid of Example 1, 1.0 part by mass of 10 mass% aqueous solution of fluorine-based surfactant (Dainippon Ink & Chemicals, MegaFac F142D) and 37 parts of water were added. Changed 5 parts by mass and 39.3 parts by mass of isopropyl alcohol. [0332] Next, in the same manner as in Example 1, a hard coat film in which a hard coat layer C containing inorganic fine particles is laminated on one surface is formed on the surface of the adhesive modified layer B of the adhesive modified substrate film. Got.
  • fluorine-based surfactant Dainippon Ink & Chemicals, MegaFac F142D
  • Example 1 the passage time of the film from the coating to the entrance of the drying oven was 0.7 seconds, the drying time was 0.8 seconds, and the passage time of each zone in the heat setting treatment process was 3.5 seconds.
  • An adhesion-modified polyester film was obtained in the same manner as in Example 1, except that the thickness was changed to 100 m.
  • Example 1 the passage time of the film from coating to the entrance of the drying furnace is 1.0 second, the drying time is 1.9 seconds, and the passage time of each zone in the heat setting process is 6.6 seconds.
  • An adhesion-modified polyester film was obtained in the same manner as in Example 1 except that the thickness was changed to 188 m.
  • Example 2 In the same manner as in Example 1 except that the pH of the coating solution was changed to the coating solution G adjusted to 7.9 using a 5% by weight sodium carbonate aqueous solution, the adhesive modified polyester A film was obtained.
  • Example 1 adhesive modified layer B was applied to both sides of a uniaxially oriented polyester film. Except that, an adhesive modified polyester film was obtained in the same manner as in Example 1.
  • the film transit time from the film application to the drying furnace inlet was 0.8 seconds on one side and 1.0 seconds on the other side.
  • a hard coat film was obtained in which the hard coat layer C was laminated on both sides of the above-mentioned adhesive modified base film via the adhesive modified layer B.
  • the method for forming the hard coat layer C is as follows.
  • the hard coating agent containing inorganic particles used in Example 1 is applied to one surface of the adhesive modified layer B of the above-mentioned adhesive modified base film to a film thickness after curing of 3 m. As described above, it was applied with a Meyer bar and dried at 40 ° C for 60 seconds. In addition, irradiate 300mjZcm 2 of ultraviolet rays.
  • the resin was cured to form a hard coat layer C on one side.
  • Example 1 an adhesion-modified polyester film was obtained in the same manner as in Example 1 except that the coating liquid H that had not been pretreated with the surfactant was used.
  • phase separation structure of the polyester phase and the polyurethane phase by the scanning probe microscope (SPM) on the surface of the adhesive modified layer of the obtained adhesive modified polyester film can be distinguished but is somewhat unclear.
  • phase separation structure of the polyester phase and the polyurethane phase in the adhesion modified layer B on the cutting surface of the obtained node coat film was also somewhat unclear, as described above.
  • Example 1 the adhesive-modified polyester was prepared in the same manner as in Example 1 except that the following coating liquid I was used in which the mass ratio of the dispersion medium (water ZIPA) in the coating liquid was changed to 50Z50. Obtained Finolem.
  • Example 1 In preparation of the coating liquid of Example 1, 7.5 parts by weight of 30% by weight aqueous dispersion of the copolymerized polyester used in Example 1 and 20% by weight aqueous solution of polyurethane used in Example 1 13.3 parts by mass, elastron catalyst (Daiichi Kogyo Seiyaku Co., Ltd., Cat64) 0.3 parts by mass, water 30.4 parts by mass, and isopropyl alcohol 46.8 parts by mass.
  • elastron catalyst (Daiichi Kogyo Seiyaku Co., Ltd., Cat64) 0.3 parts by mass, water 30.4 parts by mass
  • isopropyl alcohol 46.8 parts by mass In preparation of the coating liquid of Example 1, 7.5 parts by weight of 30% by weight aqueous dispersion of the copolymerized polyester used in Example 1 and 20% by weight aqueous solution of polyurethane used in Example 1 13.3 parts by mass, elastron catalyst (Daiichi Kogyo Se
  • Example 2 6 parts by weight 0.5 to 10% by weight aqueous solution of the surfactant used in Example 1, rollers Idarushirika as particles A (manufactured by Nissan Chemical Industries, Snowtex OL; average particle size 40 nm) 20 parts by mass 0/0 Water 2.3 parts by weight of the dispersion, 0.5 parts by weight of a 3.5% by weight aqueous dispersion of dry-process silica as particles B (manufactured by Nippon Aerosil Co., Ltd., Aerosil OX 50; average particle size 200 nm, average primary particle size 40 nm)
  • the pH was adjusted to 6.2 with a 5% by weight aqueous sodium bicarbonate solution, and a filtration performance of 5 ⁇ m and a 1 ⁇ m filter were sequentially passed through to make coating solution I.
  • Example 1 the pH of the coating solution was changed to 4.6 with acetic acid.
  • the adhesive modified polyester film having a thickness of 125 m was prepared in the same manner as in Example 1 except that coating! Got.
  • Example 1 an adhesive modified polyester film was obtained in the same manner as in Example 1 except that the coating liquid K was used in which the polyurethane (B) was changed to the following polyurethane.
  • Polyurethane was obtained by the following method.
  • Adipic acid ZZ 1.6-hexanediol Z Neopentyl glycol (molar ratio: 4Z Z3Z2) is mixed with 93 parts by mass of polyester diol (OHV: lll. 8eqZton, AV: 1. le qZton) and 22 parts by mass of xylylene diisocyanate.
  • a urethane prepolymer NCOZOH ratio: 1.50, free isocyanate group: theoretical value 3.29% by mass, actually measured value 3.16% by mass
  • the obtained urethane prepolymer was cooled to 60 ° C, added with 4.5 parts by mass of methyl ethyl ketoxime, reacted at 60 ° C for 50 minutes, and contained 1.3 mass% of free isocyanate. And a partially blocked urethane prepolymer was obtained. Subsequently, the urea prepolymer was cooled to 55 ° C., and a mixed solvent consisting of 9 parts by mass of isopropyl alcohol and 140 parts by mass of methanol was added and uniformly mixed.
  • polyethers containing sulfonate groups the polyether Echirenokishido that starting sulfonated metabisulfite sodium from ⁇ Lil alcohol (SO content: 8.3 mass 0/0
  • the mixture was brought to 70 ° C, and a mixture of 178 parts by mass of isophorone diisocyanate and 244 parts of hexamethylene-1,6-diisocyanate was added thereto, and then the resulting mixture was mixed with an isocyanate content of 5 It stirred in the range of 80 to 90 degreeC until it became 6 mass%.
  • the prepolymer was cooled to 60 ° C., and 56 parts by mass of biuret polyisocyanate obtained from 3 mol of hexamethylene diisocyanate and 1 mol of water, and 175 parts by mass of bischemitin capable of obtaining isophorodiamine and acetone power were added. A polyurethane aqueous dispersion was obtained in this order.
  • Polyethylene terephthalate resin pellets containing no particles and having an inherent viscosity of 0.66 dlZg as a raw material polymer were dried under reduced pressure (lTorr) at 135 ° C for 6 hours, and then supplied to an extruder at about 285 ° C. It was melt extruded into a sheet and rapidly cooled and solidified on a metal roll maintained at a surface temperature of 60 ° C to obtain a cast film. At this time, a stainless-steel sintered filter medium having a filtration particle size (initial filtration efficiency: 95%) force of 15 m was used as a filter medium for removing foreign substances in the molten resin as in Example 1.
  • the cast film was heated to 95 ° C with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed, to obtain a uniaxially oriented PET film.
  • I got an Irum.
  • the coating liquid L was finely filtered with a felt type polypropylene filter medium having a filtration particle size (initial filtration efficiency 95%) of 10 ⁇ m, and applied to one side of a uniaxially oriented PET film by a reverse roll method.
  • the edge of the film was gripped with a clip and guided to a hot air zone heated to 110 ° C.
  • the film was stretched 3.5 times in the width direction.
  • the wind speed in the tenter at this time was 15 mZ seconds and the drying time was 20 seconds.
  • the time from application to the film to the tenter entrance was 10.0 seconds.
  • the coating amount was 0.15 g / m 2 as the final solid content.
  • the first heat setting zone (200 ° C), the second heat setting zone (205 ° C), the third heat setting zone, and the fourth heat setting zone Heat setting zone (210 ° C), no. 5th heat setting zone (215 ° C), 6th heat setting zone (220 ° C), 7th heat setting zone (170 ° C) were sequentially passed. Furthermore, after 3% relaxation treatment in the width direction in the seventh heat setting zone, the uncoated portions at both ends of the film were trimmed to obtain an adhesiveness-modified polyester film having a thickness of 125 m.
  • the hot air velocity in the heat setting zone was 15 mZ seconds, the passage time was 4.5 seconds in each zone, the nozzle spacing for blowing hot air was 700 mm, and the number of nozzles per zone was four.
  • phase separation structure between the copolyester and the polyurethane was unclear over the surface of the adhesion modified layer of the obtained adhesion modified polyester film.
  • Polyethylene terephthalate resin pellets containing no particles used in Example 1 and having an intrinsic viscosity of 0.62 dl / g as a raw material polymer were dried at 135 ° C for 6 hours under reduced pressure (lTorr), and then supplied to an extruder.
  • a cast film was obtained by melting and extruding into a sheet at about 285 ° C and rapidly solidifying on a metal roll maintained at a surface temperature of 20 ° C. At this time, the molten resin As a filter medium to be removed, a sintered sintered filter medium made of stainless steel having a filter particle size (initial filtration efficiency: 95%) of 15 m was used.
  • the obtained cast film was heated to 95 ° C with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed to obtain a uniaxially oriented PET film. I got an Irum.
  • the coating liquid M was microfiltered with a felt type polypropylene filter medium having a filtration particle size (initial filtration efficiency: 95%) of 10 ⁇ m, and applied to one side of a uniaxially oriented PET film by a reverse roll method.
  • the film was guided to a hot air zone heated to 80 ° C, dried, and then stretched 4.0 times in the width direction.
  • the wind speed in the tenter at this time was 15 mZ seconds, and the drying time was 20 seconds.
  • the time to the tenter entrance was 10.0 seconds.
  • the coating amount was set to 0.1 lOgZm 2 as the final solid content.
  • the temperature in each heat setting process is 200 ° C in the first heat setting zone, 210 ° C in the second heat setting zone, 220 ° C in the third heat setting zone, and 225 ° C in the fourth heat setting zone.
  • a phase separation structure between the polyester phase and the polyurethane phase was not observable on the surface of the adhesion modified layer of the obtained adhesion modified polyester film.
  • phase separation structure of the polyester phase and the polyurethane phase in the adhesion modified layer B on the cut surface of the obtained node coat film also had an unobservable force as described above.
  • Polyethylene terephthalate resin pellets containing no particles used in Example 1 and having an intrinsic viscosity of 0.62 dl / g were fed to the extruder as a raw material polymer, melted and extruded into a sheet at about 285 ° C, and the surface temperature was The film was rapidly cooled and solidified on a metal roll kept at 20 ° C to obtain a cast film. At this time, a stainless sintered filter medium having a filtration particle size (initial filtration efficiency: 95%) force of 15 m was used as a filter medium for removing foreign substances from the molten resin.
  • the obtained cast film was heated to 95 ° C with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed to obtain a uniaxially oriented PET film. I got an Irum.
  • the coating liquid L was finely filtered with a felt type polypropylene filter medium having a filtration particle size (initial filtration efficiency: 95%) of 10 ⁇ m, and applied to one side of a uniaxially oriented PET film by a reverse roll method.
  • the solution was introduced into a drying oven and dried at 120 ° C for 3.2 seconds.
  • the coating amount was set to 0.08 gZm 2 as the final solid content.
  • the coating time was 3.2 seconds for the film to pass to the drying oven.
  • the wind speed of the first zone of the drying furnace is 15 mZ seconds
  • the second zone force is the same as the fourth zone
  • the air velocity of the fourth zone is the same as in Example 1. Both were 70m 3 Z seconds, and the exhaust air was naturally exhausted from the front and back of the drying furnace.
  • phase separation structure of the polyester phase and the polyurethane phase in the adhesion modified layer B on the cutting surface of the obtained node coat film also had an unobservable force.
  • Example 1 the film thickness was 125 in the same manner as in Example 1 except that the passage time of the film from application of coating solution A to the drying furnace was 3.2 seconds. m adhesive modified polyester film was obtained.
  • Example 2 0.6% by mass of a 10% by mass aqueous solution of the surfactant used in Example 1 and 20% by mass aqueous dispersion of colloidal silica (Nissan Chemical Industries, Snowtex OL; average particle size 40 nm) as particles A 2.3 parts by weight, 0.5 parts by weight of a 3.5% by weight aqueous dispersion of dry-process silica (manufactured by Nippon Aerosil Co., Ltd., Aerosil OX50; average particle diameter 200 nm, average primary particle diameter 40 nm) Then, the pH was adjusted to 6.2 with a 5% by mass aqueous sodium bicarbonate solution to obtain coating solution O. As a coating solution, an adhesive modified polyester Finolem having a film thickness of 125 m was obtained in the same manner as in Example 1 except that the coating solution O was used.
  • Example 1 the temperature in each heat setting treatment step is 190 in the first heat setting zone.
  • Adhesion modification with a film thickness of 125 m was performed in the same manner as in Example 1 except that the temperature was 195 ° C in the second heat setting zone and 200 ° C in the third heat setting zone to the fifth heat setting zone. A quality polyester film was obtained. The phase separation structure of the polyester phase and the polyurethane phase could not be observed on the surface of the adhesion modified layer of the obtained adhesion modified polyester film.
  • Example 1 an adhesive modified polyester film having a film thickness of 125 ⁇ m was obtained in the same manner as in Example 1 except that the wind speed in the drying furnace was 15 mZ seconds.
  • Example 1 an adhesive modified polyester film having a film thickness of 125 m was obtained in the same manner as in Example 1 except that the coating amount was 0.20 gZm 2 as the final solid content. It was.
  • Example 1 the same procedure as in Example 1 was used except that the coating solution Q was adjusted to a pH of 9.0 with 5% by weight aqueous sodium carbonate solution. A modified polyester film was obtained.
  • Example 1 the same procedure as in Example 1 was used except that coating solution R prepared without adding a surfactant to the coating solution was used. Polyester Steno Reinolem was obtained.
  • Example 17 7.5 parts by mass of a 30% by mass aqueous dispersion of the copolymerized polyester (A) used in Example 1 and 11.3 parts by mass of a 20% by mass aqueous solution of the polyurethane (B) used in Example 1
  • the catalyst (Daiichi Kogyo Seiyaku Co., Ltd., Cat64) 0.3 parts by mass, water 40.5 parts by mass and isopropyl alcohol 39.5 parts by mass were mixed.
  • Example 1 0.6 parts by mass of a 10% by mass aqueous solution of the surfactant used in Example 1 and particles A as aggregate silica (manufactured by Fuji Silicon Chemical Co., Ltd., Silicia 310; average particle size 1.4 / zm ), And 3.3 parts by weight of an aqueous dispersion of 3.5% by weight, adjust the pH to 6.2 with a 5% by weight aqueous sodium bicarbonate solution, and pass through a 5 m and 1 m filter in order.
  • the coating solution S was obtained.
  • Particle B was not mixed with the coating solution.
  • An adhesive modified polyester film having a film thickness of 125 m was obtained in the same manner as in Example 1 except that the coating solution S was used.
  • Example 1 the film thickness was determined in the same manner as in Example 1 except that the coating liquid T prepared so that only the amount of the surfactant in the coating liquid was 0.60% by mass in solid content was used. A 125 m adhesive modified polyester film was obtained.
  • the temperature in each heat setting treatment step is 200 in the first heat setting zone.
  • C 210 ° C in the 2nd heat setting zone, 215 ° C in the 3rd heat setting zone, 220 ° C in the 4th heat setting zone, 225 ° C in the 5th heat setting zone, 230 in the 6th heat setting zone
  • the film was coated on both ends in the same manner as in Example 1 except that the temperature was 170 ° C in the seventh heat setting zone, and 3% relaxation treatment was performed in the width direction in the seventh heat setting zone.
  • An adhesive modified polyester film having a film thickness of 125 ⁇ m was obtained by trimming the unexposed portion.
  • Example 1 On the surface of the adhesion modified layer B of the above-mentioned adhesion modified substrate film, Example 1 and Similarly, a hard coat film in which a hard coat layer c containing inorganic fine particles was laminated on one side was obtained.
  • Example 1 7.5 parts by mass of a 30% by mass aqueous dispersion of the copolyester (A) used in Example 1 and a 20% by mass aqueous solution of the polyurethane (B) used in Example 1 11.3 parts by mass, elastron catalyst (Daiichi Kogyo Seiyaku Co., Ltd., Cat64) 0.3 parts by mass, water 51.0 parts by mass and isopropyl alcohol 26.2 parts by mass were mixed.
  • elastron catalyst (Daiichi Kogyo Seiyaku Co., Ltd., Cat64) 0.3 parts by mass
  • water 51.0 parts by mass and isopropyl alcohol 26.2 parts by mass were mixed.
  • Sarasako 0.6% by weight of 10% by weight aqueous solution of the surfactant used in Example 1, 20% by weight of colloidal Siri force (Nissan Chemical Industries, Snowtex OL; average particle size 40nm) as particles
  • An adhesion-modified polyester film was obtained in the same manner as in Example 1 except that the pH was adjusted to 6.2 with a 5% by weight aqueous sodium bicarbonate solution and the coating solution U was used.
  • Example 1 as a hard coat agent, a hard coat layer (Seika Beam EXF-01B, manufactured by Dainichi Seika Co., Ltd.), which does not contain inorganic fine particles and is composed of a solvent-diluted photo-curing acrylated resin.
  • a hard coat film in which a hard coat layer not containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 except that it was used.
  • the obtained node coat film was excellent in adhesion between the hard coat layer and the adhesion modified layer, but the hardness decreased and the curl increased.
  • Example 1 In preparation of the coating solution of Example 1, a fluorine-based non-on type surfactant (Dainippon Ink & Chemicals, MegaFac F142D) in place of a 10% by mass aqueous solution was used. Adhesive modified polyester film in the same manner as in Example 1 except that 5% by weight aqueous solution of an activator (Dainippon Ink & Chemicals, MegaFuck F444) was used and coating liquid V was used. Got. Next, a hard coat film in which a hard coat layer C containing inorganic fine particles is laminated on one surface is formed on the surface of the adhesive modified layer B of the above-mentioned adhesive modified base film in the same manner as in Example 1. Obtained.
  • a fluorine-based non-on type surfactant (Dainippon Ink & Chemicals, MegaFac F142D) in place of a 10% by mass aqueous solution was used.
  • Example 1 an adhesive modified polyester film was obtained in the same manner as in Example 1 except that the adhesive modified layer B was applied to both sides of the uniaxially oriented polyester film.
  • the film transit time from the film application to the drying furnace inlet was 0.8 seconds on one side and 1.0 seconds on the other side.
  • a prism lens film is obtained in which a hard coat layer C is laminated on one side and a prism lens sheet layer D is laminated on the other side of the above-mentioned adhesive modified base film via an adhesive modified layer B.
  • the hard coating agent containing inorganic particles used in Example 1 is applied to one surface of the adhesive modified layer B of the above adhesive modified base film so that the film thickness after curing is 3 m. It was applied with a Meyer bar and dried at 40 ° C for 60 seconds. Furthermore, 300 mjZcm 2 of ultraviolet rays were irradiated and cured to form a hard coat layer C on one side.
  • Example 1 an adhesive modified polyester film was obtained in the same manner as in Example 1 except that the adhesive modified layer was applied to both sides of the uniaxially oriented polyester film.
  • the film transit time from the film application to the drying furnace inlet was 0.8 seconds on one side and 1.0 seconds on the other side.
  • a hard coat on one side of the above-mentioned adhesive modified base film via an adhesive modified layer B A light diffusing film in which the layer c was laminated with the light diffusing layer i on the other surface was obtained.
  • the hard coating agent containing inorganic particles used in Example 1 is applied to one surface of the adhesive modified layer B of the above adhesive modified base film so that the film thickness after curing is 3 m. It was applied with a Meyer bar and dried at 40 ° C for 60 seconds. Furthermore, 300 mjZcm 2 of ultraviolet rays were irradiated and cured to form a hard coat layer C on one side.
  • the coating solution for light diffusion layer shown below was applied to the surface of the adhesion modifying layer B opposite to the hard coat layer C and dried at 130 ° C. for 3 minutes.
  • Spherical acrylic resin particles (Eposta MA1010, manufactured by Nippon Shokubai Co., Ltd .; average particle size 10 / z m)
  • Acrylic binder resin solution (Made by Mitsubishi Rayon Co., Ltd., Dianar LR-10 65; solid content concentration: 45% by mass)
  • Example 1 an adhesive modified polyester film was obtained in the same manner as in Example 1 except that the coating amount was 0.02 gZm 2 as the final solid content.
  • Example 1 as a coating device, the capacity of the receiving tray of the coating liquid, the capacity of the circulation tank And the ratio of the mixing tank capacity is the same as in Example 1 except that a coating apparatus having the following conditions is used.
  • the film has a length force of S2000 m, a width of 1000 mm, and a thickness of 125 ⁇ m. A roll of adhesive modified polyester film was obtained.
  • Example 1 to 23 and Comparative Examples 1 to 14 the composition and characteristics of the coating solution are shown in Table 1, the coating-drying conditions are shown in Table 2, the heat setting conditions are shown in Table 3, and the adhesive modification group Table 4 shows the physical properties and characteristics of the material film.
  • Table 4 shows the physical properties and characteristics of the material film.
  • Table 5 shows the minimum values.
  • the blocking resistance was ⁇ at all measurement points.
  • Coating liquid composition Coating liquid Resin particles P1 particles P2 Solvent Surfactant
  • Example 1 50/50 0.04 0.45 0.20 0.02 60/40 Nonion Exist 0.06 6.2 5.30
  • Example 2 50/50 0.04 0.45 0.20 0.02 60/40 Power control Yes 0.06 6.2 5.30
  • Example 3 50/50 0.04 0.45 0.20 0.02 60/40 Noni talent Yes 0.06 6.2 5.30
  • Example 4 60/40 0.04 0.45 0.20 0.02 60/40 Noni talent Yes 0.06 6.2 5.30
  • Example 5 40/60 0.04 0.45 0.20 0.02 60 / 40 Noni talent Yes 0.06 6.2 5.30
  • Example 6 50/50 0.04 0.45 0.20 0.02 60/40 Noni talent Yes 0.06 6.2 5.30
  • Example F 50/50 0.04 0.45 0.20 0.02 60/40 Nonion Yes 0.03 6.2 5.30
  • Example 8 50/50 0.04 0.45 0.20 0.02 60/40 Nonion Yes 0.10 6.2 5.30
  • Example 9 50/50 0.04 0.45 0.20 0.02 60/40 Nonion Yes 0.10 6.2 5.30
  • Example 10
  • Example 1 0.8 135 1.0 30 0.08
  • Example 2 0.8 135 1.0 30 0.08
  • Example 3 0.8 135 1.0 30 0.08
  • Example 4 0.8 135 1.0 30 0.08
  • Example 5 0.8 135 1.0 30 0.08
  • Example 6 0.8 135 1.0 30 0.12
  • Example 7 0.8 135 1.0 30 0.08
  • Example 8 0.8 135 1.0 30 0.08
  • Example 9 0.7 135 0.8 30 0.08
  • Example 10 1.0 135 1.9 30 0.08
  • Example 11 0.8 135 1.0 30 0.08
  • Example 12 0.8 / 1.0 135 1.0 30 0.08
  • Example 13 0.8 135 1.0 30 0.08
  • Example 14 0.8 135 1.0 30 0.08
  • Example 15 0.8 135 1.0 30 0.08
  • Example 16 0.8 135 1.0 30 0.08
  • Example ⁇ 0.8 135 1.0 30 0.08
  • Example 18 0.8 135 1.0 30 0.08
  • Example 19 0.8 135 1.0 30 0.08
  • Example 20
  • Example 1 200 225 230 230 210 170 120 4.5
  • Example 2 200 225 230 230 210 170 120 4.5
  • Example 3 190 205 220 220 210 170 120 4.5
  • Example 4 200 225 230 230 210 170 120 4.5
  • Example 5 200 225 230 230 210 170 120 4.5
  • Example 6 200 225 230 230 210 170 120 4.5
  • Example 7 200 225 230 230 210 170 120 4.5
  • Example 8 200 225 230 230 210 170 120 4.5
  • Example 9 200 225 230 230 210 170 120 3.5
  • Example 10 200 225 230 230 210 170 120 6.6
  • Example 11 200 225 230 230 210 170 120 4.5
  • Example 12 200 225 230 230 210 170 120 4.5
  • Example 13 200 225 230 230 210 170 120 4.5
  • Example 14 200 225 230 230 210 170 120 4.5
  • the hard coat film of the present invention has excellent adhesion to the hard coat layer containing inorganic fine particles while maintaining high hardness, so that it is a prism lens sheet, a light diffusion film, an antireflection (AR ) Suitable as a base material for optical functional films for displays such as films, transparent conductive films, infrared absorbing films, electromagnetic wave absorbing films.
  • the hard coat film of the present invention can be used for applications requiring concealability. In that case, it is preferable to use a white film containing white pigments or cavities as the thermoplastic resin film of the substrate.

Abstract

A hard coat film having an adherence modifying substratum film consisting of adherence modifying layer (B) containing copolymerized PEs and PU superimposed on one major surface or both major surfaces of thermoplastic resin film (A) and having, superimposed on the surface of the adherence modifying layer (B) on either one major surface of the substratum film, hard coat layer (C) containing inorganic microparticles, characterized in that the adherence modifying layer (B) has a micro phase separation structure or nano phase separation structure of PEs phase and PU phase, and that when a cut plane of the hard coat film is observed in a phase measurement mode by the use of a scanning probe microscope, the ratio of area of PU phase of adherence modifying layer (B) in the zone from interface of the adherence modifying layer (B) with the hard coat layer (C) to a depth of 20 nm is in the range of 30 to 60%.

Description

明 細 書  Specification
ハードコートフィルムおよび光学機能性フィルム 技術分野  Hard coat film and optical functional film
[0001] 本発明は、ディスプレイ用部材に主として用いられる、ハードコートフィルム及び該 フィルムを用いた反射防止フィルム、光拡散シート、プリズム状レンズシート、近赤外 線遮断フィルム、透明導電性フィルム、防眩フィルム、などの光学機能性フィルム〖こ 関する。詳しくは、基材フィルムと無機微粒子を含有するハードコート層、さらに他の 光学機能層 (ハードコート層、光拡散層、プリズム層、赤外線吸収層、透明導電層、 防眩層など)との密着性に優れ、かつ耐擦傷性に優れる、ハードコートフィルム、およ びそれを用 、た光学機能性フィルムに関する。  [0001] The present invention relates to a hard coat film and an antireflection film, a light diffusion sheet, a prismatic lens sheet, a near-infrared ray shielding film, a transparent conductive film, an antireflection film, which are mainly used for display members, and the film. It relates to optical functional films such as glare films. Specifically, adhesion between the base film and the hard coat layer containing inorganic fine particles, and other optical functional layers (hard coat layer, light diffusion layer, prism layer, infrared absorption layer, transparent conductive layer, antiglare layer, etc.) The present invention relates to a hard coat film having excellent properties and excellent scratch resistance, and an optical functional film using the same.
背景技術  Background art
[0002] 一般に、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)等のディス プレイの部材に用いられるハードコートフィルムは、熱可塑性榭脂フィルムとハードコ ート (HC)層が、接着性改質榭脂層を介して積層されている。さらに、ディスプレイ用 光学機能フィルムは、一般には、機能の異なる光学機能性フィルムを、粘着剤層を介 して貼り合わせて使用される。し力しながら、大型のフラットディスプレイは、近年の低 価格ィ匕の市場力もの要求が大きくなつている。そのため、ディスプレイ用部材におい ても、 1枚のハードコ一トフイルムに他の光学機能層を積層した複合フィルムの開発 が行われている。例えば、液晶ディスプレイ (LCD)では、ハードコートフィルムに、外 光の映り込みを防止する反射防止層(AR層)、光の集光や拡散に用いられるプリズ ム状レンズ層、輝度を向上させる光拡散層などの光学機能層を積層した光学用複合 機能性フィルムが挙げられる。  [0002] In general, hard coat films used for display components such as liquid crystal displays (LCDs) and plasma display panels (PDPs) are made of thermoplastic resin films and hard coat (HC) layers that have improved adhesion. It is laminated via a resin layer. Furthermore, the optical functional film for display is generally used by bonding optical functional films having different functions through an adhesive layer. On the other hand, demands for large flat displays have been increasing in recent years due to low-price market power. Therefore, composite films in which other optical functional layers are laminated on one hard coat film are being developed for display materials. For example, in a liquid crystal display (LCD), a hard coat film has an antireflection layer (AR layer) that prevents reflection of external light, a prism-like lens layer that is used to collect and diffuse light, and light that improves brightness. Examples include an optical composite functional film in which optical functional layers such as a diffusion layer are laminated.
[0003] ハードコートフィルムの基材となる熱可塑性榭脂フィルムには、ポリエチレンテレフタ レート(PET)、ポリアミド、アクリル、ポリカーボネート(PC)、トリアセチルセルロース( TAC)、環状ポリオレフイン等力もなる透明フィルムが用いられている。これらの基材 フィルムの中でも、特に、二軸配向ポリエステルフィルムは、優れた透明性、寸法安 定性、耐薬品性の点から、各種光学機能性フィルムの熱可塑性榭脂フィルムとして 広く使用されている。 [0003] The thermoplastic resin film used as the base material of the hard coat film includes a transparent film having polyethylene terephthalate (PET), polyamide, acrylic, polycarbonate (PC), triacetyl cellulose (TAC), cyclic polyolefin, etc. Is used. Among these substrate films, in particular, the biaxially oriented polyester film is used as a thermoplastic resin film for various optical functional films from the viewpoint of excellent transparency, dimensional stability, and chemical resistance. Widely used.
[0004] 一般に、二軸配向ポリエステルフィルムや二軸配向ポリアミドフィルムのような二軸 配向熱可塑性フィルムの場合、フィルム表面は高度に結晶配向しているため、各種 塗料、接着剤、インキなどとの密着性に乏しいという欠点がある。このため、従来から 二軸配向熱可塑性榭脂フィルム表面に種々の方法で易接着性を付与する方法が提 案されてきた。  [0004] Generally, in the case of a biaxially oriented thermoplastic film such as a biaxially oriented polyester film or a biaxially oriented polyamide film, the film surface is highly crystallized, so that it can be used with various paints, adhesives, inks, etc. There is a drawback of poor adhesion. For this reason, conventionally, methods for imparting easy adhesion to the surface of a biaxially oriented thermoplastic resin film by various methods have been proposed.
[0005] また、ポリオレフインフィルムのような極性基を有しな!/、フィルムでは、各種塗料、接 着剤、インキなどとの密着性が非常に乏しいため、事前にコロナ放電処理、火焰処理 などの物理的処理や化学処理を行った後、フィルム表面に種々の方法で易接着性 を付与する方法が提案されてきた。  [0005] In addition, the film does not have a polar group like a polyolefin film! /, And the film has very poor adhesion to various paints, adhesives, inks, etc., so corona discharge treatment, flame treatment, etc. in advance There have been proposed methods for imparting easy adhesion to the film surface by various methods after the physical treatment and chemical treatment.
[0006] 例えば、フィルム、ポリエステル、アクリル、ポリウレタン、アクリルグラフトポリエステル などの接着性改質榭脂を含む接着性改質層を、塗布法によって熱可塑性榭脂フィ ルムの表面に設けることにより、熱可塑性榭脂フィルムに易接着性を付与する方法が 一般的に知られている。この塗布法の中でも、結晶配向が完了する前の熱可塑性榭 脂フィルムに、直接または必要に応じてコロナ放電処理を施してから、前記の榭脂の 溶液または榭脂を分散媒で分散させた分散体を含有する水性塗布液を基材フィル ムに塗布し、乾燥後、少なくとも一軸方向に延伸し、次いで熱処理を施して、熱可塑 性榭脂フィルムの結晶配向を完了させる方法 (いわゆる、インラインコート法)や、熱 可塑性榭脂フィルムの製造後、該フィルムに水系または溶剤系の塗布液を塗布後、 乾燥する方法 (いわゆる、オフラインコート法)が工業的に広く実施されている。  [0006] For example, by providing an adhesive modified layer containing an adhesive modified resin such as film, polyester, acrylic, polyurethane, and acrylic graft polyester on the surface of a thermoplastic resin film by a coating method, A method for imparting easy adhesion to a plastic resin film is generally known. Among these coating methods, the thermoplastic resin film before completion of crystal orientation was subjected to corona discharge treatment directly or as needed, and then the above-mentioned solution or resin was dispersed with a dispersion medium. A method in which an aqueous coating solution containing a dispersion is applied to a substrate film, dried, stretched at least in a uniaxial direction, and then subjected to a heat treatment to complete the crystal orientation of the thermoplastic resin film (so-called inline A coating method) and a method of drying a water-based or solvent-based coating liquid after manufacturing a thermoplastic resin film (so-called off-line coating method) are widely used industrially.
[0007] LCD, PDP等のディスプレイは、年々大型化と低コスト化が進み、その部材として 用いられる光学機能性フィルムの製造工程において、生産速度を高くすることが行わ れている。このような製造工程の高速ィ匕にともない、ハードコート層、拡散層、プリズム 層のような機能層と基材フィルムとの界面に、硬化収縮にともなう応力がより生じやす くなつている。そのため、ディスプレイを製造するために、光学機能性フィルムを特定 のサイズにカッティングする際に、前記の界面における密着性が不十分であると、端 部が特に剥がれやすくなるという問題がおこってきた。この傾向は、ロール状に巻き 取ったフィルムの大型化や、製造工程における生産速度の高速ィ匕が進むほど、カツ ティング時の衝撃による界面の剥離の影響はより顕著になり、従来の密着性のレベル では不十分となってきて 、る。 [0007] Displays such as LCDs and PDPs are increasing in size and cost each year, and the production speed is increased in the manufacturing process of optical functional films used as the members. With such high-speed manufacturing processes, stresses due to curing shrinkage are more likely to occur at the interface between the functional layer such as the hard coat layer, the diffusion layer, and the prism layer and the base film. For this reason, when the optical functional film is cut to a specific size in order to produce a display, if the adhesion at the interface is insufficient, the end portion is particularly easily peeled off. This tendency is more pronounced as the roll-up film becomes larger and the production speed increases in the manufacturing process. The impact of interfacial delamination due to impact during casting becomes more prominent, and the conventional level of adhesion has become insufficient.
[0008] さらに、前記のプリズム層や拡散層等の機能層を形成させるために使用する加工 剤は、環境負荷の低減の点から、有機溶剤で希釈せずに直接、基材フィルムに加工 剤を塗布する場合が多い。そのため、有機溶剤による接着性改質層の濡れ性向上 効果が十分に得られない場合があるため、より高い密着性が要求される。一方、ハー ドコートのように平滑性を重視する用途では、加工剤の粘度を下げて良好なレベリン グ効果を得るために、加工剤を有機溶剤で希釈する場合が多い。この場合には、接 着性改質基材フィルムの接着性改質層には、適度な耐溶剤性が要求される。  [0008] Further, the processing agent used for forming the functional layer such as the prism layer or the diffusion layer described above is directly applied to the base film without being diluted with an organic solvent from the viewpoint of reducing the environmental load. Is often applied. For this reason, since the effect of improving the wettability of the adhesion modified layer by the organic solvent may not be sufficiently obtained, higher adhesion is required. On the other hand, in applications such as hard coating where emphasis is placed on smoothness, the processing agent is often diluted with an organic solvent in order to reduce the viscosity of the processing agent and obtain a good leveling effect. In this case, an appropriate solvent resistance is required for the adhesion modified layer of the adhesion modified substrate film.
[0009] 機能層と基材フィルム間の密着性を向上させるためには、接着性改質層を構成す る榭脂に、ガラス転移温度が低い榭脂を用いる方法が一般的である。しかしながら、 ガラス転移温度の低 ヽ榭脂を用いた場合、接着性改質基材フィルムをロール状に連 続的に巻き取り、ロール状フィルム力 フィルムを巻きだす際に、耐ブロッキング性が 低下する傾向がある。  [0009] In order to improve the adhesion between the functional layer and the base film, a method of using a resin having a low glass transition temperature as the resin constituting the adhesive property modification layer is generally used. However, when a resin having a low glass transition temperature is used, the blocking resistance decreases when the adhesive modified base film is continuously wound into a roll and the film is rolled. Tend.
[0010] また、近年、低コストィ匕のために、ハードコート層や拡散層などの機能層を基材フィ ルムに積層するための加工機の大型化が進み、基材フィルムとして使用される易接 着フィルムのロール径も大型化してきている。これにともなって、ロールの巻きズレ防 止のために、高張力で巻き取る場合、特に、ロールの巻き芯部では高い圧力で圧着 されるために、ブロッキングがより発生しやすくなる。  [0010] Further, in recent years, due to low cost, the processing machine for laminating functional layers such as a hard coat layer and a diffusion layer on a base film has been increased in size, so that it can be easily used as a base film. The roll diameter of the adhesive film is also increasing. Along with this, when winding with high tension in order to prevent roll misalignment, blocking is more likely to occur, especially because the core of the roll is pressed with high pressure.
[0011] 耐ブロッキング性を向上させるためには、接着性改質基材フィルムの表面に凹凸を 付与し、接触面積を小さくする方法が一般的に採用される。フィルム表面に凹凸を付 与するためには、接着性改質層または基材フィルム中に含有させる、無機粒子ある いは有機粒子の含有量を増やす方法、ある 、は粒径の大きな粒子を用いる方法が 一般的である。しかしながら、一般的に市販で入手できる粒子の屈折率は接着性改 質層に用いる榭脂の屈折率と相違しており、またフィルムの延伸処理にともな 、粒子 の周囲にボイドが形成されるため、これらの方法では、フィルムの光線透過率の低下 、ヘーズの上昇などが生じる。特に、光学機能性フィルムの基材フィルムに要求され る、透明性が低下する。すなわち、従来の方法では、工程の高速ィ匕ゃフィルムのロー ル径の大型化にともなう新たな問題により、透明性を維持しながら、機能層との密着 性ゃ耐ブロッキング性を向上させることは極めて困難であった。 [0011] In order to improve the blocking resistance, a method is generally employed in which irregularities are imparted to the surface of the adhesive modified base film to reduce the contact area. In order to give unevenness to the film surface, a method of increasing the content of inorganic particles or organic particles contained in the adhesive modified layer or the substrate film, or using particles having a large particle size is used. The method is common. However, the refractive index of commercially available particles is generally different from the refractive index of the resin used for the adhesive reforming layer, and voids are formed around the particles as the film is stretched. Therefore, in these methods, the light transmittance of the film is lowered and the haze is raised. In particular, the transparency required for the base film of the optical functional film is lowered. In other words, in the conventional method, the high speed of the process is low. Due to new problems associated with the increase in the diameter of the rod, it was extremely difficult to improve the adhesion and the blocking resistance while maintaining transparency while maintaining the transparency.
[0012] さらに、近年、光学機能性フィルムは、導光板との密着を防ぐ、透過率を高める、あ るいはカールを低減するなどの目的で、基材フィルムの両面にハードコート層を設け る場合、あるいはプリズムレンズ層や光拡散層のような光学機能層と反対側の面にも ハードコート層を積層する場合が多くなつてきている。特に、ハードコートフィルムは、 通常、熱硬化型榭脂ゃ紫外線硬化型榭脂のような電離放射線硬化型榭脂を用いて 、熱可塑性榭脂フィルム上に厚みが 3〜10 μ mの薄い硬化塗膜 (ノヽードコート層)を 形成させている。  Furthermore, in recent years, the optical functional film is provided with a hard coat layer on both sides of the base film for the purpose of preventing adhesion with the light guide plate, increasing the transmittance, or reducing the curl. In many cases, a hard coat layer is also laminated on the surface opposite to the optical functional layer such as a prism lens layer or a light diffusion layer. In particular, a hard coat film is usually a thin cured film having a thickness of 3 to 10 μm on a thermoplastic resin film using an ionizing radiation curable resin such as a thermosetting resin or an ultraviolet curable resin. A coating film (node coat layer) is formed.
[0013] ところが、ハードコート層の厚みは、基材フィルムと比べ薄いため、ハードコートフィ ルム自体の硬さは、基材フィルムの影響を受け、十分に高くならない。そのため、ノヽ ードコートの耐擦傷性をさらに向上させるために、ハードコート層に無機粒子を含有 させることが検討されて 、る。  However, since the thickness of the hard coat layer is thinner than that of the base film, the hardness of the hard coat film itself is affected by the base film and does not become sufficiently high. Therefore, in order to further improve the scratch resistance of the node coat, it has been studied to contain inorganic particles in the hard coat layer.
[0014] 一方、ハードコート層に無機粒子を含有させた場合、ハードコート層中の硬化型榭 脂の比率が低下するため、接着性改質基材フィルムの接着性改質層とハードコート 層の界面における密着性が低下する。  [0014] On the other hand, when the hard coat layer contains inorganic particles, the ratio of the curable resin in the hard coat layer decreases, so the adhesive modified base film and the hard coat layer of the adhesive modified base film Adhesiveness at the interface decreases.
[0015] 特に、二軸配向ポリエステルフィルムは、プリズムレンズやハードコート等に使用さ れるアクリル系榭脂を主成分とするコート剤との密着性が悪!ヽことが知られて!/ヽる。こ のため、ポリエステルフィルムの表面に、ポリウレタン等よりなる接着性改質層を形成 したものが、各種提案されている(例えば、特許文献 1を参照)。し力しながら、ポリウ レタンよりなる接着性改質層を形成したものでは、ハードコート層などの機能層との密 着力は向上するものの、基材であるポリエステルフィルムとの密着力が十分でなぐ 結果的に接着性改質層と機能層との界面で密着性が不十分である。特に、接着性 改質層と無機粒子を含有するハードコート層との界面の密着性が顕著に劣っている 特許文献 1:特開平 6— 340049号公報  [0015] In particular, it is known that the biaxially oriented polyester film has poor adhesion to a coating agent mainly composed of an acrylic resin used for prism lenses, hard coats, and the like! . For this reason, various proposals have been made in which an adhesive modified layer made of polyurethane or the like is formed on the surface of a polyester film (see, for example, Patent Document 1). However, when an adhesion modified layer made of polyurethane is formed, the adhesion to a functional layer such as a hard coat layer is improved, but the adhesion to the polyester film as the substrate is insufficient. As a result, the adhesiveness is insufficient at the interface between the adhesive modified layer and the functional layer. In particular, the adhesion at the interface between the adhesion modified layer and the hard coat layer containing inorganic particles is remarkably inferior. Patent Document 1: JP-A-6-340049
[0016] また、インラインコート法によって、二軸配向ポリエチレンテレフタレートからなる基体 フィルム上に、共重合ポリエステルとポリウレタンを主たる構成成分とする榭脂組成物 層を設け、基材ポリエステルフィルムとインキ等の機能層との密着性を向上させる方 法が提案されている (例えば、特許文献 2を参照)。具体的には、縦方向に一軸延伸 されたポリエステルフィルムに、共重合ポリエステルとポリウレタン( = 20/80;質量0 /0 )を含む水分散性塗布液を塗布後、テンターに導き、乾燥、横延伸後、 220°Cで熱 固定し易接着性二軸配向ポリエステルフィルムを得ている。 [0016] In addition, a resin composition comprising a copolymer film and polyurethane as main components on a base film made of biaxially oriented polyethylene terephthalate by an in-line coating method. A method for improving the adhesion between the base polyester film and the functional layer such as ink has been proposed (see, for example, Patent Document 2). More specifically, the polyester film is uniaxially stretched in a longitudinal direction, copolymerized polyester and polyurethane; after coating the aqueous dispersion coating solution containing (= 20/80 by weight 0/0), introduced into a tenter, drying, horizontal After stretching, it is heat-set at 220 ° C to obtain an easy-adhesive biaxially oriented polyester film.
特許文献 2:特公昭 64— 6025号公報  Patent Document 2: Japanese Patent Publication No. 64-6025
[0017] し力しながら、特許文献 2記載の方法では、密着性は改善されるものの、近年、光 学機能性フィルムに使用する基材フィルムとして要求される、基材フィルムとハードコ 一ト層ゃ拡散層などの機能層、特に接着性改質層と無機粒子を含有するハードコー ト層との界面の密着性が不十分である。  However, although the adhesion is improved by the method described in Patent Document 2, the substrate film and the hard coat layer are recently required as a substrate film for use in an optical functional film. The adhesiveness at the interface between the functional layer such as the diffusion layer, particularly the adhesion modified layer and the hard coat layer containing inorganic particles is insufficient.
[0018] 本出願人は、二軸配向ポリエチレンテレフタレートからなる基材フィルム上に、共重 合ポリエステルとポリウレタン、および適度な粒径の無機粒子を添加した榭脂組成物 層を設け、さらに、光学用基材フィルムとして極めて重要な特性である透明性を維持 しつつ、巿場カもの要求レベルの密着性を十分満足することができ、且つ、光学的 欠点の少ない積層ポリエステルフィルムを提案した (例えば、特許文献 3、 4を参照)。 具体的には、縦方向に一軸延伸されたポリエステルフィルムに、共重合ポリエステル 、ポリウレタン( = 20Z80 ;質量0 /0)及び 2種類の平均粒径の異なるシリカ粒子、了二 オン性界面活性剤を含む水分散性塗布液を塗布後、テンターに導き、乾燥、横延伸 後、 240°Cで熱固定して得た、易接着性二軸配向ポリエステルフィルムを開示した。 [0018] The applicant provided a resin composition layer in which a copolyester, polyurethane, and inorganic particles having an appropriate particle diameter were added on a base film made of biaxially oriented polyethylene terephthalate, and further optical We have proposed a laminated polyester film that can sufficiently satisfy the required level of adhesion while maintaining transparency, which is an extremely important property for a substrate film for use in a film, and has few optical defects (for example, , See Patent Documents 3 and 4). More specifically, the polyester film is uniaxially stretched in a longitudinal direction, copolyester, polyurethane (= 20Z80; Mass 0/0) and two different average particle sizes of silica particles, the Ryoji on surfactant An easy-adhesive biaxially oriented polyester film obtained by applying a water-dispersible coating solution containing it, guiding it to a tenter, drying, transverse stretching, and heat setting at 240 ° C. was disclosed.
[0019] 特許文献 3及び 4で得られた易接着性二軸配向ポリエステルフィルムは、優れた密 着性及び耐ブロッキング性、透明性を有し、且つ異物、スクラッチキズ等の光学的欠 点は大幅に改善され、従来要求された特性を満足するものであった。しかしながら、 前述のように、近年の低コスト化、ディスプレイの大画面化にともない、光学機能性フ イルム用の基材フィルムとして要求される、基材フィルムと、ハードコート層、拡散層、 プリズム層などの機能層との密着性、及び耐ブロッキング性への要求レベルは年々 厳しくなる傾向にある。特に、接着性改質層と無機粒子を含有するハードコート層と の界面の密着性に対しては現在の巿場の要求品質に十分に満足できるものではな くなつている。 特許文献 3 :特開平 11 323271号公報 [0019] The easy-adhesive biaxially oriented polyester film obtained in Patent Documents 3 and 4 has excellent adhesion, blocking resistance, transparency, and optical defects such as foreign matter and scratches. It was greatly improved and satisfied the conventionally required characteristics. However, as mentioned above, the substrate film, hard coat layer, diffusion layer, prism layer, which are required as a substrate film for optical functional films, due to the recent reduction in cost and the increase in the display screen. The required level of adhesion to functional layers and blocking resistance is becoming stricter year by year. In particular, the adhesiveness at the interface between the adhesion modified layer and the hard coat layer containing inorganic particles is not fully satisfactory at the required quality of the current factory. Patent Document 3: Japanese Patent Laid-Open No. 11 323271
特許文献 4:特開 2000— 246855号公報  Patent Document 4: Japanese Patent Laid-Open No. 2000-246855
[0020] また、本出願人は、密着性の均一性を改善するために、塗布量の変動を低減した 易接着フィルムロールに関する発明を提案した (例えば、特許文献 5を参照)。特許 文献 5の実施例には、縦方向に一軸延伸されたポリエステルフィルムに、共重合ポリ エステルとポリウレタン( = 50Z50 ;質量0 /0)、平均粒径 1. 4 mのシリカ粒子、及び フッ素系界面活性剤を含む水分散性塗布液を塗布後、乾燥炉で 120°Cにて乾燥後 、横延伸し、次いで 220°Cで熱固定処理して得た、易接着性二軸配向ポリエステル フィルムが記載されている。得られたフィルムロールは、優れた密着性をフィルムロー ル全体で均一に有するものであり、巿場からの要求レベルを満足するものであった。 しかしながら、接着性改質層と無機粒子を含有するハードコート層との界面の密着性 に対しては、十分に満足できるものではない。 [0020] Further, the applicant of the present invention has proposed an invention relating to an easy-adhesive film roll in which the variation in coating amount is reduced in order to improve the uniformity of adhesion (see, for example, Patent Document 5). The Examples of Patent Document 5, the polyester film is uniaxially stretched in a longitudinal direction, copolymerized poly ester and polyurethane (= 50Z50; Mass 0/0), silica particles having an average particle size of 1. 4 m, and a fluorine-based An easy-adhesive biaxially oriented polyester film obtained by applying a water-dispersible coating solution containing a surfactant, drying in a drying oven at 120 ° C, laterally stretching, and then heat-setting at 220 ° C Is described. The obtained film roll had excellent adhesion uniformly throughout the film roll, and satisfied the required level from the factory. However, the adhesion at the interface between the adhesion modified layer and the hard coat layer containing inorganic particles is not fully satisfactory.
特許文献 5 :特開 2004— 10669号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2004-10669
[0021] また、耐擦傷性の向上を目的として、易接着ポリエチレンテレフタレートフィルム上 に粒径約 50nm以下のシリカ超微粒子を榭脂 100質量部に対して約 40質量部含有 する電離放射線硬化型ハードコート剤をドライ厚みで約 15 mとなるように塗布し、 電子線で硬化させたハードコートフィルムが提案されている(例えば、特許文献 6を参 照)。し力しながら、このハードコートフィルムは、ハードコート層の硬度が高ぐ耐擦 傷性に優れるが、接着性改質層と無機粒子を含有するハードコート層との界面の密 着性に対しては、現在の巿場の要求品質に十分に満足できるものではなくなつて 、 る。  [0021] For the purpose of improving scratch resistance, an ionizing radiation curable hard disk containing about 40 parts by mass of ultrafine silica particles having a particle size of about 50 nm or less on 100 parts by mass of a resin on an easily adhesive polyethylene terephthalate film. A hard coat film in which a coating agent is applied to a dry thickness of about 15 m and cured with an electron beam has been proposed (for example, see Patent Document 6). However, this hard coat film has high hardness in the hard coat layer and excellent scratch resistance. However, the hard coat film has good resistance to adhesion at the interface between the adhesive modified layer and the hard coat layer containing inorganic particles. As a result, the required quality of the current factory will not be fully satisfied.
特許文献 6:特開 2000— 112379号公報  Patent Document 6: Japanese Unexamined Patent Publication No. 2000-112379
[0022] 一方、共重合ポリエステルとメラミン架橋剤からなる接着性改質層を有する易接着 ポリエチレンテレフタレートフィルムに粒子を含有しないハードコート層を積層したハ ードコートフィルムが提案されている(例えば、特許文献 7を参照)。し力しながら、この ハードコートフィルムは、ハードコート層との密着性及びノ、ードコート層の硬度は十分 に満足できるものではな 、。 [0022] On the other hand, a hard coat film in which a hard coat layer not containing particles is laminated on an easily adhesive polyethylene terephthalate film having an adhesive modified layer composed of a copolyester and a melamine crosslinking agent has been proposed (for example, (See Patent Document 7). However, this hard coat film is not satisfactory in terms of adhesion to the hard coat layer and hardness of the hard coat layer.
特許文献 7:特開 2004— 160774号公報 [0023] すなわち、従来技術では、高い硬度を維持しつつ、近年、要求される高速カツティ ングに耐えうる密着性、特に、無機粒子を含有するハードコート層との密着性に優れ るハードコートフィルムは得られて 、な 、。 発明の開示 Patent Document 7: Japanese Unexamined Patent Application Publication No. 2004-160774 That is, in the prior art, while maintaining high hardness, a hard coat film excellent in adhesiveness that can withstand high-speed cutting required in recent years, in particular, adhesiveness with a hard coat layer containing inorganic particles. Is obtained. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0024] 本発明の目的は、接着性改質層と無機粒子を含有するハードコート層との界面の 密着性に高度に優れ、かつ硬度の高いハードコートフィルム及びそれを用いた光学 機能性フィルムを提供することにある。 [0024] An object of the present invention is to provide a hard coat film having a high hardness and a high hardness at the interface between the adhesion modified layer and the hard coat layer containing inorganic particles, and an optical functional film using the same. Is to provide.
課題を解決するための手段  Means for solving the problem
[0025] 前記の課題は、以下の解決手段により達成することができる。 [0025] The above-described problems can be achieved by the following solution means.
すなわち、本発明における第 1の発明は、熱可塑性榭脂フィルム Aの片面または両 面に、共重合ポリエステル及びポリウレタンを含む接着性改質層 Bを形成させた接着 性改質基材フィルムと、該フィルムの 、ずれか片面の接着性改質層 Bの表面に無機 微粒子を含有するハードコート層 Cが積層された、 AZBZCまたは BZAZBZCの 層構成を含むハードコートフィルムであって、接着性改質層 Bは、ポリエステル (PEs) 相とポリウレタン (PU)相のミクロ相分離構造またはナノ相分離構造を有し、かつ走査 型プローブ顕微鏡を用いてハードコートフィルムの切削面を位相測定モードで観察 した際に、接着性改質層 Bとハードコート層 Cの界面力も深さ 20nmまでの範囲にお ける、下記(1)式で定義される、接着性改質層 Bのポリウレタン相 (位相像で明色相を 示す)の面積率が 30%以上 60%以下であることを特徴とするハードコートフィルムで ある。  That is, the first invention in the present invention is an adhesive modified base film in which an adhesive modified layer B containing a copolymerized polyester and polyurethane is formed on one side or both sides of a thermoplastic resin film A, and A hard coat film having a layer structure of AZBZC or BZAZBZC, in which a hard coat layer C containing inorganic fine particles is laminated on the surface of an adhesive modified layer B on one side of the film, the adhesive modified Layer B has a micro phase separation structure or a nano phase separation structure of a polyester (PEs) phase and a polyurethane (PU) phase, and the cutting surface of the hard coat film was observed in a phase measurement mode using a scanning probe microscope. At this time, the interface force between the adhesive modified layer B and the hard coat layer C is within the range of a depth of 20 nm, and the polyurethane phase (phase image) of the adhesive modified layer B is defined by the following formula (1). Show light hue Area ratio of) is a hard coat film, characterized in that 60% or less than 30%.
PU相の面積率(%) = (PU相の面積 Z測定面積) X 100 · · · (1)  PU phase area ratio (%) = (PU phase area Z measurement area) X 100 · · · (1)
[0026] 第 2の発明は、熱可塑性榭脂フィルム Aの片面または両面に、共重合ポリエステル 及びポリウレタンを含む接着性改質層 Bを形成させた接着性改質基材フィルムと、該 フィルムのいずれか片面の接着性改質層 Bの表面に無機微粒子を含有するハードコ ート層 cが積層された、 AZBZCまたは BZAZBZCの層構成を含むハードコート フィルムであって、接着性改質層 Bは、ポリエステル(PEs)相とポリウレタン(PU)相 のミクロ相分離構造またはナノ相分離構造を有し、かつ走査型プローブ顕微鏡を用 、て接着性改質層 Bの表面を位相測定モードで観察した際に、下記 (2)式で定義さ れる、接着性改質層 Bの表面のポリエステル相 (位相像で暗色相を示す)の面積率が 、 5 m X 5 mの範囲で 35%以上 90%未満であることを特徴とするハードコートフ イルムである。 [0026] The second invention is an adhesive modified base film in which an adhesive modified layer B containing a copolymerized polyester and polyurethane is formed on one or both sides of a thermoplastic resin film A, and the film A hard coat film having a layer structure of AZBZC or BZAZBZC, in which a hard coat layer c containing inorganic fine particles is laminated on the surface of one of the adhesive modified layers B, the adhesive modified layer B , Having a micro phase separation structure or a nano phase separation structure of polyester (PEs) phase and polyurethane (PU) phase, and using a scanning probe microscope When the surface of the adhesive modified layer B is observed in the phase measurement mode, the polyester phase on the surface of the adhesive modified layer B defined by the following formula (2) (shows a dark hue in the phase image) The hard coat film is characterized by having an area ratio of 35% or more and less than 90% in the range of 5 m × 5 m.
PEs相の面積率(%) = (PEs相の面積 Z測定面積) X 100 · · · (2)  PEs phase area ratio (%) = (PEs phase area Z measurement area) X 100 · · · (2)
[0027] 第 3の発明は、ハードコート層 C中の無機微粒子の含有量が 20〜80質量%である ことを特徴とする第 1または 2の発明に記載のハードコートフィルムである。 [0027] A third invention is the hard coat film according to the first or second invention, wherein the content of inorganic fine particles in the hard coat layer C is 20 to 80% by mass.
[0028] また、第 4の発明は、熱可塑性榭脂フィルムには、粒子を含有しない、または 50pp m以下含有し、接着性改質層には粒子を 0. 1〜20質量%含有することを特徴とする 請求項 1または 2に記載のハードコートフィルムである。 [0028] Further, in the fourth invention, the thermoplastic resin film does not contain particles or contains 50 ppm or less, and the adhesive modified layer contains 0.1 to 20% by mass of particles. The hard coat film according to claim 1 or 2.
[0029] 第 5の発明は、粒子がシリカ粒子であることを特徴とする第 4の発明に記載のハード コートフィルムである。 [0029] A fifth invention is the hard coat film according to the fourth invention, wherein the particles are silica particles.
[0030] 第 6の発明は、第 1または 2の発明に記載のハードコートフィルムのハードコート層 C とは反対面に、ハードコート層、光拡散層、プリズム状レンズ層、電磁波吸収層、近赤 外線遮断層、透明導電層から選択される、少なくとも 1層の光学機能層が積層された 光学機能性フィルムである。  [0030] The sixth invention provides a hard coat layer, a light diffusing layer, a prismatic lens layer, an electromagnetic wave absorbing layer, a near-surface on the surface opposite to the hard coat layer C of the hard coat film described in the first or second invention. An optical functional film in which at least one optical functional layer selected from an infrared ray blocking layer and a transparent conductive layer is laminated.
[0031] 第 7の発明は、第 1または 2の発明に記載のハードコートフィルムのハードコート層 C の上に、反射防止層または防汚層が積層された光学機能性フィルムである。  [0031] A seventh invention is an optical functional film in which an antireflection layer or an antifouling layer is laminated on the hard coat layer C of the hard coat film described in the first or second invention.
である。  It is.
発明の効果  The invention's effect
[0032] 本発明のハードコートフィルムは、熱可塑性榭脂フィルムとハードコート層の中間層 として、ポリエステル相とポリウレタン相に、特異的なミクロ相分離構造またはナノ相分 離構造を有し、接着性改質層の切削面におけるハードコート層との界面付近のポリウ レタン相の面積率が特定の範囲にある。そのため、無機微粒子を含むハードコート層 を積層しても、高い硬度を維持しながら、ハードコート層との密着性を向上させること ができる。さらに、拡散層、プリズム層などの光学機能層との密着性にも優れている。  [0032] The hard coat film of the present invention has a specific microphase separation structure or nanophase separation structure in the polyester phase and the polyurethane phase as an intermediate layer between the thermoplastic resin film and the hardcoat layer, and is bonded. The area ratio of the polyurethane phase in the vicinity of the interface with the hard coat layer on the cut surface of the property modified layer is in a specific range. Therefore, even when a hard coat layer containing inorganic fine particles is laminated, adhesion to the hard coat layer can be improved while maintaining high hardness. Furthermore, the adhesiveness with optical function layers, such as a diffusion layer and a prism layer, is also excellent.
[0033] さらに、接着性改質層にのみ特定の粒径の粒子を特定量含有させたり、あるいは 接着性改質層の表面のポリエステル相またはポリウレタン相のいずれかの相に粒子 を偏在化させたりすることで、透明性を高度に維持しながら、耐ブロッキング性、ハン ドリング性、耐スクラッチ性を改善することができる。したがって、透明性が高度に要求 される、ハードコートフィルムや光学機能性フィルムとして有用である。特に、接着性 改質層にシリカ粒子を含有させた場合、ポリウレタン相にシリカ粒子を偏在化させるこ とができるので、耐ブロッキング性に劣るポリウレタンの欠点を補うことができる。 [0033] Furthermore, a specific amount of particles having a specific particle size is contained only in the adhesive modified layer, or particles are formed in either the polyester phase or the polyurethane phase on the surface of the adhesive modified layer. By making the material unevenly distributed, it is possible to improve blocking resistance, handling property, and scratch resistance while maintaining high transparency. Therefore, it is useful as a hard coat film or an optical functional film requiring high transparency. In particular, when silica particles are contained in the adhesion modified layer, the silica particles can be unevenly distributed in the polyurethane phase, so that the disadvantage of polyurethane having poor blocking resistance can be compensated.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明のハードコートフイルムに用 、る接着性改質基材フィルムの接着性改質 層の表面を、走査型プローブ顕微鏡の位相測定モードで観察した位相像の説明図 である。 FIG. 1 is an explanatory diagram of a phase image obtained by observing the surface of an adhesion modified layer of an adhesion modified substrate film used in the hard coat film of the present invention in a phase measurement mode of a scanning probe microscope.
[図 2]図 1の位相像において、明色相と暗色相の界面の輪郭を画像処理ソフトで強調 した位相像の説明図である。  FIG. 2 is an explanatory diagram of a phase image in which the contour of the interface between the light hue and the dark hue is emphasized by image processing software in the phase image of FIG.
[図 3]図 2の明色相と暗色相の界面の輪郭を強調した位相像にぉ 、て、暗色相を画 像処理ソフトで塗りつぶした位相像の説明図である。  3 is an explanatory diagram of a phase image in which the outline of the interface between the light hue and the dark hue in FIG. 2 is emphasized and the dark hue is filled with image processing software.
[図 4]図 2の明色相と暗色相の界面の輪郭を強調した位相像において、明色相と暗 色相の境界線を示す説明図である。  4 is an explanatory diagram showing a boundary line between a light hue and a dark hue in the phase image in which the outline of the interface between the light hue and the dark hue in FIG. 2 is emphasized.
[図 5]接着性改質層の表面につけたキズの表面形状を、三次元非接触表面形状計 測装置を用いて、ウェーブモードで計測した際のキズの高低差を示す説明図である  FIG. 5 is an explanatory diagram showing the difference in level of scratches when the surface shape of a scratch attached to the surface of an adhesive modified layer is measured in a wave mode using a three-dimensional non-contact surface shape measuring device.
[図 6]実施例 1— 23と比較例 1、 4— 6、 8— 14において、接着性改質層の表面の PE s相の面積率と、接着性改質層の榭脂成分における PEs質量比が対応しないことを 示す説明図である。 [Fig. 6] In Examples 1-23 and Comparative Examples 1, 4-6, 8-14, the area ratio of the PE s phase on the surface of the adhesive modified layer and the PEs in the slag component of the adhesive modified layer It is explanatory drawing which shows that mass ratio does not respond | correspond.
[図 7]塗布液の受け皿、循環用タンクの循環用タンク、調合用タンクの配置、及び塗 布液の循環経路を示す説明図である。  FIG. 7 is an explanatory diagram showing a coating liquid receiving tray, a circulation tank of a circulation tank, an arrangement of a preparation tank, and a circulation path of the coating liquid.
[図 8]本発明のハードコートフィルムを切削した際の、接着性改質層の切削面を、走 查型プローブ顕微鏡の位相測定モードで観察し、色均一化処理をしてコントラストを 強調した位相像の説明図である。  [FIG. 8] The cut surface of the adhesive modified layer when the hard coat film of the present invention was cut was observed in a phase measurement mode of a scanning probe microscope, and the color was equalized to enhance the contrast. It is explanatory drawing of a phase image.
[図 9]図 8の色均一化処理をした位相像において、相分離構造を観察すべき範囲を 2 本の赤 、線で示した説明図である。 [図 10]図 8の位相像について、画像処理ソフトでニ値ィ匕した位相像の説明図である。 FIG. 9 is an explanatory diagram showing the range in which the phase separation structure is to be observed with two red lines in the phase image subjected to the color homogenization process in FIG. FIG. 10 is an explanatory diagram of a phase image obtained by binarizing the phase image of FIG. 8 with image processing software.
[図 11]図 10のニ値ィ匕した位相像に、図 9の 2本の赤い線を同じ位置に貼り付けた位 相像の説明図である。 FIG. 11 is an explanatory diagram of a phase image in which the two red lines in FIG. 9 are pasted at the same position on the binary phase image in FIG.
[図 12]図 11の位相像にぉ 、て、 2本の赤 、線で囲まれて ヽな 、部分を画像処理ソフ トで赤く塗りつぶした位相像の説明図である。  FIG. 12 is an explanatory diagram of a phase image in which the portion surrounded by two red lines is painted red with an image processing software.
符号の説明 Explanation of symbols
1:暗色相(共重合ポリエステルを主成分とするポリエステル相)  1: Dark hue (polyester phase mainly composed of copolymer polyester)
2:明色相(ポリウレタンを主成分とするポリウレタン相)  2: Light hue (polyurethane phase mainly composed of polyurethane)
3:粒子に起因する突起  3: Protrusions caused by particles
4:明色相と暗色相の界面の輪郭を強調した線  4: Line that emphasizes the outline of the interface between light and dark hues
5:接着性改質層の表面の凹凸のプロファイル曲線  5: Profile curve of unevenness on the surface of the adhesion modified layer
6:キズの谷部  6: Valley of scratches
7:キズの頂部  7: The top of the scratch
8:実施例 1 23  8: Example 1 23
9:比較例 1、 4 6、 8-14  9: Comparative examples 1, 4 6, 8-14
10:コーター  10: Coater
11:塗布液受け皿  11: Application liquid tray
12:ダイ  12: Die
13:循環用タンク  13: Tank for circulation
14:調合タンク  14: Mixing tank
15:基材フィルム  15: Base film
16:ピンチローノレ  16: pinchiro nore
17:ハードコート層 C  17: Hard coat layer C
18:接着性改質層 B  18: Adhesion modified layer B
19:熱可塑性榭脂フィルム A  19: Thermoplastic resin film A
20:ハードコート層 Cと接着性改質層 Bとの界面を示す線  20: Line indicating the interface between the hard coat layer C and the adhesion modified layer B
21:界面 20から、接着性改質層の内部に垂直方向から 20nmの深さに平行に 移動した線 発明を実施するための最良の形態 21: A line moved from the interface 20 in parallel to the depth of 20 nm from the vertical direction inside the adhesive modified layer BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 本発明において、課題に記載された、密着性と硬度の定義について、まず説明す る。  [0036] In the present invention, the definitions of adhesion and hardness described in the problem will be described first.
[0037] 本発明のハードコートフィルムにおいて、密着性とは、無機微粒子を含有するハー ドコート層に、粘着テープによる碁盤目剥離試験(100個の升目)を 10回繰り返した 後の、ハードコート層と基材フィルムの接着性改質層との界面の密着性を意味する。 本発明においては、下記式で定義される密着性が 80%以上のものを合格とする。好 ましくは 85%以上、特に好ましくは 90%以上である。  [0037] In the hard coat film of the present invention, adhesion refers to a hard coat layer after repeating a cross-cut peel test (100 squares) with an adhesive tape on a hard coat layer containing inorganic fine particles 10 times. It means the adhesion at the interface between the substrate and the adhesion modified layer of the substrate film. In the present invention, an adhesive having an adhesion of 80% or more defined by the following formula is accepted. It is preferably 85% or more, particularly preferably 90% or more.
密着性 (%) = (1—升目の剥がれた個数 Z100個) X 100  Adhesion (%) = (1—Number of peeled Z100) X 100
[0038] また、本発明で用いる接着性改質基材フィルムにおいては、密着性とは、溶剤希釈 型の光硬化型アクリル系榭脂を紫外線により硬化させたハードコート層を、フィルムの 接着性改質層に形成させ、粘着テープによる碁盤目剥離試験(100個の升目)を 10 回繰り返した後の、アクリル系ハードコート層とフィルムの接着性改質層との界面の密 着性を意味する。本発明においては、下記式で定義される密着性が 80%以上のも のを合格とする。好ましくは 85%以上、特に好ましくは 90%以上である。  [0038] Further, in the adhesion-modified base film used in the present invention, the adhesion refers to a hard coat layer obtained by curing a solvent-diluted photocurable acrylic resin with ultraviolet rays, and the adhesion of the film. Means the adhesion of the interface between the acrylic hard coat layer and the film adhesion modified layer after 10 times of cross-cut peel test (100 squares) with adhesive tape. To do. In the present invention, an adhesive having an adhesion defined by the following formula of 80% or more is considered acceptable. Preferably it is 85% or more, particularly preferably 90% or more.
密着性 (%) = (1—升目の剥がれた個数 Z100個) X 100  Adhesion (%) = (1—Number of peeled Z100) X 100
[0039] また、本発明でいう硬度とは、 JIS—K5400に準拠する鉛筆硬度試験によって評価 される「鉛筆硬度」を意味する。鉛筆硬度は、ハードコートフィルムのハードコート層の 表面について鉛筆硬度試験を 5回繰り返し、いずれの試験でも傷が観察されるなど の外観異常が認められなカゝつた場合、その試験に使用した鉛筆の硬度を鉛筆硬度と する。例えば、 3Hの鉛筆を用いて、 5回の試験操作を行い、 1回でも外観異常が生じ なければ、その材料の鉛筆硬度を 3Hとする。  [0039] The hardness in the present invention means "pencil hardness" evaluated by a pencil hardness test in accordance with JIS-K5400. For the pencil hardness, the pencil hardness test was repeated 5 times on the surface of the hard coat layer of the hard coat film. If any abnormalities such as scratches were observed in any test, the pencil used for the test The hardness of the pencil is the pencil hardness. For example, using a 3H pencil, perform 5 test operations, and if there is no appearance abnormality even once, set the pencil hardness of the material to 3H.
[0040] また、本発明で用いる接着性改質基材フィルムの耐ブロッキング性とは、 2枚のフィ ルム試料の接着性改質層が対向するように重ね合わせ、これに lkgfZcm2の圧力 を 50°C、 60%RHの雰囲気下で 24時間密着させた後、剥離し、その剥離状態が「接 着性改質層の転移がなく軽く剥離できるもの」を合格とする。 [0040] Further, the anti-blocking property of the adhesive modified base film used in the present invention is that two film samples are laminated so that the adhesive modified layers face each other, and a pressure of lkgfZcm 2 is applied thereto. After adhering for 24 hours in an atmosphere of 50 ° C and 60% RH, the film is peeled off, and the peeled state is “those that can be peeled lightly with no adhesion-modified layer transition”.
[0041] さらに、本発明で透明性が高度に優れるフィルムとは、ヘーズが 1. 5%以下のフィ ルムを意味する。好ましくは、ヘーズが 1. 0%以下である。 [0042] 本発明で用いる接着性改質基材フィルムにお 、て、優れた密着性と耐ブロッキング 性を得るためには、接着性改質層の表面に特異的なミクロ相分離構造またはナノ相 分離構造を発現させることが重要である。さらに、本発明のハードコートフィルムにお いて、接着性改質基材フィルムの接着性改質層と無機微粒子を含有するハードコー ト層との密着性を高めるためにも、接着性改質層の表面、すなわちハードコート層と の界面に、特異的なミクロ相分離構造またはナノ相分離構造を発現させることが重要 である。 [0041] Further, the film having high transparency in the present invention means a film having a haze of 1.5% or less. Preferably, the haze is 1.0% or less. [0042] In order to obtain excellent adhesion and blocking resistance in the adhesive modified base film used in the present invention, a microphase separation structure or nanostructure specific to the surface of the adhesive modified layer. It is important to develop a phase separation structure. Furthermore, in the hard coat film of the present invention, in order to improve the adhesion between the adhesive modified layer of the adhesive modified base film and the hard coat layer containing inorganic fine particles, It is important to develop a specific microphase separation structure or nanophase separation structure on the surface, that is, the interface with the hard coat layer.
[0043] し力しながら、本発明のハードコートフィルムにおいて、接着性改質層 Bは熱可塑性 榭脂フィルム Aとハードコート層 Cの中間層となる。すなわち、ハードコートフィルムの 表面からは、接着性改質層 Bの表面の相分離構造を観察することができない。その ため、本発明では、ハードコートフィルムを切削し、その切削面からハードコート層と の界面近くの接着性改質層の相分離構造を観察した。  [0043] However, in the hard coat film of the present invention, the adhesion modified layer B becomes an intermediate layer between the thermoplastic resin film A and the hard coat layer C. That is, the phase separation structure on the surface of the adhesion modified layer B cannot be observed from the surface of the hard coat film. Therefore, in the present invention, the hard coat film was cut, and the phase separation structure of the adhesion modified layer near the interface with the hard coat layer was observed from the cut surface.
[0044] 本発明における接着性改質層の特異的な相分離構造は、接着性改質層形成のた めに用いる塗布液の榭脂組成、界面活性剤の種類と濃度、塗布量、接着性改質層 の乾燥条件、及び熱固定条件などを、選択的に採用し、それらを制御することにより 、形成させることができる。  [0044] The specific phase separation structure of the adhesion modified layer in the present invention includes the composition of the coating liquid used for forming the adhesion modified layer, the type and concentration of the surfactant, the coating amount, the adhesion It can be formed by selectively adopting and controlling the drying conditions and heat setting conditions of the property-modified layer.
[0045] まず、本発明で用いる接着性改質基材フィルムの製造方法にっ 、て、ポリエチレン テレフタレート(以下、 PETと略称する)を代表例にして概要を説明するが、当然この 代表例に限定されるものではな 、。  [0045] First, an outline of the method for producing an adhesion-modified base film used in the present invention will be described using polyethylene terephthalate (hereinafter abbreviated as PET) as a representative example. Not limited.
[0046] 易滑性付与を目的とした粒子を実質的に含有して ヽな 、PETのペレットを十分に 真空乾燥した後、押出し機に供給し、 280°Cでシート状に溶融押出しし、冷却固化 せしめて未配向 PETシートを製膜する。この際、溶融樹脂が約 280°Cに保たれた任 意の場所で、榭脂中に含まれる異物を除去するために高精度濾過を行う。得られた 未配向シートを、 80〜120°C〖こカロ熱したロールで長手方向〖こ 2. 5〜5. 0倍延伸して 、一軸配向 PETフィルムを得る。  [0046] Substantially containing particles for the purpose of imparting slipperiness, the PET pellets were sufficiently vacuum-dried, then fed to an extruder, melt-extruded into a sheet at 280 ° C, Cool and solidify to form an unoriented PET sheet. At this time, high-precision filtration is performed at any place where the molten resin is kept at about 280 ° C. in order to remove foreign substances contained in the resin. The obtained unoriented sheet is stretched in the longitudinal direction 2.5 to 5.0 times with a roll heated at 80 to 120 ° C. to obtain a uniaxially oriented PET film.
[0047] その後、一軸配向 PETフィルムの片面、若しくは両面に、前記の共重合ポリエステ ル及びポリウレタンの水溶液を塗布する。前記の水性塗布液を塗布するには例えば 、リバースロール 'コート法、グラビア 'コート法、キス'コート法、ロールブラッシュ法、ス プレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、 含浸'コート法およびカーテン 'コート法などが挙げられ、これらの方法を単独である いは組み合わせて行うことができる。 [0047] Thereafter, the copolymer polyester and polyurethane aqueous solution is applied to one side or both sides of the uniaxially oriented PET film. In order to apply the aqueous coating solution, for example, reverse roll 'coating method, gravure' coating method, kiss' coating method, roll brushing method, Examples include a play coat method, an air knife coat method, a wire barber coat method, a pipe doctor method, an impregnation 'coat method, and a curtain' coat method, and these methods can be performed alone or in combination.
[0048] 次いで、フィルムの端部をクリップで把持して、 80〜180°Cに加熱された熱風ゾー ンに導き、乾燥後幅方向に 2. 5〜5. 0倍に延伸する。引き続き 220〜240°Cの熱処 理ゾーンに導き、 1〜20秒間の熱処理を行い、結晶配向を完了させる。この熱処理 工程中で、必要に応じて、幅方向あるいは長手方向に 1〜12%の弛緩処理を施して ちょい。  [0048] Next, the end of the film is gripped with a clip, guided to a hot air zone heated to 80 to 180 ° C, and stretched 2.5 to 5.0 times in the width direction after drying. Next, lead to a heat treatment zone of 220-240 ° C and heat-treat for 1-20 seconds to complete crystal orientation. In this heat treatment process, if necessary, apply a 1 to 12% relaxation treatment in the width direction or longitudinal direction.
[0049] まず、本発明で用いる接着性改質基材フィルムの接着性改質層の相分離構造に ついて説明する。次に、本発明のハードコートフィルムや光学機能性フィルムに用い る原料及び製造条件について、前記の相分離構造を制御するための条件因子も含 め、詳しく説明する。  [0049] First, the phase separation structure of the adhesion modified layer of the adhesion modified substrate film used in the present invention will be described. Next, the raw materials and production conditions used for the hard coat film and optical functional film of the present invention will be described in detail, including the condition factors for controlling the phase separation structure.
[0050] (1)接着性改質層の相分離構造  [0050] (1) Phase separation structure of adhesion modified layer
本発明において、接着性改質層は、共重合ポリエステルを主成分とするポリエステ ル相(以下、 PEs相と略記することもある。)と、ポリウレタンを主成分とするポリウレタン 相(以下、 PU相と略記することもある。)のミクロ相分離構造またはナノ相分離構造を 有する。  In the present invention, the adhesion-modified layer is composed of a polyester phase mainly composed of a copolyester (hereinafter sometimes abbreviated as PEs phase) and a polyurethane phase mainly composed of polyurethane (hereinafter PU phase). A microphase separation structure or a nanophase separation structure).
[0051] 本発明のハードコートフィルムにおいて、接着性改質層 Bは、無機微粒子を含有す るハードコート層と熱可塑性榭脂フィルムとの密着性を改善する目的で用いられる。 さらに、前記のハードコート層とは反対側の表面に、同じノ、ードコート層や他の光学 機能層を積層する場合、それらの層と熱可塑性榭脂フィルムとの密着性を改善する 目的でも用いられる。  [0051] In the hard coat film of the present invention, the adhesive modification layer B is used for the purpose of improving the adhesion between the hard coat layer containing inorganic fine particles and the thermoplastic resin film. Furthermore, when the same coating layer or other optical functional layer is laminated on the surface opposite to the hard coat layer, it is also used for the purpose of improving the adhesion between these layers and the thermoplastic resin film. It is done.
[0052] 本発明において、接着性改質層 Bは、ポリエステル (PEs)相とポリウレタン (PU)相 にミクロ相分離またはナノ相分離した構造を有し、かつ走査型プローブ顕微鏡を用い てハードコートフィルムの切削面を位相測定モードで観察した際に、接着性改質層 B とハードコート層 Cの界面力も深さ 20nmまでの範囲における、下記式で定義される、 接着性改質層 Bのポリウレタン相 (位相像で明色相を示す)の面積率 (PU面積率)が 30%以上 60%以下であることが重要な特徴である。 PU相の面積率(%) = (PU相の面積 Z測定面積) X 100 [0052] In the present invention, the adhesive modification layer B has a structure in which a polyester (PEs) phase and a polyurethane (PU) phase are microphase-separated or nanophase-separated, and is hard-coated using a scanning probe microscope. When the cutting surface of the film is observed in the phase measurement mode, the interface force between the adhesion modified layer B and the hard coat layer C is defined by the following formula in the range up to a depth of 20 nm. It is an important feature that the area ratio (PU area ratio) of the polyurethane phase (showing a light hue in the phase image) is 30% or more and 60% or less. PU phase area ratio (%) = (PU phase area Z measurement area) X 100
[0053] なお、上記の PU相の面積率は、以下のようにして求める。 [0053] The area ratio of the PU phase is determined as follows.
熱可塑性榭脂フィルム Z接着性改質層 Zハードコート層を構成単位とする本発明 のハードコートフイルムにおいて、中間層の接着性改質層の PU相の面積率を算出 するためには、内部に埋没した接着性改質層を表面に露出させる必要がある。  To calculate the area ratio of the PU phase of the adhesive modified layer of the intermediate layer in the hard coat film of the present invention having the thermoplastic resin film Z adhesive modified layer Z hard coat layer as a structural unit It is necessary to expose the adhesive modification layer embedded in the surface.
[0054] 接着性改質層を表面に露出させる方法としては、表面界面物性解析装置 (ダイブラ •ウィンテス株式会社製、 SAICAS)を用いて、斜め方向からフィルムを切削する方 法が好適である。次いで、走査型プローブ顕微鏡 (SPM)を用いて、位相測定モード (フェーズモード)で接着性改質層の位相像から相分離構造を観察し、ハードコート 層近傍の PU相の面積率を求める。  [0054] As a method for exposing the adhesive modified layer to the surface, a method of cutting a film from an oblique direction using a surface interface property analyzer (SAICAS, manufactured by Dybla Wintes Co., Ltd.) is preferable. Next, using a scanning probe microscope (SPM), the phase separation structure is observed from the phase image of the adhesive modified layer in the phase measurement mode (phase mode), and the area ratio of the PU phase in the vicinity of the hard coat layer is obtained.
[0055] 接着性改質層の切削面における、ハードコート層との界面の近傍におけるポリウレ タン相の面積率は、下記のような技術的意義がある。  [0055] The area ratio of the polyurethane phase in the vicinity of the interface with the hard coat layer on the cut surface of the adhesive modified layer has the following technical significance.
ポリウレタン相の面積率が 60%を超えると、接着性改質基材フィルムの製造時に、 接着性改質層の表面におけるポリウレタン相の比率が相対的に大きくなり、耐ブロッ キング性が低下する頻度が増える。一方、ポリウレタン相の面積率が 30%未満では、 密着性が低下する頻度が増える。特に、無溶剤型のハードコート剤やレンズ形成用 榭脂に対する密着性の低下が著しくなる。  When the area ratio of the polyurethane phase exceeds 60%, the ratio of the polyurethane phase on the surface of the adhesive modified layer becomes relatively large during the production of the adhesive modified base film, and the frequency with which blocking resistance decreases. Will increase. On the other hand, when the area ratio of the polyurethane phase is less than 30%, the frequency of decrease in adhesion increases. In particular, the adhesiveness to solventless hard coat agents and lens forming resins is significantly reduced.
[0056] ハードコート層との界面付近の接着性改質層における、ポリウレタン相の面積率の 上限は、耐ブロッキング性の点から、 50%が好ましい。一方、 PU相の面積率の下限 は、ハードコート層やアクリル系榭脂からなる他の光学機能層との密着性の点から、 3 5%が好ましい。  [0056] The upper limit of the area ratio of the polyurethane phase in the adhesion modified layer near the interface with the hard coat layer is preferably 50% from the viewpoint of blocking resistance. On the other hand, the lower limit of the area ratio of the PU phase is preferably 35% from the viewpoint of adhesion to the hard coat layer and other optical functional layers made of acrylic resin.
[0057] また、ハードコート層を積層する前の接着性改質基材フィルムの接着性改質層の 表面には、 PEs相と PU相のミクロ相分離構造またはナノ相分離構造が観察される。 そして、走査型プローブ顕微鏡を位相測定モードで観察した場合、下記式で定義さ れる、接着性改質層の表面におけるポリエステル相 (位相像で暗色相を示す)の面 積率は、 5 m X 5 mの範囲で 35%以上 90%未満である。なお、本発明において 、熱可塑性榭脂フィルムの両面に接着性改質層を設ける場合、いずれの接着性改 質層も上記と同様のポリエステル相の面積率を有する。 PEs相の面積率(%) = (PEs相の面積 Z測定面積) X 100 [0057] In addition, a microphase separation structure or a nanophase separation structure of PEs phase and PU phase is observed on the surface of the adhesion modified layer of the adhesion modified substrate film before laminating the hard coat layer. . When the scanning probe microscope is observed in the phase measurement mode, the area ratio of the polyester phase (indicating a dark hue in the phase image) on the surface of the adhesive modified layer defined by the following formula is 5 m X It is 35% or more and less than 90% within the range of 5 m. In addition, in this invention, when providing an adhesive property modification layer on both surfaces of a thermoplastic resin film, any adhesive property modification layer has the area ratio of the polyester phase similar to the above. PEs phase area ratio (%) = (PEs phase area Z measurement area) X 100
[0058] この接着性改質層の表面における PEs相の面積率は、下記のような技術的意義が ある。 PEs相の面積率が 35%未満では、接着性改質層の表面におけるポリウレタン 相の面積率が相対的に大きくなり、耐ブロッキング性が低下する頻度が増える。一方 、 PEs相の面積率が 90%以上では密着性が低下する頻度が増える。特に、無溶剤 型のハードコート剤に対する密着性の低下が著しくなる。 [0058] The area ratio of the PEs phase on the surface of the adhesion modified layer has the following technical significance. When the area ratio of the PEs phase is less than 35%, the area ratio of the polyurethane phase on the surface of the adhesive modified layer becomes relatively large, and the frequency of the decrease in blocking resistance increases. On the other hand, when the area ratio of the PEs phase is 90% or more, the frequency of decrease in adhesion increases. In particular, the adhesion with respect to the solventless hard coat agent is significantly reduced.
[0059] 接着性改質層の表面における PEs相の面積率の下限は、耐ブロッキング性の点か ら、 40%が好ましぐさらに好ましくは 45%、特に好ましくは 50%である。一方、接着 性改質層の表面における PEs相の面積率の上限は、アクリル系榭脂からなる機能層 との密着性の点から、 85%が好ましぐさらに好ましくは 80%、特に好ましくは 75% である。  [0059] The lower limit of the area ratio of the PEs phase on the surface of the adhesive modified layer is preferably 40%, more preferably 45%, and particularly preferably 50%, from the viewpoint of blocking resistance. On the other hand, the upper limit of the area ratio of the PEs phase on the surface of the adhesive modified layer is preferably 85%, more preferably 80%, particularly preferably, from the viewpoint of adhesion to the functional layer made of acrylic resin. 75%.
[0060] なお、本発明にお 、て、接着性改質層の表面の相分離構造の評価は、走査型プロ ーブ顕微鏡 (SPM)による位相測定モード (フェーズモード)を使用した。フェーズモ ードは、通常ダイナミックフォースモード(DFMモード;エスアイアイ ·ナノテクノロジー 社製 SPMを用いた場合)による表面形態観察と同時に行う位相遅れ測定モードのこ とである。  In the present invention, a phase measurement mode (phase mode) using a scanning probe microscope (SPM) was used for the evaluation of the phase separation structure on the surface of the adhesive modified layer. The phase mode is a phase lag measurement mode that is usually performed simultaneously with surface morphology observation in the dynamic force mode (DFM mode; using SII NanoTechnology SPM).
[0061] 走査型プローブ顕微鏡 (SPM)の位相測定モード (フェーズモード)による接着性 改質層の相分離構造の測定原理を、簡単に説明する。  [0061] The principle of measurement of the phase separation structure of the modified adhesive layer by the phase measurement mode (phase mode) of the scanning probe microscope (SPM) will be briefly described.
フェーズモードでは、 DFM動作をさせたときのカンチレバー振動の位相遅れを検 出する。 DFM動作では、共振させたカンチレバーの振動振幅が一定となるように探 針'試料間の距離を制御して形状を測定する。ここで、カンチレバーを振動させるた めのノ ィモルフ (圧電素子)を振動させる信号を, 「入力信号」と呼んだ場合、位相測 定モードでは、この「入力信号」 に対する実効的なカンチレバーの振動信号の位相 遅れを振動振幅と同時に検出する。位相遅れは、表面物性の影響に敏感に応答し、 軟らかい試料表面ほど遅れが大きくなる。この位相遅れの大きさを画像ィ匕することに より、表面物性の分布 (位相像またはフェーズ像等と呼ばれる)を観察することが可能 となる。よって、複数の物性の異なる榭脂相が表面に存在した場合、本測定法により 、相分離構造の評価が可能となる。 [0062] ただし、接着性改質層の相分離構造の評価は、走査型プローブ顕微鏡による表面 物性分布評価モードであれば、位相測定モード以外にも、摩擦力測定モードゃ粘弹 性測定モード等の他モードでも良ぐ最も感度良く相分離構造を評価できる観察モ ードを選択することが重要である。なお、位相測定モードにおいては、接着性改質層 の粘弾性の差異による位相遅れを検出できるだけでなぐ吸着力の大小のような表 面物性の差異による位相遅れも検出が可能である。 In phase mode, it detects the phase lag of cantilever vibration when DFM operation is performed. In DFM operation, the shape is measured by controlling the distance between the probe and the sample so that the vibration amplitude of the resonated cantilever is constant. Here, when a signal that vibrates a nomorph (piezoelectric element) for vibrating the cantilever is called an “input signal”, an effective cantilever vibration signal for this “input signal” is used in the phase measurement mode. The phase lag is detected simultaneously with the vibration amplitude. The phase delay responds sensitively to the effects of surface properties, and the softer the sample surface, the greater the delay. By visualizing the magnitude of this phase lag, it is possible to observe the distribution of surface properties (called a phase image or phase image). Therefore, when a plurality of rosin phases having different physical properties are present on the surface, the phase separation structure can be evaluated by this measurement method. [0062] However, the evaluation of the phase separation structure of the adhesion modified layer is not limited to the phase measurement mode, but the friction force measurement mode, the viscosity measurement mode, etc. It is important to select an observation mode that can evaluate the phase-separated structure with the highest sensitivity, which is acceptable in other modes. In the phase measurement mode, it is possible to detect the phase lag due to the difference in surface properties such as the magnitude of the adsorption force as well as the phase lag due to the difference in viscoelasticity of the adhesive modified layer.
[0063] なお、接着性改質層の切削面の相分離構造を観察する場合、相分離構造の観察 を容易にするために、 SPIPソフトウェア(Image Metrology社製、 Version4. 1)で 位相像を読み込み、色均一化(Color Equalization)処理を行って、コントラストを 強くすることが好ましい。この理由は下記の通りである。  [0063] When observing the phase separation structure of the cutting surface of the adhesive modified layer, in order to facilitate the observation of the phase separation structure, a phase image is obtained with SPIP software (Image Metrology, Version 4.1). It is preferable to increase the contrast by reading and performing color equalization. The reason is as follows.
[0064] 表面界面物性解析装置(SAICAS)を用いて、ハードコートフィルムを基材フィルム 側から内部に切削する場合、切削方向に対し、接着性改質層の切削面の変形を完 全に避けることは困難である。また、接着性改質層に含まれる無機粒子は切削できな いため、無機粒子の周辺には、切削時のダメージの結果として、ボイドが発現するこ とが避けられない。このような切削により、表面に露出した接着性改質層と熱可塑性 榭脂フィルムまたはハードコート層、その他の機能層との界面では、 PU成分力PEs 成分に比べて支配的になる。これは、 PU成分が PEs成分に比べて変形を受けやす Vヽ点、 PEs成分の物性と接着性改質層に隣接する熱可塑性榭脂フィルムとの物性の 差が小さい点、斜め方向から切削した接着性改質層の厚みが極めて薄い点から、コ ントラストの差が小さくなると推察して 、る。  [0064] When using a surface interface property analyzer (SAICAS) to cut the hard coat film from the base film side to the inside, completely avoid deformation of the cutting surface of the adhesive modified layer with respect to the cutting direction. It is difficult. In addition, since the inorganic particles contained in the adhesive modified layer cannot be cut, it is inevitable that voids appear around the inorganic particles as a result of damage during cutting. By such cutting, the interface between the adhesion modified layer exposed on the surface, the thermoplastic resin film or the hard coat layer, and other functional layers becomes dominant as compared with the PU component force PEs component. This is because the PU component is more susceptible to deformation compared to the PEs component, the difference between the physical properties of the PEs component and the thermoplastic resin film adjacent to the adhesive modified layer is small, and cutting is performed from an oblique direction. The difference in contrast is estimated to be small because the thickness of the adhesive modified layer is extremely thin.
[0065] 本発明における接着性改質層の相分離構造は、大きさの点からは、ミクロ相分離構 造またはナノ相分離構造に相当するものである。本発明で用いる接着性改質基材フ イルムにおける接着性改質層の表面 (ノヽードコート層との界面)の位相差像を観察し た場合、下記のような相分離構造を有して ヽることが分かる。  In the present invention, the phase separation structure of the adhesion modified layer corresponds to a micro phase separation structure or a nano phase separation structure from the viewpoint of size. When the phase contrast image of the surface of the adhesive modified layer (interface with the node coat layer) in the adhesive modified substrate film used in the present invention is observed, it has the following phase separation structure. I understand that
[0066] PEs相を長軸と短軸を有する連続構造とみなした場合、短軸方向の幅が最大でも 1  [0066] When the PEs phase is regarded as a continuous structure having a major axis and a minor axis, the width in the minor axis direction is at most 1
IX mで、長軸方向の長さが 1 μ mを超える連続構造を主体とするものである。すなわ ち、 PEs相の全体の面積に対し、前記の連続構造を有する部分の面積が 80%以上 であり、好ましくは 85%以上、さらに好ましくは 90%以上である。また、前記の定義に 記載の連続構造に該当しない、島状に分散している PEs相であっても、接着性改質 層の内部では連続構造を有しているものの末端が表面に現れているものもある。 It is mainly composed of IX m and continuous structure whose major axis length exceeds 1 μm. That is, the area of the portion having the continuous structure is 80% or more, preferably 85% or more, and more preferably 90% or more with respect to the entire area of the PEs phase. Also, in the above definition Even in the PEs phase dispersed in islands, which does not correspond to the continuous structure described, there are some which have a continuous structure inside the adhesive modified layer, but the ends appear on the surface.
[0067] この PEs相の連続構造の大きさは、短軸方向の幅が最大でも 1 mであることが好 ましく、より好ましくは 0. 8 μ mであり、さらに好ましくは 0. 6 μ mであり、特に好ましく は 0. である。短軸方向の幅は下限には特に限定はないが、連続構造を維持 するためには最も狭い部分で 0. 01 mであることが好ましぐ特に好ましくは 0. 05 μ mである。一方、この PEs相の連続構造の大きさは、長軸方向の長さが 1 μ mを超 えることが好ましぐより好ましくは 1. 以上、さらに好ましくは 2. 以上、特 に好ましくは 2. 5 m以上である。  [0067] The size of the continuous structure of the PEs phase is preferably 1 m at the maximum in the minor axis direction, more preferably 0.8 μm, and even more preferably 0.6 μm. m, particularly preferably 0. The width in the minor axis direction is not particularly limited, but in order to maintain a continuous structure, the narrowest part is preferably 0.01 m, particularly preferably 0.05 μm. On the other hand, the size of the continuous structure of the PEs phase is preferably 1 or more, more preferably 2 or more, and particularly preferably 2 or more, preferably the length in the major axis direction exceeds 1 μm. More than 5 m.
[0068] 本発明で用いる接着性改質基材フィルムにお 、て、接着性改質層の表面の相分 離構造は、図 1に示す代表例からも分力るように、自然界では見られない複雑な構造 を示しており、相分離の形態を一義的に定義することは難しい。前記の相分離構造 は、以下のように多面的に表現することもできる。  [0068] In the adhesion-modified base film used in the present invention, the phase separation structure on the surface of the adhesion-modified layer is seen in nature, as shown by the representative example shown in FIG. It shows a complex structure that cannot be defined, and it is difficult to uniquely define the form of phase separation. The phase separation structure can also be expressed in many ways as follows.
[0069] 例えば、前記の相分離構造の形態を模様として表現すると、文献に記載された中 では、「榭枝状構造」(「化学語大辞典」、第 226頁、昭和 54年 6月 15日、三共出版( 株)発行)、「波紋状構造」(「文様」、第 168〜169頁、 2002. 10. 1 (株)野ばら社発 行)、「迷彩調」に近 、ものがある。  [0069] For example, when the form of the phase separation structure is expressed as a pattern, it is described in the literature as “pied structure” (“Dictionary of Chemical Languages”, page 226, June 1979 15 Japan, Sankyo Publishing Co., Ltd.), “Rippled Structure” (“Pattern”, pp. 168-169, published by Nobara Inc., 2002. 10.1), “Camouflage” .
[0070] このような接着性改質層の表面の相分離構造は、ポリマーブレンド系におけるモル フォロジ一の分野では、共連続構造と表現されているものに類似している。さらに、共 重合ポリエステルと自己架橋型ポリウレタンが相互に力 みあうことによって形成され た相互網目侵入構造とも表現することもできる。  [0070] The phase separation structure on the surface of such an adhesion modified layer is similar to what is expressed as a co-continuous structure in the field of morphology in a polymer blend system. Furthermore, it can also be expressed as an inter-network intrusion structure formed by co-polyester and self-crosslinking polyurethane.
[0071] また、形態的には、 PEs相の自己相似性を、フラクタル次元を用いて定量的に表現 することもできる。例えば、図 3に示すように、接着性改質層の表面を走査型プローブ 顕微鏡の位相測定モードで観察し、明色相(ポリウレタン相)と暗色相(ポリエステル 相)の界面の輪郭を強調した位相像にぉ 、て、明色相と暗色相の境界線 (界面の輪 郭)の複雑さを示す指数として、ボックスカウンティング法を用いて、前記の界面の輪 郭から求められるフラクタル次元を用いて定量的に表現することができる。  [0071] In terms of morphology, the self-similarity of the PEs phase can also be quantitatively expressed using the fractal dimension. For example, as shown in Fig. 3, the surface of the adhesive modified layer is observed in the phase measurement mode of a scanning probe microscope, and the phase outline that emphasizes the interface between the light hue (polyurethane phase) and the dark hue (polyester phase). As an index indicating the complexity of the boundary between light and dark hues (interface contour), the image is quantified using the box counting method and the fractal dimension obtained from the interface contour. Can be expressed.
[0072] 単位面積におけるフラクタル次元が 1の場合は直線 (一次元)を意味し、 2はベタ面 (二次元)を意味する。すなわち、フラクタル次元が 2に近いほど、構造が緻密である ことを意味する。一方、フラクタル次元が 1に近いほど疎な構造であることを意味する [0072] When the fractal dimension in the unit area is 1, it means a straight line (one dimension), 2 is a solid surface Means (two-dimensional). In other words, the closer the fractal dimension is to 2, the denser the structure. On the other hand, a fractal dimension closer to 1 means a sparse structure
[0073] 具体的には、接着性改質基材フィルムの接着性改質層の表面にお!ヽて、前記の明 色相(ポリウレタン相)と暗色相(ポリエステル相)の界面の輪郭を強調した位相像に おいて、明色相と暗色相の境界線 (界面の輪郭)のフラクタル次元は、 5 /ζ πιΧ 5 /ζ πι の測定面積で 1. 60〜: L 95であることが好ましい。前記のフラクタル次元の上限は、 1. 93であることがさらに好ましぐ特に好ましくは 1. 90である。一方、前記のフラクタ ル次元の下限は、 1. 65であることがさらに好ましぐ特に好ましくは 1. 70である。 [0073] Specifically, the surface of the adhesion-modified layer of the adhesion-modified base film is emphasized to emphasize the outline of the interface between the light hue (polyurethane phase) and the dark hue (polyester phase). In the obtained phase image, the fractal dimension of the boundary line (interface contour) between the light hue and the dark hue is preferably 1.60 to L95 in the measurement area of 5 / ζ πιΧ 5 / ζ πι. The upper limit of the fractal dimension is more preferably 1.93, particularly preferably 1.90. On the other hand, the lower limit of the fractal dimension is more preferably 1.65, and particularly preferably 1.70.
[0074] 例えば、図 4に示す接着性改質層の表面における、明色相(ポリウレタン相)と暗色 相(ポリエステル相)の境界線 (界面の輪郭)のフラクタル次元は、それぞれ 1. 89と 1 [0074] For example, the fractal dimension of the boundary line (interface contour) between the light hue (polyurethane phase) and the dark hue (polyester phase) on the surface of the modified adhesive layer shown in Fig. 4 is 1.89 and 1 respectively.
. 90である。なお、図 4は、本発明における接着性改質層の表面の代表的な相分離 構造を示す図 1の位相像に、明色相と暗色相の界面の輪郭を強調し、明色相と暗色 相の境界線を示した図である。 90. FIG. 4 is a phase image of FIG. 1 showing a typical phase separation structure on the surface of the adhesive modified layer in the present invention, with the outline of the interface between the light hue and the dark hue emphasized, and the light hue and the dark hue. It is the figure which showed the boundary line.
[0075] 本発明にお 、て、接着性改質層の原料となる共重合ポリエステルおよびポリウレタ ンが有する機能を最大限に発現するためには、接着性改質層がミクロ相分離構造ま たはナノ相分離構造していることが重要である。なぜなら、両榭脂が完全に相溶する と、両榭脂の性質が相殺して、全体的には共重合ポリエステルまたはポリウレタンの 優れた特性が期待できないためである。接着性改質層において、 PEs相および PU 相が採りうる他の相分離構造としては、 PEs相内に PU相が分散したもの、および PU 相内に PES相が分散した、いわゆる複合形態として、代表的な海島構造を示すこと も考えられる。勿論この海島構造は、榭脂の非相溶状態で、一方の榭脂相を多くす れば、他方が必然的に少なくなり、いわゆる島を形成することになる。本発明におい ても製造条件を制御すれば、このような海島構造を採る分離相からなる接着性改質 層とすることも可能である。  [0075] In the present invention, in order to maximize the functions of the copolyester and polyurethane used as the raw material of the adhesive modified layer, the adhesive modified layer has a micro phase separation structure. It is important to have a nanophase separation structure. This is because when the two resins are completely compatible, the properties of the two resins are offset, and overall, excellent properties of the copolyester or polyurethane cannot be expected. Other phase separation structures that can be adopted by the PEs phase and PU phase in the adhesion modified layer include those in which the PU phase is dispersed in the PEs phase, and so-called composite forms in which the PES phase is dispersed in the PU phase. It is also possible to show a typical sea-island structure. Of course, this sea-island structure is an incompatible state of coconut resin. If one cocoon phase is increased, the other inevitably decreases, and so-called islands are formed. Also in the present invention, if the production conditions are controlled, it is possible to provide an adhesion modified layer composed of a separated phase having such a sea-island structure.
[0076] しかし、島構造を形成する榭脂相の大きさの不均一や、分布状態の不均一を考え ると、島相の形状、数、および分布状態が影響することを無視することができない。そ のため、海構造を構成する榭脂の性質が大きく影響することも懸念される。そうすると 、本発明の PEs相と PU相との相分離構造である、お互いに隅々まで絡み合つたよう な相分離構造を形成するほうが、材料の均一性を保っためには有利と考えられる。 P Es相と PU相の海島構造を示す相分離構造も、本発明の代表的な態様の一つとして 挙げることができる。 [0076] However, in consideration of the nonuniformity of the size of the resin phase forming the island structure and the nonuniformity of the distribution state, the influence of the shape, number, and distribution state of the island phase may be ignored. Can not. For this reason, there is a concern that the properties of the oils that make up the sea structure will have a significant impact. Then In order to maintain the uniformity of the material, it is considered to form a phase separation structure in which the PEs phase and the PU phase of the present invention are intertwined with each other. A phase separation structure showing the sea-island structure of the P Es phase and the PU phase can also be cited as one of the typical embodiments of the present invention.
[0077] また、本発明における接着性改質層のさらに他の相分離構造として、コア'シェル 構造を形成することもできる。例えば、 PEs相の周りを、 PU相が囲み、さらにそれを P Es相が囲むという構造である。し力しながら、このようなコア ·シェル構造を形成させる ためには、非常に高度な制御を要する。また、そのコア 'シエル構造を採るがゆえに、 優れた材料挙動を示すと 、うことは期待できな 、ように思える。  [0077] Further, as another phase separation structure of the adhesion modified layer in the present invention, a core-shell structure can be formed. For example, the PEs phase is surrounded by a PU phase, which is further surrounded by a P Es phase. However, in order to form such a core-shell structure, very high control is required. Also, because of its core 'shell structure', it seems that it cannot be expected to show excellent material behavior.
[0078] さらに、相分離構造の態様として、 PEs相と PU相が交互に規則的に並ぶ積層構造 も採りうる。しかし、各相が平行に略等間隔に配置することは理想である力 相の幅が 大きくなれば、接着性改質層の界面に PEs相と PU相を均一に分布させることが難し くなり、しいては、接着性改質基材フィルムの品質にも影響する恐れが生じる。製造 条件の微妙な遠いにより、海島構造、コア'シェル構造および積層構造の形態をとり ながら、それらが混在型になることもある。しかし、接着性改質層には、 PEs相と PU相 1S 一定の大きさを有し、それらが均一に万遍に混在することが、品質を保っために は重要なことである。  [0078] Furthermore, as an aspect of the phase separation structure, a laminated structure in which PEs phases and PU phases are regularly arranged alternately can be adopted. However, it is ideal that the phases are arranged in parallel at approximately equal intervals. If the width of the force phase increases, it becomes difficult to uniformly distribute the PEs phase and the PU phase at the interface of the adhesive reforming layer. In this case, the quality of the adhesion-modified base film may be affected. Due to subtle disparity in manufacturing conditions, they may take the form of a sea-island structure, a core-shell structure, and a laminated structure, but they may be mixed. However, the adhesion modified layer has a certain size of PEs phase and PU phase 1S, and it is important to keep them uniformly mixed to maintain quality.
[0079] なお、 PEs相と PU相力 接着性改質層の厚み方向に 2層に相分離する構造は、本 発明では好ましくない。なぜなら、本発明は、接着性改質層の表面 (ハードコート層と の界面)に、 PEs相と PU相を適切な面積率で均一に分布させることが、本発明の作 用効果の点から重要である。  [0079] It should be noted that a structure in which the PEs phase and the PU phase force adhesion modified layer are phase-separated into two layers in the thickness direction is not preferable in the present invention. This is because, in the present invention, the PEs phase and the PU phase are uniformly distributed at an appropriate area ratio on the surface of the adhesive modified layer (interface with the hard coat layer) from the viewpoint of the effect of the present invention. is important.
[0080] 接着性改質層の表面または切削面における相分離構造は、共重合ポリエステルを 主成分とするポリエステル相とポリウレタンを主成分とするポリウレタン相が、それぞれ 不規則な形態を有している。そして、それらの榭脂相が、接着性改質層の表面及び 内部で、不規則にしカゝも緻密に万遍に配置された、複雑な配列構造を形成するもの である。また、一つの榭脂相の表面に、他方の榭脂相が非相溶性の状態で食い込ん だ構造であってもよい。なお、図 3において、黒色部分がポリエステル相を、白色部 分がポリウレタン相を示す。 [0081] 接着性改質基材フィルムの接着性改質層の表面にお!ヽて、単位面積 (例えば、 5 Χ δ ,α πι)に対して、二種類の榭脂相を分離した状態で均一に配列する場合、一方 の榭脂相の寸法が大きくなれば、他方の榭脂相の寸法が制約される。そのため、榭 脂相の存在に大きな偏りが生じることになる。その結果、両榭脂相が分離して均一に 分散配列した状態を維持することが難しくなり、接着性改質層の材質にむらが発生 するために、品質管理上好ましくない。 [0080] The phase separation structure on the surface or the cutting surface of the adhesive property-modified layer has an irregular form in each of the polyester phase mainly comprising a copolyester and the polyurethane phase mainly comprising a polyurethane. . These rosin phases form a complex array structure in which the surface of the adhesive reforming layer and the inside thereof are irregularly and densely arranged. Further, a structure in which the surface of one rosin phase is bitten in an incompatible state with the other rosin phase may be employed. In FIG. 3, the black portion indicates the polyester phase and the white portion indicates the polyurethane phase. [0081] On the surface of the adhesion modified layer of the adhesion modified substrate film! In the case where two types of resin phases are uniformly arranged with respect to a unit area (for example, 5 δ δ, α πι), if the size of one resin phase increases, The size of the rosin phase is constrained. Therefore, a large bias occurs in the presence of the resin phase. As a result, it becomes difficult to maintain a state in which both oleaginous phases are separated and uniformly dispersed, and unevenness occurs in the material of the adhesive modification layer, which is not preferable for quality control.
[0082] 両榭脂相を相分離させ、かつ均一に混在した状態で接着性改質層に存在させるた めには、 PEs相の形態を短軸方向の幅が最大で 1 μ m、長軸方向の長さが 1 μ m以 上とすることが好ましい。勿論、品質に高度な要求が無い場合には、短軸方向の幅 が最大で 6 μ m程度の相対的に大きくした構造も可能である。この連続相(PEs相)の 相分離構造は、接着性改質層の形成のために用いる塗布液の榭脂組成、界面活性 剤の種類と濃度、塗布量、塗布層の乾燥条件、及び熱固定条件などを、選択的に採 用し、それらを制御することにより、接着性改質層に特異的なミクロ相分離構造または ナノ相分離構造として発現させることができる。いずれにせよ、図 1に示す、接着性改 質層の表面のポリエステル相およびポリウレタン相の相分離構造の態様力 本発明 の接着性改質基材フィルムの効果を発現するための代表的なモデルである。  [0082] In order to cause both oleaginous phases to be phase-separated and to be present in the adhesion-modified layer in a uniformly mixed state, the PEs phase has a short axis width of 1 μm at maximum. The length in the axial direction is preferably 1 μm or more. Of course, if there is no high quality requirement, a relatively large structure with a maximum width of 6 μm in the minor axis direction is possible. The phase separation structure of this continuous phase (PEs phase) consists of the resin composition of the coating solution used to form the adhesion modified layer, the type and concentration of the surfactant, the coating amount, the drying conditions of the coating layer, and the heat By selectively adopting and controlling the fixing conditions and the like, it can be expressed as a microphase separation structure or a nanophase separation structure specific to the adhesion modified layer. In any case, the mode force of the phase separation structure of the polyester phase and the polyurethane phase on the surface of the adhesive reforming layer shown in FIG. 1 is a representative model for expressing the effect of the adhesive modified base film of the present invention. It is.
[0083] さらに、相分離構造の重要性について、詳細に説明する。  [0083] Further, the importance of the phase separation structure will be described in detail.
本発明に用いる接着性改質基材フィルムにおける接着性改質層は、共重合ポリェ ステル成分とポリウレタン成分を榭脂成分とし、かつ共重合ポリエステルを主成分とす る PEs相とポリウレタンを主成分とする PU相に相分離しており、各相が連続構造を有 していることが好ましい。前記の 2種類の榭脂を均一に混じり合わせることなく相分離 させること〖こよって、熱可塑性榭脂フィルム力 なる基材フィルムに対して優れた密着 性を有し、かつ比較的良好な耐溶剤性を有する共重合ポリエステルと、耐溶剤性は 劣るがハードコート層や拡散層、アタリレート系榭脂等多くの榭脂に対して優れた密 着性を有するポリウレタンがそれぞれの特性を相殺することなぐ各々の榭脂の特長 を十分に生力せるのである。  The adhesive modified layer in the adhesive modified base film used in the present invention is composed of a copolymer polyester component and a polyurethane component as a resin component, and a PEs phase mainly composed of a copolymer polyester and a polyurethane as a major component. It is preferable that the phase is separated into PU phases and each phase has a continuous structure. It is possible to phase-separate the above two types of resin without uniformly mixing them, thereby having excellent adhesion to a base film that has thermoplastic resin film strength and relatively good solvent resistance. The copolyester having the property and polyurethane with excellent adhesion to many types of resin such as hard coat layer, diffusion layer, and attalylate type resin are inferior to each other. This makes it possible to make full use of the characteristics of each coconut oil.
[0084] 接着性改質層を構成する、ポリエステル相とは、共重合ポリエステルが単独で構成 されていることが好ましいが、ポリウレタンを 0. 01〜40質量0 /0含んでいてもよい。さら に、ポリエステル相の中に粒子を 0. 001〜20質量%含有させてもよい。また、ポリエ ステル相において、界面活性剤が前記の榭脂に付着または含有される場合もある。 同様に、ポリウレタン相は、ポリウレタンが単独で構成されていることが好ましぐ粒子 、界面活性剤などを前記の共重合ポリエステルに記載した程度の量で含有させること ができる。特に、ポリウレタンと親和性が高い粒子の場合には、接着性改質層の形成 過程で、ポリエステル相よりもポリウレタン相に選択的に多く偏在させることができる。 [0084] constituting the adhesive modifying layer, and the polyester phase, co the polymerization polyester is preferably composed solely may a 0.01 to 40 mass 0/0 comprise polyurethane. More In addition, the polyester phase may contain 0.001 to 20 mass% of particles. Further, in the polyester phase, a surfactant may be attached to or contained in the above-mentioned rosin. Similarly, the polyurethane phase can contain particles, surfactants, and the like that are preferably composed solely of polyurethane in an amount as described in the above-mentioned copolymer polyester. In particular, in the case of particles having a high affinity for polyurethane, it can be preferentially unevenly distributed in the polyurethane phase rather than the polyester phase in the process of forming the adhesive modification layer.
[0085] 一般には、共重合ポリエステルおよびポリウレタンの混合物力もなる組成物におい ては、通常は両者が化学的に均一な材料となり、お互いの有する性質または機能を 補足しあうという化学的な補足機能の発現の場合が多い。一方、本発明のポリエステ ル相およびポリウレタン相からなる接着性改質層とは、前記のようにポリエステル相お よびポリウレタン相とが、物理的にそれぞれ相分離をして榭脂相の存在に大きな偏り が生じることになり、両榭脂相が分離して均一に分散配列した状態の構造を維持す る。各榭脂がそれぞれ有する性質を、各榭脂相の表面を介して、例えば、共重合ポリ エステルは耐ブロッキング性を、ポリウレタンは密着性というように、それぞれが相分 離した状態で、機能を分担している。いわば、物理的な補足機能の発現であって、ま さにこの機能または原理は、先行技術では全く認識されて!、な 、新規な技術事項で あるといえる。 [0085] In general, in a composition that can also be a mixture of a copolyester and a polyurethane, the chemical supplementary function is usually that both are chemically uniform materials and complement each other's properties or functions. Often manifests. On the other hand, the adhesion modified layer composed of the polyester phase and the polyurethane phase of the present invention is largely related to the presence of the resin phase by physically separating the polyester phase and the polyurethane phase as described above. As a result, the structure of a state in which both oleaginous phases are separated and uniformly dispersed is maintained. The properties of each rosin can be controlled through the surface of each rosin phase. Sharing. In other words, it is a manifestation of a physical supplementary function, and this function or principle is completely recognized in the prior art! It can be said that it is a new technical matter.
[0086] 本発明にお ヽて、接着性改質層の相分離構造の詳細な発生メカニズムは明確で はない。し力しながら、共重合ポリエステルとポリウレタンの組成比、水とアルコールの 分散媒の比率、界面活性剤の種類、界面活性剤中の不純物、水性塗布液の pH、塗 布量などの塗布液の材料構成や特性に、乾燥および熱固定処理の時間、温度、風 速の微妙な条件のバランスにより、接着性改質層に特異的なミクロ相分離構造または ナノ相分離構造が発現して ヽることが、各実施例と比較例の対比から容易に理解す ることがでさる。  [0086] In the present invention, the detailed generation mechanism of the phase separation structure of the adhesion modified layer is not clear. However, the composition ratio of the copolyester and polyurethane, the ratio of water / alcohol dispersion medium, the type of surfactant, the impurities in the surfactant, the pH of the aqueous coating solution, the coating amount, etc. Depending on the balance of delicate conditions such as drying and heat setting time, temperature, and wind speed in the material composition and properties, a specific micro phase separation structure or nano phase separation structure appears in the adhesion modified layer. This can be easily understood from the comparison between each example and the comparative example.
[0087] さらに、ポリウレタンが有するイソシァネート基の反応開始温度も微妙に影響してい るものと思われる。ここでいう、相分離構造とは、いわゆる PEs相と PU相の両相が物 理的な境界を持って距離的に離れているということではなぐ境界が距離をとることな く接しており、 PEs相には共重合ポリエステルが多く集まり偏り、 PU相に専らポリウレ タンが多く集まり偏り、両層の境界があた力も明瞭に区別が付くほどに外見上分離し ているかのような境界ができていると見るべきである。そして、本発明の場合には、そ の境界でポリウレタンのイソシァネート基が反応している可能性もあり、複雑な分離構 造を示している。 [0087] Furthermore, it is considered that the reaction initiation temperature of the isocyanate group possessed by the polyurethane has a subtle effect. In this context, the phase separation structure means that the so-called PEs phase and PU phase are in contact with each other without taking a distance. A large amount of copolyester gathers in the PEs phase and is biased. It should be seen that a lot of tongues are gathered and biased, and the boundaries between the two layers appear to be separated as if the force is clearly distinguishable. In the case of the present invention, there is a possibility that an isocyanate group of polyurethane reacts at the boundary, indicating a complicated separation structure.
[0088] 本発明で用いる接着性改質基材フィルム力 PEs相および PU相からなる接着性改 質層を有しているということは、例えば熱可塑性フィルム力もなる基材と、ハードコート 層や拡散層などの機能層との間に介在するという、いわゆる基材面と機能層面の両 面に等しく作用する界面機能の役割を果たしている。そうすると、 PEs相および PU相 のいずれも、両者が分離した構造をとり、 PEs相は本来有する共重合ポリエステルの 優れた性質を、接着性改質層の両面 (基材と接着性改質層の界面、接着性改質層と ハードコート層などの機能層との界面)に対して、最大限に発揮する状態にある。す なわち、 PU相は、本来有するポリウレタンの優れた性質を両面に対して最大限に発 揮する状態にあるということである。  [0088] Adhesive modified base film force used in the present invention Having an adhesive reformed layer composed of a PEs phase and a PU phase means that, for example, a base material that also has thermoplastic film strength, a hard coat layer, It plays the role of an interfacial function that acts equally on both the base material surface and the functional layer surface, which is interposed between the functional layer such as the diffusion layer. As a result, both the PEs phase and the PU phase have a separate structure, and the PEs phase exhibits the excellent properties of the copolyester inherent to both sides of the adhesive modified layer (the base material and the adhesive modified layer). It is in a state where it is exerted to the maximum extent with respect to the interface and the interface between the adhesion modified layer and the functional layer such as the hard coat layer. In other words, the PU phase is in a state where the excellent properties of the inherent polyurethane are fully exerted on both sides.
[0089] これは、接着性改質層を有する接着性改質基材フィルムにお!ヽて、接着性改質層 の表面は、 PEs相および PU相からなるミクロ相分離構造またはナノ相分離構造を有 しているため、 PEs相の共重合ポリエステルが露出して、その共重合ポリエステルの 性質または機能を最大限に果たし、同様に、 PU相のポリウレタンが露出して、そのポ リウレタンが本来有する性質または機能を最大限に果たして 、るためである。したが つて、接着性改質層の表面における PEs相および PU相のそれぞれが特定の範囲で 分布すれば、両者の榭脂の性質または機能が最大限に発揮することができる。これ は、積層体という特有の構造であるために、基材と接着性改質層の界面、接着性改 質層と機能層との界面にお 、て、合理的に作用するためである。  [0089] This is an adhesive modified base film having an adhesive modified layer! The surface of the adhesive modified layer has a microphase separation structure or nanophase separation composed of PEs phase and PU phase. Due to the structure, the PEs phase copolyester is exposed and performs the properties or functions of the copolyester to the maximum, and similarly, the PU phase polyurethane is exposed and the polyurethane is inherently This is to maximize the properties or functions possessed. Therefore, if each of the PEs phase and the PU phase on the surface of the adhesion modified layer is distributed within a specific range, the properties or functions of the both resins can be maximized. This is because of the unique structure of the laminate, it acts rationally at the interface between the base material and the adhesive modified layer and at the interface between the adhesive modified layer and the functional layer.
[0090] さらに、本発明は、 PEs相および PU相を構成する榭脂組成物に粒子を含有させる 場合、例えば、シリカ粒子では PU相に偏在させることができる。これは、表面エネル ギ一が PEs相よりも PU相の方がシリカ粒子に近いためであると推定している。シリカ 粒子を PU相に偏在化させることで、ポリウレタンの短所である耐ブロッキング性を向 上させることができ、かつ接着性改質層全体の粒子含有量を減らすことができるので 、透明性を維持するという機能を果たすのに有益な構造である。 [0091] 同様に、表面エネルギーが共重合ポリエステルにより近い粒子を選択すれば、 PEs 相に粒子を選択的に偏在させることができることを示唆して 、る。 PEs相または PU相 力 なる相分離構造のいずれかに粒子を偏在化させるという、先行技術力 は予期 できな 、手法で、透明性を維持しながら滑り性やブロッキング性を高度に改良するこ とができる。そのため、ミクロ相分離構造またはナノ相分離構造の材料設計の応用範 囲を広げることができるという点でも本発明は有意義である。 [0090] Further, in the present invention, when particles are contained in the rosin composition constituting the PEs phase and the PU phase, for example, silica particles can be unevenly distributed in the PU phase. This is presumably because the surface energy is closer to the silica particles in the PU phase than in the PEs phase. By making silica particles unevenly distributed in the PU phase, it is possible to improve the blocking resistance, which is a disadvantage of polyurethane, and to reduce the particle content of the entire adhesive modification layer, thus maintaining transparency. It is a useful structure to fulfill the function of [0091] Similarly, it is suggested that if particles having a surface energy closer to that of the copolyester are selected, the particles can be selectively unevenly distributed in the PEs phase. The prior art ability to unevenly distribute particles in either the PEs phase or the PU phase phase separation structure is an unprecedented technique that can improve slipperiness and blocking properties while maintaining transparency. Can do. Therefore, the present invention is also meaningful in that the application range of the material design of the micro phase separation structure or the nano phase separation structure can be expanded.
[0092] (2)熱可塑性榭脂フィルム  [0092] (2) Thermoplastic resin film
本発明で用いる熱可塑性榭脂フィルムとしては、熱可塑性榭脂を溶融押出しまた は溶液押出して得た未配向シートを、必要に応じ、長手方向または幅方向の一軸方 向に延伸し、あるいは二軸方向に逐次二軸延伸または同時二軸延伸し、熱固定処 理を施した、二軸延伸熱可塑性榭脂フィルムが好適である。  As the thermoplastic resin film used in the present invention, an unoriented sheet obtained by melt extrusion or solution extrusion of thermoplastic resin is stretched in the longitudinal direction or the uniaxial direction in the width direction, or two as required. A biaxially stretched thermoplastic resin film that is successively biaxially stretched in the axial direction or simultaneously biaxially stretched and subjected to heat setting treatment is preferable.
[0093] また、熱可塑性榭脂フィルムは、本発明の目的を損なわな!/ヽ範囲で、前記のフィル ムに、コロナ放電処理、グロ一放電処理、火炎処理、紫外線照射処理、電子線照射 処理、オゾン処理などの表面活性ィ匕処理を施してもよ!、。  [0093] Further, the thermoplastic resin film does not detract from the object of the present invention! The film is subjected to corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation within the range of You can also apply surface activation treatments such as treatment and ozone treatment!
[0094] 本発明で用いる熱可塑性榭脂フィルムの厚さは、 30-300 μ mの範囲で、使用す る用途の規格に応じて任意に決めることができる。前記の熱可塑性榭脂フィルムの厚 みの上限は、 250 μ mが好ましぐ特に好ましくは 200 μ mである。一方、フィルム厚 みの下限は、 50 μ mが好ましぐ特に好ましくは 75 μ mである。フィルム厚みが 50 μ m未満では、剛性や機械的強度が不十分となりやすい。一方、フィルム厚みが 300 mを超えると、フィルム中に存在する異物の絶対量が増加するため、光学欠点とな る頻度が高くなる。また、フィルムを所定の幅に切断する際のスリット性も悪ィ匕し、製造 コストが高くなる。さらに、剛性が強くなるため、長尺のフィルムをロール状に巻き取る ことが困難になりやすい。  [0094] The thickness of the thermoplastic resin film used in the present invention can be arbitrarily determined in the range of 30 to 300 μm according to the specification of the application to be used. The upper limit of the thickness of the thermoplastic resin film is preferably 250 μm, particularly preferably 200 μm. On the other hand, the lower limit of the film thickness is preferably 50 μm, particularly preferably 75 μm. If the film thickness is less than 50 μm, rigidity and mechanical strength tend to be insufficient. On the other hand, if the film thickness exceeds 300 m, the absolute amount of foreign matter present in the film increases, and the frequency of optical defects increases. In addition, the slitting property when the film is cut to a predetermined width is deteriorated, and the manufacturing cost is increased. Furthermore, since the rigidity is increased, it is difficult to wind a long film into a roll.
[0095] 熱可塑性榭脂としては、ポリエチレン (PE)、ポリプロピレン (PP)、ポリメチルペンテ ン(TPX)などのポリオレフイン、ポリエチレンテレフタレート(PET)、ポリエチレン 2 , 6—ナフタレート(PEN)、ポリテトラメチレンテレフタレート(PTT)、ポリブチレンテレ フタレート(PBT)などのポリエステル榭脂、ナイロン 6、ナイロン 4、ナイロン 66、ナイ口 ン 12などのポリアミド (PA)榭脂、ポリイミド (PI)、ポリアミドイミド(PAI)、ポリエーテル サルフォン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリカーボネート (PC)、 ポリアリレート(PAR)、セルロースプロピオネート、ポリ塩化ビュル(PVC)、ポリ塩化 ビ-リデン、ポリビュルアルコール(PVA)、ポリエーテルイミド(PEI)、ポリフエ-レン サルファイド(PPS)、ポリフエ-レンオキサイド、ポリスチレン(PS)、シンジオタクチッ クポリスチレン、ノルボルネン系ポリマーなどが挙げられる。また、これらのポリマーは 単独で使用する以外に、共重合成分を少量含む共重合体でもよいし、他の熱可塑 性榭脂を 1種以上ブレンドしてもよ 、。 [0095] Thermoplastic resin includes polyethylene (PE), polypropylene (PP), polymethylpentene (TPX) and other polyolefins, polyethylene terephthalate (PET), polyethylene 2,6-naphthalate (PEN), polytetramethylene Polyester resin such as terephthalate (PTT), polybutylene terephthalate (PBT), polyamide (PA) resin such as nylon 6, nylon 4, nylon 66, nylon 12, polyimide (PI), polyamideimide (PAI) , Polyether Sulphone (PES), Polyetheretherketone (PEEK), Polycarbonate (PC), Polyarylate (PAR), Cellulose propionate, Polychlorinated butyl (PVC), Polyvinylidene chloride, Polybutylalcohol (PVA), Poly Examples include ether imide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide, polystyrene (PS), syndiotactic polystyrene, and norbornene polymers. In addition to using these polymers alone, a copolymer containing a small amount of a copolymer component may be used, or one or more other thermoplastic resins may be blended.
[0096] これらの熱可塑性榭脂のなかでも、ポリエチレンテレフタレート、ポリプロピレンテレ フタレート、ポリエチレン 2, 6 ナフタレート、シンジオタクチックポリスチレン、ノル ボルネン系ポリマー、ポリカーボネート、ポリアリレートなどが好適である。また、ポリエ ステルやポリアミドのような極性官能基を有する榭脂は、接着性改質層との密着性の 点から好ましい。 [0096] Among these thermoplastic resins, polyethylene terephthalate, polypropylene terephthalate, polyethylene 2,6 naphthalate, syndiotactic polystyrene, norbornene polymer, polycarbonate, polyarylate and the like are preferable. In addition, a resin having a polar functional group such as polyester or polyamide is preferable from the viewpoint of adhesion to the adhesive property modified layer.
[0097] 中でも、ポリエチレンテレフタレート、ポリエチレン 2, 6 ナフタレート、ポリブチレ ンテレフタレート、ポリプロピレンテレフタレートまたはこれらの榭脂の構成成分を主成 分とする共重合体がさらに好適であり、とりわけポリエチレンテレフタレートから形成さ れたニ軸配向フィルムが特に好適である。  [0097] Among them, polyethylene terephthalate, polyethylene 2,6 naphthalate, polybutylene terephthalate, polypropylene terephthalate, or a copolymer mainly composed of these resin components is more preferable, and particularly formed from polyethylene terephthalate. A biaxially oriented film is particularly suitable.
[0098] 例えば、熱可塑性榭脂フィルムを形成する榭脂として、ポリエチレンテレフタレート を基本骨格とするポリエステル共重合体を用いる場合、共重合成分の比率は 20モル %未満とすることが好ましい。 20モル%以上ではフィルム強度、透明性、耐熱性が劣 る場合がある。共重合成分として用いることができるジカルボン酸成分としては、アジ ピン酸、セバシン酸等の脂肪族ジカルボン酸、イソフタル酸、フタル酸、及び 2, 6— ナフタレンジカルボン酸等の芳香族ジカルボン酸、トリメリロット酸及びピロメリロット酸 等の多官能カルボン酸等が例示される。また、共重合成分として用いることができる グリコール成分としては、ジエチレングリコール、 1, 4 ブタンジオール、プロピレング リコール及びネオペンチルグリコール等の脂肪酸グリコール; p キシレングリコール 等の芳香族グリコール; 1, 4ーシクロへキサンジメタノール等の脂環族グリコール;平 均分子量が 150〜20000のポリエチレングリコール等が例示される。  [0098] For example, when a polyester copolymer having polyethylene terephthalate as a basic skeleton is used as the resin forming the thermoplastic resin film, the ratio of the copolymer component is preferably less than 20 mol%. If it is 20 mol% or more, the film strength, transparency, and heat resistance may be poor. Dicarboxylic acid components that can be used as copolymerization components include aliphatic dicarboxylic acids such as adipic acid and sebacic acid, isophthalic acid, phthalic acid, and aromatic dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid, trimellilot Examples thereof include polyfunctional carboxylic acids such as acids and pyromellitic acid. Examples of the glycol component that can be used as a copolymer component include fatty acid glycols such as diethylene glycol, 1,4 butanediol, propylene glycol, and neopentyl glycol; aromatic glycols such as p-xylene glycol; 1,4-cyclohexene. Examples include alicyclic glycols such as sandimethanol; polyethylene glycol having an average molecular weight of 150 to 20000, and the like.
[0099] また、前記の熱可塑性榭脂には、本発明の効果を妨げない範囲で、触媒以外に各 種の添加剤を含有させることができる。添加剤として、例えば、無機粒子、耐熱性高 分子粒子、アルカリ金属化合物、アルカリ土類金属化合物、リン化合物、帯電防止剤 、紫外線吸収剤、耐光剤、難燃剤、熱安定剤、酸化防止剤、ゲル化防止剤、界面活 性剤等が挙げられる。 [0099] In addition to the catalyst, each of the above-described thermoplastic resins is not limited to the effects of the present invention. Seed additives can be included. As additives, for example, inorganic particles, heat-resistant high molecular particles, alkali metal compounds, alkaline earth metal compounds, phosphorus compounds, antistatic agents, ultraviolet absorbers, light resistant agents, flame retardants, heat stabilizers, antioxidants, Examples thereof include an antigelling agent and a surfactant.
[0100] 前記の粒子は、熱可塑性榭脂フィルムの製造時、ロール状に巻き取る際、あるいは 巻き出す際のハンドリング性 (滑り性、走行性、ブロッキング性、巻き取り時の随伴空 気の空気抜け性など)の点からは、フィルム表面に適度な表面凹凸を付与するため に用いられる。  [0100] The particles described above may be handled in the production of a thermoplastic resin film, when wound into a roll, or handled when unrolled (sliding property, running property, blocking property, associated air in winding) From the standpoint of exfoliation, etc., it is used to impart moderate surface irregularities to the film surface.
[0101] 無機粒子としては、炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性のガ ラスフィラー、カオリン、タルク、二酸化チタン、アルミナ、シリカ一アルミナ複合酸ィ匕物 粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼォライト、硫ィ匕モリブデン、 マイ力などが挙げられる。また、耐熱性高分子粒子としては、架橋ポリスチレン粒子、 架橋アクリル系榭脂粒子、架橋メタクリル酸メチル系粒子、ベンゾグアナミン'ホルム アルデヒド縮合物粒子、メラミン 'ホルムアルデヒド縮合物粒子、ポリテトラフルォロェ チレン粒子などが挙げられる。  [0101] Inorganic particles include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide particles, barium sulfate, calcium fluoride, Examples include lithium fluoride, zeolite, molybdenum sulfate, and my power. The heat-resistant polymer particles include crosslinked polystyrene particles, crosslinked acrylic resin particles, crosslinked methyl methacrylate particles, benzoguanamine 'formaldehyde condensate particles, melamine' formaldehyde condensate particles, polytetrafluoroethylene particles. Etc.
[0102] 熱可塑性榭脂フィルムとしてポリエステルフィルムを用いる場合、前記の粒子の中 でも、シリカ粒子が、ポリエステル榭脂と屈折率が比較的近く高い透明性が得やすい ため、透明性が強く要求される用途では最も好適である。一方、隠蔽性が要求される 用途では、酸ィ匕チタンのような白色顔料が好適である。また、熱可塑性榭脂フィルム 中に含有させる粒子は 1種類でも複数併用してもよ ヽ。  [0102] When a polyester film is used as the thermoplastic resin film, among the above particles, the silica particles are relatively close to the polyester resin and have a high refractive index, so that high transparency is easily obtained. It is most suitable for certain applications. On the other hand, white pigments such as titanium oxide are preferred for applications that require concealment. In addition, the particles contained in the thermoplastic resin film may be used alone or in combination.
[0103] 前記の粒子の種類、平均粒径、添加量は、透明性とハンドリング性とのバランスの 点から、平均粒径は 0. 01〜2 /ζ πι、フィルム中の粒子含有量は 0. 01〜5. 0質量% の範囲でフィルムの用途に応じて決めればよい。また、本発明で用いる接着性改質 基材フィルムを透明性が高度に要求される用途に使用する場合、熱可塑性榭脂フィ ルム中には、透明性を低下させる原因となる粒子を実質的に含有させず、接着性改 質層に粒子を含有させる構成とすることが好ま 、。  [0103] From the viewpoint of the balance between transparency and handling properties, the average particle size is 0.01-2 / ζ πι, and the content of particles in the film is 0. In the range of 01 to 5.0% by mass, it may be determined according to the use of the film. In addition, when the adhesion-modified base film used in the present invention is used for applications in which transparency is highly required, particles that cause a decrease in transparency are substantially contained in the thermoplastic resin film. It is preferable that the adhesive modified layer contains particles without containing them.
[0104] 前記の「粒子を実質的に含有させず」とは、例えば無機粒子の場合、ケィ光 X線分 祈で無機元素を定量した場合に 50ppm以下、好ましくは lOppm以下、最も好ましく は検出限界以下となる含有量を意味する。これは積極的に粒子を基材フィルム中に 添加させなくても、外来異物由来のコンタミ成分や、原料榭脂あるいはフィルムの製 造工程におけるラインや装置に付着した汚れが剥離して、フィルム中に混入する場 合があるためである。 [0104] The above-mentioned "substantially free of particles" means, for example, in the case of inorganic particles, when inorganic elements are quantified by key X-ray diffraction, 50 ppm or less, preferably 10 ppm or less, most preferably Means the content that is below the detection limit. This is because even if particles are not actively added to the base film, contaminants derived from foreign substances, raw material grease, or dirt attached to lines and equipment in the film manufacturing process can be peeled off. This is because it may be mixed in.
[0105] また、本発明で使用する熱可塑性榭脂フィルムの層構成は単層でもよ!/ヽし、単層で は得られな ヽ機能を付与した積層構造とすることもできる。積層構造とする場合には 、共押出法が好適である。  [0105] The layer structure of the thermoplastic resin film used in the present invention may be a single layer, or may be a laminated structure having a function that cannot be obtained with a single layer. In the case of a laminated structure, a coextrusion method is preferable.
[0106] 熱可塑性榭脂フィルムの原料としてポリエステルを用いた場合を代表例として、基 材フィルムの製造方法にっ 、て、以下で詳しく説明する。  [0106] As a representative example, the case where polyester is used as a raw material for the thermoplastic resin film, a method for producing the base material film will be described in detail below.
[0107] フィルム原料として用いるポリエステルペレットの固有粘度は、 0. 45〜0. 70dl/g の範囲が好ましい。固有粘度が 0. 45dlZg未満であると、フィルム製造時に破断が 多発しやすくなる。一方、固有粘度が 0. 70dlZgを超えると、濾圧上昇が大きぐ高 精度濾過が困難となり、生産性が低下しやすくなる。  [0107] The intrinsic viscosity of the polyester pellets used as the film raw material is preferably in the range of 0.45 to 0.70 dl / g. If the intrinsic viscosity is less than 0.45 dlZg, breakage tends to occur frequently during film production. On the other hand, if the intrinsic viscosity exceeds 0.70 dlZg, the filtration pressure increases greatly, making it difficult to perform high-precision filtration, and the productivity tends to decrease.
[0108] また、本発明のハードコートフィルム、あるいは該フィルムを用いた光学機能性フィ ルムにおいて、光学欠点の原因となる、原料のポリエステル中に含まれている異物を 除去することが好ましい。ポリエステル中の異物を除去するために、溶融押出しの際 に溶融樹脂が約 280°Cに保たれた任意の場所で、高精度濾過を行う。溶融樹脂の 高精度濾過に用いられる濾材は、特に限定はされないが、ステンレス焼結体の濾材 の場合、 Si、 Ti、 Sb、 Ge、 Cuを主成分とする凝集物及び高融点有機物の除去性能 に優れ好適である。  [0108] Further, in the hard coat film of the present invention or the optical functional film using the film, it is preferable to remove foreign matters contained in the raw material polyester which cause optical defects. In order to remove foreign substances in the polyester, high-precision filtration is performed at any place where the molten resin is kept at about 280 ° C during melt extrusion. The filter medium used for high-precision filtration of molten resin is not particularly limited, but in the case of a sintered stainless steel filter medium, the removal performance of aggregates and high-melting-point organic substances mainly composed of Si, Ti, Sb, Ge, Cu Excellent and suitable.
[0109] 溶融樹脂の高精度濾過に用いる濾材の濾過粒子サイズ (初期濾過効率 95%)は、 15 μ m以下が好ましい。濾材の濾過粒子サイズが 15 μ mを超えると、 20 μ m以上の 異物の除去が不十分となりやすい。濾過粒子サイズ (初期濾過効率 95%)が 15 m 以下の濾材を使用して溶融樹脂の高精度濾過を行うことにより生産性が低下する場 合がある力 光学欠点の少ないフィルムを得るには極めて重要である。  [0109] The filter particle size (initial filtration efficiency 95%) of the filter medium used for high-precision filtration of the molten resin is preferably 15 µm or less. When the filter particle size of the filter medium exceeds 15 μm, the removal of foreign matters of 20 μm or more tends to be insufficient. Productivity may be reduced by high-precision filtration of molten resin using a filter medium with a filtration particle size (initial filtration efficiency 95%) of 15 m or less.To obtain a film with few optical defects is important.
[0110] 溶融樹脂の押出し工程において、濾材を通過する微細な異物であっても、シート状 溶融物の冷却工程において異物の周囲で結晶化が進み、これが配向工程において 配向の不均一性を引き起こし、微小な厚みの差異を生じせしめレンズ状態となる箇 所が生じる。ここでは、レンズがあるかの様に光が屈折または散乱し、肉眼で観察し た時には実際の異物より大きく見えるようになる。この微小な厚みの差は、凸部の高さ と凹部の深さの差として観測することができ、凸部の高さが 1 m以上で、凸部に隣 接する凹部の深さが 0. 以上であると、レンズ効果により、大きさが 20 /z mの形 状の物でも肉眼的には 50 m以上の大きさとして認識され、さらには 100 m以上 の大きさの光学欠点として認識される場合もある。 [0110] In the extrusion process of the molten resin, even fine foreign matter that passes through the filter medium, crystallization proceeds around the foreign matter in the cooling process of the sheet-like melt, and this causes non-uniform orientation in the orientation step. If there is a slight difference in thickness, the lens will be A place arises. Here, light is refracted or scattered as if it were a lens, and when viewed with the naked eye, it appears larger than the actual foreign object. This minute difference in thickness can be observed as the difference between the height of the convex part and the depth of the concave part.The height of the convex part is 1 m or more and the depth of the concave part adjacent to the convex part is 0. If this is the case, due to the lens effect, an object with a size of 20 / zm is recognized visually as a size of 50 m or more, and further as an optical defect of a size of 100 m or more. In some cases.
[0111] 高透明なフィルムを得るためには、熱可塑性榭脂フィルム中に粒子を含有させない ことが好ましいが、粒子含有量が少なく透明性が高いほど、微小な凹凸による光学欠 点はより鮮明となる傾向にある。また、厚手のフィルムの表面は薄手のフィルムより急 冷となりにくく、結晶化が進む傾向にあるため、未配向シート製造時にフィルム全体を 急冷することが必要となる。未配向シートを冷却する方法としては、溶融榭脂を回転 冷却ドラム上にダイスのスリット部からシート状に押し出し、シート状溶融物を回転冷 却ドラムに密着させながら、急冷してシートとする方法が好適である。この未配向シー トのエア面 (冷却ドラムと接触する面との反対面)を冷却する方法としては、高速気流 を吹きつけて冷却する方法が有効である。  [0111] In order to obtain a highly transparent film, it is preferable not to contain particles in the thermoplastic resin film. However, the lower the particle content and the higher the transparency, the clearer the optical defects due to minute irregularities. It tends to be. In addition, since the surface of a thick film is less likely to be cooled more rapidly than a thin film and tends to proceed with crystallization, it is necessary to rapidly cool the entire film when manufacturing an unoriented sheet. As a method for cooling the unoriented sheet, molten resin is extruded into a sheet form from a slit portion of a die on a rotating cooling drum, and the sheet-like melt is brought into close contact with the rotating cooling drum and rapidly cooled to form a sheet. Is preferred. As a method for cooling the air surface (the surface opposite to the surface in contact with the cooling drum) of this unoriented sheet, a method of cooling by blowing a high-speed air stream is effective.
[0112] (3)接着性改質層  [0112] (3) Adhesive modified layer
本発明で用いる接着性改質基材フィルムは、共重合ポリエステル及びポリウレタン を含む榭脂、水及びアルコールを含む分散媒、界面活性剤を主たる構成成分とする 水性塗布液を、走行する熱可塑性榭脂フィルムの片面または両面に連続的に塗布 する塗布工程、塗布層 (接着性改質層)を乾燥する乾燥工程、次いで少なくとも一軸 方向に延伸する延伸工程、さらに延伸された塗布フィルムを熱固定処理する熱固定 処理工程を経て連続的に形成させて得た、ミクロ相分離構造またはナノ相分離構造 を有する接着性改質層を設けた接着性改質基材フィルムを製造する。また、ェポキ シ系架橋剤、メラミン系架橋剤、ォキサゾリン系架橋剤カゝら選ばれる少なくとも一種の 架橋剤を塗布液に混合し、熱処理することで、共重合ポリエステルに架橋構造を形 成させてもよい。  The adhesive property-modified base film used in the present invention is a thermoplastic resin that travels with an aqueous coating liquid mainly composed of a resin containing a copolyester and polyurethane, a dispersion medium containing water and alcohol, and a surfactant. Coating process for continuous coating on one or both sides of the grease film, drying process for drying the coating layer (adhesive modified layer), stretching process for stretching in at least uniaxial direction, and heat-fixing treatment for the stretched coating film An adhesive modified substrate film provided with an adhesive modified layer having a microphase separation structure or a nanophase separation structure, which is obtained by continuously forming through a heat setting treatment step is manufactured. Also, at least one crosslinking agent selected from epoxy-based crosslinking agents, melamine-based crosslinking agents, and oxazoline-based crosslinking agents is mixed in the coating liquid and heat-treated to form a crosslinked structure in the copolymerized polyester. Also good.
[0113] このミクロ相分離構造またはナノ相分離構造を有する接着性改質層を設けた接着 性改質基材フィルムの製造方法において、前記の共重合ポリエステル (PEs)とポリウ レタン(PU)の質量比(PEsZPU)が、 30Z70〜70Z30であり、下記(a)〜(f)の条 件を満足させることが好ましい。また、塗布液に架橋剤を含む場合も同様である。 [0113] In the method for producing an adhesive modified substrate film provided with an adhesive modified layer having a micro phase separation structure or a nano phase separation structure, the copolymer polyester (PEs) and the polyester The mass ratio (PEsZPU) of letane (PU) is 30Z70 to 70Z30, and it is preferable to satisfy the following conditions (a) to (f). The same applies when the coating solution contains a crosslinking agent.
(a)塗布液の塗布直後から乾燥工程の入口までのフィルムの通過時間が 2秒未満 (a) The film transit time from immediately after coating of the coating solution to the entrance of the drying process is less than 2 seconds
(b)乾燥工程において温度 120〜150°Cで 0. 1〜5秒間 (b) Drying process at a temperature of 120-150 ° C for 0.1-5 seconds
(c)乾燥工程にぉ 、て乾燥風の風速が 30mZ秒以上  (c) During the drying process, the wind speed of the drying air is 30mZ seconds or more.
(d)熱固定処理工程力 複数の熱固定ゾーンに連続して区分され、かつ各ゾーン は独立して温度制御が可能なように仕切られており、フィルムが通過する第 1の熱固 定ゾーンの温度が 190〜200°Cであり、最高温度に設定された熱固定ゾーンの温度 力 S210〜240°Cであり、第 1熱固定ゾーンの出口から、最高温度に設定された熱固 定ゾーン (なお、複数ある場合は、最も入口側の熱固定ゾーン)までのフィルムの通 過時間が 10秒以下  (d) Heat setting process power The first heat setting zone through which the film passes is divided into a plurality of heat setting zones, and each zone is partitioned so that the temperature can be controlled independently. The temperature of the heat setting zone set at the maximum temperature is 190 to 200 ° C, and the heat fixing zone set at the maximum temperature from the outlet of the first heat setting zone is S210 to 240 ° C. (If there is more than one heat transfer zone on the most entrance side), the film transit time is 10 seconds or less.
(e)ノ-オン系界面活性剤またはカチオン系界面活性剤を、塗布液に対し 0. 01〜 0. 18質量%配合  (e) 0.01 to 0.18% by mass of a non-ionic surfactant or a cationic surfactant based on the coating solution
(f)接着性改質層の最終塗布量が 0. 005-0. 20g/m2 (f) The final coating amount of the adhesion modified layer is 0.005-0.20 g / m 2
[0114] また、前記の接着性改質基材フィルムの製造において、下記 (g)〜(i)の条件を満 足することがさらに好ましい。  [0114] In the production of the above-mentioned adhesion-modified base film, it is more preferable that the following conditions (g) to (i) are satisfied.
(g)塗布液の塗布直後から乾燥工程の入口までのフィルムの通過時間が 1. 5秒未 満  (g) The film transit time from immediately after application of the coating solution to the entrance of the drying process is less than 1.5 seconds.
(h)乾燥工程において、温度 130〜150°Cで 0. 5〜3秒間  (h) 0.5 to 3 seconds at a temperature of 130 to 150 ° C in the drying process
(i)熱固定処理工程において、最高温度に設定された熱固定ゾーンの温度が 225 〜235°Cであり、第 1熱固定ゾーンの出口から、最高温度に設定された熱固定ゾー ン (なお、複数ある場合は、最も入口側の熱固定ゾーン)までのフィルムの通過時間 が 5秒以下  (i) In the heat setting treatment process, the temperature of the heat setting zone set to the maximum temperature is 225 to 235 ° C, and the heat setting zone set to the maximum temperature from the outlet of the first heat setting zone (note that If there are several, the passage time of the film to the heat setting zone on the most inlet side) is 5 seconds or less
[0115] また、前記のインラインコート法により積層された接着性改質層に、適切な粒径の微 粒子を含有させて、接着性改質層の表面に適切な凹凸を形成させることで、滑り性、 巻き取り性、耐スクラッチ性を付与することができる。このため、熱可塑性榭脂フィルム 中に微粒子を含有させる必要がなぐ高透明性を保持することができる。  [0115] In addition, the adhesive modified layer laminated by the in-line coating method contains fine particles having an appropriate particle size to form appropriate irregularities on the surface of the adhesive modified layer, It can provide slipping property, winding property, and scratch resistance. For this reason, the high transparency which does not need to contain microparticles | fine-particles in a thermoplastic resin film can be hold | maintained.
[0116] 本発明で用いる接着性改質基材フィルムは、接着性改質層の表面の三次元中心 面平均表面粗さ(SRa)を 0. 002〜0. 010 mと平滑にすることが好ましい。 SRaの 上限は、透明'性の点力ら、 0. 0080 μ m力より好ましく、特に好ましくは 0. 0060 μ m である。一方、 SRaの下限は、滑り性や巻き性などのハンドリング性、耐スクラッチ性 の^;力ら、 0. 0025 m力 Sより好ましく、特に好ましく ίま 0. 0030 mである。 [0116] The adhesive modified base film used in the present invention has a three-dimensional center on the surface of the adhesive modified layer. The surface average surface roughness (SRa) is preferably smoothed to 0.002 to 0.001 m. The upper limit of SRa is more preferably 0.0080 μm force, particularly preferably 0.0060 μm, based on the point of transparency. On the other hand, the lower limit of SRa is preferably more than 0.0025 m force S, particularly preferably 0.030 m, and more preferably a handling force such as sliding property and rollability, and scratch resistance.
[0117] 接着性改質層の表面の SRaが 0. 002 μ m未満の平滑な表面では、接着性改質基 材フィルムをロール状に巻き取る際の耐ブロッキング性、あるいはフィルム製造時や 加工時の滑り性や巻き性などのハンドリング性、耐スクラッチ性が低下し、好ましくな い。一方、接着性改質層の表面の SRaが 0. 010 /z mを超えると、ヘーズが上昇して 透明性が悪ィ匕するため、ハードコートフィルムまたはそれを用いた光学機能性フィル ムの基材フィルムとして好ましくな 、。 [0117] When the surface of the adhesive modified layer has a smooth surface with an SRa of less than 0.002 μm, blocking resistance when winding the adhesive modified substrate film into a roll, or during film production or processing Handling properties such as slipping and winding properties and scratch resistance are reduced, which is not preferable. On the other hand, if the SRa on the surface of the adhesion modified layer exceeds 0.000 / zm, the haze increases and the transparency deteriorates. Therefore, the base of the hard coat film or the optical functional film using the hard coat film is deteriorated. Preferred as a material film.
[0118] 本発明で用いる接着性改質基材フィルムにおいて、接着性改質層は次の 4つの形 態的、構造的特徴を有しており、下記のような手段で得ることができる。  [0118] In the adhesive modified base film used in the present invention, the adhesive modified layer has the following four structural and structural characteristics, and can be obtained by the following means.
(a)ポリエステル相とポリウレタン相にミクロ相分離またはナノ相分離し、それらが特 定の面積率を有する  (a) Microphase separation or nanophase separation into a polyester phase and a polyurethane phase, and they have a specific area ratio
(b)接着性改質層の榭脂成分の組成比を表面と内部で変えることが可能である (b) It is possible to change the composition ratio of the resin component of the adhesive modified layer on the surface and inside
(c)接着性改質層に粒子を含有させた場合、粒子がポリエステル相またはポリウレ タン相に偏在する (c) When particles are included in the adhesion modified layer, the particles are unevenly distributed in the polyester phase or the polyurethane phase.
[0119] また、接着性改質層の表面に観察される共重合ポリエステルを主成分とするポリェ ステル相は、幅が最大で 1 μ mで長さが 1 mを超える連続構造を有することが好ま しぐさらに好ましくは共重合ポリエステル相とポリウレタン相が共連続構造を有する 構造である。接着性改質層の表面の PEs相の面積率の範囲内で、共重合ポリエステ ルを主成分とするポリエステル相力 幅が最大で 1 μ m、長さが 1 μ mを超える微細な 連続構造を有することによって、微視的に均一な密着性が得られる。  [0119] In addition, the polyester phase mainly composed of a copolyester observed on the surface of the adhesive modified layer may have a continuous structure having a maximum width of 1 μm and a length exceeding 1 m. More preferably, the copolymer polyester phase and the polyurethane phase have a co-continuous structure. Within the range of the area ratio of the PEs phase on the surface of the adhesive reforming layer, a fine continuous structure with a maximum polyester interfacial width of 1 μm and a length exceeding 1 μm based on copolymer polyester By having this, microscopically uniform adhesion can be obtained.
[0120] 共重合ポリエステルを主成分とするポリエステル相において、幅が最大で 1 μ mを 越える箇所が点在する相分離構造では、局所的にハードコート層、拡散層、プリズム 層のような機能層に対し、密着性に劣る箇所が生じる。接着性改質層の表面に密着 性に劣る箇所が存在すると、その部分を起点として巨視的な剥離に繋がる場合があ る。前記のポリエステル相の幅を最大で 1 μ mの微細な連続構造にするためには、横 延伸ゾーン力も熱固定ゾーンでの最高温度に到達するまでに要する時間、熱固定条 件を適宜選定することが重要である。特に、横延伸ゾーンから、熱固定ゾーンで最高 温度に到達するゾーンまでに要する時間が長すぎる場合、接着性改質層の相分離 が進行し過ぎ、結果として共重合ポリエステルを主成分とするポリエステル相の幅が 最も狭い箇所で 1 μ mを超える箇所が点在するようになるのである。接着性改質基材 フィルムを製造する際の具体的な熱固定条件は後述する。 [0120] In a polyester phase composed mainly of a copolyester, the phase separation structure where the width exceeds 1 μm at the maximum is locally functioning as a hard coat layer, diffusion layer, or prism layer. The location inferior to adhesiveness arises with respect to a layer. If there is a location with poor adhesion on the surface of the modified adhesive layer, it may lead to macroscopic peeling starting from that location. In order to obtain a fine continuous structure with a maximum width of 1 μm, It is important to appropriately select the time required for the drawing zone force to reach the maximum temperature in the heat setting zone and the heat setting conditions. In particular, if the time required from the transverse stretching zone to the zone where the maximum temperature is reached in the heat setting zone is too long, the phase separation of the adhesive modified layer proceeds too much, resulting in a polyester mainly composed of a copolyester. The narrowest part of the phase is scattered with the part exceeding 1 μm. Specific heat setting conditions for producing the adhesive modified substrate film will be described later.
[0121] 最終的な接着性改質層の表面の相分離構造を制御するためには、後述の乾燥ェ 程における溶媒の蒸発速度及び、その後の加熱処理が極めて重要である。乾燥ェ 程における溶媒蒸発速度を制御することで、接着性改質層の表面におけるポリエス テル成分とポリウレタン成分の組成比を変化させることができる。  [0121] In order to control the phase separation structure on the surface of the final adhesion modified layer, the evaporation rate of the solvent in the drying step described later and the subsequent heat treatment are extremely important. By controlling the solvent evaporation rate in the drying process, the composition ratio of the polyester component and the polyurethane component on the surface of the adhesive modified layer can be changed.
[0122] 例えば、水 Zイソプロピルアルコールの混合溶媒を使用した場合、弱 ヽ乾燥条件 では、乾燥後期過程で表面に残存する溶媒は、水の比率が多くなる。そのため、比 較的親水性が高いポリウレタンが接着性改質層の表面に存在する比率が、強い条件 で接着性改質層を乾燥させたときと比べて高くなる。また、塗布量を変化させることも 溶媒の蒸発速度を制御する場合と同様な効果をもたらす。つまり、塗布量を増やした 場合、乾燥に時間がかかり、乾燥直前に塗布面に存在する残溶媒は、水の比率が 多くなる。つまり、接着性改質層の表面におけるポリウレタン成分の比率を、塗布量 が少ない時と比べ、高くすることができる。  [0122] For example, when a mixed solvent of water and Z-isopropyl alcohol is used, the ratio of water increases in the solvent remaining on the surface in the late drying process under mildly dry conditions. For this reason, the proportion of polyurethane having relatively high hydrophilicity existing on the surface of the adhesive modified layer is higher than when the adhesive modified layer is dried under strong conditions. Also, changing the coating amount has the same effect as controlling the evaporation rate of the solvent. In other words, when the coating amount is increased, drying takes time, and the residual solvent existing on the coating surface immediately before drying increases the ratio of water. That is, the ratio of the polyurethane component on the surface of the adhesive property modification layer can be increased compared to when the coating amount is small.
[0123] 延伸工程及び熱固定処理工程では、ポリエステル成分とポリウレタン成分の相分離 が進行する。し力しながら、どちらか一方の榭脂の熱架橋が始まると、各相の運動性 が大幅に低下し、相分離の進行が抑制される。つまり、延伸工程及び熱固定処理ェ 程における加熱条件を制御することで、相分離構造の制御が可能である。  [0123] In the stretching step and the heat setting treatment step, phase separation of the polyester component and the polyurethane component proceeds. However, when thermal crosslinking of either one of the coconut resins begins, the mobility of each phase is greatly reduced and the progress of phase separation is suppressed. That is, the phase separation structure can be controlled by controlling the heating conditions in the stretching process and the heat setting process.
[0124] 以上のように、乾燥工程における、ポリエステル Zポリウレタンの接着性改質層の表 面の近くに存在する比率の制御と、延伸工程、熱固定処理工程における相分離の進 行の制御により、接着性改質層の表面相分離構造及び、各相が接着性改質層の表 面近くに存在する比率を厳密に制御することが可能となる。また、接着性改質層に含 有させる粒子の表面エネルギーを制御することにより、共重合ポリエステルを主成分 とするポリエステル相またはポリウレタンを主成分とするポリウレタン相のどちらか一方 に、選択的に粒子を偏在化させることができる。 [0124] As described above, by controlling the ratio existing near the surface of the adhesive modified layer of polyester Z polyurethane in the drying process and by controlling the progress of phase separation in the stretching process and heat setting process. It is possible to strictly control the surface phase separation structure of the adhesive modified layer and the ratio of each phase existing near the surface of the adhesive modified layer. In addition, by controlling the surface energy of the particles to be included in the adhesive modification layer, either the polyester phase based on the copolyester or the polyurethane phase based on the polyurethane is used. In addition, the particles can be selectively localized.
[0125] 接着性改質層は、主な榭脂成分として、共重合ポリエステル及びポリウレタンを含 有している。共重合ポリエステル単独では、ポリエステル系基材フィルムとの密着性 は十分であるが、無機微粒子を含有するハードコート層との密着性に劣る。また、比 較的脆い榭脂であるため、カッティング時の衝撃に対し凝集破壊を発生しやすい。  [0125] The adhesion modified layer contains a copolymerized polyester and polyurethane as the main resin component. The copolyester alone has sufficient adhesion to the polyester-based substrate film, but is inferior to adhesion to the hard coat layer containing inorganic fine particles. In addition, since it is a relatively brittle resin, it tends to cause cohesive failure due to impact during cutting.
[0126] 一方、ポリウレタン単独では、無機微粒子を含有するハードコート層との密着性に は比較的優れる。し力しながら、ポリエステル系基材フィルムとの密着性に劣る。さら に、接着性改質基材フィルムをロール状に巻き取る際の耐ブロッキング性に劣る。そ のため、ポリウレタン単独系の接着性改質層を有する接着性改質基材フィルムを用 いて製造された、ハードコートフィルムや光学機能性フィルムは、品位が著しく低下す る。このような問題を避けるために、接着性改質層中に、多量に粒子を含有させる、 粒径の大きな粒子を含有させる、あるいは粒子の含有量を増加させる、ことが必要に なる。その結果、フィルムのヘーズが上昇するため、特に透明性の要求が強いハード コートフィルムや光学機能性フィルムの基材フィルムとして好ましくない。  [0126] On the other hand, polyurethane alone is relatively excellent in adhesion to a hard coat layer containing inorganic fine particles. It is inferior in adhesiveness with a polyester-type base film, although it is strong. Furthermore, it is inferior in blocking resistance when the adhesive modified substrate film is wound into a roll. Therefore, the quality of hard coat films and optical functional films produced using an adhesive modified base film having an adhesive modified layer of a polyurethane alone system is remarkably lowered. In order to avoid such a problem, it is necessary to include a large amount of particles, a particle having a large particle size, or an increase in the content of particles in the adhesive property-modified layer. As a result, the haze of the film is increased, which is not preferable as a base film for a hard coat film or an optical functional film that is particularly demanding for transparency.
[0127] (3— 1)接着性改質層を形成するために用いる塗布液の調合工程  [3-1] (1) Preparation of coating solution used to form adhesion modified layer
本発明において、接着性改質層は、塗布法を用いて形成させる。塗布液に用いる 材料は、榭脂及び分散媒あるいは溶媒である。本発明において、接着性改質層を形 成させるために用いる塗布液は、水性であることが好ましい。また、本発明では、榭脂 成分以外に、粒子及び界面活性剤を併用することが好ましい実施形態である。さら に、必要に応じて、帯電防止剤、紫外線吸収剤、有機潤滑剤、抗菌剤、光酸化触媒 などの添加剤を用いることができる。また、塗布液には、榭脂の熱架橋反応を促進さ せるため、触媒を添加しても良ぐ例えば、無機物質、塩類、有機物質、アルカリ性物 質、酸性物質および含金属有機化合物等、種々の化学物質が用いることができる。 また、水溶液の pHを調節するために、アルカリ性物質あるいは酸性物質を添加して もよい。塗布液は、分散媒あるいは溶媒中に、撹拌下、榭脂を分散化または溶解し、 次いで、粒子、界面活性剤のほかに、必要に応じて各種添加剤を併用し、所望する 固形分濃度にまで希釈して調整する。  In the present invention, the adhesion modified layer is formed using a coating method. The material used for the coating solution is a resin and a dispersion medium or a solvent. In the present invention, it is preferable that the coating solution used for forming the adhesion modified layer is aqueous. Moreover, in this invention, it is preferable embodiment to use particle | grains and surfactant together in addition to a resin component. Furthermore, additives such as antistatic agents, ultraviolet absorbers, organic lubricants, antibacterial agents and photooxidation catalysts can be used as necessary. In addition, a catalyst may be added to the coating solution to promote the thermal crosslinking reaction of the resin, such as inorganic substances, salts, organic substances, alkaline substances, acidic substances and metal-containing organic compounds. Various chemical substances can be used. Further, an alkaline substance or an acidic substance may be added to adjust the pH of the aqueous solution. The coating liquid disperses or dissolves the resin in a dispersion medium or solvent under stirring, and then, in addition to the particles and surfactant, various additives are used in combination as required to obtain the desired solid content concentration. Dilute until adjusted.
[0128] また、塗布液の榭脂成分及び粒子を均一に分散させるため、さらに粗大な粒子凝 集物及び工程内埃等の異物を除去するために、塗布液を精密濾過することが好まし い。 [0128] Further, in order to uniformly disperse the resin component and particles in the coating solution, coarser particle agglomeration is performed. In order to remove foreign substances such as collected materials and dust in the process, it is preferable to finely filter the coating solution.
[0129] 塗布液を精密濾過するための濾材のタイプは、前記の性能を有していれば特に限 定はなぐ例えば、フィラメント型、フェルト型、メッシュ型が挙げられる。塗布液を精密 濾過するための濾材の材質は、前記の性能を有しかつ塗布液に悪影響を及ばさな い限り特に限定はなぐ例えば、ステンレス、ポリエチレン、ポリプロピレン、ナイロン等 が挙げられる。  [0129] The type of filter medium for microfiltration of the coating solution is not particularly limited as long as it has the above-mentioned performance. Examples thereof include a filament type, a felt type, and a mesh type. The material of the filter medium for finely filtering the coating solution is not particularly limited as long as it has the above-described performance and does not adversely affect the coating solution. Examples thereof include stainless steel, polyethylene, polypropylene, and nylon.
[0130] 塗布液を精密濾過するための濾材は、濾過粒子サイズ (初期濾過効率: 95%)が 2 5 μ m以下の濾材が好ましぐさらに好ましくは濾過性能 5 μ m以下の濾材、特に好ま しくは濾過性能 1 μ m以下の濾材である。最も好ましくは、濾過性能の異なるフィルタ 一を組み合わせて用いる方法である。濾過粒子サイズが 25 mを超える濾材を用い た場合、粗大凝集物の除去が不十分となりやすい。そのため、濾過で除去できなか つた粗大凝集物は、塗布乾燥後の一軸配向または二軸配向工程での配向応力によ り広がって、 100 m以上の凝集物として認識され、光学欠点の原因となりやすい。  [0130] The filter medium for microfiltration of the coating solution is preferably a filter medium having a filtration particle size (initial filtration efficiency: 95%) of 25 μm or less, more preferably a filter medium having a filtration performance of 5 μm or less, particularly Preferably, the filter medium has a filtration performance of 1 μm or less. Most preferred is a method of using a combination of filters having different filtration performance. When filter media with a filter particle size exceeding 25 m is used, removal of coarse aggregates tends to be insufficient. Therefore, coarse agglomerates that could not be removed by filtration spread due to orientation stress in the uniaxial or biaxial orientation process after coating and drying, and are recognized as agglomerates of 100 m or more, which is likely to cause optical defects. .
[0131] 塗布液に用いる原料について、以下で詳しく説明する。  [0131] The raw materials used for the coating solution will be described in detail below.
(a)樹脂  (a) Resin
本発明において、接着性改質層を構成する榭脂として、共重合ポリエステル (PEs) とポリウレタン (PU)を用いる。塗布液中の共重合ポリエステル (PEs)とポリウレタン( PU)の固形分基準の質量比は、(PEs)Z(PU) =70Z30〜30Z70が好ましぐ特 に好ましくは 60Ζ40〜40Ζ60である。なお、接着性改質層を構成する榭脂は、前 記の共重合ポリエステルとポリウレタン以外の第 3の榭脂を併用することもできる。また 、架橋剤を併用しても力まわない。  In the present invention, copolymerized polyesters (PEs) and polyurethane (PU) are used as the resin constituting the adhesive modification layer. The mass ratio of the copolymerized polyester (PEs) and polyurethane (PU) based on the solid content in the coating solution is preferably (PEs) Z (PU) = 70Z30 to 30Z70, particularly preferably 60 to 40 to 40 to 60. The resin constituting the adhesive modified layer can be used in combination with the above-described copolymer polyester and a third resin other than polyurethane. In addition, a cross-linking agent is not used together.
[0132] なお、本発明において、接着性改質層の表面のポリエステル相の面積率と、接着 性改質層の榭脂成分に対する共重合ポリエステルの質量比は、図 6に示すように、 対応していない。図 6では、接着性改質層の榭脂成分に対する共重合ポリエステル の質量比が 50%であっても、接着性改質層の表面の PEs表面分率は 30〜91%ま で変化することを明確に示している。このことは、接着性改質層の表面と内部で共重 合ポリエステルとポリウレタンの構成比が異なっていることを示唆している。すなわち、 この示唆は、接着性改質層の厚み方向で、共重合ポリエステルとポリウレタンの構成 比を任意に制御できることを意味する。 [0132] In the present invention, the area ratio of the polyester phase on the surface of the adhesive modified layer and the mass ratio of the copolyester to the resin component of the adhesive modified layer are as shown in FIG. Not done. In Fig. 6, the PEs surface fraction of the surface of the adhesive modified layer varies from 30 to 91% even when the mass ratio of the copolyester to the resin component of the adhesive modified layer is 50%. Is clearly shown. This suggests that the composition ratio of the copolyester and polyurethane is different between the surface and the inside of the adhesive modified layer. That is, This suggests that the composition ratio of the copolyester and the polyurethane can be arbitrarily controlled in the thickness direction of the adhesive modified layer.
[0133] また、接着性改質層における共重合ポリエステルとポリウレタンの比率を前記の範 囲内とすることにより、接着性改質層の表面の堅さ指数を 3. 0 15. Onmとすること 力 Sできる。接着性改質層の表面の堅さ指数が 3. Onm未満の場合、接着性改質層が 脆くなる。そのため、アクリル系榭脂を構成成分とするハードコート層、拡散層、プリズ ム層、などの機能層を形成後、所定のサイズに高速カッティングする加工工程におい て、高速カッティング時の剪断力に対し、十分な密着性が得られに《なる。また。接 着性改質層の表面の堅さ指数が 15. Onmを超える場合、耐ブロッキング性が低下し やすくなる。さらに、基材フィルムへの塗布性、密着性、耐溶剤性が不十分となる傾 向がある。  [0133] Further, by setting the ratio of the copolyester and polyurethane in the adhesive modified layer within the above-mentioned range, the surface hardness index of the adhesive modified layer is set to 3.0 15. Onm. S can. When the hardness index of the surface of the adhesive modified layer is less than 3. Onm, the adhesive modified layer becomes brittle. Therefore, after forming functional layers such as hard coat layer, diffusion layer, prism layer, etc. containing acrylic resin as a constituent component, in the processing process of high-speed cutting to a predetermined size, the shearing force during high-speed cutting is reduced. Thus, sufficient adhesion is obtained. Also. When the hardness index of the surface of the adhesion modified layer exceeds 15. Onm, the blocking resistance tends to decrease. Furthermore, there is a tendency that the coating property, adhesion and solvent resistance to the substrate film are insufficient.
[0134] 本発明にお 、て、水分散型共重合ポリエステル成分と親水性ポリウレタン成分の相 分離構造は、以下のように形成されると推定される。共通の溶媒で混合された両榭脂 成分は、塗布液内では均一に分散または溶解した状態である。 PETフィルム上に塗 布後、乾燥工程を経た塗布面は、明確な相分離構造を有しない均一状態である。そ の後、延伸工程及び熱固定処理工程における加熱処理により、相分離構造を発現 する。つまり、共重合ポリエステルを主成分とする相とポリウレタンを主成分とする相に 分離する。また相分離の進行にともない、より低い表面エネルギーを有する共重合ポ リエステル成分が、接着性改質層の表面近くに存在する比率が高くなるものと考えら れる。  In the present invention, it is presumed that the phase separation structure of the water-dispersed copolyester component and the hydrophilic polyurethane component is formed as follows. Both rosin components mixed with a common solvent are in a state of being uniformly dispersed or dissolved in the coating solution. After coating on the PET film, the coated surface after the drying process is in a uniform state without a clear phase separation structure. After that, the phase separation structure is developed by heat treatment in the stretching process and the heat setting process. That is, it is separated into a phase mainly composed of copolymer polyester and a phase mainly composed of polyurethane. As the phase separation progresses, it is considered that the ratio of the copolymerized polyester component having a lower surface energy is increased near the surface of the adhesive modified layer.
[0135] (共重合ポリエステル)  [0135] (Copolyester)
本発明で用いる接着性改質層に用いる共重合ポリエステルは、芳香族ジカルボン 酸成分と、グリコール成分としてエチレングリコールと分岐したグリコールを構成成分 とすることが好ましい。前記の分岐したグリコール成分とは、例えば、 2, 2—ジメチル 1, 3 プロパンジオール、 2—メチルー 2 ェチルー 1, 3 プロパンジオール、 2 ーメチルー 2 ブチルー 1, 3 プロパンジオール、 2—メチルー 2 プロピル 1, 3 プロパンジオール、 2—メチルー 2 イソプロピル 1, 3 プロパンジオール、 2— メチルー 2— n キシルー 1, 3 プロパンジオール、 2, 2 ジェチルー 1, 3 プロ パンジオール、 2 ェチルー 2— n—ブチルー 1, 3 プロパンジオール、 2 ェチル 2—n キシルー 1, 3 プロパンジオール、 2, 2 ジ—n—ブチルー 1, 3 プロ パンジオール、 2— n—ブチルー 2 プロピル 1, 3 プロパンジオール、及び 2, 2 ージ n キシルー 1, 3 プロパンジオールなどが挙げられる。 The copolyester used in the adhesive modification layer used in the present invention preferably comprises an aromatic dicarboxylic acid component and a glycol branched with ethylene glycol as the glycol component. Examples of the branched glycol component include 2,2-dimethyl 1,3 propanediol, 2-methyl-2-ethyl-1,3-propanediol, 2-methyl-2-butyl-1,3-propanediol, 2-methyl-2-propyl 1, 3 Propanediol, 2-methyl-2-isopropyl 1, 3 Propanediol, 2-Methyl-2-n Xylou 1, 3 Propanediol, 2, 2 Jetyl 1,3 Pro Pandiol, 2 ethyl 2-n-butyl-1,3 propanediol, 2 ethyl 2-n xylu 1,3 propanediol, 2,2 di-n-butyl-1,3 propanediol, 2-n-butyl-2-propyl 1,3 propanediol, and 2,2-di-n-xylu 1,3 propanediol.
[0136] 分岐したグリコール成分のモル比は、全グリコール成分に対し、下限が 10モル%で あることが好ましぐ特に好ましくは 20モル%である。一方、上限は 80モル%であるこ と力 子ましく、さらに好ましくは 70モル%、特に好ましくは 60モル%である。また、必 要に応じて、ジエチレングリコール、プロピレングリコール、ブタンジオール、へキサン ジオールまたは 1, 4 シクロへキサンジメタノールなどを併用してもよ!、。  [0136] The molar ratio of the branched glycol component is preferably 20 mol%, with the lower limit being preferably 10 mol% with respect to the total glycol component. On the other hand, the upper limit is preferably 80 mol%, more preferably 70 mol%, and particularly preferably 60 mol%. If necessary, diethylene glycol, propylene glycol, butanediol, hexanediol, or 1,4 cyclohexanedimethanol may be used in combination!
[0137] 芳香族ジカルボン酸成分としては、テレフタル酸およびイソフタル酸が最も好ましい 。全ジカルボン酸成分に対し、 10モル%以下の範囲で、他の芳香族ジカルボン酸、 特に、ジフヱ-ルカルボン酸及び 2, 6 ナルタレンジカルボン酸などの芳香族ジカ ルボン酸を加えて共重合させてもよ!、。  [0137] As the aromatic dicarboxylic acid component, terephthalic acid and isophthalic acid are most preferable. Addition of other aromatic dicarboxylic acids, especially aromatic dicarboxylic acids such as diphenylcarboxylic acid and 2,6-naltalenedicarboxylic acid, within a range of 10 mol% or less to the total dicarboxylic acid component Moyo!
[0138] 本発明で接着性改質層の榭脂成分として使用する共重合ポリエステルは、水溶性 または水分散が可能な榭脂を使用することが好ましい。そのために、前記のジカルボ ン酸成分の他に、ポリエステルに水分散性を付与させるため、 5—スルホイソフタル酸 そのアルカリ金属塩を 1 10モル%の範囲で使用するのが好ましぐ例えば、スルホ テレフタル酸、 5—スルホイソフタル酸、 4 スルホナフタレンイソフタル酸 2, 7 ジ カルボン酸および 5—(4ースルホフエノキシ)イソフタル酸またはそのアルカリ金属塩 を挙げることができる。  [0138] The copolyester used as the resin component of the adhesive modified layer in the present invention is preferably a water-soluble or water-dispersible resin. Therefore, it is preferable to use 5-sulfoisophthalic acid or an alkali metal salt thereof in the range of 110 mol% in order to impart water dispersibility to the polyester in addition to the dicarboxylic acid component. Mention may be made of terephthalic acid, 5-sulfoisophthalic acid, 4 sulfonaphthalene isophthalic acid 2,7 dicarboxylic acid and 5- (4-sulfophenoxy) isophthalic acid or alkali metal salts thereof.
[0139] (ポリウレタン)  [0139] (Polyurethane)
接着性改質層に用いるポリウレタンは、水溶性または水分散が可能な榭脂を使用 することが好ましい。例えば、ブロック型イソシァネート基を含有する榭脂であって、末 端イソシァネート基を親水性基で封鎖 (以下、ブロックと略す)した、熱反応型の水溶 性ウレタンなどが挙げられる。  As the polyurethane used for the adhesive modification layer, it is preferable to use water-soluble or water-dispersible resin. For example, it is a resin containing a block type isocyanate group, in which the terminal isocyanate group is blocked with a hydrophilic group (hereinafter abbreviated as “block”), a heat-reactive water-soluble urethane, and the like.
[0140] 前記のイソシァネート基のブロック化剤としては、重亜硫酸塩類及びスルホン酸基 を含有したフエノール類、アルコール類、ラタタム類ォキシム類、または活性メチレン 化合物類等が挙げられる。ブロック化されたイソシァネート基はウレタンプレボリマー を親水化あるいは水溶化する。フィルム製造時の乾燥工程あるいは熱固定処理工程 で、前記の榭脂に熱エネルギーが与えられると、ブロック化剤がイソシァネート基から はずれるため、前記の榭脂は自己架橋した編み目に混合した水分散性共重合ポリ エステルを固定化するとともに、前記の榭脂の末端基等とも反応する。塗布液調整中 の榭脂は親水性であるため耐水性が悪いが、塗布、乾燥、熱セットして熱反応が完 了すると、ウレタン榭脂の親水基すなわちブロック化剤がはずれるため、耐水性が良 好な塗膜が得られる。 [0140] Examples of the blocking agent for the isocyanate group include bisulphites and sulfonic acid group-containing phenols, alcohols, ratata oximes, or active methylene compounds. Blocked isocyanate groups are urethane precursors Is made hydrophilic or water-soluble. In the drying process or heat setting process during film production, when thermal energy is applied to the above-mentioned resin, the blocking agent is detached from the isocyanate group, so that the resin is mixed with a water-dispersible oil mixed into a self-cross-linked stitch. While immobilizing the copolymerized polyester, it reacts with the end groups of the above-mentioned resin. The resin used during preparation of the coating solution is poor in water resistance because it is hydrophilic.However, when the thermal reaction is completed after application, drying, and heat setting, the hydrophilic group of the urethane resin, i.e., the blocking agent, is released. A good coating film can be obtained.
[0141] 前記のブロック化剤の中で、フィルム製造工程における熱処理温度、熱処理時間 でブロック化剤がイソシァネート基からはずれる点、及び工業的に入手可能な点から [0141] Among the blocking agents described above, the blocking agent is released from the isocyanate group at the heat treatment temperature and heat treatment time in the film production process, and is commercially available.
、重亜硫酸塩類が最も好ましい。前記の榭脂において使用される、ウレタンプレポリ マーの化学組成としては、(1)分子内に 2個以上の活性水素原子を有する、有機ポリ イソシァネート、あるいは分子内に少なくとも 2個の活性水素原子を有する分子量が 2 00-20, 000のィ匕合物、(2)分子内に 2個以上のイソシァネート基を有する、有機ポ リイソシァネート、あるいは、(3)分子内に少なくとも 2個活性水素原子を有する鎖伸 長剤を反応せしめて得られる、末端イソシァネート基を有する化合物である。 Bisulfites are most preferred. The chemical composition of the urethane prepolymer used in the above-mentioned resin includes (1) organic polyisocyanate having two or more active hydrogen atoms in the molecule, or at least two active hydrogen atoms in the molecule. (2) an organic polyisocyanate having two or more isocyanate groups in the molecule, or (3) at least two active hydrogen atoms in the molecule. It is a compound having a terminal isocyanate group, which is obtained by reacting a chain extender.
[0142] 前記の(1)の化合物として一般に知られているのは、末端または分子中に 2個以上 のヒドロキシル基、カルボキシル基、アミノ基あるいはメルカプト基を含むものであり、 特に好まし 、ィ匕合物としては、ポリエーテルポリオールおよびポリエーテルエステル ポリオール等が挙げられる。また、ポリエーテルポリオールとしては、例えば、エチレン ォキシド及び、プロピレンォキシド等アルキレンォキシド類、あるいはスチレンォキシド およびェピクロルヒドリン等を重合したィ匕合物、あるいはそれらのランダム重合、ブロッ ク重合あるいは多価アルコールへの付加重合を行って得られた化合物が挙げられる [0142] Generally known as the compound (1) is a compound containing two or more hydroxyl groups, carboxyl groups, amino groups or mercapto groups at the terminal or in the molecule. Examples of the compound include polyether polyol and polyether ester polyol. Examples of the polyether polyol include ethylene oxide and alkylene oxides such as propylene oxide, or compounds obtained by polymerizing styrene oxide and epichlorohydrin, or random polymerization, block polymerization or the like. Examples include compounds obtained by addition polymerization to polyhydric alcohols.
[0143] ポリエステルポリオール及びポリエーテルエステルポリオールとしては、主として直 鎖状あるいは分岐状の化合物が挙げられる。コハク酸、アジピン酸、フタル酸及び無 水マレイン酸等の多価の飽和あるいは不飽和カルボン酸、ある 、は該カルボン酸無 水物等と、エチレングリコール、ジエチレングリコール、 1, 4 ブタンジオール、ネオ ペンチルグリコール、 1, 6 へキサンジオール及びトリメチロールプロパン等の多価 の飽和及び不飽和のアルコール類、比較的低分子量のポリエチレングリコールおよ びポリプロピレングリコール等のポリアルキレンエーテルグリコール類、あるいはそれ らアルコール類の混合物とを縮合することにより得ることができる。 [0143] Examples of the polyester polyol and the polyether ester polyol include mainly linear or branched compounds. Polyvalent saturated or unsaturated carboxylic acids such as succinic acid, adipic acid, phthalic acid, and anhydrous maleic acid, or carboxylic acid anhydrous, ethylene glycol, diethylene glycol, 1,4 butanediol, neopentyl Multivalents such as glycol, 1, 6 hexanediol and trimethylolpropane It can be obtained by condensing with a saturated and unsaturated alcohol, polyalkylene ether glycols such as polyethylene glycol and polypropylene glycol having a relatively low molecular weight, or a mixture of these alcohols.
[0144] さらに、ポリエステルポリオールとしては、ラタトン及びヒドロキシ酸力も得られるポリ エステル類が挙げられる。また、ポリエーテルエステルポリオールとしては、あらかじめ 製造されたポリエステル類にエチレンォキシドあるいはプロピレンォキシド等を付加せ しめたポリエーテルエステル類を使用することができる。  [0144] Further, examples of the polyester polyol include latatones and polyesters capable of obtaining hydroxy acidity. Further, as the polyether ester polyol, polyether esters obtained by adding ethylene oxide or propylene oxide or the like to previously produced polyesters can be used.
[0145] 前記の(2)の有機ポリイソシァネートとしては、トルイレンジイソシァネートの異性体 類、 4, 4ージフエ-ルメタンジイソシァネート等の芳香族ジイソシァネート類、キシリレ ンジイソシァネート等の芳香族脂肪族ジイソシァネート類、イソホロンジイソシァネート 及び 4, 4ージシクロへキシルメタンジイソシァネート等の脂環式ジイソシァネート類、 へキサメチレンジイソシァネート、および 2, 2, 4 トリメチルへキサメチレンジイソシァ ネート等の脂肪族ジイソシァネート類、あるいはこれらの化合物を単一ある 、は複数 でトリメチロールプロパン等とあら力じめ付加させたポリイソシァネート類が挙げられる [0145] Examples of the organic polyisocyanate (2) include isomers of toluylene diisocyanate, aromatic diisocyanates such as 4,4-diphenylmethane diisocyanate, and xylylene diisocyanate. Alicyclic diisocyanates such as aromatic aliphatic diisocyanates, isophorone diisocyanate, and 4,4-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate, and 2, 2, 4 to trimethyl Aliphatic diisocyanates such as xamethylene diisocyanate, or polyisocyanates obtained by intensive addition of these compounds with trimethylolpropane, etc.
[0146] 前記の(3)の少なくとも 2個の活性水素を有する鎖伸長剤としては、エチレングリコ ール、ジエチレングリコール、 1, 4 ブタンジオール、及び 1, 6 へキサンジオール 等のダリコール類、グリセリン、トリメチロールプロパン、およびペンタエリスリトール等 の多価アルコール類、エチレンジァミン、へキサメチレンジァミン、およびピぺラジン 等のジァミン類、モノエタノールァミンおよびジエタノールァミン等のァミノアルコール 類、チオジェチレンダルコール等のチォジグリコール類、あるいは水が挙げられる。 [0146] Examples of the chain extender having at least two active hydrogens in (3) above include dalicols such as ethylene glycol, diethylene glycol, 1,4 butanediol, and 1,6 hexanediol, glycerin, Polymethyl alcohols such as trimethylolpropane and pentaerythritol, diamins such as ethylenediamine, hexamethylenediamine, and piperazine, amino alcohols such as monoethanolamine and diethanolamine, thiojetylene Examples include thiodiglycols such as dalcole, or water.
[0147] ウレタンプレボリマーを合成するには、通常、前記の鎖伸長剤を用いた一段式ある いは多段式イソシァネート重付加方法により、 150°C以下、好ましくは 70〜120°Cの 温度において、 5分ないし数時間反応させる。活性水素原子に対するイソシァネート 基の比は、 1以上であれば自由に選べる力 得られるウレタンプレボリマー中に遊離 のイソシァネート基が残存することが必要である。さらに、遊離のイソシァネート基の 含有量は 10質量%以下であればよいが、ブロック化された後のウレタンポリマー水溶 液の安定性を考慮すると、 7質量%以下であるのが好ま 、。 [0148] 得られた前記のウレタンプレボリマーは、好ましくは重亜硫酸塩を用いてブロックィ匕 を行う。重亜硫酸塩水溶液と混合し、約 5分〜 1時間、よく攪拌しながら反応を進行さ せる。反応温度は 60°C以下とするのが好ましい。その後、水で希釈して適当な濃度 にして、熱反応型水溶性ウレタン組成物とする。該組成物は使用する際、適当な濃 度および粘度に調製するが、通常 80〜200°C前後に加熱すると、ブロック剤の重亜 硫酸塩が解離し、活性なイソシァネート基が再生するために、プレボリマーの分子内 あるいは分子間で起こる重付加反応によってポリウレタン重合体が生成する、あるい は他の官能基への付加を起こす性質を有するようになる。 [0147] In order to synthesize a urethane prepolymer, it is usually at a temperature of 150 ° C or less, preferably 70 to 120 ° C, by a single-stage or multi-stage isocyanate polyaddition method using the chain extender described above. React for 5 minutes to several hours. If the ratio of isocyanate groups to active hydrogen atoms is 1 or more, it is necessary for free isocyanate groups to remain in the urethane prepolymer obtained. Furthermore, the content of free isocyanate groups may be 10% by mass or less, but considering the stability of the urethane polymer aqueous solution after being blocked, it is preferably 7% by mass or less. [0148] The obtained urethane prepolymer is preferably blocked using bisulfite. Mix with an aqueous bisulfite solution and allow the reaction to proceed with good agitation for about 5 minutes to 1 hour. The reaction temperature is preferably 60 ° C or lower. Then, it is diluted with water to an appropriate concentration to obtain a heat-reactive water-soluble urethane composition. When used, the composition is prepared to an appropriate concentration and viscosity. However, when heated to about 80 to 200 ° C, the bisulfite of the blocking agent is dissociated and the active isocyanate group is regenerated. A polyurethane polymer is produced by a polyaddition reaction that occurs within or between molecules of the prepolymer, or has the property of causing addition to other functional groups.
[0149] 前記に説明したブロック型イソシァネート基を含有する榭脂 (B)の 1例としては、第 一工業製薬 (株)製の商品名エラストロンが代表的に例示される。エラストロンは、重 亜硫酸ソーダによってイソシァネート基をブロックしたものであり、分子末端に強力な 親水性を有する、力ルバモイルスルホネート基が存在するため、水溶性となっている  [0149] As an example of the resin (B) containing the block type isocyanate group described above, a trade name Elastron manufactured by Daiichi Kogyo Seiyaku Co., Ltd. is typically exemplified. Elastolone is a water-soluble because the isocyanate group is blocked with sodium bisulfite, and there is a strong rubamoyl sulfonate group with strong hydrophilicity at the molecular end.
[0150] (b)溶媒 [0150] (b) Solvent
本発明においては、溶媒とは、榭脂を溶解する液だけではなぐ榭脂を粒子状に分 散させるために用いる分散媒も広義的に含むものである。本発明を実施するために は、有機溶媒、水性溶媒等の各種溶媒を用いることができる。  In the present invention, the term “solvent” broadly includes a dispersion medium used to disperse the resin in a particulate form, which is not only the liquid that dissolves the resin. In order to carry out the present invention, various solvents such as an organic solvent and an aqueous solvent can be used.
[0151] 塗布液に用いる溶媒は、水と、エタノール、イソプロピルアルコール、ベンジルアル コール等のアルコール類を、全塗布液に占める割合が 30〜50質量%の範囲で混合 した混合液が好ましい。さら〖こ、 10質量%未満であれば、アルコール類以外の有機 溶媒を溶解可能な範囲で混合してもよい。ただし、塗布液中、アルコール類とその他 の有機溶媒との合計は、 50質量%未満とする。  [0151] The solvent used in the coating solution is preferably a mixed solution in which water and alcohols such as ethanol, isopropyl alcohol, and benzyl alcohol are mixed within a range of 30 to 50% by mass in the total coating solution. Furthermore, if it is less than 10% by mass, an organic solvent other than alcohols may be mixed in a range that can be dissolved. However, the total of alcohols and other organic solvents in the coating solution should be less than 50% by mass.
[0152] 有機溶媒の添加量が、全溶媒に対し 50質量%未満の場合、塗布乾燥時に乾燥性 が向上するとともに、水単独の場合と比較して塗布層の外観が向上するという利点が ある。有機溶媒の添加量が、全溶媒に対し 50質量%以上の場合には、溶媒の蒸発 速度が速くなり、塗布中に塗布液の濃度変化が起こりやすくなる。その結果、塗布液 の粘度が上昇して、塗布性が低下するために、塗布膜の外観不良を起こす場合があ る。さらに、有機溶媒の揮発により、火災などの危険性も高くなる。また、有機溶媒の 添加量が全溶媒に対し 30質量%未満では、相対的に水の比率が増加し、親水性の 高いポリウレタン成分が接着性改質層の表面の近くに偏析する。その結果、接着性 改質層の表面の PEs相の面積率、あるいは接着性改質層の切削面におけるハード コート層との界面近くの PU相の面積率を適切な範囲にすることが難しくなる。 [0152] When the addition amount of the organic solvent is less than 50% by mass with respect to the total solvent, there is an advantage that the drying property is improved during coating and drying, and the appearance of the coating layer is improved as compared with the case of water alone. . When the addition amount of the organic solvent is 50% by mass or more based on the total solvent, the evaporation rate of the solvent is increased and the concentration of the coating solution is likely to change during coating. As a result, the viscosity of the coating solution increases and the coating property is lowered, which may cause a poor appearance of the coating film. Furthermore, due to the volatilization of the organic solvent, the risk of fire and the like increases. Also, the organic solvent When the added amount is less than 30% by mass with respect to the total solvent, the ratio of water is relatively increased, and the highly hydrophilic polyurethane component segregates near the surface of the adhesive modified layer. As a result, it is difficult to make the area ratio of the PEs phase on the surface of the adhesive modified layer, or the area ratio of the PU phase near the interface with the hard coat layer in the cutting surface of the adhesive modified layer within an appropriate range. .
[0153] (c)塗布液の pH調整  [0153] (c) pH adjustment of coating solution
本発明で接着性改質層形成のために使用する塗布液は、 pHが 5以上 8未満の範 囲であることが好ましい。塗布液の pHが 5未満では、接着性改質層の表面の PEs相 の面積率が大きくなり、あるいは接着性改質層の切削面におけるハードコート層との 界面近くの PU相の面積率が小さくなり、密着性に劣る傾向がある。一方、塗布液の p Hが 8以上では、粒子の種類によっては顕著な凝集が起こり、ヘーズが上昇し透明性 が悪ィ匕するため好ましくない。 pH調整剤としては、密着性、耐ブロッキング性、コート 性に悪影響を及ぼさないか、無視できるものであれば特に限定されない。例えば、 p Hを高くする場合には重曹ある 、は炭酸ナトリウムを、 pHを低くする場合は酢酸等を 用!/、ることができる。  The coating solution used for forming the adhesive modified layer in the present invention preferably has a pH in the range of 5 or more and less than 8. When the pH of the coating solution is less than 5, the area ratio of the PEs phase on the surface of the adhesive modified layer increases, or the area ratio of the PU phase near the interface with the hard coat layer on the cut surface of the adhesive modified layer increases. It tends to be small and inferior in adhesion. On the other hand, if the pH of the coating solution is 8 or more, depending on the type of particles, significant aggregation occurs, haze increases, and transparency becomes poor. The pH adjuster is not particularly limited as long as it does not adversely affect adhesion, blocking resistance, and coatability or can be ignored. For example, sodium bicarbonate or sodium carbonate can be used to increase pH, and acetic acid or the like can be used to lower pH.
[0154] (d)界面活性剤の併用  [0154] (d) Concomitant use of surfactant
前記の水性塗布液を熱可塑性榭脂フィルムの表面に塗布する際には、該フィルム への濡れ性を向上させ、塗布液を均一に塗布するために一般に界面活性剤が使用 される。本発明では、それ以外に、接着性改質層の表面や内部の相分離構造を制 御するための手段の 1つとして、界面活性剤を使用することができる。  When the aqueous coating solution is applied to the surface of the thermoplastic resin film, a surfactant is generally used to improve the wettability of the film and uniformly apply the coating solution. In the present invention, a surfactant can be used as one of means for controlling the surface of the adhesive modified layer and the internal phase separation structure.
[0155] 界面活性剤は、良好な塗布性が得られ、且つ、接着性改質層の表面や内部で適 切な相分離構造が得られるものであれば、特に種類は限定されない。界面活性剤の 中でも、微量の添加で良好な塗布性を得るにはフッ素系界面活性剤が好適である。 さらに、接着性改質層の表面の PEs相の面積率、あるいは接着性改質層の切削面 におけるハードコート層との界面近くの PU相の面積率を適切な範囲とするためには 、カチオン系界面活性剤またはノ-オン系界面活性剤を、塗布液に対し 0. 01〜0. 18質量%配合することが好ま 、。  [0155] The type of the surfactant is not particularly limited as long as it has good coatability and an appropriate phase separation structure can be obtained on the surface or inside of the adhesion-modified layer. Among the surfactants, a fluorosurfactant is preferable in order to obtain good coatability by adding a small amount. Furthermore, in order to make the area ratio of the PEs phase on the surface of the adhesive modified layer, or the area ratio of the PU phase near the interface with the hard coat layer in the cutting surface of the adhesive modified layer, within an appropriate range, It is preferable to add 0.01 to 0.18% by mass of a surfactant or a non-ionic surfactant with respect to the coating solution.
[0156] ァ-オン性界面活性剤を使用した場合、前記に示した共重合ポリエステル、及びポ リウレタンとの相溶性を高める場合があり、本発明で規定する相分離構造が得られに くい。界面活性剤の添加量は、ハードコート層や拡散層などの機能層との密着性を 阻害せず、良好な塗布性を得られる範囲であれば適宜選択することができる。例え ば、フッ素系界面活性剤の場合、純水に対する臨界ミセル濃度力もその 30倍以下が 好適である。臨界ミセル濃度の 30倍以上では塗布液中に含まれる粒子が凝集しや すくなるため、得られた積層フィルムのヘーズが上昇し、特に光学機能性フィルムの 基材フィルムとして好ましくない。また、界面活性剤成分が接着性改質層の表面にブ リードアウトして、密着性に悪影響を及ぼす場合もある。一方、臨界ミセル濃度以下で は、良好な塗布性が得られない。また、接着性改質層の表面の PEs相の面積率、あ るいは接着性改質層の切削面におけるハードコート層との界面近くの PU相の面積 率を適切な範囲に制御することが難しくなる。 [0156] When a ionic surfactant is used, the compatibility with the above-mentioned copolymerized polyester and polyurethane may be increased, and the phase separation structure defined in the present invention may not be obtained. Peg. The addition amount of the surfactant can be appropriately selected as long as it does not inhibit the adhesion with a functional layer such as a hard coat layer or a diffusion layer and can provide good coating properties. For example, in the case of a fluorinated surfactant, the critical micelle concentration force with respect to pure water is preferably 30 times or less. When the critical micelle concentration is 30 times or more, the particles contained in the coating solution are easily aggregated, so that the haze of the obtained laminated film is increased, which is not preferable as a base film for an optical functional film. In addition, the surfactant component may bleed out on the surface of the adhesion modified layer, and adversely affect the adhesion. On the other hand, good coatability cannot be obtained at a critical micelle concentration or less. In addition, the area ratio of the PEs phase on the surface of the adhesive modified layer, or the area ratio of the PU phase near the interface with the hard coat layer on the cutting surface of the adhesive modified layer can be controlled within an appropriate range. It becomes difficult.
[0157] (界面活性剤の精製)  [0157] (Surfactant purification)
本発明に用いる界面活性剤は、精製したものを用いることが好ましい。上巿されて いる界面活性剤は、一般に、微量な不純物を含有している場合が多い。特に、不純 物であるポリエチレングリコールは、その含有量によっては良好な相分離構造を得る のを阻害する場合がある。これを防止するために、不純物を界面活性剤から除去す る前処理を行 ヽ、精製した界面活性剤を使用することが好ま ヽ。  The surfactant used in the present invention is preferably a purified one. In general, the surfactants listed above often contain a small amount of impurities. In particular, impure polyethylene glycol may inhibit obtaining a good phase separation structure depending on the content thereof. To prevent this, it is preferable to use a purified surfactant that has been pretreated to remove impurities from the surfactant.
[0158] 不純物を除去する前処理工程としては、界面活性剤を変質させず、不純物を除去 できれば方法は特に限定されない。例えば、次のような方法が挙げられる。  [0158] The pretreatment process for removing impurities is not particularly limited as long as the impurities can be removed without altering the surfactant. For example, the following method is mentioned.
少なくとも界面活性剤とポリエチレングリコールを溶解可能な有機溶媒に溶解し、低 温で静置し、主成分である界面活性剤を飽和沈降させ、次いで濾過し、純度を向上 させた界面活性剤を取り出す方法が挙げられる。パーフルォロアルキルエチレンォ キシド付加物系界面活性剤の場合、イソプロピルアルコールに 30°Cの温浴上で加熱 溶解して 0°Cで 24時間程度静置後、沈殿物を濾過し取り出すことによって純度を向 上させた界面活性剤を得ることができる。  Dissolve at least the surfactant and polyethylene glycol in an organic solvent that can be dissolved, let stand at low temperature, saturate and precipitate the surfactant as the main component, and then filter out the surfactant with improved purity A method is mentioned. In the case of perfluoroalkylethylene oxide adduct surfactants, heat dissolve in isopropyl alcohol on a 30 ° C hot bath, leave it at 0 ° C for about 24 hours, and filter out the precipitate. A surfactant with improved purity can be obtained.
[0159] (e)粒子  [0159] (e) Particle
接着性改質基材フィルムのヘーズは 1. 5%以下であることが、透明性が高度に要 求される用途でノヽードコートフィルムゃ該フィルムを用いた光学機能性フィルムを使 用する際に好ましい。前記のヘーズは 1. 0%以下であることがさらに好ましい。へ一 ズが 1. 5%を超えると、フィルムを LCD用のレンズフィルムや、バックライト用基材フィ ルム等に用 、た場合、画面の鮮明度が低下するので好ましくな!、。 Adhesive modified base film has a haze of 1.5% or less, but for applications that require a high degree of transparency, a node coat film should be used as an optical functional film. Especially preferred. The haze is more preferably 1.0% or less. Heichi If the film thickness exceeds 1.5%, it is not preferable because the sharpness of the screen will be reduced if the film is used for LCD lens film or backlight substrate film.
[0160] 接着性改質基材フィルムのヘーズを 1. 5%以下にするためには、熱可塑性榭脂フ イルム中に粒子を含有させな ヽことが好まし ヽ。熱可塑性榭脂フィルム中に粒子を含 有させない場合、耐スクラッチ性やロール状に卷取る際ゃ卷出す際のハンドリング性 (滑り性、走行性、ブロッキング性、卷取り時の随伴空気の空気抜け性など)を改善す るために、接着性改質層中に適切な大きさの粒子を特定量含有させて、接着性改質 層の表面に適度な凹凸を形成させることが好ましい。  [0160] In order to reduce the haze of the adhesive modified base film to 1.5% or less, it is preferable not to include particles in the thermoplastic resin film. When particles are not included in the thermoplastic resin film, scratch resistance and handling properties when squeezed into rolls (sliding property, running property, blocking property, air escape from the air during removal) In order to improve the property, it is preferable to include a specific amount of particles having an appropriate size in the adhesive modified layer to form appropriate irregularities on the surface of the adhesive modified layer.
[0161] 粒子としては、共重合ポリエステル、またはポリウレタンと親和性の高い粒子が好ま しぐその両者に対する親和性がどちらかの相に偏在する程度の差があることが好ま しい。粒子を相分離した榭脂の一方に粒子を偏在させることによって、粒子が適度に 集まり、比較的少ない粒子の添加で、すなわちヘーズを大幅に上昇させることなく優 れた耐ブロッキング性を得ることができるのである。  [0161] As the particles, particles having a high affinity with copolymerized polyester or polyurethane are preferable, and it is preferable that there is a difference that the affinity for both is unevenly distributed in either phase. By making the particles unevenly distributed in one of the phase-separated waxes, the particles are gathered moderately, and by adding relatively few particles, that is, without significantly increasing haze, excellent blocking resistance can be obtained. It can be done.
[0162] 接着性改質層に含有させる粒子としては、炭酸カルシウム、リン酸カルシウム、非晶 性シリカ、結晶性のガラスフィラー、カオリン、タルク、二酸化チタン、アルミナ、シリカ 一アルミナ複合酸ィ匕物粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオラ イト、硫ィ匕モリブデン、マイ力などの無機粒子、架橋ポリスチレン粒子、架橋アクリル系 榭脂粒子、架橋メタクリル酸メチル系粒子、ベンゾグアナミン'ホルムアルデヒド縮合 物粒子、メラミン 'ホルムアルデヒド縮合物粒子、ポリテトラフルォロエチレン粒子など の耐熱性高分子粒子が挙げられる。  [0162] Particles to be included in the adhesion modified layer include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica monoalumina composite oxide particles, Inorganic particles such as barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfate, My power, crosslinked polystyrene particles, crosslinked acrylic resin particles, crosslinked methyl methacrylate particles, benzoguanamine 'formaldehyde condensate particles And heat-resistant polymer particles such as melamine 'formaldehyde condensate particles and polytetrafluoroethylene particles.
[0163] これらの粒子の中でも、シリカ粒子が次の点力 好適である。  [0163] Among these particles, silica particles are suitable for the following point power.
第 1の利点は、接着性改質層の榭脂成分と屈折率が比較的近いため、高透明のフ イルムを得やすいという点である。第 2の利点は、シリカ粒子は相分離したポリウレタン 相に偏在しやすいという特徴があり、接着性改質層の表面に存在するポリウレタン相 の耐ブロッキング性に劣ると 、う、ポリウレタン形榭脂固有の性質を補完することがで きる点である。これは、シリカ粒子とポリウレタンとの表面エネルギーが共重合ポリエス テルよりも近ぐ親和性が高いためと考えられる。  The first advantage is that a highly transparent film can be easily obtained because the refractive index of the adhesive modified layer is relatively close to that of the resin component. The second advantage is that silica particles tend to be unevenly distributed in the phase-separated polyurethane phase, and the polyurethane phase existing on the surface of the adhesive modified layer has poor blocking resistance. It is a point that can complement the nature of. This is presumably because the surface energy between the silica particles and the polyurethane is closer to that of the copolymer polyester and has a higher affinity.
[0164] また、粒子の形状は特に限定されないが、易滑性を付与する点からは、球状に近 い粒子が好ましい。 [0164] In addition, the shape of the particles is not particularly limited. Particles are preferred.
[0165] 接着性改質層中の粒子の含有量は、接着性改質層に対して 20質量%以下とする ことが好ましぐさらに好ましくは 15質量%以下、特に好ましくは 10質量%以下にす る。接着性改質層中の粒子の含有量が 20質量%を超えると、透明性が悪化し、フィ ルムの密着性も不十分となりやすい。一方、粒子の含有量の下限は、接着性改質層 に対して好ましくは 0. 1質量%、さらに好ましくは 1質量%、特に好ましくは 3質量%と する。  [0165] The content of particles in the adhesive modified layer is preferably 20% by mass or less, more preferably 15% by mass or less, particularly preferably 10% by mass or less, based on the adhesive modified layer. Make it. If the content of particles in the modified adhesive layer exceeds 20% by mass, the transparency will deteriorate and the film adhesion will tend to be insufficient. On the other hand, the lower limit of the content of particles is preferably 0.1% by mass, more preferably 1% by mass, and particularly preferably 3% by mass with respect to the adhesive modified layer.
[0166] また、接着性改質層中には平均粒径の異なる粒子を 2種類以上含有させてもょ 、。  [0166] Further, two or more kinds of particles having different average particle diameters may be contained in the adhesion modified layer.
また、同種の粒子で平均粒径の異なるものを含有させてもよい。いずれにしても、粒 子の平均粒径、および総含有量が前記の範囲とすればよい。前記の塗布液を塗布 する際には、塗布液中の粒子の粗大凝集物を除去するために、塗布直前に塗布液 が精密濾過されるように濾材を配置することが好まし ヽ。  Moreover, you may contain the same kind of particle | grains from which an average particle diameter differs. In any case, the average particle size and the total content of the particles may be in the above ranges. When applying the coating solution, it is preferable to arrange a filter medium so that the coating solution is precisely filtered immediately before coating in order to remove coarse aggregates of particles in the coating solution.
[0167] また、粒子の平均粒径は 20〜150nmが好ましぐさらに好ましくは 40〜60nmであ る。平均粒径が 20nm未満であると、十分な耐ブロッキング性を得ることが困難な他、 耐スクラッチ性が悪ィ匕する傾向がある。一方、粒子の平均粒径が 150nmを超えると、 ヘーズが上昇し且つ、粒子が脱落しやすくなるため好ましくない。  [0167] The average particle size of the particles is preferably 20 to 150 nm, more preferably 40 to 60 nm. If the average particle size is less than 20 nm, it is difficult to obtain sufficient blocking resistance, and scratch resistance tends to deteriorate. On the other hand, if the average particle diameter of the particles exceeds 150 nm, the haze increases and the particles easily fall off.
[0168] 本発明では、平均粒径が 20〜150nmの粒子 Aのみでは、十分な耐ブロッキング 性及び耐スクラッチ性が得られない場合がある。そのために、さらに耐ブロッキング性 及び耐スクラッチ性を向上させるために、さらに平均粒径の大きな粒子 Bを少量併用 することが好ましい。平均粒径の大きな粒子 Bの平均粒径は 160〜1000nmが好ま しぐ特〖こ好ましくは 200〜800nmである。粒子 Bの平均粒径が 160nm未満の場合 、耐スクラッチ性、滑り性、巻き性が悪ィ匕する場合ある。一方、粒子 Bの平均粒径が 1 OOOnmを超える場合、ヘーズが高くなる傾向がある。また、粒子 Bは一次粒子が凝 集した凝集体粒子であることが好ましぐ凝集状態での平均粒径と一次粒子との平均 粒径の比を 4倍以上の粒子を用いることが、耐スクラッチ性の点力も好ま U、。  [0168] In the present invention, sufficient blocking resistance and scratch resistance may not be obtained with only particles A having an average particle diameter of 20 to 150 nm. Therefore, in order to further improve the blocking resistance and scratch resistance, it is preferable to use a small amount of particles B having a larger average particle size. The average particle size of particles B having a large average particle size is preferably 160 to 1000 nm, more preferably 200 to 800 nm. When the average particle size of the particle B is less than 160 nm, scratch resistance, slipping property and winding property may be deteriorated. On the other hand, when the average particle size of the particle B exceeds 1 OOOnm, the haze tends to increase. In addition, it is preferable that the particle B is an aggregate particle in which primary particles are aggregated, and it is preferable to use a particle having a ratio of the average particle size in the aggregated state to the average particle size of the primary particle of 4 times or more. U, who also likes the point of scratch.
[0169] 2種類の粒子を用いる場合、例えば接着性改質層中の粒子 A (平均粒径: 20〜15 Onm)と粒子 B (平均粒径: 160〜1000nm)の含有量比(P1ZP2)を 5〜30とし、か つ粒子 Bの含有量を接着性改質層の固形分に対し 0. 1〜1質量%とする。 2種類の 特定粒径の粒子の含有量を前記の範囲に制御することは、接着性改質層の表面の 三次元中心面平均表面粗さを適正化し、透明性と、ハンドリング性ゃ耐ブロッキング 性を両立させる上で好適である。接着性改質層に対し、粒子 Bの含有量が 1質量% を超えると、ヘーズの上昇が著しくなる傾向がある。 [0169] When two types of particles are used, for example, the content ratio (P1ZP2) of particle A (average particle size: 20 to 15 Onm) and particle B (average particle size: 160 to 1000 nm) in the adhesive modified layer 5 to 30 and the content of the particles B is 0.1 to 1% by mass with respect to the solid content of the adhesive modified layer. Two kinds Controlling the content of particles with a specific particle size within the above range optimizes the three-dimensional center plane average surface roughness of the surface of the adhesive modified layer, and achieves both transparency and handling resistance and blocking resistance. It is suitable for making it. When the content of the particle B exceeds 1% by mass with respect to the adhesion modified layer, the haze tends to increase remarkably.
[0170] 前記の粒子の平均一次粒径及び平均粒径の測定は下記方法により行う。  [0170] The average primary particle diameter and the average particle diameter of the particles are measured by the following method.
粒子を電子顕微鏡で写真を撮り、最も小さい粒子 1個の大きさが 2〜5mmとなるよう な倍率で、 300〜500個の粒子の最大径を測定し、その平均値を平均一次粒径また は平均粒径とする。また、積層フィルムの接着性改質層中の粒子の平均粒径を求め る場合は、透過型電子顕微鏡 (TEM)を用いて、倍率 12万倍で積層フィルムの断面 を撮影し、接着性改質層の断面に存在する粒子の最大径を求めることができる。凝 集体力ゝらなる粒子 Bの平均粒径は、積層フィルムの接着性改質層の断面を、光学顕 微鏡を用いて倍率 200倍で 300〜500個撮影し、その最大径を測定する。  Take a picture of the particles with an electron microscope and measure the maximum diameter of 300-500 particles at a magnification such that the size of one of the smallest particles is 2-5 mm. Is the average particle size. In addition, when obtaining the average particle size of the particles in the adhesion modified layer of the laminated film, a cross section of the laminated film is photographed at a magnification of 120,000 using a transmission electron microscope (TEM) to improve the adhesion. The maximum diameter of the particles existing in the cross section of the quality layer can be determined. The average particle size of particle B, which has agglomeration force, is measured by taking 300-500 cross sections of the adhesive-modified layer of the laminated film at a magnification of 200 using an optical microscope and measuring the maximum diameter. .
[0171] (f)架橋剤  [0171] (f) Crosslinking agent
携帯電話、 PDA,モパイル型コンピュータのように、情報端末を屋外で使用する機 会が増えている。さらに、カーナビゲーシヨンなどに用いられるタツチパネルのように、 夏場に高温になる車内で使用される材料も増えている。したがって、このような高温、 高湿の過酷な環境下でも品質変化が少ないハードコートフィルム、すなわち、耐湿熱 密着性に優れたフィルム力 このような用途では要望されている。  Opportunities to use information terminals outdoors, such as mobile phones, PDAs, and mopile computers, are increasing. In addition, materials used in cars, such as touch panels used in car navigation systems, are becoming hot during summer. Therefore, there is a demand for a hard coat film with little change in quality even under such harsh environments of high temperature and high humidity, that is, film strength having excellent wet heat and heat adhesion.
[0172] このような用途に、本発明のハードコートフィルムを用いる場合、接着性改質層の耐 湿熱性を向上させるために、塗布液に架橋剤を添加し、次いで熱処理を行うことによ り、架橋構造を有する榭脂を含む接着性改質層を形成させる。架橋剤としては、ェポ キシ系架橋剤、メラミン系架橋剤、ォキサゾリン系架橋剤から選ばれる少なくとも一種 を用いる。架橋剤は、塗布液に使用する共重合ポリエステル榭脂との親和性、及び 接着性改質層に要求される耐湿熱密着性を考慮しながら選定することができる。  [0172] When the hard coat film of the present invention is used for such an application, a crosslinking agent is added to the coating solution and then heat treatment is performed in order to improve the wet heat resistance of the adhesive modified layer. Thus, an adhesion modified layer containing rosin having a crosslinked structure is formed. As the crosslinking agent, at least one selected from an epoxy crosslinking agent, a melamine crosslinking agent, and an oxazoline crosslinking agent is used. The cross-linking agent can be selected in consideration of the affinity with the copolymerized polyester resin used in the coating solution and the moisture and heat resistance required for the adhesion-modified layer.
[0173] 特に、高度の耐湿熱密着性が要求される場合、前記の架橋剤の中で、エポキシ系 架橋剤あるいはメラミン系架橋剤が好ましい。エポキシ系架橋剤としては、特に限定 されないが、例えば、ナガセ化成工業株式会社製の水溶性エポキシ架橋剤 (デコナ ールシリーズ; EX— 521、 EX— 512、 EX— 421、 EX— 810、 EX— 811、 EX— 85 1等)が市販品として入手可能である。メラミン系架橋剤としては、例えば、住友化学 社製スミテックスレジンシリーズ (M— 3、 MK、 M— 6、 MC等)や、株式会社三和ケミ カル社製メチル化メラミン榭脂 (MW- 22、 MX- 706等)が市販品として入手可能 である。また、ォキサゾリン系架橋剤としては、株式会社日本触媒製ェポクロスシリー ズ (WS— 700)、新中村ィ匕学工業社製 NX Linker FX等が、市販品として入手可 能である。 [0173] In particular, when a high degree of wet heat resistance is required, an epoxy-based crosslinking agent or a melamine-based crosslinking agent is preferable among the above-mentioned crosslinking agents. The epoxy-based crosslinking agent is not particularly limited. For example, a water-soluble epoxy crosslinking agent manufactured by Nagase Kasei Kogyo Co., Ltd. (Deconal series; EX-521, EX-512, EX-421, EX-810, EX-811, EX—85 1) etc. are available as commercial products. Examples of melamine-based cross-linking agents include Sumitomo Chemical's Smitex Resin Series (M-3, MK, M-6, MC, etc.) and Miwa Chemical Co., Ltd. methylated melamine rosin (MW-22). MX-706, etc.) are commercially available. As oxazoline-based cross-linking agents, Nippon Shokubai Co., Ltd. Epocros series (WS-700), Shin-Nakamura Igaku Kogyo Co., Ltd. NX Linker FX, etc. are commercially available.
[0174] 上記架橋剤は、接着性改質層中の共重合ポリエステル榭脂と架橋剤の合計量 (10 0質量%)に対して、好ましくは 5〜40質量%、さらに好ましくは 10〜30質量%となる ように接着性改質層形成用塗布液中に含有させることが好ま ヽ。架橋剤の含有量 が 40質量%を越えると、接着性改質層が脆くなり、アタリレート系榭脂からなるハード コート層や拡散層などの機能層を形成させた後の加工工程において、高速カツティ ングに耐えうるだけの密着性が十分に得られない場合がある。一方、架橋剤の含有 量が 5質量%未満では、近年要求される耐久性が得られにくい場合がある。なお、塗 布液中には、架橋を促進するために必要に応じて触媒を添加しても良 、。  [0174] The crosslinking agent is preferably 5 to 40% by mass, more preferably 10 to 30%, based on the total amount (100% by mass) of the copolymerized polyester resin and the crosslinking agent in the adhesive property-modified layer. It is preferable that it be contained in the coating solution for forming an adhesive modification layer so as to be mass%. If the content of the cross-linking agent exceeds 40% by mass, the adhesion-modified layer becomes brittle, and high-speed processing is required after forming a functional layer such as a hard coat layer or a diffusion layer made of attalylate resin. Adhesion sufficient to withstand cutting may not be obtained. On the other hand, if the content of the crosslinking agent is less than 5% by mass, it may be difficult to obtain the durability required in recent years. In the coating solution, a catalyst may be added as necessary to promote crosslinking.
[0175] (3— 2)塗布工程  [0175] (3-2) Application process
前記の水性塗布液を塗布する工程は、該フィルムの製造工程中に塗布するインラ インコート法が好ましい。さらに好ましくは、結晶配向が完了する前の基材フィルムに 塗布する。水性塗布液中の固形分濃度は、 30質量%以下であることが好ましぐ特 に好ましくは 10質量%以下である。固形分濃度の下限は 1質量%が好ましぐさらに 好ましくは 3質量%、特に好ましくは 5質量%である。該水性塗布液の塗布量該水性 塗布液が塗布されたフィルムは、配向および熱固定のためにテンターに導かれ、そこ で加熱されて、熱架橋反応により安定な被膜を形成し、ポリエステル系積層フィルム となる。  The step of applying the aqueous coating solution is preferably an inline coating method applied during the production process of the film. More preferably, it is applied to the base film before crystal orientation is completed. The solid content concentration in the aqueous coating solution is preferably 30% by mass or less, particularly preferably 10% by mass or less. The lower limit of the solid content concentration is preferably 1% by mass, more preferably 3% by mass, and particularly preferably 5% by mass. Coating amount of the aqueous coating solution The film coated with the aqueous coating solution is guided to a tenter for orientation and heat setting, and heated there to form a stable film by a thermal crosslinking reaction. It becomes a film.
[0176] (塗布量)  [0176] (Coating amount)
未乾燥時の塗布量 (以下、ウエット塗布量と略す)は、 2gZm2以上 lOgZm2未満と することが好ましい。ウェッド塗布量が 2gZm2未満で、設計のドライ塗布量 (最終接 着性改質層の塗布量)を得ようとすると、塗布液の固形分濃度を高くする必要がある 。塗布液の固形分濃度を高くすると、塗布液の粘度が高くなるため、スジ状の塗布斑 が発生しやすい。一方、ウエット塗布量が lOgZm2以上では、乾燥炉内の乾燥風の 影響を受けやすぐ塗布斑が発生しやすい。なお、埃の付着による欠点を防止する ために、クリーン度をクラス 5000以下のクリーンな環境下で塗布液を塗布することが 好ましい。 The coating amount when not dried (hereinafter abbreviated as wet coating amount) is preferably 2 gZm 2 or more and less than lOgZm 2 . In order to obtain the designed dry coating amount (the coating amount of the final adhesion modified layer) when the wet coating amount is less than 2 gZm 2 , it is necessary to increase the solid content concentration of the coating solution. When the solid content concentration of the coating solution is increased, the viscosity of the coating solution increases. Is likely to occur. On the other hand, when the wet coating amount is lOgZm 2 or more, coating spots are easily generated due to the influence of the drying air in the drying furnace. In order to prevent defects due to the adhesion of dust, it is preferable to apply the coating solution in a clean environment with a cleanness of class 5000 or less.
[0177] また、最終的な接着性改質層の塗布量 (フィルム単位面積当りの固形分質量)は、 0. 005-0. 20g/m2に管理することが好ましい。従来技術では、塗布量が 0. 05g Zm2未満では十分な密着性が得られにくい。しかしながら、接着性改質層が特定の 相分離構造を有することで、塗布量が 0. 05gZm2未満であっても、機能層と基材に 対し優れた密着性を有する積層フィルムが得られるのである。塗布量が 0. 005g/m 2未満であると、密着性が不十分となる。また、塗布量が 0. 05gZm2未満の場合、使 用する粒子は平均粒径が 60nm以下の粒子を用いることが好まし 、。粒子の平均粒 径が 60nmを超えると、接着性基材フィルムの製造時や加工時に、粒子が接着性改 質層から脱落しやすくなる。粒子がポリウレタン相に偏在している場合は、塗布量が 0 . 005gZm2以上であれば粒子が脱落しにくい。一方、塗布量が 0. 20gZm2を超え ると、接着性改質層の表面に偏析するポリウレタン成分が多くなり耐ブロッキング性が 低下する。 [0177] The coating amount of the final adhesive modifying layer (solid content per film unit area) is preferably managed to 0. 005-0. 20g / m 2. In the prior art, if the coating amount is less than 0.05 g Zm 2, it is difficult to obtain sufficient adhesion. However, since the adhesive modified layer has a specific phase separation structure, a laminated film having excellent adhesion to the functional layer and the substrate can be obtained even when the coating amount is less than 0.05 gZm 2 . is there. If the coating amount is less than 0.005 g / m 2, adhesion will be insufficient. When the coating amount is less than 0.05 gZm 2, it is preferable to use particles having an average particle size of 60 nm or less. When the average particle diameter exceeds 60 nm, the particles easily fall off the adhesive modified layer during the production or processing of the adhesive base film. When the particles are unevenly distributed in the polyurethane phase, the particles are unlikely to fall off if the coating amount is 0.005 gZm 2 or more. On the other hand, when the coating amount exceeds 0.20 gZm 2 , the polyurethane component that segregates on the surface of the adhesive modified layer increases, and the blocking resistance decreases.
[0178] また、接着性改質層の厚みは、接着性改質層の断面をミクロトームで切断し、電子 顕微鏡で観察することにより測定できるが、接着性改質層が柔らかい場合、切断時に 変形する場合がある。簡便的には、塗布量が既知であれば、接着性改質層の密度 力も厚み換算することができる。例えば、接着性改質層の密度が lgZcm3の場合、 塗布量が lgZm2であれば、厚みは 1 μ mに相当する。接着性改質層の密度は、接 着性改質層を構成する榭脂、粒子の種類からそれぞれの材料の密度を求め、各材 料の密度に材料の質量比を乗じ、その和を求めることで接着性改質層の厚みを推定 することができる。 [0178] The thickness of the adhesive modified layer can be measured by cutting the cross section of the adhesive modified layer with a microtome and observing with an electron microscope. There is a case. For simplicity, if the coating amount is known, the density force of the adhesive modified layer can be converted into thickness. For example, if the density of the adhesion modified layer is lgZcm 3 and the coating amount is lgZm 2 , the thickness corresponds to 1 μm. The density of the adhesive modified layer is obtained by calculating the density of each material from the types of the resin and particles constituting the adhesive modified layer, and multiplying the density of each material by the mass ratio of the material to obtain the sum. Thus, the thickness of the adhesion modified layer can be estimated.
[0179] (3— 3)乾燥工程  [0179] (3-3) Drying process
接着性改質基材フィルムの製造方法にぉ ヽて、熱可塑性榭脂フィルムに塗布液を 塗布後、薄ぐ塗布された塗膜を乾燥する。一般に、塗布液を塗布後、塗膜を乾燥さ せる際、テンターの予熱ゾーンを利用して乾燥させる場合が多い。この場合、製膜設 備の大きさフィルムの走行速度にも依存する力 一般に塗布力 乾燥開始までの時 間は少なくとも 5秒程度かかる。この間に、塗布液の溶媒である水とアルコールのバラ ンスがくずれ、親水性の高いポリウレタン成分が接着性改質層の表面に偏析しゃすく なる。そのため、最終的に得られる接着性改質基材フィルムにおいて、接着性改質 層の表面の PEs相の面積率、あるいは接着性改質層の切削面におけるハードコート 層との界面近くの PU相の面積率を適切な範囲に制御することが困難となる。本発明 では、塗膜の乾燥を専用とする乾燥炉 (プレドライヤー)を塗布装置のフィルム進行 方向出口の極力近くに配置し、塗布液をポリエステルフィルムに塗布後、直ちに乾燥 させることが重要なポイントである。 According to the method for producing an adhesive modified base film, a coating solution is applied to a thermoplastic resin film, and then a thinly applied coating film is dried. In general, when a coating film is dried after applying a coating solution, it is often dried using a preheating zone of a tenter. In this case, film formation The force that depends on the running speed of the size of the film Generally, the coating force It takes at least about 5 seconds to start drying. During this time, the balance between water and alcohol as the solvent of the coating solution is lost, and the highly hydrophilic polyurethane component segregates on the surface of the adhesive modified layer. Therefore, in the final modified adhesive base film, the area ratio of the PEs phase on the surface of the adhesive modified layer or the PU phase near the interface with the hard coat layer on the cut surface of the adhesive modified layer It is difficult to control the area ratio within an appropriate range. In the present invention, it is important that a drying oven (pre-dryer) dedicated to drying the coating film is disposed as close as possible to the exit of the coating apparatus in the film traveling direction, and the coating liquid is applied to the polyester film and dried immediately. It is.
[0180] 乾燥炉内において、塗布面にあたる乾燥風の温度は 120°C以上 150°C未満が好 ましい。また、風速は 30mZ秒以上が好ましい。さらに好ましい乾燥温度は、 130°C 以上 150°C未満である。該乾燥温度が 120°C未満または風速 30mZ秒未満である 場合、乾燥速度が遅くなり、塗布液の溶媒である水とアルコールのバランスがくずれ 、相対的に水の比率が増加しやすくなる。そのため、親水性の高いポリウレタン成分 が接着性改質層の表面に偏析する。そのため、最終的に得られる接着性改質基材 フィルムにおいて、接着性改質層の表面の PEs相の面積率、あるいは接着性改質層 の切削面におけるハードコート層との界面近くの PU相の面積率を適切な範囲に制 御することが困難になる。一方、乾燥温度が 150°C以上では、熱可塑性榭脂フィルム の結晶化が起こりやすくなり、横延伸時に破断が発生する頻度が増加する。  [0180] In the drying furnace, the temperature of the drying air on the coating surface is preferably 120 ° C or higher and lower than 150 ° C. The wind speed is preferably 30 mZ seconds or more. A more preferable drying temperature is 130 ° C or higher and lower than 150 ° C. When the drying temperature is less than 120 ° C. or the wind speed is less than 30 mZ seconds, the drying speed becomes slow, the balance between water and alcohol as the solvent of the coating solution is lost, and the ratio of water is relatively likely to increase. Therefore, the highly hydrophilic polyurethane component segregates on the surface of the adhesive modified layer. Therefore, in the final modified adhesive base film, the area ratio of the PEs phase on the surface of the adhesive modified layer, or the PU phase near the interface with the hard coat layer on the cutting surface of the adhesive modified layer It becomes difficult to control the area ratio of the area within an appropriate range. On the other hand, when the drying temperature is 150 ° C or higher, crystallization of the thermoplastic resin film tends to occur, and the frequency of breakage during transverse stretching increases.
[0181] また、前記の乾燥炉では、温度を 120°C以上 150°C未満に維持しながら、 0. 1〜5 秒間乾燥させることが好ましい。乾燥時間は、さらに好ましくは 0. 5〜3秒である。乾 燥時間が 0. 1秒間未満では、塗膜の乾燥が不十分となり、乾燥工程から横延伸工程 までの間に配置されたロールを通過する際に、該ロールを乾燥不十分な塗布面で汚 染しゃすくなる。一方、乾燥時間が 5秒間を超えると、熱可塑性榭脂フィルムの結晶 化が起こりやすくなり、横延伸時に破断が発生する頻度が増える。  [0181] Further, in the drying furnace, it is preferable to dry for 0.1 to 5 seconds while maintaining the temperature at 120 ° C or higher and lower than 150 ° C. The drying time is more preferably 0.5 to 3 seconds. If the drying time is less than 0.1 second, the coating film will be insufficiently dried, and when passing through the roll disposed between the drying process and the transverse stretching process, the roll is applied with an insufficiently dried coating surface. Dirty. On the other hand, if the drying time exceeds 5 seconds, the thermoplastic resin film tends to crystallize and the frequency of breakage during transverse stretching increases.
[0182] 前記の乾燥炉で、 120°C以上 150°C未満の温度で塗膜を乾燥した後、接着性改 質層を有する接着性改質基材フィルムを直ちに室温近くまで冷却することが好まし ヽ 。前記の接着性改質基材フィルムの表面温度が 100°C以上の高温のまま乾燥炉を 出て室温近くのロールに接着性改質基材フィルムが接触した場合、フィルムの収縮 によってキズが発生しやすくなる。 [0182] After drying the coating film at a temperature of 120 ° C or higher and lower than 150 ° C in the drying furnace, the adhesive modified base film having an adhesively modified layer may be immediately cooled to near room temperature. Preferred し. Drying oven is maintained with the surface temperature of the adhesive modified substrate film at a high temperature of 100 ° C or higher. When the adhesive modified substrate film comes out of contact with a roll near room temperature, scratches are likely to occur due to film shrinkage.
[0183] 乾燥炉内の風速を通常 30mZ秒以上にすると、乾燥炉内で未乾燥状態の塗布面 に強い乾燥風があたるため、乾燥ムラが生じやすくなる。し力しながら、本発明では、 吹き付ける風量と同量若しくはそれ以上の風量を乾燥炉外に排気することによって、 30mZ秒以上の風速で行うことが可能となる。また、該排気風はコーターと反対側へ 流れるようにし、コーターでの排気風による塗布面へのムラ発生を防止することも重 要である。  [0183] If the wind speed in the drying furnace is usually 30 mZ seconds or more, strong drying air is applied to the undried coated surface in the drying furnace, and drying unevenness is likely to occur. However, in the present invention, it is possible to perform at a wind speed of 30 mZ seconds or more by exhausting an air volume equal to or greater than the air volume to be blown out of the drying furnace. It is also important that the exhaust air flow to the opposite side of the coater to prevent unevenness on the coating surface due to the exhaust air from the coater.
[0184] 塗布直後から乾燥炉に入るまでのフィルムの通過時間を、 2秒未満、好ましくは 1.  [0184] The transit time of the film from immediately after coating to entering the drying oven is less than 2 seconds, preferably 1.
5秒未満とすることが重要である。塗布力も乾燥炉に入るまでの時間が 2秒以上であ ると、この間に塗布液の溶媒である水とアルコールのバランスがくずれ、これによつて 親水性の高いポリウレタン成分が接着性改質層の表面に偏析しゃすくなる。そのた め、最終的に得られた接着性改質基材フィルムは、接着性改質層の表面の PEs相の 面積率、あるいは接着性改質層の切削面におけるハードコート層との界面近くの PU 相の面積率を適切な範囲に制御することが困難になる。  It is important to make it less than 5 seconds. If the coating force takes more than 2 seconds to enter the drying furnace, the balance between water and alcohol, which are the solvent of the coating solution, will be lost during this time, and this will cause the highly hydrophilic polyurethane component to adhere to the modified adhesive layer. Segregated on the surface of the surface. Therefore, the finally obtained adhesion-modified base film is close to the area ratio of the PEs phase on the surface of the adhesion-modified layer or the interface with the hard coat layer on the cutting surface of the adhesion-modified layer. It becomes difficult to control the area ratio of the PU phase within an appropriate range.
[0185] 塗布直後から乾燥炉に入るまでのフィルムの通過時間を 2秒未満に維持するため には、適宜フィルムの走行速度を選択する必要がある力 コーターと乾燥炉入口を可 能な限り近づけることが好ましい。なお、乾燥炉において、乾燥風力もの埃の混入を 防止するために、 HEPAフィルターで清浄ィ匕した空気を用いることが好ましい。この 際に用いる HEPAフィルタ一は、公称濾過精度 0. 5 /z m以上の埃を 95%以上カット する性能を有するフィルターを用いることが好まし 、。  [0185] In order to maintain the film transit time from immediately after coating to entering the drying furnace to less than 2 seconds, it is necessary to select the traveling speed of the film as appropriate. Move the coater and the drying furnace inlet as close as possible. It is preferable. In the drying furnace, it is preferable to use air that has been cleaned with a HEPA filter in order to prevent contamination of dry wind power. For the HEPA filter used at this time, it is preferable to use a filter capable of cutting 95% or more of dust with a nominal filtration accuracy of 0.5 / zm or more.
[0186] 乾燥工程は、乾燥温度および乾燥時間の条件を順次変えた、 V、わゆる 2〜8のゾ ーンに分割された乾燥ゾーン力も構成されることが好ましい。特に好ましくは、 3〜6 のゾーンに分割された多段乾燥装置を採用する。例えば、塗布液を、一軸配向熱可 塑性榭脂フィルムの片面または両面に塗布液を塗布し、コーター真上に配置した多 段の乾燥炉で乾燥する場合、下記の方法が好適である。  [0186] It is preferable that the drying process also includes a drying zone force divided into V, so-called 2 to 8 zones, in which the conditions of the drying temperature and the drying time are sequentially changed. Particularly preferably, a multistage drying apparatus divided into 3 to 6 zones is employed. For example, when the coating solution is applied to one or both sides of a uniaxially oriented thermoplastic resin film and dried in a multi-stage drying furnace arranged just above the coater, the following method is suitable.
[0187] 例えば、 4段階で乾燥する場合には、 4つの乾燥ゾーンに分かれた乾燥炉にて乾 燥を行う。第 1乾燥ゾーンでは、温度 125〜140°Cで 0. 1〜4秒間、第 2乾燥ゾーン では、温度 55〜100°Cで 0. 1〜4秒間、第 3乾燥ゾーンでは、温度 35〜55°Cで 0. 1〜4秒間、第 4乾燥ゾーンでは、温度 25〜35°Cで 0. 1〜4秒間、乾燥させる方法が 挙げられる。 [0187] For example, when drying in four stages, drying is performed in a drying furnace divided into four drying zones. In the first drying zone, at a temperature of 125-140 ° C for 0.1-4 seconds, the second drying zone At a temperature of 55-100 ° C for 0.1-4 seconds, in the third drying zone at a temperature of 35-55 ° C for 0.1-4 seconds, in a fourth drying zone at a temperature of 25-35 ° C. A method of drying for 1 to 4 seconds is mentioned.
[0188] 前記の乾燥条件の数値範囲は、塗布液の固形分濃度により多少の変動があり、上 記の代表的な条件に限定されるものではない。さらに、熱風乾燥を行う場合、風量も 各段階で変化をもたせることが重要である。  [0188] The numerical range of the drying conditions varies somewhat depending on the solid content concentration of the coating solution, and is not limited to the above typical conditions. In addition, when performing hot air drying, it is important to change the air volume at each stage.
[0189] 例えば、以下のような方法が好適である。  [0189] For example, the following method is suitable.
第 1乾燥ゾーンでは、乾燥風の風速を 20〜50mZ秒、乾燥風の給気風量を 100 〜150m3/秒、排気風量を 150〜200m3/秒に設定する。第 2乾燥ゾーン力も第 4 乾燥ゾーンまでは、給気風量を 60〜140m3Z秒、排気風量を 100〜180m3Z秒に 設定する。いずれの乾燥ゾーンにおいても、コーター側に乾燥風が流れないように設 定し、引き続いてフィルムの端部をクリップで把持して、温度 100〜140°Cで、風速 1 0〜20mZ秒の熱風ゾーンに導き、幅方向に 2〜6倍に延伸する。 In the 1st drying zone, the wind speed of the drying wind is set to 20 to 50mZ seconds, the supply air volume of the drying wind is set to 100 to 150m 3 / sec, and the exhaust air volume is set to 150 to 200m 3 / sec. For the second drying zone, the supply air volume is set to 60 to 140 m 3 Z seconds and the exhaust air volume to 100 to 180 m 3 Z seconds until the fourth drying zone. In any drying zone, set so that the drying air does not flow to the coater side, and then grip the edge of the film with a clip, hot air at a temperature of 100 to 140 ° C and a wind speed of 10 to 20 mZ seconds. Lead to the zone and stretch 2-6 times in the width direction.
[0190] また、温度を 120°Cから 150°Cに維持しながら、 0. 1〜5秒間、好ましくは 0. 5秒か ら 3秒未満の時間で、乾燥温度および総乾燥時間を適宜調整すればよい。この乾燥 工程における各段 (ゾーン)の決定は、分散液の濃度、塗布量、塗布された走行フィ ルムの走行速度、熱風の温度、風速、風量などの諸条件を考慮して、製造現場で適 宜、適正値を決めることができる。  [0190] Further, while maintaining the temperature from 120 ° C to 150 ° C, the drying temperature and the total drying time are appropriately adjusted within a period of 0.1 to 5 seconds, preferably 0.5 to less than 3 seconds. do it. Each stage (zone) in the drying process is determined at the manufacturing site in consideration of various conditions such as the concentration of the dispersion, the coating amount, the traveling speed of the coated traveling film, the temperature of the hot air, the wind speed, and the amount of air. Appropriate values can be determined as appropriate.
[0191] (3— 4)熱固定処理工程  [0191] (3-4) Heat setting process
接着性改質基材フィルムの製造方法において、横延伸工程、熱固定処理工程、冷 却工程は、 10〜30ゾーンに連続して区分され、かつ各ゾーンは独立して温度制御 が可能なように仕切られ、かつ各ゾーン間で急激な温度変化が起きな 、ように設計し ている。特に、横延伸ゾーン後半から熱固定最高温度設定ゾーンにおいて、段階的 に昇温させることで、隣接するゾーン間の急激な温度変化を抑えることができる。本 発明において、接着性改質層の表面や内部に特異な相分離構造を有する接着性改 質基材フィルムを製造する際、特に、乾燥工程や熱固定処理工程では温度制御が 非常に重要である。また、接着性改質層を構成する榭脂に架橋構造を形成させるた めには、熱固定処理工程における温度が非常に重要であり、この温度は架橋反応速 度に大きく影響する。 In the method of manufacturing an adhesive modified base film, the transverse stretching process, heat setting process, and cooling process are divided into 10 to 30 zones continuously, and each zone can be controlled independently. Designed so that there is no sudden temperature change between zones. In particular, a rapid temperature change between adjacent zones can be suppressed by raising the temperature stepwise from the latter half of the transverse stretching zone to the heat setting maximum temperature setting zone. In the present invention, temperature control is very important particularly in the drying process and the heat setting process when producing an adhesive-modified base film having a specific phase separation structure on the surface or inside of the adhesive modified layer. is there. In addition, the temperature in the heat setting process is very important in order to form a crosslinked structure in the resin constituting the adhesive modified layer, and this temperature is the speed of the crosslinking reaction. Greatly affects the degree.
以下、その実施態様を詳細に説明する。  Hereinafter, the embodiment will be described in detail.
[0192] 前述のように、熱固定処理工程において、熱処理条件が接着性改質層の相分離 状態を左右する。すなわち、熱固定処理工程における最高温度、前記の最高温度に 達するのに要する時間、及び接着性改質層の相分離が顕著に進行し始める温度か ら熱固定処理工程における最高温度に達するのに要する時間、を適宜設定すること が重要である。  [0192] As described above, in the heat setting treatment step, the heat treatment condition affects the phase separation state of the adhesive property modified layer. That is, the maximum temperature in the heat-fixing treatment step is reached from the maximum temperature in the heat-fixing treatment step, the time required to reach the maximum temperature, and the temperature at which the phase separation of the adhesive property modified layer starts to proceed remarkably. It is important to set the time required.
[0193] 熱固定処理工程における各熱固定ゾーンにおける温度は、熱可塑性榭脂フィルム を構成する榭脂の種類により若干の違いはある力 100〜260°Cの温度範囲内で適 宜設定すればよい。以下、代表的な熱可塑性榭脂である、ポリエチレンテレフタレー トを熱可塑性榭脂フィルムとした場合を例に挙げて説明する。  [0193] The temperature in each heat setting zone in the heat setting process may vary slightly depending on the type of the resin constituting the thermoplastic resin film, and may be set appropriately within a temperature range of 100 to 260 ° C. Good. Hereinafter, a case where polyethylene terephthalate, which is a typical thermoplastic resin, is used as a thermoplastic resin film will be described as an example.
[0194] 熱固定処理工程における最高温度は、 210〜240°Cに制御することが好ましぐさ らに好ましくは下限が 225°C、上限が 235°Cである。一般には、熱固定処理の初期 の段階では 210〜240°Cと比較的高い温度で熱固定をして、後段になるにつれて、 100〜200°Cと、順次温度を下げて 、く場合が多 、。  [0194] The maximum temperature in the heat setting treatment step is preferably controlled to 210 to 240 ° C, more preferably the lower limit is 225 ° C and the upper limit is 235 ° C. In general, heat fixing is performed at a relatively high temperature of 210 to 240 ° C in the initial stage of the heat setting treatment, and the temperature is gradually decreased to 100 to 200 ° C in the subsequent stage. ,.
[0195] 熱固定処理工程における最高温度が 210°C未満では、接着性改質層においてミク 口相分離構造またはナノ相分離構造を形成させることが困難にある。したがって、近 年要求されている、高速カッティング時の衝撃による界面の剥離に耐えられる、基材 と機能層との密着性が十分に得られにくくなる。さらに、得られた接着性改質基材フィ ルムの熱収縮率が大きくなり、好ましくない。  [0195] When the maximum temperature in the heat setting treatment step is less than 210 ° C, it is difficult to form a mixed phase separation structure or a nanophase separation structure in the adhesive modified layer. Therefore, it is difficult to obtain sufficient adhesion between the base material and the functional layer, which can withstand the peeling of the interface due to impact during high-speed cutting, which has been demanded in recent years. Furthermore, the heat-shrinkage rate of the obtained adhesive modified base film becomes large, which is not preferable.
[0196] また、熱固定処理工程における最高温度が 240°Cを超える場合には、接着性改質 層の表面の PEs表面分率が大きくなり、ハードコート層、拡散層、プリズム層、紫外線 硬化型インクで印刷された印刷層などの機能層に対する密着性が低下しやすくなる 。さらに、接着性改質層の相分離が顕著に進行し始める温度から熱固定処理の最高 温度に達するのに要する時間が長くなるため、共重合ポリエステルを主成分とするポ リエステル相の最も細い箇所の幅が 1 μ mを超える箇所が点在する状態となる。その 結果、局所的にハードコート層、拡散層、プリズム層、紫外線硬化型インクで印刷さ れた印刷層などの機能層に対し、密着性が劣る箇所が生じ、その部分を起点として 巨視的な剥離に繋がる場合がある。 [0196] When the maximum temperature in the heat setting process exceeds 240 ° C, the PEs surface fraction of the surface of the adhesive modification layer increases, and the hard coat layer, diffusion layer, prism layer, ultraviolet curing Adhesiveness to a functional layer such as a printed layer printed with mold ink tends to be lowered. Furthermore, since the time required to reach the maximum temperature of the heat setting treatment from the temperature at which the phase separation of the adhesive reforming layer starts to proceed remarkably increases, the narrowest part of the polyester phase composed mainly of the copolyester It is in a state where spots with a width exceeding 1 μm are scattered. As a result, there are locations with poor adhesion to functional layers such as hard coat layers, diffusion layers, prism layers, and printing layers printed with UV-curable ink, and that portion is the starting point. It may lead to macroscopic peeling.
[0197] 接着性改質層の相分離が顕著に進行し始める温度から熱固定処理の最高温度に 達するのに要する時間は、具体的には以下のように設定することが好ましい。  [0197] Specifically, the time required to reach the maximum temperature of the heat setting treatment from the temperature at which the phase separation of the adhesive property modified layer starts to proceed remarkably is preferably set as follows.
本発明では、接着性改質層の相分離が顕著に進行を開始する温度設定ゾーンか ら熱固定処理工程の最高温度設定ゾーン入口に達するまでのフィルムの通過時間 は、 3秒以上 20秒未満が好ましぐ特に好ましくは 4秒以上 15秒未満である。  In the present invention, the passage time of the film from the temperature setting zone where the phase separation of the adhesive reforming layer starts to proceed remarkably to the maximum temperature setting zone entrance of the heat setting process is 3 seconds or more and less than 20 seconds. Particularly preferred is 4 seconds or more and less than 15 seconds.
[0198] 前記の通過時間が 3秒未満では、本発明で規定する相分離構造を発現させるため の時間が不足する場合がある。一方、前記の通過時間が 20秒間以上では相分離が 過剰に進行し、共重合ポリエステルを主成分とする相の最も細い箇所の幅が 1 μ mを 越える箇所が点在する状態となりやすい。その結果、局所的にハードコート層、拡散 層、プリズム層、 UVインクで印刷された印刷層などの機能層に対する密着性が劣る 箇所が生じ、その部分を起点として巨視的な剥離に繋がる場合がある。  [0198] If the passage time is less than 3 seconds, the time for developing the phase separation structure defined in the present invention may be insufficient. On the other hand, when the passage time is 20 seconds or more, the phase separation proceeds excessively, and the thinnest part of the phase mainly composed of the copolyester tends to be scattered in places where the width exceeds 1 μm. As a result, a part having poor adhesion to a functional layer such as a hard coat layer, a diffusion layer, a prism layer, or a printing layer printed with UV ink is locally generated, which may lead to macroscopic peeling starting from that part. is there.
[0199] 本発明で、接着性改質層の相分離が顕著に進行を開始する温度とは、本発明の 実施例に示す塗布液の組成の範囲においては、約 200°Cと推定している。しかしな がら、該温度は当然のことながら、接着性改質層の榭脂成分によって異なるため、こ の温度に限定されるものではない。  [0199] In the present invention, the temperature at which phase separation of the adhesive modified layer starts to proceed remarkably is estimated to be about 200 ° C within the composition range of the coating liquid shown in the examples of the present invention. Yes. However, the temperature is naturally not limited to this temperature because it varies depending on the resin component of the adhesive modified layer.
[0200] 熱固定処理工程についてさらに具体的に説明する。  [0200] The heat setting treatment step will be described more specifically.
一般に、横延伸工程、熱固定処理工程、冷却工程は、隣接する各ゾーンの急激な 温度変化を抑制するために、テンター内で 10〜30ゾーンに分割され、各ゾーンで独 立して温度制御がなされている。特に、横延伸ゾーンの後半力も熱固定処理工程の 最高温度に設定されたゾーンにぉ 、ては、各ゾーンの温度をフィルム進行方向に対 して段階的に昇温させて、各熱固定ゾーン間での急激な温度変化がおきないように することが好ましい。  In general, the transverse stretching process, heat setting process, and cooling process are divided into 10 to 30 zones in the tenter to suppress rapid temperature changes in adjacent zones, and temperature control is independent in each zone. Has been made. In particular, the second half force of the transverse stretching zone is also set to the zone where the maximum temperature of the heat setting treatment process is set. It is preferable to prevent a sudden temperature change between the two.
[0201] 本発明においては、相分離が顕著に進行を開始する温度設定ゾーン力 熱固定 処理工程の最高温度設定ゾーン入口までのフィルムの通過時間を、速やかに、且つ 均一に昇温させることが重要である。速やかに温度を上昇させるためには、各熱固定 ゾーンにおいて熱伝達効率を上げる方法、例えば、フィルムへ吹き付ける熱風の風 速を高くする方法が有効である。しかしながら、この方法では、一般的に温度斑が発 生しやすいため、接着性改質層の相分離状態に斑が発生する場合や、熱固定ゾー ン内で装置内に僅かに付着するオリゴマー等の異物が舞い上がり、舞い上がった異 物がフィルムに付着して光学的欠点に繋がる場合がある。 [0201] In the present invention, the temperature setting zone force at which the phase separation starts to progress remarkably can be rapidly and uniformly increased in the passage time of the film to the maximum temperature setting zone inlet of the heat setting treatment step. is important. In order to quickly raise the temperature, it is effective to increase the heat transfer efficiency in each heat setting zone, for example, to increase the velocity of hot air blown onto the film. However, this method generally causes temperature spots. Because it is easy to produce, when the phase separation state of the adhesive reforming layer is uneven, or foreign matters such as oligomers slightly adhering to the inside of the device in the heat setting zone rise, and the raised foreign matter adheres to the film This may lead to optical defects.
[0202] 一方、風速が低すぎると、十分な昇温速度が得られない。よって、本発明では風速 を 10mZ秒以上 20mZ秒未満とするのが好ましい。速やかに且つ均一に積層フィ ルムを昇温させるためには、熱風を吹き付けるためのノズルの間隔を 500mm以下の 比較的短い間隔で配置する手段が有効である。熱風を吹き付けるためのノズルの間 隔を 500mm以下に配置する場合、例えばノズル間隔は、 300mm, 350mm, 400 mmと配置する場合、設備メンテナンス上は不利となる力 本発明を完成させるには 重要である。一段に相当する 1ゾーン当たりのノズル本数は 6〜12本程度と、その本 数はノズル間隔、通風量、通風時間の状態を考慮して決める。なお、本発明で記載 する風速とは、熱風吹き出しノズル出口に面したフィルム表面における風速を意味し 、熱式風速計(日本カノマックス製、ァネモマスター モデル 6161)を用いて測定した ものである。  [0202] On the other hand, if the wind speed is too low, a sufficient rate of temperature increase cannot be obtained. Therefore, in the present invention, the wind speed is preferably 10 mZ seconds or more and less than 20 mZ seconds. In order to raise the temperature of the laminated film quickly and uniformly, it is effective to arrange the nozzles for blowing hot air at relatively short intervals of 500 mm or less. When the nozzle spacing for blowing hot air is set to 500 mm or less, for example, when the nozzle spacing is set to 300 mm, 350 mm, or 400 mm, it is an unfavorable force for equipment maintenance. is there. The number of nozzles per zone corresponding to one stage is about 6 to 12, and the number is determined in consideration of the state of nozzle spacing, ventilation rate, and ventilation time. The wind speed described in the present invention means the wind speed on the film surface facing the outlet of the hot air blowing nozzle and is measured using a thermal anemometer (manufactured by Nippon Kanomax, Anemo Master Model 6161).
[0203] 接着性改質基材フィルムを製造する際の熱固定処理工程の好ま ヽー実施態様 を示す。  [0203] A preferred embodiment of the heat setting treatment step for producing an adhesive modified substrate film will be described.
前記の熱固定処理工程は、複数の熱固定ゾーンに連続して区分され、かつ各ゾー ンは独立して温度制御が可能なように仕切られている。熱固定ゾーンは、 2〜: LO段の 熱固定ゾーンが連続して配列された工程、好ましくは 4〜8段の工程に分割し、この 多段に分割された熱固定ゾーンで、接着性改質基材フィルムの温度制御管理をする ことが好ましい。  The heat setting process is divided into a plurality of heat setting zones continuously, and each zone is partitioned so that the temperature can be controlled independently. The heat setting zone is divided into 2 to: processes where LO heat setting zones are continuously arranged, preferably 4 to 8 steps, and this multi-stage heat setting zone is used to improve adhesion. It is preferable to control the temperature of the base film.
[0204] 例えば、接着性改質層を有するポリエステルフィルムの場合、下記のように 6段に分 割された熱固定ゾーンを順次連続して通過させ、各段階に微妙な温度差を持たせて 熱固定処理を行 、、フィルム両端部のコートされて 、な 、部分をトリミングする方法が 挙げられる。前記の熱固定処理温度は、第 1熱固定ゾーンで 200°C、第 2熱固定ゾ ーンで 225°C、第 3熱固定ゾーンで 230°C、第 4熱固定ゾーンで 230°C、第 5熱固定 ゾーンで 210°C、第 6熱固定ゾーンで 170°C、第 7熱固定ゾーンで 120°Cとする。ま た、第 6熱固定ゾーンにて幅方向に 3%の緩和処理を行う。 [0205] 前記の段とは、 1つの熱固定ゾーンに相当するものである。このように各段の熱固 定ゾーンの温度には、微妙な温度差を持たせること、即ち 5〜40°C程度の温度差を 持たせることが好適である。この温度差の設定は、接着性改質層を有する熱可塑性 榭脂フィルムの走行速度、風量、および接着性改質層の厚さなどの諸要因を考慮し て任意に決める。 [0204] For example, in the case of a polyester film having an adhesion modified layer, the heat setting zone divided into six steps as shown below is successively passed, and a subtle temperature difference is given to each step. An example is a method in which heat fixing treatment is performed, and both ends of the film are coated and trimmed. The heat setting temperature is 200 ° C in the first heat setting zone, 225 ° C in the second heat setting zone, 230 ° C in the third heat setting zone, 230 ° C in the fourth heat setting zone, The temperature is 210 ° C in the 5th heat setting zone, 170 ° C in the 6th heat setting zone, and 120 ° C in the 7th heat setting zone. In addition, 3% relaxation treatment is performed in the width direction in the sixth heat setting zone. [0205] The above-mentioned stage corresponds to one heat setting zone. As described above, it is preferable that the temperature of the thermosetting zone at each stage has a subtle temperature difference, that is, a temperature difference of about 5 to 40 ° C. The setting of this temperature difference is arbitrarily determined in consideration of various factors such as the running speed, the air volume, and the thickness of the adhesive modified layer of the thermoplastic resin film having the adhesive modified layer.
[0206] レンズフィルムや拡散板等の光学機能性フィルムの基材フィルムとして用いる場合 、フィルム厚さが 100 m以上の比較的厚手のフィルムであっても、通常、フィルム長 さは少なくとも 1000m以上、時には 2000m以上のロール状に巻き取った形態で、プ リズム層や拡散層を積層する加工工程に供される。  [0206] When used as a base film of an optical functional film such as a lens film or a diffusion plate, the film length is usually at least 1000 m or more, even if it is a relatively thick film having a film thickness of 100 m or more. Sometimes it is used in the process of laminating a prism layer and a diffusion layer in the form of a roll of 2000 m or more.
[0207] 本発明にお ヽては、接着性改質層の表面の PEs相 (位相像で暗色相を示す)の面 積率、あるいは接着性改質層の切削面におけるハードコート層との界面近くの PU相 の面積率 (位相像で明色相を示す)をフィルムの長手方向に 100m間隔で測定した 際に、それらの長手方向の面積率の最大値と最小値の差が 15%以下とすることが好 ましぐさらに好ましくは 10%以下である。それらの長手方向の面積率の最大値と最 小値の差を 15%以下とすることで、安定した密着性と耐ブロッキング性を有する接着 性改質基材フィルムロールが得られるのである。  [0207] In the present invention, the area ratio of the PEs phase (indicating a dark hue in the phase image) on the surface of the adhesive modified layer, or the hard coat layer on the cutting surface of the adhesive modified layer. When measuring the area ratio of the PU phase near the interface (indicating a bright hue in the phase image) at 100 m intervals in the longitudinal direction of the film, the difference between the maximum and minimum area ratios in the longitudinal direction is 15% or less More preferably, it is 10% or less. By setting the difference between the maximum value and the minimum value of the area ratio in the longitudinal direction to 15% or less, an adhesive modified base film roll having stable adhesion and blocking resistance can be obtained.
[0208] それらの長手方向の面積率の最大値と最小値の差を 15%以下に制御するために は、塗布液の組成、塗布条件、乾燥条件等、及び熱固定条件等の製膜条件を、本 発明で用いる長尺の接着性改質基材フィルムロールを連続的に製造する際におい て一定に保つことが重要である。しかしながら、特に、塗布液に用いる混合溶媒の比 率は変動しやすぐこの混合溶媒の比率を一定に保つ工夫が、フィルムロールの長 手方向における表面の PEs相の面積率や切削面の PU相の面積率の変動を小さく する上で重要である。例えば、以下に示す手段によって接着性改質層の表面の PEs 相の面積率や切削面の PU相の面積率の変動幅を 15%以下に制御することができ る。なお、混合溶媒の比率を一定に保つ手段は、下記の方法に限定されるものでは ない。  [0208] In order to control the difference between the maximum value and the minimum value of the area ratio in the longitudinal direction to 15% or less, the film forming conditions such as the composition of the coating liquid, the coating conditions, the drying conditions, and the heat setting conditions It is important to keep the same constant when continuously manufacturing the long adhesive modified base film roll used in the present invention. However, in particular, the ratio of the mixed solvent used in the coating solution fluctuates, and it is easy to keep the ratio of the mixed solvent constant. However, the area ratio of the surface PEs phase in the longitudinal direction of the film roll and the PU phase of the cutting surface It is important to reduce the fluctuation of the area ratio. For example, the range of fluctuation of the area ratio of the PEs phase on the surface of the adhesive modified layer and the area ratio of the PU phase on the cutting surface can be controlled to 15% or less by the following means. The means for keeping the ratio of the mixed solvent constant is not limited to the following method.
[0209] 塗布液の受け皿(図 7の 11)の容量に対して、循環用タンク(図 7の 13)の容量を大 きくすることが、混合溶媒の濃度比を安定化させる上で効果的である。具体的には、 図 7に示すように、塗布液の受け皿の容量を 1とした時、循環用タンクの容量の比を 好ましくは 10以上、特に好ましくは 50以上にする。容量比 (循環用タンクの容量 Z塗 布液の受け皿の容量)が 10未満、すなわち循環用タンクの容量が小さすぎる場合、 混合溶媒の濃度比の変動が大きくなりやすく。 [0209] Increasing the capacity of the circulation tank (13 in Fig. 7) relative to the volume of the coating solution tray (11 in Fig. 7) is effective in stabilizing the concentration ratio of the mixed solvent. It is. In particular, As shown in FIG. 7, when the capacity of the coating liquid receiving tray is 1, the ratio of the capacity of the circulation tank is preferably 10 or more, particularly preferably 50 or more. If the volume ratio (circulation tank capacity Z coating liquid tray capacity) is less than 10, that is, the circulation tank capacity is too small, the concentration ratio fluctuation of the mixed solvent tends to increase.
[0210] さらに、循環用タンクの容量を 1とした時、調合用タンク(図 7の 14)の容量の比を 10 以上にすることが好ましぐ特に好ましくは 20以上にする。これにより、調合用タンク 力も循環用タンクに塗布液を供給する際に、循環用タンクの容量が稼働時に常に一 定にすることができる。 [0210] Furthermore, when the capacity of the circulation tank is 1, the ratio of the capacity of the mixing tank (14 in Fig. 7) is preferably 10 or more, and particularly preferably 20 or more. As a result, the capacity of the circulation tank can be kept constant during operation when supplying the coating liquid to the circulation tank.
[0211] また、塗布装置におけるアプリケーターロールの精度 (真円度と円筒度)を高くする ことも、フィルムロールの長手方向における接着性改質層の塗布厚み斑を低減する 点から有効である。さらに、フィルムロールの長手方向における、接着性改質層の表 面の PEs相の面積率または切削面の PU相の面積率の変動にともなう特性の変動を 小さくする点でも有効である。  [0211] Increasing the accuracy (roundness and cylindricity) of the applicator roll in the coating apparatus is also effective from the viewpoint of reducing coating thickness unevenness of the adhesive modified layer in the longitudinal direction of the film roll. Furthermore, it is also effective in reducing fluctuations in characteristics due to fluctuations in the area ratio of the PEs phase on the surface of the adhesive reforming layer or the PU phase of the cutting surface in the longitudinal direction of the film roll.
[0212] 前記のアプリケーターロールの真円度とは、 JIS B 0621で示されているように、 記録式真円度測定器を用いて決定された最小領域法による二つの同心円の各半径 の差で表される指標である。なお、ロールの真円度の単位は mmである。また、アプリ ケーターロールの円筒度は、該ロールを定盤上に置 、た測微器付きスタンドを軸線 方向に移動して、円筒上面に測定子を当てた状態で、全長にわたって種々の測定 平面中で測定を実施し、そのときの読みの最大差の 1Z2で表される指標である。な お、円筒度の単位は mmである。  [0212] As described in JIS B 0621, the roundness of the applicator roll is the difference between the radii of two concentric circles determined by the minimum area method determined using a recording roundness measuring instrument. It is an index represented by The unit of roundness of the roll is mm. The applicator roll cylindricity can be measured in various measurement planes over the entire length by placing the roll on a surface plate, moving the stand with a measuring instrument in the axial direction, and placing a probe on the upper surface of the cylinder. This is an index expressed by 1Z2 of the maximum difference in reading at the time of measurement. The unit of cylindricity is mm.
[0213] 本発明においては、ロール精度 (真円度と円筒度)を向上させることにより、長さ方 向の塗布層の厚みの変動を低減することができる。具体的には、ロール精度 (真円度 と円筒度)を 5ZlOOOmm未満にすることが好ましい。  [0213] In the present invention, variation in the thickness of the coating layer in the lengthwise direction can be reduced by improving the roll accuracy (roundness and cylindricity). Specifically, the roll accuracy (roundness and cylindricity) is preferably less than 5ZlOOOmm.
[0214] また、塗布液の塗布に際し、リバースコーターの各ロールの表面仕上げを 0. 3S以 下にし、かつ、アプリケーターロールおよびメタリングロールの精度 (真円度と円筒度) を 5ZlOOOmm未満、 2Zl000mm以上にすることにより、ウェッド塗布量の変動を 押さえ、かつ、塗膜の厚みの変動も押さえることができる。好ましくは、アプリケーター ロールおよびメタリングロールの精度 (真円度と円筒度)が 3ZlOOOmmである塗布 ロールを用いるのがよい。 [0214] Also, when applying the coating liquid, the surface finish of each roll of the reverse coater should be 0.3S or less, and the accuracy of the applicator roll and metering roll (roundness and cylindricity) should be less than 5ZlOOOmm, 2Zl000mm By doing so, fluctuations in the amount of wet coating can be suppressed, and fluctuations in the thickness of the coating film can also be suppressed. Preferably, the applicator roll and metering roll have a precision (roundness and cylindricity) of 3ZlOOOmm A roll should be used.
[0215] また、フィルムのテンションを 4000〜10000NZ原反幅(原反幅は l〜2m)にする ことにより、工業的規模でフィルムの平面性が保持され、塗布液の転写量が均一とな る。なお、フィルムのテンションは、フィルムの厚さにより異なり、比較的薄いフィルム はより低いテンションを掛けることで平面性が保持される。  [0215] In addition, by setting the film tension to 4,000 to 10,000 NZ original fabric width (original fabric width is 1 to 2 m), the flatness of the film is maintained on an industrial scale, and the transfer amount of the coating liquid becomes uniform. The Note that the tension of the film varies depending on the thickness of the film, and the flatness is maintained by applying a lower tension to a relatively thin film.
[0216] フィルムのテンションが 10000NZ原反幅を超えると、フィルムが変形する場合、あ るいは破断する場合がある。一方、フィルムのテンションが 4000NZ原反幅未満で は、塗布時のフィルムの平面性が不十分となる場合や、フィルムの蛇行が発生する場 合がある。その結果、塗布液の転写量がフィルムの長さ方向で不均一となり、フィル ムのウエット塗布量が大きく変動することにより、塗布層の厚みの変動もより大きくなる  [0216] If the tension of the film exceeds the width of 10000 NZ, the film may be deformed or broken. On the other hand, when the film tension is less than 4000 NZ original fabric width, the flatness of the film during application may be insufficient, or the film may meander. As a result, the transfer amount of the coating liquid becomes non-uniform in the length direction of the film, and the variation in the thickness of the coating layer becomes larger due to the large variation in the wet coating amount of the film.
[0217] また、接着性改質層における表面の PEs相、または切削面の PU相の面積率の変 動(最大値と最小値の差)を、フィルムロールの幅方向で 10%以下に制御するため には、フィルムロールの幅方向に対する塗布層の厚みの変動を小さくすることが重要 である。そのためには、塗布時の幅方向の平面性を向上させることが効果的である。 具体的には、リバースロールで塗布直後、フィルムの両端面のみをピンチロール(図 7の 16)を用いて把持する。ピンチロールにフィルムの両端部を把持させることにより 、工業的規模で、フィルムの幅方向の平面性を向上させて、フィルムの幅方向のゥェ ット塗布量を安定ィ匕させる。それにより、フィルムロールの幅方向における塗布層の 厚みの変動を低減することができる。フィルムの両端部をピンチロールで把持させな い場合は、フィルムの幅方向および長さ方向のウエット塗布量が大きく変動し、塗布 層の厚みの変動もより大きくなる。 [0217] In addition, the change in the area ratio of the PEs phase on the surface of the adhesion modified layer or the PU phase on the cutting surface (difference between the maximum and minimum values) is controlled to 10% or less in the width direction of the film roll. In order to achieve this, it is important to reduce the variation in the thickness of the coating layer with respect to the width direction of the film roll. For this purpose, it is effective to improve the flatness in the width direction during coating. Specifically, just after coating with a reverse roll, grip only the both end faces of the film using a pinch roll (16 in FIG. 7). By holding the both ends of the film with the pinch roll, the flatness in the width direction of the film is improved on an industrial scale, and the wet coating amount in the width direction of the film is stabilized. Thereby, the fluctuation | variation of the thickness of the coating layer in the width direction of a film roll can be reduced. When the both ends of the film are not gripped with a pinch roll, the wet coating amount in the width direction and the length direction of the film varies greatly, and the variation in the thickness of the coating layer also increases.
[0218] (4)ハードコート層および他の光学機能層  [0218] (4) Hard coat layer and other optical functional layers
本発明のハードコートフィルムは、熱可塑性榭脂フィルム Aの片面または両面に、 共重合ポリエステル及びポリウレタンを含む接着性改質層 Bを形成させた接着性改 質基材フィルムと、該フィルムの接着性改質層 Bの片面に無機微粒子を含有するハ ードコート層 Cが積層された、 AZBZCまたは BZAZBZCの層構成を含むハード コートフィルムである。ハードコート層を構成する硬化型榭脂としては、電離放射線硬 化型榭脂が好ましい。電離放射線硬化型榭脂としては、例えば、下記の榭脂が挙げ られる。 The hard coat film of the present invention comprises an adhesive modified base film in which an adhesive modified layer B containing a copolymerized polyester and polyurethane is formed on one side or both sides of a thermoplastic resin film A, and the adhesion of the film. This is a hard coat film having a layer structure of AZBZC or BZAZBZC in which a hard coat layer C containing inorganic fine particles is laminated on one side of the property-improving layer B. As curable resin constituting the hard coat layer, ionizing radiation hard Chemicalized rosin is preferred. Examples of the ionizing radiation curable resin include the following resins.
[0219] 電離放射線硬化型榭脂には、好ましくはアタリレート系官能基を有する榭脂であり、 特に好ましくは、ポリエステルアタリレート、あるいはウレタンアタリレートである。ポリエ ステルアタリレートは、ポリエステル系ポリオールのオリゴマーのアタリレートまたはメタ タリレート(以下、アタリレート及び Zまたはメタタリレートを、(メタ)アタリレートと記載す る場合がある)、あるいはその混合物力も構成される。また、ウレタン (メタ)アタリレート は、ポリオ一ルイ匕合物とジイソシァネートイ匕合物力もなるオリゴマーを (メタ)アタリレー ト化したものから構成される。  [0219] The ionizing radiation curable resin is preferably a resin having an acrylate functional group, and particularly preferably a polyester acrylate or a urethane acrylate. Polyester acrylate is also composed of polyester polyol oligomer acrylate or methacrylate (hereinafter, acrylate and Z or metatalate may be referred to as (meth) acrylate), or a mixture thereof. Urethane (meth) acrylate is composed of (meth) acrylated oligomers that also have the ability to produce poly-poly and di-isocyanate compounds.
[0220] (メタ)アタリレートを構成する単量体としては、メチル (メタ)アタリレート、ェチル (メ夕 )アタリレート、ブチル (メタ)アタリレート、 2—ェチルへキシル (メタ)アタリレート、メトキ シェチル (メタ)アタリレート、ブトキシェチル (メタ)アタリレート、フエ-ル (メタ)アタリレ ートが挙げられる。  [0220] Monomers constituting (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethyl hexyl (meth) acrylate, Examples include methoxy shetil (meth) acrylate, butoxy chill (meth) acrylate, and phenol (meth) acrylate.
[0221] また、さらにハードコート層の硬度を高めることが必要な場合は、多官能モノマーを 併用することが好ましい。例えば、多官能モノマーとしては、トリメチロールプロパントリ (メタ)アタリレート、へキサンジオール (メタ)アタリレート、トリプロピレングリコールジ (メ タ)アタリレート、ジエチレングリコールジ (メタ)アタリレート、ペンタエリスリトールトリ(メ タ)アタリレート、ジペンタエリスリトールへキサ(メタ)アタリレート、 1, 6—へキサンジォ ールジ (メタ)アタリレート、ネオペンチルダリコールジ (メタ)アタリレートが例示される。  [0221] If it is necessary to further increase the hardness of the hard coat layer, it is preferable to use a polyfunctional monomer in combination. For example, the polyfunctional monomers include trimethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri ( Examples thereof include meta) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and neopentyl dallicol di (meth) acrylate.
[0222] ポリエステル系ポリオールのオリゴマーとしては、アジピン酸とグリコール(エチレン グリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、 ブチレングリコール、ポリブチレングリコール等)やトリオール(グリセリン、トリメチロー ルプロパン等)、セバシン酸とグリコールやトリオールとの縮合生成物であるポリアジ ペートポリオールや、ポリセバシェートポリオールが挙げられる。また、上記脂肪族の ジカルボン酸の一部または全てを他の有機酸で置換することができる。例えば、イソ フタル酸、テレフタル酸、あるいは無水フタル酸は、ハードコート層の硬度を高める成 分として使用することができる。  [0222] Polyester polyol oligomers include adipic acid and glycol (ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, butylene glycol, polybutylene glycol, etc.) and triol (glycerin, trimethylolpropane, etc.), sebacic acid and glycol And polyadipate polyol, which is a condensation product with triol, and polysebacate polyol. In addition, some or all of the aliphatic dicarboxylic acids can be substituted with other organic acids. For example, isophthalic acid, terephthalic acid, or phthalic anhydride can be used as a component that increases the hardness of the hard coat layer.
[0223] ハードコート剤を基材フィルムの接着性改質層の表面に塗布する際に、レべリング 性を向上させるために、必要に応じて希釈剤を用いて希釈してもよい。希釈剤として は、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、へキサン、ヘプタン、ォクタ ン、ノナン、デカンなどの脂肪族炭化水素、メチルェチルケトン、ジェチルケトン、ジィ ソプロピルケトン等のケトン等が挙げられる。希釈剤の配合量は、適切な粘度になる ように適宜選択すればょ ヽ。 [0223] When applying the hard coat agent to the surface of the adhesion modified layer of the base film, leveling is performed. In order to improve property, you may dilute using a diluent as needed. Diluents include aromatic hydrocarbons such as benzene, toluene, and xylene, aliphatic hydrocarbons such as hexane, heptane, octane, nonane, and decane, and ketones such as methyl ethyl ketone, jetyl ketone, and disopropyl ketone. Is mentioned. The blending amount of the diluent should be selected as appropriate so as to obtain an appropriate viscosity.
[0224] ハードコート層 Cに含有させる無機微粒子としては、例えば、非晶性シリカ、結晶性 のガラスフィラー、シリカ、酸ィ匕ジルコニウム、二酸化チタン、アルミナ、などの無機酸 化物、シリカ一アルミナ複合酸ィ匕物粒子、炭酸マグネシウム、水酸ィ匕アルミニウム、硫 酸バリウム、炭酸カルシウム、リン酸カルシウム、カオリン、タルク、硫酸バリウム、フッ 化カルシウム、フッ化リチウム、ゼォライト、硫ィ匕モリブデン、マイ力が挙げられる。  [0224] The inorganic fine particles to be contained in the hard coat layer C include, for example, amorphous silica, crystalline glass filler, inorganic oxides such as silica, zirconium oxide, titanium dioxide, alumina, and silica-alumina composite. Oxide particles, magnesium carbonate, aluminum hydroxide, barium sulfate, calcium carbonate, calcium phosphate, kaolin, talc, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfate, My strength It is done.
[0225] ハードコート層 Cの表面に、高屈折率層 Z低屈折率層、あるいは高屈折率層 Z中 屈折率層 Z低屈折率層から構成される反射防止層を積層する場合、ハードコート層 Cを高屈折率ィ匕することにより、反射防止層力 高屈折率層を省略することができる。 その結果、コストを低減することができる。ハードコート層 Cの屈折率を高くするために は、ハードコート層中に屈折率の高い無機微粒子を含有させることが有効である。屈 折率の高い無機微粒子としては、例えば、酸ィ匕ジルコニウム、酸化チタンが挙げられ る。  [0225] When the antireflective layer composed of the high refractive index layer Z low refractive index layer or the high refractive index layer Z medium refractive index layer Z low refractive index layer is laminated on the surface of the hard coat layer C, the hard coat layer C By providing layer C with a high refractive index, the antireflective layer strength high refractive index layer can be omitted. As a result, cost can be reduced. In order to increase the refractive index of the hard coat layer C, it is effective to include inorganic fine particles having a high refractive index in the hard coat layer. Examples of the inorganic fine particles having a high refractive index include zirconium oxide and titanium oxide.
[0226] ハードコート層中の無機微粒子の含有量は、 20質量%以上、 80質量%以下であ ることが重要である。無機微粒子の含有量が 20質量%未満では、耐擦傷性が不足 する。一方、無機微粒子の含有量が 80質量%を超えると、透明性が低下する傾向が ある。また、無機微粒子の平均粒径は、透明性の点から、 5〜: LOOnmが好ましい。し 力しながら、このような平均粒径の小さい無機微粒子は、凝集しやすく不安定である 。したがって、無機微粒子の分散安定性を高めるために、無機微粒子の表面に光感 応性基を付与し、硬化型榭脂との親和性を高めることが好ま U、。  [0226] The content of the inorganic fine particles in the hard coat layer is important to be 20% by mass or more and 80% by mass or less. When the content of the inorganic fine particles is less than 20% by mass, the scratch resistance is insufficient. On the other hand, when the content of the inorganic fine particles exceeds 80% by mass, the transparency tends to decrease. Moreover, the average particle diameter of the inorganic fine particles is preferably 5 to: LOOnm from the viewpoint of transparency. However, such inorganic fine particles having a small average particle diameter are easy to aggregate and are unstable. Therefore, in order to increase the dispersion stability of the inorganic fine particles, it is preferable to add a photosensitive group to the surface of the inorganic fine particles to increase the affinity with the curable resin.
[0227] このような無機微粒子を含有するハードコート剤は、市販品が入手できる。例えば、 JSR株式会社製の紫外線硬化型榭脂(デソライト; Z7400A、 Z7410A、 Z7400B、 Z7410B、 Z7400C、 Z7410C、 Z7410D、 Z7410E、 Z7501、 Z7503、 Z7521, Z 7527)が挙げられる。 [0228] 電離放射線硬化型榭脂は、紫外線あるいは電子線を照射することにより硬化する。 紫外線を照射する場合、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク 、メタルハライドランプを用い、 100〜400nm、好ましくは、 200〜400nmの波長領 域で、 100〜3000mjZm2のエネルギーで紫外線を照射する。また、電子線を照射 する場合、走査型あるいはカーテン型の電子線加速器を用い、加速電圧 lOOOkeV 以下、好ましくは 100〜300keVのエネルギーを有し、かつ lOOnm以下の波長領域 の電子線を照射する。 [0227] Commercially available hard coat agents containing such inorganic fine particles are available. For example, ultraviolet curable resin (Desolite; Z7400A, Z7410A, Z7400B, Z7410B, Z7400C, Z7410C, Z7410D, Z7410E, Z7501, Z7503, Z7521, Z7527) manufactured by JSR Corporation may be mentioned. [0228] The ionizing radiation curable resin is cured by irradiation with ultraviolet rays or electron beams. Case of irradiation with ultraviolet rays, ultra-high pressure mercury lamp, high pressure mercury lamp, low pressure mercury lamp, carbon arc, a metal halide lamp, 100 to 400 nm, preferably, irradiated in the wavelength area of 200 to 400 nm, the ultraviolet energy 100~3000MjZm 2 To do. When irradiating an electron beam, a scanning or curtain type electron beam accelerator is used to irradiate an electron beam having an acceleration voltage of lOOOOkeV or less, preferably 100 to 300 keV and having a wavelength region of lOOnm or less.
[0229] ハードコート層の厚さは、 0. 1〜30 /ζ πιの範囲で、用途に応じて決めればよい。よ り好ましくは 1〜 15 mである。ハードコート層の厚さが、前記の範囲内の場合には、 ハードコート層の表面の硬度が高ぐ傷が付きにくい。さらに、ハードコート層が脆くな りにくぐハードコートフィルムを折り曲げたときにハードコート層〖こクラックが入りにくい  [0229] The thickness of the hard coat layer may be determined in the range of 0.1 to 30 / ζ πι depending on the application. More preferably, it is 1 to 15 m. When the thickness of the hard coat layer is within the above range, the surface of the hard coat layer has a high hardness and is hardly damaged. Furthermore, when the hard coat film is bent, the hard coat layer does not easily become brittle.
[0230] 次に、本発明に記載の光学機能性フィルムとは、本発明のハードコートフィルムの ハードコート層 Cとは反対面あるいはその上に、光学機能層を積層したフィルムであり 、下記の 2つの実施形態がある。 [0230] Next, the optical functional film described in the present invention is a film in which an optical functional layer is laminated on the surface opposite to or on the surface of the hard coat film C of the hard coat film of the present invention. There are two embodiments.
(a)ハードコート層 Cとは反対面に、ハードコート層、光拡散層、プリズム状レンズ層 、電磁波吸収層、近赤外線遮断層、透明導電層から選択される、少なくとも 1層の光 学機能層を積層した光学機能性フィルム。 ( a ) At least one optical function selected from a hard coat layer, a light diffusion layer, a prismatic lens layer, an electromagnetic wave absorption layer, a near-infrared shielding layer, and a transparent conductive layer on the surface opposite to the hard coat layer C An optical functional film in which layers are laminated.
(b)ハードコート層 Cの上に、反射防止層または防汚層を積層した光学機能性フィ ノレム。  (b) An optical functional fine layer in which an antireflection layer or an antifouling layer is laminated on the hard coat layer C.
[0231] 光学機能層としてレンズ層を用いたレンズフィルム、光拡散層を用いた光拡散フィ ルムを代表例として、以下に説明する。  [0231] A lens film using a lens layer as an optical functional layer and a light diffusion film using a light diffusion layer will be described below as representative examples.
[0232] (レンズフイノレム)  [0232] (Lens Finorem)
プリズムレンズフィルムまたはフレネルレンズフィルムは、共重合ポリエステル及びポ リウレタンを主たる構成成分とする接着性改質層を有する接着性改質基材フィルムの 片面に、無機微粒子を含有する電離放射線硬化型ハードコート層を積層し、反対面 にプリズムレンズ層またはフレネルレンズ層を積層した構成からなる。レンズフィルム はレンズシートと呼ばれる場合もある力 本発明ではシートもフィルムに包含する。 [0233] 次に、プリズムレンズ層を構成する活性エネルギー線硬化榭脂成分について説明 する。 A prism lens film or a Fresnel lens film is an ionizing radiation curable hard coat containing inorganic fine particles on one side of an adhesive modified base film having an adhesive modified layer mainly composed of copolymer polyester and polyurethane. The layers are laminated, and a prism lens layer or a Fresnel lens layer is laminated on the opposite surface. The lens film may be called a lens sheet. In the present invention, a sheet is also included in the film. [0233] Next, the active energy ray-curable resin component constituting the prism lens layer will be described.
活性エネルギー線硬化榭脂成分として、ラジカル重合可能なモノマー、あるいはォ リゴマーの少なくとも 1種は、製造したレンズシートの性能を決定するものであり、 目的 とするレンズフィルムの性能に応じて適宜選択する。  As the active energy ray-curable resin component, at least one of radically polymerizable monomer or oligomer determines the performance of the produced lens sheet, and is appropriately selected according to the performance of the target lens film. .
[0234] 榭脂成分は、ラジカル重合可能なモノマー、あるいはオリゴマーを単独で、あるいは 2種以上を組み合わせて用いる。特に、榭脂を 2種以上用いると、レンズフィルムに要 求される機械的強度、耐衝撃性、耐熱性、表面硬度、耐薬品性を付与することがで きる。また、ラジカル重合性官能基として、アタリロイル基、またはメタクリロイル基を有 する化合物を組成物に対し 60質量部以上用いることにより、活性エネルギー線を照 射した際に、部分的に共重合し、瞬時に不流動化する。そのため、レンズ層を形成す る際に対流による光学歪みが少なくなる。  [0234] The resin component is a radically polymerizable monomer or oligomer used alone or in combination of two or more. In particular, when two or more types of rosin are used, the mechanical strength, impact resistance, heat resistance, surface hardness, and chemical resistance required for the lens film can be imparted. In addition, by using 60 parts by mass or more of a compound having an attalyloyl group or a methacryloyl group as a radical polymerizable functional group with respect to the composition, when the active energy ray is irradiated, it partially copolymerizes and instantaneously To become fluidized. Therefore, optical distortion due to convection is reduced when the lens layer is formed.
[0235] 榭脂成分としては、脂肪族、脂環族、芳香族系のモノ、またはポリアルコールとァク リル酸、またはメタクリル酸との縮合反応で得られるエステル型 (メタ)アタリレート、分 子内に 2個以上のイソシァネート基を有するイソシァネートイ匕合物とヒドロキシル基、ま たはチオール基を含有する (メタ)アタリレートとのウレタンィ匕反応で得られるウレタン ポリ (メタ)アタリレートや、分子内に少なくとも 2個のエポキシ基を有する化合物と、ァ クリル酸、またはメタクリル酸とのグリシジル基開環反応で得られるエポキシポリ (メタ) アタリレート、飽和または不飽和多価カルボン酸、多価アルコール、及び (メタ)アタリ ル酸との縮合反応で得られるポリエステル (メタ)アタリレート等の (メタ)アタリロイル官 能性モノマー、オリゴマーや、スチレン、クロロスチレン、ブロモスチレン、ジブ口モス チレン、ジビュルベンゼン、等のビュル化合物、ジエチレングリコールビスァリルカー ボネート、ジァリルフタレート、ジァリルビフエ-レート等の(メタ)ァリル化合物が挙げ られる。  [0235] The resin component includes an ester-type (meth) acrylate, a component obtained by a condensation reaction of an aliphatic, alicyclic, or aromatic mono- or polyalcohol with acrylic acid or methacrylic acid. Urethane poly (meth) acrylates and molecules obtained by urethane reaction of isocyanate compounds having two or more isocyanate groups in the element and (meth) acrylates containing hydroxyl groups or thiol groups Epoxy poly (meth) acrylate, saturated or unsaturated polyvalent carboxylic acid, polyhydric alcohol obtained by ring opening reaction of glycidyl group with compound having at least two epoxy groups and acrylic acid or methacrylic acid , And (meth) atallyloyl functional monomers such as polyester (meth) ate lylate obtained by condensation reaction with (meth) acrylate. And butyl compounds such as styrene, chlorostyrene, bromostyrene, dibutyl styrene, dibutylbenzene, and (meth) aryl compounds such as diethylene glycol bisallyl carbonate, diallyl phthalate, and diallyl biphosphate. .
[0236] 好ま 、具体例を下記に示す。下記の各種の榭脂成分は単独で用いてもよ!、し、 2 種以上を組み合わせて使用してもよい。また、プリズムレンズまたはフレネルレンズ用 榭脂は市販品を入手することができる。例えば、 JSR株式会社製の UV硬化型榭脂( デソライト; Z9590、 Z9502)力挙げられる。 [0237] (a)脂肪族モノ (メタ)アタリレート [0236] Preferred examples are shown below. The following various types of resin components may be used alone or in combination of two or more. Commercially available products are available for prism lenses or Fresnel lens resins. For example, UV curable resin (Desolite; Z9590, Z9502) manufactured by JSR Corporation can be mentioned. [0237] (a) Aliphatic mono (meta) attalylate
メチル (メタ)アタリレート、ブチル (メタ)アタリレート Methyl (meth) acrylate, butyl (meth) acrylate
Figure imgf000060_0001
Figure imgf000060_0001
[0238] (b)脂環族モノ (メタ)アタリレート  [0238] (b) Alicyclic mono (meth) acrylate
シクロへキシル (メタ)アタリレート、ジシクロペンタ-ル (メタ)アタリレート、ジシクロべ ンテュル (メタ)アタリレート、イソボル-ル (メタ)アタリレート、ボル-ル (メタ)アタリレー 卜  Cyclohexyl (meth) acrylate, dicyclopental (meth) acrylate, dicyclopentale (meth) acrylate, isobornyl (meth) acrylate, born (meth) ate relay
[0239] (c)芳香族モノ (メタ)アタリレート  [0239] (c) Aromatic mono (meth) acrylate
フエ-ル (メタ)アタリレート、ベンジル (メタ)アタリレート、フエノキシェチル (メタ)ァク リレート、フエノキシ 2—メチルェチル (メタ)アタリレート、 3 フエノキシ 2 ヒドロ キシプロピル(メタ)アタリレート、 2—フエ-ルフエ-ル(メタ)アタリレート、 2—フエ-ル  Phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxychetyl (meth) acrylate, phenoxy 2-methylethyl (meth) acrylate, 3 phenoxy 2 hydroxypropyl (meth) acrylate, 2-phenol phe -Lu (meta) attalylate, 2-Fuel
2 フエ-ルフエ-ル 2—メチルォキシェチル (メタ)アタリレート、 2—ナフチル (メタ )アタリレート、 2 ブロモフエ-ル (メタ)アタリレート、 4 ブロモフエ-ル (メタ)アタリレ ート、 2, 4 ジブロモフエ-ル (メタ)アタリレート、 2, 4, 6 トリブロモフエ-ル (メタ) アタリレート、フエ-ルチオェチル (メタ)アタリレート、フエ-ルチオエトキシェチル (メ タ)アタリレート 2 Phenol Phenol 2—Methyloxychetyl (Meth) Atalylate, 2 —Naphthyl (Meth) Atalylate, 2 Bromo Phenol (Meth) Atalylate, 4 Bromo Phenol (Meth) Atalylate, 2 , 4 Dibromophenol (meth) acrylate, 2, 4, 6 Tribromophenol (meth) acrylate, Phenolthioethyl (meth) acrylate, Phenolthioethoxyethyl (meth) acrylate
[0240] (d)芳香族骨格のエステルジ (メタ)アタリレート [0240] (d) Aromatic skeleton ester di (meth) acrylate
ビス(4— (メタ)アタリロキシエトキシフエ-ル)メタン、ビス(4— (メタ)アタリ口キシジ エトキシフエ-ル)メタン、 2, 2 ビス(4— (メタ)アタリロキシエトキシフエ-ル)プロパ ン、 2, 2 ビス(4— (メタ)アタリ口キシジエトキシフエ-ル)プロパン、 2, 2 ビス(4— (メタ)アタリロキシペンタエトキシフエ-ル)プロパン、 2, 2 ビス(4— (メタ)アタリロキ シプロポキシフエ-ル)プロパン、 2, 2 ビス(4— (メタ)アタリ口キシジプロポキシフエ -ル)プロパン、 2, 2 ビス(4— (メタ)アタリロキシエトキシ一 3, 5 ジブロモフエ-ル )プロパン、 2, 2 ビス(4— (メタ)アタリ口キシジエトキシ— 3, 5 ジブロモフエ-ル) プロパン、 2, 2 ビス(4— (メタ)アタリロキシペンタエトキシ一 3, 5 ジブロモフエ- ル)プロパン、ビス(4— (メタ)アタリロキシエトキシフヱ-ル)スルホン、ビス(4— (メタ) アタリ口キシジエトキシフエ-ル)スルホン、ビス(4— (メタ)アタリロイルチオフエ-ル) スルフイド、ビス(4 (メタ)アタリロキシェチルチオフエ-ル)スルフイド等の Bis (4— (meth) atalyloxyethoxyfile) methane, Bis (4— (meth) atarioxydiethoxyphenol) methane, 2, 2 Bis (4— (meth) ataryloxyethoxyfile) propaline 2, 2 bis (4- (meth) atari-oxydiethoxyphenyl) propane, 2,2 bis (4- (meth) acryloxypentaethoxyphenyl) propane, 2,2 bis (4- (Meth) Ataryloxypropoxyphenyl) propane, 2, 2 bis (4— (Meth) Atarioxydipropoxyphenyl) propane, 2,2 bis (4— (Meth) Ataryloxyethoxy 1,3,5 Dibromophenol) propane, 2, 2 bis (4- (meth) atarioxydiethoxy-3,5 dibromophenol) Propane, 2,2 bis (4- (meth) atalyloxypentaethoxy-1,3,5 dibromophenol ) Propane, bis (4- (meth) Ataliro Shietokishifuwe - Le) sulfone, bis (4- (meth) Atari port carboxymethyl diethoxy Hue - Le) sulfone, bis (4- (meth) Atari Roy Lucio Hue - Le) Sulfide, bis (4 (meth) atarilochechetyl alcohol) sulfide, etc.
[0241] (e)脂環族骨格のエステルジ (メタ)アタリレート [0241] (e) Alicyclic skeleton ester di (meth) acrylate
ビス(4— (メタ)アタリ口キシシクロへキシル)メタン、ビス(4— (メタ)アタリ口キシェトキ シシクロへキシル)メタン、ビス(4— (メタ)アタリ口キシジエトキシシクロへキシル)メタン 、ビス(4— (メタ)アタリ口キシシクロへキシル)プロパン、ビス(4— (メタ)アタリ口キシェ トキシシクロへキシル)プロパン、ビス(4 (メタ)アタリ口キシジエトキシシクロへキシル )プロパン、ジシクロペンタンジ (メタ)アタリレート  Bis (4- (meth) atarioxyxycyclohexyl) methane, bis (4- (meth) atoxyoxycyclohexyl) methane, bis (4- (meth) atoxydiethoxycyclohexyl) methane, bis (4- (meth) atarioxyxycyclohexyl) propane, bis (4- (meth) atarioxyxyxy) propane, bis (4 (meth) atarioxydiethoxycyclohexyl) propane, dicyclopentane Di (meta) Atarilate
[0242] (f)脂肪族骨格のエステルジ (メタ)アタリレート  [0242] (f) Aliphatic skeleton ester di (meth) acrylate
エチレングリコールジ (メタ)アタリレート、ジエチレングリコールジ (メタ)アタリレート、 トリエチレングリコールジ (メタ)アタリレート、ポリエチレングリコール(n=4〜15)ジ (メ タ)アタリレート、プロピレングリコールジ (メタ)アタリレート、トリプロピレングリコールジ (メタ)アタリレート、ポリプロピレングリコール(n=4〜15)ジ (メタ)アタリレート、 1, 4— ブタンジオールジ (メタ)アタリレート、ポリブチレンダリコール(n= 2〜15)ジ (メタ)ァ タリレート、ネオペンチルグリコールジ(メタ)アタリレート、ヒドロキシヒバリン酸ネオペン チルダリコールエステルのジ (メタ)アタリレート、 1, 6 へキサンジオールジ (メタ)ァク リレート、 1, 9ーノナンジオールジ(メタ)アタリレート Ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol ( n = 4 to 15) di (meth) acrylate, propylene glycol di (meth) Atalylate, tripropylene glycol di (meth) acrylate, polypropylene glycol (n = 4-15) di (meth) acrylate, 1, 4-butanediol di (meth) acrylate, polybutylene glycol (n = 2 -15) Di (meth) acrylate, neopentylglycol di (meth) acrylate, di (meth) acrylate of hydroxypentyl alcoholate, 1,6 hexanediol di (meth) acrylate, 1 , 9-nonanediol di (meth) atarylate
[0243] (g)多官能性 (メタ)アタリレート  [0243] (g) Multifunctional (meth) atallylate
トリメチロールプロパントリ(メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレー ト、ペンタエリスリトールテトラ (メタ)アタリレート、ジトリメチロールプロパンテトラ (メタ) アタリレート、ジペンタエリスリトールペンタ(メタ)アタリレート  Trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylol propane tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate
[0244] (h)ウレタンポリ(メタ)アタリレート  [0244] (h) Urethane poly (meth) acrylate
トリス(イソシアナトへキシル)イソシァヌレート、イソホロンジイソシァネート、ビス(4, 4' —イソシアナトシクロへキシル)メタン、 1, 3 ビス(イソシアナトメチル)シクロへキ サン、メタキシリレンジイソシァネート、 2, 4 トリレンジイソシァネート、 2, 6 トリレン ジイソシァネート等のポリイソシァネートイ匕合物と 2—ヒドロキシェチル (メタ)アタリレー  Tris (isocyanatohexyl) isocyanurate, isophorone diisocyanate, bis (4,4'-isocyanatocyclohexyl) methane, 1,3 bis (isocyanatomethyl) cyclohexane, metaxylylene diisocyanate, Polyisocyanate compounds such as 2,4 tolylene diisocyanate and 2,6 tolylene diisocyanate and 2-hydroxyethyl (meth) atrely
4—ヒドロキシブチル (メタ)アタリレート、のようなヒドロキシル基を含有する(メタ)アタリ レートとの反応生成物 [0245] (i)エポキシポリ(メタ)アタリレート 4-Hydroxybutyl (meth) atalylate, a reaction product with (meth) atalylate containing a hydroxyl group such as [0245] (i) Epoxy poly (meth) acrylate
2, 2 ビス(4 -グリシジノレ才キシシクロへキシノレ)プロパン、 2, 2 ビス(4 -グリシ ジルォキシフエ-ル)プロパン、ビスフエノール Aジグリシジルエーテル、ビスフエノー ル Fジグリシジルエーテル、ビスフエノール Sジグリシジルエーテル、テトラブロモビス フエノール Aジグリシジルエーテル、テトラブロモビスフェノール Sジグリシジルエーテ ル、のようなエポキシ化合物と (メタ)アクリル酸との反応物  2,2 bis (4-glycidinoleoxycyclocyclohexyl) propane, 2,2 bis (4-glycidyloxyphenol) propane, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, Reaction products of (meth) acrylic acid with epoxy compounds such as tetrabromobisphenol A diglycidyl ether and tetrabromobisphenol S diglycidyl ether
[0246] (j)ポリエステルポリ(メタ)アタリレート  [0246] (j) Polyester poly (meth) acrylate
マレイン酸、フマル酸、フタル酸、あるいはコハク酸の少なくとも 1種とエチレングリコ ール、プロピレングリコール、ブチレングリコール、トリメチロールプロパン、あるいはぺ ンタエリスリトールの少なくとも 1種、及びメタクリル酸またはアクリル酸との反応物 Reaction of at least one of maleic acid, fumaric acid, phthalic acid or succinic acid with at least one of ethylene glycol, propylene glycol, butylene glycol, trimethylolpropane or pentaerythritol, and methacrylic acid or acrylic acid object
[0247] 活性エネルギー線感応触媒としては、主として波長 200〜400nmの活性エネルギ 一線に感応してラジカル源を発生するものがより好ましい。具体例として、ベンゾイン 、ベンゾインモノメチルエーテル、ベンゾインイソプロピルエーテル、ァセトイン、ベン ジル、ベンゾフエノン、 p—メトキシベンゾフエノン、ジェトキシァセトフエノン、ベンジル ジメチルケタール、 2, 2—ジェトキシァセトフェノン、 1ーヒドロキシシクロへキシルフェ -ルケトン、メチルフエ-ルグリオキシレート、ェチルフエ-ルグリオキシレート、 2—ヒ ドロキシ 2—メチルー 1 フエ-ルプロパン 1 オン等のカルボ-ル化合物、テト ラメチルチウラムモノスルフイド、テトラメチルチウラムジスルフイドなどの硫黄ィ匕合物、 2, 4, 6 トリメチルベンゾィルジフエニルフォスフィンオキサイドなどのァシルフォスフ インオキサイドが挙げられる。これらは 1種または 2種以上の混合系で使用される。こ れらの中でも、ベンゾフエノン、ベンゾインイソプロピルエーテル、メチルフエ-ルグリ ォキシレート、 1ーヒドロキシシクロへキシルフエ-ルケトン、ベンジルジメチルケター ル、 2, 4, 6 トリメチルベンゾィルジフエニルフォスフィンオキサイドがより好ましい。 [0247] As the active energy ray-sensitive catalyst, a catalyst that generates a radical source mainly in response to an active energy ray having a wavelength of 200 to 400 nm is more preferable. Specific examples include benzoin, benzoin monomethyl ether, benzoin isopropyl ether, acetoin, benzil, benzophenone, p-methoxybenzophenone, methoxyacetophenone, benzyl dimethyl ketal, 2, 2-methoxyacetophenone, 1- Carboxylic compounds such as hydroxycyclohexylphenol ketone, methylphenol glyoxylate, ethylphenylglyoxylate, 2-hydroxy-2-methyl-1-phenolpropanone, tetramethylthiuram monosulfide, tetramethyl Sulfur compounds such as thiuram disulfide, and acylphosphine oxides such as 2,4,6 trimethylbenzoyldiphenylphosphine oxide. These are used in one or a mixture of two or more. Among these, benzophenone, benzoin isopropyl ether, methyl phenol glycolate, 1-hydroxycyclohexyl phenol ketone, benzyl dimethyl ketal, and 2,4,6 trimethylbenzoyldiphenylphosphine oxide are more preferable.
[0248] 活性エネルギー線感応触媒の含有量は、榭脂成分の合計量 100質量部に対し、 0 . 005〜5質量部、より好ましくは、 0. 02〜2質量部である。  [0248] The content of the active energy ray-sensitive catalyst is 0.005 to 5 parts by mass, and more preferably 0.02 to 2 parts by mass with respect to 100 parts by mass of the total amount of the resin components.
[0249] また、レンズ層中には、レンズとしての機能が損なわれな 、範囲内で各種の添加剤 、例えば、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、黄変防止剤、有 機の易滑剤、顔料、染料、ブルーイング剤、有機または無機の微粒子、充填剤、帯 電防止剤、界面活性剤、レべリング剤、核剤、拡散剤などが配合されていてもよい。 [0249] In the lens layer, the function as a lens is not impaired, and various additives within the range, for example, an antioxidant, a heat stabilizer, a weather stabilizer, an ultraviolet absorber, a yellowing inhibitor , Organic lubricants, pigments, dyes, bluing agents, organic or inorganic fine particles, fillers, belts An antistatic agent, a surfactant, a leveling agent, a nucleating agent, a diffusing agent and the like may be blended.
[0250] 接着性改質基材フィルムの接着性改質層の表面に、前記の活性線硬化型榭脂を レンズ層の構成成分として積層する方法は、要求特性や用途に応じて、各種の方法 を選択する。例えば、該榭脂をプリズム状にカットしたバーで塗布する方法、あるいは 該榭脂をプリズム状などのレンズ層の形状にした型に流し込んで、接着性改質基材 フィルムの接着性改質層の表面に重ね合わせる方法を用 、る。  [0250] The method of laminating the actinic radiation curable resin as a constituent component of the lens layer on the surface of the adhesive modified layer of the adhesive modified base film includes various methods depending on required characteristics and applications. Select a method. For example, a method of applying the resin with a bar cut into a prism shape, or pouring the resin into a mold having a lens layer shape such as a prism, Use the method of superimposing on the surface.
[0251] なお、活性線とは、紫外線、電子線、放射線( α線、 j8線、 γ線など)などアクリル系 のビニル基を重合させる電磁波を意味する。実用的には、紫外線が簡便である。紫 外線源としては、例えば、紫外線蛍光灯、低圧水銀灯、高圧水銀灯、超高圧水銀灯 、キセノン灯、炭素アーク灯を用いる。また、電子線方式は、装置が高価で不活性気 体下での操作が必要ではあるが、光重合開始剤や光増感剤などを含有させなくても よい点から有利である。  [0251] The actinic rays mean electromagnetic waves that polymerize acrylic vinyl groups such as ultraviolet rays, electron beams, and radiation (α rays, j8 rays, γ rays, etc.). In practice, ultraviolet light is convenient. As an ultraviolet ray source, for example, an ultraviolet fluorescent lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, or a carbon arc lamp is used. In addition, the electron beam method is advantageous in that the apparatus is expensive and needs to be operated under an inert gas, but it does not need to contain a photopolymerization initiator or a photosensitizer.
[0252] レンズ層の厚みは、レンズフィルムの目的やレンズ単位の形状によって任意に選択 する。一般には、レンズ層の厚みは、 0. l〜5mmが好ましぐより好ましくは 0. 2〜3 mmである。レンズ層の厚みが 0. 1mmより薄い場合は、レンズ層としての効果が得ら れなくなる傾向がある。一方、レンズ層の厚みが 5mmより厚い場合は、輝度の点で不 十分となる傾向がある。  [0252] The thickness of the lens layer is arbitrarily selected depending on the purpose of the lens film and the shape of the lens unit. In general, the thickness of the lens layer is preferably 0.1 to 5 mm, more preferably 0.2 to 3 mm. When the thickness of the lens layer is thinner than 0.1 mm, there is a tendency that the effect as the lens layer cannot be obtained. On the other hand, when the lens layer is thicker than 5 mm, it tends to be insufficient in terms of luminance.
[0253] また、レンズ単位のピッチも、レンズフィルムの目的やレンズ単位の形状によって任 意に選択する。一般には、各レンズ層の中心間距離を 0. 03-0. 5mmとすることが 好ましく、より好ましくは 0. 05〜0. 3mmである。  [0253] Also, the pitch of the lens unit is arbitrarily selected depending on the purpose of the lens film and the shape of the lens unit. In general, the distance between the centers of the lens layers is preferably 0.03-0. 5 mm, more preferably 0.05-0.3 mm.
[0254] 特に、プリズム状のレンズ層を積層したプリズム状レンズフィルムは、輝度、形成の 容易さの点で好ましい。また、プリズムの頂角は 80〜 150度が好ましぐより好ましく は 85〜130度である。  [0254] In particular, a prismatic lens film in which prismatic lens layers are laminated is preferable in terms of luminance and ease of formation. The apex angle of the prism is preferably 80 to 150 degrees, more preferably 85 to 130 degrees.
[0255] (光拡散フィルム)  [0255] (Light diffusion film)
本発明において、光拡散フィルムは、共重合ポリエステル及びポリウレタンを主たる 構成成分とする接着性改質層を有する接着性改質基材フィルムの片面に、無機微 粒子を含有する電離放射線硬化型ハードコート層を積層し、反対面に光拡散層を積 層した構成力もなる。光拡散フィルムは光拡散シートと呼ばれる場合もあるが、本発 明ではシートもフィルムに包含する。 In the present invention, the light diffusing film is an ionizing radiation curable hard coat containing inorganic fine particles on one side of an adhesive modified base film having an adhesive modified layer mainly composed of copolymer polyester and polyurethane. There is also a constitutional force by laminating layers and stacking a light diffusion layer on the opposite side. The light diffusing film is sometimes called a light diffusing sheet. For clarity, sheets are also included in the film.
[0256] 光拡散層はバインダー榭脂と光拡散剤を含む組成物から構成される。前記の榭脂 として、光学的に透明性を有する榭脂が好適である。例えば、アクリル系榭脂、ポリエ ステル樹脂、ポリ塩化ビュル、ポリウレタン、シリコーン榭脂が挙げられる。該榭脂は、 例えば、三菱レーヨン株式会社から「ダイヤナールシリーズ」の商品名で市販されて いる。  [0256] The light diffusion layer is composed of a composition containing a binder resin and a light diffusing agent. As the above-mentioned resin, an optically transparent resin is suitable. For example, acrylic resin, polyester resin, polychlorinated butyl, polyurethane, and silicone resin. The resin is commercially available, for example, from Mitsubishi Rayon Co., Ltd. under the trade name “Dianar Series”.
[0257] また、光拡散剤として用いられる粒子としては、透明な粒子が好適であり、例えば、 シリコーン榭脂粒子、アクリル榭脂粒子、ナイロン榭脂粒子、ウレタン榭脂粒子、スチ レン榭脂粒子、ポリエチレン榭脂粒子、シリカ粒子、ポリエステル榭脂粒子が挙げら れる。これらの粒子は単独で用いてもよいし、 2種類以上併用してもよい。また、上記 微粒子は、その表面もしくは全体が架橋されていてもよい。榭脂に対する粒子の混合 比は、光透過率を確保しつつ充分な光拡散性を得るという観点から、榭脂 100質量 部に対して、 5〜 150質量部とすることが好ましい。  [0257] Further, as the particles used as the light diffusing agent, transparent particles are suitable, for example, silicone resin particles, acrylic resin particles, nylon resin particles, urethane resin particles, styrene resin particles. , Polyethylene resin particles, silica particles, and polyester resin particles. These particles may be used alone or in combination of two or more. The fine particles may be crosslinked on the entire surface or on the whole. The mixing ratio of the particles to the resin is preferably 5 to 150 parts by mass with respect to 100 parts by mass of the resin from the viewpoint of obtaining sufficient light diffusibility while ensuring light transmittance.
[0258] また、上記の粒子の平均粒径は、通常、 1〜70 μ m、好ましくは 5〜50 μ mである。  [0258] The average particle diameter of the above-mentioned particles is usually 1 to 70 µm, preferably 5 to 50 µm.
すなわち、粒子の平均粒径が上記の範囲外となる場合、光透過率と光拡散性とのバ ランスがくずれ、正面輝度を高くすることができなくなるおそれがある。なお、粒子とし て、球状の粒子を使用した場合には、それぞれの球状粒子が 1種のレンズとして作用 し、一層効果的な光拡散効果を持たせることができる。特に、真球状の粒子が有効で ある。真球状の粒子は、例えば、 日本触媒株式会社から、ェポスタ—の商品名で真 球状シリカ粒子が市販されて ヽる。  That is, when the average particle diameter of the particles is out of the above range, the balance between the light transmittance and the light diffusibility is lost, and the front luminance may not be increased. When spherical particles are used as the particles, each spherical particle acts as one kind of lens and can have a more effective light diffusion effect. In particular, spherical particles are effective. Spherical silica particles are commercially available, for example, from Nippon Shokubai Co., Ltd. under the trade name Eposta.
[0259] 光拡散フィルムの代表的な製造方法を下記に示す。  [0259] A typical method for producing a light diffusion film is shown below.
バインダー榭脂、溶剤、粒子を特定の割合で混合、分散させた塗布液を、接着性 改質基材フィルムの接着性改質層(ハードコート層を積層する表面とは反対面)の表 面に、公知の塗布方法で塗布する。次いで、塗布層を自然乾燥、熱風加熱乾燥など の乾燥方法で乾燥硬化させて、接着性基材フィルムの表面に光拡散層を形成する。  Surface of the adhesive modified layer of the adhesive modified base film (opposite to the surface on which the hard coat layer is laminated) with a coating liquid in which binder resin, solvent, and particles are mixed and dispersed at a specific ratio Further, it is applied by a known application method. Next, the coating layer is dried and cured by a drying method such as natural drying or hot air heating drying to form a light diffusion layer on the surface of the adhesive base film.
[0260] 塗布液の好適な調合方法は下記の通りである。  [0260] A suitable method for preparing the coating solution is as follows.
まず、バインダー榭脂を特定の割合で溶剤中に溶解する。この溶解液に、粒子と、 必要に応じてその他の副成分とを特定の割合で分散させて、混合分散液を調製する 。この際、混合分散液の粘度を 1〜500ボイズの範囲になるよう調整する。なお、液の 粘度は、ブルックフィールド粘度計 (B形粘度計)を用いて測定することができる。 First, the binder resin is dissolved in a solvent at a specific ratio. Disperse particles and other subcomponents as necessary in this solution at a specific ratio to prepare a mixed dispersion. . At this time, the viscosity of the mixed dispersion is adjusted to be in the range of 1 to 500 boise. The viscosity of the liquid can be measured using a Brookfield viscometer (B type viscometer).
[0261] 次いで、接着性改質基材フィルムの接着性改質層の表面に上記の塗布液を塗布 し、乾燥させる。塗布液の塗布方法は、溶液の粘度や目的とする塗布層の厚みによ つて選択する。例えば、塗布方法としては、コンマダイレクト法、ロールコート法、ディ ッピング法、ナイフコート法、カーテンフロー法、スプレーコーティング法、スピンコー ティング法、ラミネート法が挙げられる。  [0261] Next, the above-mentioned coating solution is applied to the surface of the adhesion-modified layer of the adhesion-modified base film and dried. The method for applying the coating solution is selected according to the viscosity of the solution and the desired thickness of the coating layer. For example, examples of the coating method include a comma direct method, a roll coating method, a dipping method, a knife coating method, a curtain flow method, a spray coating method, a spin coating method, and a laminating method.
[0262] なお、接着性改質基材フィルムの厚みは、用途や作業性の点から、 50-200 μ m が好ましい。また、光拡散層の厚みは、 2〜30 /ζ πιが好ましい。また、溶剤は、例え ば、トルエン、メチルェチルケトン、キシレン、シクロへキサン、酢酸ェチルが例示され る。  [0262] The thickness of the adhesion-modified base film is preferably 50 to 200 µm from the viewpoint of use and workability. The thickness of the light diffusion layer is preferably 2 to 30 / ζ πι. Examples of the solvent include toluene, methyl ethyl ketone, xylene, cyclohexane, and ethyl acetate.
[0263] なお、バインダー榭脂に対する溶剤の混合比は、塗布方法や作業性、溶剤の種類 などにより適宜に設定されるが、バインダー榭脂 100質量部に対して、溶剤 50〜50 0質量部が好ましい。  [0263] The mixing ratio of the solvent with respect to the binder resin is appropriately set depending on the coating method, workability, type of solvent, etc., but 50 to 500 parts by mass of the solvent with respect to 100 parts by mass of the binder resin. Is preferred.
[0264] また、粒子に対する溶剤の混合比は、塗布方法や作業性、溶剤の種類などに応じ て、粒子 100質量部に対して、溶剤 20〜500質量部の範囲で適宜に設定する。より 好ましくは、粒子 100質量部に対して、溶剤 50〜300質量部である。すなわち、粒子 に対する溶剤の混合比が上記の範囲内である場合、粒子に対する溶剤の量が、榭 脂を軟ィ匕させるのに適切な量となる。  [0264] Further, the mixing ratio of the solvent with respect to the particles is appropriately set in the range of 20 to 500 parts by mass of the solvent with respect to 100 parts by mass of the particles, depending on the coating method, workability, type of solvent, and the like. More preferably, it is 50-300 mass parts of solvent with respect to 100 mass parts of particle | grains. That is, when the mixing ratio of the solvent with respect to the particles is within the above range, the amount of the solvent with respect to the particles is an appropriate amount for softening the resin.
[0265] なお、上記光拡散層の副成分として、例えば、イソシァネートイ匕合物、エポキシ榭脂 、メチロール化メラミン榭脂、メチロールイ匕尿素樹脂、金属塩、金属水酸化物等の架 橋剤、グァ-ジン誘導体、含リン酸陰イオン活性剤、スルホン酸類、第四アンモ-ゥ ム塩、ピリジ-ゥム塩、イミダゾリン誘導体、モルホリン誘導体、ポリオキシエチレン アルキルフエノール、アルキルアミドエ一テル、ソルビタン脂肪酸エステル等の帯電 防止剤、シランカップリング剤を、単独または二種以上含有させることができる。 実施例  [0265] In addition, as a secondary component of the light diffusion layer, for example, an isocyanate compound, an epoxy resin, a methylolated melamine resin, a methylol urea resin, a metal salt, a metal hydroxide, or a crosslinking agent, Guazine derivatives, phosphate anion activators, sulfonic acids, quaternary ammonium salts, pyridinium salts, imidazoline derivatives, morpholine derivatives, polyoxyethylene alkylphenols, alkylamide ethers, sorbitan fatty acids Antistatic agents such as esters and silane coupling agents can be contained alone or in combination of two or more. Example
[0266] 次に、本発明のハードコートフィルム及びそれを用いた光学機能性フィルムについ て、実施例と比較例を用いて説明するが、本発明は当然これらの実施例に限定され るものではない。また、実施例に記載した、接着性改質基材フィルム、ハードコートフ イルム、光学機能性フィルムの物性や特性は下記の方法を用いて評価した。 Next, the hard coat film of the present invention and the optical functional film using the same will be described using examples and comparative examples, but the present invention is naturally limited to these examples. It is not something. In addition, the physical properties and characteristics of the adhesion-modified base film, hard coat film, and optical functional film described in the examples were evaluated using the following methods.
[0267] (1)接着性改質層の相分離構造  [0267] (1) Phase separation structure of adhesion modified layer
(1 - 1)接着性改質基材フィルムの接着性改質層の表面  (1-1) Surface of the adhesion modified layer of the adhesion modified substrate film
(1 1 1)位相像の観察  (1 1 1) Observation of phase image
接着性改質層の表面における接着性改質層の相分離構造の評価は、走査型プロ ーブ顕微鏡(エスアイアイ ·ナノテクノロジー製、 SPI3800Nシステム ZSPA300)を 使用し、位相測定モード (フェーズモード)にて行った。位相像では、位相遅れが大き いほど明るぐ逆に位相遅れが小さいほど暗く表現される。位相遅れが小さいというこ とは、他の相に比べ硬いあるいは比較的吸着力が小さいことを意味する。本発明で 用いる接着性改質基材フィルムの接着性改質層にお ヽて、暗色相がポリエステル相 であり、明色相がポリウレタン相である。  Phase separation mode (phase mode) was evaluated using a scanning probe microscope (SPI3800N system ZSPA300, manufactured by SII Nano Technology) on the surface of the adhesive modified layer. I went there. In the phase image, the brighter the phase delay, the darker the phase delay. A small phase lag means that it is harder or has a relatively lower adsorption force than the other phases. In the adhesion modified layer of the adhesion modified substrate film used in the present invention, the dark hue is a polyester phase and the light hue is a polyurethane phase.
[0268] 走査型プローブ顕微鏡における位相測定モードの測定原理は、エスアイエス'ナノ テクノロジー株式会社のウェブサイト(http : ZZwww. siint. com/technology/ probe— applications, html)の「1— 2.アップリケーシヨン(モード別)」における Ph ase欄の「1. SPMによる位相測定」の PDFファイルに記載されて!、る。  [0268] The measurement principle of the phase measurement mode in the scanning probe microscope is “1-2.Up” on the website of S'Nano Technology Co., Ltd. (http: ZZwww. Siint. Com / technology / probe—applications, html). It is described in the PDF file of “1. Phase measurement by SPM” in the Phase column in “Recations (by mode)”.
[0269] 測定に使用したカンチレバーは、主に DF3 (パネ定数:約 1. 6NZm)を用い、探 針汚染による感度及び分解能の低下を防ぐため、常に新品を使用した。スキャナー は FS - 20Aを使用した。また、位相像の観察は分解能 512 X 512ピクセル以上で 行 、、観察視野は 5 m X 5 mとした。測定時のカンチレバーの振幅減衰率や走 查速度、走査周波数等の測定パラメータはラインスキャンを実施し、最も感度が高ぐ かつ分解能が良く観察できる条件に設定した。  [0269] The cantilever used for the measurement was mainly DF3 (panel constant: about 1.6 NZm), and a new cantilever was always used to prevent deterioration of sensitivity and resolution due to probe contamination. The scanner used was FS-20A. The phase image was observed with a resolution of 512 x 512 pixels or higher, and the observation field of view was 5 m x 5 m. The measurement parameters such as the amplitude attenuation rate of the cantilever, the running speed, and the scanning frequency during the measurement were set to the conditions where the line was scanned and the sensitivity was highest and the resolution was good.
[0270] (1 - 1 - 2)ポリエステル相の面積率の測定  [0270] (1-1-2) Measurement of polyester phase area ratio
(a)画像解析  (a) Image analysis
得られたフェーズモード画像(ビットマップ形式、 512 X 512ピクセル)を画像処理ソ フトウェア(Adobe製、 Photoshop ver7. 0)に読み込ませ、画像の大きさが 205m m X 205mmになるようにディスプレイ上に表示させた(図 1を参照)。次いで、同ソフ トウエアの鉛筆ツール (マスター直径: 3px)により、明色相と暗色相の境界に、黒色の 線を描き両相の境界を明確にした(図 2を参照)。さらに、同ソフトウェアの塗りつぶし ツールを用い、暗色相を黒色に明色相を白色に塗り分け 2値ィ匕した(図 3を参照)。こ の時、画面上の大きさで明色相内にある径 2mm以下の暗色部は、明色相に偏在す る粒子であると判断し、白色に塗りつぶした。例えば、シリカ粒子を用いた場合には、 このように明色相に偏在することが確認できて 、る。 The obtained phase mode image (bitmap format, 512 X 512 pixels) is read by image processing software (Adobe, Photoshop ver. 7.0) and displayed on the display so that the image size is 205 mm x 205 mm. Displayed (see Figure 1). Next, using the software's pencil tool (master diameter: 3px), a black A line was drawn to clarify the boundary between the two phases (see Figure 2). In addition, using the paint tool of the software, the dark hue was painted black and the light hue was painted white, giving a binary value (see Figure 3). At this time, dark portions with a diameter of 2 mm or less in the light hue with the size on the screen were judged to be unevenly distributed in the light hue, and were painted white. For example, when silica particles are used, it can be confirmed that they are unevenly distributed in a light hue.
[0271] この 2値ィ匕した画像を同ソフトウェアにて、輝度 (黒、白)を横軸とし、度数を縦軸とし たヒストグラムを表示させ、黒色部 (ポリエステル相)の面積率を求め、接着性改質基 材フィルムにおける、接着性改質層の表面におけるポリエステル相の面積率とした。 [0271] Using this software, a histogram with the horizontal axis of brightness (black, white) and the vertical axis of frequency is displayed using the same software, and the area ratio of the black part (polyester phase) is obtained. The area ratio of the polyester phase on the surface of the adhesive modified layer in the adhesive modified base film was used.
[0272] (b)ペーパーウェイト法  [0272] (b) Paper weight method
接着性改質層の表面におけるポリエステル相の面積率の測定は、画像解析法以 外に、ペーパーウェイト法を用いて行うこともできる。測定手順は下記の通りである。 得られたフェーズモード画像をビットマップ形式のデジタル画像として保存した。次 いで、この画像をプリンター(Xerox製、 DocuPrintC830)にて、 A4版上質紙に印 刷出力した。出力した画像(200mm X 200mm)について、 500ルクスの照明下の 明るい室内で、目視確認にて画像内の明色相と暗色相の境界を、 4B鉛筆で明確に した。この際、明色相内に存在する径 0. 1 m以下の暗色部は、明色相に偏在する 接着性改質層中に含有させた粒子であることが確認されている。そのため、明色相と その内部の暗色部の境界に線を引かず、この暗色部は明色相に含ませた。その後、 明色相と暗色相を明確にした境界線上をカッターナイフで切り分けることで分割した 。次いで、明色相(ポリウレタン相)と暗色相(ポリエステル相)の紙の質量を測定し、 明色相と暗色相の紙の総質量に対する暗色相(ポリエステル相)の質量の比率を% の単位で求め、それを接着性改質層の表面におけるポリエステル相の面積率とした  The measurement of the area ratio of the polyester phase on the surface of the adhesive modified layer can be carried out using a paper weight method in addition to the image analysis method. The measurement procedure is as follows. The obtained phase mode image was stored as a digital image in bitmap format. Next, this image was printed out on A4 quality paper using a printer (Xerox, DocuPrintC830). For the output image (200mm x 200mm), the boundary between light and dark hues in the image was clarified with a 4B pencil in a bright room under 500 lux illumination. At this time, it has been confirmed that the dark color portion having a diameter of 0.1 m or less present in the light hue is a particle contained in the adhesive modified layer unevenly distributed in the light hue. Therefore, a line was not drawn between the light hue and the dark color area inside it, and this dark color area was included in the light hue. Then, it divided | segmented by cutting on the boundary line which clarified the light hue and the dark hue with the cutter knife. Next, the mass of the light hue (polyurethane phase) and dark hue (polyester phase) paper is measured, and the ratio of the mass of the dark hue (polyester phase) to the total mass of the light hue and dark hue paper is determined in units of%. The area ratio of the polyester phase on the surface of the adhesive modification layer
[0273] (c)ポリエステル相の面積率の変動幅 (最大値と最小値の差) [0273] (c) Fluctuation width of polyester phase area ratio (difference between maximum and minimum values)
(c 1)フィルムロールの長手方向  (c 1) Longitudinal direction of film roll
長さ 1000m以上、幅 50mm以上の接着性改質基材フィルムからなるロールを巻き だした。該フィルムの長手方向(MD)について、前記の接着性改質層の表面におけ るポリエステル相 (位相像で暗色相を示す)の面積率を、下記の箇所で測定した。次 いで、それぞれの箇所において、接着性改質層の表面におけるポリエステル相の面 積率を求めた。さらに、それらの面積率から、最大値と最小値の差を求めた。 A roll made of an adhesive modified base film having a length of 1000 m or more and a width of 50 mm or more was unwound. With respect to the longitudinal direction (MD) of the film, the area ratio of the polyester phase (indicating a dark hue in the phase image) on the surface of the adhesive modified layer was measured at the following locations. Next At each location, the area ratio of the polyester phase on the surface of the adhesive modified layer was determined. Furthermore, the difference between the maximum value and the minimum value was obtained from these area ratios.
接着性改質層の表面におけるポリエステル相の面積率の測定は、フィルム物性が 安定している定常領域の一端を第 1端部、他端を第 2端部としたとき、第 1端部の内 側 2m以下で 1番目の測定を、また、第 2端部の内側 2m以下で最終の測定を行うと 共に、 1番目の測定箇所から 100m毎に行う。  The area ratio of the polyester phase on the surface of the modified adhesive layer is measured by taking the first end as the first end and the second end as the first end of the steady region where the film properties are stable. The first measurement is performed at 2 m or less on the inner side, the final measurement is performed at 2 m or less on the inner side of the second end, and every 100 m from the first measurement point.
[0274] (c 2)フィルムロールの幅方向  [0274] (c 2) Film roll width direction
長さ 1000m以上、幅 50mm以上の接着性改質基材フィルムロールを巻きだし、該 フィルムの幅方向(TD)について、フィルムを幅方向に 4等分した。次いで、それぞれ の中央部において、接着性改質層の表面のポリエステル相 (位相像で暗色相を示す )の面積率を測定した。次いで、幅方向の接着性改質層の表面におけるポリエステル 相の面積率の最大値と最小値の差を求めた。この測定は、フィルムの幅方向を小幅 サイズにスリットする前のジャンボロールで行ってもよい。  An adhesive-modified base film roll having a length of 1000 m or more and a width of 50 mm or more was unwound, and the film was divided into four equal parts in the width direction (TD). Next, the area ratio of the polyester phase (indicating a dark hue in the phase image) on the surface of the adhesive modified layer was measured at each central portion. Next, the difference between the maximum value and the minimum value of the area ratio of the polyester phase on the surface of the adhesive modified layer in the width direction was determined. This measurement may be performed with a jumbo roll before slitting the width direction of the film into a small width size.
[0275] (1— 2)ハードコートフィルムにおける接着性改質層の斜め力 の切削面  [0275] (1-2) Diagonal force cut surface of the adhesion modified layer in hard coat film
本発明のハードコートフィルムは、接着性改質層 Bは、熱可塑性榭脂フィルム Aとハ ードコート層 Cの中間層である。そのため、接着性改質層 Bとハードコート層 Cとの界 面 (接着性改質基材フィルムにおける接着性改質層の表面)において、榭脂の相分 離構造を、直接、観察することが困難である。そこで、本発明者らは、ハードコートフィ ルムを厚み方向に切削し、その切削面から、接着性改質層の厚み方向における榭脂 の相分離構造を測定できることを見出した。また、接着性改質層の厚みは一般に薄 いため、接着性改質層の切削面から、榭脂の相分離構造を観察することは難しい。 そこで、厚み方向に対し、斜めに、かつ浅い角度で、ハードコートフィルムを切削した 。その結果、接着性改質層の厚み方向の観察面積を拡張することができた。この技 術により、接着性改質層 Bとハードコート層 Cの界面近傍における、接着性改質層を 構成する榭脂の相分離構造を観察することができた。  In the hard coat film of the present invention, the adhesive modification layer B is an intermediate layer between the thermoplastic resin film A and the hard coat layer C. Therefore, the phase separation structure of the resin should be observed directly at the interface between the adhesive modified layer B and the hard coat layer C (the surface of the adhesive modified layer in the adhesive modified substrate film). Is difficult. Accordingly, the present inventors have found that a hard coat film can be cut in the thickness direction, and the phase separation structure of the resin in the thickness direction of the adhesive modified layer can be measured from the cut surface. In addition, since the thickness of the adhesive modified layer is generally thin, it is difficult to observe the phase separation structure of the resin from the cut surface of the adhesive modified layer. Therefore, the hard coat film was cut obliquely and at a shallow angle with respect to the thickness direction. As a result, the observation area in the thickness direction of the adhesive modification layer could be expanded. By this technique, the phase separation structure of the resin constituting the adhesive modified layer in the vicinity of the interface between the adhesive modified layer B and the hard coat layer C could be observed.
[0276] 以下に、評価用試料の作成方法、及びノヽードコート層 Cとの界面近傍の接着性改 質層の切削面におけるポリウレタン相の面積率の評価方法を詳しく説明する。  [0276] Hereinafter, a method for preparing an evaluation sample and a method for evaluating the area ratio of the polyurethane phase on the cut surface of the adhesive reforming layer in the vicinity of the interface with the node coat layer C will be described in detail.
[0277] (1 - 2- 1)切削試料の作成 本発明のハードコートフィルムは、熱可塑性榭脂フィルムを A、接着性改質層を B、 ハードコート層を Cとしたときに、 A/B/C、または BZA/B/Cの層構成を含む積 層体である。また、このハードコートフィルムを用いた光学機能性フィルムは、他の光 学機能層を Dとしたとき、 D (Cも含む) ZBZAZBZCの層構成を含む積層体である [0277] (1-2-1) Preparation of cutting specimen The hard coat film of the present invention has a layer structure of A / B / C or BZA / B / C, where A is the thermoplastic resin film, B is the adhesive modification layer, and C is the hard coat layer. It is a stacked body containing. The optical functional film using the hard coat film is a laminate including a layer structure of D (including C) ZBZAZBZC, where D is the other optical functional layer.
[0278] ハードコートフィルムまたは光学機能性フィルムにおいて、熱可塑性榭脂フィルム A または光学機能層 Dの表面から、切削装置 1 (SAICAS DN20— S型)を用いて、 下記に示す条件で、斜め方向から切削する。ナイフの刃が所定の深さに達したところ で、 "切込制限"というボタンを押し、一定の深さでの切削を行う。また、切削する熱可 塑性榭脂フィルムが厚い場合は、複数回の切削を、同じ場所で行うことが好ましい。 [0278] In the hard coat film or optical functional film, from the surface of thermoplastic resin film A or optical functional layer D, using cutting device 1 (SAICAS DN20-S type), diagonally under the conditions shown below Cut from. When the knife blade has reached the specified depth, press the button “Restrict cutting” and perform cutting at a certain depth. Moreover, when the thermoplastic resin film to be cut is thick, it is preferable to perform multiple cuttings at the same place.
(a)切削手段:ダイアモンドナイフ(すくい角: 40度)  (a) Cutting means: Diamond knife (rake angle: 40 degrees)
(b)水平方向の刃の移動速度: 3000nmZs  (b) Horizontal blade movement speed: 3000nmZs
(c)垂直方向の刃の移動速度: 200nmZs  (c) Vertical blade movement speed: 200nmZs
[0279] なお、上記の"所定の深さ"とは、熱可塑性榭脂フィルムの大部分が切削され、接着 性改質層には至っていない深さを意味する。また、 "切込制限"とは、垂直方向の刃 の移動速度をゼロにし、水平方向のみ切削を行うことを意味する。  [0279] The above "predetermined depth" means a depth at which most of the thermoplastic resin film is cut and does not reach the adhesive property modified layer. “Incision limit” means that the moving speed of the blade in the vertical direction is set to zero and cutting is performed only in the horizontal direction.
[0280] 続いて、同一箇所を、切削装置 2(SAICAS NN— 04型)を用いて、下記に示す 条件で、斜め方向から精度の高い切削を行い、切削試料を作成した。  [0280] Subsequently, the same location was cut with high precision from an oblique direction using a cutting device 2 (SAICAS NN-04 type) under the conditions shown below, and a cutting sample was prepared.
(d)切削手段:ダイアモンドナイフ(すく 、角: 40度)  (d) Cutting means: Diamond knife (scoop, angle: 40 degrees)
(e)水平方向の刃の移動速度: 500nmZs  (e) Horizontal blade movement speed: 500nmZs
(f)垂直方向の刃の移動速度: 20nmZs  (f) Vertical blade movement speed: 20nmZs
[0281] なお、上記の切削条件は、本発明に記載の実施例及び比較例で得られたノヽードコ 一トフイルムを切削するための代表的な条件である。試料によっては、三次元切削治 具を用いて、三次元切削する方法が有効な場合もある。また、ダイアモンドナイフの 刃の幅は、通常 lmmであるが、 0. 3mmが有効な場合もある。本発明に記載の実施 例と比較例では、刃の幅が lmmのダイアモンドナイフを用いた。  [0281] The above cutting conditions are typical conditions for cutting the node coat films obtained in the examples and comparative examples described in the present invention. Depending on the sample, a three-dimensional cutting method using a three-dimensional cutting tool may be effective. The blade width of diamond knives is usually lmm, but 0.3mm may be effective. In the examples and comparative examples described in the present invention, a diamond knife having a blade width of 1 mm was used.
[0282] したがって、ハードコートフィルムの各層の材料の種類力 本発明に記載の実施例及 び比較例で使用した材料とは異なる場合、予備テストを行い、適切な切削条件を決 めることが好ましい。 [0282] Therefore, if the material strength of each layer of the hard coat film is different from the materials used in the examples and comparative examples described in the present invention, a preliminary test is performed to determine appropriate cutting conditions. Preferably.
[0283] また、光学機能層 D (ハードコート層 Cも含む)の表面力も切削を行う場合、光学機 能層の物性によっては、切削時に加熱または冷却することが必要な場合がある。カロ 熱または冷却は、低 ·高温ガス吹きつけ装置 (TTFC— L型,ダイブラ 'ウィンテス株 式会社製)を用いればょ 、。加熱または冷却する際の温度あるいはガスの流量は、 切削面の状態により適宜調整する。  [0283] Further, when the surface force of the optical functional layer D (including the hard coat layer C) is also cut, depending on the physical properties of the optical functional layer, it may be necessary to heat or cool during cutting. Caro For heat or cooling, use a low / high temperature gas spray device (TTFC-L type, Dybra “Wintes Co., Ltd.”). The temperature or gas flow rate when heating or cooling is appropriately adjusted according to the state of the cutting surface.
[0284] (1 2— 2)位相像の観察  [0284] (1 2— 2) Observation of phase image
得られた切削試料の切削面において、接着性改質層 Bの榭脂の相分離構造を、前 記の走査型プローブ顕微鏡 (SPM)を用いて、位相測定モード (フェーズモード)で 得られた位相像により観察する。フェーズモードは、通常、ダイナミックフォースモード (DFMモード;エスアイアイ ·ナノテクノロジ一社製 SPMを用いた場合)による形態観 察と同時に行う位相遅れ測定モードのことである。接着性改質層 Bの切削面の位相 像において、暗色相がポリエステル相であり、明色相がポリウレタン相である。  On the cutting surface of the obtained cutting sample, the phase separation structure of the resin of the adhesive modified layer B was obtained in the phase measurement mode (phase mode) using the scanning probe microscope (SPM) described above. Observe by phase image. The phase mode is a phase lag measurement mode that is usually performed simultaneously with the morphological observation in the dynamic force mode (DFM mode; when using SPM manufactured by SII Nanotechnology). In the phase image of the cut surface of the adhesive modification layer B, the dark hue is the polyester phase and the light hue is the polyurethane phase.
[0285] 測定に使用したカンチレバーは、主に DF3 (パネ定数:約 1. 6NZm)を用い、探 針汚染による感度及び分解能の低下を防ぐため、常に新品を使用した。スキャナー は FS - 100Aを使用した。また、位相像の観察視野は 3 m X 3 mとした。測定時 のカンチレバーの振幅減衰率や走査速度、走査周波数等の測定パラメータは、ライ ンスキャンを実施し、最も感度が高ぐかつ分解能が良く観察できる条件に設定した。  [0285] The cantilever used for the measurement was mainly DF3 (panel constant: about 1.6 NZm), and a new cantilever was always used to prevent deterioration of sensitivity and resolution due to probe contamination. The scanner used was FS-100A. The observation field of the phase image was 3 m × 3 m. Measurement parameters such as the amplitude attenuation rate of the cantilever, the scanning speed, and the scanning frequency during measurement were set to the conditions where line scanning was performed and the sensitivity was highest and the resolution was observable.
[0286] (1 2— 3)ポリウレタン相の面積率の測定  [0286] (1 2-3) Measurement of area ratio of polyurethane phase
出願書類に添付される図面は、カラー画像で表示される図面も含まれているが、電 子出願するための都合で、カラー画像を JPEGのファイル形式で保存し、グレースケ ールで表示している。また、白黒の画像も、画質の劣化を防ぐために、 JPEGのフアイ ル形式で保存し、グレースケールで表示している。  Drawings attached to application documents include drawings that are displayed in color images, but for convenience of electronic filing, color images are saved in JPEG file format and displayed in grayscale. Yes. Black-and-white images are also saved in JPEG file format and displayed in grayscale to prevent image quality degradation.
[0287] (a)位相像の読み込み  [0287] (a) Reading of phase image
SPIPソフトウェア(Image Metrology社製、 Version4. 2. 5)を用いて、得られた 位相像をカラーで読み込む。  Use SPIP software (Image Metrology, Version 4.2.5) to read the obtained phase image in color.
[0288] (b)相分離構造のコントラストの強調(図 8を参照)  [0288] (b) Enhancement of contrast in phase separation structure (see Figure 8)
次いで、このソフトで、色均一化(Color Equalization)処理を行い、相分離構造 が容易に可視化されるように、コントラストを強調する。 Next, with this software, color equalization processing is performed, and the phase separation structure Enhance contrast so that is easily visualized.
[0289] (c)相分離構造の観察範囲の確定 (図 9を参照)  [0289] (c) Determination of observation range of phase separation structure (see Fig. 9)
色均一化処理を行った位相像をコピーし、プレゼンテーションソフトウェア(Micros oft PowerPoint2002)の画面に貼り付ける。次いで、接着性改質層 Bとハードコー ト層 Cとの界面 (BZC)に、赤い線 20を引く。この際、界面が不鮮明な場合は、コント ラストを調整する。  Copy the phase image that has undergone color uniformity processing and paste it onto the screen of the presentation software (Micros oft PowerPoint 2002). Next, a red line 20 is drawn at the interface (BZC) between the adhesion modified layer B and the hard coat layer C. At this time, if the interface is unclear, adjust the contrast.
[0290] さらに、この界面(BZC)力も接着性改質層 Bに向力つて、垂直方向に 20nmの深 さの位置に、上記の界面を示す赤い線を平行にコピーし、貼り付ける(図 9の線 21)。 なお、切削試料を作製するに際し、積層体を斜め方向から切削している。そのため、 上記で示す切削条件においては、上記の界面力も接着性改質層 Bに向力つて深さ 2 Onmの位置は、図 9では界面から 500nmの位置に相当する。  [0290] Further, this interface (BZC) force is also directed to the adhesive modified layer B, and the red line indicating the above interface is copied and pasted in parallel at a depth of 20 nm in the vertical direction (Fig. 9 lines 21). In addition, when producing the cutting sample, the laminated body is cut from the diagonal direction. Therefore, in the cutting conditions shown above, the position at the depth of 2 Onm is equivalent to the position of 500 nm from the interface in FIG.
このようにして、これらの 2本の赤い線で囲まれた範囲、すなわち界面(BZC)から 接着性改質層 Bの深さ 20nmまでの範囲を、接着性改質層 Bの切削面における榭脂 の相分離構造を観察する範囲とする。  In this way, the range surrounded by these two red lines, that is, the range from the interface (BZC) to the depth of 20 nm of the adhesive modified layer B is reduced on the cutting surface of the adhesive modified layer B. The range for observation of the phase separation structure of fat.
[0291] (d)相分離構造の画像処理  [0291] (d) Image processing of phase separation structure
図 8の画像を JPEGのファイル形式で保存し、画像処理ソフトウェア(Adobe製、 Ph otoshop ver6. 0. 1)の画面に貼り付け、閾値が 128の白黒の二階調で表示する( 図 10を参照)。  Save the image in Fig. 8 in JPEG file format and paste it on the screen of image processing software (Adobe, Photoshop ver6. 0. 1), and display it in two gray scales with a threshold value of 128 (see Fig. 10). ).
[0292] 次いで、図 10の画像を、プレゼンテーションソフトウェア(Microsoft PowerPoint 2002)の画面に貼り付ける。そして、図 9の画像と重ね合わせて、図 10の画像上に、 図 9に記載の 2本の赤 、線(20、 21)を表示させる(図 11を参照)  Next, the image of FIG. 10 is pasted on the screen of presentation software (Microsoft PowerPoint 2002). Then, the two red lines (20, 21) shown in Fig. 9 are displayed on the image of Fig. 10 so as to overlap with the image of Fig. 9 (see Fig. 11).
[0293] この図 11の画像を、画像処理ソフトウェア(Adobe製、 Photoshop ver6. 0. 1)の 画面に表示させる。さらに、接着性改質層 B以外の部分を、ブラシツールを使用して 赤色で塗りつぶす(図 12を参照)。白、黒、赤の 3値化させた画像を、同ソフトウェアを 用いて、輝度 (黒、白)を横軸とし、度数を縦軸としたヒストグラムで表示させた。  [0293] The image in Fig. 11 is displayed on the screen of image processing software (Adobe, Photoshop ver6. 0.1). In addition, use the brush tool to paint the area other than the adhesive modification layer B in red (see Figure 12). Using the same software, white, black, and red ternary images were displayed as a histogram with luminance (black, white) on the horizontal axis and frequency on the vertical axis.
[0294] なお、図 12に示される接着性改質層 Bの位相像において、黒色部はポリエステル 相と粒子であり、白色部はポリウレタン相を意味する。接着性改質層 Bとハードコート 層 Cの界面力も深さ 20nmまでの範囲の切削面における、接着性改質層 Bのポリウレ タン相(白色部)の面積率を下記式により算出する。なお、下記式の右辺の"測定面 積"とは、図 11の位相像で、線 20 (界面 BZC)と線 21で囲まれた範囲を意味する。 ポリウレタン相の面積率 (%) = (白色部の面積 Z測定面積) X 100 [0294] In the phase image of the adhesive property modified layer B shown in Fig. 12, the black part means the polyester phase and particles, and the white part means the polyurethane phase. The adhesion force modification layer B and the hard coat layer C have an interfacial force with a depth of 20 nm. The area ratio of the tan phase (white part) is calculated by the following formula. The “measurement area” on the right side of the following equation means the range surrounded by the line 20 (interface BZC) and the line 21 in the phase image of FIG. Area ratio of polyurethane phase (%) = (white area Z measurement area) X 100
[0295] (2)ポリエステル相の幅が最小で 1 μ mを超える箇所の有無  [0295] (2) Presence / absence of locations where the width of the polyester phase exceeds 1 μm at the minimum
前記のフェーズモード画像において、異なる測定箇所 10箇所について、共重合ポ リエステルを主成分とするポリエステル相において、短軸方向の幅が最も細い箇所で 1 μ mを越えるものの有無を調べた。  In the above-mentioned phase mode image, the presence or absence of a polyester phase mainly composed of a copolymerized polyester having a width of the minor axis exceeding 1 μm was examined at 10 different measurement locations.
[0296] (3)相分離構造のフラクタル次元  [0296] (3) Fractal dimension of phase separation structure
前記の走査型プローブ顕微鏡(エスアイアイ ·ナノテクノロジー製、 SPI3800Nシス テム ZSPA300)を使用し、位相測定モード(フェーズモード)によって得られたフエ ーズモード画像(ビットマップ形式、 512 X 512ピクセル)を画像処理ソフトウェア(Ad obe製、 Photoshop ver7. 0)に読み込ませ、画像の大きさが 205mm X 205mm になるようにディスプレイ上に表示させた(図 1を参照)。次いで、同ソフトウェアの鉛 筆ツール (マスター直径: 3px)により、明色相と暗色相の境界に、黒色の線を描き両 相の境界を明確にした(図 2を参照)。この時、画面上の大きさで明色相内にある径 2 mm以下の暗色部は、明色相に偏在する粒子であると判断し、境界線を引く操作は この部分に対しては行わな力つた。例えば、シリカ粒子を用いた場合には、このように 明色相に偏在することが確認できて 、る。  Using the scanning probe microscope (SII NanoTechnology, SPI3800N system ZSPA300), phase-mode images (bitmap format, 512 X 512 pixels) obtained in phase measurement mode (phase mode) are processed. The software (Ad obe, Photoshop ver7.0) was loaded and displayed on the display so that the image size would be 205mm x 205mm (see Figure 1). Next, using the lead brush tool (master diameter: 3px) of the software, a black line was drawn at the boundary between the light and dark hues to clarify the boundary between the two phases (see Figure 2). At this time, the dark portion with a diameter of 2 mm or less in the light hue with the size on the screen is judged to be a particle that is unevenly distributed in the light hue, and the operation of drawing the boundary line is not performed on this portion. I got it. For example, when silica particles are used, it can be confirmed that they are unevenly distributed in a light hue.
[0297] 境界線を明確にした画像をビットマップ形式画像として保存した上で、ボックスカウ ンティング法によりフラクタル次元解析を行 ヽ、得られたフラクタル次元数値を相分離 の境界線の複雑さを示す指数とした。ボックスカウンティング法による解析には、画像 解析ソフトウェア(AT— Image ver3. 2)を用いた。具体的には、保存したビットマツ プ画像を画像解析ソフトウェア(AT— Image ver3. 2)上で開き、メニュー上の画像 抽出から輝度ヒストグラムによる二値ィ匕処理を行った(図 6参照)。なお、二値化の際 の閾値は 8とした。二値化処理された画像に対し、メニュー上の画像計測カゝらフラクタ ル次元を選択し、フラクタル次元を求めた。この際、最小二乗法によるフラクタル次元 の計算には一辺の長さ 6ピクセルから 63ピクセルのボックスの計数結果を用いた。  [0297] An image with a clear boundary line is saved as a bitmap format image, and then the fractal dimension analysis is performed by the box counting method, and the obtained fractal dimension value is used to determine the complexity of the boundary line of phase separation. The index is shown. Image analysis software (AT— Image ver. 3.2) was used for analysis by the box counting method. Specifically, the saved bitmap image was opened on the image analysis software (AT- Image ver3.2), and binary image processing was performed using the luminance histogram from image extraction on the menu (see Fig. 6). The threshold for binarization was 8. For the binarized image, the fractal dimension was selected by selecting the fractal dimension from the image measurement cursor on the menu. At this time, for the calculation of the fractal dimension by the method of least squares, the counting result of a box having a side length of 6 to 63 pixels was used.
[0298] なお、ボックスカウンティング法によるフラクタル次元の解析は公知の方法であり、次 元解析に他の画像解析ソフトウェアあるいはプログラムを用いることは、解析結果の 再現性が十分に得られる限り、他の同機能を有するソフトウェアを用いても良い。他 のソフトウエアとは、例えば、「独立行政法人農業技術研究機構 畜産草地研究所製 フラクタル解析システム バージョン 3. 33」、「デジタル 'ビーイング'キッズ社製[0298] The analysis of the fractal dimension by the box counting method is a known method. The use of other image analysis software or programs for the original analysis may use other software having the same function as long as the reproducibility of the analysis results is sufficiently obtained. Other software includes, for example, “Agricultural Technology Research Organization, National Institute of Livestock and Grassland Research, Fractal Analysis System Version 3.33”, “Digital 'Being'Kids'
Poplmaging Ver. 3. 40」、等の画像解析ソフトウェアが挙げられる。 Image analysis software such as “Poplmaging Ver. 3.40”.
[0299] (4)ハードコート相 C中の無機微粒子の平均粒径  [0299] (4) Average particle size of inorganic fine particles in hard coat phase C
ハードコートフィルムの試料を可視光硬化型樹脂 (例えば、エポキシ樹脂)に埋設し  A hard coat film sample is embedded in a visible light curable resin (eg, epoxy resin).
、室温で放置硬化させた。次いで、ダイアモンドナイフを装着したウルトラミクロトーム を用いて超薄切片を作製し、四酸化ルテニウムにより染色した。この染色された超薄 切片を、透過型電子顕微鏡(日本電子株式会社製、 TEM2010)を用いて、ハードコ ート層 Cの断面を観察し、写真を撮影した。なお、写真の拡大倍率は、観察された無 機粒子の粒径に応じ、 10, 000-100, 000倍の範囲で適宜設定する。なお、本発 明の実施例 1では、拡大倍率を 80, 000倍 (加速電圧 200kv)とした。この写真から、 ハードコート層 C中の無機微粒子の数基準の平均粒径を求めた。 And allowed to cure at room temperature. Next, an ultrathin section was prepared using an ultramicrotome equipped with a diamond knife and stained with ruthenium tetroxide. The stained ultrathin section was observed with a transmission electron microscope (manufactured by JEOL Ltd., TEM2010) for observing the cross section of the hard coat layer C and taking a photograph. Note that the magnification of the photograph is appropriately set in the range of 10,000 to 100000 times according to the observed particle size of the inorganic particles. In Example 1 of the present invention, the magnification was set to 80,000 (acceleration voltage 200 kv). From this photograph, the average particle diameter based on the number of inorganic fine particles in the hard coat layer C was determined.
[0300] (5)ヘーズ [0300] (5) Haze
JIS K7136に準拠し、ヘーズメーター(日本電色製、 NDH2000)を用いて、フィ ルム試料の異なる箇所 3ケ所にっ 、てヘーズを測定し、その平均値を用いた。  In accordance with JIS K7136, using a haze meter (Nippon Denshoku, NDH2000), haze was measured at three different locations on the film sample, and the average value was used.
[0301] (6)耐ブロッキング性 [0301] (6) Blocking resistance
2枚の接着性改質基材フィルムの接着性改質層をそれぞれ重ね合わせた。次 、で 、これらに lkgfZcm2の圧力をかけて、 50°C、 60%RHの雰囲気下で 24時間密着 させた。その後、密着した 2枚の接着性改質基材フィルムの接着性改質層と接着性 改質層の界面で剥離し、その剥離状態を下記の基準で判定した。 The adhesion modified layers of the two adhesive modified substrate films were superposed on each other. Next, they were subjected to a pressure of lkgfZcm 2 and adhered in an atmosphere of 50 ° C. and 60% RH for 24 hours. After that, peeling was performed at the interface between the adhesive modified layer and the adhesive modified layer of the two adhesive modified base films adhered, and the peeled state was judged according to the following criteria.
〇:接着性改質層の転移がなく軽く剥離できるもの  ◯: Lightly peelable with no change in adhesion modified layer
△:剥離音は発生し、部分的に接着性改質層が相手面に転移しているもの X : 2枚のフィルムが固着し剥離できないもの、あるいは剥離できても基材ポリエステ ルフィルムが劈開して 、るもの  △: Peeling sound is generated and the adhesive modified layer is partially transferred to the other side X: Two films are stuck and cannot be peeled or the base polyester film is cleaved even if peelable Stuff
[0302] (7)接着性改質層の堅さ指数 [0302] (7) Hardness index of the adhesion modified layer
接着性改質基材フィルムの接着性改質層の表面に、表面性測定器 (新東亜化学 製、 HEIDON14)を用いてキズを付けた。この際、キズを付ける針として、先端に半 径 75 μ mのサフアイャが付いている純正の針を用いた。針の走行速度は 150mmZ 分、加重は 5gfとした。 A surface property measuring instrument (Shintoa Chemical Co., Ltd.) Made by HEIDON14) and scratched. At this time, a genuine needle with a 75 μm diameter sapphire at the tip was used as a scratching needle. The traveling speed of the needle was 150 mmZ, and the weight was 5 gf.
[0303] 接着性改質層につけられたキズの表面形状を、三次元非接触表面形状計測装置 ( マイクロマップ製、 Micromap550)を用いて、下記の条件で測定し、プロファイルモ ードデータを表示させた。代表例を図 5に示す。得られたキズの形状データから、隣り 合う凸と凹の高低差を 30箇所で測定し、それらの平均値を求め、接着性改質層の堅 さ指数とした。この際、高さが 30nm以上の突起は、接着性改質層または熱可塑性榭 脂フィルムに含有させた粒子に起因する突起と判断し、測定データ力 除外した。ま た、高さが lnm以下の突起は、ノイズの影響があるため、同様に、測定データから除 外した。  [0303] The surface shape of the scratches attached to the adhesion modified layer was measured using a three-dimensional non-contact surface shape measuring device (Micromap, Micromap550) under the following conditions, and the profile mode data was displayed. . Figure 5 shows a typical example. From the obtained shape data of the scratch, the height difference between the adjacent convex and concave was measured at 30 locations, and the average value thereof was obtained and used as the hardness index of the adhesive modified layer. At this time, protrusions having a height of 30 nm or more were judged to be protrusions caused by particles contained in the adhesive modified layer or the thermoplastic resin film, and the measurement data power was excluded. In addition, protrusions with a height of 1 nm or less were also excluded from measurement data because they are affected by noise.
[0304] (測定条件) [0304] (Measurement conditions)
.プロファイノレモード:ウェーブモード  .Profile mode: Wave mode
•対物レンズ: 10倍  • Objective lens: 10x
•解像度:160 X 160ピクセル  • Resolution: 160 x 160 pixels
•測定長: 207. lnm  • Measurement length: 207. lnm
[0305] (8)ハードコート層との密着性  [8305] (8) Adhesion with hard coat layer
(8— 1)接着性改質層 Bとハードコート層 Cとの密着性  (8-1) Adhesion between adhesion modified layer B and hard coat layer C
両面テープを貼り付けた厚さ 5mmのガラス板に、実施例及び比較例で得られたハ ードコートフィルムまたは光学機能性フィルムのハードコート層 Cとは反対面を貼り付 けた。次いで、ハードコート層 Cと接着性改質層 Bを貫通して、熱可塑性榭脂フィルム Aに達する 100個の升目状の切り傷を、隙間間隔 2mmのカッターガイドを用いて付 けた。次いで、粘着テープ (ニチバン社製、 405番; 24mm幅)を升目状の切り傷面 に貼り付けた。貼り付け時に界面に残った空気を消しゴムで押して、完全に密着させ た後、粘着テープを勢いよく垂直に引き剥がした。さらに新しい粘着テープを同様に して貼りかえ、同様に勢いよく垂直に引き剥がした。この粘着テープの引き剥がし操 作を合計 10回繰り返して、下記の式力も密着性を目視により求めた。なお、 1個の升 目内で部分的に剥がれているものも、剥がれた個数に含める。 密着性 (%) = (1—升目の剥がれた個数 Zioo個) X 100 A surface opposite to the hard coat layer C of the hard coat film or optical functional film obtained in Examples and Comparative Examples was attached to a glass plate having a thickness of 5 mm to which a double-sided tape was attached. Next, 100 grid-like cuts that penetrated through the hard coat layer C and the adhesive modified layer B and reached the thermoplastic resin film A were made using a cutter guide with a gap interval of 2 mm. Next, an adhesive tape (manufactured by Nichiban Co., Ltd., No. 405; width of 24 mm) was attached to the grid-shaped cut surface. The air remaining at the interface at the time of pasting was pushed with an eraser to bring it into close contact, and then the adhesive tape was peeled off vertically. In addition, a new adhesive tape was applied in the same way and peeled off in a vertical direction. This adhesive tape peeling operation was repeated a total of 10 times, and the following formula force was also visually determined for adhesion. In addition, what is partly peeled within one grid is also included in the number of peeled. Adhesion (%) = (1—Number of peeled Zioo pieces) X 100
[0306] (8 2)接着性改質基材フィルムでの評価 [0306] (8 2) Evaluation with adhesive modified substrate film
溶剤希釈型と無溶剤型の 2種類の光硬化型アクリル系榭脂からなり、かつ粒子を含 有しない、ハードコート層を形成させ、ハードコート層と接着性改質層 Bとの密着性を 、上記の方法にしたがって評価した。接着性改質基材フィルムのハードコート層との 密着性を評価するための試料は、下記の方法にしたがって作製した。  It consists of two types of photo-curing acrylic resin, solvent-diluted type and solvent-free type, and does not contain particles. Evaluation was made according to the above method. A sample for evaluating the adhesion of the adhesion-modified base film to the hard coat layer was prepared according to the following method.
[0307] (a)溶剤希釈型の光硬化型アクリル系榭脂から構成されたハードコート層との密着 性 [0307] (a) Adhesiveness to a hard coat layer composed of a solvent-diluted photocurable acrylic resin
フィルム試料の接着性改質層 Bの表面に、ハードコート剤(大日精化製、セイカビー ム EXFOl (B) ) 50質量部、トルエン 25質量部、メチルェチルケトン 25質量部を混合 し、良く攪拌した塗布剤をワイヤバーにて塗布し、 70°Cで 1分間乾燥し溶剤を除去し た後、高圧水銀灯で 200mjZcm2、照射距離 15cm、走行速度 5mZ分の条件下で 、厚み 3 mのハードコート層を有するハードコートフィルムを得た。 Mix 50 parts by weight of hard coat agent (Daiichi Seika, Seika Beam EXFOl (B)), 25 parts by weight of toluene, and 25 parts by weight of methyl ethyl ketone on the surface of the adhesion modified layer B of the film sample. After applying the stirred coating agent with a wire bar and drying at 70 ° C for 1 minute to remove the solvent, it was hardened with a thickness of 3 m under the conditions of 200 mjZcm 2 , irradiation distance 15 cm, traveling speed 5 mZ with a high-pressure mercury lamp. A hard coat film having a coat layer was obtained.
[0308] (b)無溶剤型の光硬化型アクリル系榭脂から構成されたノ、ードコート層との密着性 清浄に保った厚さ 5mmのガラス板上に、ハードコート剤(大日精化製、セイカビー ム EXFOl (B) )約 5gをのせ、フィルム試料の接着性改質層の表面とハードコート剤 が接するように重ね合わせ、フィルム試料の上から幅 10cm、直径 4cmの手動式荷 重ゴムローラーでノ、ードコート剤を引き延ばすように圧着した。次いで、フィルム面側 から、高圧水銀灯で 500mjZcm2、照射距離 15cm、走行速度 5mZ分の条件下で 、紫外線を照射して、ハードコート層を硬化させた。次いで、ハードコート層を有する フィルム試料をガラス板から剥がし、ハードコートフィルムを得た。 [0308] (b) Adhesiveness with a no-coat layer composed of a solvent-free photo-curing acrylic resin. A hard coat agent (manufactured by Dainichi Seika Co., Ltd.) on a 5 mm thick glass plate kept clean. , Seika Beam EXFOl (B)) About 5 g is placed on top of the film sample so that the surface of the adhesion modified layer and the hard coat agent are in contact with each other, and a manual load rubber with a width of 10 cm and a diameter of 4 cm from the top of the film sample. Crimping was performed so as to extend the coating agent with a roller. Next, from the film surface side, the hard coat layer was cured by irradiating with ultraviolet rays under conditions of 500 mjZcm 2 , irradiation distance 15 cm, and traveling speed 5 mZ with a high-pressure mercury lamp. Next, the film sample having the hard coat layer was peeled off from the glass plate to obtain a hard coat film.
[0309] (9)鉛筆硬度 [0309] (9) Pencil hardness
JIS— K5400に準拠し、ハードコート層 Cの表面を鉛筆硬度試験によって測定する 。鉛筆硬度試験では、試験を 5回繰り返して行ない、すべての試験で、ハードコート 層 Cの表面に、傷などの外観異常が認められな力つた場合に、その試験時に使用し た鉛筆の硬度を鉛筆硬度とする。例えば、 3Hの鉛筆を用いて、 5回の試験を行い、 すべての試験で外観異常が生じなければ、その材料の鉛筆硬度は少なくとも 3Hで ある。本評価において、 3H以上を〇、 2H以下を Xとした。 [0310] (実施例 1) In accordance with JIS—K5400, the surface of hard coat layer C is measured by a pencil hardness test. In the pencil hardness test, the test was repeated 5 times.If all the tests showed that the surface of the hard coat layer C did not show any abnormal appearance such as scratches, the hardness of the pencil used in the test was determined. Use pencil hardness. For example, if a 3H pencil is used and 5 tests are performed, and no abnormal appearance occurs in all tests, the material has a pencil hardness of at least 3H. In this evaluation, 3H or higher was given as ◯, and 2H or lower was taken as X. [0310] (Example 1)
(1)塗布液の調合  (1) Preparation of coating solution
本発明に用いる塗布液を以下の方法に従って調製した。  The coating solution used in the present invention was prepared according to the following method.
ジメチルテレフタレート(95質量部)、ジメチルイソフタレート(95質量部)、エチレン グリコール(35質量部)、ネオペンチルダリコール(145質量部)、酢酸亜鉛(0. 1質 量部)および三酸化アンチモン (0. 1質量部)を反応容器に仕込み、 180°Cで 3時間 かけてエステル交換反応を行った。次に、 5—ナトリウムスルホイソフタル酸(6. 0質 量部)を添加し、 240°Cで 1時間かけてエステルイ匕反応を行った後、 250°Cで減圧下 (10〜0. 2mmHg)、 2時間かけて重縮合反応を行い、数平均分子量が 19, 500で 、軟ィ匕点が 60°Cである共重合ポリエステルを得た。  Dimethyl terephthalate (95 parts by mass), dimethyl isophthalate (95 parts by mass), ethylene glycol (35 parts by mass), neopentyl dallicol (145 parts by mass), zinc acetate (0.1 mass part) and antimony trioxide ( (0.1 part by mass) was charged into a reaction vessel and subjected to a transesterification reaction at 180 ° C for 3 hours. Next, 5-sodium sulfoisophthalic acid (6.0 parts by mass) was added, and the esterification reaction was carried out at 240 ° C for 1 hour, and then at 250 ° C under reduced pressure (10-0.2mmHg) A polycondensation reaction was carried out over 2 hours to obtain a copolyester having a number average molecular weight of 19,500 and a soft spot of 60 ° C.
[0311] 得られた共重合ポリエステル (A)の 30質量%の水分散液を 7. 5質量部、重亜硫酸 ソーダでブロックしたイソシァネート基を含有する自己架橋型ポリウレタン (B)の 20質 量%の水溶液 (第一工業製薬製、エラストロン H— 3)を 11. 3質量部、エラストロン用 触媒 (第一工業製薬製、 Cat64)を 0. 3質量部、水を 39. 8質量部およびイソプロピ ルアルコールを 37. 4質量部、それぞれ混合した。さら〖こ、フッ素系ノ-オン型界面 活性剤(大日本インキ化学工業製、メガファック F142D)の 10質量%水溶液を 0. 6 質量部、粒子 Aとしてコロイダルシリカ(日産化学工業製、スノーテックス OL ;平均粒 径 40nm)の 20質量%水分散液を 2. 3質量部、粒子 Bとして乾式法シリカ(日本ァェ ロジル製、ァエロジル OX50 ;平均粒径 200nm、平均一次粒径 40nm)の 3. 5質量 %水分散液を 0. 5質量部添加した。次いで、 5質量%の重曹水溶液で塗布液の pH を 6. 2に調整し、濾過粒子サイズ (初期濾過効率: 95%)が 10 μ mのフェルト型ポリ プロピレン製フィルターで精密濾過し、塗布液 Aを調整した。なお、前記の界面活性 剤は下記の方法で前処理したものを用いた。  [0311] 7.5 parts by mass of an aqueous dispersion of 30% by mass of the obtained copolyester (A), 20% by mass of self-crosslinking polyurethane (B) containing isocyanate groups blocked with sodium bisulfite 11.3 parts by mass of an aqueous solution (Daiichi Kogyo Seiyaku Co., Ltd., Elastron H-3), 0.3 parts by mass of Elastolone Catalyst (Daiichi Kogyo Seiyaku Co., Ltd., Cat64), 39.8 parts by mass of water and isopropyl Alcohol was mixed in 37.4 parts by mass. Sarasuko, colloidal silica (manufactured by NISSAN CHEMICAL INDUSTRY CO., LTD.), 0.6 parts by mass of 10% by weight aqueous solution of fluoro-based surfactant (Dainippon Ink and Chemicals, MegaFuck F142D) OL: 2.3 parts by weight of a 20% by weight aqueous dispersion with an average particle size of 40 nm), 3 parts of dry process silica (Nippon Aerosil, Aerosil OX50; average particle size 200 nm, average primary particle size 40 nm) as particles B 0.5 mass part of 5 mass% aqueous dispersion was added. Next, the pH of the coating solution is adjusted to 6.2 with 5% by weight aqueous sodium bicarbonate solution, and the solution is microfiltered with a felt-type polypropylene filter with a filtration particle size (initial filtration efficiency: 95%) of 10 μm. A was adjusted. The surfactant used was pretreated by the following method.
[0312] 前記の界面活性剤にイソプロピルアルコール (IPA)を加え、 30°Cの温浴上で加熱 溶解して 15質量%の界面活性剤の IPA溶液を作製した。この溶液を定量濾紙 (アド バンテック東洋製、 No. 5C)で濾過し、溶液中の不溶分およびゴミを除去した。前記 の溶液を濾過した後、この溶液を密閉したガラス容器に入れ、 0°Cの冷凍庫内で 24 時間静置した。 24時間経過後、析出した固体を含む溶液を、前記の定量濾紙を使 用して吸引濾過した。濾紙上の固体を真空乾燥して固体を得、水で 10質量%水溶 液に希釈して、前処理した界面活性剤として用いた。 [0312] To the above surfactant, isopropyl alcohol (IPA) was added and dissolved by heating in a 30 ° C hot bath to prepare a 15 mass% surfactant IPA solution. This solution was filtered through a quantitative filter paper (Advantech Toyo, No. 5C) to remove insolubles and dust in the solution. After filtering the solution, the solution was put in a sealed glass container and allowed to stand in a freezer at 0 ° C. for 24 hours. After the elapse of 24 hours, the solution containing the precipitated solid is removed using the above quantitative filter paper. And suction filtered. The solid on the filter paper was vacuum-dried to obtain a solid, diluted with water to a 10% by weight aqueous solution, and used as a pretreated surfactant.
[0313] なお、前記の前処理で得た界面活性剤を、メタノールを展開液として、 TLC塗布済 プラスチックシート (メルク製、シリカゲル 60)で分析した。試料スポットはヨウ素蒸気に より着色を行った結果、ポリエチレングリコール相当のスポットが検出されないことを 確認した。  [0313] The surfactant obtained in the pretreatment was analyzed with a TLC-coated plastic sheet (manufactured by Merck, silica gel 60) using methanol as a developing solution. As a result of coloring the sample spot with iodine vapor, it was confirmed that no spot equivalent to polyethylene glycol was detected.
[0314] (2)接着性改質基材フィルムの製造  [0314] (2) Production of adhesive modified substrate film
原料ポリマーとして、粒子を含有していない、固有粘度が 0. 62dlZgのポリエチレ ンテレフタレート(PET)榭脂ペレットを 135°Cで 6時間減圧乾燥(lTorr)した。次 ヽ で、乾燥後の PET榭脂ペレットを押し出し機に供給し、約 285°Cでシート状に溶融押 し出して、表面温度 20°Cに保った金属ロール上で急冷固化し、キャストフィルムを得 た。この際、溶融榭脂中の異物を除去する濾材として、濾過粒子サイズ (初期濾過効 率: 95%)力 15 mのステンレス製焼結濾材を用いた。  Polyethylene terephthalate (PET) resin pellets containing no particles and having an intrinsic viscosity of 0.62 dlZg as a raw material polymer were dried under reduced pressure (lTorr) at 135 ° C. for 6 hours. Next, the dried PET resin pellets are supplied to an extruder, melted and extruded into a sheet at about 285 ° C, rapidly cooled and solidified on a metal roll maintained at a surface temperature of 20 ° C, and cast film Got. At this time, a stainless sintered filter medium having a filtration particle size (initial filtration efficiency: 95%) force of 15 m was used as a filter medium for removing foreign substances in the molten resin.
[0315] 得られたキャストフィルムを、加熱されたロール群及び赤外線ヒーターで 95°Cに加 熱し、その後周速差のあるロール群で長手方向に 3. 5倍延伸して一軸配向 PETフィ ルムを得た。次いで、前記の塗布液 Aを濾過粒子サイズ (初期濾過効率: 95%) 10 μ mのフェルト型ポリプロピレン製濾材で精密濾過し、リバースロール法で一軸配向 PETフィルムの片面に塗布した。なお、この際、コーターのアプリケーションロール及 びメタリングロールは、ウルトラハードクロムメツキ仕上げによる表面が 0. 2S以下に製 作され、かつ真円度と円筒度が 3Zl000mmのロールを用いた。  [0315] The obtained cast film was heated to 95 ° C with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed, and a uniaxially oriented PET film. Got. Next, the coating liquid A was finely filtered with a felt type polypropylene filter medium having a filtration particle size (initial filtration efficiency: 95%) of 10 μm, and applied to one side of a uniaxially oriented PET film by a reverse roll method. At this time, the application roll and metering roll of the coater were rolls with an ultra-hard chrome finish surface of 0.2S or less and roundness and cylindricity of 3Zl000mm.
[0316] その後、コーター真上に配置した 4ゾーンに分かれた乾燥炉にて、第 1ゾーン(135 °Cで 1. 0秒間)、第 2ゾーン(65°Cで 2. 2秒間)、第 3ゾーン (40°Cで 1. 8秒間)、第 4 ゾーン (30°Cで 1. 8秒間)にて塗布面を乾燥した。また、塗布量は最終的な固形分 量として 0. 08gZm2になるようにした。フィルムへの塗布から乾燥炉入口までのフィ ルムの通過時間は 0. 8秒間であった。また、この時、第 1ゾーンの乾燥風の風速は 3 OmZ秒、乾燥風の給気風量は 130m3Z秒、排気風量は 170m3Z秒、第 2ゾーンか ら第 4ゾーンまでの給気風量は 100m3Z秒、排気風量は 150m3Z秒に設定しコータ 一側に乾燥風が流れないようにした。なお、フィルムのテンションは 7000NZ原反と し、塗布力 乾燥炉入口までの間はピンチロールにてフィルムの両端部を把持させた [0316] After that, in a drying furnace divided into four zones located just above the coater, the first zone (135 ° C for 1.0 second), the second zone (65 ° C for 2.2 seconds), the first The coated surface was dried in 3 zones (1.8 ° C at 40 ° C) and 4th zone (1.8 seconds at 30 ° C). The coating amount was set to 0.08 gZm 2 as the final solid content. The film transit time from application to the film to the entrance of the drying oven was 0.8 seconds. At this time, the wind speed of the drying air in the first zone is 3 OmZ seconds, the supply air flow of the drying air is 130 m 3 Z seconds, the exhaust air flow is 170 m 3 Z seconds, and the air supply from the second zone to the fourth zone The air volume was set to 100m 3 Z seconds and the exhaust air volume was set to 150m 3 Z seconds so that dry air did not flow to one side of the coater. The film tension is 7000 NZ The coating force was held between both ends of the film with a pinch roll until the entrance to the drying furnace.
[0317] さらに、この時の塗布において塗布液の受け皿の容量と循環用タンクの容量及び 調合用タンクの容量の比が、以下の関係を有する塗布装置を用いた。 [0317] Further, in the coating at this time, a coating apparatus in which the ratio of the volume of the coating liquid receiving tray to the capacity of the circulation tank and the volume of the blending tank had the following relationship was used.
(a)塗布液の受け皿の容量と循環用タンクの容量比 = 1Z50  (a) Capacitance ratio of coating liquid pan to circulation tank capacity = 1Z50
(b)循環用タンクの容量と調合用タンクの容量比 = 1Z40  (b) Capacity ratio of circulation tank to mixing tank = 1Z40
[0318] 引き続き、フィルムの端部をクリップで把持しながら、温度 120°C、風速 15mZ秒の 熱風ゾーンに導き、幅方向に 4. 3倍に延伸した。次に、幅方向に延伸された幅を保 つたまま、第 1熱固定ゾーン (温度: 200°C)、第 2熱固定ゾーン (温度: 225°C)、第 3 熱固定ゾーン(温度: 230°C)、第 4熱固定ゾーン(温度: 230°C)、第 5熱固定ゾーン( 温度: 210°C)第 6熱固定ゾーン(温度: 170°C)、第 7熱固定ゾーン (温度: 120°C)を 順次連続して通過させた。なお、第 6熱固定ゾーンにて幅方向に 3%の緩和処理を 行った。次いで、フィルムの両端部のコートされていない部分をトリミングし、巻き取り 装置にて巻き取り、さらにこれを幅方向に 4等分してスリットし、幅 1000mm、フィルム 長さ 1000m、フィルム厚さ 125 μ mの接着性改質ポリエステルフィルムのロールを得 た。なお、熱固定ゾーンにおける熱風の風速はすべて 15mZ秒、通過時間は各ゾー ンとも 4. 5秒間、熱風を吹き出すノズル間隔は 350mm、 1ゾーン当たりのノズル本数 は 8本とした。  [0318] Subsequently, while holding the edge of the film with a clip, the film was guided to a hot air zone at a temperature of 120 ° C and a wind speed of 15 mZ seconds, and stretched 4.3 times in the width direction. Next, the first heat setting zone (temperature: 200 ° C), the second heat setting zone (temperature: 225 ° C), and the third heat setting zone (temperature: 230 ° C) while maintaining the width stretched in the width direction. ° C), 4th heat fixation zone (temperature: 230 ° C), 5th heat fixation zone (temperature: 210 ° C), 6th heat fixation zone (temperature: 170 ° C), 7th heat fixation zone (temperature: 120 ° C) was successively passed. In addition, 3% relaxation treatment was performed in the width direction in the sixth heat setting zone. Next, the uncoated portions of both ends of the film are trimmed, wound up by a winder, further divided into four equal parts in the width direction, slitted, and the width is 1000 mm, the film length is 1000 m, and the film thickness is 125. A roll of adhesive modified polyester film of μm was obtained. The hot air velocity in the heat setting zone was 15 mZ seconds, the passage time was 4.5 seconds in each zone, the nozzle spacing for blowing hot air was 350 mm, and the number of nozzles per zone was 8.
[0319] 接着性改質基材フィルムの物性及び特性を表 4に示す。また、得られた接着性改 質ポリエステルフィルムのロールの長手方向および幅方向における、接着性改質層 の表面のポリエステル相の面積率の最大値、最小値、ヘーズの最大値、最小値、ハ ードコート層に対する密着性の最大値、最小値を表 5に示す。なお、耐ブロッキング ヽては全測定点とも〇であつた。  [0319] Table 4 shows the physical properties and properties of the adhesion-modified base film. In addition, in the longitudinal direction and the width direction of the roll of the obtained adhesive-modified polyester film, the maximum, minimum, haze maximum, minimum, Table 5 shows the maximum and minimum adhesion to the coated layer. In addition, all the measurement points were anti-blocking.
[0320] (3)ハードコートフィルムの製造 [0320] (3) Manufacture of hard coat film
次いで、下記の方法で、上記の接着性改質基材フィルムの接着性改質層 Bの表面 に無機微粒子を含有するハードコート層 Cを、片面に積層するハードコートフィルムを 得た。  Next, a hard coat film was obtained by laminating a hard coat layer C containing inorganic fine particles on one surface of the adhesive modified layer B of the above-mentioned adhesive modified base film by the following method.
[0321] ハードコート層を形成させるための塗布液として、紫外線硬化型アタリレートモノマ 一、酸ィ匕ジルコニウム超微粒子、メチルェチルケトンを主成分とする、有機 Z無機ハ イブリツド系ハードコート剤 CFSR株式会社製、デソライト Z7410B;固形分濃度: 50 質量0 /0)を準備した。このハードコート剤を、ドライ厚みで 8 mとなるように、接着性 改質基材フィルムの接着性改質層 Bの表面に塗布し、 40°Cで 1分間、乾燥させた。 次いで、高圧水銀灯で lOOOmiZcm2の条件下で紫外線を照射し、榭脂を硬化させ 、ハードコート層 cを形成させた。 [0321] As a coating liquid for forming a hard coat layer, an ultraviolet curable acrylate monomer Mono-, Sani匕zirconium ultrafine particles, mainly composed of methyl E chill ketone, organic Z inorganic Ha Iburitsudo based hard coating agent CFSR Co., DeSolite Z7410B; solid concentration: 50 mass 0/0) were prepared. This hard coat agent was applied to the surface of the adhesion modified layer B of the adhesion modified substrate film so as to have a dry thickness of 8 m, and dried at 40 ° C. for 1 minute. Subsequently, ultraviolet rays were irradiated with a high-pressure mercury lamp under the condition of lOOOmiZcm 2 to cure the resin and form a hard coat layer c.
得られたハードコート層中には、平均粒径 10nmの酸化ジルコニウム超微粒子が、 アタリレート榭脂 100質量部に対して 31質量部含有していた。  The obtained hard coat layer contained 31 parts by mass of ultrafine zirconium oxide particles having an average particle diameter of 10 nm with respect to 100 parts by mass of attalylate resin.
[0322] (実施例 2) [0322] (Example 2)
実施例 1において、塗布液に用いる界面活性剤として、実施例 1と同様の方法で前 処理したフッ素系カチオン型界面活性剤 (株式会社ネオス製、フタージェント 310)の 10質量%水溶液を用いた、塗布液 Bに変更したこと以外は実施例 1と同様の方法で 、接着性改質ポリエステルフィルムを得た。  In Example 1, as the surfactant used in the coating solution, a 10% by mass aqueous solution of a fluorine-based cationic surfactant (manufactured by Neos Co., Ltd., Footgent 310) pretreated by the same method as in Example 1 was used. An adhesive modified polyester film was obtained in the same manner as in Example 1 except that the coating solution B was changed.
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
[0323] (実施例 3)  [Example 3]
実施例 1の熱固定処理工程において、各熱固定ゾーンの温度を、第 1熱固定ゾー ンで 190°C、第 2熱固定ゾーンで 205°C、第 3熱固定ゾーンで 220°C、第 4熱固定ゾ ーンで 220°Cとしたこと以外は実施例 1と同様の方法で、接着性改質ポリエステルフ イルムを得た。  In the heat setting process of Example 1, the temperature of each heat setting zone is 190 ° C in the first heat setting zone, 205 ° C in the second heat setting zone, 220 ° C in the third heat setting zone, 4 An adhesion-modified polyester film was obtained in the same manner as in Example 1 except that the heat setting zone was set to 220 ° C.
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
[0324] (実施例 4)  [0324] (Example 4)
実施例 1において、塗布液中の共重合ポリエステルとポリウレタンとの質量比を 60 Z40に変更した下記の塗布液 Cに変更したこと以外は実施例 1と同様の方法で、接 着性改質ポリエステルフィルムを得た。 (塗布液 cの調合) In Example 1, the adhesive modified polyester was prepared in the same manner as in Example 1 except that the mass ratio of the copolyester and polyurethane in the coating solution was changed to the following coating solution C, which was changed to 60 Z40. A film was obtained. (Preparation of coating solution c)
実施例 1で用いた共重合ポリエステル (A)の 30質量%水分散液を 9. 0質量部、実 施例 1で用いたポリウレタン (B)の 20質量%水溶液を 9. 0質量部、エラストロン用触 媒 (第一工業製薬製、 Cat64)を 0. 3質量部、水を 40. 6質量部、およびイソプロピル アルコールを 37. 3質量部、それぞれ混合した。さらに、実施例 1で使用した界面活 性剤水溶液を 0. 6質量部、粒子 Aとしてコロイダルシリカ(日産化学工業製、スノーテ ックス OL;平均粒径 40nm)の 20質量%水分散液を 2. 3質量部、粒子 Bとして乾式 法シリカ(日本ァエロジル製、ァエロジル OX50 ;平均粒径 200nm、平均一次粒径 4 Onm)の 3. 5質量%水分散液を 0. 5質量部添カ卩し、 5質量%の重曹水溶液にて pH 調整して、濾過性能 5 mと 1 mのフィルターを順に通過させて塗布液 Cとした。  9.0 parts by mass of a 30% by mass aqueous dispersion of the copolymerized polyester (A) used in Example 1 and 9.0 parts by mass of a 20% by mass aqueous solution of the polyurethane (B) used in Example 1; The catalyst (Daiichi Kogyo Seiyaku Co., Ltd., Cat64) 0.3 parts by mass, water 40.6 parts by mass, and isopropyl alcohol 37.3 parts by mass were mixed. Further, 0.6 part by mass of the surfactant aqueous solution used in Example 1 and a 20% by mass aqueous dispersion of colloidal silica (manufactured by Nissan Chemical Industries, Snowtex OL; average particle size 40 nm) as particle A 2. 3 parts by mass, particles B as a dry process silica (manufactured by Nippon Aerosil Co., Ltd., Aerosil OX50; average particle size 200 nm, average primary particle size 4 Onm) The pH was adjusted with a 5% by weight aqueous sodium bicarbonate solution, and a filter with a filtration performance of 5 m and 1 m was passed in this order to obtain coating solution C.
[0325] 次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。 [0325] Next, a hard coat film in which a hard coat layer C containing inorganic fine particles is laminated on one surface on the surface of the adhesive modified layer B of the above-mentioned adhesive modified base film in the same manner as in Example 1. Got.
[0326] (実施例 5)  [Example 5]
実施例 1において、塗布液中の共重合ポリエステルとポリウレタンとの質量比を 40 Z60に変更した下記の塗布液 Dに変更したこと以外は実施例 1と同様の方法で、接 着性改質ポリエステルフィルムを得た。  In Example 1, the adhesive modified polyester was prepared in the same manner as in Example 1 except that the coating solution D was changed to the following coating solution D in which the mass ratio of the copolyester and polyurethane in the coating solution was changed to 40 Z60. A film was obtained.
(塗布液 Dの調合)  (Preparation of coating solution D)
実施例 1で用いた共重合ポリエステル (A)の 30質量%水分散液を 6. 0質量部、実 施例 1で用いたポリウレタン (B)の 20質量%水溶液を 13. 5質量部、エラストロン用触 媒 (第一工業製薬製、 Cat64)を 0. 3質量部、水を 38. 9質量部、およびイソプロピル アルコールを 37. 5質量部、それぞれ混合した。さらに、実施例 1で用いた界面活性 剤の 10質量%水溶液を 0. 6質量部、粒子 Aとしてコロイダルシリカ(日産化学工業製 、スノーテックス OL ;平均粒径 40nm)の 20質量%水分散液を 2. 3質量部、粒子 Bと して乾式法シリカ(日本ァエロジル製、ァエロジル OX50 ;平均粒径 200nm、平均一 次粒径 40nm)の 3. 5質量%水分散液を 0. 5質量部添加し、 5質量%重曹水溶液に て pHを 6. 2に調整して、濾過性能 5 μ mと 1 μ mのフィルターを順に通過させて塗布 液 Dとした。 [0327] 次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。 6.0 parts by mass of a 30% by mass aqueous dispersion of the copolyester (A) used in Example 1 and 13.5 parts by mass of a 20% by mass aqueous solution of the polyurethane (B) used in Example 1 The catalyst for use (Daiichi Kogyo Seiyaku, Cat64) 0.3 parts by mass, water 38.9 parts by mass, and isopropyl alcohol 37.5 parts by mass were mixed. Further, 0.6% by mass of a 10% by mass aqueous solution of the surfactant used in Example 1 and 20% by mass aqueous dispersion of colloidal silica (Nissan Chemical Industries, Snowtex OL; average particle size 40 nm) as particles A 2.3 parts by weight, 0.5 parts by weight of a 3.5% by weight aqueous dispersion of dry-process silica (manufactured by Nippon Aerosil Co., Ltd., Aerosil OX50; average particle diameter 200 nm, average primary particle diameter 40 nm) Then, the pH was adjusted to 6.2 with a 5% by weight aqueous sodium bicarbonate solution, and a filter with a filtration performance of 5 μm and 1 μm was passed in this order to obtain coating solution D. [0327] Next, in the same manner as in Example 1, a hard coat film in which a hard coat layer C containing inorganic fine particles is laminated on one surface is formed on the surface of the adhesive modified layer B of the adhesive modified substrate film. Got.
[0328] (実施例 6)  [Example 6]
実施例 1において、塗布量を最終的な固形分量として 0. 12gZm2となるようにした こと以外は実施例 1と同様の方法で、接着性改質ポリエステルフィルムを得た。 次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。 In Example 1, an adhesive modified polyester film was obtained in the same manner as in Example 1 except that the coating amount was 0.12 gZm 2 as the final solid content. Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
[0329] (実施例 7)  [0329] (Example 7)
実施例 1において、塗布液中の界面活性剤の配合量を 0. 03質量%に変更した、 下記の塗布液 Eを用いること以外は実施例 1と同様の方法で、接着性改質ポリエステ ルフィルムを得た。  The adhesive modified polyester film was prepared in the same manner as in Example 1 except that the following coating solution E was used, in which the amount of the surfactant in the coating solution was changed to 0.03% by mass in Example 1. Got.
(塗布液 Eの調合)  (Preparation of coating solution E)
実施例 1の塗布液の調合にお!ヽて、フッ素系ノ-オン型界面活性剤(大日本インキ 化学工業製、メガファック F142D)の 10質量%水溶液を 0. 3質量部、水を 38. 2質 量部、およびイソプロピルアルコールを 39. 3質量部に変更した。  In preparation of the coating liquid of Example 1, 0.3 parts by mass of a 10% by mass aqueous solution of a fluorine-based nonionic surfactant (manufactured by Dainippon Ink and Chemicals, MegaFuck F142D) and 38 parts of water was added. 2 Mass parts and isopropyl alcohol were changed to 39.3 parts by mass.
[0330] 次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。 [0330] Next, in the same manner as in Example 1, a hard coat film in which a hard coat layer C containing inorganic fine particles is laminated on one surface is formed on the surface of the adhesive modified layer B of the adhesive modified substrate film. Got.
[0331] (実施例 8)  [0331] (Example 8)
実施例 1において、塗布液中の界面活性剤の配合量を 0. 10質量%に変更した、 下記の塗布液 Fを用いたこと以外は実施例 1と同様の方法で、接着性改質ポリエステ ルフィルムを得た。  In Example 1, the amount of the surfactant in the coating solution was changed to 0.10% by mass, except that the following coating solution F was used. Le film was obtained.
(塗布液 Fの調合)  (Formulation of coating solution F)
実施例 1の塗布液の調合にお!ヽて、フッ素系ノ-オン型界面活性剤(大日本インキ 化学工業製、メガファック F142D)の 10質量%水溶液を 1. 0質量部、水を 37. 5質 量部、およびイソプロピルアルコールを 39. 3質量部に変更した。 [0332] 次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。 In preparation of the coating liquid of Example 1, 1.0 part by mass of 10 mass% aqueous solution of fluorine-based surfactant (Dainippon Ink & Chemicals, MegaFac F142D) and 37 parts of water were added. Changed 5 parts by mass and 39.3 parts by mass of isopropyl alcohol. [0332] Next, in the same manner as in Example 1, a hard coat film in which a hard coat layer C containing inorganic fine particles is laminated on one surface is formed on the surface of the adhesive modified layer B of the adhesive modified substrate film. Got.
[0333] (実施例 9)  [Example 9]
実施例 1において、塗布から乾燥炉入口までのフィルムの通過時間を 0. 7秒間、乾 燥時間を 0. 8秒間、さらに熱固定処理工程における各ゾーンの通過時間を 3. 5秒 間、フィルム厚さを 100 mに変更したこと以外は実施例 1と同様の方法で、接着性 改質ポリエステルフィルムを得た。  In Example 1, the passage time of the film from the coating to the entrance of the drying oven was 0.7 seconds, the drying time was 0.8 seconds, and the passage time of each zone in the heat setting treatment process was 3.5 seconds. An adhesion-modified polyester film was obtained in the same manner as in Example 1, except that the thickness was changed to 100 m.
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
[0334] (実施例 10)  [Example 10]
実施例 1において、塗布から乾燥炉入口までのフィルムの通過時間を 1. 0秒間、乾 燥時間を 1. 9秒間、さらに熱固定処理工程における各ゾーンの通過時間を 6. 6秒 間、フィルム厚さを 188 mに変更したこと以外は実施例 1と同様の方法で、接着性 改質ポリエステルフィルムを得た。  In Example 1, the passage time of the film from coating to the entrance of the drying furnace is 1.0 second, the drying time is 1.9 seconds, and the passage time of each zone in the heat setting process is 6.6 seconds. An adhesion-modified polyester film was obtained in the same manner as in Example 1 except that the thickness was changed to 188 m.
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
[0335] (実施例 11)  [0335] (Example 11)
実施例 1において、塗布液の pHを 5質量%の炭酸ナトリウム水溶液を用いて 7. 9に 調整した塗布液 Gに変更すること以外は実施例 1と同様の方法で、接着性改質ポリ エステルフィルムを得た。  In the same manner as in Example 1 except that the pH of the coating solution was changed to the coating solution G adjusted to 7.9 using a 5% by weight sodium carbonate aqueous solution, the adhesive modified polyester A film was obtained.
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
[0336] (実施例 12)  [Example 12]
実施例 1にお 、て、一軸配向ポリエステルフィルムの両面に接着性改質層 Bを塗布 したこと以外は実施例 1と同様の方法で、接着性改質ポリエステルフィルムを得た。な お、フィルムへの塗布から乾燥炉入口までのフィルムの通過時間は、片面が 0. 8秒 間であり、反対面は 1. 0秒間であった。 In Example 1, adhesive modified layer B was applied to both sides of a uniaxially oriented polyester film. Except that, an adhesive modified polyester film was obtained in the same manner as in Example 1. The film transit time from the film application to the drying furnace inlet was 0.8 seconds on one side and 1.0 seconds on the other side.
[0337] 上記の接着性改質基材フィルムに、接着性改質層 Bを介して、両面にハードコート 層 Cを積層するハードコートフィルムを得た。なお、ハードコート層 Cの形成方法は、 以下の通りである。 [0337] A hard coat film was obtained in which the hard coat layer C was laminated on both sides of the above-mentioned adhesive modified base film via the adhesive modified layer B. The method for forming the hard coat layer C is as follows.
[0338] 上記の接着性改質基材フィルムの接着性改質層 Bの一方の表面に、実施例 1で使 用した無機粒子入りハードコート剤を、硬化後の膜厚が 3 mになるように、マイヤー バーで塗布し、 40°C、 60秒間乾燥させた。さらに、 300mjZcm2の紫外線を照射し[0338] The hard coating agent containing inorganic particles used in Example 1 is applied to one surface of the adhesive modified layer B of the above-mentioned adhesive modified base film to a film thickness after curing of 3 m. As described above, it was applied with a Meyer bar and dried at 40 ° C for 60 seconds. In addition, irradiate 300mjZcm 2 of ultraviolet rays.
、榭脂を硬化させて、ハードコート層 Cを片面に形成させた。 The resin was cured to form a hard coat layer C on one side.
次いで、その反対面の接着性改質層 Bの表面にも、前記と同様のハードコート剤を Next, the same hard coat agent as above is also applied to the surface of the adhesive modification layer B on the opposite side.
、硬化後の膜厚が 3 mになるように、マイヤーバーで塗布し、 40°C、 60秒間乾燥さ せた。さらに、 500mjZcm2の紫外線を照射し、榭脂を硬化させて、他面にもハード コート層 Cを形成させた。 Then, it was applied with a Meyer bar so that the film thickness after curing was 3 m, and dried at 40 ° C for 60 seconds. Furthermore, 500 mjZcm 2 ultraviolet rays were irradiated to cure the resin, and a hard coat layer C was formed on the other surface.
[0339] (実施例 13) [Example 13]
実施例 1にお 、て、界面活性剤の前処理を行わなカゝつた塗布液 Hを用いたこと以 外は実施例 1と同様の方法で、接着性改質ポリエステルフィルムを得た。  In Example 1, an adhesion-modified polyester film was obtained in the same manner as in Example 1 except that the coating liquid H that had not been pretreated with the surfactant was used.
得られた接着性改質ポリエステルフィルムの接着性改質層の表面における、走査 型プローブ顕微鏡 (SPM)によるポリエステル相とポリウレタン相との相分離構造は、 判別はできるがやや不明瞭であった。  The phase separation structure of the polyester phase and the polyurethane phase by the scanning probe microscope (SPM) on the surface of the adhesive modified layer of the obtained adhesive modified polyester film can be distinguished but is somewhat unclear.
[0340] 次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。 [0340] Next, in the same manner as in Example 1, a hard coat film in which a hard coat layer C containing inorganic fine particles is laminated on one surface is formed on the surface of the adhesive modified layer B of the above-mentioned adhesive modified substrate film. Got.
得られたノヽードコートフィルムの切削面の接着性改質層 Bにおけるポリエステル相と ポリウレタン相との相分離構造も、上記と同様に、やや不明瞭であった。  The phase separation structure of the polyester phase and the polyurethane phase in the adhesion modified layer B on the cutting surface of the obtained node coat film was also somewhat unclear, as described above.
[0341] (実施例 14) [Example 14]
実施例 1において、塗布液の分散媒 (水 ZIPA)の質量比を 50Z50に変更した下 記の塗布液 Iを用いたこと以外は実施例 1と同様の方法で、接着性改質ポリエステル フイノレムを得た。 In Example 1, the adhesive-modified polyester was prepared in the same manner as in Example 1 except that the following coating liquid I was used in which the mass ratio of the dispersion medium (water ZIPA) in the coating liquid was changed to 50Z50. Obtained Finolem.
(塗布液 Iの調合)  (Formulation of coating liquid I)
実施例 1の塗布液の調合にお!、て、実施例 1で用いた共重合ポリエステルの 30質 量%水分散液を 7. 5質量部、実施例 1で用いたポリウレタンの 20質量%水溶液を 11 . 3質量部、エラストロン用触媒 (第一工業製薬製、 Cat64)を 0. 3質量部、水を 30. 4質量部、およびイソプロピルアルコールを 46. 8質量部、それぞれ混合した。さらに 、実施例 1で用いた界面活性剤の 10質量%水溶液を 0. 6質量部、粒子 Aとしてコロ ィダルシリカ(日産化学工業製、スノーテックス OL;平均粒径 40nm)の 20質量0 /0水 分散液を 2. 3質量部、粒子 Bとして乾式法シリカ(日本ァエロジル製、ァエロジル OX 50 ;平均粒径 200nm、平均一次粒径 40nm)の 3. 5質量%水分散液を 0. 5質量部 添加し、 5質量%重曹水溶液にて pHを 6. 2に調整し、濾過性能 5 μ mと 1 μ mのフィ ルターを順に通過させて塗布液 Iとした。 In preparation of the coating liquid of Example 1, 7.5 parts by weight of 30% by weight aqueous dispersion of the copolymerized polyester used in Example 1 and 20% by weight aqueous solution of polyurethane used in Example 1 13.3 parts by mass, elastron catalyst (Daiichi Kogyo Seiyaku Co., Ltd., Cat64) 0.3 parts by mass, water 30.4 parts by mass, and isopropyl alcohol 46.8 parts by mass. Further, 6 parts by weight 0.5 to 10% by weight aqueous solution of the surfactant used in Example 1, rollers Idarushirika as particles A (manufactured by Nissan Chemical Industries, Snowtex OL; average particle size 40 nm) 20 parts by mass 0/0 Water 2.3 parts by weight of the dispersion, 0.5 parts by weight of a 3.5% by weight aqueous dispersion of dry-process silica as particles B (manufactured by Nippon Aerosil Co., Ltd., Aerosil OX 50; average particle size 200 nm, average primary particle size 40 nm) The pH was adjusted to 6.2 with a 5% by weight aqueous sodium bicarbonate solution, and a filtration performance of 5 μm and a 1 μm filter were sequentially passed through to make coating solution I.
[0342] 次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。 [0342] Next, in the same manner as in Example 1, a hard coat film in which a hard coat layer C containing inorganic fine particles is laminated on one surface is formed on the surface of the adhesive modified layer B of the adhesive modified substrate film. Got.
[0343] (実施例 15)  [0343] (Example 15)
実施例 1において、塗布液の pHを酢酸で 4. 6に変更した、塗布! ¾ [を用いたこと以 外は実施例 1と同様の方法で、厚みが 125 mの接着性改質ポリエステルフィルムを 得た。  In Example 1, the pH of the coating solution was changed to 4.6 with acetic acid. The adhesive modified polyester film having a thickness of 125 m was prepared in the same manner as in Example 1 except that coating! Got.
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
[0344] (実施例 16)  [Example 16]
実施例 1において、ポリウレタン (B)を下記のポリウレタンに変更した、塗布液 Kを用 いたこと以外は実施例 1と同様にして、接着性改質ポリエステルフィルムを得た。ポリ ウレタンは、下記の方法で得た。  In Example 1, an adhesive modified polyester film was obtained in the same manner as in Example 1 except that the coating liquid K was used in which the polyurethane (B) was changed to the following polyurethane. Polyurethane was obtained by the following method.
(ポリウレタンの調製)  (Preparation of polyurethane)
アジピン酸 ZZ1. 6—へキサンジオール Zネオペンチルグリコール(モル比: 4Z Z3Z2)の組成からなるポリエステルジオール(OHV: lll. 8eqZton、 AV: 1. le qZton)を 93質量部、キシリレンジイソシァネートを 22質量部混合し、窒素気流下、 95〜100°Cで 1時間反応させて、ウレタンプレポリマー(NCOZOH比: 1. 50、遊離 イソシァネート基:理論値 3. 29質量%、実測値 3. 16質量%)を得た。 Adipic acid ZZ 1.6-hexanediol Z Neopentyl glycol (molar ratio: 4Z Z3Z2) is mixed with 93 parts by mass of polyester diol (OHV: lll. 8eqZton, AV: 1. le qZton) and 22 parts by mass of xylylene diisocyanate. By reacting for a time, a urethane prepolymer (NCOZOH ratio: 1.50, free isocyanate group: theoretical value 3.29% by mass, actually measured value 3.16% by mass) was obtained.
[0345] 得られたウレタンプレポリマーを 60°Cまで冷却し、メチルェチルケトォキシム 4. 5質 量部を加えて 60°Cで 50分間反応させて、遊離イソシァネート 1. 3質量%を含有し、 かつ部分的にブロック化されたウレタンプレボリマーを得た。引き続き、前記のウレタ ンプレポリマーを 55°Cまで冷却し、イソプロピルアルコール 9質量部およびメタノール 140質量部からなる混合溶媒を加え、均一混合した。次いで、 50質量%の重亜硫酸 ナトリウム水溶液を 9. 3質量部と、 N—メチルタウリンの 30質量%水溶液を 5. 4質量 部加えて激しく撹拌を行った。約 30分後に水溶性が出始め、 2時間後には遊離の重 亜硫酸ナトリウムがほぼゼロとなり、反応が終結した。これに水をカ卩え、白濁し、かつ 粘ちような 20質量%の水溶液を得た。  [0345] The obtained urethane prepolymer was cooled to 60 ° C, added with 4.5 parts by mass of methyl ethyl ketoxime, reacted at 60 ° C for 50 minutes, and contained 1.3 mass% of free isocyanate. And a partially blocked urethane prepolymer was obtained. Subsequently, the urea prepolymer was cooled to 55 ° C., and a mixed solvent consisting of 9 parts by mass of isopropyl alcohol and 140 parts by mass of methanol was added and uniformly mixed. Subsequently, 9.3 parts by mass of a 50% by mass aqueous sodium bisulfite solution and 5.4 parts by mass of a 30% by mass aqueous solution of N-methyltaurine were added and vigorously stirred. Water solubility began to appear after about 30 minutes, and free sodium bisulfite became almost zero after 2 hours, and the reaction was completed. Water was added to this to obtain a 20% by mass aqueous solution that was cloudy and viscous.
[0346] 次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  [0346] Next, a hard coat film in which a hard coat layer C containing inorganic fine particles is laminated on one surface on the surface of the adhesive modified layer B of the above-mentioned adhesive modified base film in the same manner as in Example 1. Got.
[0347] (比較例 1)  [0347] (Comparative Example 1)
(1)塗布液 Lの調合  (1) Preparation of coating solution L
ジメチルテレフタレ一卜 33. 7質量部、ジメチルイソフタレー卜 20. 0質量部、 5-Na スルホジメチルイソフタレート 9. 1質量部、エチレングリコール 40. 0質量部ジェチレ ングリコール 10. 0質量部、酢酸カルシウム · 1水塩 0. 049質量部を混合し、 200〜2 30°Cで理論量のメタノールが留出するまでエステル交換を行った。次に、正燐酸 0. 09質量部を加え、減圧下、 280°Cで重合し、共重合ポリエステルを得た。  13.7 parts by weight of dimethyl terephthalate, 20.0 parts by weight of dimethyl isophthalate, 9.1 parts by weight of 5-Na sulfodimethylisophthalate, 40.0 parts by weight of ethylene glycol, 10.0 parts by weight of ethylene glycol, Calcium acetate monohydrate 0.049 parts by mass was mixed, and transesterification was performed at 200 to 230 ° C. until the theoretical amount of methanol was distilled off. Next, 0.09 part by mass of orthophosphoric acid was added and polymerized at 280 ° C. under reduced pressure to obtain a copolyester.
[0348] ァリルアルコールから出発したエチレンォキシドのポリエーテルをメタ重亜硫酸ナト リウムでスルホン化したスルホネート基を含むポリエーテル(SO含有量: 8. 3質量0 /0 [0348] polyethers containing sulfonate groups the polyether Echirenokishido that starting sulfonated metabisulfite sodium from § Lil alcohol (SO content: 8.3 mass 0/0
3  Three
、ポリエチレンォキシド含有量: 83質量0 /0) 192質量部、ポリテトラメチレンアジべート (数平均分子量: 2, 250) 1013質量部、ビスフエノール Aで開始されたポリプロピレ ンォキシドポリエーテル (数平均分子量: 550) 248質量部を混合し、真空下 100°C で脱水した。 , Polyethylene O dimethylsulfoxide content: 83 mass 0/0) 192 parts by weight, polytetramethylene adipate base over preparative (number average molecular weight: 2, 250) 1013 parts by weight, polypropylene No sulfoxide polyether initiated by bisphenol A ( Number average molecular weight: 550) 248 parts by mass are mixed and 100 ° C under vacuum And dehydrated.
[0349] この混合物を 70°Cとし、これにイソホロンジイソシァネート 178質量部とへキサメチ レンー1、 6—ジイソシァネート 244部との混合物をカ卩え、次いで生成混合物をイソシ ァネート含有量が 5. 6質量%になるまで 80°Cから 90°Cの範囲で攪拌した。このプレ ポリマーを 60°Cに冷却し、へキサメチレンジイソシァネート 3モルと水 1モルから得ら れるビウレットポリイソシァネート 56質量部とイソホロジァミンとアセトン力も得られるビ スケミチン 175質量部とを順次加えポリウレタン水分散液を得た。  [0349] The mixture was brought to 70 ° C, and a mixture of 178 parts by mass of isophorone diisocyanate and 244 parts of hexamethylene-1,6-diisocyanate was added thereto, and then the resulting mixture was mixed with an isocyanate content of 5 It stirred in the range of 80 to 90 degreeC until it became 6 mass%. The prepolymer was cooled to 60 ° C., and 56 parts by mass of biuret polyisocyanate obtained from 3 mol of hexamethylene diisocyanate and 1 mol of water, and 175 parts by mass of bischemitin capable of obtaining isophorodiamine and acetone power were added. A polyurethane aqueous dispersion was obtained in this order.
[0350] 前記の共重合ポリエステル及びポリウレタン水分散液を、それぞれ固形分で 20質 量部、 80質量部となるように配合し、固形分濃度 10質量%の水分散液を調整し、塗 布液 とした。なお、塗布液中には、粒子および界面活性剤を配合しなカゝつた。  [0350] The above-mentioned copolymerized polyester and polyurethane aqueous dispersion were blended so that the solid content would be 20 parts by mass and 80 parts by mass, respectively, and an aqueous dispersion having a solid content concentration of 10% by mass was prepared and coated. Liquid. In the coating solution, particles and a surfactant were not blended.
[0351] (2)接着性改質基材フィルムの製造  [0351] (2) Production of adhesive modified substrate film
原料ポリマーとして、粒子を含有していない、固有粘度が 0. 66dlZgのポリエチレ ンテレフタレート榭脂ペレットを 135°Cで 6時間減圧乾燥(lTorr)した後、押し出し機 に供給し、約 285°Cでシート状に溶融押し出して、表面温度 60°Cに保った金属ロー ル上で急冷固化し、キャストフィルムを得た。この際、実施例 1と同様に溶融樹脂の異 物を除去する濾材として、濾過粒子サイズ (初期濾過効率: 95%)力 15 mのステン レス製焼結濾材を用いた。  Polyethylene terephthalate resin pellets containing no particles and having an inherent viscosity of 0.66 dlZg as a raw material polymer were dried under reduced pressure (lTorr) at 135 ° C for 6 hours, and then supplied to an extruder at about 285 ° C. It was melt extruded into a sheet and rapidly cooled and solidified on a metal roll maintained at a surface temperature of 60 ° C to obtain a cast film. At this time, a stainless-steel sintered filter medium having a filtration particle size (initial filtration efficiency: 95%) force of 15 m was used as a filter medium for removing foreign substances in the molten resin as in Example 1.
[0352] 次に、このキャストフィルムを加熱されたロール群及び赤外線ヒーターで 95°Cに加 熱し、その後周速差のあるロール群で長手方向に 3. 5倍延伸して、一軸配向 PETフ イルムを得た。次いで、前記の塗布液 Lを濾過粒子サイズ (初期濾過効率 95%) 10 μ mのフェルト型ポリプロピレン製濾材で精密濾過し、リバースロール法で一軸配向 PETフィルムの片面に塗布した。引き続いて、フィルムの端部をクリップで把持して 1 10°Cに加熱された熱風ゾーンに導き、乾燥後、幅方向に 3. 5倍に延伸した。この時 のテンター内の風速は 15mZ秒、乾燥時間は 20秒間であった。フィルムへの塗布か らテンター入口までの時間は 10. 0秒間であった。また、塗布量は最終的な固形分 量として 0. 15g/m2になるようにした。 [0352] Next, the cast film was heated to 95 ° C with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed, to obtain a uniaxially oriented PET film. I got an Irum. Next, the coating liquid L was finely filtered with a felt type polypropylene filter medium having a filtration particle size (initial filtration efficiency 95%) of 10 μm, and applied to one side of a uniaxially oriented PET film by a reverse roll method. Subsequently, the edge of the film was gripped with a clip and guided to a hot air zone heated to 110 ° C. After drying, the film was stretched 3.5 times in the width direction. The wind speed in the tenter at this time was 15 mZ seconds and the drying time was 20 seconds. The time from application to the film to the tenter entrance was 10.0 seconds. The coating amount was 0.15 g / m 2 as the final solid content.
[0353] 次に、幅方向に延伸されたフィルムの幅を保ったまま、第 1熱固定ゾーン(200°C) 、第 2熱固定ゾーン(205°C)、第 3熱固定ゾーン及び第 4熱固定ゾーン(210°C)、第 5熱固定ゾーン(215°C)、第 6熱固定ゾーン(220°C)、第 7熱固定ゾーン(170°C)を 順次連続して通過させた。さらに、第 7熱固定ゾーンにおいて幅方向に 3%の緩和処 理後、フィルム両端部のコートされていない部分をトリミングし、厚さ 125 mの接着 性改質ポリエステルフィルムを得た。なお、熱固定ゾーンにおける熱風の風速はすべ て 15mZ秒、通過時間は各ゾーンとも 4. 5秒間、熱風を吹き出すノズル間隔は 700 mm間隔であり、 1ゾーン当たりのノズル本数は 4本とした。 [0353] Next, while maintaining the width of the film stretched in the width direction, the first heat setting zone (200 ° C), the second heat setting zone (205 ° C), the third heat setting zone, and the fourth heat setting zone Heat setting zone (210 ° C), no. 5th heat setting zone (215 ° C), 6th heat setting zone (220 ° C), 7th heat setting zone (170 ° C) were sequentially passed. Furthermore, after 3% relaxation treatment in the width direction in the seventh heat setting zone, the uncoated portions at both ends of the film were trimmed to obtain an adhesiveness-modified polyester film having a thickness of 125 m. The hot air velocity in the heat setting zone was 15 mZ seconds, the passage time was 4.5 seconds in each zone, the nozzle spacing for blowing hot air was 700 mm, and the number of nozzles per zone was four.
得られた接着性改質ポリエステルフィルムの接着性改質層の表面にぉ ヽて、共重 合ポリエステルとポリウレタンとの相分離構造は不明確であった。  The phase separation structure between the copolyester and the polyurethane was unclear over the surface of the adhesion modified layer of the obtained adhesion modified polyester film.
[0354] (3)ハードコートフィルムの製造  [0354] (3) Manufacture of hard coat film
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
[0355] (比較例 2)  [0355] (Comparative Example 2)
(1)塗布液 Mの調合  (1) Preparation of coating solution M
実施例 1で用いた共重合ポリエステル (A)の 30質量%水分散液を 3. 0質量部、実 施例 1で用いたポリウレタン (B)の 20質量%水溶液を 18. 0質量部、エラストロン用触 媒 (第一工業製薬製、 Cat64)を 0. 3質量部、水を 70. 7質量部、およびイソプロピル アルコールを 4. 7質量部、それぞれ混合した。さらに、界面活性剤として、ドデシル ベンゼンスルホン酸の 10質量%水溶液を 0. 6質量部、粒子 Aとしてコロイダルシリカ (日産化学工業製、スノーテックス OL;平均粒径 40nm)の 20質量%水分散液を 2. 3質量部、粒子 Bとして乾式法シリカ(日本ァエロジル製、ァエロジル OX50 ;平均粒 径 200nm、平均一次粒径 40nm)の 3. 5質量%水分散液を 0. 5質量部添カ卩し、塗 布液 Mとした。塗布液 Mの PHは、 pH調整を行わなかったため、 4. 8であった。  3.0 parts by mass of a 30% by mass aqueous dispersion of the copolyester (A) used in Example 1 and 18.0 parts by mass of a 20% by mass aqueous solution of the polyurethane (B) used in Example 1; The catalyst for use (Daiichi Kogyo Seiyaku, Cat64) 0.3 parts by mass, water 70.7 parts by mass, and isopropyl alcohol 4.7 parts by mass were mixed. Furthermore, 0.6% by mass of a 10% by mass aqueous solution of dodecylbenzenesulfonic acid as a surfactant and 20% by mass aqueous dispersion of colloidal silica (Nissan Chemical Industries, Snowtex OL; average particle size 40 nm) as particle A 2.3 parts by weight of dry silica as particle B (manufactured by Nippon Aerosil Co., Ltd., Aerosil OX50; average particle size 200 nm, average primary particle size 40 nm) The coating liquid was M. The pH of coating solution M was 4.8 because pH was not adjusted.
[0356] (2)接着性改質基材フィルムの製造 [0356] (2) Production of adhesive modified substrate film
原料ポリマーとして、実施例 1で用いた粒子を含有しない、固有粘度が 0. 62dl/g のポリエチレンテレフタレート榭脂ペレットを 135°Cで 6時間減圧乾燥(lTorr)した後 、押し出し機に供給し、約 285°Cでシート状に溶融押し出して、表面温度 20°Cに保 つた金属ロール上で急冷固化し、キャストフィルムを得た。この際、溶融樹脂の異物を 除去する濾材として、濾過粒子サイズ (初期濾過効率: 95%)が 15 mのステンレス 製焼結濾材を用いた。 Polyethylene terephthalate resin pellets containing no particles used in Example 1 and having an intrinsic viscosity of 0.62 dl / g as a raw material polymer were dried at 135 ° C for 6 hours under reduced pressure (lTorr), and then supplied to an extruder. A cast film was obtained by melting and extruding into a sheet at about 285 ° C and rapidly solidifying on a metal roll maintained at a surface temperature of 20 ° C. At this time, the molten resin As a filter medium to be removed, a sintered sintered filter medium made of stainless steel having a filter particle size (initial filtration efficiency: 95%) of 15 m was used.
[0357] 得られたキャストフィルムを、加熱されたロール群及び赤外線ヒーターで 95°Cに加 熱し、その後周速差のあるロール群で長手方向に 3. 5倍延伸して、一軸配向 PETフ イルムを得た。次いで、前記の塗布液 Mを濾過粒子サイズ (初期濾過効率: 95%) 10 μ mのフェルト型ポリプロピレン製濾材で精密濾過し、リバースロール法で一軸配向 PETフィルムの片面に塗布した。  [0357] The obtained cast film was heated to 95 ° C with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed to obtain a uniaxially oriented PET film. I got an Irum. Next, the coating liquid M was microfiltered with a felt type polypropylene filter medium having a filtration particle size (initial filtration efficiency: 95%) of 10 μm, and applied to one side of a uniaxially oriented PET film by a reverse roll method.
[0358] 引き続き、フィルムの端部をクリップで把持しながら、 80°Cに加熱された熱風ゾーン に導き、塗布面を乾燥後、幅方向に 4. 0倍に延伸した。この時のテンター内の風速 は 15mZ秒、乾燥時間は 20秒間であった。塗布力もテンター入口までの時間は 10 . 0秒間であった。また、塗布量は最終的な固形分量として 0. lOgZm2になるように した。さらに、各熱固定処理工程における温度を、第 1熱固定ゾーンで 200°C、第 2 熱固定ゾーンで 210°C、第 3熱固定ゾーンで 220°C、第 4熱固定ゾーンで 225°C、第 5熱固定ゾーンで 230°C、第 6熱固定ゾーンで 235°C、第 7熱固定ゾーンで 240°Cと し、さらに幅方向の緩和処理は行わな力つたこと以外は、比較例 1と同様の方法で、 フィルム厚みが 125 μ mの接着性改質ポリエステルフィルムを得た。 [0358] Subsequently, while holding the edge of the film with a clip, the film was guided to a hot air zone heated to 80 ° C, dried, and then stretched 4.0 times in the width direction. The wind speed in the tenter at this time was 15 mZ seconds, and the drying time was 20 seconds. As for the coating force, the time to the tenter entrance was 10.0 seconds. The coating amount was set to 0.1 lOgZm 2 as the final solid content. Furthermore, the temperature in each heat setting process is 200 ° C in the first heat setting zone, 210 ° C in the second heat setting zone, 220 ° C in the third heat setting zone, and 225 ° C in the fourth heat setting zone. Comparative example, except that 230 ° C in the 5th heat setting zone, 235 ° C in the 6th heat setting zone, and 240 ° C in the 7th heat setting zone In the same manner as in 1, an adhesion-modified polyester film having a film thickness of 125 μm was obtained.
得られた接着性改質ポリエステルフィルムの接着性改質層の表面にぉ 、て、ポリエ ステル相とポリウレタン相との相分離構造は観察できなカゝつた。  A phase separation structure between the polyester phase and the polyurethane phase was not observable on the surface of the adhesion modified layer of the obtained adhesion modified polyester film.
[0359] (3)ハードコートフィルムの製造  [0359] (3) Production of hard coat film
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
得られたノヽードコートフィルムの切削面の接着性改質層 Bにおけるポリエステル相と ポリウレタン相との相分離構造も、上記と同様に観察できな力つた。  The phase separation structure of the polyester phase and the polyurethane phase in the adhesion modified layer B on the cut surface of the obtained node coat film also had an unobservable force as described above.
[0360] (比較例 3) [0360] (Comparative Example 3)
(1)塗布液 Nの調合  (1) Preparation of coating solution N
実施例 1で用いた共重合ポリエステル (A)の 30質量%水分散液を 7. 5質量部、実 施例 1で用いたポリウレタン (B)の 20質量%水溶液を 11. 3質量部、エラストロン用触 媒 (第一工業製薬製、 Cat64)を 0. 3質量部、水を 40. 5質量部およびイソプロピル アルコールを 39. 5質量部、それぞれ混合した。さらに、前処理をしていないフッ素系 ノ-オン界面活性剤(大日本インキ化学工業製、メガファック F142D)の 10質量%水 溶液を 0. 6質量部、粒子 Bを使用せず、粒子 Aとして凝集体シリカ(富士シリシァ化 学製、サイリシァ 310 ;平均粒径 1. 4 /z m)の 3. 5質量%水分散液を 0. 03質量部添 加して、塗布液 Nとした。なお、塗布液 Nの pH調整は行わなかった。塗布液 Nの PH は 4. 6であった。 7.5 parts by mass of a 30% by mass aqueous dispersion of the copolyester (A) used in Example 1 and 11.3 parts by mass of a 20% by mass aqueous solution of the polyurethane (B) used in Example 1 Touch 0.3 parts by mass of medium (Daiichi Kogyo Seiyaku Co., Ltd., Cat64), 40.5 parts by mass of water, and 39.5 parts by mass of isopropyl alcohol were mixed. Furthermore, 0.6% by mass of 10% by weight aqueous solution of non-pretreated fluoro-based surfactant (Dainippon Ink Chemical Co., Ltd., MegaFac F142D), without using particle B, particle A As a coating solution N, 0.03 parts by mass of a 3.5 mass% aqueous dispersion of aggregate silica (manufactured by Fuji Silicon Chemical Co., Ltd., Silica 310; average particle size of 1.4 / zm) was added. The pH of coating solution N was not adjusted. The pH of the coating liquid N was 4.6.
[0361] (2)接着性改質基材フィルムの製造  [0361] (2) Production of adhesive modified base film
原料ポリマーとして、実施例 1で用いた粒子を含有しない、固有粘度が 0. 62dl/g のポリエチレンテレフタレート榭脂ペレットを押し出し機に供給し、約 285°Cでシート 状に溶融押し出して、表面温度 20°Cに保った金属ロール上で急冷固化し、キャスト フィルムを得た。この際、溶融樹脂の異物を除去する濾材として、濾過粒子サイズ (初 期濾過効率: 95%)力 15 mのステンレス製焼結濾材を用いた。  Polyethylene terephthalate resin pellets containing no particles used in Example 1 and having an intrinsic viscosity of 0.62 dl / g were fed to the extruder as a raw material polymer, melted and extruded into a sheet at about 285 ° C, and the surface temperature was The film was rapidly cooled and solidified on a metal roll kept at 20 ° C to obtain a cast film. At this time, a stainless sintered filter medium having a filtration particle size (initial filtration efficiency: 95%) force of 15 m was used as a filter medium for removing foreign substances from the molten resin.
[0362] 得られたキャストフィルムを、加熱されたロール群及び赤外線ヒーターで 95°Cに加 熱し、その後周速差のあるロール群で長手方向に 3. 5倍延伸して、一軸配向 PETフ イルムを得た。次いで、前記の塗布液 Lを濾過粒子サイズ (初期濾過効率: 95%) 10 μ mのフェルト型ポリプロピレン製濾材で精密濾過し、リバースロール法で一軸配向 PETフィルムの片面に塗布した。  [0362] The obtained cast film was heated to 95 ° C with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed to obtain a uniaxially oriented PET film. I got an Irum. Next, the coating liquid L was finely filtered with a felt type polypropylene filter medium having a filtration particle size (initial filtration efficiency: 95%) of 10 μm, and applied to one side of a uniaxially oriented PET film by a reverse roll method.
[0363] 塗布後、乾燥炉に導き温度 120°Cで 3. 2秒間乾燥した。また、塗布量は最終的な 固形分量として 0. 08gZm2になるようにした。塗布力も乾燥炉入口までのフィルムの 通過時間は 3. 2秒間であった。また、乾燥炉の第 1ゾーンの風速は 15mZ秒であり 、第 2ゾーン力も第 4ゾーンの風速は、実施例 1と同様に、乾燥風の給気風量を第 1 乾燥ゾーン力も第 4乾燥ゾーンともに 70m3Z秒とし、排気風を乾燥炉前後から自然 排気とした。 [0363] After coating, the solution was introduced into a drying oven and dried at 120 ° C for 3.2 seconds. The coating amount was set to 0.08 gZm 2 as the final solid content. The coating time was 3.2 seconds for the film to pass to the drying oven. In addition, the wind speed of the first zone of the drying furnace is 15 mZ seconds, the second zone force is the same as the fourth zone, and the air velocity of the fourth zone is the same as in Example 1. Both were 70m 3 Z seconds, and the exhaust air was naturally exhausted from the front and back of the drying furnace.
[0364] 続いて、横延伸倍率を 4. 0倍とした以外は実施例 1と同様の方法で横延伸し、比較 例 1と同様の方法で熱固定、幅方向の緩和処理を行い、フィルム厚さが 125 mの 接着性改質ポリエステルフィルムを得た。得られた接着性改質ポリエステルフィルム の接着性改質層の表面において、ポリエステル相とポリウレタン相との相分離構造は 観察できな力つた。 [0364] Subsequently, the film was stretched in the same manner as in Example 1 except that the transverse draw ratio was 4.0 times, and subjected to heat fixing and relaxation treatment in the width direction in the same manner as in Comparative Example 1. An adhesive modified polyester film having a thickness of 125 m was obtained. The phase separation structure of the polyester phase and the polyurethane phase on the surface of the adhesion modified layer of the obtained adhesion modified polyester film is I couldn't observe it.
[0365] (3)ハードコートフィルムの製造  [0365] (3) Manufacture of hard coat film
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
得られたノヽードコートフィルムの切削面の接着性改質層 Bにおけるポリエステル相と ポリウレタン相との相分離構造も、上記と同様に、観察できな力つた。  Similarly to the above, the phase separation structure of the polyester phase and the polyurethane phase in the adhesion modified layer B on the cutting surface of the obtained node coat film also had an unobservable force.
[0366] (比較例 4) [0366] (Comparative Example 4)
実施例 1にお 、て、塗布液 Aをフィルムに塗布してから乾燥炉入口までのフィルム の通過時間を 3. 2秒間とした以外は実施例 1と同様の方法で、フィルム厚さが 125 mの接着性改質ポリエステルフィルムを得た。  In Example 1, the film thickness was 125 in the same manner as in Example 1 except that the passage time of the film from application of coating solution A to the drying furnace was 3.2 seconds. m adhesive modified polyester film was obtained.
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
[0367] (比較例 5)  [0367] (Comparative Example 5)
実施例 1で用いた共重合ポリエステル (A)の 30質量%水分散液を 3. 0質量部、実 施例 1で用いたポリウレタン (B)の 20質量%水溶液を 18. 0質量部、エラストロン用触 媒 (第一工業製薬製、 Cat64)を 0. 3質量部、水を 37. 3質量部、およびイソプロピル アルコールを 37. 8質量部、それぞれ混合した。さらに、実施例 1で用いた界面活性 剤の 10質量%水溶液を 0. 6質量部、粒子 Aとしてコロイダルシリカ(日産化学工業製 、スノーテックス OL ;平均粒径 40nm)の 20質量%水分散液を 2. 3質量部、粒子 Bと して乾式法シリカ(日本ァエロジル製、ァエロジル OX50 ;平均粒径 200nm、平均一 次粒径 40nm)の 3. 5質量%水分散液を 0. 5質量部添加し、 5質量%重曹水溶液に て pHを 6. 2に調整し、塗布液 Oとした。塗布液として、前記の塗布液 Oを用いたこと 以外は実施例 1と同様の方法で、フィルム厚さが 125 mの接着性改質ポリエステル フイノレムを得た。  3.0 parts by mass of a 30% by mass aqueous dispersion of the copolyester (A) used in Example 1 and 18.0 parts by mass of a 20% by mass aqueous solution of the polyurethane (B) used in Example 1; The catalyst (Daiichi Kogyo Seiyaku Co., Ltd., Cat64) 0.3 parts by mass, water 37.3 parts by mass, and isopropyl alcohol 37.8 parts by mass were mixed. Further, 0.6% by mass of a 10% by mass aqueous solution of the surfactant used in Example 1 and 20% by mass aqueous dispersion of colloidal silica (Nissan Chemical Industries, Snowtex OL; average particle size 40 nm) as particles A 2.3 parts by weight, 0.5 parts by weight of a 3.5% by weight aqueous dispersion of dry-process silica (manufactured by Nippon Aerosil Co., Ltd., Aerosil OX50; average particle diameter 200 nm, average primary particle diameter 40 nm) Then, the pH was adjusted to 6.2 with a 5% by mass aqueous sodium bicarbonate solution to obtain coating solution O. As a coating solution, an adhesive modified polyester Finolem having a film thickness of 125 m was obtained in the same manner as in Example 1 except that the coating solution O was used.
[0368] 次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。 [0368] Next, in the same manner as in Example 1, a hard coat layer C containing inorganic fine particles is laminated on one surface on the surface of the adhesion modified layer B of the above adhesive modified substrate film. I got a film.
[0369] (比較例 6)  [0369] (Comparative Example 6)
実施例 1で用いた共重合ポリエステル (A)の 30質量%水分散液を 12. 0質量部、 実施例 1で用いたポリウレタン (B)の 20質量%水溶液を 4. 5質量部、エラストロン用 触媒 (第一工業製薬製、 Cat64)を 0. 3質量部、水を 42. 3質量部およびイソプロピ ルアルコールを 37. 2質量部、それぞれ混合し、さらに実施例 1で用いた界面活性剤 の 10質量%水溶液を 0. 6質量部、粒子 Aとしてコロイダルシリカ(日産化学工業製、 スノーテックス OL ;平均粒径 40nm)の 20質量%水分散液を 2. 3質量部、粒子 Bとし て乾式法シリカ(日本ァエロジル製、ァエロジル OX50 ;平均粒径 200nm、平均一次 粒径 40nm)の 3. 5質量%水分散液を 0. 5質量部添加し、 5質量%重曹水溶液にて pHを 6. 2に調整し、塗布液 Pとした。塗布液として、前記の塗布液 Pを用いたこと以 外は実施例 1と同様の方法で、フィルム厚みが 125 mの接着性改質ポリエステルフ イルムを得た。  12.0 parts by mass of a 30% by mass aqueous dispersion of the copolyester (A) used in Example 1 and 4.5 parts by mass of a 20% by mass aqueous solution of the polyurethane (B) used in Example 1 for elastron A catalyst (Daiichi Kogyo Seiyaku Co., Ltd., Cat64) 0.3 parts by mass, water 42.3 parts by mass and isopropyl alcohol 37.2 parts by mass were mixed, and the surfactant used in Example 1 was further mixed. 0.6 parts by weight of 10% by weight aqueous solution, 2.3 parts by weight of 20% aqueous dispersion of colloidal silica (Nissan Chemical Industries, Snowtex OL; average particle size 40 nm) as particles A, dry as particles B 0.5% by weight of a 3.5% by weight aqueous dispersion of silica (manufactured by Nippon Aerosil Co., Ltd., Aerosil OX50; average particle size 200nm, average primary particle size 40nm) is added with 5% by weight aqueous sodium bicarbonate solution to pH 6. It adjusted to 2 and it was set as the coating liquid P. An adhesive modified polyester film having a film thickness of 125 m was obtained in the same manner as in Example 1 except that the coating liquid P was used as the coating liquid.
[0370] 次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  [0370] Next, a hard coat film in which a hard coat layer C containing inorganic fine particles is laminated on one surface on the surface of the adhesive modified layer B of the above-mentioned adhesive modified base film in the same manner as in Example 1. Got.
[0371] (比較例 7)  [0371] (Comparative Example 7)
実施例 1において、各熱固定処理工程における温度を、第 1熱固定ゾーンで 190 。C、第 2熱固定ゾーンで 195°C、第 3熱固定ゾーンから第 5熱固定ゾーンで 200°Cと したこと以外は実施例 1と同様の方法で、フィルム厚みが 125 mの接着性改質ポリ エステルフィルムを得た。得られた接着性改質ポリエステルフィルムの接着性改質層 の表面において、ポリエステル相とポリウレタン相との相分離構造は観察できなかつ た。  In Example 1, the temperature in each heat setting treatment step is 190 in the first heat setting zone. C. Adhesion modification with a film thickness of 125 m was performed in the same manner as in Example 1 except that the temperature was 195 ° C in the second heat setting zone and 200 ° C in the third heat setting zone to the fifth heat setting zone. A quality polyester film was obtained. The phase separation structure of the polyester phase and the polyurethane phase could not be observed on the surface of the adhesion modified layer of the obtained adhesion modified polyester film.
[0372] 次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  [0372] Next, a hard coat film in which a hard coat layer C containing inorganic fine particles is laminated on one surface on the surface of the adhesive modified layer B of the above-mentioned adhesive modified base film in the same manner as in Example 1. Got.
得られたノヽードコートフィルムの切削面の接着性改質層 Bにおけるポリエステル相と ポリウレタン相との相分離構造も、上記と同様に、観察できな力つた。 [0373] (比較例 8) The phase separation structure of the polyester phase and the polyurethane phase in the adhesion modified layer B on the cut surface of the obtained node coat film also had an unobservable force as described above. [0373] (Comparative Example 8)
実施例 1において、乾燥炉内の風速を 15mZ秒とした以外は実施例 1と同様の方 法で、フィルム厚みが 125 μ mの接着性改質ポリエステルフィルムを得た。  In Example 1, an adhesive modified polyester film having a film thickness of 125 μm was obtained in the same manner as in Example 1 except that the wind speed in the drying furnace was 15 mZ seconds.
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
[0374] (比較例 9)  [0374] (Comparative Example 9)
実施例 1において、塗布量を最終的な固形分量として 0. 20gZm2となるようにした こと以外は実施例 1と同様の方法で、フィルム厚みが 125 mの接着性改質ポリエス テルフィルムを得た。 In Example 1, an adhesive modified polyester film having a film thickness of 125 m was obtained in the same manner as in Example 1 except that the coating amount was 0.20 gZm 2 as the final solid content. It was.
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
[0375] (比較例 10)  [0375] (Comparative Example 10)
実施例 1において、塗布液の pHを 5質量%の炭酸ナトリウム水溶液で 9. 0に調整 した塗布液 Qを用いたこと以外は実施例 1と同様の方法で、フィルム厚みが 125 m の接着性改質ポリエステルフィルムを得た。  In Example 1, the same procedure as in Example 1 was used except that the coating solution Q was adjusted to a pH of 9.0 with 5% by weight aqueous sodium carbonate solution. A modified polyester film was obtained.
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
[0376] (比較例 11)  [0376] (Comparative Example 11)
実施例 1にお ヽて、塗布液中に界面活性剤を配合せずに調整した塗布液 Rを用い たこと以外は実施例 1と同様の方法で、フィルム厚みが 125 mの接着性改質ポリエ ステノレフイノレムを得た。  In Example 1, the same procedure as in Example 1 was used except that coating solution R prepared without adding a surfactant to the coating solution was used. Polyester Steno Reinolem was obtained.
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
[0377] (実施例 17) 実施例 1で用いた共重合ポリエステル (A)の 30質量%水分散液を 7. 5質量部、実 施例 1で用いたポリウレタン (B)の 20質量%水溶液を 11. 3質量部、エラストロン用触 媒 (第一工業製薬製、 Cat64)を 0. 3質量部、水を 40. 5質量部およびイソプロピル アルコールを 39. 5質量部、それぞれ混合した。さらに、さらに、実施例 1で用いた界 面活性剤の 10質量%水溶液を 0. 6質量部、粒子 Aとして凝集体シリカ(富士シリシ ァ化学製、サイリシァ 310 ;平均粒径 1. 4 /z m)の 3. 5質量%水分散液を 4. 3質量部 添加し、 5質量%重曹水溶液にて pHを 6. 2に調整して、濾過性能 5 mと 1 mのフ ィルターを順に通過させて塗布液 Sとした。なお、粒子 Bは塗布液に配合しな力つた。 前記の塗布液 Sを用いた以外は実施例 1と同様の方法で、フィルム厚みが 125 m の接着性改質ポリエステルフィルムを得た。 [0377] (Example 17) 7.5 parts by mass of a 30% by mass aqueous dispersion of the copolymerized polyester (A) used in Example 1 and 11.3 parts by mass of a 20% by mass aqueous solution of the polyurethane (B) used in Example 1 The catalyst (Daiichi Kogyo Seiyaku Co., Ltd., Cat64) 0.3 parts by mass, water 40.5 parts by mass and isopropyl alcohol 39.5 parts by mass were mixed. Further, 0.6 parts by mass of a 10% by mass aqueous solution of the surfactant used in Example 1 and particles A as aggregate silica (manufactured by Fuji Silicon Chemical Co., Ltd., Silicia 310; average particle size 1.4 / zm ), And 3.3 parts by weight of an aqueous dispersion of 3.5% by weight, adjust the pH to 6.2 with a 5% by weight aqueous sodium bicarbonate solution, and pass through a 5 m and 1 m filter in order. The coating solution S was obtained. Particle B was not mixed with the coating solution. An adhesive modified polyester film having a film thickness of 125 m was obtained in the same manner as in Example 1 except that the coating solution S was used.
[0378] 次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。 [0378] Next, a hard coat film in which a hard coat layer C containing inorganic fine particles is laminated on one surface on the surface of the adhesive modified layer B of the above-mentioned adhesive modified base film in the same manner as in Example 1. Got.
[0379] (比較例 12)  [0379] (Comparative Example 12)
実施例 1において、塗布液中の界面活性剤の量のみを固形分で 0. 60質量%とな るように調合した塗布液 Tを用いた以外は実施例 1と同様の方法で、フィルム厚みが 125 mの接着性改質ポリエステルフィルムを得た。  In Example 1, the film thickness was determined in the same manner as in Example 1 except that the coating liquid T prepared so that only the amount of the surfactant in the coating liquid was 0.60% by mass in solid content was used. A 125 m adhesive modified polyester film was obtained.
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
[0380] (実施例 18)  [0380] (Example 18)
実施例 1において、各熱固定処理工程における温度を、第 1熱固定ゾーンで 200 。C、第 2熱固定ゾーンで 210°C、第 3熱固定ゾーンで 215°C、第 4熱固定ゾーンで 22 0°C、第 5熱固定ゾーンで 225°C、第 6熱固定ゾーンで 230°C、第 7熱固定ゾーンで 1 70°Cとし、第 7熱固定ゾーンにて幅方向に 3%の緩和処理したこと以外は実施例 1と 同様の方法で、フィルム両端部のコートされていない部分をトリミングした、フィルム厚 みが 125 μ mの接着性改質ポリエステルフィルムを得た。  In Example 1, the temperature in each heat setting treatment step is 200 in the first heat setting zone. C, 210 ° C in the 2nd heat setting zone, 215 ° C in the 3rd heat setting zone, 220 ° C in the 4th heat setting zone, 225 ° C in the 5th heat setting zone, 230 in the 6th heat setting zone The film was coated on both ends in the same manner as in Example 1 except that the temperature was 170 ° C in the seventh heat setting zone, and 3% relaxation treatment was performed in the width direction in the seventh heat setting zone. An adhesive modified polyester film having a film thickness of 125 μm was obtained by trimming the unexposed portion.
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 cを、片面に積層するハードコー トフイルムを得た。 Next, on the surface of the adhesion modified layer B of the above-mentioned adhesion modified substrate film, Example 1 and Similarly, a hard coat film in which a hard coat layer c containing inorganic fine particles was laminated on one side was obtained.
[0381] (比較例 13)  [0381] (Comparative Example 13)
実施例 1にお!、て、実施例 1で用いた共重合ポリエステル (A)の 30質量%水分散 液を 7. 5質量部、実施例 1で用いたポリウレタン (B)の 20質量%水溶液を 11. 3質量 部、エラストロン用触媒 (第一工業製薬製、 Cat64)を 0. 3質量部、水 51. 0質量部 およびイソプロピルアルコールを 26. 2質量部、それぞれ混合した。さら〖こ、実施例 1 で用いた界面活性剤の 10質量%水溶液を 0. 6質量部、粒子 Aとしてコロイダルシリ 力(日産化学工業製、スノーテックス OL;平均粒径 40nm)の 20質量%水分散液を 2 . 3質量部、粒子 Bとして乾式法シリカ(日本ァエロジル製、ァエロジル OX50 ;平均粒 径 200nm、平均一次粒径 40nm)の 3. 5質量%水分散液を 0. 5質量部添加し、 5質 量%重曹水溶液にて pHを 6. 2に調整し塗布液 Uを用いたこと以外は実施例 1と同 様の方法で、接着性改質ポリエステルフィルムを得た。  In Example 1, 7.5 parts by mass of a 30% by mass aqueous dispersion of the copolyester (A) used in Example 1 and a 20% by mass aqueous solution of the polyurethane (B) used in Example 1 11.3 parts by mass, elastron catalyst (Daiichi Kogyo Seiyaku Co., Ltd., Cat64) 0.3 parts by mass, water 51.0 parts by mass and isopropyl alcohol 26.2 parts by mass were mixed. Sarasako, 0.6% by weight of 10% by weight aqueous solution of the surfactant used in Example 1, 20% by weight of colloidal Siri force (Nissan Chemical Industries, Snowtex OL; average particle size 40nm) as particles A 2.3 parts by mass of an aqueous dispersion and 0.5 parts by mass of a 3.5% by mass aqueous dispersion of dry-process silica (Nippon Aerosil, Aerosil OX50; average particle size 200 nm, average primary particle size 40 nm) as particles B An adhesion-modified polyester film was obtained in the same manner as in Example 1 except that the pH was adjusted to 6.2 with a 5% by weight aqueous sodium bicarbonate solution and the coating solution U was used.
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
[0382] (比較例 14)  [0382] (Comparative Example 14)
実施例 1において、ハードコート剤として、無機微粒子を含有せず、溶剤希釈型の 光硬化型アタリレート系榭脂から構成されたハードコート層(大日精化株式会社製、 セイカビーム EXF— 01B)を用いたこと以外、実施例 1と同様の方法で、無機微粒子 を含有しないハードコート層を、片面に積層するハードコートフィルムを得た。  In Example 1, as a hard coat agent, a hard coat layer (Seika Beam EXF-01B, manufactured by Dainichi Seika Co., Ltd.), which does not contain inorganic fine particles and is composed of a solvent-diluted photo-curing acrylated resin. A hard coat film in which a hard coat layer not containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 except that it was used.
得られたノヽードコートフィルムは、ハードコート層と接着性改質層との密着性に優れ ていたが、硬度が低下し、かつカールも大きくなつた。  The obtained node coat film was excellent in adhesion between the hard coat layer and the adhesion modified layer, but the hardness decreased and the curl increased.
[0383] (実施例 19) [0383] (Example 19)
実施例 1の塗布液の調合にお!ヽて、フッ素系ノ-オン型界面活性剤(大日本インキ 化学工業製、メガファック F142D)の 10質量%水溶液の替わりにフッ素系ノ-オン型 界面活性剤(大日本インキ化学工業製、メガファック F444)の 5質量%水溶液を用い 塗布液 Vを用いた以外は実施例 1と同様の方法で、接着性改質ポリエステルフィルム を得た。次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施 例 1と同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハー ドコートフィルムを得た。 In preparation of the coating solution of Example 1, a fluorine-based non-on type surfactant (Dainippon Ink & Chemicals, MegaFac F142D) in place of a 10% by mass aqueous solution was used. Adhesive modified polyester film in the same manner as in Example 1 except that 5% by weight aqueous solution of an activator (Dainippon Ink & Chemicals, MegaFuck F444) was used and coating liquid V was used. Got. Next, a hard coat film in which a hard coat layer C containing inorganic fine particles is laminated on one surface is formed on the surface of the adhesive modified layer B of the above-mentioned adhesive modified base film in the same manner as in Example 1. Obtained.
[0384] (実施例 20)  [0384] (Example 20)
実施例 1にお 、て、一軸配向ポリエステルフィルムの両面に接着性改質層 Bを塗布 したこと以外は実施例 1と同様の方法で、接着性改質ポリエステルフィルムを得た。な お、フィルムへの塗布から乾燥炉入口までのフィルムの通過時間は、片面が 0. 8秒 間であり、反対面は 1. 0秒間であった。  In Example 1, an adhesive modified polyester film was obtained in the same manner as in Example 1 except that the adhesive modified layer B was applied to both sides of the uniaxially oriented polyester film. The film transit time from the film application to the drying furnace inlet was 0.8 seconds on one side and 1.0 seconds on the other side.
[0385] 上記の接着性改質基材フィルムに、接着性改質層 Bを介して、片面にハードコート 層 Cが、他面にプリズムレンズシート層 Dが積層された、プリズムレンズフィルムを得た [0385] A prism lens film is obtained in which a hard coat layer C is laminated on one side and a prism lens sheet layer D is laminated on the other side of the above-mentioned adhesive modified base film via an adhesive modified layer B. The
[0386] まず、ハードコート層 Cの形成方法を説明する。 First, a method for forming the hard coat layer C will be described.
上記の接着性改質基材フィルムの接着性改質層 Bの一方の表面に、実施例 1で使 用した無機粒子入りハードコート剤を、硬化後の膜厚が 3 mになるように、マイヤー バーで塗布し、 40°C、 60秒間乾燥させた。さらに、 300mjZcm2の紫外線を照射し 、硬化させて、ハードコート層 Cを片面に形成させた。 The hard coating agent containing inorganic particles used in Example 1 is applied to one surface of the adhesive modified layer B of the above adhesive modified base film so that the film thickness after curing is 3 m. It was applied with a Meyer bar and dried at 40 ° C for 60 seconds. Furthermore, 300 mjZcm 2 of ultraviolet rays were irradiated and cured to form a hard coat layer C on one side.
[0387] 次に、プリズムレンズ層 Dの形成方法を説明する。  Next, a method for forming the prism lens layer D will be described.
ピッチが 0. 05mmで、頂角が 90°のプリズム形状の逆型を切削した成形型に、紫 外線硬化型榭脂液 CFSR株式会社製、デソライト Z9590)を注入した後、前記のハ ードコート層 Cとは反対の接着性改質層 Bの表面に、上記の成形型に重ね合わせた 。次いで、ハードコート層 C側より、紫外線ランプ(出力: 6. 4kw)により、 80wZcmの 紫外線を照射し、榭脂を硬化させた後、剥離してプリズムレンズ層を形成させた。  After injecting an ultraviolet ray curing type resin solution CFSR Corporation Desolite Z9590) into a molding die cut with a prismatic reverse mold with a pitch of 0.05 mm and a vertex angle of 90 °, the above hard coat layer On the surface of the adhesive modification layer B opposite to C, the above mold was overlaid. Next, from the hard coat layer C side, ultraviolet rays of 80 wZcm were irradiated by an ultraviolet lamp (output: 6.4 kw) to cure the resin, and then peeled to form a prism lens layer.
[0388] (実施例 21)  [0388] (Example 21)
実施例 1にお 、て、一軸配向ポリエステルフィルムの両面に接着性改質層を塗布し たこと以外は実施例 1と同様の方法で、接着性改質ポリエステルフィルムを得た。な お、フィルムへの塗布から乾燥炉入口までのフィルムの通過時間は、片面が 0. 8秒 間であり、反対面は 1. 0秒間であった。  In Example 1, an adhesive modified polyester film was obtained in the same manner as in Example 1 except that the adhesive modified layer was applied to both sides of the uniaxially oriented polyester film. The film transit time from the film application to the drying furnace inlet was 0.8 seconds on one side and 1.0 seconds on the other side.
[0389] 上記の接着性改質基材フィルムに、接着性改質層 Bを介して、片面にハードコート 層 cが、他面に光拡散層 i が積層された、光拡散フィルムを得た。 [0389] A hard coat on one side of the above-mentioned adhesive modified base film via an adhesive modified layer B A light diffusing film in which the layer c was laminated with the light diffusing layer i on the other surface was obtained.
[0390] まず、ハードコート層 Cの形成方法を説明する。  First, a method for forming the hard coat layer C will be described.
上記の接着性改質基材フィルムの接着性改質層 Bの一方の表面に、実施例 1で使 用した無機粒子入りハードコート剤を、硬化後の膜厚が 3 mになるように、マイヤー バーで塗布し、 40°C、 60秒間乾燥させた。さらに、 300mjZcm2の紫外線を照射し 、硬化させて、ハードコート層 Cを片面に形成させた。 The hard coating agent containing inorganic particles used in Example 1 is applied to one surface of the adhesive modified layer B of the above adhesive modified base film so that the film thickness after curing is 3 m. It was applied with a Meyer bar and dried at 40 ° C for 60 seconds. Furthermore, 300 mjZcm 2 of ultraviolet rays were irradiated and cured to form a hard coat layer C on one side.
[0391] 次に、光拡散層 D' の形成方法を説明する。 [0391] Next, a method of forming the light diffusion layer D 'will be described.
下記に示す光拡散層用塗布液を、前記のハードコート層 Cとは反対の接着性改質 層 Bの表面に塗布し、 130°Cで 3分間乾燥させた。  The coating solution for light diffusion layer shown below was applied to the surface of the adhesion modifying layer B opposite to the hard coat layer C and dried at 130 ° C. for 3 minutes.
[0392] (光拡散層用塗布液の組成) [0392] (Composition of coating solution for light diffusion layer)
(a)粒子 [26. 3質量部]  (a) Particle [26.3 parts by mass]
球状のアクリル系榭脂粒子 (ェポスタ— MA1010、 日本触媒株式会社製;平均粒 径 10 /z m)  Spherical acrylic resin particles (Eposta MA1010, manufactured by Nippon Shokubai Co., Ltd .; average particle size 10 / z m)
(b)樹脂 [19. 5質量部]  (b) Resin [19.5 parts by mass]
アクリル系バインダー榭脂溶液 (三菱レーヨン株式会社製、ダイヤナール LR- 10 65 ;固形分濃度 :45質量%)  Acrylic binder resin solution (Made by Mitsubishi Rayon Co., Ltd., Dianar LR-10 65; solid content concentration: 45% by mass)
(c)溶剤 [54. 2質量部]  (c) Solvent [54. 2 parts by mass]
•メチルェチルケトン [24. 2質量部]  • Methyl ethyl ketone [24.2 parts by mass]
•プロピレングリコールモノメチルエーテル [15. 0質量部]  • Propylene glycol monomethyl ether [15.0 parts by mass]
'プロピレングリコールモノメチルエーテルアセテート [15. 0質量部]  'Propylene glycol monomethyl ether acetate [15.0 parts by mass]
[0393] (実施例 22) [0393] (Example 22)
実施例 1において、塗布量を最終的な固形分量として 0. 02gZm2となるようにした こと以外は実施例 1と同様の方法で、接着性改質ポリエステルフィルムを得た。 In Example 1, an adhesive modified polyester film was obtained in the same manner as in Example 1 except that the coating amount was 0.02 gZm 2 as the final solid content.
次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  Next, a hard coat film in which a hard coat layer C containing inorganic fine particles was laminated on one side was obtained in the same manner as in Example 1 on the surface of the adhesive modified layer B of the above adhesive modified base film. .
[0394] (実施例 23)  [0394] (Example 23)
実施例 1において、塗布装置として、塗布液の受け皿の容量、循環用タンクの容量 、及び調合用タンクの容量の比が、下記の条件を有する塗布装置を用いた以外は実 施例 1と同様の方法で、フィルムの長さ力 S2000m、幅が 1000mm、厚みが 125 μ m の接着性改質ポリエステルフィルムのロールを得た。 In Example 1, as a coating device, the capacity of the receiving tray of the coating liquid, the capacity of the circulation tank And the ratio of the mixing tank capacity is the same as in Example 1 except that a coating apparatus having the following conditions is used. The film has a length force of S2000 m, a width of 1000 mm, and a thickness of 125 μm. A roll of adhesive modified polyester film was obtained.
(a)塗布液の受け皿の容量 Z循環用タンクの容量 = 1/5  (a) Capacity of coating solution tray Capacity of Z circulation tank = 1/5
(b)循環用タンクの容量 Z調合用タンクの容量 = 1Z50  (b) Capacity of circulation tank Capacity of Z preparation tank = 1Z50
(c)アプリケーションロール及びメタリングロールの真円度と円筒度: 6Zl000mm (c) Roundness and cylindricity of application roll and metering roll: 6Zl000mm
(d)コーターから乾燥炉の間にピンチロールの設置なし (d) No pinch roll installed between coater and drying oven
[0395] 次いで、上記の接着性改質基材フィルムの接着性改質層 Bの表面に、実施例 1と 同様にして、無機微粒子を含有するハードコート層 Cを、片面に積層するハードコー トフイルムを得た。  [0395] Next, a hard coat film in which a hard coat layer C containing inorganic fine particles is laminated on one surface on the surface of the adhesive modified layer B of the above-mentioned adhesive modified base film in the same manner as in Example 1. Got.
[0396] 実施例 1〜23、比較例 1〜14において、塗布液の組成や特性を表 1に、塗布-乾 燥条件を表 2に、熱固定条件を表 3に、接着性改質基材フィルムの物性及び特性を 表 4に示す。また、得られた接着性改質ポリエステルフィルムのロールの長手方向お よび幅方向における、 PEs表面分率の最大値、最小値、ヘーズの最大値、最小値、 ハードコート層に対する密着性の最大値、最小値を表 5に示す。なお、耐ブロッキン グ性につ ヽては全測定点とも〇であった。  [0396] In Examples 1 to 23 and Comparative Examples 1 to 14, the composition and characteristics of the coating solution are shown in Table 1, the coating-drying conditions are shown in Table 2, the heat setting conditions are shown in Table 3, and the adhesive modification group Table 4 shows the physical properties and characteristics of the material film. In addition, the maximum and minimum PEs surface fraction, maximum and minimum haze values, and maximum adhesion to the hard coat layer in the longitudinal and width directions of the resulting adhesive-modified polyester film roll. Table 5 shows the minimum values. The blocking resistance was ◯ at all measurement points.
[0397] [表 1] [0397] [Table 1]
塗布液組成 塗布液 樹脂 粒子 P1 粒子 P2 溶媒 界面活性剤 Coating liquid composition Coating liquid Resin particles P1 particles P2 Solvent Surfactant
固形分 共重合 平均 添加 平均 添加 前処 配合  Copolymerization average addition average addition average addition pre-formulation
水/ IPA PH ί J PEs/PU 粒径 粒径 種類 理の  Water / IPA PH ί J PEs / PU Particle size Particle size Type
質量比  Mass ratio
の質量比 有無  Mass ratio of
jum 質量% jum 質量% 質量 ¾ 質量% 実施例 1 50/50 0.04 0.45 0.20 0.02 60/40 ノニオン 有 0.06 6.2 5.30 実施例 2 50/50 0.04 0.45 0.20 0.02 60/40 力チ才ン 有 0.06 6.2 5.30 実施例 3 50/50 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.06 6.2 5.30 実施例 4 60/40 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.06 6.2 5.30 実施例 5 40/60 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.06 6.2 5.30 実施例 6 50/50 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.06 6.2 5.30 実施例フ 50/50 0.04 0.45 0.20 0.02 60/40 ノニオン 有 0.03 6.2 5.30 実施例 8 50/50 0.04 0.45 0.20 0.02 60/40 ノニオン 有 0.10 6.2 5.30 実施例 9 50/50 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.06 6.2 5.30 実施例 10 50/50 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.06 6.2 5.30 実施例 11 50/50 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.06 7.9 5.30 実施例 12 50/50 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.06 6.2 5.30 実施例 13 50/50 0.04 0.45 0.20 0.02 60/40 ノニ才ン 0.06 6.2 5.30 実施例 14 50/50 0.04 0.45 0.20 0.02 50/50 ノニオン 有 0.06 6.2 5.30 実施例 15 50/50 0.04 0.45 0.20 0.02 60/40 ノニオン 有 0.06 4.6 5.30 実施例 16 50/50 0.04 0.45 0.20 0.02 60/40 ノニオン 有 0.06 6.2 5.30 実施例 17 50/50 1.4 3.0 0.20 0.02 60/40 ノニオン 有 0.06 6.2 5.30 実施例 18 50/50 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.06 6.2 5.30 実施例 19 50/50 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.03 6.2 5.30 実施例 20 50/50 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.06 6.2 5.30 実施例 21 50/50 0.04 0.45 0.20 0.02 60/40 ノニオン 有 0.06 6.2 5.30 実施例 22 50/50 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.06 6.2 5.30 実施例 23 50/50 0.04 0.45 0.20 0.02 60/40 ノニオン 有 0.06 6.2 5.30 比較例 1 20/80 100/0 ノニオン - 10.00 比較例 2 20/80 0.04 0.36 0.20 0.04 95/5 ァニ才ン to 0.06 4.8 10.93 比較例 3 50/50 1.4 0.02 60/40 ノニ才ン 0.06 4.6 4.87 比較例 4 50/50 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.06 6.2 5.30 比較例 5 20/80 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.06 6.2 5.30 比較例 6 80/20 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.06 6.2 5.30 比較例 7 50/50 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.06 6.2 5.30 比較例 8 50/50 0.04 0.45 0.20 0.02 60/40 ノニ才ン 有 0.06 6.2 5.30 比較例 9 50/50 0.04 0.45 0.20 0.02 60/40 ノニオン 有 0.06 6.2 5.30 比較例 10 50/50 0.04 0.45 0.20 0.02 60/40 ノニオン 有 0.06 9.0 5.30 比較例 11 50/50 0.04 0.45 0.20 0.02 60/40 - - to 6.2 5.30 比較例 12 50/50 0.04 0.45 0.20 0.02 60/40 ノニオン 有 0.60 6.2 5.30 比較例 13 50/50 0.04 0.45 0.20 0.02 72/28 ノニ才ン 有 0.06 6.2 5.30 比較例 14 50/50 0.04 0.45 0.20 0.02 60/40 ノニオン 有 0.06 6.2 5.30 2] 塗布■乾燥条件 jum mass% jum mass% mass ¾ mass% Example 1 50/50 0.04 0.45 0.20 0.02 60/40 Nonion Exist 0.06 6.2 5.30 Example 2 50/50 0.04 0.45 0.20 0.02 60/40 Power control Yes 0.06 6.2 5.30 Example 3 50/50 0.04 0.45 0.20 0.02 60/40 Noni talent Yes 0.06 6.2 5.30 Example 4 60/40 0.04 0.45 0.20 0.02 60/40 Noni talent Yes 0.06 6.2 5.30 Example 5 40/60 0.04 0.45 0.20 0.02 60 / 40 Noni talent Yes 0.06 6.2 5.30 Example 6 50/50 0.04 0.45 0.20 0.02 60/40 Noni talent Yes 0.06 6.2 5.30 Example F 50/50 0.04 0.45 0.20 0.02 60/40 Nonion Yes 0.03 6.2 5.30 Example 8 50/50 0.04 0.45 0.20 0.02 60/40 Nonion Yes 0.10 6.2 5.30 Example 9 50/50 0.04 0.45 0.20 0.02 60/40 Noni Yes Yes 0.06 6.2 5.30 Example 10 50/50 0.04 0.45 0.20 0.02 60/40 Noni Yes 0.06 6.2 5.30 Example 11 50/50 0.04 0.45 0.20 0.02 60/40 Non-unique Yes 0.06 7.9 5.30 Example 12 50/50 0.04 0.45 0.20 0.02 60/40 Non-unique Yes 0.06 6.2 5.30 Example 13 50 / 50 0.04 0.45 0.20 0.02 60/40 0.06 6.2 5.30 Example 14 50/50 0.04 0.45 0.20 0.02 50/50 Nonion Yes 0.06 6.2 5.30 Example 15 50/50 0.04 0.45 0.20 0.02 60/40 Nonion Yes 0.06 4.6 5.30 Example 16 50/50 0.04 0.45 0.20 0.02 60/40 Nonion Yes 0.06 6.2 5.30 Example 17 50/50 1.4 3.0 0.20 0.02 60/40 Nonion Yes 0.06 6.2 5.30 Example 18 50/50 0.04 0.45 0.20 0.02 60/40 Nonion Yes 0.06 6.2 5.30 Example 19 50/50 0.04 0.45 0.20 0.02 60/40 Noni talented 0.03 6.2 5.30 Example 20 50/50 0.04 0.45 0.20 0.02 60/40 Noni talented 0.06 6.2 5.30 Example 21 50/50 0.04 0.45 0.20 0.02 60 / 40 Nonion Yes 0.06 6.2 5.30 Example 22 50/50 0.04 0.45 0.20 0.02 60/40 Noni Gen Yes Yes 0.06 6.2 5.30 Example 23 50/50 0.04 0.45 0.20 0.02 60/40 Nonion Yes 0.06 6.2 5.30 Comparative Example 1 20/80 100/0 Nonion-10.00 Comparative Example 2 20/80 0.04 0.36 0.20 0.04 95/5 Fans to 0.06 4.8 10.93 Comparative Example 3 50/50 1.4 0.02 60/40 Noni 0.06 4.6 4.87 Comparative Example 4 50/50 0.04 0.45 0.20 0.02 6 0/40 Noni talent Yes 0.06 6.2 5.30 Comparative example 5 20/80 0.04 0.45 0.20 0.02 60/40 Noni talent Yes 0.06 6.2 5.30 Comparative example 6 80/20 0.04 0.45 0.20 0.02 60/40 Noni talent Yes 0.06 6.2 5.30 Comparative Example 7 50/50 0.04 0.45 0.20 0.02 60/40 Nonni Presence 0.06 6.2 5.30 Comparative Example 8 50/50 0.04 0.45 0.20 0.02 60/40 Noni Presence 0.06 6.2 5.30 Comparative Example 9 50/50 0.04 0.45 0.20 0.02 60/40 Nonion Yes 0.06 6.2 5.30 Comparative Example 10 50/50 0.04 0.45 0.20 0.02 60/40 Nonion Yes 0.06 9.0 5.30 Comparative Example 11 50/50 0.04 0.45 0.20 0.02 60/40--to 6.2 5.30 Comparative Example 12 50/50 0.04 0.45 0.20 0.02 60/40 Nonion Yes 0.60 6.2 5.30 Comparative Example 13 50/50 0.04 0.45 0.20 0.02 72/28 Noni Genius Yes 0.06 6.2 5.30 Comparative Example 14 50/50 0.04 0.45 0.20 0.02 60/40 Nonion Yes 0.06 6.2 5.30 2] Application Drying conditions
塗布直後から  Immediately after application
最終 乾燥工程入口 乾燥温度 乾燥時間 風速 塗布量 までの通過時間 (°C) (秒) (m/s)  Final drying process inlet Drying temperature Drying time Wind speed Passing time to coating amount (° C) (sec) (m / s)
(g/m2)(g / m 2 )
(秒) (Seconds)
実施例 1 0.8 135 1.0 30 0.08 実施例 2 0.8 135 1.0 30 0.08 実施例 3 0.8 135 1.0 30 0.08 実施例 4 0.8 135 1.0 30 0.08 実施例 5 0.8 135 1.0 30 0.08 実施例 6 0.8 135 1.0 30 0.12 実施例 7 0.8 135 1.0 30 0.08 実施例 8 0.8 135 1.0 30 0.08 実施例 9 0.7 135 0.8 30 0.08 実施例 10 1.0 135 1.9 30 0.08 実施例 11 0.8 135 1.0 30 0.08 実施例 12 0.8/1.0 135 1.0 30 0.08 実施例 13 0.8 135 1.0 30 0.08 実施例 14 0.8 135 1.0 30 0.08 実施例 15 0.8 135 1.0 30 0.08 実施例 16 0.8 135 1.0 30 0.08 実施例 Π 0.8 135 1.0 30 0.08 実施例 18 0.8 135 1.0 30 0.08 実施例 19 0.8 135 1.0 30 0.08 実施例 20 0.8 135 1.0 30 0.08 実施例 21 0.8 135 1.0 30 0.08 実施例 22 0.8 135 1.0 30 0.02 実施例 23 0.8 135 1.0 30 0.08 比較例 1 10 110 20 15 0.15 比較例 2 10 80 20 20 0.10 比較例 3 3.2 120 1.0 15 0.08 比較例 4 3.2 135 1.0 30 0.08 比較例 5 0.8 135 1.0 30 0.08 比較例 6 0.8 135 1.0 30 0.08 比較例 7 0.8 135 1.0 30 0.08 比較例 8 0.8 135 1.0 15 0.08 比較例 9 0.8 135 1.0 30 0.20 比較例 10 0.8 135 1.0 30 0.08 比較例 11 0.8 135 1.0 30 0.08 比較例 12 0.8 135 1.0 30 0.08 比較例 13 0.8 135 1.0 30 0.08 比較例 14 0.8 135 1.0 30 0.08 3] 熱固定条件 Example 1 0.8 135 1.0 30 0.08 Example 2 0.8 135 1.0 30 0.08 Example 3 0.8 135 1.0 30 0.08 Example 4 0.8 135 1.0 30 0.08 Example 5 0.8 135 1.0 30 0.08 Example 6 0.8 135 1.0 30 0.12 Example 7 0.8 135 1.0 30 0.08 Example 8 0.8 135 1.0 30 0.08 Example 9 0.7 135 0.8 30 0.08 Example 10 1.0 135 1.9 30 0.08 Example 11 0.8 135 1.0 30 0.08 Example 12 0.8 / 1.0 135 1.0 30 0.08 Example 13 0.8 135 1.0 30 0.08 Example 14 0.8 135 1.0 30 0.08 Example 15 0.8 135 1.0 30 0.08 Example 16 0.8 135 1.0 30 0.08 Example Π 0.8 135 1.0 30 0.08 Example 18 0.8 135 1.0 30 0.08 Example 19 0.8 135 1.0 30 0.08 Example 20 0.8 135 1.0 30 0.08 Example 21 0.8 135 1.0 30 0.08 Example 22 0.8 135 1.0 30 0.02 Example 23 0.8 135 1.0 30 0.08 Comparative Example 1 10 110 20 15 0.15 Comparative Example 2 10 80 20 20 0.10 Comparative Example 3 3.2 120 1.0 15 0.08 Comparative Example 4 3.2 135 1.0 30 0.08 Comparative Example 5 0.8 135 1.0 30 0.08 Comparative Example 6 0.8 135 1.0 30 0.08 Comparative Example 7 0.8 135 1.0 30 0.08 Comparative Example 8 0.8 135 1.0 15 0.08 Comparative Example 9 0.8 135 1.0 30 0.20 Comparative Example 10 0.8 135 1.0 30 0.08 Comparative Example 11 0.8 135 1.0 30 0.08 Comparative Example 12 0.8 135 1.0 30 0.08 Comparative Example 13 0.8 135 1.0 30 0.08 Comparative Example 14 0.8 135 1.0 30 0.08 3 ] Heat setting conditions
熱固定温度 (°c) 各ソ -ンの Heat setting temperature (° c)
#1 #2 #3 #4 #5 #6 #7 ιί過時 J# 1 # 2 # 3 # 4 # 5 # 6 # 7
V" -ン ' '—ン ', -ン ソ' -ン ソ' -ン ',-ン ', -ン (秒) 実施例 1 200 225 230 230 210 170 120 4.5 実施例 2 200 225 230 230 210 170 120 4.5 実施例 3 190 205 220 220 210 170 120 4.5 実施例 4 200 225 230 230 210 170 120 4.5 実施例 5 200 225 230 230 210 170 120 4.5 実施例 6 200 225 230 230 210 170 120 4.5 実施例 7 200 225 230 230 210 170 120 4.5 実施例 8 200 225 230 230 210 170 120 4.5 実施例 9 200 225 230 230 210 170 120 3.5 実施例 10 200 225 230 230 210 170 120 6.6 実施例 11 200 225 230 230 210 170 120 4.5 実施例 12 200 225 230 230 210 170 120 4.5 実施例 13 200 225 230 230 210 170 120 4.5 実施例 14 200 225 230 230 210 170 120 4.5 実施例 15 200 225 230 230 210 170 120 4.5 実施例 16 200 225 230 230 210 170 120 4.5 実施例 17 200 225 230 230 210 170 120 4.5 実施例 18 200 210 215 220 225 230 170 4.5 実施例 19 200 225 230 230 210 170 120 4.5 実施例 20 200 225 230 230 210 170 120 4.5 実施例 21 200 225 230 230 210 170 120 4.5 実施例 22 200 225 230 230 210 170 120 4.5 実施例 23 200 225 230 230 210 170 120 4.5 比較例 1 200 205 210 213 215 220 170 4.5 比較例 2 200 210 220 225 230 235 240 4.5 比較例 3 200 205 210 213 215 220 170 4.5 比較例 4 200 225 230 230 210 170 120 4.5 比較例 5 200 225 230 230 210 170 120 4.5 比較例 6 200 225 230 230 210 170 120 4.5 比較例 7 190 195 200 200 200 170 120 4.5 比較例 8 200 225 230 230 210 170 120 4.5 比較例 9 200 225 230 230 210 170 120 4.5 比較例 10 200 225 230 230 210 170 120 4.5 比較例 11 200 225 230 230 210 170 120 4.5 比較例 12 200 225 230 230 210 170 120 4.5 比較例 13 200 225 230 230 210 170 120 4.5 比較例 14 200 225 230 230 210 170 120 4.5 4] 接着性改質基材フィルム V "-''-'',-'N''-'''-'',-''--(seconds) Example 1 200 225 230 230 210 170 120 4.5 Example 2 200 225 230 230 210 170 120 4.5 Example 3 190 205 220 220 210 170 120 4.5 Example 4 200 225 230 230 210 170 120 4.5 Example 5 200 225 230 230 210 170 120 4.5 Example 6 200 225 230 230 210 170 120 4.5 Example 7 200 225 230 230 210 170 120 4.5 Example 8 200 225 230 230 210 170 120 4.5 Example 9 200 225 230 230 210 170 120 3.5 Example 10 200 225 230 230 210 170 120 6.6 Example 11 200 225 230 230 210 170 120 4.5 Example 12 200 225 230 230 210 170 120 4.5 Example 13 200 225 230 230 210 170 120 4.5 Example 14 200 225 230 230 210 170 120 4.5 Example 15 200 225 230 230 210 170 120 4.5 Example 16 200 225 230 230 210 170 120 4.5 Example 17 200 225 230 230 210 170 120 4.5 Example 18 200 210 215 220 225 230 170 4.5 Example 19 200 225 230 230 210 170 120 4.5 Example 20 200 225 230 230 210 170 120 4.5 Example 21 200 225 230 230 210 170 120 4.5 Example 22 200 225 230 230 210 170 120 4.5 Example 23 200 225 230 230 210 170 120 4.5 Comparative Example 1 200 205 210 213 215 220 170 4.5 Comparative Example 2 200 210 220 225 230 235 240 4.5 Comparative Example 3 200 205 210 213 215 220 170 4.5 Comparative Example 4 200 225 230 230 210 170 120 4.5 Comparative Example 5 200 225 230 230 210 170 120 4.5 Comparative Example 6 200 225 230 230 210 210 170 120 4.5 Comparative Example 7 190 195 200 200 200 170 120 4.5 Comparative Example 8 200 225 230 230 210 170 120 4.5 Comparative Example 9 200 225 230 230 210 170 120 4.5 Comparative Example 10 200 225 230 230 210 170 120 4.5 Comparative Example 11 200 225 230 230 210 170 120 4.5 Comparative Example 12 200 225 230 230 210 170 120 4.5 Comparative Example 13 200 225 230 230 210 170 120 4.5 Comparative Example 14 200 225 230 230 210 170 120 4.5 4] Adhesive modified base film
Figure imgf000101_0001
Figure imgf000101_0001
表 5] 接着性改質層の HC層との密着性 ( ) 表面における Table 5] Adhesion of the modified adhesive layer with the HC layer ()
PEs ヘイズ (»  PEs Hayes (»
相の面積率 無溶剤型 HC層 溶剤希釈型 HC層 Phase area ratio Solvent-free HC layer Solvent dilution HC layer
(%) /接着性改質層 接着性改質層 最大値 最小値 最大値 最小値 最大値 最小値 最大値 最小値 長手方向 73 63 0. 59 0. 56 100 94 100 96 実施例 1 (%) / Adhesive modified layer Adhesive modified layer Maximum value Minimum value Maximum value Minimum value Maximum value Minimum value Maximum value Minimum value Longitudinal direction 73 63 0. 59 0. 56 100 94 100 96 Example 1
幅方向 72 64 0. 59 0. 56 100 96 100 97 長手方向 Ή 60 0. 6 0. 56 100 93 100 95 実施例 23  Width direction 72 64 0. 59 0. 56 100 96 100 97 Longitudinal direction Ή 60 0. 6 0. 56 100 93 100 95 Example 23
幅方向 75 61 0. 6 0. 56 100 91 100 94 [0402] [表 6] Width direction 75 61 0. 6 0. 56 100 91 100 94 [0402] [Table 6]
Figure imgf000102_0001
Figure imgf000102_0001
産業上の利用可能性  Industrial applicability
[0403] 本発明のハードコートフィルムは、高い硬度を維持しながら、無機微粒子を含有す るハードコート層との密着性に優れているため、プリズムレンズシート、光拡散フィル ム、反射防止 (AR)フィルム、透明導電性フィルム、赤外線吸収フィルム、電磁波吸 収フィルム、などのディスプレイ用光学機能性フィルムの基材として好適である。 また、本発明のハードコートフィルムは、ディスプレイ用光学機能性フィルム以外に も、隠蔽性が要求される用途にも使用することができる。その場合、基材の熱可塑性 榭脂フィルムとして、白色顔料や空洞を含有させた白色フィルムを使用することが好 ましい。 [0403] The hard coat film of the present invention has excellent adhesion to the hard coat layer containing inorganic fine particles while maintaining high hardness, so that it is a prism lens sheet, a light diffusion film, an antireflection (AR ) Suitable as a base material for optical functional films for displays such as films, transparent conductive films, infrared absorbing films, electromagnetic wave absorbing films. In addition to the optical functional film for display, the hard coat film of the present invention can be used for applications requiring concealability. In that case, it is preferable to use a white film containing white pigments or cavities as the thermoplastic resin film of the substrate.

Claims

請求の範囲 The scope of the claims
[1] 熱可塑性榭脂フィルム Aの片面または両面に、共重合ポリエステル及びポリウレタ ンを含む接着性改質層 Bを形成させた接着性改質基材フィルムと、該フィルムの ヽず れか片面の接着性改質層 Bの表面に無機微粒子を含有するハードコート層 Cが積層 された、 AZBZCまたは BZAZBZCの層構成を含むハードコートフィルムであつ て、  [1] An adhesive modified base film in which an adhesive modified layer B containing a copolymerized polyester and polyurethane is formed on one or both sides of a thermoplastic resin film A, and either one of the films A hard coat film having a layer structure of AZBZC or BZAZBZC, in which a hard coat layer C containing inorganic fine particles is laminated on the surface of the adhesion modified layer B of
接着性改質層 Bは、ポリエステル (PEs)相とポリウレタン (PU)相のミクロ相分離構 造またはナノ相分離構造を有し、かつ走査型プローブ顕微鏡を用いてハードコートフ イルムの切削面を位相測定モードで観察した際に、接着性改質層 Bとハードコート層 Cの界面力も深さ 20nmまでの範囲における、下記(1)式で定義される、接着性改質 層 Bのポリウレタン相(位相像で明色相を示す)の面積率が 30%以上 60%以下であ ることを特徴とするハードコートフィルム。  Adhesive modified layer B has a micro phase separation structure or a nano phase separation structure of polyester (PEs) phase and polyurethane (PU) phase, and the cutting surface of the hard coat film is formed using a scanning probe microscope. When observed in phase measurement mode, the interfacial force between the adhesive modified layer B and the hard coat layer C is within the range of a depth of 20 nm. The polyurethane phase of the adhesive modified layer B is defined by the following formula (1). A hard coat film characterized by having an area ratio of 30% or more and 60% or less (showing a bright hue in a phase image).
PU相の面積率(%) = (PU相の面積 Z測定面積) X 100 · · · (1)  PU phase area ratio (%) = (PU phase area Z measurement area) X 100 · · · (1)
[2] 熱可塑性榭脂フィルム Aの片面または両面に、共重合ポリエステル及びポリウレタ ンを含む接着性改質層 Bを形成させた接着性改質基材フィルムと、該フィルムの ヽず れか片面の接着性改質層 Bの表面に無機微粒子を含有するハードコート層 Cが積層 された、 AZBZCまたは BZAZBZCの層構成を含むハードコートフィルムであつ て、 [2] An adhesive modified substrate film in which an adhesive modified layer B containing a copolymerized polyester and polyurethane is formed on one side or both sides of a thermoplastic resin film A, and one or both sides of the film A hard coat film having a layer structure of AZBZC or BZAZBZC, in which a hard coat layer C containing inorganic fine particles is laminated on the surface of the adhesion modified layer B of
接着性改質層 Bは、ポリエステル (PEs)相とポリウレタン (PU)相のミクロ相分離構 造またはナノ相分離構造を有し、かつ走査型プローブ顕微鏡を用いて接着性改質 層 Bの表面を位相測定モードで観察した際に、下記 (2)式で定義される、接着性改 質層 Bの表面のポリエステル相(位相像で暗色相を示す)の面積率が、 5 m X 5 mの範囲で 35%以上 90%未満であることを特徴とするハードコートフィルム。  Adhesive modified layer B has a micro phase separation structure or a nano phase separation structure of polyester (PEs) phase and polyurethane (PU) phase, and the surface of adhesive modified layer B using a scanning probe microscope. Is observed in the phase measurement mode, the area ratio of the polyester phase (showing a dark hue in the phase image) on the surface of the adhesive reforming layer B defined by the following formula (2) is 5 m x 5 m Hard coat film characterized by being in the range of 35% or more and less than 90%.
PEs相の面積率(%) = (PEs相の面積 Z測定面積) X 100 · · · (2)  PEs phase area ratio (%) = (PEs phase area Z measurement area) X 100 · · · (2)
[3] ハードコート層 C中の無機微粒子の含有量が 20〜80質量%であることを特徴とす る請求項 1または 2に記載のハードコートフィルム。  [3] The hard coat film according to claim 1 or 2, wherein the content of the inorganic fine particles in the hard coat layer C is 20 to 80% by mass.
[4] 熱可塑性榭脂フィルムは、粒子を含有しな 、、または 50ppm以下含有し、接着性 改質層は粒子を 0. 1〜20質量%含有することを特徴とする請求項 1または 2に記載 のノヽードコートフイノレム。 [4] The thermoplastic resin film does not contain particles, or contains 50 ppm or less, and the adhesion modified layer contains 0.1 to 20% by mass of particles. Described in Node coat of Finolem.
[5] 粒子がシリカ粒子であることを特徴とする請求項 4に記載のハードコートフィルム。 5. The hard coat film according to claim 4, wherein the particles are silica particles.
[6] 請求項 1または 2に記載のハードコートフィルムのハードコート層 Cとは反対面に、ハ ードコート層、光拡散層、プリズム状レンズ層、電磁波吸収層、近赤外線遮断層、透 明導電層から選択される、少なくとも 1層の光学機能層が積層された光学機能性フィ ノレム。 [6] The hard coat film according to claim 1 or 2 has a hard coat layer, a light diffusing layer, a prismatic lens layer, an electromagnetic wave absorbing layer, a near-infrared blocking layer, a transparent conductive film on the opposite side of the hard coat layer C. An optical functional final layer in which at least one optical functional layer selected from the layers is laminated.
[7] 請求項 1または 2に記載のハードコートフィルムのハードコート層 Cの上に、反射防 止層または防汚層が積層された光学機能性フィルム。  [7] An optical functional film in which an antireflection layer or an antifouling layer is laminated on the hard coat layer C of the hard coat film according to claim 1 or 2.
PCT/JP2007/057404 2006-05-29 2007-04-02 Hard coat film and optically functional film WO2007138785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007800200769A CN101460308B (en) 2006-05-29 2007-04-02 Hard coat film and optically functional film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-148744 2006-05-29
JP2006148744A JP4029356B2 (en) 2006-05-29 2006-05-29 Hard coat film and optical functional film

Publications (1)

Publication Number Publication Date
WO2007138785A1 true WO2007138785A1 (en) 2007-12-06

Family

ID=38778310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057404 WO2007138785A1 (en) 2006-05-29 2007-04-02 Hard coat film and optically functional film

Country Status (5)

Country Link
JP (1) JP4029356B2 (en)
KR (1) KR100898255B1 (en)
CN (1) CN101460308B (en)
TW (1) TWI360477B (en)
WO (1) WO2007138785A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI738382B (en) * 2020-06-15 2021-09-01 明基材料股份有限公司 Anti-glare film and polarizer with the same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198827A (en) * 2008-02-21 2009-09-03 Mitsubishi Plastics Inc Composite film for liquid crystal display
JP5286987B2 (en) * 2008-07-08 2013-09-11 東洋紡株式会社 Laminated thermoplastic resin film
KR101034712B1 (en) * 2008-12-24 2011-05-17 제일모직주식회사 Anti-glare film comprising anti-glare agent with a shape overlapped two anti-glare particles and method of manufacturing the same
JP4562795B2 (en) 2009-02-16 2010-10-13 日東電工株式会社 Roll material and roll material manufacturing method
JP5755429B2 (en) * 2009-11-18 2015-07-29 恵和株式会社 Optical sheet and backlight unit using the same
JP2011126196A (en) * 2009-12-18 2011-06-30 Tomoegawa Paper Co Ltd Syndiotactic polystyrene-based sheet-like laminate, method for producing the same and syndiotactic polystyrene-based sheet-like hard coat laminate
CN101840011B (en) * 2010-04-15 2012-03-28 上海聚恒太阳能有限公司 Manufacture method for nanometer self-cleaning spotlight solar energy Fresnel lens
US9223060B2 (en) 2011-03-23 2015-12-29 Dai Nippon Printing Co., Ltd. Optical layered body, polarizer, and image display device
KR101413219B1 (en) * 2011-11-23 2014-06-30 이찬봉 Resin compositions having insulation effect and antibiotic effect, functional film using the same
KR101851124B1 (en) 2016-10-13 2018-04-24 주식회사 상보 Base film for multi-layer optical sheet assembly improving sparkling effect
JP6823480B2 (en) * 2017-01-31 2021-02-03 日東電工株式会社 Transparent conductive film
JP7220025B2 (en) * 2017-06-09 2023-02-09 三星電子株式会社 Films comprising polyimides or poly(amide-imide) copolymers, displays comprising such films, and methods of making such films
CN110370855B (en) * 2019-08-05 2021-08-31 河南银金达彩印股份有限公司 Decorative laser transfer printing plate for vehicle and processing technology
CN115079320A (en) * 2022-07-25 2022-09-20 青岛国骐光电科技有限公司 Diffusion plate, application and preparation method thereof, backlight module and display module

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154970A (en) * 1991-12-05 1993-06-22 Teijin Ltd Easy adhesion polyethylene-2,6-naphthalate film
JPH08134428A (en) * 1994-10-20 1996-05-28 Minnesota Mining & Mfg Co <3M> Solid adhesive composition
JPH10107093A (en) * 1996-04-02 1998-04-24 Toray Ind Inc Tape with bonding agent for semiconductor device use, copper-clad laminated board using that, substrate for semiconductor connection use and semiconductor device
JP2002254565A (en) * 2000-12-08 2002-09-11 Toyobo Co Ltd Optical laminated film
JP2003183429A (en) * 2001-12-25 2003-07-03 Mitsubishi Polyester Film Copp Laminated polyester film
JP2003341000A (en) * 2002-05-29 2003-12-02 Toyobo Co Ltd Easily adhesive polyester film for optical use
JP2004114584A (en) * 2002-09-27 2004-04-15 Toray Ind Inc Hard-coat film
JP2004277629A (en) * 2003-03-18 2004-10-07 Dainippon Printing Co Ltd Weather-resistant hard coating film and preparation process of the same
JP2004356368A (en) * 2003-05-29 2004-12-16 Toray Ind Inc Tape with adhesive for semiconductor and copper-clad laminate using the same, substrate for connecting semiconductor integrated circuit, and semiconductor device
WO2006057382A1 (en) * 2004-11-29 2006-06-01 Toyo Boseki Kabushiki Kaisha Laminated thermoplastic resin film and laminated thermoplstic resin film roll

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233737B2 (en) * 1993-06-01 2001-11-26 ユニチカ株式会社 Easy adhesion polyester film
KR100579633B1 (en) * 1999-01-21 2006-05-12 도요 보세키 가부시키가이샤 Optical-use adhesive film and roll thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154970A (en) * 1991-12-05 1993-06-22 Teijin Ltd Easy adhesion polyethylene-2,6-naphthalate film
JPH08134428A (en) * 1994-10-20 1996-05-28 Minnesota Mining & Mfg Co <3M> Solid adhesive composition
JPH10107093A (en) * 1996-04-02 1998-04-24 Toray Ind Inc Tape with bonding agent for semiconductor device use, copper-clad laminated board using that, substrate for semiconductor connection use and semiconductor device
JP2002254565A (en) * 2000-12-08 2002-09-11 Toyobo Co Ltd Optical laminated film
JP2003183429A (en) * 2001-12-25 2003-07-03 Mitsubishi Polyester Film Copp Laminated polyester film
JP2003341000A (en) * 2002-05-29 2003-12-02 Toyobo Co Ltd Easily adhesive polyester film for optical use
JP2004114584A (en) * 2002-09-27 2004-04-15 Toray Ind Inc Hard-coat film
JP2004277629A (en) * 2003-03-18 2004-10-07 Dainippon Printing Co Ltd Weather-resistant hard coating film and preparation process of the same
JP2004356368A (en) * 2003-05-29 2004-12-16 Toray Ind Inc Tape with adhesive for semiconductor and copper-clad laminate using the same, substrate for connecting semiconductor integrated circuit, and semiconductor device
WO2006057382A1 (en) * 2004-11-29 2006-06-01 Toyo Boseki Kabushiki Kaisha Laminated thermoplastic resin film and laminated thermoplstic resin film roll

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI738382B (en) * 2020-06-15 2021-09-01 明基材料股份有限公司 Anti-glare film and polarizer with the same

Also Published As

Publication number Publication date
KR100898255B1 (en) 2009-05-19
CN101460308B (en) 2012-08-29
JP4029356B2 (en) 2008-01-09
TWI360477B (en) 2012-03-21
TW200810924A (en) 2008-03-01
JP2007313865A (en) 2007-12-06
KR20080111173A (en) 2008-12-22
CN101460308A (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP4029356B2 (en) Hard coat film and optical functional film
JP3900191B2 (en) Laminated thermoplastic resin film and laminated thermoplastic resin film roll
TWI317324B (en) Laminated polyester film and laminated polyester film roll
TWI450820B (en) Adhesive modified base film and hard-coated film
JP4797810B2 (en) Laminated thermoplastic resin film and laminated thermoplastic resin film roll
JP4150982B2 (en) Laminated film and adhesive modified substrate film for obtaining the same
KR100584033B1 (en) Optical-use laminated film
JP2005179486A (en) Highly transparent polyester film for optical use
JP2021088192A (en) Release film for ceramic green sheet production
JP2007152591A (en) Laminated thermoplastic resin film and film roll
JP4174739B2 (en) Hard coat film, optical functional film, and adhesion modified substrate film for obtaining the same
WO2006043626A1 (en) Multilayer polyester film and specularly reflective film
JP2002254565A (en) Optical laminated film
JP5380896B2 (en) Adhesive modified base film and hard coat film
JP5380897B2 (en) Adhesive modified base film and hard coat film
JP2007152589A (en) Laminated thermoplastic resin film and film roll
JP7290035B2 (en) Polyester film for dry film resist substrate
JP2005263853A (en) High transparency optical laminated polyester film
JP2007290164A (en) Laminated polyester film and mirror surface reflecting film
JP4389185B2 (en) Adhesive modified base film and hard coat film
JP4784380B2 (en) Laminated polyester film and specular reflection film
JP7306516B2 (en) Release film for manufacturing ceramic green sheets
JP7306514B2 (en) Release film for manufacturing ceramic green sheets
JP7327554B2 (en) Release film for manufacturing ceramic green sheets
JP7306515B2 (en) Release film for manufacturing ceramic green sheets

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780020076.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740840

Country of ref document: EP

Kind code of ref document: A1