WO2007136043A1 - Planar antenna member and plasma processing deice using same - Google Patents

Planar antenna member and plasma processing deice using same Download PDF

Info

Publication number
WO2007136043A1
WO2007136043A1 PCT/JP2007/060389 JP2007060389W WO2007136043A1 WO 2007136043 A1 WO2007136043 A1 WO 2007136043A1 JP 2007060389 W JP2007060389 W JP 2007060389W WO 2007136043 A1 WO2007136043 A1 WO 2007136043A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
plate
pairs
planar antenna
microwave
Prior art date
Application number
PCT/JP2007/060389
Other languages
French (fr)
Japanese (ja)
Inventor
Caizhong Tian
Kinya Ota
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2007136043A1 publication Critical patent/WO2007136043A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0012Radial guide fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor
    • H01Q1/366Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor using an ionized gas

Definitions

  • the present invention relates to a plasma processing apparatus used when processing is performed by applying plasma generated by a microwave or high frequency to a semiconductor wafer or the like, and a planar antenna member used therefor.
  • a plasma processing apparatus is used for processes such as film formation, etching, and ashing in the manufacturing process of semiconductor products.
  • a plasma can be stably formed even in a high vacuum state where the pressure is relatively low, from about 0.1 lmTorr (13.3 mPa) to several lOmTorr (several Pa).
  • a plasma processing apparatus for generating is used.
  • FIG. 7 is a schematic configuration diagram showing a conventional general plasma processing apparatus using microwaves.
  • the plasma processing apparatus 2 includes a processing container 4 that can be evacuated, and a mounting table 6 that is provided in the processing container 4 and on which a semiconductor wafer W is mounted.
  • a ceiling plate 8 made of a disk-shaped aluminum nitride, quartz, or the like that transmits microwaves is provided in an airtight manner on the ceiling facing the substrate.
  • a gas nozzle 9 for introducing a predetermined gas into the container is provided on the side wall of the processing container 4.
  • a disk-shaped planar antenna member 10 having a thickness of about several millimeters on the top surface of the top plate 8, and an example for reducing the wavelength of the microwave in the radial direction of the planar antenna member 10 is dielectric.
  • Slow wave material 12 consisting of body is installed.
  • the planar antenna member 10 is formed with a large number of microwave radiation holes 14 made of, for example, long groove-like through holes.
  • the microphone mouth wave radiation holes 14 are generally arranged concentrically or spirally.
  • the central conductor 18 of the coaxial waveguide 16 is formed at the center of the planar antenna member 10. For example, a microwave of 2.45 GHz generated from the microwave generator 20 is converted into a predetermined vibration mode by the mode converter 22 and then guided.
  • microwaves are emitted from the microwave radiation holes 14 provided in the planar antenna member 10, and transmitted through the top plate 8, Microwave is introduced into the lower processing container 4.
  • plasma is generated in the processing space S in the processing container 4 by the microwave, and the semiconductor wafer W is subjected to predetermined plasma processing such as etching and film formation.
  • Patent Document 1 Japanese Patent Laid-Open No. 3-191073
  • Patent Document 2 JP-A-5-343334
  • Patent Document 3 Japanese Patent Laid-Open No. 9-181052
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-332326
  • the plasma be set up uniformly in the in-plane direction of the processing space S.
  • a large number of microwave radiation holes 14 are provided relatively uniformly on both the center side and the peripheral side of the planar antenna member 10, and the microwave radiation holes 14 provided in this way are provided in a relatively uniform manner. The microwaves are emitted toward the processing space S below.
  • the pitch of the microwave radiation holes 14 in the radial direction of the planar antenna member 10 is set to a value that allows microwaves propagating here to interfere with each other and efficiently radiate.
  • planar antenna member 10 when the microwave propagates the central conductor 18 side force in the radial direction of the planar antenna member 10, the planar antenna member 10 and A standing wave may occur in the slow wave material 12. For this reason, the strength of the electric field distribution of the microwave becomes fixed, and the electric field distribution of the microwave in the processing space S becomes non-uniform.
  • An object of the present invention is to provide a planar antenna in which the plasma density is made uniform by rotating the electric field radiated from the microwave radiation hole in the circumferential direction of the planar antenna member.
  • An object is to provide a member and a plasma processing apparatus using the same.
  • the present invention includes an antenna plate made of a conductive metal plate having a center, and is used for two long-groove microwave radiations that are directed in directions different from each other and close to each other.
  • a plurality of slot pairs each including a slot are provided, and the plurality of slot pairs are arranged in multiple rows along a plurality of concentric circles on the antenna plate, and the number of slot pairs located in the innermost row is within eight or less. It is a planar antenna member characterized by becoming.
  • a plurality of sets of slot pairs are concentrically arranged, and the slot pair located at the innermost circumference is within eight sets, so that the electric field radiated from the microwave radiation hole can be reduced.
  • the plasma density can be made uniform by rotating in the circumferential direction of the planar antenna member.
  • the present invention is characterized in that the slot pair located on the innermost periphery is spaced from the center side of the antenna plate by a wavelength of microwaves (one wavelength) propagating therethrough. It is a planar antenna member.
  • the distance between the concentric circles in which the slot pairs are arranged in the radial direction of the antenna plate is set to a length longer than ⁇ 2 of the wavelength of the microwaves propagating thereto.
  • the present invention provides the planar antenna member, wherein the slot has a width of 6 mm or more.
  • the present invention is characterized in that, among the slot pairs arranged concentrically, the number of pairs of slot pairs arranged in the outermost row is set within a range of 18 to 36 sets. It is a planar antenna member.
  • the present invention is the planar antenna member characterized in that the frequency of the microwave is 2.45 GHz.
  • the present invention provides a processing container having an opening in the ceiling so that the inside can be evacuated, a mounting table provided in the processing container for mounting an object to be processed, A top plate made of a dielectric material hermetically attached to the opening and transmitting electromagnetic waves, a planar antenna member provided on the top surface of the top plate, a microwave supply means connected to the planar antenna member, Gas introduction means for introducing a predetermined gas into the processing container, and the planar antenna member includes an antenna plate having a center and made of a conductive metal plate, and is connected to the antenna plate.
  • a plurality of slot pairs each having two long groove-shaped slots for microwave radiation that are directed in different directions and are close to each other are provided, and the plurality of slot pairs are provided on the antenna plate along a plurality of concentric circles.
  • the plasma processing apparatus is characterized in that it is arranged in multiple rows and the slot pairs located in the innermost row are within 8 pairs.
  • the present invention is characterized in that the slot pair located on the innermost circumference is spaced from the center side of the antenna plate by a wavelength of microwaves (one wavelength) propagating therethrough. It is a plasma processing apparatus.
  • the distance between the concentric circles in which the slot pairs are arranged in the radial direction of the antenna plate is set to a length larger than ⁇ 2 of the wavelength of the microwaves propagating thereto. Is a plasma processing apparatus.
  • the present invention is the plasma processing apparatus, wherein the slot has a width of 6 mm or more.
  • the present invention is characterized in that, among the slot pairs arranged concentrically, the number of pairs of slot pairs arranged in the outermost row is set within a range of 18 to 36 sets.
  • This is a plasma processing device.
  • the present invention is the plasma processing apparatus, wherein the microwave frequency is 2.45 GHz.
  • a plurality of pairs of slots are concentrically arranged, and the slot pair located on the innermost circumference is within eight pairs. Since it did in this way, the electric field radiated
  • FIG. 1 is a configuration diagram showing a plasma processing apparatus according to the present invention.
  • FIG. 2 is a plan view showing a planar antenna member.
  • FIG. 3 is an enlarged plan view for explaining a distance related to the slot of the planar antenna member.
  • FIG. 4 is a plan view showing another example of the arrangement of slot pairs.
  • Figure 5 shows the number of innermost slot pairs of 8 when the microwave frequency is 2.45 GHz. It is a figure for demonstrating that electric field distribution rotates when it sets below.
  • FIGS. 6 (A), 6 (B), and 6 (C) are photographs showing the electric field distribution by simulation of the antenna plate of the planar antenna member of the device of the present invention.
  • FIG. 7 is a schematic configuration diagram showing a conventional general plasma processing apparatus using a microwave.
  • FIG. 1 is a block diagram showing a plasma processing apparatus according to the present invention
  • FIG. 2 is a plan view showing a planar antenna member
  • FIG. 3 is an enlarged plan view for explaining a distance related to a slot of the planar antenna member.
  • a plasma etching process is performed as a plasma process will be described as an example.
  • a plasma processing apparatus 32 that performs an etching process using plasma includes, for example, a processing container 34 that is formed of a conductor such as aluminum on the side wall and the bottom and is formed into a cylindrical shape as a whole. ing.
  • the inside of the processing vessel 34 is a sealed processing space S, and plasma is formed in the processing space S.
  • This processing vessel 34 itself is grounded.
  • a mounting table 36 on which, for example, a semiconductor wafer W as a target object is mounted is accommodated on the upper surface.
  • the mounting table 36 is formed in a substantially disc shape made flat by a ceramic such as alumina, and is erected from the bottom of the container via a column 38 made of, for example, aluminum.
  • a gate valve 40 that opens and closes when a wafer is loaded into and unloaded from the inside of the processing vessel 34 is provided on the side wall of the processing vessel 34.
  • an exhaust port 42 is provided at the bottom of the container, and this exhaust port 42 is connected to an exhaust path 48 to which a pressure control valve 44 and a vacuum pump 46 are sequentially connected.
  • a pressure control valve 44 and a vacuum pump 46 are sequentially connected.
  • the mounting table 36 there are provided a plurality of, for example, three lifting pins 50 (only two are shown in FIG. 1) for lifting and lowering the wafer W when it is loaded and unloaded. Elevating The pin 50 is moved up and down by an elevating rod 54 penetrating the bottom of the container through an extendable bellows 52. Further, the mounting table 36 is formed with a pin through hole 56 through which the elevating pin 50 is inserted.
  • the entire mounting table 36 is made of a heat-resistant material, for example, a ceramic such as alumina, and a thin plate-like resistance heater 58 is embedded in the ceramic as a heating means. The resistance heater 58 is connected to a heater power source 62 through a wiring 60 that passes through the column 38.
  • a thin electrostatic chuck 66 having conductor wires 64 disposed in, for example, a mesh shape is provided on the upper surface side of the mounting table 36.
  • the wafer W placed on the electrostatic chuck 66 is attracted by the electrostatic chuck 66 by electrostatic attraction force.
  • the conductor wire 64 of the electrostatic chuck 66 is connected to a DC power source 70 via a wiring 68 in order to exert the electrostatic attraction force.
  • the wiring 68 is connected to a bias high-frequency power source 72 in order to apply a bias high-frequency power of 13.56 MHz to the conductor wire 64 of the electrostatic chuck 66 at the time of etching.
  • the ceiling portion of the processing vessel 34 is opened, and for example, a quartz plate, Al 2 O 3 or the like is used here.
  • a top plate 74 having transparency for microwaves made of a ceramic material is provided airtightly through a seal member 76 such as an O-ring.
  • the thickness of the top plate 74 is set to about 20 mm, for example, in consideration of pressure resistance.
  • a gas introducing means 78 for supplying necessary gas into the processing vessel 34 is provided on the side wall of the vessel directly below the top plate 74.
  • the gas introduction means 78 has a gas nozzle 80 made of, for example, quartz provided through the side wall of the container, and various kinds of necessary gases can be supplied from the gas nozzle 80 while controlling the flow rate. It is summer.
  • the gas introduction means 78 for example, a shower head structure in which stone pipes having a large number of gas holes are assembled in a lattice shape may be employed.
  • the present invention introduces a microwave for plasma generation into the processing space S of the processing vessel 34 through the top plate 74 in order to generate plasma in the processing vessel 34 on the upper surface of the top plate 74.
  • the planar antenna member 82 characterized by the above is provided, and the planar antenna member 82 is connected to a microwave supply means 84 for supplying microwaves thereto.
  • the planar antenna member 82 has a disk-shaped antenna plate 88 made of a conductive metal plate in which a plurality of microwave radiation slots 86 are formed. This antenna The structure of the plate 88 will be described later.
  • the microwave supply means 84 has a slow wave material 90 disposed on the antenna plate 88.
  • the slow wave material 90 is made of, for example, quartz, alumina, aluminum nitride or the like, and has a high dielectric constant characteristic in order to shorten the wavelength of the microphone mouth wave, and is preferably made of the same material as the top plate 74.
  • the antenna plate 88 is configured as a bottom plate of a wave guide box 92 made of a conductive hollow cylindrical container covering the entire upper surface of the slow wave material 90, and is made to face the mounting table 36 in the processing container 34.
  • a cooling jacket 94 is provided above the waveguide box 92 to flow a cooling medium in order to cool it.
  • the peripheral portions of the waveguide box 92 and the antenna plate 88 are both conducted to the processing vessel 34, and the outer tube 96 A of the coaxial waveguide 96 is connected to the center of the upper portion of the waveguide box 92. ing.
  • This inner inner conductor 96B is connected to the center portion of the antenna plate 88 through, for example, a tapered (conical) connector 97 through the center through-hole of the slow wave member 90.
  • the coaxial waveguide 96 is connected to a rectangular waveguide 99 via a mode converter 98, and the rectangular waveguide 99 is connected to a microwave generator 102 of 2.45 GHz, for example. Propagates microwaves to the antenna plate 88.
  • the microwave generator 102 and the antenna plate 88 are connected by the rectangular waveguide 99 and the coaxial waveguide 96 so as to propagate microwaves.
  • a matching circuit 104 is provided in the middle of the rectangular waveguide 99 for impedance matching.
  • the frequency is not limited to 2.45 GHz, and other frequencies, for example, 8.35 GHz may be used.
  • the antenna plate 88 of the planar antenna member 82 will be described in detail.
  • the antenna plate 88 is a disc having a center C, and is made of a conductive material having a diameter of 400 to 500 mm and a thickness of 1 to several mm, for example, for a wafer having a size of 300 mm.
  • the surface is made of a copper plate or an aluminum plate plated with silver, and a plurality of microwave slots 86 each having, for example, a long groove-like through hole are formed in the disk.
  • Each of these slots 86 forms one set, that is, a slot pair 100, by two slots 86 arranged in a "c" shape.
  • the above-mentioned slot pair 100 consisting of two slots 86 is arranged in multiple rows L and L along a plurality of concentric circles, and the innermost circumference.
  • the slot pair 1 00 is the slot pair 100A in the inner circumferential side (innermost circumferential side) row L and the outer row (second round) row L slot 100A.
  • the number of pairs of slot pairs 100B to be set is set within a range of 18 to 36, and the slot pairs 100B are arranged at equal intervals along the circumferential direction of the antenna plate 88. In FIG. 2, 24 pairs (pieces) of slot pairs 100B in the second row L are arranged.
  • the number of slot pairs 100B in the row L (outermost circumference side) of row L takes the following matters into consideration.
  • the pair of slots 100A located in the innermost row L is the center side force of the antenna plate 88, and ⁇ (1 (Wavelength) or more apart.
  • the wavelength is not the wavelength of the propagating microwave in vacuum, but the wavelength when the wavelength of the microwave is shortened by the slow wave material 90.
  • the distance HI between the center side of the antenna plate 88 and the slot pair 100A is equal to the outer circumference of the connector 97 at the center of the antenna plate 88 and the vertical 2 of each of the two slots 86 forming the slot pair 100A. This is the distance from the intersection P1 of the equipartition line. Therefore, the distance relationship is expressed as Further, it is preferable that the distance H2 between the center C of the connector 97 and the intersection point PI is set to a length of 1.5 ⁇ or more.
  • the distance between the slot pair 100 in the radial direction of the antenna plate 88 that is, the concentric circle R2 connecting the position ⁇ 2 of each slot pair 100B in the second circumference in the radial direction of the antenna plate 88, Difference in radius from concentric circle R1 that connects position P1 of each inner slot pair 100A ⁇ 3 (For the sake of simplicity, distance ⁇ 3 will be referred to as the innermost row L slot pair and the second row L The distance from the slot pair of
  • the length can be set to a length that is larger than ⁇ 2 or smaller than ⁇ 2.
  • the microwaves radiated from both slot pairs 100A and 100B are out of phase with each other and cancel each other out.
  • the distance ⁇ 3 is smaller than ⁇ 2, abnormal discharge may occur, so the value of ⁇ 3 is preferably larger than ⁇ 2.
  • the positions Pl and ⁇ 2 are the intersections of the perpendicular bisectors of the two slots 86 constituting each slot pair 100A and 100B as described above.
  • the slot pair 100B in the row L in the second circumference is used.
  • the antenna plate 88 it is preferable to position the antenna plate 88 within a range of 120 to 200 mm from the center of the antenna plate 88 (diameter force of about 08 mm).
  • the width 11 of all the slots 86 included in each of the slot pairs 100A and 100B is preferably set to 6 mm or more. This is because when the width 11 is smaller than 6 mm, abnormal discharge easily occurs here. In this case, the power supplied to the planar antenna member 82 is about 2000 to 4500 W (watts), and the abnormal discharge is likely to occur regardless of the microwave frequency when the width 11 is smaller than 6 mm. .
  • the slot pair 100 has two slots 86 arranged in a so-called "tapped shape" as an example. As shown, the slot pair 100 can be applied to a case where the two slots 86 are slightly separated and arranged in a so-called “T” shape. Even in this case, each distance H1-H3 Intersections Pl and P2 that define the vertical bisectors of the two slots 86 as shown in the figure.
  • the overall operation of the plasma processing apparatus 32 configured as described above is controlled by the control means 120 made of, for example, a microcomputer.
  • the computer program to be executed is stored in a storage medium 122 such as a floppy disk, a CD (Compact Disc), a flash memory or a node disk. Specifically, supply of each gas and flow control, supply of microwaves and high frequency, power control, control of process temperature and process pressure, and the like are performed according to commands from the control means 120.
  • the semiconductor wafer W is accommodated in the processing container 34 by the transfer arm (not shown) via the gate valve 40, and the wafer W is moved to the upper surface of the mounting table 36 by moving the lifting pins 50 up and down.
  • the wafer W is mounted on the mounting surface, and the wafer W is electrostatically attracted by the electrostatic chuck 66.
  • the wafer W is maintained at a predetermined process temperature by a resistance heater 58, and a predetermined gas such as C1 gas, O gas, and N gas, for example, a gas source (not shown) is set to a predetermined temperature.
  • the gas nozzle 80 of the gas introduction means 78 is supplied to the processing space S in the processing container 34 at a flow rate, and the pressure control valve 44 is controlled to maintain the processing container 34 at a predetermined process pressure.
  • the microwave generated by the microwave generator 102 is converted into the rectangular waveguide 99 and the coaxial waveguide 96. Then, it is supplied to the antenna plate 88 of the planar antenna member 82 to introduce the microwave whose wavelength is shortened by the retardation material 90 into the processing space S, thereby generating a plasma in the processing space S to generate a predetermined plasma. Etching process using is performed.
  • the etching target layer formed on the surface of the wafer W is etched and removed by the active species generated at this time. Then, each of the gases flows downward while being diffused substantially evenly around the mounting table 36, and is discharged from the exhaust path 48 through the exhaust port 42.
  • the conductor wire 6 in the electrostatic chuck 66 from the high frequency power supply 72 for bias is used. A high frequency for bias is applied to 4 so that active species and the like are drawn into the wafer surface with good straightness so that the etching shape is not collapsed as much as possible.
  • the 2.45 GHz microwave supplied through the connector 97 at the center of the antenna plate 88 is propagated radially from the center of the antenna plate 88 toward the periphery, and then A microwave is emitted from lot 86 toward processing space S below.
  • the antenna plate 88 has slot pairs arranged in multiple rows L and L along a plurality of concentric circles, and
  • the number of pairs of slots 100A located in the innermost row L is reduced to 8 or less, and here 5 is set, so the electric field distribution force of microwaves radiated from each slot pair 100A and 100B
  • the antenna plate 88 rotates around the center at a high speed.
  • the antenna plates 88 and A standing wave due to interference between the pair of slots is generated in the slow wave material 90, and the electric field distribution generated due to this is fixed without rotating, and thus the density of the plasma density is generated.
  • the number of slot pairs 100A in the innermost circumferential row L is set to 8 or less, that is, the opening angle ⁇ 1 between adjacent slot pairs 100A is ⁇ ⁇ 4 (angular velocity Therefore, the microwave that propagates the central force of the antenna plate 88 to the peripheral part is not a standing wave but a traveling wave. As a result, the electric field distribution of the microwave is as described above. Will rotate at high speed. Therefore, the plasma density in the processing space S can be made uniform.
  • FIG. 5 is a diagram for explaining that the electric field distribution rotates when the number of slot pairs 100A in the innermost row L is set to 8 or less when the microwave frequency is 2.45 GHz. It is.
  • the antenna plate 88 is divided by the number of slot pairs 100A in the innermost row L as shown by the dotted line, and this division is made one sector. In this sector, microwaves propagate from the center of the antenna to the slot pair S1 ⁇ S2 ⁇ S3 ⁇ S4, and during this time, all of the microphone mouth wave power (energy) is radiated and no reflection occurs. To do.
  • the maximum number of slot pairs in the innermost row L is set to 8 because the opening angle ⁇ 1 is required to be 45 degrees or more in order to suppress the mutual interference of the radiated electric field between the slot pairs. .
  • One innermost The slot pair 100A in the circumferential row L does not interfere with the plurality of outermost row L slot pairs 100B.
  • the number of slot pairs in the outermost row L is the original microwave transmission.
  • Propagation power of microwave power between slot pair S1 and S2 which is the carrying path The propagation amount between slot pair S5 belonging to a sector different from slot pair S1 is sufficiently large (at least 5 times or more) Set to a number. For this purpose, an opening between adjacent slot pairs in the outermost row L is adjacent.
  • the angle ⁇ 2 (see Fig. 2) must be 10 degrees or more, that is, above the logarithmic number of slots in the outermost row L
  • the limit is 36. Also, the lower limit of the number of 100B pairs of slots in the outermost row L is required.
  • the plasma electron density is 8 ⁇ 10 1G Zcm 3 or more, so 18 is required.
  • the distance from 0B (corresponding to H3 in Fig. 3) is, for example, (5Z4) ⁇ ⁇ , and the angle between the pair of slots on the outermost row L is 15 degrees, for example, the slot pair through which microwaves propagate
  • the distance HI between the outer periphery of the connector 97 of the antenna plate 88 and the slot pair 100A in the innermost row L is set to a length of one wavelength or more, and the center C of the antenna plate 88 is Since the distance H2 between the slot pair 100A in the inner circumferential row L is set to a length of 1.5 ⁇ or more, the above-mentioned microwave electric field distribution rotates more smoothly and at a higher speed, and the processing space The plasma density in S can be made more uniform.
  • the antenna plate 88 of the planar antenna member 82 of the device of the present invention was evaluated by simulation, the evaluation result will be described. For comparison, the antenna plate of the conventional device was also evaluated.
  • FIG. 6 (A) shows a comparative example of the conventional apparatus
  • FIGS. 6 (B) and 6 (C) show Examples 1 and 2 of the apparatus of the present invention, respectively.
  • a picture of the slot pattern and the electric field distribution is shown, and a schematic diagram of the electric field distribution is shown for easy understanding.
  • the circumference of the microwave All wave numbers are 2.45GHz.
  • the antenna plate of the conventional device shown in Fig. 6 (A) is provided with two rows of slot pairs concentrically, with 20 slot pairs arranged on the innermost circumference, and on the second circumference. Has 36 slot pairs. In this case, a concentric fixed electric field distribution is formed, and since the electric field distribution is fixed, concentric shading is generated in the plasma density, which is not preferable.
  • the slot pairs 100 are arranged in two concentric rows.
  • the present invention is not limited to this, and the slot pairs 100 are concentric depending on the size of the antenna plate 88. Three or more rows may be arranged in a circle.
  • the wavelength of the microwave in the slow wave material is considerably shortened compared to the case of quartz. It is possible to arrange three pairs of pairs. In this case, an intermediate slot pair (second row) is arranged between the innermost slot pair and the outermost (third row) slot pair. As described above, Pl, P2, and H1 to H3 are determined for the innermost slot pair and the second row slot pair. Also, let H4 be the distance between each slot pair in the second row and the slot pair in the third row.
  • H4 is the difference in radius between the concentric circles connecting P3 and the concentric circles connecting the positions P2 of each slot pair in the second row, where the position of each slot pair in the third row is P3 (not shown). It is.
  • the relationship between H1-H4 and the microwave wavelength is Hl ⁇ e, H2 ⁇ l. 5) H3> ⁇ ⁇ 2 and H4> ⁇ ⁇ 2.
  • the number of slot pairs in each row is 2 ⁇ the number of innermost slot pairs ⁇ 8, 4 ⁇ the number of slot pairs in the second row ⁇ 18, 18 ⁇ the number of slot pairs in the third row (outermost) Number ⁇ 36. Note that it is possible to provide the second row of slot pairs in terms of space, but this need not be provided.
  • the power described by taking plasma etching as an example of plasma processing is not limited to this, and the present invention is applied to all plasma processing such as plasma sputtering processing, plasma CVD processing, and plasma ashing processing. be able to.
  • the present invention is not limited thereto, and the present invention can also be applied to a glass substrate, a ceramic substrate, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A planar antenna is provided to circumferentially rotate electric field radiated from microwave radiation holes around the planar antenna member to make plasma density uniform. The planar antenna member is comprised of an antenna plate (88) made of an electrically conductive metallic plate. A plurality of pairs of slots (100) are made in the antenna plate (88). The pair of slots (100) are two long groove-like microwave radiation slots (86) which are directed in different directions. Many of the pairs of slots (100) are disposed along a plurality of coaxial circles and the number of pairs of the slots (100) set around the most inner circle is not more than eight.

Description

明 細 書  Specification
平面アンテナ部材及びこれを用いたプラズマ処理装置  Planar antenna member and plasma processing apparatus using the same
技術分野  Technical field
[0001] 本発明は、半導体ウェハ等に対してマイクロ波や高周波により生じたプラズマを作 用させて処理を施す際に使用されるプラズマ処理装置及びこれに用いられる平面ァ ンテナ部材に関する。  TECHNICAL FIELD [0001] The present invention relates to a plasma processing apparatus used when processing is performed by applying plasma generated by a microwave or high frequency to a semiconductor wafer or the like, and a planar antenna member used therefor.
背景技術  Background art
[0002] 近年、半導体製品の高密度化及び高微細化に伴い半導体製品の製造工程にお いて、成膜、エッチング、アツシング等の処理のためにプラズマ処理装置が使用され る場合がある。特に、 0. lmTorr(13. 3mPa)〜数 lOmTorr (数 Pa)程度の比較的 圧力が低い高真空状態でも安定してプラズマを立てることができることからマイクロ波 や高周波を用いて、高密度プラズマを発生させるプラズマ処理装置が使用される。  In recent years, with the increase in density and miniaturization of semiconductor products, there are cases where a plasma processing apparatus is used for processes such as film formation, etching, and ashing in the manufacturing process of semiconductor products. In particular, a plasma can be stably formed even in a high vacuum state where the pressure is relatively low, from about 0.1 lmTorr (13.3 mPa) to several lOmTorr (several Pa). A plasma processing apparatus for generating is used.
[0003] このようなプラズマ処理装置は、特許文献 1、特許文献 2、特許文献 3、特許文献 4 等に開示されている。ここで、例えばマイクロ波を用いた一般的なプラズマ処理装置 を図 7を参照して概略的に説明する。図 7はマイクロ波を用いた従来の一般的なブラ ズマ処理装置を示す概略構成図である。  Such a plasma processing apparatus is disclosed in Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and the like. Here, for example, a general plasma processing apparatus using a microwave will be schematically described with reference to FIG. FIG. 7 is a schematic configuration diagram showing a conventional general plasma processing apparatus using microwaves.
[0004] 図 7において、このプラズマ処理装置 2は、真空引き可能になされた処理容器 4と、 処理容器 4内に設けられ半導体ウェハ Wを載置する載置台 6とを備え、この載置台 6 に対向する天井部にマイクロ波を透過する円板状の窒化アルミや石英等よりなる天 板 8を気密に設けている。そして処理容器 4の側壁には、容器内へ所定のガスを導入 するためのガスノズル 9が設けられて!/、る。  In FIG. 7, the plasma processing apparatus 2 includes a processing container 4 that can be evacuated, and a mounting table 6 that is provided in the processing container 4 and on which a semiconductor wafer W is mounted. A ceiling plate 8 made of a disk-shaped aluminum nitride, quartz, or the like that transmits microwaves is provided in an airtight manner on the ceiling facing the substrate. A gas nozzle 9 for introducing a predetermined gas into the container is provided on the side wall of the processing container 4.
[0005] そして、上記天板 8の上面に厚さ数 mm程度の円板状の平面アンテナ部材 10と、こ の平面アンテナ部材 10の半径方向におけるマイクロ波の波長を短縮するための例 えば誘電体よりなる遅波材 12を設置している。そして、平面アンテナ部材 10には多 数の、例えば長溝状の貫通孔よりなるマイクロ波放射孔 14が形成されている。このマ イク口波放射孔 14は一般的には、同心円状に配置されたり、或いは渦巻状に配置さ れている。そして、平面アンテナ部材 10の中心部に同軸導波管 16の中心導体 18が 接続され、マイクロ波発生器 20より発生した、例えば 2. 45GHzのマイクロ波をモード 変換器 22にて所定の振動モードへ変換した後に導く。 [0005] Then, a disk-shaped planar antenna member 10 having a thickness of about several millimeters on the top surface of the top plate 8, and an example for reducing the wavelength of the microwave in the radial direction of the planar antenna member 10 is dielectric. Slow wave material 12 consisting of body is installed. The planar antenna member 10 is formed with a large number of microwave radiation holes 14 made of, for example, long groove-like through holes. The microphone mouth wave radiation holes 14 are generally arranged concentrically or spirally. The central conductor 18 of the coaxial waveguide 16 is formed at the center of the planar antenna member 10. For example, a microwave of 2.45 GHz generated from the microwave generator 20 is converted into a predetermined vibration mode by the mode converter 22 and then guided.
[0006] そして、マイクロ波をアンテナ部材 10の半径方向へ放射状に伝搬させつつ平面ァ ンテナ部材 10に設けたマイクロ波放射孔 14からマイクロ波を放出させてこれを天板 8 に透過させて、下方の処理容器 4内へマイクロ波を導入する。次にこのマイクロ波に より処理容器 4内の処理空間 Sにプラズマを立てて、半導体ウェハ Wにエッチングや 成膜などの所定のプラズマ処理を施す。  [0006] Then, while propagating the microwaves radially in the radial direction of the antenna member 10, the microwaves are emitted from the microwave radiation holes 14 provided in the planar antenna member 10, and transmitted through the top plate 8, Microwave is introduced into the lower processing container 4. Next, plasma is generated in the processing space S in the processing container 4 by the microwave, and the semiconductor wafer W is subjected to predetermined plasma processing such as etching and film formation.
特許文献 1 :特開平 3— 191073号公報  Patent Document 1: Japanese Patent Laid-Open No. 3-191073
特許文献 2:特開平 5 - 343334号公報  Patent Document 2: JP-A-5-343334
特許文献 3 :特開平 9— 181052号公報  Patent Document 3: Japanese Patent Laid-Open No. 9-181052
特許文献 4:特開 2003— 332326号公報  Patent Document 4: Japanese Patent Laid-Open No. 2003-332326
[0007] ところで、上記プラズマ処理を行う場合に、ウェハ面内均一に所定の処理を行う必 要がある。この場合、処理空間 Sの面内方向にプラズマを均一に立てることが望まれ る。このため、従来のプラズマ処理装置では、平面アンテナ部材 10の中心側も周辺 側にも多数のマイクロ波放射孔 14を比較的均一に分布させて設け、このように多数 設けたマイクロ波放射孔 14からそれぞれマイクロ波を下方の処理空間 Sに向けて放 射させる。  By the way, when performing the above plasma processing, it is necessary to perform a predetermined processing uniformly in the wafer surface. In this case, it is desirable that the plasma be set up uniformly in the in-plane direction of the processing space S. For this reason, in the conventional plasma processing apparatus, a large number of microwave radiation holes 14 are provided relatively uniformly on both the center side and the peripheral side of the planar antenna member 10, and the microwave radiation holes 14 provided in this way are provided in a relatively uniform manner. The microwaves are emitted toward the processing space S below.
[0008] また、平面アンテナ部材 10の半径方向における上記マイクロ波放射孔 14のピッチ を、ここに伝搬するマイクロ波同士が干渉して効率的に放射できるような値に定める。  [0008] The pitch of the microwave radiation holes 14 in the radial direction of the planar antenna member 10 is set to a value that allows microwaves propagating here to interfere with each other and efficiently radiate.
[0009] し力しながら、上述したような平面アンテナ部材 10にあっては、マイクロ波が中心導 体 18側力も平面アンテナ部材 10の半径方向へ伝搬する際に、この平面アンテナ部 材 10や遅波材 12に定在波が発生することがある。このために、マイクロ波の電界分 布の強弱が固定的になってしまって、処理空間 Sにおいてマイクロ波の電界分布が 不均一になってしまう。  However, in the planar antenna member 10 as described above, when the microwave propagates the central conductor 18 side force in the radial direction of the planar antenna member 10, the planar antenna member 10 and A standing wave may occur in the slow wave material 12. For this reason, the strength of the electric field distribution of the microwave becomes fixed, and the electric field distribution of the microwave in the processing space S becomes non-uniform.
発明の開示  Disclosure of the invention
[0010] 本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたもの である。本発明の目的は、マイクロ波放射孔から放射される電界を平面アンテナ部材 の周方向へ回転させるようにしてプラズマ密度を均一化させるようにした平面アンテ ナ部材及びこれを用いたプラズマ処理装置を提供することにある。 [0010] The present invention has been devised to pay attention to the above problems and to effectively solve them. An object of the present invention is to provide a planar antenna in which the plasma density is made uniform by rotating the electric field radiated from the microwave radiation hole in the circumferential direction of the planar antenna member. An object is to provide a member and a plasma processing apparatus using the same.
[0011] 本発明は、中心を有し導電性の金属板よりなるアンテナ板を備え、アンテナ板に互 Vヽに異なる方向に向けられ互 ヽに近接する 2つの長溝状のマイクロ波放射用のスロッ トよりなるスロット対を複数組設け、前記アンテナ板に前記複数組のスロット対を複数 の同心円に沿って多列に配置すると共に、最内周の列に位置するスロット対は 8組以 内となることを特徴とする平面アンテナ部材である。  [0011] The present invention includes an antenna plate made of a conductive metal plate having a center, and is used for two long-groove microwave radiations that are directed in directions different from each other and close to each other. A plurality of slot pairs each including a slot are provided, and the plurality of slot pairs are arranged in multiple rows along a plurality of concentric circles on the antenna plate, and the number of slot pairs located in the innermost row is within eight or less. It is a planar antenna member characterized by becoming.
[0012] このように、複数組のスロット対を同心円状に配置すると共に、最内周に位置するス ロット対は 8組以内となるようにしたので、マイクロ波放射孔から放射される電界を平 面アンテナ部材の周方向へ回転させてプラズマ密度を均一化させることができる。  [0012] In this way, a plurality of sets of slot pairs are concentrically arranged, and the slot pair located at the innermost circumference is within eight sets, so that the electric field radiated from the microwave radiation hole can be reduced. The plasma density can be made uniform by rotating in the circumferential direction of the planar antenna member.
[0013] 本発明は、前記最内周に位置するスロット対は、前記アンテナ板の中心側から、こ れに伝搬するマイクロ波の波長えのえ(1波長)以上離間されていることを特徴とする 平面アンテナ部材である。  [0013] The present invention is characterized in that the slot pair located on the innermost periphery is spaced from the center side of the antenna plate by a wavelength of microwaves (one wavelength) propagating therethrough. It is a planar antenna member.
[0014] 本発明は、前記アンテナ板の半径方向における前記スロット対が配置される同心円 間の距離は、これに伝搬するマイクロ波の波長えの λ Ζ2より大きい長さに設定され て 、ることを特徴とする平面アンテナ部材である。  In the present invention, the distance between the concentric circles in which the slot pairs are arranged in the radial direction of the antenna plate is set to a length longer than λΖ2 of the wavelength of the microwaves propagating thereto. A planar antenna member characterized by the above.
[0015] 本発明は、前記スロットの幅は 6mm以上であることを特徴とする平面アンテナ部材 である。  [0015] The present invention provides the planar antenna member, wherein the slot has a width of 6 mm or more.
[0016] 本発明は、前記同心円状に配置されるスロット対のうち、最外周の列に配置される スロット対の組数は 18から 36組の範囲内に設定されていることを特徴とする平面アン テナ部材である。  The present invention is characterized in that, among the slot pairs arranged concentrically, the number of pairs of slot pairs arranged in the outermost row is set within a range of 18 to 36 sets. It is a planar antenna member.
[0017] 本発明は、前記マイクロ波の周波数は 2. 45GHzであることを特徴とする平面アン テナ部材である。  The present invention is the planar antenna member characterized in that the frequency of the microwave is 2.45 GHz.
[0018] 本発明は、天井部が開口されて内部が真空引き可能になされた処理容器と、被処 理体を載置するために前記処理容器内に設けた載置台と、前記天井部の開口に気 密に装着されて電磁波を透過する誘電体よりなる天板と、前記天板の上面に設けら れた平面アンテナ部材と、前記平面アンテナ部材に接続されるマイクロ波供給手段と 、前記処理容器内へ所定のガスを導入するガス導入手段と、を備え、前記平面アン テナ部材は、中心を有し導電性の金属板よりなるアンテナ板を備え、アンテナ板に互 ヽに異なる方向に向けられ互 ヽに近接する 2つの長溝状のマイクロ波放射用のスロッ トよりなるスロット対を複数組設け、前記アンテナ板に前記複数組のスロット対を複数 の同心円に沿って多列に配置すると共に、最内周の列に位置するスロット対は 8組以 内となることを特徴とするプラズマ処理装置である。 [0018] The present invention provides a processing container having an opening in the ceiling so that the inside can be evacuated, a mounting table provided in the processing container for mounting an object to be processed, A top plate made of a dielectric material hermetically attached to the opening and transmitting electromagnetic waves, a planar antenna member provided on the top surface of the top plate, a microwave supply means connected to the planar antenna member, Gas introduction means for introducing a predetermined gas into the processing container, and the planar antenna member includes an antenna plate having a center and made of a conductive metal plate, and is connected to the antenna plate. A plurality of slot pairs each having two long groove-shaped slots for microwave radiation that are directed in different directions and are close to each other are provided, and the plurality of slot pairs are provided on the antenna plate along a plurality of concentric circles. The plasma processing apparatus is characterized in that it is arranged in multiple rows and the slot pairs located in the innermost row are within 8 pairs.
[0019] 本発明は、前記最内周に位置するスロット対は、前記アンテナ板の中心側から、こ れに伝搬するマイクロ波の波長えのえ(1波長)以上離間されていることを特徴とする プラズマ処理装置である。 [0019] The present invention is characterized in that the slot pair located on the innermost circumference is spaced from the center side of the antenna plate by a wavelength of microwaves (one wavelength) propagating therethrough. It is a plasma processing apparatus.
[0020] 本発明は、前記アンテナ板の半径方向における前記スロット対が配置される同心円 間の距離は、これに伝搬するマイクロ波の波長えの λ Ζ2より大きい長さに設定され て 、ることを特徴とするプラズマ処理装置である。 In the present invention, the distance between the concentric circles in which the slot pairs are arranged in the radial direction of the antenna plate is set to a length larger than λ 2 of the wavelength of the microwaves propagating thereto. Is a plasma processing apparatus.
[0021] 本発明は、前記スロットの幅は 6mm以上であることを特徴とするプラズマ処理装置 である。 [0021] The present invention is the plasma processing apparatus, wherein the slot has a width of 6 mm or more.
[0022] 本発明は、前記同心円状に配置されるスロット対のうち、最外周の列に配置される スロット対の組数は 18から 36組の範囲内に設定されていることを特徴とするのプラズ マ処理装置である。  The present invention is characterized in that, among the slot pairs arranged concentrically, the number of pairs of slot pairs arranged in the outermost row is set within a range of 18 to 36 sets. This is a plasma processing device.
[0023] 本発明は、前記マイクロ波の周波数は 2. 45GHzであることを特徴とするプラズマ 処理装置である。  [0023] The present invention is the plasma processing apparatus, wherein the microwave frequency is 2.45 GHz.
[0024] 本発明に係る平面アンテナ部材及びこれを用いたプラズマ処理装置によれば、複 数組のスロット対を同心円状に配置すると共に、最内周に位置するスロット対は 8組 以内となるようにしたので、マイクロ波放射孔から放射される電界を平面アンテナ部材 の周方向へ回転させてプラズマ密度を均一化させることができる。  [0024] According to the planar antenna member and the plasma processing apparatus using the same according to the present invention, a plurality of pairs of slots are concentrically arranged, and the slot pair located on the innermost circumference is within eight pairs. Since it did in this way, the electric field radiated | emitted from a microwave radiation hole can be rotated to the circumferential direction of a planar antenna member, and a plasma density can be made uniform.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]図 1は、本発明に係るプラズマ処理装置を示す構成図である。 FIG. 1 is a configuration diagram showing a plasma processing apparatus according to the present invention.
[図 2]図 2は、平面アンテナ部材を示す平面図である。  FIG. 2 is a plan view showing a planar antenna member.
[図 3]図 3は、平面アンテナ部材のスロットに関する距離を説明するための拡大平面 図である。  FIG. 3 is an enlarged plan view for explaining a distance related to the slot of the planar antenna member.
[図 4]図 4は、スロット対の配列の他の一例を示す平面図である。  FIG. 4 is a plan view showing another example of the arrangement of slot pairs.
[図 5]図 5は、マイクロ波の周波数が 2. 45GHzのときに最内周スロット対の数を 8個 以下に設定した時に電界分布が回転することを説明するための図である。 [Figure 5] Figure 5 shows the number of innermost slot pairs of 8 when the microwave frequency is 2.45 GHz. It is a figure for demonstrating that electric field distribution rotates when it sets below.
[図 6]図 6 (A) (B) (C)は、本発明装置の平面アンテナ部材のアンテナ板のシミュレ一 シヨンによる電界分布を示す写真である。  FIGS. 6 (A), 6 (B), and 6 (C) are photographs showing the electric field distribution by simulation of the antenna plate of the planar antenna member of the device of the present invention.
[図 7]図 7は、マイクロ波を用いた従来の一般的なプラズマ処理装置を示す概略構成 図である。  FIG. 7 is a schematic configuration diagram showing a conventional general plasma processing apparatus using a microwave.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下に、本発明に係る平面アンテナ部材及びこれを用いたプラズマ処理装置の一 実施例の形態について添付図面を参照して説明する。 Hereinafter, embodiments of a planar antenna member and a plasma processing apparatus using the same according to the present invention will be described with reference to the accompanying drawings.
[0027] 図 1は本発明に係るプラズマ処理装置を示す構成図、図 2は平面アンテナ部材を 示す平面図、図 3は平面アンテナ部材のスロットに関する距離を説明するための拡大 平面図である。ここではプラズマ処理としてプラズマエッチング処理を行う場合を例に とって説明する。 FIG. 1 is a block diagram showing a plasma processing apparatus according to the present invention, FIG. 2 is a plan view showing a planar antenna member, and FIG. 3 is an enlarged plan view for explaining a distance related to a slot of the planar antenna member. Here, a case where a plasma etching process is performed as a plasma process will be described as an example.
[0028] 図示するように、プラズマを用いてエッチング処理を行うプラズマ処理装置 32は、 例えば側壁や底部がアルミニウム等の導体により構成されて、全体が筒体状に成形 された処理容器 34を備えている。処理容器 34内部は密閉された処理空間 Sとなって おり、この処理空間 Sにプラズマが形成される。この処理容器 34自体は接地されてい る。  As shown in the figure, a plasma processing apparatus 32 that performs an etching process using plasma includes, for example, a processing container 34 that is formed of a conductor such as aluminum on the side wall and the bottom and is formed into a cylindrical shape as a whole. ing. The inside of the processing vessel 34 is a sealed processing space S, and plasma is formed in the processing space S. This processing vessel 34 itself is grounded.
[0029] この処理容器 34内には、上面に被処理体としての例えば半導体ウェハ Wを載置す る載置台 36が収容される。この載置台 36は、例えばアルミナ等のセラミックにより平 坦になされた略円板状に形成されており、例えばアルミニウム等よりなる支柱 38を介 して容器底部より起立されて ヽる。  In the processing container 34, a mounting table 36 on which, for example, a semiconductor wafer W as a target object is mounted is accommodated on the upper surface. The mounting table 36 is formed in a substantially disc shape made flat by a ceramic such as alumina, and is erected from the bottom of the container via a column 38 made of, for example, aluminum.
[0030] この処理容器 34の側壁には、この内部に対してウェハを搬入.搬出する時に開閉 するゲートバルブ 40が設けられている。また、容器底部には、排気口 42が設けられ ると共に、この排気口 42〖こは、圧力制御弁 44及び真空ポンプ 46が順次介接された 排気路 48が接続されており、必要に応じて処理容器 34内を所定の圧力まで真空引 きできるようになつている。  [0030] A gate valve 40 that opens and closes when a wafer is loaded into and unloaded from the inside of the processing vessel 34 is provided on the side wall of the processing vessel 34. In addition, an exhaust port 42 is provided at the bottom of the container, and this exhaust port 42 is connected to an exhaust path 48 to which a pressure control valve 44 and a vacuum pump 46 are sequentially connected. Thus, the inside of the processing vessel 34 can be evacuated to a predetermined pressure.
[0031] また、上記載置台 36の下方には、ウェハ Wの搬出入時にこれを昇降させる複数、 例えば 3本の昇降ピン 50 (図 1においては 2本のみ記す)が設けられており、この昇降 ピン 50は、伸縮可能なベローズ 52を介して容器底部を貫通して設けた昇降ロッド 54 により昇降される。また上記載置台 36には、上記昇降ピン 50を挿通させるためのピ ン揷通孔 56が形成されている。上記載置台 36の全体は耐熱材料、例えばアルミナ 等のセラミックにより構成されており、このセラミック中に加熱手段として例えば薄板状 の抵抗加熱ヒータ 58が埋め込んで設けられている。この抵抗加熱ヒータ 58は、支柱 38内を通る配線 60を介してヒータ電源 62に接続されている。 [0031] Further, below the mounting table 36, there are provided a plurality of, for example, three lifting pins 50 (only two are shown in FIG. 1) for lifting and lowering the wafer W when it is loaded and unloaded. Elevating The pin 50 is moved up and down by an elevating rod 54 penetrating the bottom of the container through an extendable bellows 52. Further, the mounting table 36 is formed with a pin through hole 56 through which the elevating pin 50 is inserted. The entire mounting table 36 is made of a heat-resistant material, for example, a ceramic such as alumina, and a thin plate-like resistance heater 58 is embedded in the ceramic as a heating means. The resistance heater 58 is connected to a heater power source 62 through a wiring 60 that passes through the column 38.
[0032] また、この載置台 36の上面側には、内部に例えば網目状に配設された導体線 64 を有する薄い静電チャック 66が設けられており、この載置台 36上、詳しくはこの静電 チャック 66上に載置されるウェハ Wを静電チャック 66により静電吸着力により吸着す る。そして、この静電チャック 66の上記導体線 64は、上記静電吸着力を発揮するた めに配線 68を介して直流電源 70に接続されている。またこの配線 68には、エツチン グ時に例えば 13. 56MHzのバイアス用の高周波電力を上記静電チャック 66の導体 線 64へ印加するためにバイアス用高周波電源 72が接続されている。  In addition, a thin electrostatic chuck 66 having conductor wires 64 disposed in, for example, a mesh shape is provided on the upper surface side of the mounting table 36. The wafer W placed on the electrostatic chuck 66 is attracted by the electrostatic chuck 66 by electrostatic attraction force. The conductor wire 64 of the electrostatic chuck 66 is connected to a DC power source 70 via a wiring 68 in order to exert the electrostatic attraction force. The wiring 68 is connected to a bias high-frequency power source 72 in order to apply a bias high-frequency power of 13.56 MHz to the conductor wire 64 of the electrostatic chuck 66 at the time of etching.
[0033] そして、上記処理容器 34の天井部は開口されて、ここに例えば石英板や Al O等  [0033] Then, the ceiling portion of the processing vessel 34 is opened, and for example, a quartz plate, Al 2 O 3 or the like is used here.
2 3 のセラミック材よりなるマイクロ波に対しては透過性を有する天板 74が Oリング等のシ 一ル部材 76を介して気密に設けられる。この天板 74の厚さは耐圧性を考慮して例え ば 20mm程度に設定される。そして、この天板 74の真下の容器側壁には、この処理 容器 34内へ必要なガスを供給するガス導入手段 78が設けられる。本実施例では、こ のガス導入手段 78は容器側壁を貫通して設けられる例えば石英製のガスノズル 80 を有しており、このガスノズル 80より必要な各種のガスを流量制御しつつ供給できる ようになつている。尚、このガス導入手段 78として、例えば多数のガス孔を有する石 英パイプを格子状に組んだシャワーヘッド構造を採用してもよい。  A top plate 74 having transparency for microwaves made of a ceramic material is provided airtightly through a seal member 76 such as an O-ring. The thickness of the top plate 74 is set to about 20 mm, for example, in consideration of pressure resistance. A gas introducing means 78 for supplying necessary gas into the processing vessel 34 is provided on the side wall of the vessel directly below the top plate 74. In the present embodiment, the gas introduction means 78 has a gas nozzle 80 made of, for example, quartz provided through the side wall of the container, and various kinds of necessary gases can be supplied from the gas nozzle 80 while controlling the flow rate. It is summer. As the gas introduction means 78, for example, a shower head structure in which stone pipes having a large number of gas holes are assembled in a lattice shape may be employed.
[0034] そして、上記天板 74の上面に上記処理容器 34内でプラズマを立てるために天板 7 4を介してプラズマ発生用のマイクロ波を処理容器 34の処理空間 Sに導入する本発 明の特徴とする平面アンテナ部材 82が設けられ、この平面アンテナ部材 82には、こ れにマイクロ波を供給するためのマイクロ波供給手段 84が接続されて 、る。具体的 には、上記平面アンテナ部材 82は、複数のマイクロ波放射用のスロット 86の形成さ れた導電性の金属板よりなる円板状のアンテナ板 88を有している。尚、このアンテナ 板 88の構造につ 、ては後述する。 [0034] Then, the present invention introduces a microwave for plasma generation into the processing space S of the processing vessel 34 through the top plate 74 in order to generate plasma in the processing vessel 34 on the upper surface of the top plate 74. The planar antenna member 82 characterized by the above is provided, and the planar antenna member 82 is connected to a microwave supply means 84 for supplying microwaves thereto. Specifically, the planar antenna member 82 has a disk-shaped antenna plate 88 made of a conductive metal plate in which a plurality of microwave radiation slots 86 are formed. This antenna The structure of the plate 88 will be described later.
[0035] そして、上記マイクロ波供給手段 84は、上記アンテナ板 88上に配置された遅波材 90を有している。この遅波材 90は、例えば石英、アルミナ、窒化アルミ等よりなり、マ イク口波の波長を短縮するために高誘電率特性を有し、天板 74と同じ材質のものが 好ましい。上記アンテナ板 88は、上記遅波材 90の上方全面を覆う導電性の中空円 筒状容器よりなる導波箱 92の底板として構成され、前記処理容器 34内の上記載置 台 36に対向させて設けられる。この導波箱 92の上部には、これを冷却するために冷 媒を流す冷却ジャケット 94が設けられる。  The microwave supply means 84 has a slow wave material 90 disposed on the antenna plate 88. The slow wave material 90 is made of, for example, quartz, alumina, aluminum nitride or the like, and has a high dielectric constant characteristic in order to shorten the wavelength of the microphone mouth wave, and is preferably made of the same material as the top plate 74. The antenna plate 88 is configured as a bottom plate of a wave guide box 92 made of a conductive hollow cylindrical container covering the entire upper surface of the slow wave material 90, and is made to face the mounting table 36 in the processing container 34. Provided. A cooling jacket 94 is provided above the waveguide box 92 to flow a cooling medium in order to cool it.
[0036] この導波箱 92及びアンテナ板 88の周辺部は共に処理容器 34に導通されると共に 、この導波箱 92の上部の中心には、同軸導波管 96の外管 96Aが接続されている。 この内側の内部導体 96Bは、上記遅波材 90の中心の貫通孔を通って上記アンテナ 板 88の中心部に例えばテーパ状(円錐状)のコネクタ 97を介して接続される。そして 、この同軸導波管 96は、モード変換器 98を介して矩形導波管 99に接続され、この矩 形導波管 99は例えば 2. 45GHzのマイクロ波発生器 102に接続されており、上記ァ ンテナ板 88へマイクロ波を伝搬する。従って、上記マイクロ波発生器 102とアンテナ 板 88とは、矩形導波管 99と同軸導波管 96とにより接続されてマイクロ波を伝搬する ようになって!/、る。また上記矩形導波管 99の途中にはインピーダンス整合を図るマツ チング回路 104が介設されている。ここで上記周波数は 2. 45GHzに限定されず、 他の周波数、例えば 8. 35GHzを用いてもよい。  The peripheral portions of the waveguide box 92 and the antenna plate 88 are both conducted to the processing vessel 34, and the outer tube 96 A of the coaxial waveguide 96 is connected to the center of the upper portion of the waveguide box 92. ing. This inner inner conductor 96B is connected to the center portion of the antenna plate 88 through, for example, a tapered (conical) connector 97 through the center through-hole of the slow wave member 90. The coaxial waveguide 96 is connected to a rectangular waveguide 99 via a mode converter 98, and the rectangular waveguide 99 is connected to a microwave generator 102 of 2.45 GHz, for example. Propagates microwaves to the antenna plate 88. Therefore, the microwave generator 102 and the antenna plate 88 are connected by the rectangular waveguide 99 and the coaxial waveguide 96 so as to propagate microwaves. A matching circuit 104 is provided in the middle of the rectangular waveguide 99 for impedance matching. Here, the frequency is not limited to 2.45 GHz, and other frequencies, for example, 8.35 GHz may be used.
[0037] ここで上記平面アンテナ部材 82のアンテナ板 88について詳述する。このアンテナ 板 88は、中心 Cをもつ円板状のものであり、大きさが 300mmサイズのウェハ対応の 場合には、例えば直径が 400〜500mm、厚みが 1〜数 mmの導電性材料よりなる、 例えば表面が銀メツキされた銅板或いはアルミ板よりなり、この円板には、例えば長 溝状の貫通孔よりなる多数のマイクロ波用のスロット 86が形成されている。  Here, the antenna plate 88 of the planar antenna member 82 will be described in detail. The antenna plate 88 is a disc having a center C, and is made of a conductive material having a diameter of 400 to 500 mm and a thickness of 1 to several mm, for example, for a wafer having a size of 300 mm. For example, the surface is made of a copper plate or an aluminum plate plated with silver, and a plurality of microwave slots 86 each having, for example, a long groove-like through hole are formed in the disk.
[0038] これらの各スロット 86は、「ハ」の字状(tapered shape)に配置した 2つのスロット 8 6で 1つの組、すなわちスロット対 100を形成している。本実施例では 2つのスロット 86 よりなる上記スロット対 100は複数の同心円に沿って多列 L、Lに配置され、最内周  [0038] Each of these slots 86 forms one set, that is, a slot pair 100, by two slots 86 arranged in a "c" shape. In this embodiment, the above-mentioned slot pair 100 consisting of two slots 86 is arranged in multiple rows L and L along a plurality of concentric circles, and the innermost circumference.
1 2  1 2
の列 Lに位置するスロット対 100は 8組以内となる。図 2においては、上記スロット対 1 00は内周側(最内周側)の列 Lのスロット対 100Aと、外周側(第 2周目)の列 Lのス There are no more than 8 pairs of slots 100 located in row L. In Figure 2, the slot pair 1 00 is the slot pair 100A in the inner circumferential side (innermost circumferential side) row L and the outer row (second round) row L slot 100A.
1 2 ロット対 100Bからなつて!/ヽる。  1 2 From 100 lots vs. lots!
[0039] 図 2に示す場合には、最内周側の列 Lには 5組のスロット対 100A力 その周方向 に沿って均等な間隔で配置されている。ここで上記マイクロ波の周波数が 2. 45GHz の場合には、上記最内周側に位置するスロット対 100Aは 8組以内であり、換言すれ ば、周方向に隣り合うスロット対 100Aの開き角 θ 1を 45度以上に設定している。  In the case shown in FIG. 2, in the innermost circumferential row L, five pairs of slots 100A force are arranged at equal intervals along the circumferential direction. Here, when the frequency of the microwave is 2.45 GHz, the number of slot pairs 100A located on the innermost circumferential side is within 8 pairs, in other words, the opening angle θ between the pair of slots 100A adjacent in the circumferential direction is θ. 1 is set to 45 degrees or more.
[0040] このように開き角 θ 1を 45度以上に設定することにより、最内周スロット対間の放射 電界の相互干渉を抑えることが出来る。これにより放射される電界分布を回転させる ことができ、処理空間 Sにおけるプラズマを均一化させることができる。  [0040] By setting the opening angle θ1 to 45 degrees or more in this way, it is possible to suppress the mutual interference of the radiated electric field between the innermost slot pair. As a result, the radiated electric field distribution can be rotated, and the plasma in the processing space S can be made uniform.
[0041] また上記電界分布を回転させるためには、この最内周の列 Lのスロット対 100Aは 少なくとも 2組設ける必要がある。更に、内側より第 2周目(最外周側)の列 Lに配置  [0041] Further, in order to rotate the electric field distribution, it is necessary to provide at least two pairs of slots 100A in the innermost row L. Furthermore, it is arranged in row L on the second circumference (outermost circumference side) from the inside.
2 されるスロット対 100Bの組数は 18〜36個の範囲内に設定され、このスロット対 100B は、アンテナ板 88の周方向に沿って等間隔で配置されている。図 2においては、この 第 2周目の列 Lのスロット対 100Bは 24組 (個)配置されている。  The number of pairs of slot pairs 100B to be set is set within a range of 18 to 36, and the slot pairs 100B are arranged at equal intervals along the circumferential direction of the antenna plate 88. In FIG. 2, 24 pairs (pieces) of slot pairs 100B in the second row L are arranged.
2  2
[0042] また、この第 2周目(最外周側)の列 Lのスロット対 100Bの数は、次の事柄を考慮  [0042] In addition, the number of slot pairs 100B in the row L (outermost circumference side) of row L takes the following matters into consideration.
2  2
して決定される。  To be determined.
'最内周の列 Lのスロット対 100Aから伝搬されてきたマイクロ波を全て放射し、反射 が起こらないようにする。  'Emit all the microwaves propagated from the slot pair 100A in the innermost row L so that reflection does not occur.
•プラズマ電子密度を高く維持する(8 X 101(>個 Zcm3以上)。 • Maintain high plasma electron density ( 8 X 10 1 (> Zcm 3 or more)).
•1つの最内周の列 Lのスロット対 100Aと、複数の第 2周目(最外周側)の列 Lのス  • One innermost row L slot pair 100A and multiple second row (outermost side) row L slots
1 2 ロット対 100Bとが干渉しな!、ようにする。  1 2 Make sure lots vs. 100B do not interfere!
[0043] 更には、図 3にも示すように、最内周の列 Lに位置するスロット対 100Aは、このァ ンテナ板 88の中心側力 これに伝搬するマイクロ波の波長えの λ (1波長)以上離間 させて配置する。ここで上記波長えは、伝搬するマイクロ波の真空中の波長ではなく 、上記マイクロ波が遅波材 90により波長短縮された時の波長を指す。また、上記アン テナ板 88の中心側とスロット対 100Aとの間の距離 HIは、アンテナ板 88の中心のコ ネクタ 97の外周と、上記スロット対 100Aを形成する 2つのスロット 86の各垂直 2等分 線の交点 P1との間の距離を指す。従って、上記距離関係は次の式のように表される [0044] Η1≥λ また更に、上記コネクタ 97の中心 Cと上記交点 PIとの間の距離 H2は 1. 5 λ以上の長さに設定するのが好ましい。 Further, as shown in FIG. 3, the pair of slots 100A located in the innermost row L is the center side force of the antenna plate 88, and λ (1 (Wavelength) or more apart. Here, the wavelength is not the wavelength of the propagating microwave in vacuum, but the wavelength when the wavelength of the microwave is shortened by the slow wave material 90. Further, the distance HI between the center side of the antenna plate 88 and the slot pair 100A is equal to the outer circumference of the connector 97 at the center of the antenna plate 88 and the vertical 2 of each of the two slots 86 forming the slot pair 100A. This is the distance from the intersection P1 of the equipartition line. Therefore, the distance relationship is expressed as Further, it is preferable that the distance H2 between the center C of the connector 97 and the intersection point PI is set to a length of 1.5 λ or more.
[0045] また、アンテナ板 88の半径方向におけるスロット対 100間の距離、すなわちここで はアンテナ板 88の半径方向における第 2周目の各スロット対 100Bの位置 Ρ2を結ん だ同心円 R2と、最内周の各スロット対 100Aの位置 P1を結んだ同心円 R1との半径 の差 Η3 (以後簡単のために、距離 Η3のことを、最内周の列 Lのスロット対と 2周目の 列 Lのスロット対との距離、のように記す)は、遅波材 90で短縮されたマイクロ波の波 [0045] Further, the distance between the slot pair 100 in the radial direction of the antenna plate 88, that is, the concentric circle R2 connecting the position Ρ2 of each slot pair 100B in the second circumference in the radial direction of the antenna plate 88, Difference in radius from concentric circle R1 that connects position P1 of each inner slot pair 100A Η3 (For the sake of simplicity, distance Η3 will be referred to as the innermost row L slot pair and the second row L The distance from the slot pair of
2 2
長えのえ Ζ2よりも大き 、か、 λ Ζ2よりも小さ 、長さに設定することが出来る。ここで 、上記距離 Η3がえ /2 (およびこの奇数倍)の場合には、両スロット対 100A、 100B 力も放射されるマイクロ波が互いに逆位相になって相殺されてしまうから好ましくない 。また、距離 Η3が λ Ζ2よりも小さくなると、異常放電が生ずる恐れが発生するから Η 3の値は λ Ζ2よりも大きいことが好ましい。ここで上記位置 Pl、 Ρ2は、前述したよう に、各スロット対 100A、 100Bを構成する 2つのスロット 86の垂直 2等分線の交点で ある。  The length can be set to a length that is larger than の 2 or smaller than λΖ2. Here, in the case where the distance is Η3 / 2 (and an odd multiple thereof), the microwaves radiated from both slot pairs 100A and 100B are out of phase with each other and cancel each other out. Further, if the distance Η3 is smaller than λΖ2, abnormal discharge may occur, so the value of Η3 is preferably larger than λΖ2. Here, the positions Pl and Ρ2 are the intersections of the perpendicular bisectors of the two slots 86 constituting each slot pair 100A and 100B as described above.
[0046] また上述のように、直径が 300mmのウェハに対応する平面アンテナ部材 82の場 合であって遅波材 90が石英である場合には、第 2周目の列 Lのスロット対 100Bは、  [0046] Further, as described above, in the case of the planar antenna member 82 corresponding to the wafer having a diameter of 300 mm and the slow wave member 90 is quartz, the slot pair 100B in the row L in the second circumference is used. Is
2  2
アンテナ板 88 (直径力 08mm程度)の中心から 120〜200mmの範囲内に位置さ せるのが好ましい。  It is preferable to position the antenna plate 88 within a range of 120 to 200 mm from the center of the antenna plate 88 (diameter force of about 08 mm).
[0047] また、上記各スロット対 100A、 100Bに含まれる全てのスロット 86の幅 11は 6mm以 上に設定するのが好ましい。この理由は、幅 11が 6mmよりも小さくなると、ここに異常 放電が発生し易くなるからである。この場合、この平面アンテナ部材 82に供給する電 力は 2000〜4500W (ワット)程度であり、上記異常放電は幅 11が 6mmよりも小さくな ると、マイクロ波の周波数に関係なく発生し易くなる。  [0047] The width 11 of all the slots 86 included in each of the slot pairs 100A and 100B is preferably set to 6 mm or more. This is because when the width 11 is smaller than 6 mm, abnormal discharge easily occurs here. In this case, the power supplied to the planar antenna member 82 is about 2000 to 4500 W (watts), and the abnormal discharge is likely to occur regardless of the microwave frequency when the width 11 is smaller than 6 mm. .
[0048] 尚、上記実施例ではスロット対 100は 2つのスロット 86を、いわゆる"ハ"の字状(tap ered shape)に配置した場合を例にとって説明した力 これに限定されず、図 4に示 すようにスロット対 100として 2つのスロット 86を僅かに離間させて、 、わゆる" T"の字 状に配置した場合にも適用することができる。この場合においても、各距離 H1〜H3 を規定する交点 Pl、 P2は、図中に示すように 2つのスロット 86の各垂直 2等分線の 交点である。 [0048] In the above embodiment, the slot pair 100 has two slots 86 arranged in a so-called "tapped shape" as an example. As shown, the slot pair 100 can be applied to a case where the two slots 86 are slightly separated and arranged in a so-called “T” shape. Even in this case, each distance H1-H3 Intersections Pl and P2 that define the vertical bisectors of the two slots 86 as shown in the figure.
[0049] そして、図 1に戻って、以上のように構成されたプラズマ処理装置 32の全体の動作 は、例えばマイクロコンピュータ等よりなる制御手段 120により制御されるようになって おり、この動作を行うコンピュータのプログラムはフロッピや CD (Compact Disc)や フラッシュメモリゃノヽードディスク等の記憶媒体 122に記憶されている。具体的には、 この制御手段 120からの指令により、各ガスの供給や流量制御、マイクロ波や高周波 の供給や電力制御、プロセス温度やプロセス圧力の制御等が行われる。  [0049] Returning to Fig. 1, the overall operation of the plasma processing apparatus 32 configured as described above is controlled by the control means 120 made of, for example, a microcomputer. The computer program to be executed is stored in a storage medium 122 such as a floppy disk, a CD (Compact Disc), a flash memory or a node disk. Specifically, supply of each gas and flow control, supply of microwaves and high frequency, power control, control of process temperature and process pressure, and the like are performed according to commands from the control means 120.
[0050] 次に、以上のように構成されたプラズマ処理装置 32を用いて行なわれる例えばエツ チング方法について説明する。  Next, for example, an etching method performed using the plasma processing apparatus 32 configured as described above will be described.
[0051] まず、ゲートバルブ 40を介して半導体ウェハ Wを搬送アーム(図示せず)により処 理容器 34内に収容し、昇降ピン 50を上下動させることによりウェハ Wを載置台 36の 上面の載置面に載置し、そして、このウェハ Wを静電チャック 66により静電吸着する 。このウェハ Wは抵抗加熱ヒータ 58により所定のプロセス温度に維持され、図示しな いガス源カゝら例えば C1ガス、 Oガス及び Nガス等の所定のガスをそれぞれ所定の  First, the semiconductor wafer W is accommodated in the processing container 34 by the transfer arm (not shown) via the gate valve 40, and the wafer W is moved to the upper surface of the mounting table 36 by moving the lifting pins 50 up and down. The wafer W is mounted on the mounting surface, and the wafer W is electrostatically attracted by the electrostatic chuck 66. The wafer W is maintained at a predetermined process temperature by a resistance heater 58, and a predetermined gas such as C1 gas, O gas, and N gas, for example, a gas source (not shown) is set to a predetermined temperature.
2 2 2  2 2 2
流量でガス導入手段 78のガスノズル 80より処理容器 34内の処理空間 Sへ供給し、 圧力制御弁 44を制御して処理容器 34内を所定のプロセス圧力に維持する。  The gas nozzle 80 of the gas introduction means 78 is supplied to the processing space S in the processing container 34 at a flow rate, and the pressure control valve 44 is controlled to maintain the processing container 34 at a predetermined process pressure.
[0052] これと同時に、マイクロ波供給手段 84のマイクロ波発生器 102を駆動することにより 、このマイクロ波発生器 102にて発生したマイクロ波を、矩形導波管 99及び同軸導 波管 96を介して平面アンテナ部材 82のアンテナ板 88に供給して処理空間 Sに、遅 波材 90によって波長が短くされたマイクロ波を導入し、これにより処理空間 Sにプラズ マを発生させて所定のプラズマを用いたエッチング処理を行う。  At the same time, by driving the microwave generator 102 of the microwave supply means 84, the microwave generated by the microwave generator 102 is converted into the rectangular waveguide 99 and the coaxial waveguide 96. Then, it is supplied to the antenna plate 88 of the planar antenna member 82 to introduce the microwave whose wavelength is shortened by the retardation material 90 into the processing space S, thereby generating a plasma in the processing space S to generate a predetermined plasma. Etching process using is performed.
[0053] このように、アンテナ板 88の各スロット 86から処理容器 34内へマイクロ波が導入さ れると、 CI、 O、 Nの各ガスがこのマイクロ波によりプラズマ化されて活性化され、こ  [0053] As described above, when microwaves are introduced from the slots 86 of the antenna plate 88 into the processing vessel 34, the gases CI, O, and N are converted into plasma by the microwaves and activated.
2 2 2  2 2 2
の時発生する活性種によってウェハ Wの表面に形成されているエッチング対象層が エッチングされて除去される。そして、上記各ガスは、載置台 36の周辺部に略均等に 拡散しつつ下方へ流れて行き、排気口 42を介して排気路 48から排出される。またェ ツチング処理に際しては、バイアス用高周波電源 72より静電チャック 66中の導体線 6 4へバイアス用の高周波が印加されており、これにより、活性種等をウェハ表面に対 して直進性良く引き込むようにして、エッチング形状ができるだけ崩れないようにして いる。 The etching target layer formed on the surface of the wafer W is etched and removed by the active species generated at this time. Then, each of the gases flows downward while being diffused substantially evenly around the mounting table 36, and is discharged from the exhaust path 48 through the exhaust port 42. In the etching process, the conductor wire 6 in the electrostatic chuck 66 from the high frequency power supply 72 for bias is used. A high frequency for bias is applied to 4 so that active species and the like are drawn into the wafer surface with good straightness so that the etching shape is not collapsed as much as possible.
[0054] ここで、アンテナ板 88の中心部のコネクタ 97を介して供給された 2. 45GHzのマイ クロ波は、このアンテナ板 88の中心部から周辺部に向けて放射状に伝搬しつつ各ス ロット 86から下方の処理空間 Sに向けてマイクロ波を放射させる。ここで本発明装置 では、アンテナ板 88にスロット対を複数の同心円に沿って多列 L、 Lに配置し、且つ  Here, the 2.45 GHz microwave supplied through the connector 97 at the center of the antenna plate 88 is propagated radially from the center of the antenna plate 88 toward the periphery, and then A microwave is emitted from lot 86 toward processing space S below. Here, in the device of the present invention, the antenna plate 88 has slot pairs arranged in multiple rows L and L along a plurality of concentric circles, and
1 2  1 2
最内周の列 Lに位置するスロット対 100Aの組数を少なくして 8組以下、ここでは 5組 に設定しているので、各スロット対 100A、 100Bより放射されるマイクロ波の電界分布 力 このアンテナ板 88の中心を中心として高速で回転することになる。  The number of pairs of slots 100A located in the innermost row L is reduced to 8 or less, and here 5 is set, so the electric field distribution force of microwaves radiated from each slot pair 100A and 100B The antenna plate 88 rotates around the center at a high speed.
[0055] 換言すれば、最内周の列 Lのスロット対 100Aが 8個よりも多いと、例えば従来装置 のアンテナ板のようにスロット対が 12〜20個程度も存在すると、アンテナ板 88や遅 波材 90にスロット対間の干渉による定在波が発生し、これがために発生する電界分 布が回転せずに固定的になるため、プラズマ密度に濃淡が生ずる。し力しながら本 発明装置の場合には、最内周の列 Lのスロット対 100Aの数を 8個以下に設定した ので、すなわち隣り合うスロット対 100A同士の開き角 θ 1を π Ζ4 (角速度: 45度)以 上となるようにしたので、アンテナ板 88の中心部力も周辺部へ伝搬するマイクロ波は 、定在波ではなく進行波となり、この結果、上述のようにマイクロ波の電界分布が高速 で回転することになる。従って、処理空間 Sにおけるプラズマ密度を均一化させること ができる。 [0055] In other words, if there are more than eight slot pairs 100A in the innermost row L, for example, there are about 12 to 20 slot pairs as in the antenna plate of the conventional device, the antenna plates 88 and A standing wave due to interference between the pair of slots is generated in the slow wave material 90, and the electric field distribution generated due to this is fixed without rotating, and thus the density of the plasma density is generated. However, in the case of the device of the present invention, the number of slot pairs 100A in the innermost circumferential row L is set to 8 or less, that is, the opening angle θ 1 between adjacent slot pairs 100A is π Ζ4 (angular velocity Therefore, the microwave that propagates the central force of the antenna plate 88 to the peripheral part is not a standing wave but a traveling wave. As a result, the electric field distribution of the microwave is as described above. Will rotate at high speed. Therefore, the plasma density in the processing space S can be made uniform.
[0056] 図 5はマイクロ波の周波数が 2. 45GHzのとき、最内周の列 Lのスロット対 100Aの 数を 8個以下に設定した時に、電界分布が回転することを説明するための図である。 まず図示のように最内周の列 Lのスロット対 100Aの数だけアンテナ板 88を点線で 示すように分割して、この 1分割を 1セクタ一とする。マイクロ波はこの 1セクタ一の中 において、アンテナの中心よりスロット対 S1→S2→S3→S4と伝搬し、この間にマイク 口波パワー(エネルギー)の全てを放射して反射は起こらな 、ようにする。ここで最内 周の列 Lのスロット対数は、スロット対間の放射電界の相互干渉を抑制するために開 き角 θ 1が 45度以上必要であることから、最大値が 8個と定められる。また 1つの最内 周の列 Lのスロット対 100Aと、複数の最外周の列 Lのスロット対 100Bとが干渉しなFIG. 5 is a diagram for explaining that the electric field distribution rotates when the number of slot pairs 100A in the innermost row L is set to 8 or less when the microwave frequency is 2.45 GHz. It is. First, as shown in the figure, the antenna plate 88 is divided by the number of slot pairs 100A in the innermost row L as shown by the dotted line, and this division is made one sector. In this sector, microwaves propagate from the center of the antenna to the slot pair S1 → S2 → S3 → S4, and during this time, all of the microphone mouth wave power (energy) is radiated and no reflection occurs. To do. Here, the maximum number of slot pairs in the innermost row L is set to 8 because the opening angle θ 1 is required to be 45 degrees or more in order to suppress the mutual interference of the radiated electric field between the slot pairs. . One innermost The slot pair 100A in the circumferential row L does not interfere with the plurality of outermost row L slot pairs 100B.
1 2 1 2
いようにする必要がある。つまり最外周の列 Lのスロット対数は、本来のマイクロ波伝  It is necessary to make it. In other words, the number of slot pairs in the outermost row L is the original microwave transmission.
2  2
搬経路であるスロット対 S 1と S2の間のマイクロ波パワーの伝搬量力 スロット対 S 1と 異なるセクタ一に属するスロット対 S5間の伝搬量に対し、十分大きくなる(少なくとも 5 倍以上)ような数に設定される。このためには隣合う最外周の列 Lのスロット対間の開  Propagation power of microwave power between slot pair S1 and S2 which is the carrying path The propagation amount between slot pair S5 belonging to a sector different from slot pair S1 is sufficiently large (at least 5 times or more) Set to a number. For this purpose, an opening between adjacent slot pairs in the outermost row L is adjacent.
2  2
き角 Θ 2 (図 2参照)が 10度以上必要であり、つまり最外周の列 Lのスロット対数の上  The angle Θ 2 (see Fig. 2) must be 10 degrees or more, that is, above the logarithmic number of slots in the outermost row L
2  2
限は 36個となる。また最外周の列 Lのスロット対 100Bの数の下限値は、必要とされ  The limit is 36. Also, the lower limit of the number of 100B pairs of slots in the outermost row L is required.
2  2
るプラズマ電子密度から定まり、本願の場合にはそのプラズマ電子密度が 8 X 101G 個 Zcm3以上必要であることから 18個となる。 In the case of the present application, the plasma electron density is 8 × 10 1G Zcm 3 or more, so 18 is required.
[0057] さて図 5において、最内周の列 Lのスロット対 100Aと最外周の列 Lのスロット対 10 In FIG. 5, the slot pair 100A in the innermost row L and the slot pair 10 in the outermost row L
1 2  1 2
0Bとの距離(図 3における H3に相当する)を例えば(5Z4) · λとし、最外周の列 L の側のスロット対間の角度を例えば 15度とした場合、マイクロ波が伝搬するスロット対 S l、 S2、 S3、 S4におけるマイクロ波の位ネ目は、 S 1における位ネ目を基準(= 0度)とし て、 S 1 = 0度、 S2 = 90度、 S3 = 105度、 S4 = 120度となり、これらスロット対力ら放 射される合成電界はアンテナの周方向に回転することになる。  If the distance from 0B (corresponding to H3 in Fig. 3) is, for example, (5Z4) · λ, and the angle between the pair of slots on the outermost row L is 15 degrees, for example, the slot pair through which microwaves propagate The order of microwaves in S1, S2, S3, and S4 is S 1 = 0 degrees, S2 = 90 degrees, S3 = 105 degrees, S4 = 120 degrees, and the combined electric field radiated from these slot pair forces rotates in the circumferential direction of the antenna.
[0058] また、アンテナ板 88のコネクタ 97の外周と最内周の列 Lのスロット対 100Aとの間 の距離 HIをえ(1波長)以上の長さとし、且つアンテナ板 88の中心 Cと最内周の列 L のスロット対 100Aとの間の距離 H2を 1. 5 λ以上の長さに設定したので、上記マイ クロ波の電界分布がより円滑に高速で回転することになり、処理空間 Sにおけるブラ ズマ密度を一層均一化させることができる。  [0058] Further, the distance HI between the outer periphery of the connector 97 of the antenna plate 88 and the slot pair 100A in the innermost row L is set to a length of one wavelength or more, and the center C of the antenna plate 88 is Since the distance H2 between the slot pair 100A in the inner circumferential row L is set to a length of 1.5 λ or more, the above-mentioned microwave electric field distribution rotates more smoothly and at a higher speed, and the processing space The plasma density in S can be made more uniform.
[0059] <シミュレーションによる評価結果 >  [0059] <Evaluation results by simulation>
ここで、本発明装置の平面アンテナ部材 82のアンテナ板 88について、シミュレーシ ヨンによって評価を行ったので、その評価結果について説明する。また比較のために 従来装置のアンテナ板にっ 、ても評価を行った。  Here, since the antenna plate 88 of the planar antenna member 82 of the device of the present invention was evaluated by simulation, the evaluation result will be described. For comparison, the antenna plate of the conventional device was also evaluated.
[0060] アンテナ板は全て直径が 300mmサイズのウェハに対応する大きさである。図 6 (A )は従来装置の比較例を示し、図 6 (B)及び図 6 (C)は本発明装置の実施例 1及び 2 をそれぞれ示す。各図において、スロットパターンと電界分布の写真を示し、また一 部に理解を容易にするために電界分布の模式図を示している。尚、マイクロ波の周 波数は全て 2. 45GHzである。 [0060] The antenna plates are all sized to accommodate a 300 mm diameter wafer. FIG. 6 (A) shows a comparative example of the conventional apparatus, and FIGS. 6 (B) and 6 (C) show Examples 1 and 2 of the apparatus of the present invention, respectively. In each figure, a picture of the slot pattern and the electric field distribution is shown, and a schematic diagram of the electric field distribution is shown for easy understanding. In addition, the circumference of the microwave All wave numbers are 2.45GHz.
[0061] 図 6 (A)に示す従来装置のアンテナ板には、同心円状に 2列のスロット対を設けて おり、最内周には 20組のスロット対を配置し、第 2周目には 36組のスロット対を配置し ている。この場合には、同心円状に固定的な電界分布が形成されており、電界分布 が固定的であるために、プラズマ密度にも同心円状の濃淡が生じてしまっており、好 ましくない。 [0061] The antenna plate of the conventional device shown in Fig. 6 (A) is provided with two rows of slot pairs concentrically, with 20 slot pairs arranged on the innermost circumference, and on the second circumference. Has 36 slot pairs. In this case, a concentric fixed electric field distribution is formed, and since the electric field distribution is fixed, concentric shading is generated in the plasma density, which is not preferable.
[0062] これに対して、図 6 (B)に示す本発明装置の実施例 1の場合は、同心円状に 2列の スロット対を設けており、最内周には 3組のスロット対を配置し、第 2周目には 24組の スロット対を配置している。この場合には、電界分布が渦巻状に形成されており、しか も、この電界分布は高速で周方向に回転していることを確認することができた。  On the other hand, in the first embodiment of the device of the present invention shown in FIG. 6 (B), two rows of slot pairs are provided concentrically, and three slot pairs are provided on the innermost circumference. In the second round, 24 slot pairs are arranged. In this case, the electric field distribution was formed in a spiral shape. However, it was confirmed that this electric field distribution was rotating in the circumferential direction at a high speed.
[0063] また図 6 (C)に示す本発明装置の実施例 2の場合は、同心円状に 2列のスロット対 を設けており、最内周には 5組のスロット対を配置し、第 2周目には 24組のスロット対 を配置している。この場合には、最内周に 3組のスロット対がある場合よりも電界分布 が均一化され、明確な渦巻状のものは確認されないが、全体的に電界分布の強弱が 混在しており、しかも、この電界分布はスロット板の中心を中心として高速で周方向に 回転して ヽることを確認することができた。  In the second embodiment of the device of the present invention shown in FIG. 6 (C), two rows of slot pairs are provided concentrically, and five slot pairs are arranged on the innermost periphery. On the second lap, 24 slot pairs are arranged. In this case, the electric field distribution is more uniform than when there are three pairs of slots on the innermost circumference, and no clear spiral shape is confirmed, but the overall strength of the electric field distribution is mixed, In addition, this electric field distribution was confirmed to rotate in the circumferential direction at high speed around the center of the slot plate.
[0064] 尚、上記実施例ではスロット対 100を同心円状に 2列配列した場合を例にとって説 明したが、これに限定されず、アンテナ板 88の大きさにもよるがスロット対 100を同心 円状に 3列以上配列してもよい。  [0064] In the above embodiment, the case where the slot pairs 100 are arranged in two concentric rows has been described as an example. However, the present invention is not limited to this, and the slot pairs 100 are concentric depending on the size of the antenna plate 88. Three or more rows may be arranged in a circle.
[0065] 例えば遅波材 90の材質がアルミナである場合、遅波材中でのマイクロ波の波長は 石英の場合よりも相当短縮されるため、 300mmサイズのウェハ対応であっても容易 にスロット対を 3列配置することが可能である。この場合、最内周のスロット対と最外周 (3列目)のスロット対との間に、中間スロット対(2列目)を配することになる。ここで前 述したように、最内周のスロット対と 2列目のスロット対に対し、 Pl、 P2および H1〜H 3を定める。また新たに 2列目の各スロット対と 3列目のスロット対との間の距離を H4と する。すなわち H4は、 3列目の各スロット対の位置を P3 (図示せず)とした場合、 P3 を結んだ同心円と、 2列目の各スロット対の位置 P2を結んだ同心円との半径の差で ある。このときに H1〜H4のマイクロ波の波長えに対する関係は、 Hl≥え、 H2≥l. 5え、 H3 > λ Ζ2、 H4> λ Ζ2となる。また各列におけるスロット対の数は、 2≤最内 周のスロット対の数≤ 8、 4≤ 2列目のスロット対の数≤ 18、 18≤ 3列目(最外周)のス ロット対の数≤ 36である。なお 2列目のスロット対を設けることがスペース的に可能で あっても、これを設けなくてもよい。 [0065] For example, when the material of the slow wave material 90 is alumina, the wavelength of the microwave in the slow wave material is considerably shortened compared to the case of quartz. It is possible to arrange three pairs of pairs. In this case, an intermediate slot pair (second row) is arranged between the innermost slot pair and the outermost (third row) slot pair. As described above, Pl, P2, and H1 to H3 are determined for the innermost slot pair and the second row slot pair. Also, let H4 be the distance between each slot pair in the second row and the slot pair in the third row. That is, H4 is the difference in radius between the concentric circles connecting P3 and the concentric circles connecting the positions P2 of each slot pair in the second row, where the position of each slot pair in the third row is P3 (not shown). It is. At this time, the relationship between H1-H4 and the microwave wavelength is Hl≥e, H2≥l. 5) H3> λ Ζ2 and H4> λ Ζ2. The number of slot pairs in each row is 2≤ the number of innermost slot pairs ≤ 8, 4≤ the number of slot pairs in the second row ≤ 18, 18 ≤ the number of slot pairs in the third row (outermost) Number ≤ 36. Note that it is possible to provide the second row of slot pairs in terms of space, but this need not be provided.
[0066] また、ここではプラズマ処理としてプラズマエッチング処理を例にとって説明した力 これに限定されず、例えばプラズマスパッタ処理、プラズマ CVD処理、プラズマアツ シング処理等の全てのプラズマ処理に本発明を適用することができる。  [0066] Further, here, the power described by taking plasma etching as an example of plasma processing is not limited to this, and the present invention is applied to all plasma processing such as plasma sputtering processing, plasma CVD processing, and plasma ashing processing. be able to.
[0067] また、ここでは被処理体として半導体ウェハや LCD基板を例にとって説明したが、 これに限定されず、ガラス基板、セラミック基板等にも本発明を適用することができる  [0067] Although a semiconductor wafer or an LCD substrate has been described as an example of the object to be processed here, the present invention is not limited thereto, and the present invention can also be applied to a glass substrate, a ceramic substrate, or the like.

Claims

請求の範囲 The scope of the claims
[1] 中心を有し導電性の金属板よりなるアンテナ板を備え、  [1] comprising an antenna plate having a center and made of a conductive metal plate,
アンテナ板に互いに異なる方向に向けられ互いに近接する 2つの長溝状のマイクロ 波放射用のスロットよりなるスロット対を複数組設け、  The antenna plate is provided with a plurality of slot pairs each consisting of two slots for microwave radiation that are directed in different directions and close to each other,
前記アンテナ板に前記複数組のスロット対を複数の同心円に沿って多列に配置す ると共に、最内周の列に位置するスロット対は 8組以内となることを特徴とする平面ァ ンテナ部材。  The planar antenna member characterized in that the plurality of sets of slot pairs are arranged in multiple rows along a plurality of concentric circles on the antenna plate, and the number of slot pairs located in the innermost circumferential row is eight or less. .
[2] 前記最内周に位置するスロット対は、前記アンテナ板の中心側から、これに伝搬す るマイクロ波の波長えのえ(1波長)以上離間されていることを特徴とする請求項 1記 載の平面アンテナ部材。  [2] The slot pair located at the innermost circumference is spaced from the center side of the antenna plate by a wavelength of microwaves (one wavelength) propagating to the antenna plate or more. The planar antenna member according to 1.
[3] 前記アンテナ板の半径方向における前記スロット対が配置される同心円間の距離 は、これに伝搬するマイクロ波の波長えの λ Ζ2より大きい長さに設定されていること を特徴とする請求項 1記載の平面アンテナ部材。 [3] The distance between the concentric circles in which the slot pairs are arranged in the radial direction of the antenna plate is set to a length longer than λΖ2 of the wavelength of the microwave propagating therethrough. Item 2. The planar antenna member according to Item 1.
[4] 前記スロットの幅は 6mm以上であることを特徴とする請求項 1記載の平面アンテナ 部材。 4. The planar antenna member according to claim 1, wherein the slot has a width of 6 mm or more.
[5] 前記同心円状に配置されるスロット対のうち、最外周の列に配置されるスロット対の 組数は 18から 36組の範囲内に設定されていることを特徴とする請求項 1記載の平面 アンテナ部材。  5. The number of pairs of slot pairs arranged in the outermost row among the slot pairs arranged concentrically is set within a range of 18 to 36 sets. Planar antenna member.
[6] 前記マイクロ波の周波数は 2. 45GHzであることを特徴とする請求項 1記載の平面 アンテナ部材。  6. The planar antenna member according to claim 1, wherein the frequency of the microwave is 2.45 GHz.
[7] 天井部が開口されて内部が真空引き可能になされた処理容器と、  [7] A processing vessel having an opening in the ceiling and evacuated inside,
被処理体を載置するために前記処理容器内に設けた載置台と、  A mounting table provided in the processing container for mounting the object to be processed;
前記天井部の開口に気密に装着されて電磁波を透過する誘電体よりなる天板と、 前記天板の上面に設けられた平面アンテナ部材と、  A top plate made of a dielectric that is hermetically attached to the opening of the ceiling portion and transmits electromagnetic waves; and a planar antenna member provided on an upper surface of the top plate;
前記平面アンテナ部材に接続されるマイクロ波供給手段と、  Microwave supply means connected to the planar antenna member;
前記処理容器内へ所定のガスを導入するガス導入手段と、  Gas introduction means for introducing a predetermined gas into the processing container;
を備え、  With
前記平面アンテナ部材は、 中心を有し導電性の金属板よりなるアンテナ板を備え、 The planar antenna member is An antenna plate having a center and made of a conductive metal plate;
アンテナ板に互いに異なる方向に向けられ互いに近接する 2つの長溝状のマイクロ 波放射用のスロットよりなるスロット対を複数組設け、  The antenna plate is provided with a plurality of slot pairs each consisting of two slots for microwave radiation that are directed in different directions and close to each other,
前記アンテナ板に前記複数組のスロット対を複数の同心円に沿って多列に配置す ると共に、最内周の列に位置するスロット対は 8組以内となることを特徴とするプラズ マ処理装置。  A plurality of sets of slot pairs are arranged in a plurality of rows along a plurality of concentric circles on the antenna plate, and the number of slot pairs located in the innermost row is within 8 sets. .
[8] 前記最内周に位置するスロット対は、前記アンテナ板の中心側から、これに伝搬す るマイクロ波の波長えのえ(1波長)以上離間されていることを特徴とする請求項 7記 載のプラズマ処理装置。  [8] The slot pair located on the innermost periphery is spaced from the center side of the antenna plate by a wavelength of one wavelength or more of the microwaves propagating to the antenna plate. 7. The plasma processing apparatus described in 7.
[9] 前記アンテナ板の半径方向における前記スロット対が配置される同心円間の距離 は、これに伝搬するマイクロ波の波長えの λ Ζ2より大きい長さに設定されていること を特徴とする請求項 7記載のプラズマ処理装置。 [9] The distance between the concentric circles in which the slot pairs are arranged in the radial direction of the antenna plate is set to a length longer than λΖ2 of the wavelength of the microwave propagating therethrough. Item 8. The plasma processing apparatus according to Item 7.
[10] 前記スロットの幅は 6mm以上であることを特徴とする請求項 7記載のプラズマ処理 装置。 10. The plasma processing apparatus according to claim 7, wherein the slot has a width of 6 mm or more.
[11] 前記同心円状に配置されるスロット対のうち、最外周の列に配置されるスロット対の 組数は 18から 36組の範囲内に設定されていることを特徴とする請求項 7記載のブラ ズマ処理装置。  [11] The number of sets of slot pairs arranged in the outermost row among the slot pairs arranged concentrically is set within a range of 18 to 36 sets. Plasma processing equipment.
[12] 前記マイクロ波の周波数は 2. 45GHzであることを特徴とする請求項 7記載のブラ ズマ処理装置。  12. The plasma processing apparatus according to claim 7, wherein the frequency of the microwave is 2.45 GHz.
PCT/JP2007/060389 2006-05-22 2007-05-21 Planar antenna member and plasma processing deice using same WO2007136043A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006140988A JP4997826B2 (en) 2006-05-22 2006-05-22 Planar antenna member and plasma processing apparatus using the same
JP2006-140988 2006-05-22

Publications (1)

Publication Number Publication Date
WO2007136043A1 true WO2007136043A1 (en) 2007-11-29

Family

ID=38723356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060389 WO2007136043A1 (en) 2006-05-22 2007-05-21 Planar antenna member and plasma processing deice using same

Country Status (3)

Country Link
JP (1) JP4997826B2 (en)
TW (1) TWI392015B (en)
WO (1) WO2007136043A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224455A (en) * 2008-03-14 2009-10-01 Tokyo Electron Ltd Flat antenna member and plasma processing device with the same
CN101833239A (en) * 2009-03-10 2010-09-15 东京毅力科创株式会社 Substrate processing method using same
JP5422396B2 (en) * 2008-01-31 2014-02-19 東京エレクトロン株式会社 Microwave plasma processing equipment
WO2014054443A1 (en) * 2012-10-03 2014-04-10 東京エレクトロン株式会社 Antenna and plasma processing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5297885B2 (en) * 2008-06-18 2013-09-25 東京エレクトロン株式会社 Microwave plasma processing equipment
WO2012023402A1 (en) * 2010-08-20 2012-02-23 東京エレクトロン株式会社 Microlens array manufacturing method and microlens array

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050615A (en) * 2000-08-04 2002-02-15 Tokyo Electron Ltd Radial antenna and plasma device using the same
JP2002329716A (en) * 2001-04-27 2002-11-15 Canon Inc Plasma processing apparatus, plasma processing method and method for manufacturing element
JP2003133232A (en) * 2001-10-19 2003-05-09 Naohisa Goto Method and device for microwave plasma treatment, and microwave power supply device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191073A (en) * 1989-12-21 1991-08-21 Canon Inc Microwave plasma treating device
JPH05343334A (en) * 1992-06-09 1993-12-24 Hitachi Ltd Plasma generator
JP3233575B2 (en) * 1995-05-26 2001-11-26 東京エレクトロン株式会社 Plasma processing equipment
JP4076645B2 (en) * 1998-12-01 2008-04-16 東京エレクトロン株式会社 Microwave plasma processing apparatus and processing method thereof
JP3496560B2 (en) * 1999-03-12 2004-02-16 東京エレクトロン株式会社 Plasma processing equipment
JP4338355B2 (en) * 2002-05-10 2009-10-07 東京エレクトロン株式会社 Plasma processing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050615A (en) * 2000-08-04 2002-02-15 Tokyo Electron Ltd Radial antenna and plasma device using the same
JP2002329716A (en) * 2001-04-27 2002-11-15 Canon Inc Plasma processing apparatus, plasma processing method and method for manufacturing element
JP2003133232A (en) * 2001-10-19 2003-05-09 Naohisa Goto Method and device for microwave plasma treatment, and microwave power supply device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422396B2 (en) * 2008-01-31 2014-02-19 東京エレクトロン株式会社 Microwave plasma processing equipment
JP2009224455A (en) * 2008-03-14 2009-10-01 Tokyo Electron Ltd Flat antenna member and plasma processing device with the same
CN101833239A (en) * 2009-03-10 2010-09-15 东京毅力科创株式会社 Substrate processing method using same
CN101833239B (en) * 2009-03-10 2013-06-05 东京毅力科创株式会社 Substrate processing method
WO2014054443A1 (en) * 2012-10-03 2014-04-10 東京エレクトロン株式会社 Antenna and plasma processing apparatus
KR20150063036A (en) * 2012-10-03 2015-06-08 도쿄엘렉트론가부시키가이샤 Antenna and plasma processing apparatus
US10083819B2 (en) 2012-10-03 2018-09-25 Tokyo Electron Limited Antenna and plasma processing apparatus
KR102068861B1 (en) 2012-10-03 2020-01-21 도쿄엘렉트론가부시키가이샤 Antenna and plasma processing apparatus

Also Published As

Publication number Publication date
JP4997826B2 (en) 2012-08-08
TW200818309A (en) 2008-04-16
TWI392015B (en) 2013-04-01
JP2007311668A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP5438205B2 (en) Top plate for plasma processing apparatus and plasma processing apparatus
JP3496560B2 (en) Plasma processing equipment
KR100863842B1 (en) Plasma processing apparatus
JP2007213994A (en) Plasm treatment device, and plasma treatment method
US20070283887A1 (en) Microwave Plasma Processing Apparatus
WO2002005339A1 (en) Plasma processing apparatus
JP2006244891A (en) Microwave plasma processing device
US10546725B2 (en) Plasma processing apparatus
WO2007136043A1 (en) Planar antenna member and plasma processing deice using same
JP5096047B2 (en) Microwave plasma processing apparatus and microwave transmission plate
JP3430959B2 (en) Planar antenna member, plasma processing apparatus and plasma processing method using the same
JP2002134418A (en) Plasma processing system
WO2007091435A1 (en) Plasma treatment apparatus
WO2007148690A1 (en) Microwave introducing apparatus and plasma processing apparatus
US8273210B2 (en) Plasma processing apparatus and method for adjusting plasma density distribution
JP2002190449A (en) Plasma treatment apparatus
JP7058485B2 (en) Plasma processing equipment
WO2009113680A1 (en) Flat antenna member and a plasma processing device provided with same
JP2008182102A (en) Top plate member and plasma processing apparatus using the same
JPH11339997A (en) Plasma processing device
US10930477B2 (en) Plasma processing apparatus
JP4709192B2 (en) Plasma processing equipment
JP2001319884A (en) Plasma processing system
JP2013033979A (en) Microwave plasma processing apparatus
JP2002217185A (en) Plasma processor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743823

Country of ref document: EP

Kind code of ref document: A1