WO2007138693A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2007138693A1
WO2007138693A1 PCT/JP2006/310881 JP2006310881W WO2007138693A1 WO 2007138693 A1 WO2007138693 A1 WO 2007138693A1 JP 2006310881 W JP2006310881 W JP 2006310881W WO 2007138693 A1 WO2007138693 A1 WO 2007138693A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
film
insulating film
semiconductor device
gate electrode
Prior art date
Application number
PCT/JP2006/310881
Other languages
French (fr)
Japanese (ja)
Inventor
Masaomi Yamaguchi
Yasuyoshi Mishima
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2006/310881 priority Critical patent/WO2007138693A1/en
Priority to JP2008517753A priority patent/JPWO2007138693A1/en
Publication of WO2007138693A1 publication Critical patent/WO2007138693A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Definitions

  • the present invention relates to a semiconductor device in which a threshold voltage (Vth) shift caused by Fermi level pinning, fixed charge, or the like is suppressed, and a manufacturing method thereof.
  • Vth threshold voltage
  • MOS field-effect transistors MOS field-effect transistors
  • MOS field-effect transistors are still being miniaturized, and according to this scaling rule, next-generation MOS field-effect transistors require a thickness of less than In m for the Si02 gate insulating film. It has been.
  • this film thickness region is also the thickness at which the tunnel current starts to flow directly, the leakage current cannot be suppressed, and problems such as an increase in power consumption cannot be avoided. Therefore, by using a material having a high Si02 by remote permittivity, silicon Sani ⁇ terms effective thickness (EOT: Equi Va l en t 0 xide Thickness) a while kept below lnm, earns physical thickness It is necessary to suppress the leakage current.
  • EOT Equi Va l en t 0 xide Thickness
  • oxynitride containing nofnium (Hf) as a main component is a material having a dielectric constant several times to 10 times higher than that of Si02.
  • Hf oxynitride is expected to be applied as a next-generation gate insulating film because of its high dielectric constant (High k).
  • metal gates have the advantage that depletion does not occur and gate resistance can be reduced. It is expected that the gate electrode will be polysilicon (Poly-Si) because it is difficult to control the work function due to its strength and heat resistance. In other words, for the near future, there is an urgent need to research and develop MOSFETs that combine HfSiON films with poly-Si gates.
  • a high-dielectric-constant insulating material as described above is formed by a CVD method, it is usually a pre-deposition process. Then, an SiO (N) film having a thickness of 0.8 nm or less is formed on the Si substrate, and a high-k insulating film is formed thereon. After deposition, post-deposition (PDA) is performed, and then a polysilicon gate electrode film is deposited.
  • PDA post-deposition
  • a first insulating film 102 is formed on a silicon substrate 101 using a high-k material having a first dielectric constant, for example, Hf02.
  • impurities such as aluminum (A1), silicon i), and germanium (Ge) are implanted into a predetermined depth region of the Hf02 insulating film.
  • the activation of the implanted ions is performed by annealing, and a second dielectric film 103 having a second dielectric constant such as Hf AlxOy is generated.
  • a second dielectric constant such as Hf AlxOy
  • a polysilicon film is deposited over the entire surface, and a poly-Si gate electrode 105 and a double gate insulating film 104 are formed by ordinary lithography and etching processes.
  • a gate electrode 105 and the double gate insulating film 104 are formed by ordinary lithography and etching processes.
  • ion implantation is performed to form an extension region 106, a sidewall 107, and then a source and drain region 108 to form a double gate insulating film transistor.
  • the dielectric constant is higher than that of the silicon oxide film, and the element contains elements other than silicon (Si), oxygen (0), and nitrogen (N).
  • a gate insulating film 204 having a k film such as HfAlO or HfSiO force.
  • a gate electrode 205 composed of a first polysilicon film 205a having a large grain size and a second polysilicon film 205b having a small grain size is positioned on the gate insulating film 204. Side surfaces of the gate electrode 205 and the gate insulating film 204 are covered with a sidewall 207, and a source / drain 208 is formed in the silicon substrate 201.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-134753
  • Patent Document 2 JP 2005-251801 A
  • the Vlb of the MOS structure is determined by the difference in work function between the Poly-Si and the Si substrate.
  • PMOS Vlb is around 0.9V
  • NMOS is around -0.9V
  • the difference is about 1.8V. This is the ideal value.
  • Vfb becomes 0.35V in the PMOS, and around 0.7V in the NMOS.
  • the difference in Vl between the PMOS diode and NMOS diode should be about 1.8V, but it will be reduced to about 1.05V due to force piping.
  • the threshold voltage (Vth) shifts between PMOS and NMOS due to the peaking. This increase in threshold voltage is particularly noticeable in PMOS.
  • Piing is a phenomenon that occurs in association with elements such as Si, 0, and Hf.
  • aluminum (A1) is known to bind strongly to oxygen and to react with Si.
  • silicon is contained on a silicon substrate via a gate insulating film (for example, Hf SiAlO (N)) in which A1 is introduced into an Hf-based insulating film such as HfSiO (N).
  • a gate insulating film for example, Hf SiAlO (N)
  • A1 is introduced into an Hf-based insulating film such as HfSiO (N).
  • the pinning phenomenon is suppressed by adopting a structure in which the gate electrode is arranged.
  • the semiconductor device comprises:
  • the gate insulating film is an oxide or oxynitride of three or more metal elements including the first metal, the second metal, and the third metal.
  • the first metal and the second metal are each selected from Hf, Si, Zr, Ta, Ti, Y, and La.
  • the first metal is Si and the second metal is selected from Hf, Zr, Ta, Ti, Y, and La.
  • a method for manufacturing a semiconductor device includes:
  • (c) including a step of depositing a gate electrode film on the third metal film with a material containing silicon.
  • the third metal is separated from the insulating film. Diffusing into the film.
  • the film thickness of the third metal is, for example, in the range of 0.1 nm to 1 Onm.
  • FIG. 1 is a diagram showing a known transistor configuration having a double gate insulating film made of a high-k material.
  • FIG. 2 is a diagram showing a known transistor configuration having an Hf-based gate insulating film and a double Poly-Si gate electrode.
  • FIG. 3 is a diagram for explaining a Fermi level 'piung and a threshold voltage shift caused by this.
  • FIG. 4 is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present invention.
  • FIG. 5 is a manufacturing process diagram of a semiconductor device according to an embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the A1 adhesion treatment according to the embodiment.
  • FIG. 6 (a) is a graph of the AES analysis result of the Al-treated HfSiO (N) film surface
  • FIG. 6 (b) is a diagram.
  • 3 is a graph showing processing time dependency of Al film thickness.
  • FIG. 7 Comparison of the characteristics of the transistor with the A1 treatment with different film thickness compared to the transistor made by the conventional method without the A1 treatment.
  • Fig. 7 (a) shows the CV power of NMOS
  • Fig. 7 (b) shows the PMOS CV curve.
  • FIG. 8 is a graph showing the Al deposition time dependence of the flat band voltage (Vl).
  • MISFET semiconductor device
  • FIG. 4 is a schematic cross-sectional view of a MOSFET as an example of a semiconductor device according to an embodiment of the present invention.
  • the semiconductor device (MOSFET) 1 is formed in a predetermined region defined by element isolation (not shown) of the silicon substrate 11 whose main surface is the (100) plane.
  • the MOS FET 1 includes a gate electrode 15, a source / drain impurity diffusion region (hereinafter simply referred to as “source / drain”) 18 formed on the surface of the silicon substrate 11 with the gate electrode 15 interposed therebetween, and a gate electrode 15. And a gate insulating film 14 located between the silicon substrate 11 and the silicon substrate 11.
  • the gate insulating film 14 is a thin film that includes three or more kinds of metal elements including the first metal, the second metal, and the third metal, and these three or more kinds of metals are oxidized or oxynitrided. is there.
  • the first metal and the second metal are Hf, Si (metal silicon), Zr, Ta, Ti, Y, or La, and the third metal is A1.
  • the first metal is Hf
  • the second metal is Si
  • the gate insulating film 14 is HfSiAlO or HfSiAlON. Side surfaces of the gate insulating film 14 and the gate electrode 15 are covered with sidewalls 17.
  • FIG. 4 is a schematic diagram for explaining the basic configuration of the MOS FET to the last, and a more detailed configuration of the MOSFET 1 will be described later.
  • FIG. 5 is a manufacturing process diagram of MOSFET 1 shown in FIG. In the example of Figure 5, p-type MOSFET
  • an n-type well region 11a is formed in a predetermined region of the silicon (Si) substrate 11 whose main surface is the (100) plane. Then, as a pretreatment, the natural acid on the surface of the Si substrate 1 After removing the oxidized film with dilute hydrofluoric acid and washing with water, an oxide silicon (chemical oxide) film 19 having a thickness of about 1 nm is formed on the surface of the Si substrate 11. This silicon oxide film 19 has a function of stabilizing the interface between the Si substrate 11 and the upper layer, and is called an interface layer.
  • An HfSiON film 12 is formed as a high-k film on the oxide silicon film 19.
  • Deposition conditions are, for example, Hf (N (CH)), SiH (N (CH)), NO gas, and carrier gas
  • an aluminum (A1) film 13 having a thickness of 0.1 nm to Lnm is formed on the surface of the HfSiON film 12.
  • the thickness of the A1 film 13 is more preferably 0.2 nm to 0.4 nm.
  • Deposition conditions include, for example, a gas obtained by publishing a liquid source of A1 (C4H9) 3 with 3 OOsccm of N2 gas at 20 ° C and 50 Pa on the surface of the HfSiON film 12 with a substrate temperature of 600 ° C. Spray. Then, post-deposition annealing (PDA) is performed at 800 ° C for 30 seconds.
  • PDA post-deposition annealing
  • a polysilicon (Poly-Si) layer 15a is deposited on the surface of the A1 film 13 on the HfSiON film 12 at a substrate temperature of 600 ° C. (CVD ) To a thickness of about lOOnm. Due to the heat during deposition of this Poly-Si film 15a, A1 atoms constituting the A1 film 13 diffuse into the HfSiON film 12, and Hf (first metal), Si (second metal), A1 (third metal) An HfSiAlON film that is an oxynitride of 14 force is formed on the interface layer 19.
  • the Poly-Si film 15a, the HfSiAlON film 14, and the oxide silicon film 19 are patterned by an arbitrary method to obtain an 80 m ⁇ 80 m gate electrode 15, A gate structure composed of the HfSiAlON gate insulating film 14 and the oxide silicon interface film 19 is fabricated.
  • a p-type impurity such as boron (B) is implanted to form a source / drain / extension region (simply called “extension”) 16.
  • the surface region force channel region 20 immediately below the gate electrode 15 extending between the extensions 16 is formed. In the example of Fig. 5, it is a p-type channel region.
  • An insulating film such as silicon oxide or silicon nitride is deposited on the entire surface and etched back to leave the sidewalls 17.
  • high-concentration p-type impurities are implanted, activation annealing is performed, and source / drain impurity diffusion regions (simply “ 18) (referred to as source 'drain').
  • source 'drain' source / drain impurity diffusion regions
  • the surface is cleaned and a metal film of nickel (Ni), platinum (Pt) or the like is deposited on the entire surface, and silicided by heat treatment to form silicide 21 on the surfaces of the gate electrode 15 and the source / drain 18.
  • an interlayer insulating film is deposited, a contact plug for energizing the upper layer wiring is formed, and the upper layer wiring is formed to complete the semiconductor device.
  • Silicide 21 is in contact with the bottom of a contact plug (not shown) and serves to lower the electrical resistance of the region.
  • Fig. 6 (a) is a graph of the AES (Auger electron spectroscopy) analysis results on the surface of the HfSiNO film 12 subjected to the A1 adhesion treatment
  • Fig. 6 (b) is a dull showing the treatment time dependence of the film thickness of the A1 film 13. It is fu.
  • the film thickness was measured by spectroscopic ellipso.
  • the leftmost peak is the peak of A1, and the presence of the A1 film 13 is confirmed.
  • Fig. 6 (b) it can be seen that the film value of A1 increases as the A1 treatment time is increased. Therefore, by controlling the A1 processing time, the A1 film 13 can be formed to a desired film thickness. ⁇ 1.
  • A1 film thickness of Onm can be formed.
  • FIG. 7 is a graph comparing the CV measurement results of the MOSFET fabricated according to the embodiment with a conventional HfSiON gate insulating film that does not form the A1 film 13.
  • Figure 7 (a) shows the NMOS CV curve
  • Figure 7 (b) shows the PMOS CV curve.
  • the solid line is the HfSiNO film that does not form A1 (A1 treatment time Osec)
  • the alternate long and short dash line is the CV characteristic when the A1 treatment time is 5 seconds
  • the broken line is the CV characteristic when the A1 treatment time is lOsec
  • the dotted line is This is the CV characteristic when the A1 processing time is 15 seconds.
  • a sample was manufactured under the same conditions as the manufacturing method shown in FIG. 5 except that the A1 treatment time was changed.
  • the sample with A1 for 15 seconds shifts the flat band voltage (Vlb) to the positive side by about 0.1 IV compared to the sample without A1.
  • Vlb flat band voltage
  • PMOS it is shifted to the positive side by about 1.0V.
  • Fig. 8 shows a plot of the results plotted in Fig. 7, with the horizontal axis representing A1 adhesion time and the vertical axis representing Vlb.
  • the “ideal values” for PMOS and NMOS in the figure indicate the position of Vl when the Si02 film is used as the gate insulating film. In other words, this is an ideal Vl in the case where no pining occurs in the gate insulating film and there is also a fixed charge.
  • A1 is attached to the surface of the HfSiO (N) film before depositing the Poly-Si gate. Even if it is placed, Vl hardly changes, but in PMOS, as A1 deposition increases from 0 to 0.3 nm, it linearly changes from 0.35 V to 1. IV.
  • the difference in Fermi level between NMOS and PMOS Poly-Si is about 1.0 V, and when converted to Vl, the difference is equivalent to about 1.8 V.
  • the shift amount (AVl) of Vl from the ideal value is about + 0.2V, while in the case of PMOS, It was about 0.5V. It is in a state of being tractd!
  • the Vl of the PMOS is controlled to an ideal value of 0.9V.
  • Vl of NMOS remains at around -0.7V, and if the force shift amount that remains shifted by about 0.2V is about 0.2V, by changing the channel dose during MOSFET fabrication, Vl Can be controlled to 0.9V, so there is no effect.
  • Fig. 9 shows the XPS analysis results of examining the state of diffusion into the Hf SiON film 12 during the A1 film 13 force MOS structure fabrication process inserted at the interface between the Poly-Si film 15a and the HfSiON film 12. .
  • the progress of the process in the sample starts after the pretreatment (HF treatment + SC2 cleaning) and proceeds in the following order.
  • the deposition conditions for the HfSiON film 12 in step 0 were a substrate temperature of 600 ° C, the deposition time was about 7 minutes + ⁇ , and the deposition of the Poly-Si film 15a in step 3 was 30 after the PDA and before deposition. Minutes, and the deposition time of Poly—Si was about 11 minutes, and about 20 minutes after the deposition. To do.
  • FIG. 9 (b) XPS analysis was performed on the thus prepared sample at incident angles of 45 ° and 15 °.
  • Figure 9 (C) shows how the ratio of the amount of A1 in the surface area to the amount of A1 at the deeper position decreases as the process progresses, that is, the diffusion of A1 proceeds. From the graph of FIG. 9 (C), it can be seen that the diffusion of A1 diffuses into the HfSiON film 12 during the deposition of the Poly-Si film 15a, which does not proceed by post-deposition annealing. After PDA at 800 ° C, it takes 30 minutes before Poly—Si deposition, so the diffusion of A1 is not due to the effects of PDA! / ⁇ .
  • the ratio of the amount of A1 at the 15 ° position to the 45 ° position is approximately 1.0 within one second after the deposition of Poly-Si. This means that A1 diffuses almost uniformly into the HfSiON film 12 and the HfSiAlON film 14 is generated.
  • the HfSiAlON gate insulating film 14 is a force that can be formed by CVD itself. By attaching a very thin A1 thin film only to the surface of the HfSi ON film 12, Si atoms are deposited during the deposition of Poly-Si. The influence of diffusing into the lower insulating film can also be prevented.
  • the power of the present invention described based on specific embodiments is not limited to the above-described embodiments.
  • the interface film 19 that is the base of the HfSiON film 12 is made of Si02, but the same effect can be obtained even if a SiNO film is used.
  • the insulating film to which A1 is attached is not limited to the HfSiON film 12, but instead of Hf, it is made of a material containing one or more elements selected from Hf, Zr, Ta, Ti, and ⁇ . Also good.
  • the metal constituting the oxide or oxynitride may be two or more elements selected from the medium forces of Hf, Zr, Si, Ta, Ti, and Y.
  • the gas used when depositing A1 on the HfSiO (N) film 12 is not limited to A1 (C4H9) 3, and AL (CH3) 3 and Al (C2H5) 3 may be supplied! /.

Abstract

A semiconductor device is provided with a semiconductor substrate (11); a single layer gate electrode (15), which is positioned on the semiconductor substrate and is formed of a material including silicon (Si); and a gate insulating film (14) inserted between the gate electrode and the semiconductor substrate. The gate insulating film is an oxide or an oxynitride of three or more kinds of metal elements including a first metal, a second metal and a third metal.

Description

明 細 書  Specification
半導体デバイスおよびその作製方法  Semiconductor device and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、フェルミ 'レベル 'ピユング(Fermi level pinning)や固定電荷等に起因す るしき!ヽ値電圧 (Vth)のシフトを抑制した半導体デバイスとその作製方法に関する。 背景技術  The present invention relates to a semiconductor device in which a threshold voltage (Vth) shift caused by Fermi level pinning, fixed charge, or the like is suppressed, and a manufacturing method thereof. Background art
[0002] LSIの高速化'集積化は、スケーリング則による MOS型電界効果トランジスタ(MO SFET)の微細化によって進められてきた。微細化に関しては、 Si02絶縁膜の膜厚、 ゲート長など、 MOSFETの各部分で、高さ方向と横方向の寸法を同時に縮小するこ とで、素子の特性を正常に保ち、性能を上げることを可能にしてきた。  [0002] High-speed LSI integration has been advanced by miniaturization of MOS field-effect transistors (MO SFETs) based on a scaling rule. Regarding miniaturization, by simultaneously reducing the height and lateral dimensions of each part of the MOSFET, such as the film thickness of the Si02 insulating film and the gate length, to maintain normal device characteristics and improve performance Has made it possible.
[0003] MOS型電界効果トランジスタは、現在も微細化の一途をたどっており、このスケーリ ング則によると、次世代 MOS型電界効果トランジスタでは、 Si02ゲート絶縁膜で In m以下の膜厚が要求されて 、る。  [0003] MOS field-effect transistors are still being miniaturized, and according to this scaling rule, next-generation MOS field-effect transistors require a thickness of less than In m for the Si02 gate insulating film. It has been.
[0004] しかし、この膜厚領域は、直接トンネル電流が流れ始める厚さでもあるので、リーク 電流の抑制ができず、消費電力の増加等の問題を回避できない。このため、 Si02よ りも誘電率が高い材料を用いて、シリコン酸ィ匕膜換算実効膜厚 (EOT: EquiValent 0 xide Thickness)を lnm以下に抑えつつ、物理膜厚を稼いでリーク電流を抑えること が必要となってくる。 [0004] However, since this film thickness region is also the thickness at which the tunnel current starts to flow directly, the leakage current cannot be suppressed, and problems such as an increase in power consumption cannot be avoided. Therefore, by using a material having a high Si02 by remote permittivity, silicon Sani匕膜terms effective thickness (EOT: Equi Va l en t 0 xide Thickness) a while kept below lnm, earns physical thickness It is necessary to suppress the leakage current.
[0005] 例えばノヽフニゥム (Hf)を主成分にした酸窒化物は、 Si02に比べて、数倍から 10 倍程度の高い誘電率を有する材料である。 Hf酸窒化物は、その高い誘電率 (High k)から、次世代のゲート絶縁膜として適応が期待されている。  [0005] For example, oxynitride containing nofnium (Hf) as a main component is a material having a dielectric constant several times to 10 times higher than that of Si02. Hf oxynitride is expected to be applied as a next-generation gate insulating film because of its high dielectric constant (High k).
[0006] 一方、ゲートにメタルを用いることも検討されて 、る。メタルゲートは空乏化が起こら ない他、ゲート抵抗を低減できるという利点がある。し力し耐熱性に乏しいうえに、仕 事関数の制御が困難であることから、ゲート電極はポリシリコン (Poly— Si)になること が予想されている。すなわち、近未来に向けて、 Poly— Siゲートに HfSiON膜を組 み合わせた MOSFETの研究開発が急務となっている。  [0006] On the other hand, the use of metal for the gate is also being studied. Metal gates have the advantage that depletion does not occur and gate resistance can be reduced. It is expected that the gate electrode will be polysilicon (Poly-Si) because it is difficult to control the work function due to its strength and heat resistance. In other words, for the near future, there is an urgent need to research and develop MOSFETs that combine HfSiON films with poly-Si gates.
[0007] 上述のような高誘電率の絶縁材料を CVD法で成膜する際、通常は、成膜前処理 で Si基板上に膜厚が 0. 8nm以下の SiO (N)膜を形成し、その上に High— k絶縁膜 を成膜する。成膜後にポストデポア-一ル (PDA)を行った後、ポリシリコンゲート電 極膜を堆積する。 [0007] When a high-dielectric-constant insulating material as described above is formed by a CVD method, it is usually a pre-deposition process. Then, an SiO (N) film having a thickness of 0.8 nm or less is formed on the Si substrate, and a high-k insulating film is formed thereon. After deposition, post-deposition (PDA) is performed, and then a polysilicon gate electrode film is deposited.
[0008] High— k絶縁膜の EOTを所望の値に制御する方法として、 High— k絶縁膜の所 定の深さ領域に不純物を注入して、誘電率を制御する方法が提案されている(たとえ ば特許文献 1参照)。  [0008] As a method of controlling the EOT of the high-k insulating film to a desired value, a method of controlling the dielectric constant by injecting impurities into a predetermined depth region of the high-k insulating film has been proposed. (For example, see Patent Document 1).
[0009] この方法では、図 1 (a)に示すようにシリコン基板 101上に第 1の誘電率を有する Hi gh— k材料、たとえば Hf02を用いて、第 1の絶縁膜 102を形成する。次に、図 1 (b) に示すように、 Hf02絶縁膜 102の所定の深さ領域に、アルミニウム (A1) ,シリコン i) ,ゲルマニウム(Ge)などの不純物を注入する。次に、図 1 (c)に示すように、ァニー ルにより注入イオンの活性ィ匕を行 、、 Hf AlxOyなどの第 2の誘電率を有する第 2誘 電体膜 103を生成する。最後に、図 1 (d)に示すように全面にポリシリコン膜を体積し 、通常のリソグラフィおよびエッチング工程により、 Poly— Siゲート電極 105と、二重 ゲート絶縁膜 104を形成する。ゲート電極 105および二重ゲート絶縁膜 104をマスク としてイオン注入を行い、エクステンション領域 106を形成し、サイドウォール 107を 形成後、ソース'ドレイン領域 108を形成して、二重ゲート絶縁膜構造のトランジスタ を完成する。  In this method, as shown in FIG. 1A, a first insulating film 102 is formed on a silicon substrate 101 using a high-k material having a first dielectric constant, for example, Hf02. Next, as shown in FIG. 1B, impurities such as aluminum (A1), silicon i), and germanium (Ge) are implanted into a predetermined depth region of the Hf02 insulating film. Next, as shown in FIG. 1 (c), the activation of the implanted ions is performed by annealing, and a second dielectric film 103 having a second dielectric constant such as Hf AlxOy is generated. Finally, as shown in FIG. 1 (d), a polysilicon film is deposited over the entire surface, and a poly-Si gate electrode 105 and a double gate insulating film 104 are formed by ordinary lithography and etching processes. Using the gate electrode 105 and the double gate insulating film 104 as a mask, ion implantation is performed to form an extension region 106, a sidewall 107, and then a source and drain region 108 to form a double gate insulating film transistor. To complete.
[0010] また、ゲート絶縁膜として Hf系の High— k膜を用いる構造において、ポリシリコンゲ ート電極と Hf系 High— kゲート絶縁膜の界面反応 (不純物の拡散)を防止するため に、ゲート電極を二重にする方法も提案されている (たとえば、特許文献 2参照)。  [0010] Further, in a structure using an Hf-based high-k film as the gate insulating film, in order to prevent an interface reaction (diffusion of impurities) between the polysilicon gate electrode and the Hf-based high-k gate insulating film, There has also been proposed a method of making a double (see, for example, Patent Document 2).
[0011] この方法では、図 2に示すように、シリコン酸ィ匕膜よりも比誘電率が大きぐかつ、シ リコン (Si)、酸素(0)、窒素 (N)以外の元素を含む High— k膜、たとえば HfAlOや HfSiO力も成るゲート絶縁膜 204を用いる。ゲート絶縁膜 204上に、グレインサイズ が大きい第 1のポリシリコン膜 205aと、グレインサイズが小さい第 2のポリシリコン膜 20 5bとで構成されるゲート電極 205が位置する。ゲート電極 205およびゲート絶縁膜 2 04の側面は、サイドウォール 207で覆われ、シリコン基板 201にソース'ドレイン 208 が形成されている。  [0011] In this method, as shown in FIG. 2, the dielectric constant is higher than that of the silicon oxide film, and the element contains elements other than silicon (Si), oxygen (0), and nitrogen (N). — Use a gate insulating film 204 having a k film such as HfAlO or HfSiO force. A gate electrode 205 composed of a first polysilicon film 205a having a large grain size and a second polysilicon film 205b having a small grain size is positioned on the gate insulating film 204. Side surfaces of the gate electrode 205 and the gate insulating film 204 are covered with a sidewall 207, and a source / drain 208 is formed in the silicon substrate 201.
特許文献 1:特開 2004— 134753号公報 特許文献 2 :特開 2005— 251801号公報 Patent Document 1: Japanese Unexamined Patent Application Publication No. 2004-134753 Patent Document 2: JP 2005-251801 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] HfSiO (N)を、ゲート電極であるポリシリコン(Poly— Si)と組み合わせると、その相 互作用により、図 3 (a)〖こ示すように、 n型 Poly— Siと p型 Poly— Siのフェルミレベル 力 ピン止めされたかのようにほぼ同じ位置に引き寄せられる現象が現れる。フェルミ[0012] When HfSiO (N) is combined with polysilicon (Poly-Si), which is the gate electrode, the interaction causes n-type Poly-Si and p-type Poly as shown in Fig. 3 (a). — Fermi level of Si Force Phenomenon appears to be pulled to almost the same position as if pinned. Fermi
'レベル ·ピユングと呼ばれる現象である。 It is a phenomenon called 'level pyung.
[0013] ピユングが発生すると、例えば PMOSダイオードの場合、フラットバンド電圧 (Vl ) が 0. 55 V程度マイナス側にシフトする。 NMOSダイオードでは 0. 2V程度プラス側 にシフトしてしまう。 [0013] When the peaking occurs, for example, in the case of a PMOS diode, the flat band voltage (Vl) shifts to the minus side by about 0.55 V. In the NMOS diode, it shifts to the plus side by about 0.2V.
[0014] 本来、 MOS構造の Vlbは、 Poly— Siと Si基板の仕事関数の差で決まる。一般的に は、 PMOSの Vlbは 0. 9V付近であり、 NMOSでは— 0. 9V付近にあり、その差は 1 . 8V程度である。これが理想値となる。  [0014] Originally, the Vlb of the MOS structure is determined by the difference in work function between the Poly-Si and the Si substrate. In general, PMOS Vlb is around 0.9V, NMOS is around -0.9V, and the difference is about 1.8V. This is the ideal value.
[0015] ところが、ピユングによって PMOSでは Vfbが 0. 35Vになり、 NMOSでは 0. 7V 辺りになる。つまり、本来は PMOSダイオードと NMOSダイオードの Vl の差として 1 . 8V程度あるべきところ力 ピユングによって 1. 05V程度に縮まってしまう。  However, due to the pinning, Vfb becomes 0.35V in the PMOS, and around 0.7V in the NMOS. In other words, the difference in Vl between the PMOS diode and NMOS diode should be about 1.8V, but it will be reduced to about 1.05V due to force piping.
[0016] ピユングに起因して、図 3 (b)および図 3 (c)〖こ示すように、 PMOSと NMOSで、し きい値電圧 (Vth)のシフトが生じる。このしきい値電圧の上昇は、 PMOSで特に顕著 である。  [0016] As shown in FIGS. 3 (b) and 3 (c), the threshold voltage (Vth) shifts between PMOS and NMOS due to the peaking. This increase in threshold voltage is particularly noticeable in PMOS.
[0017] このような現象は、シリコン (Si)を主成分にしたゲート電極に、 Hf系の絶縁膜を用 いたときに限定されて起こることから、 Poly— Siと HfSiO (N)の界面に原因があると 考えられている。最近では、 HfSiO (N)から酸素原子が抜けて、酸素空孔が形成さ れることにピニングの原因があると考えられ、酸素空孔の発生により生成した電子が P ily—Si中に移動し、界面で電子の分布状態が偏ることによって起こるという説が有力 になってきている。また、 Hf— Siの結合がピユングを引き起こすという説もある。バン ドギャップ中に Hf— Siの結合準位が発生し、ピユングを引き起こすという考えである。 いずれの説も決定的な証拠はないが、 Poly— Siと HfSiO (N)の界面に原因があると 考えられる点では一致して!/ヽる。 課題を解決するための手段 [0017] Such a phenomenon occurs only when an Hf-based insulating film is used for the gate electrode mainly composed of silicon (Si), so that it occurs at the interface between Poly-Si and HfSiO (N). It is thought that there is a cause. Recently, oxygen atoms are released from HfSiO (N) and oxygen vacancies are formed, which is considered to cause pinning. Electrons generated by the generation of oxygen vacancies move into Pily-Si. The theory that the distribution of electrons at the interface is biased is becoming more prominent. There is also the theory that the Hf-Si bond causes the pieng. The idea is that Hf-Si bond levels are generated in the band gap, causing pieng. Neither of these theories is definitive proof, but agrees that the cause is thought to be caused by the interface between Poly-Si and HfSiO (N)! Means for solving the problem
[0018] ピユングは、 Si、 0、 Hfなどの元素が関係して起こる現象である。一方、アルミ-ゥ ム (A1)は、酸素と強く結合することが知られているほか、 Siとも反応することが知られ ている。  [0018] Piing is a phenomenon that occurs in association with elements such as Si, 0, and Hf. On the other hand, aluminum (A1) is known to bind strongly to oxygen and to react with Si.
[0019] そこで本発明の一実施形態では、シリコン基板上に、 HfSiO (N)などの Hf系絶縁 膜に A1を導入したゲート絶縁膜 (たとえば Hf SiAlO (N) )を介して、シリコンを含むゲ ート電極を配置する構造とすることで、ピニング現象を抑制する。  Therefore, in one embodiment of the present invention, silicon is contained on a silicon substrate via a gate insulating film (for example, Hf SiAlO (N)) in which A1 is introduced into an Hf-based insulating film such as HfSiO (N). The pinning phenomenon is suppressed by adopting a structure in which the gate electrode is arranged.
[0020] また、 A1の効果がより発揮できるようなゲート電極膜 Zゲート絶縁膜界面の作製方 法を提供する。  [0020] Also provided is a method for producing an interface between the gate electrode film Z and the gate insulating film so that the effect of A1 can be further exerted.
[0021] 具体的には、第 1の側面では、半導体デバイスは、  [0021] Specifically, in the first aspect, the semiconductor device comprises:
(a)半導体基板と、  (a) a semiconductor substrate;
(b)前記半導体基板上に位置し、シリコン (Si)を含む材料で形成される単層のゲート 電極と、  (b) a single-layer gate electrode formed on a material containing silicon (Si), located on the semiconductor substrate;
(c)前記ゲート電極と前記半導体基板の間に挿入されるゲート絶縁膜と  (c) a gate insulating film inserted between the gate electrode and the semiconductor substrate;
を有し、前記ゲート絶縁膜は、第 1の金属、第 2の金属、および第 3の金属を含む 3種 類以上の金属元素の酸ィ匕物または酸窒化物である。  The gate insulating film is an oxide or oxynitride of three or more metal elements including the first metal, the second metal, and the third metal.
ことを特徴とする。  It is characterized by that.
良好な実施では、第 1の金属および第 2の金属は、 Hf、 Si、 Zr、 Ta、 Ti、 Y、 Laの 中からそれぞれ選ばれる。  In good practice, the first metal and the second metal are each selected from Hf, Si, Zr, Ta, Ti, Y, and La.
あるいは、第 1の金属は Siであり、第 2の金属は、 Hf、 Zr、 Ta、 Ti、 Y、 Laの中から 選ばれる。  Alternatively, the first metal is Si and the second metal is selected from Hf, Zr, Ta, Ti, Y, and La.
[0022] 第 2の側面では、半導体デバイスの作製方法は、  [0022] In a second aspect, a method for manufacturing a semiconductor device includes:
(a)半導体基板上に、第 1の金属と第 2の金属を含む 2種類以上の金属元素の酸ィ匕 物または酸窒化物から成る絶縁膜を形成し、  (a) forming an insulating film made of an oxide or oxynitride of two or more metal elements including a first metal and a second metal on a semiconductor substrate;
(b)前記絶縁膜上に、第 3の金属から成る薄膜を形成し、  (b) forming a thin film made of a third metal on the insulating film;
(c)前記第 3の金属膜上に、シリコンを含む材料でゲート電極膜を堆積する 工程を含む。  (c) including a step of depositing a gate electrode film on the third metal film with a material containing silicon.
[0023] 好ま 、例では、前記ゲート電極膜の堆積工程は、前記第 3の金属を、前記絶縁 膜中に拡散させる工程を含む。 [0023] Preferably, in the example, in the step of depositing the gate electrode film, the third metal is separated from the insulating film. Diffusing into the film.
[0024] 前記第 3の金属の膜厚は、たとえば 0. lnm〜l. Onmの範囲である。  [0024] The film thickness of the third metal is, for example, in the range of 0.1 nm to 1 Onm.
効果  Effect
[0025] 上記のような構成および方法により、フェルミ 'レベル 'ピユング等に起因するしきい 値電圧のシフト(上昇)を抑止したトランジスタ構造が実現される。  [0025] With the configuration and method as described above, a transistor structure is realized in which the threshold voltage shift (rise) due to Fermi 'level' peaking or the like is suppressed.
[0026] Hf系のゲート絶縁膜と Poly— Siゲート電極膜の界面において、フェルミ'レベル' ピユングの抑止効果の高い界面形成が可能になる。  [0026] At the interface between the Hf-based gate insulating film and the poly-Si gate electrode film, it is possible to form an interface with a high Fermi 'level' pinning suppression effect.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 l]High—k材料による二重ゲート絶縁膜を有する公知のトランジスタ構成を示す 図である。  [0027] FIG. 1 is a diagram showing a known transistor configuration having a double gate insulating film made of a high-k material.
[図 2]Hf系ゲート絶縁膜と二重 Poly— Siゲート電極を有する公知のトランジスタ構成 を示す図である。  FIG. 2 is a diagram showing a known transistor configuration having an Hf-based gate insulating film and a double Poly-Si gate electrode.
[図 3]フェルミ ·レベル'ピユングとこれに起因するしき 、値電圧シフトを説明するため の図である。  FIG. 3 is a diagram for explaining a Fermi level 'piung and a threshold voltage shift caused by this.
[図 4]本発明の一実施形態の半導体デバイスの概略断面図である。  FIG. 4 is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present invention.
[図 5]本発明の一実施形態に係る半導体デバイスの作製工程図である。  FIG. 5 is a manufacturing process diagram of a semiconductor device according to an embodiment of the present invention.
[図 6]実施形態に係る A1付着処理を説明するための図であり、図 6 (a)は Al処理を施 した HfSiO (N)膜表面の AES分析結果のグラフ、図 6 (b)は Al膜厚の処理時間依 存性を示すグラフである。  FIG. 6 is a diagram for explaining the A1 adhesion treatment according to the embodiment. FIG. 6 (a) is a graph of the AES analysis result of the Al-treated HfSiO (N) film surface, and FIG. 6 (b) is a diagram. 3 is a graph showing processing time dependency of Al film thickness.
[図 7]異なる膜厚で A1処理を施した実施形態のトランジスタの特性を、 A1処理を行わ ない従来方法で作成したトランジスタと比較した図であり、図 7 (a)は NMOSの CV力 ーブを、図 7 (b)は PMOSの CVカーブを示す図である。  [Fig. 7] Comparison of the characteristics of the transistor with the A1 treatment with different film thickness compared to the transistor made by the conventional method without the A1 treatment. Fig. 7 (a) shows the CV power of NMOS Fig. 7 (b) shows the PMOS CV curve.
[図 8]フラットバンド電圧 (Vl )の Al付着時間依存性を示すグラフである。  FIG. 8 is a graph showing the Al deposition time dependence of the flat band voltage (Vl).
[図 9]Poly— Siと HfSiONの界面に付着した A1力 MOS構造作製プロセス中に Hf [Figure 9] Poly-Si and HfSiON interface attached to the interface between the A1 force MOS structure and Hf
SiON膜中に拡散して ヽく過程を調べた XPS分析結果を示す図である。 It is a figure which shows the XPS analysis result which investigated the process which diffuses and spreads in a SiON film.
符号の説明  Explanation of symbols
[0028] 1 MISFET (半導体デバイス) [0028] 1 MISFET (semiconductor device)
11 Si基板 (半導体基板) 12 HfSiON膜 (High— k膜) 11 Si substrate (semiconductor substrate) 12 HfSiON film (High-k film)
13 Al  13 Al
14 HfSiAlO (N)膜 (ゲート絶縁膜)  14 HfSiAlO (N) film (gate insulation film)
15 ゲート電極  15 Gate electrode
16 エクステンション領域  16 Extension area
18 ソース'ドレイン領域  18 Source and drain regions
19 シリコン酸ィ匕膜 (界面層)  19 Silicon oxide film (interface layer)
20 チャネル領域  20 channel region
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、図面を参照して、本発明の良好な実施の形態について説明する。  [0029] Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0030] 図 4は、本発明の一実施形態に係る半導体デバイスの一例としての MOSFETの 概略断面図である。半導体デバイス(MOSFET) 1は、主表面が(100)面であるシリ コン基板 11の素子分離 (不図示)で区画される所定の領域に形成されて!、る。 MOS FET1は、ゲート電極 15と、シリコン基板 11の表面にゲート電極 15を挟んで形成さ れるソース'ドレイン不純物拡散領域 (以下、単に「ソース'ドレイン」と称する) 18と、ゲ ート電極 15とシリコン基板 11の間に位置するゲート絶縁膜 14を有する。  FIG. 4 is a schematic cross-sectional view of a MOSFET as an example of a semiconductor device according to an embodiment of the present invention. The semiconductor device (MOSFET) 1 is formed in a predetermined region defined by element isolation (not shown) of the silicon substrate 11 whose main surface is the (100) plane. The MOS FET 1 includes a gate electrode 15, a source / drain impurity diffusion region (hereinafter simply referred to as “source / drain”) 18 formed on the surface of the silicon substrate 11 with the gate electrode 15 interposed therebetween, and a gate electrode 15. And a gate insulating film 14 located between the silicon substrate 11 and the silicon substrate 11.
[0031] ゲート絶縁膜 14は、第 1の金属、第 2の金属、および第 3の金属を含む 3種類以上 の金属元素を含み、この 3種類以上の金属が酸化、または酸窒化した薄膜である。 第 1の金属と第 2の金属は Hf、 Si (金属シリコン)、 Zr、 Ta、 Ti、 Y、 Laのいずれかで あり、第 3の金属は A1である。図 4の例では、第 1の金属が Hf、第 2の金属が Siである り、ゲート絶縁膜 14は、 HfSiAlOまたは HfSiAlONである。ゲート絶縁膜 14とゲート 電極 15の側面は、サイドウォール 17で覆われている。なお、図 4は、あくまでも MOS FETの基本的な構成を説明するための概略図であり、 MOSFET1のより詳細な構 成は、後述することとする。  [0031] The gate insulating film 14 is a thin film that includes three or more kinds of metal elements including the first metal, the second metal, and the third metal, and these three or more kinds of metals are oxidized or oxynitrided. is there. The first metal and the second metal are Hf, Si (metal silicon), Zr, Ta, Ti, Y, or La, and the third metal is A1. In the example of FIG. 4, the first metal is Hf, the second metal is Si, and the gate insulating film 14 is HfSiAlO or HfSiAlON. Side surfaces of the gate insulating film 14 and the gate electrode 15 are covered with sidewalls 17. Note that FIG. 4 is a schematic diagram for explaining the basic configuration of the MOS FET to the last, and a more detailed configuration of the MOSFET 1 will be described later.
[0032] 図 5は、図 4に示す MOSFET1の作製工程図である。図 5の例では p型 MOSFET  FIG. 5 is a manufacturing process diagram of MOSFET 1 shown in FIG. In the example of Figure 5, p-type MOSFET
(PMOS)の作製を例にとって説明する。  (PMOS) will be described as an example.
図 5 (a)に示すように、主表面が(100)面であるシリコン (Si)基板 11の所定の領域 に n型ゥエル領域 11aを形成する。その後、前処理として、 Si基板 1の表面の自然酸 化膜を希フッ酸で除去し、水洗浄した後、 Si基板 11の表面に厚さ lnm程度の酸ィ匕 シリコン (ケミカルオキサイド)膜 19を形成する。この酸ィ匕シリコン膜 19は、 Si基板 11 と上の層との界面を安定化する機能を有し、界面層と呼ぶ。 As shown in FIG. 5A, an n-type well region 11a is formed in a predetermined region of the silicon (Si) substrate 11 whose main surface is the (100) plane. Then, as a pretreatment, the natural acid on the surface of the Si substrate 1 After removing the oxidized film with dilute hydrofluoric acid and washing with water, an oxide silicon (chemical oxide) film 19 having a thickness of about 1 nm is formed on the surface of the Si substrate 11. This silicon oxide film 19 has a function of stabilizing the interface between the Si substrate 11 and the upper layer, and is called an interface layer.
酸ィ匕シリコン膜 19上に、 High— k膜として、 HfSiON膜 12を形成する。成膜条件 は、たとえば、 Hf (N (CH ) )、 SiH (N (CH ) )、 NOガス、及びキャリアガスである  An HfSiON film 12 is formed as a high-k film on the oxide silicon film 19. Deposition conditions are, for example, Hf (N (CH)), SiH (N (CH)), NO gas, and carrier gas
3 2 4 3 2 3  3 2 4 3 2 3
N2ガスをソースガスとし、基板温度 600°Cで、厚さ約 4nmの(Hf Si ) (0 N )膜  (Hf Si) (0 N) film with N2 gas as source gas, substrate temperature of 600 ° C and thickness of about 4 nm
0.6 0.4 0.9 0.1 0.6 0.4 0.9 0.1
12を、十分酸化した状態で、化学気相堆積 (CVD)により堆積する。なお、 ONガス に変えて酸素ガスを供給して HfSiO膜としてもょ 、。 12 is deposited by chemical vapor deposition (CVD) in a fully oxidized state. Note that oxygen gas is supplied instead of ON gas to form an HfSiO film.
次に、図 5 (b)に示すように、 HfSiON膜 12の表面に、膜厚 0. lnm〜: Lnmのアル ミニゥム (A1)膜 13を形成する。 A1膜 13の膜厚は、より好ましくは、 0. 2nm〜0. 4nm である。成膜条件は、たとえば、 A1 (C4H9) 3の液体原料を、 20°C、 50Paの条件で 3 OOsccmの N2ガスでパブリングしたガスを、基板温度が 600°Cの HfSiON膜 12の表 面に吹き付ける。その後、 800°C、 30秒のポスト'デポ 'ァニール(PDA)を行う。 次に、図 5 (c)に示すように、 HfSiON膜 12上の A1膜 13の表面に、ポリシリコン(Po ly— Si)層 15aを、基板温度 600°Cで、化学気相堆積 (CVD)により厚さ約 lOOnmに 堆積する。この Poly— Si膜 15aの堆積時の熱によって、 A1膜 13を構成する A1原子 が HfSiON膜 12中に拡散し、 Hf (第 1金属)、 Si (第 2金属)、 A1 (第 3金属)の酸窒化 物である HfSiAlON膜 14力 界面層 19上に形成される。  Next, as shown in FIG. 5B, an aluminum (A1) film 13 having a thickness of 0.1 nm to Lnm is formed on the surface of the HfSiON film 12. The thickness of the A1 film 13 is more preferably 0.2 nm to 0.4 nm. Deposition conditions include, for example, a gas obtained by publishing a liquid source of A1 (C4H9) 3 with 3 OOsccm of N2 gas at 20 ° C and 50 Pa on the surface of the HfSiON film 12 with a substrate temperature of 600 ° C. Spray. Then, post-deposition annealing (PDA) is performed at 800 ° C for 30 seconds. Next, as shown in FIG. 5 (c), a polysilicon (Poly-Si) layer 15a is deposited on the surface of the A1 film 13 on the HfSiON film 12 at a substrate temperature of 600 ° C. (CVD ) To a thickness of about lOOnm. Due to the heat during deposition of this Poly-Si film 15a, A1 atoms constituting the A1 film 13 diffuse into the HfSiON film 12, and Hf (first metal), Si (second metal), A1 (third metal) An HfSiAlON film that is an oxynitride of 14 force is formed on the interface layer 19.
次に、図 5 (d)に示すように、 Poly— Si膜 15a、 HfSiAlON膜 14,酸ィ匕シリコン膜 1 9を任意の方法でパターユングして、 80 m X 80 mのゲート電極 15、 HfSiAlON ゲート絶縁膜 14、および酸ィ匕シリコン界面膜 19からなるゲート構造を作製する。ゲー ト電極 15をマスクとして、ボロン(B)などの p型不純物を注入してソース'ドレイン ·エタ ステンション領域(単に「エクステンション」と称する) 16を形成する。エクステンション 1 6の間に延びるゲート電極 15直下の表面領域力 チャネル領域 20となる。図 5の例 では、 p型チャネル領域となる。  Next, as shown in FIG. 5 (d), the Poly-Si film 15a, the HfSiAlON film 14, and the oxide silicon film 19 are patterned by an arbitrary method to obtain an 80 m × 80 m gate electrode 15, A gate structure composed of the HfSiAlON gate insulating film 14 and the oxide silicon interface film 19 is fabricated. Using the gate electrode 15 as a mask, a p-type impurity such as boron (B) is implanted to form a source / drain / extension region (simply called “extension”) 16. The surface region force channel region 20 immediately below the gate electrode 15 extending between the extensions 16 is formed. In the example of Fig. 5, it is a p-type channel region.
全面に酸ィ匕シリコン、窒化シリコンなどの絶縁膜を堆積し、エッチバックしてサイドウ オール 17を残す。サードウォール 17およびゲート電極 15をマスクとして、高濃度の p 型不純物を注入し、活性化ァニールを行い、ソース'ドレイン不純物拡散領域 (単に「 ソース'ドレイン」と称する) 18を形成する。その後、表面を洗浄して全面にニッケル( Ni)、白金 (Pt)等の金属膜を堆積し、熱処理によりシリサイド化して、ゲート電極 15 およびソース'ドレイン 18の表面にシリサイド 21を形成する。その後、図示はしないが 、層間絶縁膜を堆積し、上層配線との導通をはカゝるコンタクトプラグを形成し、上層配 線を形成して半導体デバイスが完成する。シリサイド 21は、コンタクトプラグ (不図示) の底部と接触して 、な 、領域の電気抵抗を下げる役割を果たす。 An insulating film such as silicon oxide or silicon nitride is deposited on the entire surface and etched back to leave the sidewalls 17. Using the third wall 17 and the gate electrode 15 as a mask, high-concentration p-type impurities are implanted, activation annealing is performed, and source / drain impurity diffusion regions (simply “ 18) (referred to as source 'drain'). Thereafter, the surface is cleaned and a metal film of nickel (Ni), platinum (Pt) or the like is deposited on the entire surface, and silicided by heat treatment to form silicide 21 on the surfaces of the gate electrode 15 and the source / drain 18. Thereafter, although not shown in the drawing, an interlayer insulating film is deposited, a contact plug for energizing the upper layer wiring is formed, and the upper layer wiring is formed to complete the semiconductor device. Silicide 21 is in contact with the bottom of a contact plug (not shown) and serves to lower the electrical resistance of the region.
図 6 (a)は、 A1付着処理を施した HfSiNO膜 12表面の AES (Auger electron spectr oscopy)分析結果のグラフ、図 6 (b)は A1膜 13の膜厚の処理時間依存性を示すダラ フである。膜厚は、分光エリプソで測定した。図 6 (a)のグラフで、左端のピークが A1 のピークであり、 A1膜 13の存在が確認される。また、図 6 (b)から、 A1処理時間を長く するにしたがって、 A1の膜値が増えることがわかる。したがって、 A1処理時間を制御 することによって、 A1膜 13を所望の膜厚に形成することができ、 0. Inn!〜 1. Onmの 膜厚の A1膜を形成することができる。  Fig. 6 (a) is a graph of the AES (Auger electron spectroscopy) analysis results on the surface of the HfSiNO film 12 subjected to the A1 adhesion treatment, and Fig. 6 (b) is a dull showing the treatment time dependence of the film thickness of the A1 film 13. It is fu. The film thickness was measured by spectroscopic ellipso. In the graph of FIG. 6 (a), the leftmost peak is the peak of A1, and the presence of the A1 film 13 is confirmed. Also, from Fig. 6 (b), it can be seen that the film value of A1 increases as the A1 treatment time is increased. Therefore, by controlling the A1 processing time, the A1 film 13 can be formed to a desired film thickness. ~ 1. A1 film thickness of Onm can be formed.
図 7は、実施形態にしたがって作製した MOSFETの CV測定結果を、 A1膜 13を形 成しない従来の HfSiONゲート絶縁膜と比較するグラフである。図 7 (a)は NMOSの CVカーブ、図 7 (b)は PMOSの CVカーブである。グラフにおいて、実線は A1を形成 しない HfSiNO膜 (A1処理時間 Osec)、一点鎖線は、 A1処理時間を 5secにしたとき の CV特性、破線は A1処理時間を lOsecにしたときの CV特性、点線は A1処理時間 を 15secにしたときの CV特性である。なお、 A1処理時間を変化させたこと以外は、図 5に示す作製方法と同じ条件で試料を作製した。  FIG. 7 is a graph comparing the CV measurement results of the MOSFET fabricated according to the embodiment with a conventional HfSiON gate insulating film that does not form the A1 film 13. Figure 7 (a) shows the NMOS CV curve, and Figure 7 (b) shows the PMOS CV curve. In the graph, the solid line is the HfSiNO film that does not form A1 (A1 treatment time Osec), the alternate long and short dash line is the CV characteristic when the A1 treatment time is 5 seconds, the broken line is the CV characteristic when the A1 treatment time is lOsec, and the dotted line is This is the CV characteristic when the A1 processing time is 15 seconds. A sample was manufactured under the same conditions as the manufacturing method shown in FIG. 5 except that the A1 treatment time was changed.
NMOSの場合、 A1を付けていない試料に対して、 A1を 15秒付けた試料は、フラッ トバンド電圧 (Vlb)が 0. IV程度正側にシフトする。同様の比較において、 PMOSの 場合は、 1. 0V程度正側にシフトしている。  In the case of NMOS, the sample with A1 for 15 seconds shifts the flat band voltage (Vlb) to the positive side by about 0.1 IV compared to the sample without A1. In the same comparison, in the case of PMOS, it is shifted to the positive side by about 1.0V.
図 8は、図 7の測定結果から、横軸を A1付着時間、縦軸を Vlbとしてプロットしたダラ フである。図中の PMOSと NMOSの「理想値」は、ゲート絶縁膜に Si02膜を用いた 場合の Vl の位置を示す。すなわち、ゲート絶縁膜においてピユングが起こっておら ず、さらに固定電荷も存在して ヽな 、場合の理想的な Vlである。  Fig. 8 shows a plot of the results plotted in Fig. 7, with the horizontal axis representing A1 adhesion time and the vertical axis representing Vlb. The “ideal values” for PMOS and NMOS in the figure indicate the position of Vl when the Si02 film is used as the gate insulating film. In other words, this is an ideal Vl in the case where no pining occurs in the gate insulating film and there is also a fixed charge.
NMOSでは、 Poly— Siゲートを堆積する前の HfSiO (N)膜表面に A1を付着して おいた場合でも、 Vl はほとんど変化がないが、 PMOSでは、 A1の付着量を 0から 0. 3nmまで増やすに従って、 0. 35Vから 1. IV付近まで直線的に変化する。 In NMOS, A1 is attached to the surface of the HfSiO (N) film before depositing the Poly-Si gate. Even if it is placed, Vl hardly changes, but in PMOS, as A1 deposition increases from 0 to 0.3 nm, it linearly changes from 0.35 V to 1. IV.
理想値では、 NMOSと PMOSの Poly— Siにおけるフェルミレベルの差は、約 1. 0 Vであり、 Vl に換算すると、その差は約 1. 8Vに相当する。実験結果では、図 3に示 したように、 NMOSの場合、 A1を付けていない状態では、理想値からの Vlのシフト 量(AVl )は + 0. 2V程度であるのに対し、 PMOSでは— 0. 55V程度であった。ピ ユングして!/、る状態である。  In the ideal value, the difference in Fermi level between NMOS and PMOS Poly-Si is about 1.0 V, and when converted to Vl, the difference is equivalent to about 1.8 V. In the experimental results, as shown in Fig. 3, in the case of NMOS, when A1 is not attached, the shift amount (AVl) of Vl from the ideal value is about + 0.2V, while in the case of PMOS, It was about 0.5V. It is in a state of being puned!
これに対して、 A1を 15秒堆積した試料では、 NMOSの場合、 AVlb= +0. 2V程 度であり、 PMOSは AVlb= +0. 2V程度であった。したがって、 NMOSと PMOS の Vl差は約 1. 8V程度になっており、理想的な Vlbである 1. 8Vに近い。  On the other hand, in the sample in which A1 was deposited for 15 seconds, in the case of NMOS, AVlb = + 0.2V, and in PMOS, AVlb = + 0.2V. Therefore, the Vl difference between NMOS and PMOS is about 1.8V, which is close to the ideal Vlb of 1.8V.
実施例では、 A1付着量を 0. 22nmに設定することで、 PMOSの Vlを理想値であ る 0. 9Vに制御する。一方、 NMOSの Vl は— 0. 7V付近のままであり、 0. 2V程度 シフトしたままである力 シフト量が 0. 2V程度であれば、 MOSFET作製時における チャネルドーズ量を変えることにより、 Vlを 0. 9Vに制御することができるので影響 はない。  In the embodiment, by setting the A1 adhesion amount to 0.22 nm, the Vl of the PMOS is controlled to an ideal value of 0.9V. On the other hand, Vl of NMOS remains at around -0.7V, and if the force shift amount that remains shifted by about 0.2V is about 0.2V, by changing the channel dose during MOSFET fabrication, Vl Can be controlled to 0.9V, so there is no effect.
図 9は、 Poly— Si膜 15aと HfSiON膜 12の界面に挿入される A1膜 13力 MOS構 造作製プロセス中に Hf SiON膜 12中に拡散して ヽく様子を調べた XPS分析結果で ある。図 9 (a)および図 9 (c)に示すように、試料におけるプロセスの進行を、前処理( HF処理 + SC2洗浄)の後から始め、以下の順序で進める。  Fig. 9 shows the XPS analysis results of examining the state of diffusion into the Hf SiON film 12 during the A1 film 13 force MOS structure fabrication process inserted at the interface between the Poly-Si film 15a and the HfSiON film 12. . As shown in FIG. 9 (a) and FIG. 9 (c), the progress of the process in the sample starts after the pretreatment (HF treatment + SC2 cleaning) and proceeds in the following order.
工程 0: Hf SiON膜 12の成膜および A1膜 13の付着 Process 0: Deposition of Hf SiON film 12 and adhesion of A1 film 13
工程 1: 800°C、 30secのポスト ·デポ ·ァニール (PDA) Process 1: 800 ° C, 30sec post-depot annealing (PDA)
工程 2: Poly— Si膜 15の堆積 Process 2: Deposition of Poly—Si film 15
工程 3 : 1050°C、 1秒間の活性化ァニール Process 3: Activation annealing at 1050 ° C for 1 second
工程 4: MOSキャップの形成 Process 4: Formation of MOS cap
なお、工程 0における HfSiON膜 12の成膜条件は基板温度 600°Cで、成膜時間 が約 7分 + α、工程 3における Poly— Si膜 15aの堆積は、 PDAの後、堆積前に 30 分の時間をおき、 Poly— Siの堆積時間を約 11分とし、堆積後に約 20分間の時間を おいた。 する。 The deposition conditions for the HfSiON film 12 in step 0 were a substrate temperature of 600 ° C, the deposition time was about 7 minutes + α, and the deposition of the Poly-Si film 15a in step 3 was 30 after the PDA and before deposition. Minutes, and the deposition time of Poly—Si was about 11 minutes, and about 20 minutes after the deposition. To do.
[0033] このように作製した試料に対して、図 9 (b)に示すように、入射角 45° と 15° で XP S分析を行った。図 9 (C)は、プロセスの進行につれて、深い位置での A1量に対する 表面領域での A1量の比率が減少する様子、すなわち A1の拡散が進む様子を示して いる。図 9 (C)のグラフから、 A1の拡散は、ポスト'デポ 'ァニールで進むのではなぐ Poly— Si膜 15aの堆積時に、 HfSiON膜 12の中に拡散していくことがわかる。 800 °Cでの PDAの後、 Poly— Si堆積前に 30分の時間をおいているので、 A1の拡散は P DAの影響によるものではな!/ヽからである。  [0033] As shown in Fig. 9 (b), XPS analysis was performed on the thus prepared sample at incident angles of 45 ° and 15 °. Figure 9 (C) shows how the ratio of the amount of A1 in the surface area to the amount of A1 at the deeper position decreases as the process progresses, that is, the diffusion of A1 proceeds. From the graph of FIG. 9 (C), it can be seen that the diffusion of A1 diffuses into the HfSiON film 12 during the deposition of the Poly-Si film 15a, which does not proceed by post-deposition annealing. After PDA at 800 ° C, it takes 30 minutes before Poly—Si deposition, so the diffusion of A1 is not due to the effects of PDA! / ヽ.
[0034] また、 Poly— Si堆積後、 1秒の間に、 45° の位置に対する 15° の位置での A1量 の比が、ほぼ 1. 0になっている。これは、 A1が HfSiON膜 12中にほぼ均一に拡散し 、 HfSiAlON膜 14が生成されたことを意味する。  [0034] In addition, the ratio of the amount of A1 at the 15 ° position to the 45 ° position is approximately 1.0 within one second after the deposition of Poly-Si. This means that A1 diffuses almost uniformly into the HfSiON film 12 and the HfSiAlON film 14 is generated.
[0035] このように作製された HfSiAlONゲート絶縁膜 14を有する MOSFET力 フェルミ' レベル 'ピユングを効果的に抑止できることは、図 8のグラフに示すとおりである。  As shown in the graph of FIG. 8, it is possible to effectively suppress the MOSFET force Fermi “level” peaking having the HfSiAlON gate insulating film 14 thus fabricated.
[0036] HfSiAlONゲート絶縁膜 14は、それ自体を CVDで形成することもできる力 HfSi ON膜 12の表面のみに、ごく薄い A1の薄膜を付けることで、 Poly— Si堆積中に、 Si 原子が下層の絶縁膜に拡散する影響も防止することができる。  [0036] The HfSiAlON gate insulating film 14 is a force that can be formed by CVD itself. By attaching a very thin A1 thin film only to the surface of the HfSi ON film 12, Si atoms are deposited during the deposition of Poly-Si. The influence of diffusing into the lower insulating film can also be prevented.
[0037] 以上、本発明を特定の実施例に基づいて説明した力 本発明は上記のような実施 例に限定されるわけではない。たとえば実施形態では、 HfSiON膜 12の下地となる 界面膜 19を、 Si02で構成したが、 SiNO膜を用いても同様の効果が得られる。また、 A1が付着される絶縁膜は HfSiON膜 12に限定されず、 Hfに代えて、 Hf、 Zr、 Ta、 T i、 Υの中から選ばれる 1種類以上の元素を含む材料で形成してもよい。また、酸ィ匕物 または酸窒化物を構成する金属は、 Hf、 Zr、 Si、 Ta、 Ti、 Yの中力 選ばれる 2以上 の元素であってもよい。  [0037] As described above, the power of the present invention described based on specific embodiments The present invention is not limited to the above-described embodiments. For example, in the embodiment, the interface film 19 that is the base of the HfSiON film 12 is made of Si02, but the same effect can be obtained even if a SiNO film is used. In addition, the insulating film to which A1 is attached is not limited to the HfSiON film 12, but instead of Hf, it is made of a material containing one or more elements selected from Hf, Zr, Ta, Ti, and Υ. Also good. Further, the metal constituting the oxide or oxynitride may be two or more elements selected from the medium forces of Hf, Zr, Si, Ta, Ti, and Y.
[0038] また、 HfSiO (N)膜 12上に A1を付着する際に用いるガスは、 A1 (C4H9)3に限らず 、 AL (CH3) 3、 Al (C2H5) 3を供給してもよ!/、。  [0038] The gas used when depositing A1 on the HfSiO (N) film 12 is not limited to A1 (C4H9) 3, and AL (CH3) 3 and Al (C2H5) 3 may be supplied! /.

Claims

請求の範囲 The scope of the claims
[1] 半導体基板と、  [1] a semiconductor substrate;
前記半導体基板上に位置し、シリコン(Si)を含む材料で形成される単層のゲート 電極と、  A single-layer gate electrode formed on a material including silicon (Si), located on the semiconductor substrate;
前記ゲート電極と前記半導体基板の間に挿入されるゲート絶縁膜と  A gate insulating film inserted between the gate electrode and the semiconductor substrate;
を有し、前記ゲート絶縁膜は、第 1の金属、第 2の金属、および第 3の金属を含む 3種 類以上の金属元素の酸化物または酸窒化物である  And the gate insulating film is an oxide or oxynitride of three or more metal elements including the first metal, the second metal, and the third metal
ことを特徴とする半導体デバイス。  A semiconductor device characterized by that.
[2] 前記第 1の金属および第 2の金属は、 Hf、 Si、 Zr、 Ta、 Ti、 Y、 Laの中からそれぞ れ選ばれることを特徴とする請求項 1に記載の半導体デバイス。 [2] The semiconductor device according to [1], wherein the first metal and the second metal are each selected from Hf, Si, Zr, Ta, Ti, Y, and La.
[3] 前記第 1の金属は Siであり、 [3] The first metal is Si,
前記第 2の金属は、 Hf、 Zr、 Ta、 Ti、 Y、 Laの中力 選ばれる  The second metal is selected from Hf, Zr, Ta, Ti, Y, and La
ことを特徴とする請求項 1に記載の半導体デバイス。  The semiconductor device according to claim 1, wherein:
[4] 前記第 3の金属は A1であることを特徴とする請求項 1〜3のいずれかに記載の半導 体デバイス。 [4] The semiconductor device according to any one of [1] to [3], wherein the third metal is A1.
[5] 前記半導体基板と、前記ゲート絶縁膜との間に位置する界面層  [5] An interface layer located between the semiconductor substrate and the gate insulating film
をさらに有することを特徴とする請求項 1に記載の半導体デバイス。  The semiconductor device according to claim 1, further comprising:
[6] 前記ゲート絶縁膜は、 HfSiAlOまたは HfSiAlONである [6] The gate insulating film is HfSiAlO or HfSiAlON
ことを特徴とする請求項 1に記載の半導体デバイス。  The semiconductor device according to claim 1, wherein:
[7] 半導体基板上に、第 1の金属と第 2の金属を含む 2種類以上の金属元素の酸化物 または酸窒化物から成る絶縁膜を形成し、 [7] An insulating film made of an oxide or oxynitride of two or more kinds of metal elements including the first metal and the second metal is formed on the semiconductor substrate,
前記絶縁膜上に、第 3の金属から成る薄膜を形成し、  Forming a thin film made of a third metal on the insulating film;
前記第 3の金属膜上に、シリコンを含む材料でゲート電極膜を堆積する 工程を含むことを特徴とする半導体デバイスの作製方法。  A method for manufacturing a semiconductor device, comprising: depositing a gate electrode film with a material containing silicon on the third metal film.
[8] 前記ゲート電極膜の堆積工程は、前記第 3の金属を前記絶縁膜中に拡散させるェ 程を含むことを特徴とする請求項 7に記載の半導体デバイスの作製方法。 8. The method for manufacturing a semiconductor device according to claim 7, wherein the step of depositing the gate electrode film includes a step of diffusing the third metal into the insulating film.
[9] 前記第 3の金属の膜厚は、 0. lnm〜: L Onmの範囲である [9] The film thickness of the third metal is in the range of 0.1 nm to L Onm.
ことを特徴とする請求項 7に記載の半導体デバイスの作製方法。 The method for manufacturing a semiconductor device according to claim 7.
[10] 前記第 3の金属は、 A1であることを特徴とする請求項 7に記載の半導体デバイスの 作製方法。 [10] The method for manufacturing a semiconductor device according to [7], wherein the third metal is A1.
[11] 前記ゲート電極膜の堆積工程により、前記第 1の金属、第 2の金属、第 3の金属を 含む 3種類以上の金属の酸ィヒ物または酸窒化物から成るゲート絶縁膜が生成される ことを特徴とする請求項 7に記載の半導体デバイスの作製方法。  [11] The gate electrode film deposition step generates a gate insulating film made of an oxynitride or oxynitride of three or more metals including the first metal, the second metal, and the third metal. The method for manufacturing a semiconductor device according to claim 7, wherein:
[12] 前記第 3の金属膜の形成工程は、原料ガスとして、 A1(C4H9)3、 A1(C2H5)3、 A1(C H)3のうち、少なくとも一つを用いることを特徴とする請求項 7に記載の半導体デバイ スの作製方法。  [12] The step of forming the third metal film uses at least one of A1 (C4H9) 3, A1 (C2H5) 3, and A1 (CH) 3 as a source gas. 8. A method for manufacturing a semiconductor device according to 7.
PCT/JP2006/310881 2006-05-31 2006-05-31 Semiconductor device and method for manufacturing same WO2007138693A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/310881 WO2007138693A1 (en) 2006-05-31 2006-05-31 Semiconductor device and method for manufacturing same
JP2008517753A JPWO2007138693A1 (en) 2006-05-31 2006-05-31 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/310881 WO2007138693A1 (en) 2006-05-31 2006-05-31 Semiconductor device and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2007138693A1 true WO2007138693A1 (en) 2007-12-06

Family

ID=38778222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310881 WO2007138693A1 (en) 2006-05-31 2006-05-31 Semiconductor device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2007138693A1 (en)
WO (1) WO2007138693A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045210A (en) * 2008-08-13 2010-02-25 Renesas Technology Corp Method of manufacturing semiconductor device and semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158498A (en) * 2002-11-01 2004-06-03 Toshiba Corp Semiconductor device
JP2005079309A (en) * 2003-08-29 2005-03-24 Semiconductor Leading Edge Technologies Inc Semiconductor device and method for manufacturing the same
JP2005217409A (en) * 2004-01-29 2005-08-11 Samsung Electronics Co Ltd Multilayer dielectric structure of semiconductor device, semiconductor, and method of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661165A (en) * 1979-10-24 1981-05-26 Fujitsu Ltd Control of threshold voltage of transistor
JP2003204058A (en) * 2002-01-10 2003-07-18 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
CN100565916C (en) * 2002-07-16 2009-12-02 日本电气株式会社 Semiconductor device and manufacture method thereof
JP2006086511A (en) * 2004-08-17 2006-03-30 Nec Electronics Corp Semiconductor device
JP4938262B2 (en) * 2004-08-25 2012-05-23 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US7242055B2 (en) * 2004-11-15 2007-07-10 International Business Machines Corporation Nitrogen-containing field effect transistor gate stack containing a threshold voltage control layer formed via deposition of a metal oxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158498A (en) * 2002-11-01 2004-06-03 Toshiba Corp Semiconductor device
JP2005079309A (en) * 2003-08-29 2005-03-24 Semiconductor Leading Edge Technologies Inc Semiconductor device and method for manufacturing the same
JP2005217409A (en) * 2004-01-29 2005-08-11 Samsung Electronics Co Ltd Multilayer dielectric structure of semiconductor device, semiconductor, and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045210A (en) * 2008-08-13 2010-02-25 Renesas Technology Corp Method of manufacturing semiconductor device and semiconductor device
TWI456697B (en) * 2008-08-13 2014-10-11 Renesas Electronics Corp Method of manufacturing semiconductor device and semiconductor device

Also Published As

Publication number Publication date
JPWO2007138693A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP4938262B2 (en) Semiconductor device and manufacturing method thereof
JP5442332B2 (en) Semiconductor device and manufacturing method thereof
US7432216B2 (en) Semiconductor device and manufacturing method thereof
JP4860183B2 (en) Semiconductor device and manufacturing method thereof
US7495298B2 (en) Insulating buffer film and high dielectric constant semiconductor device and method for fabricating the same
US20090057787A1 (en) Semiconductor device
US20110193181A1 (en) Semiconductor device having different metal gate structures
JP5336814B2 (en) Semiconductor device and manufacturing method thereof
US7511338B2 (en) Semiconductor device and manufacturing method of the same
US9196475B2 (en) Methods for fabricating integrated circuits including fluorine incorporation
JP2008311464A (en) Semiconductor device and its manufacturing method
US20120299113A1 (en) Semiconductor device and method for fabricating the same
WO2011021316A1 (en) Semiconductor device and method for manufacturing same
US7947547B2 (en) Method for manufacturing a semiconductor device
US7943500B2 (en) Semiconductor device and method of manufacturing the same
WO2005074037A1 (en) Method for manufacturing semiconductor device
KR100843223B1 (en) Semiconductor device having different gate structures according to its channel type and method for manufacturing the same
EP2294609A1 (en) Interfacial layer regrowth control in high-k gate structure for field effect transistor
KR100729367B1 (en) Semiconductor device and methods of fabricating the same
KR100712523B1 (en) Semiconductor device having different gate dielectric layers and method for manufacturing the same
WO2007138693A1 (en) Semiconductor device and method for manufacturing same
JP2010123669A (en) Semiconductor device and method of manufacturing same
KR100655658B1 (en) Gate electrode structure and method of manufacturing the gate electrode structure, and semiconductor transistor having the gate electrode structure and method of manufacturing the semiconductor transistor
KR20060101347A (en) Semiconductor device with gate insulation layer and manufacturing method therof
WO2008041275A1 (en) Semiconductor device and process for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06756814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008517753

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756814

Country of ref document: EP

Kind code of ref document: A1