WO2007138727A1 - Airship-type aerial crane - Google Patents

Airship-type aerial crane Download PDF

Info

Publication number
WO2007138727A1
WO2007138727A1 PCT/JP2006/324373 JP2006324373W WO2007138727A1 WO 2007138727 A1 WO2007138727 A1 WO 2007138727A1 JP 2006324373 W JP2006324373 W JP 2006324373W WO 2007138727 A1 WO2007138727 A1 WO 2007138727A1
Authority
WO
WIPO (PCT)
Prior art keywords
airship
slip ring
type aerial
rotor blade
blade
Prior art date
Application number
PCT/JP2006/324373
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiko Onda
Masaaki Sano
Masaki Watanabe
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2007138727A1 publication Critical patent/WO2007138727A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/06Rigid airships; Semi-rigid airships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/06Rigid airships; Semi-rigid airships
    • B64B1/24Arrangement of propulsion plant
    • B64B1/30Arrangement of propellers
    • B64B1/34Arrangement of propellers of lifting propellers

Definitions

  • the present invention relates to an airship type aerial crane in which a crane is mounted on an airship and cargo can be lifted and transported safely at low cost.
  • Patent Document 1 discloses a technology that enables a cargo to be carried by mounting a crane on an airship.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-249954
  • Such an airship type crane can be called a “new industrial machine”, and it is initially operated by flying in a limited space rather than allowing it to fly freely in any airspace like an aircraft with a type certificate. It can be thought of as a force to hold down costs.
  • the limited space is, for example, an airspace where airplanes do not fly and an altitude of about 150 m or less, and within this height limit, there are only an aerial crane operator and a small number of workers. Assuming flight over the sea and lakes.
  • the present invention is an airship-type aircraft that can carry cargo in a wide range of fields, such as gathering trees in mountainous areas, inexpensively, safely, and with simple operations.
  • the main purpose is to provide a medium crane.
  • an airship type aerial crane includes an airframe filled with a levitation gas, propulsion devices provided on the left and right sides of the airframe, and on both sides of the airframe.
  • a suspension arm provided rotatably on each fulcrum that has the same vertical position as the floating center on the same vertical line as the floating center of the fuselage, and each propulsion unit has a drive arm that extends radially from the drive shaft.
  • a plurality of rotor blades rotatably supported at the ends of the rotor blades, and a rotor blade inclination adjusting member that makes it possible to adjust the inclination of the rotor blades in relation to each other. It is characterized by adjusting the inclination of the rotor blades to change the propulsion direction and moving the aircraft arbitrarily.
  • another airship type aerial crane is the airship type aerial crane, wherein the rotary blade inclination adjusting member is provided with one slip ring that is arbitrarily movable.
  • a support plate that rotates around the slip ring, and a control arm that rotatably connects each rotor blade and the support plate at both ends, and the plurality of rotations by the movement of the slip ring.
  • the wing inclination can be adjusted in relation to each other.
  • another airship type aerial crane is the airship type aerial crane, wherein the support portion by the driving arm of the rotary wing is a portion in which the aerodynamic center and the center of gravity of the rotary wing coincide with each other It is characterized in that the driving arm receives the aerodynamic load of the rotor blade and the inertial load force due to centrifugal force.
  • another airship type aerial crane is the airship type aerial crane, wherein a center of gravity of the rotor blade is supported by a support portion by a driving arm of the rotor blade, and the rotor blade inclination adjusting member. It is characterized by being configured to be located between the coupling portion.
  • FIG. 1 is a schematic view of an embodiment of an airship type aerial crane according to the present invention, (a) is a side view, and (b) is a rear view.
  • FIG. 2 is an operation diagram during pitch angle control of the airframe in the same embodiment.
  • Fig. 3 is an operation diagram at the time of angle control of the airframe in the same embodiment.
  • FIG. 4 is an operation diagram during vertical movement control of the airframe in the same embodiment.
  • FIG. 5 is an operation explanatory view of a cycloidal propeller used in the present invention.
  • FIG. 6 An enlarged view of the central portion of the cycloidal * propeller.
  • FIG. 7 is a view showing various operation modes of the cycloidal * propeller.
  • FIG. 8 is an explanatory view of a support structure of the cycloidal * propeller.
  • FIG. 10 is a graph showing the relationship between the wing attack angle human lift coefficient C1 and the resistance coefficient Cd in the cycloidal * propeller.
  • FIG. 11 This is a graph showing the results of calculating lift and resistance when the peripheral speed of a single blade is 25 m / s for the same cycloidal * propeller.
  • FIG. 12 A graph showing the lift of each propeller with seven propulsion blades in the same cycloidal propeller, and the combined values shown.
  • FIG. 13 is a graph showing lift versus power characteristics when the rotational speed is changed.
  • the present invention provides an airship-type aerial crane capable of carrying cargo in a wide range of fields including tree gathering in mountainous areas at low cost, safely and with simple operation.
  • the issue of providing the front and back of the aircraft filled with levitation gas and the left and right of the aircraft Each propulsion unit provided on the both sides of the fuselage, and a suspension device pivotably provided at each fulcrum where the buoyancy point and the horizontal position are in the same position on the same vertical line as the buoyancy point of the fuselage.
  • the machine includes a plurality of rotor blades rotatably supported on an end of a drive arm extending radially from the drive shaft, and a rotor blade inclination adjusting member that can adjust the inclination of the rotor blades in relation to each other. This is realized by adjusting the inclination of the rotor blade by the rotor blade inclination adjusting member to change the propulsion direction and moving the airframe arbitrarily.
  • the airframe 1 is a spheroid for utilizing the buoyancy of levitation gas such as helium to be filled, or a cylindrical gas sac with rounded front and rear ends.
  • the gas sac was supported on the same vertical line as the buoyancy center P of the fuselage 1, and the horizontal position of the buoyancy P was almost the same position, and was supported by a fulcrum that can be swung in the longitudinal direction of the fuselage 1.
  • Support arms 6 are attached to the left and right sides of the fuselage, rods 7 are fixed to the lower ends of the support arms 6, and cranes such as ropes 8 are connected to the rods 7.
  • the hanging tool 8 includes a winch 9, and the winch 9 can scrape the rope 11 having the hook 10 at the lower end.
  • a suspended load on the ground is hung on the hook 10 and the posture is controlled from one point on the ground or in the air to another point by the propeller using the cycloidal propeller as described above.
  • It can be an airborne crane that can be moved to a point.
  • a reinforcing member 13 is appropriately provided at the mounting portion of the support arm 6 that receives a large force in the machine body 1.
  • the rise and fall in the horizontal position is performed with the thrust of all cycloidal * propellers directed up or down.
  • the propulsion of the airframe 1 in the middle direction of each attitude angle can be performed by directing the thrust direction of the cycloidal propeller in that direction.
  • the airship type aerial crane has a four-wheel drive system, and the suspended fulcrum of the suspended load is almost matched with the buoyancy point P of the floating gas air bag. Among the functions, it can maintain the function to freely control the pitch angle of the airframe attitude of the airship type aerial crane, which is involved in the ascending movement that is most important for flight safety.
  • the airframe body of the airship type aerial crane has a pressurized membrane structure, it is almost close to the shell structure, and the load force can be kept to the minimum only in the direction of the surface of the structure. It is preferable to set the two points on the surface of the airframe 1, which is a buoyant gas sac, so that the load acts in-plane. An imaginary line connecting these two points passes near the buoyant point of the gas held in the air sac, making this imaginary line the central axis of the aircraft's pitch angle motion. The restraint moment due to buoyancy and suspended loads can be minimized.
  • this fulcrum can be placed anywhere on the surface of the gas sac
  • the flying motion function of the airship type aerial crane is safe and the buoyancy to control the aircraft pitch angle that supports the heaviest climbing performance. It is most preferable to determine the load moment force of the suspended load to be minimized.
  • As an ascent function there is also a method of ascending and moving the airship type aerial crane with the airframe in a horizontal position, but the lateral movement of the airframe in this horizontal position maximizes the drag of the airframe. , Disadvantageous.
  • a cycloidal propeller used for an airship type aerial crane as described above is, for example, illustrated in FIG.
  • each of the blades 20 consisting of two-dimensional wings with symmetrical cross-sectional shapes are arranged on the surface F where the movement locus becomes a rotating cylinder in the illustrated example, and each of these rotating blades rotates in the rotation direction. All blades 20 are arranged on the rotating cylindrical surface F at equal intervals with the leading edge of the blades 20 facing. Times Each of the blades 20 has a driving arm 22 coupled to its aerodynamic center point via a pivot or bearing drive support 21, and the drive shaft of the center O is shown in the figure by this drive arm 22. It is driven to rotate by a lever or motor.
  • a control support portion 23 as another pivot is provided on the axis of symmetry S of each rotor blade 20, and with respect to the pivot of the control support portion 23,
  • One end of the control arm 26 is rotatably fixed.
  • the other end of the control arm 26 is arranged at a position that is separate from the rotation center O of the rotating cylindrical surface F and does not interfere with these rotating mechanisms.
  • Rotating fulcrums 25 are connected to support plates 27 that are rotatably supported with respect to the individual slip rings 24.
  • the rotation fulcrum 25 in the illustrated embodiment is arranged radially with respect to the center Q of the slip ring 24, and the slip ring 24 can be arbitrarily moved up and down and left and right by a separate mechanism not shown.
  • the slip ring 24 including the support plate 27 that supports the coupling point on the rotation center side of all the control arms 26 of each rotor blade 20 is used to rotate the rotor blade 20. Regardless, because the angle of attack of each rotor blade 20 is controlled by decentering it vertically and horizontally on the fuselage, the rotation of the rotor blades escapes via the slip ring 24, and the control operation on the left and right You can escape the rotary motion of the rotary blade 20 to.
  • the slip ring 24 is a force required for all control arms.
  • a slip ring installed to contain the drive shaft is used.
  • the control arm is swung on a flat support plate 27 attached to the slip ring 24 at a right angle to the rotation axis so as not to be coaxial with one slip ring 24.
  • the center of gravity of the rotor blade 20 is substantially aligned with the aerodynamic center of each rotor blade 20, and a bearing or pivot is placed at that point.
  • both the aerodynamic load of each rotor blade 20 and the inertial load force due to centrifugal force can be largely retained by the drive arm 22, so that the control arm 26 must be operated with low power. Will be able to.
  • FIG. 9 A calculation result of the operation of the cycloidal propeller as described above is shown together with a graph.
  • the airfoil is NACA-0012, and the relationship between the angle of attack a and the rotation angle ⁇ of Fig. 5 is shown in Fig. 9.
  • the relationship between the angle of attack ct, the lift coefficient CI, and the anti-coefficient Cd is shown in Fig. 10.
  • Figure 11 shows the calculation results of lift and drag when the peripheral speed of a single blade is 25 m / s.
  • the lift for one propulsion unit with seven propulsion blades is calculated for each blade and is shown in Fig. 12 together with the combined values shown as totals in the figure.
  • the resistance of a single wing consists of a wing fluctuation component (23 to 35N) and a constant component (16N) of the supporting rod, and the maximum value of the combined drag of the seven blades was about 360N.
  • Figure 13 shows the lift vs. power characteristics when the rotation speed is changed.
  • the airship-type aerial crane according to the present invention as described above is (1) mountain forest 'transport and transport vehicle at sea' and cargo handling for work vessels. (2) Monitoring illegal dumping of industrial waste. (3) Disaster relief support and communication and monitoring base. (4) Urban security 'surveillance', (5) Lakes 'wilderness' surveillance in wilderness ⁇ Widespread use such as observation and collection work is expected.

Abstract

An airship-type aerial crane capable of inexpensively and safely transporting a cargo by simple operation in a wide range of field including collection of timbers in a mountainous area. The airship-type aerial crane has a body (1) filled with a lifting gas, propellers (2-5) arranged at the front and rear of the left and right of the body (1), and a suspension device (8) rotatably attached to both sides of the body (1), at each support point whose horizontal position is the same as the position of buoyancy of the body. The propellers each have rotating blades rotatably supported at drive arms radially extending from a drive shaft and also have a rotating blade tilt adjustment member capable of adjusting the tilt of the rotating blades in a manner that they are associated with each other. The rotating blade tilt adjustment member has a single slip ring arbitrarily movably provided, a support plate rotating about the slip ring, and control arms each connecting, at its both ends, the support plate and each rotating blade. Movement of the slip ring enables the tilt of the rotating blades to be arbitrarily adjusted to maneuver the body.

Description

明 細 書  Specification
飛行船型空中クレーン  Airship type aerial crane
技術分野  Technical field
[0001] 本発明は、飛行船にクレーンを搭載し、安価で安全に貨物を吊り上げて移送するこ とができるようにした飛行船型空中クレーンに関する。  TECHNICAL FIELD [0001] The present invention relates to an airship type aerial crane in which a crane is mounted on an airship and cargo can be lifted and transported safely at low cost.
背景技術  Background art
[0002] 国土の 7割が山岳の日本では森林保全のために間伐材が発生する力 安価な搬 出手段が無い為や林業若年労働者の不足により搬出困難となっており、山間に放置 され腐敗し地球温暖化を加速するメタンガスの放出源となっている。この間伐材は集 積して液化燃料やガスに変換すれば自動車や工場や家庭用燃料として役立つ。こ のバイオマス燃料は太陽や風のエネルギーと比較しても格段に安価で再生可能なク リーン.エネノレギーである。  [0002] In Japan, where 70% of the country is mountainous, the power to generate thinned wood for forest conservation is lacking due to the lack of inexpensive export methods and the lack of young forestry workers, leaving them in the mountains. It is a source of methane gas that decays and accelerates global warming. If this thinned wood is collected and converted into liquefied fuel or gas, it will be useful as fuel for automobiles, factories and households. This biomass fuel is a clean and renewable energy that is much cheaper and more renewable than solar and wind energy.
[0003] したがって、上記のような森林であっても容易に且つ安価に間伐材等を搬出する手 段が求められている。その手段の一つとしてへリコプタを利用することが考えられるが 、へリコプタは高価であり、搬送料が高くなつて間伐材等の搬出には適していない。し たがって水素ガス等の軽量ガスを用いる飛行船や、空気を加熱して浮力を得る熱気 球の利用が考えられるが、熱気球は燃料を大量消費するため適していなレ、。そのた め飛行船を空中クレーンとして使用することが好ましい。  [0003] Therefore, there is a need for a means for carrying out thinned wood and the like easily and inexpensively even in the above forests. It is conceivable to use a helicopter as one of the means, but the helicopter is expensive and is not suitable for carrying out thinned wood due to the high transportation fee. Therefore, it is conceivable to use airships that use lightweight gas such as hydrogen gas or hot air balloons that obtain buoyancy by heating air, but hot air balloons are not suitable because they consume large amounts of fuel. Therefore, it is preferable to use the airship as an aerial crane.
[0004] 飛行船を空中クレーンとして利用する計画は以前にもあり、その一つとして、ァメリ 力で試作されたへリスタツトは飛行船のガス嚢とへリコプタを結合した構造であり、この 機体は飛行船用に作られたガス嚢に 4機のへリコプタを結合してヘリウムの浮力で自 重を負担し運搬物の重量をへリコプタの揚力で受け持つ方式であった。そのため荷 役運搬中は大きな騒音と振動が発生し、またへリコプタのロータ径が大きいので気嚢 力 離れた片持ち構造となり、この支持構造の剛性不足で試験運転中に破損し開発 が中止された。  [0004] There has been a plan to use an airship as an aerial crane, and one of them is a structure that combines a gas sac of a blimp and a helicopter. In this system, four helicopters were connected to the gas sac made in this way, bearing the weight with helium buoyancy and handling the weight of the transported goods with the lift of the helicopter. As a result, loud noise and vibration occurred during cargo handling, and because the helicopter rotor diameter was large, it became a cantilever structure that separated the air sac force. .
[0005] また、近年、ドイツで 160トンの荷物を一本吊りし、 10, 000km以上、無着陸で輸 送するカーゴリフタ号の開発が計画された。この機体は全長 150m、最大径 70m、ガ ス嚢の排除体積は 40万 m3で総浮力は約 400トンになる。ベルリン郊外に同機 2機が 入れる格納庫の建設が完了したものの以降の開発は資金問題等で進められていな レ、。 [0005] In recent years, the development of the Cargo Lifter has been planned, in which a 160-ton baggage is suspended in Germany and transported without landing for more than 10,000 km. This aircraft is 150m long and has a maximum diameter of 70m. The excluded volume of the sac is 400,000 m 3 and the total buoyancy is about 400 tons. Although the construction of the hangar where two of the Aircraft could be placed in the suburbs of Berlin was completed, the subsequent development has not been promoted due to financial problems.
[0006] なお飛行船にクレーンを搭載し貨物を搬送可能とした技術は特許文献 1に記載さ れている。  [0006] Patent Document 1 discloses a technology that enables a cargo to be carried by mounting a crane on an airship.
特許文献 1 :特開 2004— 249954号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-249954
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 前記のように大規模な飛行船型クレーンの開発が資金問題等で中絶した経験から 、本件発明者等は小型'小規模、地上操縦と自動操縦による飛行船型クレーンの開 発を目指して研究開発を進め、各種の試作を行っている。このような飛行船型クレー ンは「新しい産業機械」ということができ、型式証明を得た航空機の様にどの空域でも 自由に飛行出来る様にするよりは、始めは限られた空間で飛行させ運行コストを押さ えること力考えられる。限られた空間とは、たとえば、通常、航空機の飛行しない空域 で地上高度 150m以下程度であり、この高さ制限内で、空中クレーンの操縦者と少数 の作業者しか居なレ、山林内や海や湖沼上空での飛行を想定してレ、る。  [0007] As described above, from the experience that the development of a large-scale airship crane was aborted due to funding problems, etc., the inventors of the present invention aimed to develop a small-scale, small-scale, groundcraft and autopilot airship crane. Advancing research and development and making various prototypes. Such an airship type crane can be called a “new industrial machine”, and it is initially operated by flying in a limited space rather than allowing it to fly freely in any airspace like an aircraft with a type certificate. It can be thought of as a force to hold down costs. The limited space is, for example, an airspace where airplanes do not fly and an altitude of about 150 m or less, and within this height limit, there are only an aerial crane operator and a small number of workers. Assuming flight over the sea and lakes.
[0008] 今後、小型の飛行船型クレーンが広く社会に受け入れられるようになった時の具体 的用途としては、(1)山林'海上での輸送や運搬車両'作業船のための荷役。 (2)産 業廃棄物の不法投棄監視。 (3)災害時の救難支援および通信と監視基地。 (4)市街 地での警備'監視、(5)湖沼'原野での監視'観測や採取作業、等の広範囲での利 用が期待されるが、特に前記のような山岳地帯での樹木の集材に好適に利用するこ とができる。  [0008] In the future, specific applications when small airship-type cranes are widely accepted by society include (1) mountain forests 'transportation and transport vehicles on the sea' cargo handling work. (2) Monitor illegal dumping of industrial waste. (3) Disaster relief support and communication and monitoring base. It is expected to be used in a wide range of areas such as (4) city guard 'surveillance', (5) lakes 'surveillance in the wilderness' observation and collection work. It can be suitably used for gathering.
[0009] したがって本発明は、山岳地帯での樹木の集材を初めとする広範囲の分野で、安 価で安全に、且つ簡単な操作で貨物の搬送を行うことができるようにした飛行船型空 中クレーンを提供することを主たる目的とする。  [0009] Accordingly, the present invention is an airship-type aircraft that can carry cargo in a wide range of fields, such as gathering trees in mountainous areas, inexpensively, safely, and with simple operations. The main purpose is to provide a medium crane.
課題を解決するための手段  Means for solving the problem
[0010] 本発明に係る飛行船型空中クレーンは、上記課題を解決するため、浮揚ガスを充 填した機体と、機体の左右において各々前後に設けた推進機と、機体の両側におい て機体の浮心と同一垂線上で浮心と水平位置が同位置になる各支点に回動自在に 設けた吊り下げ具とを備え、前記各推進機は、駆動軸から放射状に延びる駆動腕の 端部に回動自在に支持した複数の回転翼と、前記複数の回転翼の傾斜を相互に関 連して調節可能にする回転翼傾斜調節部材とを有し、前記回転翼傾斜調節部材に より回転翼の傾斜を調節して推進方向を可変とし、機体の任意の移動を行うことを特 徴とする。 [0010] In order to solve the above problems, an airship type aerial crane according to the present invention includes an airframe filled with a levitation gas, propulsion devices provided on the left and right sides of the airframe, and on both sides of the airframe. A suspension arm provided rotatably on each fulcrum that has the same vertical position as the floating center on the same vertical line as the floating center of the fuselage, and each propulsion unit has a drive arm that extends radially from the drive shaft. A plurality of rotor blades rotatably supported at the ends of the rotor blades, and a rotor blade inclination adjusting member that makes it possible to adjust the inclination of the rotor blades in relation to each other. It is characterized by adjusting the inclination of the rotor blades to change the propulsion direction and moving the aircraft arbitrarily.
[0011] また本発明に係る他の飛行船型空中クレーンは、前記飛行船型空中クレーンにお いて、前記回転翼傾斜調節部材は、任意に移動可能に設けた 1つのスリップリングと [0011] Further, another airship type aerial crane according to the present invention is the airship type aerial crane, wherein the rotary blade inclination adjusting member is provided with one slip ring that is arbitrarily movable.
、該スリップリングを中心に回動する支持板と、各回転翼と前記支持板とを両端部で 回動自在に各々連結する制御腕とからなり、前記スリップリングの移動により前記複 数の回転翼の傾斜を相互に関連して調節可能にしたことを特徴とする。 A support plate that rotates around the slip ring, and a control arm that rotatably connects each rotor blade and the support plate at both ends, and the plurality of rotations by the movement of the slip ring. The wing inclination can be adjusted in relation to each other.
[0012] また本発明に係る他の飛行船型空中クレーンは、前記飛行船型空中クレーンにお いて、前記回転翼の駆動腕による支持部分は、回転翼の空力中心と重心とを一致さ せた部分とし、回転翼の空力負荷と遠心力による慣性負荷力を駆動腕で受けるよう に構成したことを特徴とする。  [0012] Further, another airship type aerial crane according to the present invention is the airship type aerial crane, wherein the support portion by the driving arm of the rotary wing is a portion in which the aerodynamic center and the center of gravity of the rotary wing coincide with each other It is characterized in that the driving arm receives the aerodynamic load of the rotor blade and the inertial load force due to centrifugal force.
[0013] また本発明に係る他の飛行船型空中クレーンは、前記飛行船型空中クレーンにお いて、前記回転翼の重心を、前記回転翼の駆動腕による支持部分と、前記回転翼傾 斜調節部材の結合部との間に位置するように構成したことを特徴とする。  [0013] Further, another airship type aerial crane according to the present invention is the airship type aerial crane, wherein a center of gravity of the rotor blade is supported by a support portion by a driving arm of the rotor blade, and the rotor blade inclination adjusting member. It is characterized by being configured to be located between the coupling portion.
発明の効果  The invention's effect
[0014] 本発明は上記のように構成したので、山岳地帯での樹木の集材を初めとする広範 囲の分野で、安価で安全に、且つ簡単な操作で貨物の搬送を行うことができるように した飛行船型空中クレーンを提供することができる。  [0014] Since the present invention is configured as described above, cargo can be transported at low cost, safely, and with simple operations in a wide range of fields such as gathering trees in mountainous areas. An airship type aerial crane can be provided.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明による飛行船型空中クレーンの実施例の概要図であり、(a)は側面図、( b)背面図である。  FIG. 1 is a schematic view of an embodiment of an airship type aerial crane according to the present invention, (a) is a side view, and (b) is a rear view.
[図 2]同実施例における機体のピッチ角制御時の作動図である。  FIG. 2 is an operation diagram during pitch angle control of the airframe in the same embodiment.
[図 3]同実施例における機体のョ一角制御時の作動図である。  [Fig. 3] Fig. 3 is an operation diagram at the time of angle control of the airframe in the same embodiment.
[図 4]同実施例における機体の上下動制御時の作動図である。 [図 5]本発明で用いるサイクロイダル'プロペラの作動説明図である。 FIG. 4 is an operation diagram during vertical movement control of the airframe in the same embodiment. FIG. 5 is an operation explanatory view of a cycloidal propeller used in the present invention.
[図 6]同サイクロイダル*プロペラの中心部分の拡大図である。  [Fig. 6] An enlarged view of the central portion of the cycloidal * propeller.
[図 7]同サイクロイダル*プロペラの各種作動態様を示す図である。  FIG. 7 is a view showing various operation modes of the cycloidal * propeller.
[図 8]同サイクロイダル*プロペラの支持構造の説明図である。  FIG. 8 is an explanatory view of a support structure of the cycloidal * propeller.
[図 9]同サイクロイダル*プロペラにおける翼の迎角ひと回転角度 Θの関係を示すダラ フである。  [Fig. 9] Draft showing the relationship between wing attack angle and rotation angle Θ in the cycloidal * propeller.
[図 10]同サイクロイダル*プロペラにおける翼の迎角ひと揚力係数 C1と抗カ係数 Cdの 関係を示すグラフである。  FIG. 10 is a graph showing the relationship between the wing attack angle human lift coefficient C1 and the resistance coefficient Cd in the cycloidal * propeller.
[図 11]同サイクロイダル*プロペラにおいて、単独翼の周速度を 25m/sとした時の揚 力と抗カを計算した結果を示すグラフである。  [Fig. 11] This is a graph showing the results of calculating lift and resistance when the peripheral speed of a single blade is 25 m / s for the same cycloidal * propeller.
[図 12]同サイクロイダル'プロペラにおいて、推進機 1基の推進翼が 7枚の場合の揚 力を翼毎に計算し合成値と共にに示すグラフである。  [Fig. 12] A graph showing the lift of each propeller with seven propulsion blades in the same cycloidal propeller, and the combined values shown.
[図 13]回転数を変えた場合の揚力対動力特性を示すグラフである。  FIG. 13 is a graph showing lift versus power characteristics when the rotational speed is changed.
符号の説明  Explanation of symbols
[0016] 1 機体 [0016] 1 Airframe
2、 3、 4、 5 サイクロイダル'プロペラ  2, 3, 4, 5 cycloidal 'propeller
6 支持アーム  6 Support arm
7 ロッド、  7 rods,
8 吊り下げ具  8 Hanging tool
9 ウィンチ  9 Winch
10 フック  10 hook
11 ロープ  11 rope
12 吊り荷  12 Hanging load
13 補強部材  13 Reinforcing member
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 本発明は、山岳地帯での樹木の集材を初めとする広範囲の分野で、安価で安全に 、且つ簡単な操作で貨物の搬送を行うことができるようにした飛行船型空中クレーン を提供するという課題を、浮揚ガスを充填した機体と、機体の左右において各々前後 に設けた推進機と、機体の両側において機体の浮心と同一垂線上で浮心と水平位 置が同位置になる各支点に回動自在に設けた吊り下げ具とを備え、前記各推進機 は、駆動軸から放射状に延びる駆動腕の端部に回動自在に支持した複数の回転翼 と、前記複数の回転翼の傾斜を相互に関連して調節可能にする回転翼傾斜調節部 材とを有し、前記回転翼傾斜調節部材により回転翼の傾斜を調節して推進方向を可 変とし、機体の任意の移動を行うことにより実現した。 [0017] The present invention provides an airship-type aerial crane capable of carrying cargo in a wide range of fields including tree gathering in mountainous areas at low cost, safely and with simple operation. The issue of providing the front and back of the aircraft filled with levitation gas and the left and right of the aircraft Each propulsion unit provided on the both sides of the fuselage, and a suspension device pivotably provided at each fulcrum where the buoyancy point and the horizontal position are in the same position on the same vertical line as the buoyancy point of the fuselage. The machine includes a plurality of rotor blades rotatably supported on an end of a drive arm extending radially from the drive shaft, and a rotor blade inclination adjusting member that can adjust the inclination of the rotor blades in relation to each other. This is realized by adjusting the inclination of the rotor blade by the rotor blade inclination adjusting member to change the propulsion direction and moving the airframe arbitrarily.
実施例 1  Example 1
[0018] 本発明の実施例を図面に沿って説明する。図 1に示す例においては、充填するへ リウム等の浮揚ガスの浮力を利用するための回転楕円体、もしくは前後端部が円み をおびた円筒体のガス嚢を機体 1としており、その前部左右の下側と後部左右の下 側に各々 1対づっ計 4個の、後述するような水平軸回転翼式全方位推進機(サイクロ イダル.プロペラという) 2、 3、 4、 5を取り付け、当該ガス嚢による機体 1の浮心 Pと同 一垂線上で、浮心 Pと水平位置がほぼ同位置に、機体 1の前後方向に回動して振れ ることのできる支点で支持された支持アーム 6を、機体の左側と右側に取り付け、両 支持アーム 6の下端にロッド 7を固定し、ロッド 7にはロープ等のクレーン用の吊り下げ 具 8を連結している。  Embodiments of the present invention will be described with reference to the drawings. In the example shown in Fig. 1, the airframe 1 is a spheroid for utilizing the buoyancy of levitation gas such as helium to be filled, or a cylindrical gas sac with rounded front and rear ends. Attach four horizontal axis rotary vane omnidirectional propulsion units (referred to as cycloidal propellers) 2, 3, 4, and 5 as described below, one each on the lower left and right sides of the front and lower left and right sides of the rear The gas sac was supported on the same vertical line as the buoyancy center P of the fuselage 1, and the horizontal position of the buoyancy P was almost the same position, and was supported by a fulcrum that can be swung in the longitudinal direction of the fuselage 1. Support arms 6 are attached to the left and right sides of the fuselage, rods 7 are fixed to the lower ends of the support arms 6, and cranes such as ropes 8 are connected to the rods 7.
[0019] この吊り下げ具 8にはウィンチ 9を備え、このウィンチ 9により下端にフック 10を備え たロープ 11を卷き取ることができるようにしている。このような構造により、フック 10に 地上の吊り荷を玉掛けし、地上または空中の一点から他の点へ、前記のようなサイク ロイダル.プロペラを用いた推進機によって姿勢制御をしつつ、任意の地点に移動を させることができる空中飛行船型クレーンとすることができる。なお、機体 1において 大きな力を受ける支持アーム 6の取付部分には、適宜補強部材 13を設ける。  [0019] The hanging tool 8 includes a winch 9, and the winch 9 can scrape the rope 11 having the hook 10 at the lower end. With such a structure, a suspended load on the ground is hung on the hook 10 and the posture is controlled from one point on the ground or in the air to another point by the propeller using the cycloidal propeller as described above. It can be an airborne crane that can be moved to a point. It should be noted that a reinforcing member 13 is appropriately provided at the mounting portion of the support arm 6 that receives a large force in the machine body 1.
[0020] 上記のような空中飛行船型クレーンの飛行制御に際しては、低速で効きの悪い尾 翼等の受動的な制御翼は使用することなぐ図 2〜4に示すようにすベて前記サイク ロイダル ·プロペラで行う。即ち、機体姿勢のピッチ角の制御は図 2に示すように、前 · 後のサイクロイダル'プロペラ 2、 3を互いに反対に上下方向に推力を出すことにより 行う。また機体のョ一角制御は図 3に示すように、左 ·右に配置したサイクロイダル'プ 口ペラを反対方向に推力を出させて行う。なお、ロール角制御は吊り下げ荷物の重 量が拘束となり、不必要なので行わない。また、前後並進移動はすべてのサイクロイ ダル ·プロペラの推力を前または後に向けて行う。更に図 4に示すように、水平姿勢の ままでの上昇'降下は、すべてのサイクロイダル*プロペラの推力を上または下に向け て行う。また、機体 1の各姿勢角の中間方向への推進は、サイクロイダル.プロペラの 推力方向をその方向に向けることにより行うことができる。 [0020] In the flight control of the aerial airship type crane as described above, passive control wings such as tails that are not effective at low speed are not used. As shown in Figs. · Perform with a propeller. That is, as shown in FIG. 2, the pitch angle of the airframe posture is controlled by thrusting the front and rear cycloidal propellers 2 and 3 in the vertical direction opposite to each other. In addition, as shown in Fig. 3, the control of the aircraft is performed by applying thrust in the opposite direction to the cycloidal 'pellers arranged on the left and right sides. The roll angle control is the weight of the suspended baggage. Do not do this because the amount is constrained and unnecessary. In addition, the back-and-forth translation moves the thrust of all cycloidal propellers forward or backward. Furthermore, as shown in Fig. 4, the rise and fall in the horizontal position is performed with the thrust of all cycloidal * propellers directed up or down. In addition, the propulsion of the airframe 1 in the middle direction of each attitude angle can be performed by directing the thrust direction of the cycloidal propeller in that direction.
[0021] 上記のように、飛行船型空中クレーンの駆動方式を 4輪とし、吊り荷の吊り支点を浮 揚ガスの気嚢の浮心 Pとほぼ合致させることにより、空中飛行船型クレーンの飛行運 動機能の中で、飛行安全上最も重要な上昇運動にかかわる、飛行船型空中クレーン の機体姿勢のピッチ角を自由に制御する機能を保持できる。  [0021] As mentioned above, the airship type aerial crane has a four-wheel drive system, and the suspended fulcrum of the suspended load is almost matched with the buoyancy point P of the floating gas air bag. Among the functions, it can maintain the function to freely control the pitch angle of the airframe attitude of the airship type aerial crane, which is involved in the ascending movement that is most important for flight safety.
[0022] 飛行船型空中クレーンの機体本体は加圧膜構造としても、ほぼシェル構造に近ぐ その構造表面内方向でのみ、負荷力を機体変形が最小に保持できるので、クレーン の吊り荷の支点は浮揚ガス気嚢である機体 1の表面の 2点とし、荷重が面内で作用 する様に設置することが好ましい。この 2点を結ぶ仮想線は当該気嚢中に保持された ガスの浮心点の近くを通過させることによって、この仮想線を機体ピッチ角運動の中 心軸にでき、機体の飛行運動に対して、浮力と吊り荷による拘束モーメントが最小と なるようにすることができる。  [0022] Even if the airframe body of the airship type aerial crane has a pressurized membrane structure, it is almost close to the shell structure, and the load force can be kept to the minimum only in the direction of the surface of the structure. It is preferable to set the two points on the surface of the airframe 1, which is a buoyant gas sac, so that the load acts in-plane. An imaginary line connecting these two points passes near the buoyant point of the gas held in the air sac, making this imaginary line the central axis of the aircraft's pitch angle motion. The restraint moment due to buoyancy and suspended loads can be minimized.
[0023] この支点の配置はガス嚢表面の任意の箇所に置くことが出来るが、飛行船型空中 クレーンの飛行運動機能で安全上、最重量な上昇性能を支える機体ピッチ角制御 への、浮力と吊り荷の負荷モーメント力を最小になるように決定することが最も好まし レ、。上昇機能として、飛行船型空中クレーンの機体を水平にしたまま並進運動して上 昇する方法もあるが、この水平姿勢でのまま機体の横方向への並進運動は機体の抗 力がもっとも大きくなり、不利である。したがって、機体の前方から風を受けて進む姿 勢で上昇した方が最小推進パワーで、即ち抗力が最小で、最も速やかに上昇が可 能となり、地面近くでの大気擾乱に遭遇した時の上昇退避が容易となる。  [0023] Although this fulcrum can be placed anywhere on the surface of the gas sac, the flying motion function of the airship type aerial crane is safe and the buoyancy to control the aircraft pitch angle that supports the heaviest climbing performance. It is most preferable to determine the load moment force of the suspended load to be minimized. As an ascent function, there is also a method of ascending and moving the airship type aerial crane with the airframe in a horizontal position, but the lateral movement of the airframe in this horizontal position maximizes the drag of the airframe. , Disadvantageous. Therefore, it is the minimum propulsive power that rises in the posture of receiving the wind from the front of the aircraft, that is, the drag is the smallest, the quickest ascent is possible, and the rise when encountering atmospheric turbulence near the ground Evacuation is easy.
[0024] 上記のような飛行船型空中クレーンに用いるサイクロイダル'プロペラは、例えば図  A cycloidal propeller used for an airship type aerial crane as described above is, for example, illustrated in FIG.
5に示すように回転する断面形状が対称形の 2次元翼からなる回転翼 20を図示の例 では 4枚、その運動軌跡が回転円筒となる面 F上に配置し、回転方向にこれら各回転 翼 20の前縁を向け、すべての回転翼 20を等間隔で回転円筒面 F上に配置する。回 転翼 20は全て、その空力中心付点にピボットもしくは軸受の駆動支持部 21を介して 結合した駆動腕 22を有し、この駆動腕 22によってその中心 Oの駆動軸を、図示され てレ、なレ、モータ等で回転駆動する。 As shown in Fig. 5, four rotating wings 20 consisting of two-dimensional wings with symmetrical cross-sectional shapes are arranged on the surface F where the movement locus becomes a rotating cylinder in the illustrated example, and each of these rotating blades rotates in the rotation direction. All blades 20 are arranged on the rotating cylindrical surface F at equal intervals with the leading edge of the blades 20 facing. Times Each of the blades 20 has a driving arm 22 coupled to its aerodynamic center point via a pivot or bearing drive support 21, and the drive shaft of the center O is shown in the figure by this drive arm 22. It is driven to rotate by a lever or motor.
[0025] 回転翼 20における駆動支持部 21から離れた点に、各回転翼 20の対称軸線 S上に 別のピボットとしての制御支持部 23を各々備え、この制御支持部 23のピボットに対し て制御腕 26の一端部を回動自在に固定している。この制御腕 26の他端部は、図 6 に拡大して示すように、前記回転円筒面 Fの回転中心 Oとは別であって、且つこれら の回転機構と干渉しない位置に配置された 1個のスリップリング 24に対して回動自在 に支持されている支持板 27に、それぞれ回動支点 25において連結している。図示 実施例における回動支点 25は、スリップリング 24の中心 Qに対して放射状に配置し ており、スリップリング 24は図示されない別途の機構によって上下左右に任意に移動 できるようにしている。 [0025] At a point away from the drive support portion 21 of the rotor blade 20, a control support portion 23 as another pivot is provided on the axis of symmetry S of each rotor blade 20, and with respect to the pivot of the control support portion 23, One end of the control arm 26 is rotatably fixed. As shown in an enlarged view in FIG. 6, the other end of the control arm 26 is arranged at a position that is separate from the rotation center O of the rotating cylindrical surface F and does not interfere with these rotating mechanisms. Rotating fulcrums 25 are connected to support plates 27 that are rotatably supported with respect to the individual slip rings 24. The rotation fulcrum 25 in the illustrated embodiment is arranged radially with respect to the center Q of the slip ring 24, and the slip ring 24 can be arbitrarily moved up and down and left and right by a separate mechanism not shown.
[0026] それにより、例えば図 7 (a)に示すように回転翼 20の回転中心 Oとスリップリング 24 中心 Qがー致しているときには中立状態であって、推力は働かない。それに対して同 図(b)のように、この場合はスリップリング 24を上下に動かすと、回転翼 20は駆動腕 2 2によって回転しつつも、制御腕 26の結合点の移動方向線上に対角に位置する 2枚 の回転翼 20のピッチ角を同方向に偏角させることにより、この 1対の回転翼 20で同 方向に推力を発生させることができる。このような力の発生状態を図 5に示している。 なお、このようなサイクロイダル'プロペラに類似する推進機構は、力 て水上船舶分 野で実用化されたことはあるが、未だ航空用に実用化されたことは無ぐ航空用に適 用するためには複雑な制御機構の軽量化が必要となり、本発明者等による研究開発 によって上記のような手法を開発し、実用化にめどをつけることができた。  Accordingly, for example, as shown in FIG. 7 (a), when the rotation center O of the rotary blade 20 and the center Q of the slip ring 24 are aligned, the neutral state is established and the thrust does not work. On the other hand, as shown in FIG. 2B, in this case, when the slip ring 24 is moved up and down, the rotor blade 20 is rotated by the drive arm 22 but is not aligned with the moving direction line of the coupling point of the control arm 26. By deviating the pitch angle of the two rotor blades 20 positioned at the corners in the same direction, thrust can be generated in the same direction by the pair of rotor blades 20. Figure 5 shows how these forces are generated. Such a propulsion mechanism similar to a cycloidal propeller has been put to practical use in the field of surface vessels, but has never been put into practical use for aviation. requires weight reduction of complex control mechanism for, by the research and development by the present inventors developed a method as described above, it could be given a prospect to practical use.
[0027] 上記、サイクロイダル.プロペラにおいては、各回転翼 20の全ての制御腕 26の回転 中心側の結合点を支持する支持板 27を備えているスリップリング 24は、回転翼 20の 回転にかかわらずに、機体上で、上下 ·左右に偏心させて、各回転翼 20の迎角制御 を行うので、スリップリング 24を介して、回転翼の回転を逃げ、上下'左右の制御操作 機構側への回転翼 20の回転運動を免れることができる。  [0027] In the cycloidal propeller described above, the slip ring 24 including the support plate 27 that supports the coupling point on the rotation center side of all the control arms 26 of each rotor blade 20 is used to rotate the rotor blade 20. Regardless, because the angle of attack of each rotor blade 20 is controlled by decentering it vertically and horizontally on the fuselage, the rotation of the rotor blades escapes via the slip ring 24, and the control operation on the left and right You can escape the rotary motion of the rotary blade 20 to.
[0028] 回転翼 20の回転中に隣同士の制御腕 26のなす角度は変化するので、本来はこの スリップリング 24は全ての制御腕に各々必要となる力 \本発明においては図 6の例に 示すように、中心〇の回転駆動軸を逃げるように、この駆動軸と干渉することを避ける ため、駆動軸を内包するように設置したスリップリングを用いる。この図 6に示すように 、 1個のスリップリング 24と同軸にならないように、当該スリップリング 24にこの回転軸 と直角に取り付けられた平板状の支持板 27上に、制御腕の揺動を免れるピボットもし くは軸受を回転翼の数と同じだけ取り付ける。それにより、 1個の当該スリップリング 2 4と結合した当該支持板 27とともに、各々独立したスリップリングの機能に代用する機 構を持つサイクロイダル'プロペラの回転翼の制御機構を実現することができる。 [0028] Since the angle formed by the adjacent control arms 26 changes while the rotor blade 20 rotates, The slip ring 24 is a force required for all control arms. In the present invention, as shown in the example of FIG. 6, in order to avoid interference with this drive shaft so as to escape the center rotational drive shaft, A slip ring installed to contain the drive shaft is used. As shown in FIG. 6, the control arm is swung on a flat support plate 27 attached to the slip ring 24 at a right angle to the rotation axis so as not to be coaxial with one slip ring 24. Install as many pivots or bearings as there are rotor blades. As a result, a control mechanism for the rotor blades of a cycloidal propeller having a mechanism for substituting the function of an independent slip ring together with the support plate 27 coupled to one slip ring 24 can be realized. .
[0029] このような構成を採用することにより、駆動軸と干渉しないようにするために、上下- 左右の偏心距離分だけの内径を必要とし、過大な形状となるスリップリング 24を 1個 ににすることができ、他の複数個のスリップリングをすベて小型化できるため、軽量ィ匕 に資することができる。また、回転駆動軸を大径のパイプ状にして、制御腕結合点を その中に位置し、干渉を排除する構造にしても同様の効果を奏することができる。  [0029] By adopting such a configuration, in order not to interfere with the drive shaft, an inner diameter corresponding to the up / down / left / right eccentric distance is required, and an excessively large slip ring 24 is formed into one. Since all the other plurality of slip rings can be miniaturized, it is possible to contribute to light weight. Further, the same effect can be obtained by adopting a structure in which the rotary drive shaft is formed into a large-diameter pipe and the control arm coupling point is located therein to eliminate interference.
[0030] サイクロイダル*プロペラの回転翼制御の機構において、各回転翼 20の空力中心 に回転翼 20の重心をほぼ一致させて、その点に軸受けもしくはピボットを置き、その 点を駆動腕 22で駆動すれることにより、各回転翼 20の空力負荷と遠心力による慣性 負荷力の両方を駆動腕 22で大部分保持することができるため、制御腕 26を動作さ せるのに小さいパワーで行うことができるようになる。  [0030] In the cycloidal * propeller rotor blade control mechanism, the center of gravity of the rotor blade 20 is substantially aligned with the aerodynamic center of each rotor blade 20, and a bearing or pivot is placed at that point. By being driven, both the aerodynamic load of each rotor blade 20 and the inertial load force due to centrifugal force can be largely retained by the drive arm 22, so that the control arm 26 must be operated with low power. Will be able to.
[0031] しかし、回転翼の回転速度が高くなり、推進機全体の前進速度が大きくなると、回 転翼の偏角制御で大迎角が必要となり、図 8に示すように、回転翼の外周の空気の 流れで、回転翼の後縁が求心方向に押し戻されることになり、制御腕が圧縮力に耐 える必要ができ、制御腕 26の重量が増大する。これを押さえるため、図 8に示すよう に回転翼内の駆動腕の軸受から回転翼後縁方向の適度な位置に回転翼重心を置く ようにし、遠心力を適度に制御腕に作用させて、対気力により回転翼後縁が求心方 向に押し戻されるのを防ぐか、もしくは軽減することより、制御腕 26への圧縮力の負 荷を防止するか軽減し、制御腕 26の重量の軽減化を行うことができる。  [0031] However, when the rotational speed of the rotor blades increases and the forward speed of the entire propulsion device increases, a large angle of attack is required for the deflection angle control of the rotor blades. As shown in FIG. With this air flow, the trailing edge of the rotor blade is pushed back in the centripetal direction, the control arm needs to withstand the compressive force, and the weight of the control arm 26 increases. In order to suppress this, the center of gravity of the rotor blade is placed at an appropriate position in the direction of the trailing edge of the rotor blade from the bearing of the drive arm in the rotor blade as shown in FIG. 8, and centrifugal force is applied to the control arm appropriately. By preventing or reducing the trailing edge of the rotor blade from being pushed back in the centripetal direction due to air force, the load on the control arm 26 is prevented or reduced, thereby reducing the weight of the control arm 26. It can be performed.
[0032] 前記のようなサイクロイダル.プロペラの動作の計算結果をグラフとともに示す。翼型 は NACA-0012とし、前記図 5の単独翼の迎角 aと回転角度 Θの関係は図 9に示すよ うになり、迎角 ctと揚力係数 CIと抗カ係数 Cdの関係は図 10に示すようになる。単独 翼の周速度を 25m/sとした時の揚力と抗カを計算した結果を図 11に示す。推進機 1 基の推進翼が 7枚の場合の揚力を翼毎に計算し、図中合計として示している合成値 と共に図 12に示す。単独翼の抗カは、翼の変動成分 (23〜35N)と支持椀の一定成 分 (16N)からなり、 7枚翼の合成抗力の最大値は約 360Nとなった。また、回転数を 変えた場合の揚力対動力特性を図 13に示す。 [0032] A calculation result of the operation of the cycloidal propeller as described above is shown together with a graph. The airfoil is NACA-0012, and the relationship between the angle of attack a and the rotation angle Θ of Fig. 5 is shown in Fig. 9. The relationship between the angle of attack ct, the lift coefficient CI, and the anti-coefficient Cd is shown in Fig. 10. Figure 11 shows the calculation results of lift and drag when the peripheral speed of a single blade is 25 m / s. The lift for one propulsion unit with seven propulsion blades is calculated for each blade and is shown in Fig. 12 together with the combined values shown as totals in the figure. The resistance of a single wing consists of a wing fluctuation component (23 to 35N) and a constant component (16N) of the supporting rod, and the maximum value of the combined drag of the seven blades was about 360N. Figure 13 shows the lift vs. power characteristics when the rotation speed is changed.
産業上の利用可能性 Industrial applicability
上記のような本発明による飛行船型空中クレーンは、(1)山林'海上での輸送や運 搬車両'作業船のための荷役。 (2)産業廃棄物の不法投棄監視。 (3)災害時の救難 支援および通信と監視基地。 (4)市街地での警備'監視、(5)湖沼'原野での監視 · 観測や採取作業、等の広範囲での利用が期待される。  The airship-type aerial crane according to the present invention as described above is (1) mountain forest 'transport and transport vehicle at sea' and cargo handling for work vessels. (2) Monitoring illegal dumping of industrial waste. (3) Disaster relief support and communication and monitoring base. (4) Urban security 'surveillance', (5) Lakes 'wilderness' surveillance in wilderness · Widespread use such as observation and collection work is expected.

Claims

請求の範囲 The scope of the claims
[1] 浮揚ガスを充填した機体と、  [1] Aircraft filled with levitation gas;
機体の左右において各々前後に設けた推進機と、  Propulsion units installed on the left and right sides of the aircraft,
機体の両側において機体の浮心と同一垂線上で浮心と水平位置が同位置になる 各支点に回動自在に設けた吊り下げ具とを備え、  Suspension tool provided at each fulcrum so as to be pivotable on the same vertical line as the airframe of the airframe on both sides of the airframe.
前記各推進機は、駆動軸から放射状に延びる駆動腕の端部に回動自在に支持し た複数の回転翼と、前記複数の回転翼の傾斜を相互に関連して調節可能にする回 転翼傾斜調節部材とを有し、前記回転翼傾斜調節部材により回転翼の傾斜を調節し て推進方向を可変とし、機体の任意の移動を行うことを特徴とする飛行船型空中タレ ーン。  Each of the propulsion devices includes a plurality of rotary blades rotatably supported at the end of a drive arm that extends radially from the drive shaft, and a rotation that enables the inclination of the plurality of rotary blades to be adjusted in relation to each other. An airship type aerial terrain having a blade inclination adjusting member, wherein the propulsion direction is variable by adjusting the inclination of the rotating blade by the rotating blade inclination adjusting member, and the airframe is arbitrarily moved.
[2] 前記回転翼傾斜調節部材は、任意に移動可能に設けた 1つのスリップリングと、該 スリップリングを中心に回動する支持板と、各回転翼と前記支持板とを両端部で回動 自在に各々連結する制御腕とからなり、前記スリップリングの移動により前記複数の 回転翼の傾斜を相互に関連して調節可能にしたことを特徴とする請求項 1記載の飛 行船型空中クレーン。  [2] The rotary blade inclination adjusting member includes one slip ring that is arbitrarily movable, a support plate that rotates around the slip ring, and each rotary blade and the support plate that rotates at both ends. The flying ship type aerial crane according to claim 1, further comprising control arms that are movably connected to each other, wherein the inclination of the plurality of rotor blades can be adjusted in relation to each other by movement of the slip ring. .
[3] 前記回転翼の駆動腕による支持部分は、回転翼の空力中心と重心とを一致させた 部分とし、回転翼の空力負荷と遠心力による慣性負荷力を駆動腕で受けるように構 成したことを特徴とする請求項 1記載の飛行船型空中クレーン。  [3] The support portion of the rotor blade by the drive arm is a portion where the aerodynamic center of the rotor blade and the center of gravity coincide with each other, and the rotor arm is configured to receive the inertial load force due to the aerodynamic load and centrifugal force of the rotor blade. The airship type aerial crane according to claim 1, wherein
[4] 前記回転翼の重心を、前記回転翼の駆動腕による支持部分と、前記回転翼傾斜 調節部材の結合部との間に位置するように構成したことを特徴とする請求項 1記載の 飛行船型空中クレーン。  [4] The structure according to claim 1, wherein the center of gravity of the rotor blade is configured to be located between a support portion by a drive arm of the rotor blade and a coupling portion of the rotor blade inclination adjusting member. Airship type aerial crane.
PCT/JP2006/324373 2006-05-29 2006-12-06 Airship-type aerial crane WO2007138727A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006147528A JP4628994B2 (en) 2006-05-29 2006-05-29 Airship type aerial crane
JP2006-147528 2006-05-29

Publications (1)

Publication Number Publication Date
WO2007138727A1 true WO2007138727A1 (en) 2007-12-06

Family

ID=38778255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324373 WO2007138727A1 (en) 2006-05-29 2006-12-06 Airship-type aerial crane

Country Status (2)

Country Link
JP (1) JP4628994B2 (en)
WO (1) WO2007138727A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445879B2 (en) * 2010-06-11 2014-03-19 国立大学法人大阪大学 Trochoid drive mechanism
RU2748809C1 (en) * 2020-06-01 2021-05-31 Федеральное государственное образовательное учреждение высшего образования "Санкт-Петербургский университет Государственной противопожарной службы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий" Method for power supply and assembly of facilities in extreme conditions and air mobile unit for implementation thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101682573B1 (en) * 2015-12-04 2016-12-05 한국항공대학교산학협력단 Auxiliary parcel engaging apparatus for unmanned aerial vehicle
WO2019092472A1 (en) * 2017-11-13 2019-05-16 Total Sa Hybrid airship and related assembly and/or maintenance method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310497A (en) * 1991-04-05 1992-11-02 Mitsubishi Heavy Ind Ltd Airship
FR2716674A1 (en) * 1994-02-28 1995-09-01 Electricite De France Slinging for the transport of loads by helicopter.
JP2003212190A (en) * 2002-01-23 2003-07-30 National Institute Of Advanced Industrial & Technology Manned airship
JP2004224147A (en) * 2003-01-22 2004-08-12 National Institute Of Advanced Industrial & Technology Control mechanism for cycloidal propeller
DE102004017620A1 (en) * 2004-04-10 2005-10-27 Karnath, Günther Airship for flying clinic, has large container connected to airship and containing rooms, operating theaters and kitchens, which is detached when transported to desired location

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249954A (en) * 2003-02-21 2004-09-09 Daigo Fukumoto Unit type multiple-purpose airship

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310497A (en) * 1991-04-05 1992-11-02 Mitsubishi Heavy Ind Ltd Airship
FR2716674A1 (en) * 1994-02-28 1995-09-01 Electricite De France Slinging for the transport of loads by helicopter.
JP2003212190A (en) * 2002-01-23 2003-07-30 National Institute Of Advanced Industrial & Technology Manned airship
JP2004224147A (en) * 2003-01-22 2004-08-12 National Institute Of Advanced Industrial & Technology Control mechanism for cycloidal propeller
DE102004017620A1 (en) * 2004-04-10 2005-10-27 Karnath, Günther Airship for flying clinic, has large container connected to airship and containing rooms, operating theaters and kitchens, which is detached when transported to desired location

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445879B2 (en) * 2010-06-11 2014-03-19 国立大学法人大阪大学 Trochoid drive mechanism
RU2748809C1 (en) * 2020-06-01 2021-05-31 Федеральное государственное образовательное учреждение высшего образования "Санкт-Петербургский университет Государственной противопожарной службы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий" Method for power supply and assembly of facilities in extreme conditions and air mobile unit for implementation thereof

Also Published As

Publication number Publication date
JP4628994B2 (en) 2011-02-09
JP2007314095A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
TWI261567B (en) Rapid air quantity generating and wind direction changing device and aircraft having the device mounted on side face of airframe
US10967964B2 (en) Air wheel rotor, a gyro stabilized aircraft and a wind-driven power generator using the air wheel rotor, and a stationary launching device
EP3287358B1 (en) Tethered unmanned aerial vehicle
US10994838B2 (en) Vertical takeoff and landing aircraft
US11142309B2 (en) Convertible airplane with exposable rotors
US4482110A (en) Cyclorotor composite aircraft
US3976265A (en) Semibuoyant composite aircraft
US4695012A (en) Aerial load-lifting system
US20070102571A1 (en) Airship for lifting heavy loads & methods of operation
US6142414A (en) Rotor--aerostat composite aircraft
US11485477B2 (en) Flying apparatus
JP6426165B2 (en) Hybrid VTOL machine
US20110198438A1 (en) Propulsion and steering system for an airship
RU2538737C9 (en) Rotor "air wheel", gyrostabilised aircraft and wind-driven electric plant using rotor "air wheel", surface/deck devices for their start-up
GB2141088A (en) Aerial load-lifting system
US5082205A (en) Semi-buoyant composite aircraft with non-rotating aerostat
US10112707B1 (en) Remotely controlled co-axial rotorcraft for heavy-lift aerial-crane operations
US3856236A (en) Composite aircraft
JP4628994B2 (en) Airship type aerial crane
US2959376A (en) Rocopter and landing control method
CA2693672A1 (en) Propulsion and steering system for an airship
CN101525049B (en) High-speed rotator type helicopter
EP0619792B1 (en) Hybrid aircraft
US7836678B1 (en) Propulsion system
RU2661260C1 (en) Flying vehicle - 2 rg

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06834128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834128

Country of ref document: EP

Kind code of ref document: A1