WO2007135808A1 - Railroad train operation management system and railroad train operation management program - Google Patents

Railroad train operation management system and railroad train operation management program Download PDF

Info

Publication number
WO2007135808A1
WO2007135808A1 PCT/JP2007/057249 JP2007057249W WO2007135808A1 WO 2007135808 A1 WO2007135808 A1 WO 2007135808A1 JP 2007057249 W JP2007057249 W JP 2007057249W WO 2007135808 A1 WO2007135808 A1 WO 2007135808A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
vehicle
position data
gps
operation management
Prior art date
Application number
PCT/JP2007/057249
Other languages
French (fr)
Japanese (ja)
Inventor
Hayato Sudou
Original Assignee
Kyosan Electric Mfg. Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosan Electric Mfg. Co., Ltd filed Critical Kyosan Electric Mfg. Co., Ltd
Priority to CN2007800186210A priority Critical patent/CN101448693B/en
Priority to KR1020087028724A priority patent/KR101055331B1/en
Publication of WO2007135808A1 publication Critical patent/WO2007135808A1/en
Priority to HK09107667.8A priority patent/HK1131774A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/10Operations, e.g. scheduling or time tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • B61L2205/04Satellite based navigation systems, e.g. global positioning system [GPS]

Definitions

  • the present invention relates to a technique for managing vehicle operation based on GPS signals received from a global positioning system (GPS), and in particular, operation of a railway vehicle traveling on a predetermined route such as a train or a train.
  • GPS global positioning system
  • the present invention relates to a railway vehicle operation management system and a railway vehicle operation management program that are suitable for alerting drivers and assisting driving by providing operation guidance.
  • Japanese Patent Publication No. 2003-137099 discloses an operation management system that includes a command center that manages the operation of a vehicle and a vehicle that is managed by this command center. Permissible literature 1). Then, when the command center transmits notification information including notification text information on driving instructions and alert location information specifying a location for alerting the notification main text information to the vehicle, the vehicle information processing device The position information from the GPS is compared with the alert location information included in the notification information, and when it is determined that the vehicle has reached the alert location, the driver is alerted to the notification text information. It has been.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-137099
  • the present invention has been made to solve such a problem, and automatically guides the driver to the stop station for each check point arbitrarily set on a predetermined route.
  • Various operation guidance such as alerting the degree of deviation from the scheduled time, vehicle speed restrictions, etc.
  • the driver can be supported at a precise timing, and even in areas where it is difficult to receive GPS signals, the location of the vehicle is predicted with high accuracy and high-precision operation management.
  • the purpose is to provide a railway vehicle operation management system and a railway vehicle operation management program.
  • a feature of the railway vehicle operation management system and the railway vehicle operation management program according to the present invention is a railway vehicle operation management system and a railway vehicle operation management program for managing the operation of a vehicle traveling on a railway line.
  • Specific curve data for specifying the curve position on the railway line
  • specific speed data for the vehicle speed change planned position for specifying the vehicle speed change position.
  • Route data storage means for storing the checkpoint position data, which is the latitude / longitude of the checkpoint, for managing the operation of the vehicle arbitrarily set on the route, the scheduled time of passing the checkpoint, the planned speed, and the stop Scheduled operation that stores station schedule information that is set as appropriate in association with the checkpoint position data.
  • Data storage means global positioning system (GPS) force GPS signal receiving means for receiving GPS signals, GPS data relating to the vehicle is calculated based on the GPS signals, and based on the GPS data and the operation schedule data. Therefore, a deviation from the scheduled passage time or a deviation from the planned speed at the checkpoint of the vehicle, the next stop station information is acquired, and the operation management processing means for managing the operation, and the operation management processing means It has a deviation from the scheduled passage time, a deviation from the planned speed, and an operation guidance output means for appropriately guiding the next stop station information to the driver.
  • GPS global positioning system
  • the operation management processing means calculates a GPS data calculating unit that calculates GPS data that includes measured position data, time data, speed data, and the like regarding the vehicle from the GPS signal; When the GPS signal reception number determination unit and the GPS signal reception number determination unit determine that three or more GPS signals have been received, the actual position data calculated from the GPS signal is determined.
  • the correction position data adoption unit that adopts the position data for correction and the GPS reception number determination unit, the correction position data immediately before, the time data Data and a correction data acquisition unit for acquiring the hourly speed data, and an estimated travel distance of the vehicle based on the elapsed time from the correction start position specified by the immediately previous correction position data and the hourly speed data.
  • a predicted travel distance calculation unit; and a predicted position data calculation unit that calculates predicted position data indicating a predicted position advanced by the predicted travel distance along the railway line specified by the route specific position data. And prefer to have, and.
  • the operation management processing means is obtained from the predicted position data and two GPS signals at this time when two GPS signal reception states continue for a predetermined time.
  • a position data comparison / determination unit for comparing and determining the measured position data. If the position data comparison / determination unit determines that the predicted position data is substantially equal to the actual position data, the correction data It is preferable that the position data adopter adopts the predicted position data or the actually measured position data as correction position data.
  • the position data comparison / determination unit connects the immediately preceding correction position data and the next route specific point, sets the predicted position on an ellipse, and the predicted position It is preferable to determine that the predicted position data is substantially equal to the measured position data when the measured position data is located within the range of the effective measurement zone set with a predetermined effective width with reference to .
  • the route data storage means includes a sub check that specifies a position of a sub check point that is set at a predetermined interval behind the check point position in the traveling direction of the vehicle on the railway line. Point position data is stored
  • the operation management processing means has a vehicle position force specified by the measured position data or predicted position data, and a predetermined position based on positions specified by the check point position data and the sub check point position data in the operation schedule data. It is preferable to have a checkpoint arrival determination unit that determines that the vehicle has reached the checkpoint when entering the CP measurement area provided with an effective range.
  • the operation management processing means compares the operation schedule data with the time data and the speed data, and predicts passage at a predetermined check point.
  • the deviation from the fixed time and the deviation from the scheduled speed are calculated and whether or not the predetermined allowable value is exceeded, or the acceleration analog data acquired from the three-dimensional acceleration sensor exceeds the predetermined allowable value.
  • An abnormal operation determination unit for determining whether or not abnormal operation is detected by the abnormal operation determination unit, and also receives data obtained from various equipment mounted on the vehicle or equipment power outside the vehicle.
  • an operation situation photographing unit that photographs the surrounding situation of the vehicle or the driving situation of the driver, and the abnormal data storage unit is photographed by the operation situation photographing unit. It is preferable to store the video data and the GPS data in the abnormal data storage means.
  • the abnormal data storage unit stores ATS data including a ground element ID obtained from an ATS (Automatic Train Stop) ground element and a vehicle speed in the abnormal data storage means. I prefer that.
  • the operation management processing means includes a comparison result between latitude / longitude data regarding the departure point of the vehicle and the GPS data, the check point position data, and the GPS data.
  • System check to determine whether or not the railway vehicle operation management system is operating normally based on the comparison result or the comparison result between the gyro sensor direction data and the direction data between check points. It is preferable to have a department.
  • the driver for each check point arbitrarily set on a predetermined route, the driver is automatically alerted to the guidance of the stop station, the degree of deviation from the scheduled time, and the vehicle speed limit. It is possible to support the driver by providing various operation guides at an appropriate timing, and to reduce the burden and stress on the driver. In addition, even in areas where GPS signals are difficult to receive, it is possible to predict the position of a vehicle with high accuracy and to manage operation with high accuracy while being inexpensive.
  • FIG. 1 is a block diagram showing a railway vehicle operation management system 1 according to this embodiment.
  • the railway vehicle operation management system 1 is installed in a driver's seat of a vehicle traveling on a railway line such as a train or a train, and manages the operation of the vehicle.
  • route data storage means 2 for storing various data relating to the route
  • operation schedule data storage means 3 for storing various data relating to the vehicle operation schedule
  • various data relating to vehicle operation results are mainly stored.
  • Operation data storage means 4 to perform, abnormal data storage means 5 to store data when abnormal operation occurs in the vehicle, global positioning system (GPS) force GPS signal reception means 6 to receive GPS signals, vehicle Operation guidance output means 7 that outputs various operation guidance to the driver of the vehicle, operation status imaging means 8 that captures the operation status, and operation management that executes various processes related to vehicle operation management And processing means 9.
  • GPS global positioning system
  • the route data storage means 2, the operation schedule data storage means 3, the operation result data storage means 4 and the abnormality data storage means 5 are appropriately configured by storage means such as a hard disk or a memory card.
  • the route data storage means 2 stores route data such as route specific position data, check point position data, and sub check point position data, as shown in FIG.
  • the operation schedule data storage means 3 stores operation schedule data such as train schedules
  • the operation record data storage means 4 stores operation record data
  • the abnormal data storage means 5 stores video data, etc. The data at the time of abnormality is stored.
  • the route specific position data is used to identify railway lines with simple information.
  • the curve specific point is for setting an effective measurement zone, and as shown in FIG.
  • the point where the railway line curves and the traveling direction of the vehicle changes is specified.
  • This curve specifying point is specified, for example, as latitude / longitude data of the apex of the curve.
  • the curve specific points as described above are set, the railway lines can be identified approximately by connecting them. For this reason, calculation of the predicted position of the vehicle, which will be described later, is simplified.
  • the planned vehicle speed change point specifies the point where the speed limit of the vehicle on the railway line changes, and is determined based on the scheduled operation.
  • the effective measurement zone is set by utilizing the property that the vehicle travels along a predetermined railway line, and as will be described later, the measured position data of the vehicle obtained from GPS is effective. It is for judging whether it is power.
  • the effective measurement zone is set with a predetermined effective width between the curve specific points mainly adjacent to each other along the route.
  • the effective width data indicating the effective width can be set and changed as appropriate, but is set to about 1 to 2 m in this embodiment.
  • the check point position data also includes the latitude and longitude data of the check point for managing the operation of the vehicle at an accurate timing.
  • Check points are arbitrarily set on the route connecting the specific points of the route such as the curve specific point and the planned vehicle speed change point described above, and are mainly set at points where guidance for assisting the driver is necessary.
  • the check point in this embodiment is the stop station guide point that provides the station name in front of the stop station to indicate whether it is a stop station or a passing station, and to check whether the vehicle is operating on time.
  • the diagram error confirmation point is configured.
  • the curve specific point and the vehicle speed change scheduled point are also set as check points.
  • the sub-checkpoint is used to follow a GPS signal acquisition failure at each checkpoint.
  • the sub-checkpoints are set at predetermined intervals on the railroad line from the respective checkpoint positions to the rear in the vehicle traveling direction.
  • the latitude / longitude data for each sub-checkpoint is stored as sub-checkpoint data.
  • the sub-checkpoint data may be specified based on the latitude / longitude data of the checkpoint, not the latitude / longitude data. ,.
  • the operation schedule data is composed of various data relating to the operation schedule of the vehicle and reflects the operation schedule.
  • data such as a checkpoint name, a scheduled passage time, a planned speed, and stop station guide information are appropriately set in association with each checkpoint.
  • the operation schedule data may consist of the data power of each route on which the vehicle is operated for each vehicle based on the vehicle, or the data for each route in charge of each driver based on the driver. Even if you make it from
  • the operation record data is composed of various data cards related to the vehicle operation record.
  • GPS data measured position data, time data, hourly speed data, traveling direction data, altitude data, etc.
  • predicted position Data corrected position data, etc.
  • the predicted position data is also configured as a latitude / longitude data identifier at the predicted position of the vehicle.
  • the correction position data is used to calculate the predicted position.
  • the measured position data calculated when three or more GPS signals are received, or the predicted position data with high reliability. Is stored as correction position data.
  • the data at the time of abnormality is composed of various data when an abnormal operation occurs in the operation status of the vehicle.
  • video data captured by the operation status imaging means 8 GPS data acquired from GPS, and ATS data capabilities such as ground unit ID and vehicle speed obtained from the ground unit of ATS (Automatic Train Stop) It is composed.
  • ATS data capabilities such as ground unit ID and vehicle speed obtained from the ground unit of ATS (Automatic Train Stop) It is composed.
  • the data at the time of abnormality is not limited to the above data, but can be used to analyze the abnormal operation and investigate the cause.
  • Equipment power You may record various data received!
  • the GPS signal receiving means 6 is configured with a GPS antenna equal force, and receives a GPS signal that also transmits the GPS satellite force of the global positioning system.
  • the operation plan output means 7 includes a speaker for outputting voice guidance and a display for displaying the operation guidance. It is configured to output various operation information such as timely information and emergency information to the vehicle driver.
  • the operation status photographing means 8 is composed of a moving image photographing device such as a digital video camera, and obtains the operation status as video data. In this embodiment, two digital video cameras are mounted so as to photograph the front of the vehicle and the driver's seat.
  • the operation management processing means 9 is composed of a CPU (Central Processing Unit) and the like, and controls each component means based on the railway vehicle operation management program of the present embodiment, and various kinds of operations necessary for operation management. Data is acquired and operation processing is executed in a timely manner.
  • the main processing of the operation management processing means 9 will be explained.
  • the GPS data on the vehicle is calculated based on the GPS signal received by the GPS signal receiving means 6, and the vehicle corresponding to the operation schedule is calculated based on the GPS data and the operation schedule data. As a result, it is possible to grasp the actual operation status of the vehicle and manage the operation to support the driver, and at the same time, alert the occurrence of abnormalities in operation at an early stage.
  • the operation management processing means 9 mainly includes an operation data acquisition unit 91, a GPS signal acquisition unit 92, a GPS data calculation unit 93, a system check unit 94, a GPS signal reception number determination unit 95, and a correction.
  • the operation data acquisition unit 91 acquires various data necessary for operation of the vehicle. Specifically, route specific location data, checkpoint location data, and sub-checkpoint location data are acquired from the route data storage means 2, and operation schedule data is acquired from the operation schedule data storage means 3. RU
  • the GPS signal acquisition unit 92 acquires the GPS signal received by the GPS signal receiving means 6.
  • GPS signals are acquired at intervals of about 1 second and provided to the GPS data calculation unit 93.
  • the GPS signal indicates time information and GPS satellite position. It is composed of signal force with orbital information etc. multiplexed.
  • the GPS data calculation unit 93 calculates GPS data that also includes measured position data, time data, speed data, traveling direction data, altitude data, and the like regarding the vehicle. To do.
  • the arrival time taken to receive the GPS signal is calculated from the time information in the GPS signal and the reception time in the GPS signal receiving means 6, and the arrival time and the propagation speed of the GPS signal are calculated.
  • the distance between the GPS satellite and the GPS signal receiving means 6 Since this distance is, for example, the distance connecting the reception position of the GPS signal receiving means 6 and the position of the GPS satellite, a two-dimensional equation consisting of three variables (latitude, longitude, and altitude) is established. Therefore, when three or more GPS signals are received, accurate measured position data (latitude and longitude) and altitude data are calculated.
  • the altitude of the vehicle Assuming that the altitude of the vehicle is almost unchanged, the altitude can be set to a constant value, so even if the number of GPS signals received is two, the measured position data (latitude and longitude) will be accurate to some extent. On the other hand, accurate data is always obtained for time data, hourly speed data, and traveling direction data regardless of the number of GPS signals received.
  • the system check unit 94 checks the operation status of the railway vehicle operation management system 1 and detects a failure. Specifically, at the time of departure, the latitude / longitude data related to the departure point of the vehicle and the measured position data calculated by the GPS data calculation unit 93 are acquired to determine whether or not they match. To do. If they match, it is determined that the system is operating normally. On the other hand, if there is a discrepancy or the GPS signal is not received, an error message indicating that the read route data is incorrect! /, Or that the GPS signal receiving means 6 has failed is output to the operation guidance. Output from means 7.
  • the latitude / longitude data of the departure point may be entered manually by the driver at the time of delivery, or the latitude / longitude data is automatically set by selecting the name of the first departure point that is preset in the route data and schedule data. ⁇ Even with a configuration that identifies longitude data.
  • the system check unit 94 has a function of self-diagnosis of the operation status of the system even when the system is running. Specifically, checkpoint position data and GPS data are acquired, and it is determined whether the vehicle traces each checkpoint in turn! As long as you trace accurately, the system will work properly. Judge that On the other hand, if an abnormality is recognized, an error message is output.
  • the vehicle of the present embodiment is provided with a gyro sensor example for measuring the direction of the vehicle. Therefore, the system check unit 94 according to the present embodiment acquires the vehicle direction data obtained by the gyro sensor Sj and the direction data between the check points, and determines whether or not the forces are the same. If they match, it is determined that the system is operating normally. On the other hand, if they do not match, an error message is output. In addition, for the bearing data between checkpoints, the checkpoint position data force is also calculated.
  • the GPS signal reception number determination unit 95 determines the number of GPS signals received. As described above, the accuracy of GPS data varies depending on the number of GPS signals received. Therefore, in the present embodiment, correction processing for position data, which will be described later, is appropriately executed based on the number of received GPS signals! / Speak.
  • the correction data acquisition unit 96 acquires data necessary for correction processing of vehicle position data.
  • the previous correction position data, time data, and hourly speed data are acquired from the operation result data storage means 4.
  • the previous correction position data is the actual position data calculated when three or more GPS signals are received, or when the number of GPS signals received is two or less for a predetermined period of time.
  • This is the latest measured position data or the predicted position data when the measured position data is almost equal to the predicted position data described later. That is, the latest vehicle position is identified from among highly reliable vehicle positions, and this position is set as a correction start position in this embodiment.
  • the predicted travel distance calculation unit 97 calculates the predicted travel distance that the vehicle would have traveled while a highly reliable vehicle position could not be obtained. Specifically, the elapsed time from the correction start position is calculated based on the correction position data and time data immediately before acquired by the correction data acquisition unit 96, and the vehicle is calculated based on the elapsed time and hourly speed data. Calculates the predicted mileage!
  • the predicted position data calculation unit 98 calculates the predicted position of the vehicle. Specifically, the railway line is identified by the route specific position data acquired by the correction data acquisition unit 96. Then, the latitude and longitude of the predicted position advanced by the corrected starting position force predicted travel distance along this route is acquired as predicted position data.
  • a first straight line connecting the correction start position and the nearest curve specific point is calculated. If the length of the first straight line is L or more, the first straight line is calculated. The position advanced by the correction start position force L on the straight line is acquired as the predicted position. On the other hand, if the length of the first straight line is smaller than L, the second straight line connecting the next curve specific point and the nearest curve specific point is calculated. On the second straight line, the latitude and longitude of the position advanced by [L (length of the first straight line)] from the nearest curve specific point is acquired as predicted position data.
  • the unreceivable time determining unit 99 determines whether or not the state where the GPS signal reception power is less than or equal to a predetermined time has elapsed for a reason such as passing through a dead zone.
  • the force for which the duration is set to 5 seconds can be set as appropriate by the user.
  • the number of GPS signals received is 2 or less and the checkpoint is passed before 5 seconds elapses. Let's force the vehicle position data correction process described later to be executed without waiting for 5 seconds.
  • the position data comparison / determination unit 100 compares and determines the actually measured position data calculated by the GPS data calculation unit 93 and the predicted position data calculated by the predicted position data calculation unit 98.
  • the predicted position data is substantially equal to the measured position data.
  • the measured position data is regarded as inaccurate.
  • the correction position data adoption unit 101 employs correction position data for correcting the position data of the vehicle. Specifically, when the GPS signal reception number discriminating unit 95 determines that the number of GPS signal receptions is 3 or more, the measured position data calculated by the GPS data calculation unit 93 is used as correction position data. And stored in the operation result data storage means 4. Even when the number of receptions is reduced to two, accurate location information may be transmitted. Therefore, the number of GPS signals received is 2 or less by the reception unavailable time discriminator 99. If the position data comparison / determination unit 100 determines that the predicted position data and the measured position data are substantially equal, the predicted position data or the measured position data Is adopted as correction position data and stored in the operation result data storage means 4.
  • the vehicle position adopting unit 102 obtains highly reliable, actually measured position data or predicted position data as vehicle position data.
  • the measured position data adopted by the correction position data adopting unit 101! /! Employs the predicted position data as the position data of the vehicle. Therefore, in this embodiment, not only when the number of GPS signals received is 3 or more, but also when the number of receptions is 2 or less, the state continues for a predetermined time, and the measured position data is the predicted position data. Is approximately equal to the actual position data or the predicted position data, the vehicle position data is adopted. This is based on the fact that even when the number of receptions is two, the error in the measured position data is not necessarily large.
  • the abnormal operation determination unit 103 determines whether or not the vehicle operation status is normal. Specifically, schedule data and GPS data are acquired and compared. Then, the deviation between the actual passage time and the scheduled passage time at the predetermined checkpoint and the deviation between the actual passage speed and the scheduled speed are calculated, and it is determined whether or not the predetermined allowable value is exceeded. It has become.
  • the vehicle of the present embodiment is provided with a three-dimensional acceleration sensor Sa for measuring acceleration in a three-dimensional direction. Then, the abnormal operation determination unit 103 constantly acquires the acceleration analog data output from the three-dimensional acceleration sensor Sa, and determines whether or not this data exceeds a predetermined allowable value indicating the normal operation range. Come to judge. Furthermore, in this embodiment, even when an ATS (Automatic Train Stop) system is activated, it is detected that an abnormal operation has occurred in the operation of the vehicle.
  • ATS Automatic Train Stop
  • the abnormal data storage unit 104 stores various abnormal data before and after the occurrence of the abnormal operation in the abnormal data storage means 5.
  • video data, GPS data, ATS data, and the like are stored as abnormal data.
  • the images taken by the operation status photographing means 8 The image data is sequentially and temporarily stored in an image memory (not shown), and is erased in order from the oldest. Therefore, when an abnormality is detected by the abnormal operation determination unit 103, the abnormal time data storage unit 104 acquires the occurrence time of the abnormal operation and also acquires video data for two minutes before and after the occurrence time from the image memory. However, it is stored in the abnormal data storage means 5.
  • the check point arrival determination unit 105 determines whether or not the vehicle has reached the check point.
  • the checkpoint arrival determination unit 105 sets checkpoint measurement areas (hereinafter referred to as “CP measurement areas”) corresponding to the checkpoints in consideration of errors in the vehicle position data. When the vehicle position is included in this CP measurement area, it is determined that the vehicle has reached the checkpoint.
  • CP measurement areas checkpoint measurement areas
  • the CP measurement area has a substantially square shape set with a predetermined effective range with the position specified by the checkpoint position data as a reference (center).
  • a main measurement area and a sub-measurement of a substantially square shape that is set adjacent to this main measurement area and is set with a predetermined effective range with the position specified by the sub check point data as the reference (center) It consists of an area. Therefore, the check point arrival determination unit 105 acquires the check point position data and the sub check point position data from the route data storage unit 2 to identify the CP measurement area, and the vehicle position adopted by the vehicle position adoption unit 102. Data is acquired and compared with the CP measurement area.
  • the size of the CP measurement area is assumed to be set according to the speed of the vehicle. In this embodiment, it is assumed that the vehicle travels at 60 kmZh (approximately 18 mZs), and the main measurement area is set.
  • the sub-measurement area is a square with a side of 36m and two vertices are set on the route.
  • the GPS signal acquisition unit 92 of the present embodiment is configured to acquire GPS signals at a rate of once per second. Therefore, GPS signals are received within an error range of about 1 second in each measurement area, so there is an opportunity to acquire a GPS signal at least four times at one checkpoint.
  • the operation guide output unit 106 causes the operation guide output means 7 to output a predetermined operation guide. It is. Specifically, when the checkpoint arrival determination unit 105 determines that the vehicle has reached a predetermined checkpoint, various information corresponding to the checkpoint is acquired from the operation schedule data storage unit 3. The speaker power also indicates that the actual vehicle passing time is different from the scheduled checkpoint passing time, the actual passing speed is different from the scheduled speed, the next stop station, the checkpoint name and the speed limit change, etc. Voice guidance or display guidance is provided on the display.
  • the operation result data storage unit 107 stores the operation result data in the operation result data storage means 4. Specifically, when the checkpoint arrival determination unit 105 determines that the vehicle has reached the end point on a predetermined route, the passing data of the vehicle at each checkpoint, GPS data acquired every second, etc. It is stored in storage means 4.
  • the next route data discriminating unit 108 discriminates whether or not there is a train line to be operated next in the scheduled operation data when the operation of the railway line with the vehicle power ⁇ is finished. is there . As a result of the determination, if there is a railway line to be operated next, the railway vehicle operation management system 1 of the present embodiment continues to execute the operation management, while if there is no railway line to be operated next, the railway vehicle operation is performed. Management system 1 comes to an end!
  • the operation data acquisition unit 91 operates the vehicle according to the operation of the driver inputting the assigned route. Obtain route data and schedule data for railway lines (Step Sl). Subsequently, when the GPS signal acquisition unit 92 acquires a GPS signal from the GPS signal receiving means 6 (step S2), various GPS data are calculated by the GPS data calculation unit 93 (step S3). Based on the GPS data, route data, and operation schedule data, the system check unit 94 checks the operation status of the railway vehicle operation management system 1 (step S4).
  • Step S4 As a result of the check, if there is no abnormality in the operation of the system (Step S4: OK), while waiting for the vehicle to start operation (Step S5), if a failure is found (Step S4: NG), the operation An error message is output to the line guidance output means 7 (step S6). As a result, the driver is prevented from using the wrong route data or operation schedule data or operating the vehicle in a state where the GPS signal receiving means 6 functions.
  • step S5 when the operation of the vehicle is started (step S5: YES), the vehicle position data correction shown in Fig. 5 is corrected while the vehicle is operating on the railway line defined in the route data and the operation schedule data.
  • the vehicle position is acquired at any time by the processing (step S7).
  • step S7 the vehicle position data correction process executed in step S7 will be described with reference to FIG.
  • the GPS signal acquisition unit 92 acquires a GPS signal from the GPS signal receiving means 6 at intervals of about 1 second (step S21). Based on this GPS signal, the GPS data calculation unit 93 GPS data is calculated (step S22).
  • the operation status photographing means 8 starts photographing, and the video data is stored in the image memory.
  • the GPS signal reception number discriminating unit 95 determines the reception number of GPS signals received in step S21 (step S23), and when the reception number is 3 or more (step S23: YES), the step The measured position data calculated in S22 is determined to be highly accurate, and the process proceeds to step S29 described later.
  • step S23 when the number of GPS signals received is 2 or less (step S23: NO), first, the correction data acquisition unit 96 acquires the previous correction position data, time data, and hourly speed data ( Based on these data, the predicted travel distance calculation unit 97 calculates the predicted travel distance of the vehicle (step S25). Then, based on the predicted travel distance and the route specific position data, the predicted position data calculation unit 98 calculates predicted position data of the vehicle (step S26).
  • step S27: NO the number of GPS signals received in step S23 is 1 (step S27: NO)
  • the measured position data is inaccurate, so the process returns to step S21 to receive the GPS signal again. Wait.
  • step S27: YES the number of GPS signals received is 2 (step S27: YES)
  • the position data comparison discriminating unit 100 Actual position data The identity of the data and the predicted position data is determined (step S29).
  • an effective measurement of a predetermined width along the route between adjacent curve specific points is performed using the feature that the railway vehicle travels on a predetermined route! A zone has been set.
  • the identity between the measured position data and the predicted position data is determined based on whether or not the measured position data is detected in the effective measurement zone. This simplifies the arithmetic processing required to determine the identity of both, and the load on the position data comparison / determination unit 100 can be reduced while maintaining accuracy.
  • step S29 when it is determined that the measured position data and the predicted position data are substantially equal U (step S29: YES), the measured position data or the predicted position data is determined.
  • the position data is estimated to be almost accurate. For this reason, one of these is adopted as correction position data by the correction position data adoption unit 101 and stored in the operation result data storage means 4 (step S30).
  • predicted position data calculated in principle is adopted.
  • step S23: YES when the number of GPS signals received is 3 or more (step S23: YES), the measured position data calculated in step S22 is highly accurate. Store in data storage means 4 (step S30).
  • the vehicle position adoption unit By 102 Since the actual position data or the predicted position data adopted by the correction position data adoption unit 101 has accuracy within an allowable range as described above, the vehicle position adoption unit By 102, it is adopted as vehicle position data (step S31). As described above, not only when the number of GPS signals received is 3 or more, but also when the status is 2 or less for a predetermined period of time, there is high reliability. Since the data is employed as the vehicle position data, the position data acquisition probability is improved while maintaining the accuracy of the vehicle position data.
  • step S28 if the number of GPS signals received is 2 or less for a predetermined period of time (step S28: NO), the process returns to step S21 and waits to receive GPS signals again. . In addition, even if the identity between the measured position data and the predicted position data is denied (step S29: NO), the reliability of the measured position data is low, so the process returns to step S21 to receive the GPS signal again. I will come to wait for you.
  • the abnormal operation determination unit 103 determines the operation status of the vehicle based on the operation schedule data and the GPS data.
  • step S8: YES the process proceeds to step S9.
  • the abnormal data storage unit 104 stores the video data and GPS data before and after the occurrence time of the abnormal operation as abnormal data storage means 5 (Step S10), the process proceeds to step S9.
  • data before and after the occurrence of an abnormal operation is automatically saved, so it is used to investigate the cause of the abnormal operation and prevent recurrence.
  • the abnormal operation determination unit 103 constantly monitors the acceleration analog data acquired from the three-dimensional acceleration sensor Sa regardless of the operation schedule data and GPS data. In comparison with GPS data, sudden accidents and vehicle abnormalities that may be delayed are judged immediately. Specifically, when the driver suddenly brakes, when the vehicle steps on a foreign object (such as a stone, log, or bicycle) placed on the track, or when the vehicle leans unnaturally due to a gust of wind, etc. Because of the acceleration that is not seen during normal operation, abnormal operation is detected. As a result, even if the cause of an abnormal accident that is difficult for even the driver to detect in advance occurs, data before and after the occurrence of the abnormality is saved!
  • a foreign object such as a stone, log, or bicycle
  • step S9 the checkpoint arrival determination unit 105 determines whether or not the vehicle has reached one of the checkpoints.
  • step S9 determines that the vehicle has reached the checkpoint set in the CP measurement area.
  • step S9 YES
  • the process returns to step S7 and repeats the loop process until the checkpoint is reached.
  • step S9 When it is determined that the vehicle has reached one of the checkpoints (step S9: YES), the system check unit 94 performs a check based on the trace status of each checkpoint and the direction information by the gyro sensor Sj. Check the operating status of this system (step S11). As a result of this check, if there is no abnormality in the system operation (step Sl l: OK), proceed to step S12. On the other hand, if an abnormality is recognized (step S11: NG), an error message is output to the operation guidance output means 7 (step S13). As a result, in the unlikely event that this system breaks down while driving, the driver or operation manager can immediately recognize and take appropriate action.
  • the operation guide output unit 106 outputs a predetermined operation guide from the operation guide output means 7 (step S12).
  • the driver of the vehicle is voice-guided about the deviation of the actual passage time with respect to the scheduled passage time of the checkpoint and the deviation of the actual traveling speed with respect to the limit speed, or the name of the next stop station or Voice guidance or display on the display that the speed limit will be changed
  • step S7 to S12 are repeated (step S14: NO), and when the end point is reached (step S14). : YES), the operation result data storage unit 107 stores various data obtained by the operation management process in the operation result data storage means 4 (step S15).
  • step S16: YES the next route data discriminating unit 108 repeats the processes from step S1 to S15 until the operation is completed for all railway lines in the operation schedule data (step S16: YES), and the operation schedule data
  • step S16: NO the operation management by the railway vehicle operation management system ends.
  • a test for managing the operation of an electric vehicle was performed by the above-described railcar operation management system 1 of the present embodiment.
  • the actual operation to A station power B station resulted in the results shown in Fig. 7.
  • the speed change point an announcement was made that the speed limit would be limited to 50 kmZh.
  • an announcement was made that the 50 kmZh speed limit was to be released, and an announcement was made that the actual transit time was 13 seconds behind the scheduled transit time.
  • railway vehicle operation management system 1 and the railway vehicle operation management program according to the present invention are not limited to the above-described embodiments, and can be changed as appropriate.
  • the predicted position data may be used as the vehicle position data in preference to the data. Also, by using the characteristics that the railway operates on the predetermined route, it is possible to learn the passing time and passing position in the dead zone and to predict and set in advance.
  • the operation data acquisition unit 91 acquires various data from the memory card, and the operation result data storage unit 107 stores the operation result data in the memory card.
  • a separate transmission / reception means for transmitting / receiving data may be provided to receive predetermined operation management center operation data and transmit operation result data to the operation management center.
  • the force for collecting vehicle traveling direction data based on GPS data acquired every second is not limited to this.
  • Gyro sensor 3 ⁇ 4 to vehicle direction data May be obtained at any time.
  • the vehicle travel correction can be established with high accuracy using the azimuth data output from the gyro sensor 3 ⁇ 4! / .
  • FIG. 1 is a block diagram showing an embodiment of a railway vehicle operation management system according to the present invention.
  • FIG. 2 is a plan view showing a railway line according to the present embodiment.
  • FIG. 3 is a plan view showing a main measurement area and a sub measurement area of the present embodiment.
  • FIG. 4 is a flowchart of processing executed by the railway vehicle operation management system of the present embodiment.
  • FIG. 5 is a flowchart of vehicle position data correction processing executed by the railway vehicle operation management system of the present embodiment.
  • FIG. 6 A table showing the operation schedule data used in this example.
  • FIG. 7 is a diagram showing experimental results according to the present example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

A railroad train operation management system and program for automatically giving various types of operation guidance such as the guidance on the stop station, the variation from the scheduled time, warning of the train speed limit to the motorman at an adequate timing at each check point arbitrary set on a predetermined line to support the motorman and realizing operation management with high precision by predicting the position of the train with high precision at low cost even in a region where the GPS signal is hard to receive. The system comprises line data storage means (2) for storing line specific position data and check point position data, operation schedule data storage means (3) for storing operation schedule data, GPS signal receiving means (6) for receiving the GPS signal, operation management means (9) for performing operation management of trains according to the GPS data and operation schedule data on the trains computed from the GPS signal, and operation guidance output means (7) for giving the motorman the information acquired by the operation management means.

Description

明 細 書  Specification
鉄道車両運行管理システムおよび鉄道車両運行管理プログラム 技術分野  Railway vehicle operation management system and railway vehicle operation management program
[0001] 本発明は、グローバルポジショニングシステム(GPS)から受信する GPS信号に基 づいて車両の運行を管理する技術に関し、特に、電車や汽車等のように既定路線上 を走行する鉄道車両の運転士に対して注意を喚起したり、運行案内を行って運転を 補助するのに好適な鉄道車両運行管理システムおよび鉄道車両運行管理プロダラ ムに関するものである。  TECHNICAL FIELD [0001] The present invention relates to a technique for managing vehicle operation based on GPS signals received from a global positioning system (GPS), and in particular, operation of a railway vehicle traveling on a predetermined route such as a train or a train. The present invention relates to a railway vehicle operation management system and a railway vehicle operation management program that are suitable for alerting drivers and assisting driving by providing operation guidance.
背景技術  Background art
[0002] 従来力 鉄道は各市町村を結ぶ主要な交通手段であり、駅を中心に町が形成され るなど人々の生活に密着した存在となっている。また鉄道は輸送量が多ぐ安全性も 高いという理由から利用率も高い。一方、万が一、鉄道事故が発生した場合には大 惨事に繋がり多くの死傷者を出してしまうおそれがある。従って、鉄道各社は細心の 注意を払っている力 人為的ミスを 100%なくすることは不可能である。特に、近年で は利用者の増大に伴って過密な運行スケジュールが組まれて 、るが、発着時刻の厳 守が求められて 、ることから運転士には大きな緊張と負担が強 、られて 、る。  [0002] Conventional power Railways are the main means of transportation connecting municipalities, and are closely related to people's lives, such as the formation of towns around stations. Railways also have a high utilization rate because of their high transportation volume and high safety. On the other hand, if a railway accident occurs, it may lead to a catastrophe and cause many casualties. Therefore, it is impossible for railway companies to eliminate 100% human error. In particular, due to the increase in the number of users in recent years, an overcrowded operation schedule has been established, but strict adherence to departure and arrival times has been demanded, which has caused great tension and burden on the driver. RU
[0003] さらに、運行車両には、普通、急行、快速、特急、特快など、様々な種類が決めら れており停車駅や通過駅が異なるため、運転士は常に集中していなければうっかり 停車駅を間違えてしまう。し力も車両は景色の変化が少な 、真っ直ぐな線路上を走 行するため、集中力が持続しにくい環境といえる。  [0003] In addition, there are various types of operating vehicles such as normal, express, express, express, and express, and the stopping and passing stations are different, so if the driver is not always concentrated, it will stop carelessly. Make a mistake in the station. However, since the vehicle runs on a straight track with little change in scenery, it can be said that the concentration is difficult to maintain.
[0004] 以上のような状況下では、鉄道運転士に相当なストレスと負担が存在すると考えら れ、このような鉄道運転士をサポートする仕組みを導入することが鉄道事故を未然に 防ぐために急務であり、社会的ニーズとしても求められて ヽるところである。  [0004] Under the circumstances described above, it is considered that there is considerable stress and burden on the railway operator, and it is urgent to introduce a mechanism to support such a railway operator in order to prevent a railway accident. It is a place that is demanded as a social need.
[0005] 上述したニーズを考慮したものとして、 GPSから車両の位置情報を取得し、この位 置情報に基づいて車両の運行を管理するための技術が提案されている。例えば、特 開 2003— 137099号公報には、車両の運行を管理する指令センタと、この指令セン タによって管理される車両とから構成される運行管理システムが開示されている(特 許文献 1)。そして、指令センタが、運転指示に関する通告本文情報と、この通告本 文情報に対する注意を喚起する位置を指定する注意喚起位置情報とを含む通告情 報を車両に送信すると、車両の情報処理装置は、 GPSからの位置情報と前記通告 情報に含まれる注意喚起位置情報とを比較し、車両が前記注意喚起位置に到達し たと判断した場合、通告本文情報に対する注意を運転士に喚起するように構成され ている。 [0005] In consideration of the above-described needs, a technique for acquiring vehicle position information from GPS and managing vehicle operation based on this position information has been proposed. For example, Japanese Patent Publication No. 2003-137099 discloses an operation management system that includes a command center that manages the operation of a vehicle and a vehicle that is managed by this command center. Permissible literature 1). Then, when the command center transmits notification information including notification text information on driving instructions and alert location information specifying a location for alerting the notification main text information to the vehicle, the vehicle information processing device The position information from the GPS is compared with the alert location information included in the notification information, and when it is determined that the vehicle has reached the alert location, the driver is alerted to the notification text information. It has been.
[0006] 特許文献 1 :特開 2003— 137099号公報  [0006] Patent Document 1: Japanese Patent Application Laid-Open No. 2003-137099
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、特許文献 1に記載の運行管理システムにお 、ては、指令センタ側で 車両の運行を監視している。このため、運転士の注意を喚起したい場合には、指令 センタの管理者が通告情報を作成し、この通告情報を配信すべき車両を指定した上 で送信しなければならず煩雑であるし、管理者のミスによって通告をし損ねる可能性 がある。し力も車両に緊急事態が生じた場合、司令センタからの指令待ちでは注意 喚起が遅すぎて意味がな 、場合も多 、。  However, in the operation management system described in Patent Document 1, the operation of the vehicle is monitored on the command center side. For this reason, if you want to call the driver's attention, the command center manager must create notification information, specify the vehicle to which this information should be delivered, and send it. There is a possibility of failing to make a notification due to an administrator's mistake. However, when an emergency situation occurs in a vehicle, it is often meaningless to wait for a command from the command center because the alert is too late.
[0008] また、 GPSによる位置情報の取得に際しては、 GPS信号を少なくとも 3つ以上受信 しなければ、正確な位置情報を算出することができない。このため、高層ビルが立ち 並ぶ地域や、屋根のある駅舎等においては、 GPS信号の受信数が減り、車両の現 在位置を正確に特定できない場合が多い。そして、車両の位置情報が誤っていると 、運転士に注意を喚起するタイミングまでずれてしまうため、正確な運行案内ができ ないという問題がある。  [0008] In addition, when acquiring position information by GPS, accurate position information cannot be calculated unless at least three GPS signals are received. For this reason, in areas where high-rise buildings are lined up or on station buildings with roofs, the number of GPS signals received is often reduced, and the current position of the vehicle cannot be accurately identified. And, if the vehicle position information is incorrect, there is a problem that accurate operation guidance cannot be performed because the timing for alerting the driver is shifted.
[0009] その一方で、高精度な GPSユニットを採用すれば、正確な位置情報が得られるた め、精度の高い運行管理を行うことができるが、当該 GPSユニットが高価であるため 運行管理システム自体のコストが高くなつてしまうという問題がある。このため、安価で ありながら精度の高 、運行管理システムの開発が望まれて 、た。  [0009] On the other hand, if a high-accuracy GPS unit is used, accurate position information can be obtained, so that highly accurate operation management can be performed. However, since the GPS unit is expensive, the operation management system There is a problem that the cost of itself increases. Therefore, it was desired to develop an operation management system that was inexpensive but had high accuracy.
[0010] 本発明は、このような問題点を解決するためになされたものであって、所定の路線 上に任意に設定された各チ ックポイントごとに自動的に運転士に停車駅の案内や 予定時刻とのずれの程度、車速の制限などの注意喚起などの各種の運行案内を的 確なタイミングで行って運転士をサポートすることができ、また、 GPS信号を受信しに くい地域であっても安価でありながら高精度に車両の位置を予測し精度の高い運行 管理を行うことができる鉄道車両運行管理システムおよび鉄道車両運行管理プログ ラムを提供することを目的として ヽる。 [0010] The present invention has been made to solve such a problem, and automatically guides the driver to the stop station for each check point arbitrarily set on a predetermined route. Various operation guidance such as alerting the degree of deviation from the scheduled time, vehicle speed restrictions, etc. The driver can be supported at a precise timing, and even in areas where it is difficult to receive GPS signals, the location of the vehicle is predicted with high accuracy and high-precision operation management. The purpose is to provide a railway vehicle operation management system and a railway vehicle operation management program.
課題を解決するための手段  Means for solving the problem
[0011] 本発明に係る鉄道車両運行管理システムおよび鉄道車両運行管理プログラムの特 徴は、鉄道路線を走行する車両の運行を管理する鉄道車両運行管理システムおよ び鉄道車両運行管理プログラムであって、鉄道路線上のカーブ位置を特定するカー ブ特定点および車両の速度変更予定位置を特定する車速変更予定地点の各緯度' 経度データからなる路線特定位置データ、およびこれら各路線特定位置を結んだ路 線上に任意に設定した車両の運行を管理するためのチェックポイントの緯度 ·経度デ 一タカ なるチェックポイント位置データを記憶する路線データ記憶手段と、前記チェ ックポイントの通過予定時刻、予定速度、停車駅案内情報を当該チェックポイント位 置データに対応付けて適宜設定した運行予定データを記憶する運行予定データ記 憶手段と、グローバルポジショニングシステム(GPS)力 GPS信号を受信する GPS 信号受信手段と、前記 GPS信号に基づいて前記車両に関する GPSデータを算出し 、この GPSデータおよび前記運行予定データに基づ 、て前記車両のチェックポイン トにおける通過予定時刻とのずれや予定速度とのずれ、次の停車駅情報を取得し、 運行管理を行う運行管理処理手段と、この運行管理処理手段によって取得した通過 予定時刻とのずれや予定速度とのずれ、次の停車駅情報を適宜運転士に案内する 運行案内出力手段とを有する点にある。 [0011] A feature of the railway vehicle operation management system and the railway vehicle operation management program according to the present invention is a railway vehicle operation management system and a railway vehicle operation management program for managing the operation of a vehicle traveling on a railway line. , Specific curve data for specifying the curve position on the railway line, and specific speed data for the vehicle speed change planned position for specifying the vehicle speed change position. Route data storage means for storing the checkpoint position data, which is the latitude / longitude of the checkpoint, for managing the operation of the vehicle arbitrarily set on the route, the scheduled time of passing the checkpoint, the planned speed, and the stop Scheduled operation that stores station schedule information that is set as appropriate in association with the checkpoint position data. Data storage means, global positioning system (GPS) force GPS signal receiving means for receiving GPS signals, GPS data relating to the vehicle is calculated based on the GPS signals, and based on the GPS data and the operation schedule data. Therefore, a deviation from the scheduled passage time or a deviation from the planned speed at the checkpoint of the vehicle, the next stop station information is acquired, and the operation management processing means for managing the operation, and the operation management processing means It has a deviation from the scheduled passage time, a deviation from the planned speed, and an operation guidance output means for appropriately guiding the next stop station information to the driver.
[0012] また、本発明にお 、て、前記運行管理処理手段は、前記 GPS信号から前記車両 に関する実測位置データ、時間データおよび時速データ等力もなる GPSデータを算 出する GPSデータ算出部と、前記 GPS信号の受信数を判別する GPS信号受信数 判別部と、この GPS信号受信数判別部によって GPS信号が 3つ以上受信されたと判 断された場合、この GPS信号によって算出された実測位置データを補正用位置デー タとして採用する補正用位置データ採用部と、前記 GPS受信数判別部によって GPS 信号の受信数が 2つ以下と判断された場合、直前の補正用位置データ、前記時間デ ータおよび前記時速データを取得する補正用データ取得部と、前記直前の補正用 位置データにより特定される補正開始位置からの経過時間および前記時速データに 基づいて前記車両の予測走行距離を算出する予測走行距離算出部と、前記路線特 定位置データによって特定される鉄道路線に沿って前記補正開始位置力 前記予 測走行距離だけ進んだ予測位置を示す予測位置データを算出する予測位置データ 算出部とを有して 、ることが好まし 、。 [0012] Further, in the present invention, the operation management processing means calculates a GPS data calculating unit that calculates GPS data that includes measured position data, time data, speed data, and the like regarding the vehicle from the GPS signal; When the GPS signal reception number determination unit and the GPS signal reception number determination unit determine that three or more GPS signals have been received, the actual position data calculated from the GPS signal is determined. If the number of received GPS signals is determined to be two or less by the correction position data adoption unit that adopts the position data for correction and the GPS reception number determination unit, the correction position data immediately before, the time data Data and a correction data acquisition unit for acquiring the hourly speed data, and an estimated travel distance of the vehicle based on the elapsed time from the correction start position specified by the immediately previous correction position data and the hourly speed data. A predicted travel distance calculation unit; and a predicted position data calculation unit that calculates predicted position data indicating a predicted position advanced by the predicted travel distance along the railway line specified by the route specific position data. And prefer to have, and.
[0013] さらに、本発明において、前記運行管理処理手段は、前記 GPS信号の受信数が 2 つの状態が所定時間連続した場合、この時点での前記予測位置データと 2つの GP S信号から求められた実測位置データとを比較判別する位置データ比較判別部を有 しており、この位置データ比較判別部により前記予測位置データが前記実測位置デ ータとほぼ等しいと判断された場合、前記補正用位置データ採用部が、前記予測位 置データあるいは前記実測位置データを補正用位置データとして採用することが好 ましい。  [0013] Further, in the present invention, the operation management processing means is obtained from the predicted position data and two GPS signals at this time when two GPS signal reception states continue for a predetermined time. A position data comparison / determination unit for comparing and determining the measured position data. If the position data comparison / determination unit determines that the predicted position data is substantially equal to the actual position data, the correction data It is preferable that the position data adopter adopts the predicted position data or the actually measured position data as correction position data.
[0014] また、本発明にお 、て、前記位置データ比較判別部は、直前の補正用位置データ と次の路線特定点とをつな 、だ線上に前記予測位置を設定し、この予測位置を基準 として所定の有効幅で設定された有効測定ゾーンの範囲内に前記実測位置データ が位置して 、る場合に、前記予測位置データが前記実測位置データとほぼ等 、と 判断することが好ましい。  [0014] In the present invention, the position data comparison / determination unit connects the immediately preceding correction position data and the next route specific point, sets the predicted position on an ellipse, and the predicted position It is preferable to determine that the predicted position data is substantially equal to the measured position data when the measured position data is located within the range of the effective measurement zone set with a predetermined effective width with reference to .
[0015] さらに、本発明において、前記路線データ記憶手段には、鉄道路線上においてチ ックポイント位置から車両の進行方向後方に所定の間隔を隔てて設定されるサブ チェックポイントの位置を特定するサブチェックポイント位置データが記憶されており [0015] Further, in the present invention, the route data storage means includes a sub check that specifies a position of a sub check point that is set at a predetermined interval behind the check point position in the traveling direction of the vehicle on the railway line. Point position data is stored
、前記運行管理処理手段は、前記実測位置データまたは予測位置データにより特定 される車両位置力 前記運行予定データにおけるチェックポイント位置データおよび サブチェックポイント位置データによってそれぞれ特定される位置を基準にして所定 の有効範囲をもって設けられる CP測定エリア内に入ったとき、当該車両がチェックポ イントに到達したと判断するチェックポイント到達判断部を有して 、ることが好ま 、。 The operation management processing means has a vehicle position force specified by the measured position data or predicted position data, and a predetermined position based on positions specified by the check point position data and the sub check point position data in the operation schedule data. It is preferable to have a checkpoint arrival determination unit that determines that the vehicle has reached the checkpoint when entering the CP measurement area provided with an effective range.
[0016] また、本発明にお 、て、前記運行管理処理手段は、前記運行予定データと前記時 間データおよび前記速度データとを比較し、所定のチェックポイントにおける通過予 定時刻とのずれ、および予定速度とのずれを求めて、所定の許容値を超えていない か否か、あるいは三次元加速度センサから取得した加速度アナログデータが所定の 許容値を超えて 、な 、か否かを判断する異常運行判断部と、この異常運行判断部 により異常運行が検出されたとき、前記車両に搭載される各種機器カゝら得られるデー タ、あるいは前記車両外の機器力も受信した各種のデータのうち、前記異常動作の 発生前力 発生後までの所定時間内における各種のデータを異常データ記憶手段 に保存する異常時データ保存部とを有して 、ることが好ま U、。 [0016] In the present invention, the operation management processing means compares the operation schedule data with the time data and the speed data, and predicts passage at a predetermined check point. The deviation from the fixed time and the deviation from the scheduled speed are calculated and whether or not the predetermined allowable value is exceeded, or the acceleration analog data acquired from the three-dimensional acceleration sensor exceeds the predetermined allowable value. An abnormal operation determination unit for determining whether or not abnormal operation is detected by the abnormal operation determination unit, and also receives data obtained from various equipment mounted on the vehicle or equipment power outside the vehicle. Among the various data, it is preferable to have an abnormal data storage unit that stores various data within a predetermined time until after the occurrence of the abnormal force before the abnormal operation in the abnormal data storage means U, .
[0017] さらに、本発明において、前記車両の周囲状況あるいは前記運転手の運転状況を 撮影する運行状況撮影手段を有しており、前記異常時データ保存部は、前記運行 状況撮影手段により撮影された映像データおよび前記 GPSデータを異常データ記 憶手段に保存することが好ましい。 [0017] Further, in the present invention, there is provided an operation situation photographing unit that photographs the surrounding situation of the vehicle or the driving situation of the driver, and the abnormal data storage unit is photographed by the operation situation photographing unit. It is preferable to store the video data and the GPS data in the abnormal data storage means.
[0018] また、本発明にお 、て、前記異常時データ保存部は、 ATS (Automatic Train Stop )の地上子から得られる地上子 IDおよび車両速度からなる ATSデータを異常データ 記憶手段に保存することが好まし 、。 [0018] Further, in the present invention, the abnormal data storage unit stores ATS data including a ground element ID obtained from an ATS (Automatic Train Stop) ground element and a vehicle speed in the abnormal data storage means. I prefer that.
[0019] さらに、本発明において、前記運行管理処理手段は、前記車両の出発地点に関す る緯度 ·経度データと前記 GPSデータとの比較結果や、前記チェックポイント位置デ ータと前記 GPSデータとの比較結果、あるいはジャイロセンサの方位データとチエツ クポイント間の方位データとの比較結果に基づ 、て、前記鉄道車両運行管理システ ムが正常に動作している力否かを判断するシステムチェック部を有していることが好 ましい。 [0019] Further, in the present invention, the operation management processing means includes a comparison result between latitude / longitude data regarding the departure point of the vehicle and the GPS data, the check point position data, and the GPS data. System check to determine whether or not the railway vehicle operation management system is operating normally based on the comparison result or the comparison result between the gyro sensor direction data and the direction data between check points. It is preferable to have a department.
発明の効果  The invention's effect
[0020] 本発明によれば、所定の路線上に任意に設定された各チヱックポイントごとに自動 的に運転士に停車駅の案内や予定時刻とのずれの程度、車速の制限などの注意喚 起などの各種の運行案内を的確なタイミングで行って運転士をサポートすることがで き、当該運転士の負担やストレスを緩和することができる。また、 GPS信号を受信しに くい地域であっても、高精度に車両の位置を予測し、安価でありながら精度の高い運 行管理を行うことができる。  [0020] According to the present invention, for each check point arbitrarily set on a predetermined route, the driver is automatically alerted to the guidance of the stop station, the degree of deviation from the scheduled time, and the vehicle speed limit. It is possible to support the driver by providing various operation guides at an appropriate timing, and to reduce the burden and stress on the driver. In addition, even in areas where GPS signals are difficult to receive, it is possible to predict the position of a vehicle with high accuracy and to manage operation with high accuracy while being inexpensive.
発明を実施するための最良の形態 [0021] 以下、本発明に係る鉄道車両運行管理システムおよび鉄道車両運行管理プロダラ ムの実施形態について図面を用いて説明する。図 1は、本実施形態の鉄道車両運 行管理システム 1を示すブロック図である。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a railway vehicle operation management system and a railway vehicle operation management program according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a railway vehicle operation management system 1 according to this embodiment.
[0022] 本実施形態の鉄道車両運行管理システム 1は、電車や汽車等のように鉄道路線を 走行する車両の運転席に搭載され当該車両の運行を管理するものであり、図 1に示 すように、主として、路線に関する各種のデータを記憶する路線データ記憶手段 2と、 車両の運行予定に関する各種のデータを記憶する運行予定データ記憶手段 3と、車 両の運行実績に関する各種のデータを記憶する運行実績データ記憶手段 4と、車両 に異常運行が発生した際のデータを記憶する異常データ記憶手段 5と、グローバル ポジショニングシステム(GPS)力 GPS信号を受信する GPS信号受信手段 6と、車 両の運転士に各種の運行案内を出力する運行案内出力手段 7と、運行状況を撮影 する運行状況撮影手段 8と、車両の運行管理に関する各種の処理を実行する運行 管理処理手段 9と、から構成されている。  [0022] The railway vehicle operation management system 1 according to this embodiment is installed in a driver's seat of a vehicle traveling on a railway line such as a train or a train, and manages the operation of the vehicle. As described above, route data storage means 2 for storing various data relating to the route, operation schedule data storage means 3 for storing various data relating to the vehicle operation schedule, and various data relating to vehicle operation results are mainly stored. Operation data storage means 4 to perform, abnormal data storage means 5 to store data when abnormal operation occurs in the vehicle, global positioning system (GPS) force GPS signal reception means 6 to receive GPS signals, vehicle Operation guidance output means 7 that outputs various operation guidance to the driver of the vehicle, operation status imaging means 8 that captures the operation status, and operation management that executes various processes related to vehicle operation management And processing means 9.
[0023] 以下、本実施形態を構成する各構成手段についてより詳細に説明する。路線デー タ記憶手段 2、運行予定データ記憶手段 3、運行実績データ記憶手段 4および異常 データ記憶手段 5は、ハードディスクやメモリカード等の記憶手段によって適宜構成さ れている。本実施形態において、路線データ記憶手段 2は、図 1に示すように、路線 特定位置データ、チェックポイント位置データおよびサブチェックポイント位置データ 等の路線データを記憶している。また、運行予定データ記憶手段 3は、列車ダイヤ等 の運行予定データを記憶しており、運行実績データ記憶手段 4は、運行実績データ を記憶しており、異常データ記憶手段 5は、映像データ等の異常時データを記憶す るようになっている。  Hereinafter, each constituent unit constituting the present embodiment will be described in more detail. The route data storage means 2, the operation schedule data storage means 3, the operation result data storage means 4 and the abnormality data storage means 5 are appropriately configured by storage means such as a hard disk or a memory card. In the present embodiment, the route data storage means 2 stores route data such as route specific position data, check point position data, and sub check point position data, as shown in FIG. The operation schedule data storage means 3 stores operation schedule data such as train schedules, the operation record data storage means 4 stores operation record data, and the abnormal data storage means 5 stores video data, etc. The data at the time of abnormality is stored.
[0024] 以下、上述した各データについて説明する。路線特定位置データは、鉄道路線を 簡素な情報で特定するためのものであり、鉄道路線上のカーブ位置を特定するカー ブ特定点の緯度'経度データ、車両の速度変更予定位置を特定する車速変更予定 地点の緯度'経度データ、および有効測定ゾーンを特定する有効幅データから構成 されている。  Hereinafter, each data described above will be described. The route specific position data is used to identify railway lines with simple information. The latitude / longitude data of the curve specific point that identifies the curve position on the railway line, the vehicle speed that identifies the planned speed change position of the vehicle. It consists of the latitude / longitude data of the planned change point and the effective width data that identifies the effective measurement zone.
[0025] カーブ特定点は、有効測定ゾーンを設定するためのものであり、図 2に示すように、 鉄道路線がカーブし車両の走行方向が変化する地点を特定する。このカーブ特定 点は、たとえばカーブの頂点の緯度経度データとして特定される。また、鉄道路線は 基本的に直線的に敷設された区間が多いため、上記のようなカーブ特定点を設定す れば、これらを連結することにより近似的に鉄道路線を特定しうる。このため、後述す る車両の予測位置の算出が簡素化される。また、車速変更予定地点は、鉄道路線上 における車両の制限速度が切り替わる地点を特定するものであり、予め運行予定に 基づいて定められている。 [0025] The curve specific point is for setting an effective measurement zone, and as shown in FIG. The point where the railway line curves and the traveling direction of the vehicle changes is specified. This curve specifying point is specified, for example, as latitude / longitude data of the apex of the curve. In addition, since there are many sections of railway lines that are basically laid in a straight line, if the curve specific points as described above are set, the railway lines can be identified approximately by connecting them. For this reason, calculation of the predicted position of the vehicle, which will be described later, is simplified. The planned vehicle speed change point specifies the point where the speed limit of the vehicle on the railway line changes, and is determined based on the scheduled operation.
[0026] また、有効測定ゾーンは、車両が所定の鉄道路線に沿って走行する性質を利用し て設定されるものであり、後述するように、 GPSから得られた車両の実測位置データ が有効力否かを判定するためのものである。有効測定ゾーンは、図 2に示すように、 路線に沿って主に隣接するカーブ特定点間に所定の有効幅をもって設定される。こ の有効幅を示す有効幅データは適宜設定変更することができるが、本実施形態では 約 l〜2m程度に設定されている。  [0026] In addition, the effective measurement zone is set by utilizing the property that the vehicle travels along a predetermined railway line, and as will be described later, the measured position data of the vehicle obtained from GPS is effective. It is for judging whether it is power. As shown in Fig. 2, the effective measurement zone is set with a predetermined effective width between the curve specific points mainly adjacent to each other along the route. The effective width data indicating the effective width can be set and changed as appropriate, but is set to about 1 to 2 m in this embodiment.
[0027] チェックポイント位置データは、車両の運行を的確なタイミングで管理するためのチ エックポイントの緯度'経度データ力も構成されている。チェックポイントは、上述した カーブ特定点および車速変更予定地点等の路線特定位置を結んだ路線上に任意 に設定され、主に運転士を補助する案内が必要な地点に設定されている。本実施形 態におけるチェックポイントは、停車駅か通過駅かを知らせるために停車駅の手前地 点で駅名を案内する停車駅案内地点、車両が時間通りに運行しているかどうかをチ エックするためのダイヤ誤差確認地点等カゝら構成される。また、本実施形態において 、カーブ特定点および車速変更予定地点もチェックポイントとしても設定される。  [0027] The check point position data also includes the latitude and longitude data of the check point for managing the operation of the vehicle at an accurate timing. Check points are arbitrarily set on the route connecting the specific points of the route such as the curve specific point and the planned vehicle speed change point described above, and are mainly set at points where guidance for assisting the driver is necessary. The check point in this embodiment is the stop station guide point that provides the station name in front of the stop station to indicate whether it is a stop station or a passing station, and to check whether the vehicle is operating on time. The diagram error confirmation point is configured. In the present embodiment, the curve specific point and the vehicle speed change scheduled point are also set as check points.
[0028] サブチェックポイントは、後述するように、各チェックポイントにおいて GPS信号の取 得漏れをフォローするためのものである。本実施形態において、サブチェックポイント は、鉄道路線上において各チェックポイント位置から車両の進行方向後方に所定の 間隔を隔てて設定される。そして、各サブチェックポイントに関する緯度 ·経度データ 力 サブチェックポイントデータとして記憶されている。なお、サブチェックポイントデ ータとしては、緯度 ·経度データではなぐチェックポイントの緯度 ·経度データに基づ V、て鉄道路線の後方側に上述した所定の間隔をもって特定するようにしてもよ!、。 [0029] 運行予定データは、車両の運行予定に関する各種のデータから構成されており、 運行ダイヤが反映されている。本実施形態では、各チェックポイントに対応付けて、 チェックポイント名、通過予定時刻、予定速度、停車駅案内情報等のデータが適宜 設定されている。なお、運行予定データは、車両を基準として各車両ごとに当該車両 が運行される各路線のデータ力 構成してもよ 、し、あるいは運転士を基準として各 運転士ごと担当する各路線のデータから構成するようにしてもょ 、。 [0028] As will be described later, the sub-checkpoint is used to follow a GPS signal acquisition failure at each checkpoint. In the present embodiment, the sub-checkpoints are set at predetermined intervals on the railroad line from the respective checkpoint positions to the rear in the vehicle traveling direction. The latitude / longitude data for each sub-checkpoint is stored as sub-checkpoint data. The sub-checkpoint data may be specified based on the latitude / longitude data of the checkpoint, not the latitude / longitude data. ,. [0029] The operation schedule data is composed of various data relating to the operation schedule of the vehicle and reflects the operation schedule. In this embodiment, data such as a checkpoint name, a scheduled passage time, a planned speed, and stop station guide information are appropriately set in association with each checkpoint. The operation schedule data may consist of the data power of each route on which the vehicle is operated for each vehicle based on the vehicle, or the data for each route in charge of each driver based on the driver. Even if you make it from
[0030] 運行実績データは、車両の運行実績に関する各種のデータカゝら構成されている。  [0030] The operation record data is composed of various data cards related to the vehicle operation record.
本実施形態では、各チェックポイントにおける車両の通過時刻や、 GPSから毎秒ごと に取得される GPSデータ(実測位置データ、時間データ、時速データ、進行方向デ ータおよび高度データ等)、および予測位置データ、補正用位置データ等から構成 されている。  In this embodiment, the passing time of the vehicle at each check point, GPS data (measured position data, time data, hourly speed data, traveling direction data, altitude data, etc.) acquired every second from GPS, and predicted position Data, correction position data, etc.
[0031] 本実施形態において、予測位置データは、車両の予測位置における緯度'経度デ 一タカも構成されている。また、補正用位置データは、予測位置を算出するためのも のであり、後述するように、 GPS信号を 3つ以上受信したときに算出された実測位置 データや、信頼性の高 、予測位置データを補正用位置データとして記憶するように なっている。  [0031] In the present embodiment, the predicted position data is also configured as a latitude / longitude data identifier at the predicted position of the vehicle. The correction position data is used to calculate the predicted position. As will be described later, the measured position data calculated when three or more GPS signals are received, or the predicted position data with high reliability. Is stored as correction position data.
[0032] 異常時データは、車両の運行状況に異常動作が発生したときの各種のデータから 構成されている。本実施形態では、運行状況撮影手段 8により撮影される映像データ 、 GPSから取得される GPSデータ、および ATS (Automatic Train Stop)の地上子か ら得られる地上子 IDおよび車両速度等の ATSデータ力 構成されて 、る。そして、 これらのデータのうち、異常動作発生前力 発生後までの所定時間内におけるデー タだけが異常データ記憶手段 5に格納される。なお、異常時データは、上記のデータ に限られるものではなぐ異常動作の分析や原因究明に役立つものであれば、車両 に搭載される各種機器力 得られるデータや、管理センタ等の車両外の機器力 受 信した各種のデータを記録するようにしてもよ!ヽ。  [0032] The data at the time of abnormality is composed of various data when an abnormal operation occurs in the operation status of the vehicle. In this embodiment, video data captured by the operation status imaging means 8, GPS data acquired from GPS, and ATS data capabilities such as ground unit ID and vehicle speed obtained from the ground unit of ATS (Automatic Train Stop) It is composed. Of these data, only the data within a predetermined time until after the occurrence of the force before occurrence of the abnormal operation is stored in the abnormal data storage means 5. Note that the data at the time of abnormality is not limited to the above data, but can be used to analyze the abnormal operation and investigate the cause. Equipment power You may record various data received!
[0033] GPS信号受信手段 6は、 GPSアンテナ等力 構成されており、グローバルポジショ ユングシステムの GPS衛星力も送信される GPS信号を受信するものである。運行案 内出力手段 7は、音声案内を出力するスピーカや運行案内を表示するディスプレイ 等の出力機器力 構成されており、車両の運転士に対し、定時的な情報や緊急情報 等の各種の運行情報を出力するものである。また、運行状況撮影手段 8は、デジタル ビデオカメラ等の動画撮影機器カゝら構成されており、運行状況を映像データとして取 得するものである。本実施形態では、 2台のデジタルビデオカメラが車両の前方と運 転席を撮影するように搭載されて 、る。 [0033] The GPS signal receiving means 6 is configured with a GPS antenna equal force, and receives a GPS signal that also transmits the GPS satellite force of the global positioning system. The operation plan output means 7 includes a speaker for outputting voice guidance and a display for displaying the operation guidance. It is configured to output various operation information such as timely information and emergency information to the vehicle driver. The operation status photographing means 8 is composed of a moving image photographing device such as a digital video camera, and obtains the operation status as video data. In this embodiment, two digital video cameras are mounted so as to photograph the front of the vehicle and the driver's seat.
[0034] 運行管理処理手段 9は、 CPU (Central Processing Unit)等から構成されており、本 実施形態の鉄道車両運行管理プログラムに基づいて各構成手段を制御するとともに 、運行管理に必要な各種のデータを取得し、適時に運行処理を実行するものである 。運行管理処理手段 9の主な処理について説明すると、 GPS信号受信手段 6が受信 した GPS信号に基づいて車両に関する GPSデータを算出し、この GPSデータおよ び運行予定データに基づいて運行予定に対する車両の実際の運行状況を把握し、 運転士をサポートするための運行管理を行うようになっており、合わせて運行上の異 常発生を早期に喚起するようになって 、る。  [0034] The operation management processing means 9 is composed of a CPU (Central Processing Unit) and the like, and controls each component means based on the railway vehicle operation management program of the present embodiment, and various kinds of operations necessary for operation management. Data is acquired and operation processing is executed in a timely manner. The main processing of the operation management processing means 9 will be explained. The GPS data on the vehicle is calculated based on the GPS signal received by the GPS signal receiving means 6, and the vehicle corresponding to the operation schedule is calculated based on the GPS data and the operation schedule data. As a result, it is possible to grasp the actual operation status of the vehicle and manage the operation to support the driver, and at the same time, alert the occurrence of abnormalities in operation at an early stage.
[0035] つぎに、前述のような処理を行う運行管理処理手段 9の構成について説明する。運 行管理処理手段 9は、主として、運行用データ取得部 91と、 GPS信号取得部 92と、 GPSデータ算出部 93と、システムチェック部 94と、 GPS信号受信数判別部 95と、補 正用データ取得部 96と、予測走行距離算出部 97と、予測位置データ算出部 98と、 受信不可時間判別部 99と、位置データ比較判別部 100と、補正用位置データ採用 部 101と、車両位置採用部 102と、異常運行判断部 103と、異常時データ保存部 10 4と、チェックポイント到達判断部 105と、運行案内出力部 106と、運行実績データ保 存部 107と、次路線データ判別部 108とから構成されている。  Next, the configuration of the operation management processing means 9 that performs the processing as described above will be described. The operation management processing means 9 mainly includes an operation data acquisition unit 91, a GPS signal acquisition unit 92, a GPS data calculation unit 93, a system check unit 94, a GPS signal reception number determination unit 95, and a correction. Data acquisition unit 96, predicted mileage calculation unit 97, predicted position data calculation unit 98, unreceivable time determination unit 99, position data comparison determination unit 100, correction position data adoption unit 101, vehicle position adoption Unit 102, abnormal operation determination unit 103, abnormal data storage unit 104, checkpoint arrival determination unit 105, operation guidance output unit 106, operation result data storage unit 107, and next route data determination unit 108 It consists of and.
[0036] 運行用データ取得部 91は、車両の運行に必要な各種のデータを取得するもので ある。具体的には、路線データ記憶手段 2から路線特定位置データ、チェックポイント 位置データおよびサブチェックポイント位置データを取得するとともに、運行予定デ ータ記憶手段 3から運行予定データを取得するようになって 、る。  [0036] The operation data acquisition unit 91 acquires various data necessary for operation of the vehicle. Specifically, route specific location data, checkpoint location data, and sub-checkpoint location data are acquired from the route data storage means 2, and operation schedule data is acquired from the operation schedule data storage means 3. RU
[0037] GPS信号取得部 92は、 GPS信号受信手段 6が受信した GPS信号を取得するもの である。本実施形態では、約 1秒間隔で GPS信号を取得し、 GPSデータ算出部 93 へ供するようになっている。なお、 GPS信号は、時刻情報や GPS衛星の位置を示す 軌道情報等が多重された信号力 構成されて 、る。 [0037] The GPS signal acquisition unit 92 acquires the GPS signal received by the GPS signal receiving means 6. In this embodiment, GPS signals are acquired at intervals of about 1 second and provided to the GPS data calculation unit 93. The GPS signal indicates time information and GPS satellite position. It is composed of signal force with orbital information etc. multiplexed.
[0038] GPSデータ算出部 93は、 GPS信号取得部 92が取得した GPS信号に基づいて、 車両に関する実測位置データ、時間データ、時速データ、進行方向データおよび高 度データ等力もなる GPSデータを算出するものである。  [0038] Based on the GPS signal acquired by the GPS signal acquisition unit 92, the GPS data calculation unit 93 calculates GPS data that also includes measured position data, time data, speed data, traveling direction data, altitude data, and the like regarding the vehicle. To do.
[0039] 具体的には、まず、 GPS信号内の時刻情報と GPS信号受信手段 6における受信 時刻から GPS信号を受信するのにかかった到達時間を算出し、この到達時間と GPS 信号の伝播速度から GPS衛星と GPS信号受信手段 6との距離を算出する。この距 離は、 GPS信号受信手段 6の受信位置と GPS衛星の位置とを結ぶ距離に等 、た め、 3つの変数 (緯度、経度、高度)からなる 2次元方程式が成り立つ。したがって、 G PS信号を 3つ以上受信した場合、正確な実測位置データ (緯度、経度)および高度 データが算出される。また、車両の高度はほぼ変わらないと仮定すれば、高度を一定 値に設定できるため、 GPS信号の受信数が 2つでも、ある程度正確な実測位置デー タ (緯度、経度)が算出される。一方、時間データ、時速データおよび進行方向デー タは、 GPS信号の受信数に関わらず、常に正確なデータが取得される。  [0039] Specifically, first, the arrival time taken to receive the GPS signal is calculated from the time information in the GPS signal and the reception time in the GPS signal receiving means 6, and the arrival time and the propagation speed of the GPS signal are calculated. To calculate the distance between the GPS satellite and the GPS signal receiving means 6. Since this distance is, for example, the distance connecting the reception position of the GPS signal receiving means 6 and the position of the GPS satellite, a two-dimensional equation consisting of three variables (latitude, longitude, and altitude) is established. Therefore, when three or more GPS signals are received, accurate measured position data (latitude and longitude) and altitude data are calculated. Assuming that the altitude of the vehicle is almost unchanged, the altitude can be set to a constant value, so even if the number of GPS signals received is two, the measured position data (latitude and longitude) will be accurate to some extent. On the other hand, accurate data is always obtained for time data, hourly speed data, and traveling direction data regardless of the number of GPS signals received.
[0040] システムチェック部 94は、鉄道車両運行管理システム 1の動作状況をチェックして、 故障を検出するものである。具体的には、出発時であれば、車両の出発地点に関す る緯度 ·経度データと、 GPSデータ算出部 93が算出した実測位置データとを取得し 、両者が合致しているか否かを判別する。そして、両者が合致していれば、本システ ムが正常に動作していると判断する。一方、不一致の場合や GPS信号を受信してい な 、場合には、読み込んだ路線データが誤って!/、る旨や GPS信号受信手段 6が故 障している旨のエラーメッセージを運行案内出力手段 7から出力させる。なお、出発 地点の緯度'経度データは、出庫時に運転士が手動入力してもよいし、路線データ および運行予定データに予め設定されて 、る始発地点の名称を選択することで自動 的に緯度 ·経度データを特定する構成にしてもょ 、。  [0040] The system check unit 94 checks the operation status of the railway vehicle operation management system 1 and detects a failure. Specifically, at the time of departure, the latitude / longitude data related to the departure point of the vehicle and the measured position data calculated by the GPS data calculation unit 93 are acquired to determine whether or not they match. To do. If they match, it is determined that the system is operating normally. On the other hand, if there is a discrepancy or the GPS signal is not received, an error message indicating that the read route data is incorrect! /, Or that the GPS signal receiving means 6 has failed is output to the operation guidance. Output from means 7. The latitude / longitude data of the departure point may be entered manually by the driver at the time of delivery, or the latitude / longitude data is automatically set by selecting the name of the first departure point that is preset in the route data and schedule data. · Even with a configuration that identifies longitude data.
[0041] また、本実施形態にぉ 、て、システムチェック部 94は、走行中にぉ ヽても本システ ムの動作状況を自己診断する機能を有している。具体的には、チェックポイント位置 データと GPSデータとを取得し、車両が各チェックポイントを順番にトレースして!/、る か否かを判別する。そして、正確にトレースしている限り、本システムが正常に動作し ていると判断する。一方、異常が認められれば、エラーメッセージを出力させる。 [0041] Further, according to the present embodiment, the system check unit 94 has a function of self-diagnosis of the operation status of the system even when the system is running. Specifically, checkpoint position data and GPS data are acquired, and it is determined whether the vehicle traces each checkpoint in turn! As long as you trace accurately, the system will work properly. Judge that On the other hand, if an abnormality is recognized, an error message is output.
[0042] また、本実施形態の車両には、車両の方位を測定するジャイロセンサ ¾が設けられ ている。そこで、本実施形態のシステムチェック部 94は、このジャイロセンサ Sjにより 得られる車両の方位データと、チェックポイント間の方位データとを取得し、両者が一 致している力否かを判別する。そして、両者が一致していれば、本システムが正常に 動作していると判断する。一方、一致していなければ、エラーメッセージを出力させる 。なお、チェックポイント間の方位データは、チェックポイント位置データ力も算出され る。  [0042] In addition, the vehicle of the present embodiment is provided with a gyro sensor example for measuring the direction of the vehicle. Therefore, the system check unit 94 according to the present embodiment acquires the vehicle direction data obtained by the gyro sensor Sj and the direction data between the check points, and determines whether or not the forces are the same. If they match, it is determined that the system is operating normally. On the other hand, if they do not match, an error message is output. In addition, for the bearing data between checkpoints, the checkpoint position data force is also calculated.
[0043] GPS信号受信数判別部 95は、 GPS信号の受信数を判断するものである。上述し たように、 GPSデータは、 GPS信号の受信数によってその精度が異なる。したがって 、本実施形態では、 GPS信号の受信数に基づいて、後述する位置データの補正処 理を適宜実行するようになって!/ヽる。  The GPS signal reception number determination unit 95 determines the number of GPS signals received. As described above, the accuracy of GPS data varies depending on the number of GPS signals received. Therefore, in the present embodiment, correction processing for position data, which will be described later, is appropriately executed based on the number of received GPS signals! / Speak.
[0044] 補正用データ取得部 96は、車両位置データの補正処理に必要なデータを取得す るものである。本実施形態では、運行実績データ記憶手段 4から、直前の補正用位 置データ、時間データ、および時速データを取得するようになっている。ここで、直前 の補正用位置データとは、 GPS信号を 3つ以上受信したときに算出された実測位置 データ、ある 、は所定時間連続して GPS信号の受信数が 2以下であったときの実測 位置データが、後述する予測位置データとほぼ等しい場合の当該実測位置データま たは当該予測位置データのうち、最新のものである。すなわち、信頼性の高い車両 位置のうち、最新の車両位置を特定するものであり、本実施形態において、この位置 を補正開始位置とする。  [0044] The correction data acquisition unit 96 acquires data necessary for correction processing of vehicle position data. In the present embodiment, the previous correction position data, time data, and hourly speed data are acquired from the operation result data storage means 4. Here, the previous correction position data is the actual position data calculated when three or more GPS signals are received, or when the number of GPS signals received is two or less for a predetermined period of time. This is the latest measured position data or the predicted position data when the measured position data is almost equal to the predicted position data described later. That is, the latest vehicle position is identified from among highly reliable vehicle positions, and this position is set as a correction start position in this embodiment.
[0045] 予測走行距離算出部 97は、信頼性の高い車両位置が得られない間、車両が走行 したであろう予測走行距離を算出するものである。具体的には、補正用データ取得 部 96が取得した直前の補正用位置データおよび時間データに基づ 、て、補正開始 位置からの経過時間を算出し、この経過時間と時速データに基づいて車両の予測走 行距離を算出するようになって!/、る。  The predicted travel distance calculation unit 97 calculates the predicted travel distance that the vehicle would have traveled while a highly reliable vehicle position could not be obtained. Specifically, the elapsed time from the correction start position is calculated based on the correction position data and time data immediately before acquired by the correction data acquisition unit 96, and the vehicle is calculated based on the elapsed time and hourly speed data. Calculates the predicted mileage!
[0046] 予測位置データ算出部 98は、車両の予測位置を算出するものである。具体的には 、補正用データ取得部 96が取得した路線特定位置データによって鉄道路線を特定 し、この路線に沿って補正開始位置力 予測走行距離だけ進んだ予測位置の緯度 経度を予測位置データとして取得するようになっている。 The predicted position data calculation unit 98 calculates the predicted position of the vehicle. Specifically, the railway line is identified by the route specific position data acquired by the correction data acquisition unit 96. Then, the latitude and longitude of the predicted position advanced by the corrected starting position force predicted travel distance along this route is acquired as predicted position data.
[0047] 例えば、予測走行距離が Lの場合、補正開始位置と最寄りのカーブ特定点とを結 ぶ第 1直線を算出し、当該第 1直線の長さが L以上であれば、当該第 1直線上におい て補正開始位置力 Lだけ進んだ位置を予測位置として取得する。一方、前記第 1 直線の長さが Lより小さい場合、次のカーブ特定点と最寄りのカーブ特定点とを結ぶ 第 2直線を算出する。そして、当該第 2直線上において、最寄りのカーブ特定点から 、 [L (第 1直線の長さ)]だけ進んだ位置の緯度経度を予測位置データとして取得 するようになっている。 [0047] For example, when the predicted travel distance is L, a first straight line connecting the correction start position and the nearest curve specific point is calculated. If the length of the first straight line is L or more, the first straight line is calculated. The position advanced by the correction start position force L on the straight line is acquired as the predicted position. On the other hand, if the length of the first straight line is smaller than L, the second straight line connecting the next curve specific point and the nearest curve specific point is calculated. On the second straight line, the latitude and longitude of the position advanced by [L (length of the first straight line)] from the nearest curve specific point is acquired as predicted position data.
[0048] 受信不可時間判別部 99は、不感地帯を通過する等の理由で GPS信号の受信数 力^以下の状態が、所定時間継続したか否かを判別するものである。本実施形態で は、当該継続時間が 5秒間に設定されている力 これに限られるものではなぐユー ザによって適宜設定しうる。また、 GPS信号の受信数が 2つ以下の状態が 5秒経過す る前にチェックポイントを通過してしまう場合が想定される力 この場合には、チェック ポイントが近傍にあることを認識して 5秒を待たずに後述する車両位置データの補正 処理を強制的に実行させるようにしてもょ 、。  [0048] The unreceivable time determining unit 99 determines whether or not the state where the GPS signal reception power is less than or equal to a predetermined time has elapsed for a reason such as passing through a dead zone. In the present embodiment, the force for which the duration is set to 5 seconds can be set as appropriate by the user. In addition, it is assumed that the number of GPS signals received is 2 or less and the checkpoint is passed before 5 seconds elapses. Let's force the vehicle position data correction process described later to be executed without waiting for 5 seconds.
[0049] 位置データ比較判別部 100は、 GPSデータ算出部 93が算出した実測位置データ と、予測位置データ算出部 98が算出した予測位置データとを比較判別するものであ る。本実施形態では、予測位置を基準として所定の有効幅で設定された有効測定ゾ ーンの範囲内に、実測位置データが位置している場合に、予測位置データが実測位 置データとほぼ等しいと判断する。一方、実測位置データが有効測定ゾーンの範囲 外のとき、当該実測位置データを不正確なものとみなす。  The position data comparison / determination unit 100 compares and determines the actually measured position data calculated by the GPS data calculation unit 93 and the predicted position data calculated by the predicted position data calculation unit 98. In the present embodiment, when the measured position data is located within the range of the effective measurement zone set with a predetermined effective width with reference to the predicted position, the predicted position data is substantially equal to the measured position data. Judge. On the other hand, when the measured position data is outside the effective measurement zone, the measured position data is regarded as inaccurate.
[0050] 補正用位置データ採用部 101は、車両の位置データを補正するための補正用位 置データを採用するものである。具体的には、 GPS信号受信数判別部 95によって、 GPS信号の受信数が 3つ以上と判断された場合に、 GPSデータ算出部 93により算 出された実測位置データを補正用位置データとして採用し、運行実績データ記憶手 段 4に格納する。また、受信数が 2つに減った場合でも正確な位置情報を送信してい る場合がある。そこで受信不可時間判別部 99により、 GPS信号の受信数が 2つ以下 の状態が所定時間連続したと判別され、かつ、位置データ比較判別部 100により予 測位置データと実測位置データとがほぼ等 、と判断された場合、当該予測位置デ ータあるいは当該実測位置データを補正用位置データとして採用し、運行実績デー タ記憶手段 4に格納する。 The correction position data adoption unit 101 employs correction position data for correcting the position data of the vehicle. Specifically, when the GPS signal reception number discriminating unit 95 determines that the number of GPS signal receptions is 3 or more, the measured position data calculated by the GPS data calculation unit 93 is used as correction position data. And stored in the operation result data storage means 4. Even when the number of receptions is reduced to two, accurate location information may be transmitted. Therefore, the number of GPS signals received is 2 or less by the reception unavailable time discriminator 99. If the position data comparison / determination unit 100 determines that the predicted position data and the measured position data are substantially equal, the predicted position data or the measured position data Is adopted as correction position data and stored in the operation result data storage means 4.
[0051] 車両位置採用部 102は、信頼性の高!、実測位置データある 、は予測位置データ を車両の位置データとして取得するものである。具体的には、補正用位置データ採 用部 101によって採用された実測位置データある!/ヽは予測位置データを車両の位 置データとして採用する。したがって、本実施形態では、 GPS信号の受信数が 3以上 の場合のみならず、受信数が 2以下の場合であっても、その状態が所定時間連続し 、なおかつ、実測位置データが予測位置データとほぼ等しい場合には、それら実測 位置データまたは予測位置データのいずれかを車両位置データとして採用するよう になっている。これは、受信数が 2つの場合であっても、実測位置データの誤差が必 ずしも大き 、訳ではな 、ことを利用したものである。  [0051] The vehicle position adopting unit 102 obtains highly reliable, actually measured position data or predicted position data as vehicle position data. Specifically, the measured position data adopted by the correction position data adopting unit 101! /! Employs the predicted position data as the position data of the vehicle. Therefore, in this embodiment, not only when the number of GPS signals received is 3 or more, but also when the number of receptions is 2 or less, the state continues for a predetermined time, and the measured position data is the predicted position data. Is approximately equal to the actual position data or the predicted position data, the vehicle position data is adopted. This is based on the fact that even when the number of receptions is two, the error in the measured position data is not necessarily large.
[0052] 異常運行判断部 103は、車両の運行状況が正常であるカゝ否かを判断するものであ る。具体的には、運行予定データと GPSデータとを取得し両者を比較する。そして、 所定のチェックポイントにおける実際の通過時刻と通過予定時刻とのずれや、実際の 通過速度と予定速度とのずれを算出し、所定の許容値を超えていないか否かを判断 するようになっている。  [0052] The abnormal operation determination unit 103 determines whether or not the vehicle operation status is normal. Specifically, schedule data and GPS data are acquired and compared. Then, the deviation between the actual passage time and the scheduled passage time at the predetermined checkpoint and the deviation between the actual passage speed and the scheduled speed are calculated, and it is determined whether or not the predetermined allowable value is exceeded. It has become.
[0053] また、本実施形態の車輛には、三次元方向における加速度を測定する三次元加速 度センサ Saが設けられている。そして、異常運行判断部 103は、三次元加速度セン サ Saから出力される加速度アナログデータを常時取得し、このデータが通常運行範 囲を示す所定の許容値を超えて ヽな ヽか否かを判断するようになって 、る。さらに、 本実施形態では、 ATS (Automatic Train Stop)システムが作動した場合等であって も、車両の運行に異常動作が発生したことを検知するようになっている。  [0053] Further, the vehicle of the present embodiment is provided with a three-dimensional acceleration sensor Sa for measuring acceleration in a three-dimensional direction. Then, the abnormal operation determination unit 103 constantly acquires the acceleration analog data output from the three-dimensional acceleration sensor Sa, and determines whether or not this data exceeds a predetermined allowable value indicating the normal operation range. Come to judge. Furthermore, in this embodiment, even when an ATS (Automatic Train Stop) system is activated, it is detected that an abnormal operation has occurred in the operation of the vehicle.
[0054] 異常時データ保存部 104は、車両の運行に異常動作が検出された場合、その異 常動作の発生前後における各種の異常時データを異常データ記憶手段 5に保存す るものである。本実施形態において、異常時データとしては、映像データ、 GPSデー タおよび ATSデータ等が蓄積される。なお、運行状況撮影手段 8により撮影された映 像データは、逐次、図示しない画像メモリ等に一時的に蓄積され、古くなつたものから 順に消去されている。したがって、異常時データ保存部 104は、異常運行判断部 10 3により異常が検知された場合、その異常動作の発生時刻を取得するとともに、当該 発生時刻の前後 2分間における映像データを画像メモリから取得し、異常データ記 憶手段 5に格納するようになって 、る。 [0054] When an abnormal operation is detected in the operation of the vehicle, the abnormal data storage unit 104 stores various abnormal data before and after the occurrence of the abnormal operation in the abnormal data storage means 5. In the present embodiment, video data, GPS data, ATS data, and the like are stored as abnormal data. Note that the images taken by the operation status photographing means 8 The image data is sequentially and temporarily stored in an image memory (not shown), and is erased in order from the oldest. Therefore, when an abnormality is detected by the abnormal operation determination unit 103, the abnormal time data storage unit 104 acquires the occurrence time of the abnormal operation and also acquires video data for two minutes before and after the occurrence time from the image memory. However, it is stored in the abnormal data storage means 5.
[0055] チェックポイント到達判断部 105は、車両がチェックポイントに到達したカゝ否かを判 断するものである。本実施形態において、チェックポイント到達判断部 105は、車両 位置データの誤差を考慮して、各チェックポイントに対応させたチェックポイント測定 エリア(以下、「CP測定エリア」という)を設定している。そして、この CP測定エリア内 に車両位置が含まれたとき、車両が当該チェックポイントに到達したと判断するように なっている。 [0055] The check point arrival determination unit 105 determines whether or not the vehicle has reached the check point. In the present embodiment, the checkpoint arrival determination unit 105 sets checkpoint measurement areas (hereinafter referred to as “CP measurement areas”) corresponding to the checkpoints in consideration of errors in the vehicle position data. When the vehicle position is included in this CP measurement area, it is determined that the vehicle has reached the checkpoint.
[0056] 具体的には、 CP測定エリアは、図 3に示すように、チェックポイント位置データによ つて特定される位置を基準(中心)にして所定の有効範囲をもって設定される略正方 形状のメイン測定エリアと、このメイン測定エリアと隣接するように設けられ、サブチェ ックポイントデータによって特定される位置を基準(中心)にして所定の有効範囲をも つて設定される略正方形状のサブ測定エリアとから構成されている。したがって、チェ ックポイント到達判断部 105は、路線データ記憶手段 2からチェックポイント位置デー タおよびサブチェックポイント位置データを取得して CP測定エリアを特定するとともに 、車両位置採用部 102により採用された車両位置データを取得して、 CP測定エリア と比較するようになっている。  Specifically, as shown in FIG. 3, the CP measurement area has a substantially square shape set with a predetermined effective range with the position specified by the checkpoint position data as a reference (center). A main measurement area and a sub-measurement of a substantially square shape that is set adjacent to this main measurement area and is set with a predetermined effective range with the position specified by the sub check point data as the reference (center) It consists of an area. Therefore, the check point arrival determination unit 105 acquires the check point position data and the sub check point position data from the route data storage unit 2 to identify the CP measurement area, and the vehicle position adopted by the vehicle position adoption unit 102. Data is acquired and compared with the CP measurement area.
[0057] なお、 CP測定エリアの大きさは、車両の速度に応じて設定するのが好ましぐ本実 施形態では、車両が 60kmZh (約 18mZs)で走行することを想定し、メイン測定エリ ァおよびサブ測定エリアを 1辺が 36mの正方形であって 2つの頂点を路線上に設定 している。また、本実施形態の GPS信号取得部 92は、毎秒 1回の割合で GPS信号 を取得するように構成されている。したがって、各測定エリアでは士約 1秒の誤差範 囲で GPS信号が受信されるため、 1つのチェックポイントにっき、少なくとも 4回は GP S信号を取得するチャンスが得られるようになって 、る。  [0057] The size of the CP measurement area is assumed to be set according to the speed of the vehicle. In this embodiment, it is assumed that the vehicle travels at 60 kmZh (approximately 18 mZs), and the main measurement area is set. The sub-measurement area is a square with a side of 36m and two vertices are set on the route. Further, the GPS signal acquisition unit 92 of the present embodiment is configured to acquire GPS signals at a rate of once per second. Therefore, GPS signals are received within an error range of about 1 second in each measurement area, so there is an opportunity to acquire a GPS signal at least four times at one checkpoint.
[0058] 運行案内出力部 106は、運行案内出力手段 7に所定の運行案内を出力させるもの である。具体的には、チェックポイント到達判断部 105によって車両が所定のチェック ポイントに到達したと判断されると、運行予定データ記憶手段 3から当該チェックボイ ントに対応する各種の情報を取得する。そして、当該チェックポイントの通過予定時 刻に対する実際の車両通過時刻のずれや予定速度に対する実際の通過速度のず れ、次の停車駅、あるいはチェックポイント名や制限速度が変化する旨等をスピーカ 力も音声案内したり、ディスプレイに表示案内するようになっている。 [0058] The operation guide output unit 106 causes the operation guide output means 7 to output a predetermined operation guide. It is. Specifically, when the checkpoint arrival determination unit 105 determines that the vehicle has reached a predetermined checkpoint, various information corresponding to the checkpoint is acquired from the operation schedule data storage unit 3. The speaker power also indicates that the actual vehicle passing time is different from the scheduled checkpoint passing time, the actual passing speed is different from the scheduled speed, the next stop station, the checkpoint name and the speed limit change, etc. Voice guidance or display guidance is provided on the display.
[0059] 運行実績データ保存部 107は、運行実績データを運行実績データ記憶手段 4に保 存するものである。具体的には、チェックポイント到達判断部 105によって車両が所 定の路線における終点に到達したと判断されると、各チヱックポイントにおける車両の 通過時刻、毎秒ごとに取得される GPSデータ等を運行実績データ記憶手段 4に格納 するようになっている。  [0059] The operation result data storage unit 107 stores the operation result data in the operation result data storage means 4. Specifically, when the checkpoint arrival determination unit 105 determines that the vehicle has reached the end point on a predetermined route, the passing data of the vehicle at each checkpoint, GPS data acquired every second, etc. It is stored in storage means 4.
[0060] 次路線データ判別部 108は、車両力^の鉄道路線の運行を終了したとき、運行予 定データの中に、次に運行すべき鉄道路線が存在する力否かを判別するものである 。判別した結果、次に運行すべき鉄道路線があれば、引き続き本実施形態の鉄道車 両運行管理システム 1に運行管理を実行させる一方、次に運行すべき鉄道路線がな ければ、鉄道車両運行管理システム 1を終了させるようになって!/、る。  [0060] The next route data discriminating unit 108 discriminates whether or not there is a train line to be operated next in the scheduled operation data when the operation of the railway line with the vehicle power ^ is finished. is there . As a result of the determination, if there is a railway line to be operated next, the railway vehicle operation management system 1 of the present embodiment continues to execute the operation management, while if there is no railway line to be operated next, the railway vehicle operation is performed. Management system 1 comes to an end!
[0061] つぎに、本実施形態の鉄道車両運行管理プログラムによって実行される鉄道車両 運行管理システム 1の作用について図 4および図 5を参照しつつ説明する。  Next, the operation of the railway vehicle operation management system 1 executed by the railway vehicle operation management program of this embodiment will be described with reference to FIGS. 4 and 5.
[0062] まず、本実施形態の鉄道車両運行管理システム 1によって車両の運行管理を開始 する場合、運転士が担当路線を入力する操作に従って、運行用データ取得部 91が 、当該車両が運行される鉄道路線に関する路線データおよび運行予定データを取 得する (ステップ Sl)。つづいて、 GPS信号取得部 92が、 GPS信号受信手段 6から GPS信号を取得すると (ステップ S2)、 GPSデータ算出部 93により各種の GPSデー タが算出される (ステップ S3)。この GPSデータと路線データおよび運行予定データ に基づ!/、て、システムチェック部 94が鉄道車両運行管理システム 1の動作状況をチ エックする(ステップ S4)。  [0062] First, when the operation management of the vehicle is started by the railway vehicle operation management system 1 of the present embodiment, the operation data acquisition unit 91 operates the vehicle according to the operation of the driver inputting the assigned route. Obtain route data and schedule data for railway lines (Step Sl). Subsequently, when the GPS signal acquisition unit 92 acquires a GPS signal from the GPS signal receiving means 6 (step S2), various GPS data are calculated by the GPS data calculation unit 93 (step S3). Based on the GPS data, route data, and operation schedule data, the system check unit 94 checks the operation status of the railway vehicle operation management system 1 (step S4).
[0063] チェックの結果、システムの動作に異常がなければ (ステップ S4: OK)、車両の運 行開始を待機する一方 (ステップ S5)、不具合が見つかれば (ステップ S4 :NG)、運 行案内出力手段 7にエラーメッセージを出力する (ステップ S6)。これにより、運転士 は、誤った路線データや運行予定データを使用したり、 GPS信号受信手段 6が機能 して 、な 、状態で車両を運行することが防止される。 [0063] As a result of the check, if there is no abnormality in the operation of the system (Step S4: OK), while waiting for the vehicle to start operation (Step S5), if a failure is found (Step S4: NG), the operation An error message is output to the line guidance output means 7 (step S6). As a result, the driver is prevented from using the wrong route data or operation schedule data or operating the vehicle in a state where the GPS signal receiving means 6 functions.
[0064] つづ 、て、車両の運行が開始されると (ステップ S 5: YES)、路線データおよび運行 予定データに定められた鉄道路線上を運行する間、図 5に示す車両位置データ補 正処理により、随時、車両位置が取得される (ステップ S7)。  [0064] Subsequently, when the operation of the vehicle is started (step S5: YES), the vehicle position data correction shown in Fig. 5 is corrected while the vehicle is operating on the railway line defined in the route data and the operation schedule data. The vehicle position is acquired at any time by the processing (step S7).
[0065] ここで、ステップ S7で実行される車両位置データ補正処理について、図 5を用いて 説明する。車両が運行している間、 GPS信号取得部 92は、約 1秒間隔で GPS信号 受信手段 6から GPS信号を取得し (ステップ S21)、この GPS信号に基づき、 GPSデ ータ算出部 93が GPSデータを算出する (ステップ S22)。なお、本実施形態では、運 行の開始と同時に、運行状況撮影手段 8が撮影を開始し、映像データを画像メモリに 蓄積するようになっている。  [0065] Here, the vehicle position data correction process executed in step S7 will be described with reference to FIG. While the vehicle is in operation, the GPS signal acquisition unit 92 acquires a GPS signal from the GPS signal receiving means 6 at intervals of about 1 second (step S21). Based on this GPS signal, the GPS data calculation unit 93 GPS data is calculated (step S22). In the present embodiment, at the same time as the operation is started, the operation status photographing means 8 starts photographing, and the video data is stored in the image memory.
[0066] つづ 、て、 GPS信号受信数判別部 95が、ステップ S21で受信した GPS信号の受 信数を判断し (ステップ S23)、受信数が 3以上のとき (ステップ S23 : YES)、ステップ S22で算出された実測位置データは高精度であると判断し、後述するステップ S29 へと迪む。  [0066] Subsequently, the GPS signal reception number discriminating unit 95 determines the reception number of GPS signals received in step S21 (step S23), and when the reception number is 3 or more (step S23: YES), the step The measured position data calculated in S22 is determined to be highly accurate, and the process proceeds to step S29 described later.
[0067] 一方、 GPS信号の受信数が 2以下の場合 (ステップ S23 : NO)、まず、補正用デー タ取得部 96が、直前の補正用位置データ、時間データ、および時速データを取得し (ステップ S24)、これらのデータに基づいて、予測走行距離算出部 97が車両の予測 走行距離を算出する (ステップ S25)。そして、この予測走行距離と路線特定位置デ ータに基づいて、予測位置データ算出部 98が、車両の予測位置データを算出する( ステップ S 26)。  [0067] On the other hand, when the number of GPS signals received is 2 or less (step S23: NO), first, the correction data acquisition unit 96 acquires the previous correction position data, time data, and hourly speed data ( Based on these data, the predicted travel distance calculation unit 97 calculates the predicted travel distance of the vehicle (step S25). Then, based on the predicted travel distance and the route specific position data, the predicted position data calculation unit 98 calculates predicted position data of the vehicle (step S26).
[0068] つづいて、ステップ S23で判別された GPS信号の受信数が 1の場合 (ステップ S27 : NO)、実測位置データは不正確であるため、ステップ S21に戻り、再び GPS信号を 受信するのを待機する。一方、 GPS信号の受信数が 2の場合 (ステップ S27 : YES) 、実測位置データは必ずしも不正確であるとは限らない。このため、受信不可時間判 別部 99により GPS信号の受信数が 2以下の状態が所定時間連続していることが判 別されると (ステップ S28 : YES)、位置データ比較判別部 100により、実測位置デー タと予測位置データの同一性を判別する (ステップ S29)。 [0068] Subsequently, when the number of GPS signals received in step S23 is 1 (step S27: NO), the measured position data is inaccurate, so the process returns to step S21 to receive the GPS signal again. Wait. On the other hand, when the number of GPS signals received is 2 (step S27: YES), the measured position data is not necessarily inaccurate. For this reason, if the reception unavailable time discriminating unit 99 determines that the number of GPS signals received is 2 or less for a predetermined time (step S28: YES), the position data comparison discriminating unit 100 Actual position data The identity of the data and the predicted position data is determined (step S29).
[0069] このとき、本実施形態では、鉄道車両が予め決まって!/、る既定路線上を走行すると いう特徴を利用して、隣接するカーブ特定点間の路線に沿って所定幅の有効測定ゾ ーンを設定してある。そして、この有効測定ゾーン内に実測位置データが検出される か否かによって、実測位置データと予測位置データとの同一性を判別している。これ により、両者の同一性の判断に要する演算処理が簡素化することになり、正確性を維 持したまま位置データ比較判別部 100の負荷を軽減できる。  [0069] At this time, in the present embodiment, an effective measurement of a predetermined width along the route between adjacent curve specific points is performed using the feature that the railway vehicle travels on a predetermined route! A zone has been set. The identity between the measured position data and the predicted position data is determined based on whether or not the measured position data is detected in the effective measurement zone. This simplifies the arithmetic processing required to determine the identity of both, and the load on the position data comparison / determination unit 100 can be reduced while maintaining accuracy.
[0070] そして、位置データ比較判別部 100による判別の結果、実測位置データと予測位 置データとがほぼ等 U、と判断されたとき (ステップ S29: YES)、当該実測位置デー タまたは当該予測位置データはほぼ正確なものと推定される。このため、これらのうち いずれか一方が補正用位置データ採用部 101により補正用位置データとして採用さ れ、運行実績データ記憶手段 4に格納される (ステップ S 30)。本実施形態では原則 として計算された予測位置データを採用する。同様に、 GPS信号の受信数が 3以上 のとき (ステップ S23: YES)、ステップ S22で算出された実測位置データは確度が高 いため、当該実測位置データを補正用位置データとして採用し、運行実績データ記 憶手段 4に格納する (ステップ S30)。  [0070] Then, as a result of determination by the position data comparison / determination unit 100, when it is determined that the measured position data and the predicted position data are substantially equal U (step S29: YES), the measured position data or the predicted position data is determined. The position data is estimated to be almost accurate. For this reason, one of these is adopted as correction position data by the correction position data adoption unit 101 and stored in the operation result data storage means 4 (step S30). In the present embodiment, predicted position data calculated in principle is adopted. Similarly, when the number of GPS signals received is 3 or more (step S23: YES), the measured position data calculated in step S22 is highly accurate. Store in data storage means 4 (step S30).
[0071] そして、補正用位置データ採用部 101により採用された実測位置データまたは予 測位置データは、上記のように、許容される範囲内での精度を有しているため、車両 位置採用部 102により、車両位置データとして採用される (ステップ S31)。以上のよう に、 GPS信号の受信数が 3つ以上のときのときのみならず、 2以下の状態が所定時 間続 、た場合には、信頼性の高 ヽ実測位置データある ヽは予測位置データを車両 位置データとして採用するため、車両の位置データの精度を保持しつつ、位置デー タの取得確率が向上されるようになって 、る。  [0071] Since the actual position data or the predicted position data adopted by the correction position data adoption unit 101 has accuracy within an allowable range as described above, the vehicle position adoption unit By 102, it is adopted as vehicle position data (step S31). As described above, not only when the number of GPS signals received is 3 or more, but also when the status is 2 or less for a predetermined period of time, there is high reliability. Since the data is employed as the vehicle position data, the position data acquisition probability is improved while maintaining the accuracy of the vehicle position data.
[0072] 一方、 GPS信号の受信数が 2以下の状態が所定時間連続して 、な 、場合には (ス テツプ S28 :NO)、ステップ S21に戻り、再び GPS信号を受信するのを待機する。ま た、実測位置データと予測位置データとの同一性が否定された場合にも (ステップ S 29 : NO)、実測位置データの信頼性が低いためステップ S21に戻り、再び GPS信号 を受信するのを待機するようになって ヽる。 [0073] 上述した車両位置データ補正処理により、車両位置データが取得されると、再び、 図 4のフローに戻る。ステップ S8では、異常運行判断部 103が、運行予定データと G PSデータとに基づき、車両の運行状況を判断する。そして、運行予定データに対し、 所定の許容値の範囲内で車両が正常に運行されている限り(ステップ S8 : YES)、処 理はステップ S9へと進む。一方、車両の運行状況に異常動作が認められたとき (ステ ップ S8 :NO)、異常時データ保存部 104が、当該異常動作の発生時刻前後の映像 データおよび GPSデータを異常データ記憶手段 5に保存した後 (ステップ S 10)、処 理をステップ S9へと進める。これにより、異常動作の発生前後におけるデータが自動 的に保存されるため、当該異常動作の原因究明'再発防止に利用されるようになって いる。 [0072] On the other hand, if the number of GPS signals received is 2 or less for a predetermined period of time (step S28: NO), the process returns to step S21 and waits to receive GPS signals again. . In addition, even if the identity between the measured position data and the predicted position data is denied (step S29: NO), the reliability of the measured position data is low, so the process returns to step S21 to receive the GPS signal again. I will come to wait for you. When the vehicle position data is acquired by the vehicle position data correction process described above, the process returns to the flow of FIG. In step S8, the abnormal operation determination unit 103 determines the operation status of the vehicle based on the operation schedule data and the GPS data. Then, as long as the vehicle is operating normally within the predetermined tolerance range for the operation schedule data (step S8: YES), the process proceeds to step S9. On the other hand, when an abnormal operation is recognized in the operation status of the vehicle (Step S8: NO), the abnormal data storage unit 104 stores the video data and GPS data before and after the occurrence time of the abnormal operation as abnormal data storage means 5 (Step S10), the process proceeds to step S9. As a result, data before and after the occurrence of an abnormal operation is automatically saved, so it is used to investigate the cause of the abnormal operation and prevent recurrence.
[0074] また、本実施形態では、異常運行判断部 103が、運行予定データや GPSデータと は無関係に、三次元加速度センサ Saから取得される加速度アナログデータを常時監 視するため、運行データと GPSデータとの比較では判断が遅れる可能性のある突発 的な事故や車両異常を瞬時に判断するようになっている。具体的には、運転手により 急ブレーキがなされた場合、車両が線路上に置かれた異物(置き石、丸太、自転車 等)を踏んだ場合、あるいは突風により車両が不自然に傾斜した場合等には、通常 運行時では見られない加速度が発生するため、異常運行を検知する。これにより、運 転手でさえも事前に察知しにくい異常事故原因が発生した場合でも、当該異常発生 前後におけるデータが保存されるようになって!/、る。  In the present embodiment, the abnormal operation determination unit 103 constantly monitors the acceleration analog data acquired from the three-dimensional acceleration sensor Sa regardless of the operation schedule data and GPS data. In comparison with GPS data, sudden accidents and vehicle abnormalities that may be delayed are judged immediately. Specifically, when the driver suddenly brakes, when the vehicle steps on a foreign object (such as a stone, log, or bicycle) placed on the track, or when the vehicle leans unnaturally due to a gust of wind, etc. Because of the acceleration that is not seen during normal operation, abnormal operation is detected. As a result, even if the cause of an abnormal accident that is difficult for even the driver to detect in advance occurs, data before and after the occurrence of the abnormality is saved!
[0075] つづいて、ステップ S9では、チェックポイント到達判断部 105により、車両がいずれ かのチェックポイントに到達した力否かが判断される。本実施形態では、ステップ S7 で得られた車両位置データが CP測定エリア内に到達したと検出されたとき、当該 CP 測定エリア内に設定されたチェックポイントに車両が到達したと判断する (ステップ S9 : YES)。このように、所定の有効範囲を有する CP測定エリアを用いて判別するため 、各チ ックポイントにおける車両の到達の検出漏れが少なぐ運行案内ミスが防止さ れる。一方、いずれのチェックポイントにも到達しない限り(ステップ S 9 : NO)、ステツ プ S7へと戻り、チェックポイントに到達するまでループ処理を繰り返すようになつてい る。 [0076] 車両がいずれかのチェックポイントに到達したと判断されると (ステップ S9 : YES)、 システムチェック部 94が、各チェックポイントのトレース状況や、ジャイロセンサ Sjによ る方位情報に基づき、本システムの動作状況をチェックする (ステップ S 11)。このチ エックの結果、システムの動作に異常が認められなければ (ステップ Sl l : OK)、ステ ップ S 12へと進む。一方、異常が認められれば (ステップ S11 :NG)、運行案内出力 手段 7にエラーメッセージを出力する (ステップ S13)。これにより、本システムが、万 一、走行中に故障してしまった場合には運転手や運行管理者側が直ちに認識して 適切な対応が可能となる。 [0075] Subsequently, in step S9, the checkpoint arrival determination unit 105 determines whether or not the vehicle has reached one of the checkpoints. In this embodiment, when it is detected that the vehicle position data obtained in step S7 has reached the CP measurement area, it is determined that the vehicle has reached the checkpoint set in the CP measurement area (step S9 : YES). As described above, since the determination is made using the CP measurement area having the predetermined effective range, an operation guidance error with few detection errors of arrival of the vehicle at each check point is prevented. On the other hand, unless any checkpoint is reached (step S9: NO), the process returns to step S7 and repeats the loop process until the checkpoint is reached. [0076] When it is determined that the vehicle has reached one of the checkpoints (step S9: YES), the system check unit 94 performs a check based on the trace status of each checkpoint and the direction information by the gyro sensor Sj. Check the operating status of this system (step S11). As a result of this check, if there is no abnormality in the system operation (step Sl l: OK), proceed to step S12. On the other hand, if an abnormality is recognized (step S11: NG), an error message is output to the operation guidance output means 7 (step S13). As a result, in the unlikely event that this system breaks down while driving, the driver or operation manager can immediately recognize and take appropriate action.
[0077] 本システムに異常が無ければ、運行案内出力部 106が、運行案内出力手段 7から 所定の運行案内を出力させる (ステップ S12)。本実施形態では、車両の運転士に対 し、当該チェックポイントの通過予定時刻に対する実際の通過時刻のずれや制限速 度に対する実際の走行速度のずれを音声案内する他、次なる停車駅名、あるいは制 限速度が変更される旨等を音声案内したり、ディスプレイに表示するようになって 、る  If there is no abnormality in this system, the operation guide output unit 106 outputs a predetermined operation guide from the operation guide output means 7 (step S12). In this embodiment, the driver of the vehicle is voice-guided about the deviation of the actual passage time with respect to the scheduled passage time of the checkpoint and the deviation of the actual traveling speed with respect to the limit speed, or the name of the next stop station or Voice guidance or display on the display that the speed limit will be changed
[0078] そして、車両が運行中における鉄道路線の終点に到達しない限り、ステップ S7から S 12までの処理が繰り返され (ステップ S 14 : NO)、終点に到達した場合には (ステツ プ S 14 : YES)、運行実績データ保存部 107が、運行管理処理で得られた各種のデ ータを運行実績データ記憶手段 4に格納する (ステップ S 15)。つづいて、次路線デ ータ判別部 108が、運行予定データ内の全ての鉄道路線について運行が終了する まで、ステップ S1から S15までの処理が繰り返され (ステップ S16 : YES)、運行予定 データ内の全ての鉄道路線について運行が終了したとき (ステップ S16 :NO)、本鉄 道車両運行管理システムによる運行管理が終了する。 [0078] Then, unless the vehicle reaches the end point of the railway line during operation, the processes from step S7 to S12 are repeated (step S14: NO), and when the end point is reached (step S14). : YES), the operation result data storage unit 107 stores various data obtained by the operation management process in the operation result data storage means 4 (step S15). Next, the next route data discriminating unit 108 repeats the processes from step S1 to S15 until the operation is completed for all railway lines in the operation schedule data (step S16: YES), and the operation schedule data When the operation is completed for all railway lines (step S16: NO), the operation management by the railway vehicle operation management system ends.
[0079] つぎに、本実施形態の具体的な実施例について説明する。  Next, specific examples of the present embodiment will be described.
実施例  Example
[0080] 本実施例では、上述した本実施形態の鉄道車両運行管理システム 1によって、電 車を運行管理する試験を行った。本試験では、図 6に示すような路線データおよび運 行予定データを使用して A駅力 B駅まで実際に運行した結果、図 7に示すような結 果が得られた。 [0081] まず、 0時 0分 0秒、車両が A駅を出発する際、 A駅の名称および出発時間がスピー 力から音声案内された。つぎに、車両が速度変更地点に到達すると、制限速度が 50 kmZhに制限される旨のアナウンスがなされた。つづいての速度変更地点では、 50 kmZhの制限速度が解除される旨のアナウンスがなされるとともに、実際の通過時刻 が通過予定時刻より 13秒遅れである旨のアナウンスがなされた。 In this example, a test for managing the operation of an electric vehicle was performed by the above-described railcar operation management system 1 of the present embodiment. In this test, using the route data and operation schedule data as shown in Fig. 6, the actual operation to A station power B station resulted in the results shown in Fig. 7. [0081] First, when the vehicle departed from station A at 0:00:00, the name and departure time of station A were voice-guided from the speech. Next, when the vehicle reached the speed change point, an announcement was made that the speed limit would be limited to 50 kmZh. At the next speed change point, an announcement was made that the 50 kmZh speed limit was to be released, and an announcement was made that the actual transit time was 13 seconds behind the scheduled transit time.
[0082] つぎに、車両がダイヤとの誤差を確認するチェックポイントに到達したとき、実際の 通過時刻が通過予定時刻より 10秒早い旨のアナウンスがなされた。つづいて、 0時 5 分 20秒、車両の走行速度に異常が検知されたため、当該発生時刻前後 2分間の映 像データが異常データ記憶手段 5に保存された。  [0082] Next, when the vehicle reached a checkpoint for confirming an error with the diamond, an announcement was made that the actual passing time was 10 seconds earlier than the scheduled passing time. Subsequently, at 0: 5: 20, an abnormality was detected in the traveling speed of the vehicle, so that the image data for 2 minutes before and after the occurrence time was stored in the abnormality data storage means 5.
[0083] つづいて、再び速度変更地点に差し掛かり、制限速度が 40kmZhに制限される旨 のアナウンスがなされた後、停車駅を案内するためのチェックポイントに到達し、 B駅 の名称がアナウンスされた。そして、 0時 8分 25秒、車両が B駅に到着すると、到着時 刻が到着予定時刻より 5秒早 、旨のアナウンスがなされた。  [0083] Next, after the speed change point was reached again and an announcement was made that the speed limit would be limited to 40kmZh, a checkpoint for guiding the stop station was reached, and the name of station B was announced. . When the vehicle arrived at station B at 0: 8: 25, an announcement was made that the arrival time was 5 seconds earlier than the estimated arrival time.
[0084] 以上のような本実施形態によれば、  [0084] According to this embodiment as described above,
1.鉄道路線上に任意に設定された各チェックポイントにおいて、自動的に運転士に 各種の運行案内をすることができ、ダイヤ通りの運行が要求される運転士の精神的 圧迫を軽減し、安全な運行を補助することができる。  1. At each checkpoint arbitrarily set on the railway line, it is possible to automatically provide various operation guidance to the driver, reducing the mental pressure of the driver who is required to operate on the street, Safe operation can be assisted.
2. GPS信号を受信しにくい不感地域であっても、高精度な車両位置データを取得し 、安価でありながら確度の高 、運行管理を行うことができる。  2. Even in blind areas where it is difficult to receive GPS signals, highly accurate vehicle position data can be acquired, and operation management can be performed with high accuracy while being inexpensive.
3.各チェックポイントにおいて、所定の有効エリアを設定して GPS信号を取得するた め車両位置データの取得漏れを低減できる。  3. At each checkpoint, a predetermined effective area is set and GPS signals are acquired, so vehicle position data acquisition errors can be reduced.
4.異常運行の発生を認識し、その異常発生前後における映像データや GPSデータ を自動的に保存するため、これらのデータを解析することで当該異常運行の原因を 解明し、事故の再発防止の一助として利用することができる等の効果を奏する。  4. Recognize the occurrence of abnormal operation, and automatically save video data and GPS data before and after the occurrence of the abnormality. By analyzing these data, the cause of the abnormal operation is elucidated and the recurrence of the accident can be prevented. There is an effect that it can be used as an aid.
[0085] なお、本発明に係る鉄道車両運行管理システム 1および鉄道車両運行管理プログ ラムは、前述した実施形態に限定されるものではなぐ適宜変更することができる。  [0085] It should be noted that the railway vehicle operation management system 1 and the railway vehicle operation management program according to the present invention are not limited to the above-described embodiments, and can be changed as appropriate.
[0086] 例えば、運行実績データを解析することにより、 GPS信号を受信しにくい不感地域 を特定できるため、そのような不感地域にチェックポイントがある場合には、実測位置 データよりも予測位置データを優先して車両位置データとして採用するようにしてもよ い。また、鉄道が既定路線を運行する特徴を利用して、不感地帯における通過時間 と通過位置を学習し、予め予測して設定してぉ 、てもよ 、。 [0086] For example, by analyzing the operation result data, it is possible to identify the insensitive area where it is difficult to receive the GPS signal. The predicted position data may be used as the vehicle position data in preference to the data. Also, by using the characteristics that the railway operates on the predetermined route, it is possible to learn the passing time and passing position in the dead zone and to predict and set in advance.
[0087] また、上述した実施形態では、運行用データ取得部 91が、メモリーカードから各種 のデータを取得するとともに、運行実績データ保存部 107が、メモリーカードに運行 実績データを保存しているが、これに限られるものではない。例えば、別途、データを 送受信するための送受信手段を設け、所定の運行管理センター力 運行用データを 受信するとともに、運行実績データを運行管理センターへ送信するようにしてもょ 、。  In the embodiment described above, the operation data acquisition unit 91 acquires various data from the memory card, and the operation result data storage unit 107 stores the operation result data in the memory card. However, it is not limited to this. For example, a separate transmission / reception means for transmitting / receiving data may be provided to receive predetermined operation management center operation data and transmit operation result data to the operation management center.
[0088] さらに、上述した実施形態では、毎秒ごとに取得される GPSデータに基づいて、車 両の進行方向データを収集している力 これに限られるものではなぐジャイロセンサ ¾から車両の方位データを常時取得するようにしてもよい。これにより、 GPS信号を 受信できない地域であっても、ジャイロセンサ ¾から出力される方位データを利用し て、車両の走行補正を精度の高 、データに確立しうるようになって!/、る。  [0088] Further, in the above-described embodiment, the force for collecting vehicle traveling direction data based on GPS data acquired every second is not limited to this. Gyro sensor ¾ to vehicle direction data May be obtained at any time. As a result, even in areas where GPS signals cannot be received, the vehicle travel correction can be established with high accuracy using the azimuth data output from the gyro sensor ¾! / .
図面の簡単な説明  Brief Description of Drawings
[0089] [図 1]本発明に係る鉄道車両運行管理システムの実施形態を示すブロック図である。  FIG. 1 is a block diagram showing an embodiment of a railway vehicle operation management system according to the present invention.
[図 2]本実施形態の鉄道路線を示す平面図である。  FIG. 2 is a plan view showing a railway line according to the present embodiment.
[図 3]本実施形態のメイン測定エリアおよびサブ測定エリアを示す平面図である。  FIG. 3 is a plan view showing a main measurement area and a sub measurement area of the present embodiment.
[図 4]本実施形態の鉄道車両運行管理システムにより実行される処理のフローチヤ一 ト図である。  FIG. 4 is a flowchart of processing executed by the railway vehicle operation management system of the present embodiment.
[図 5]本実施形態の鉄道車両運行管理システムにより実行される車両位置データ補 正処理のフローチャート図である。  FIG. 5 is a flowchart of vehicle position data correction processing executed by the railway vehicle operation management system of the present embodiment.
[図 6]本実施例で使用した運行予定データを示す表である。  [Fig. 6] A table showing the operation schedule data used in this example.
[図 7]本実施例による実験結果を示す図である。  FIG. 7 is a diagram showing experimental results according to the present example.
符号の説明  Explanation of symbols
[0090] 1 鉄道車両運行管理システム [0090] 1 Railcar operation management system
2 路線データ記憶手段  2 Route data storage means
3 運行予定データ記憶手段  3 Operation schedule data storage means
4 運行実績データ記憶手段 5 異常データ記憶手段 4 Operation result data storage means 5 Abnormal data storage means
6 GPS信号受信手段 6 GPS signal receiving means
7 運行案内出力手段 7 Operation guide output means
8 運行状況撮影手段 8 Operation status photographing means
9 運行管理処理手段 9 Operation management processing means
91 運行用データ取得部91 Operation data acquisition unit
92 GPS信号取得部 92 GPS signal acquisition unit
93 GPSデータ算出部  93 GPS data calculator
94 システムチェック部 94 System check section
95 GPS信号受信数判別部 96 補正用データ取得部 97 予測走行距離算出部 98 予測位置データ算出部 99 受信不可時間判別部 100 位置データ比較判別部 101 補正用位置データ採用部 102 車両位置採用部  95 GPS signal reception number determination unit 96 Correction data acquisition unit 97 Predicted mileage calculation unit 98 Predicted position data calculation unit 99 Unreceivable time determination unit 100 Position data comparison / determination unit 101 Correction position data adoption unit 102 Vehicle position adoption unit
103 異常運行判断部 103 Abnormal operation judgment section
104 異常時データ保存部 105 チェックポイント到達判断部 106 運行案内出力部 104 Abnormal data storage part 105 Check point arrival judgment part 106 Operation guidance output part
107 運行実績データ保存部 108 次路線データ判別部 Sa 三次元加速度センサ Sj ジャイロセンサ 107 Operation result data storage unit 108 Next route data discrimination unit Sa Three-dimensional acceleration sensor Sj Gyro sensor

Claims

請求の範囲  The scope of the claims
[1] 鉄道路線を走行する車両の運行を管理する鉄道車両運行管理システムであって、 鉄道路線上のカーブ位置を特定するカーブ特定点および車両の速度変更予定位 置を特定する車速変更予定地点の各緯度'経度データからなる路線特定位置デー タ、およびこれら各路線特定位置を結んだ路線上に任意に設定した車両の運行を管 理するためのチェックポイントの緯度'経度データ力 なるチェックポイント位置データ を記憶する路線データ記憶手段と、  [1] A railway vehicle operation management system for managing the operation of a vehicle traveling on a railway line, the curve specifying point for specifying the curve position on the railway line and the vehicle speed changing planned point for specifying the vehicle speed changing planned position Specific location data consisting of the latitude and longitude data of each of the check points, and the check point of the latitude and longitude data of the check point for managing the operation of the vehicle arbitrarily set on the route connecting these specific locations. Route data storage means for storing position data;
前記チェックポイントの通過予定時刻、予定速度、停車駅案内情報を当該チェック ポイント位置データに対応付けて適宜設定した運行予定データを記憶する運行予定 データ記憶手段と、  An operation schedule data storage means for storing operation schedule data appropriately set in association with the check point position data, the estimated time of passing the checkpoint, the estimated speed, and the stop station guidance information;
グローバルポジショニングシステム(GPS)から GPS信号を受信する GPS信号受信 手段と、  GPS signal receiving means for receiving GPS signals from the global positioning system (GPS),
前記 GPS信号に基づいて前記車両に関する GPSデータを算出し、この GPSデー タおよび前記運行予定データに基づいて前記車両のチェックポイントにおける通過 予定時刻とのずれや予定速度とのずれ、次の停車駅情報を取得し、運行管理を行う 運行管理処理手段と、  GPS data related to the vehicle is calculated based on the GPS signal, and based on the GPS data and the operation schedule data, a deviation from a scheduled passing time or a scheduled speed at the checkpoint of the vehicle, the next stop station An operation management processing means for obtaining information and managing the operation;
この運行管理処理手段によって取得した通過予定時刻とのずれや予定速度とのず れ、次の停車駅情報を適宜運転手に案内する運行案内出力手段と  Deviations from the scheduled passage time and scheduled speed obtained by this operation management processing means, and operation guidance output means for guiding the next stop station information to the driver as appropriate.
を有することを特徴とする鉄道車両運行管理システム。  A railway vehicle operation management system characterized by comprising:
[2] 請求項 1にお!、て、前記運行管理処理手段は、 [2] Claim 1! The operation management processing means is:
前記 GPS信号から前記車両に関する実測位置データ、時間データおよび時速デ ータ等力 なる GPSデータを算出する GPSデータ算出部と、  A GPS data calculation unit for calculating GPS data such as measured position data, time data and hourly speed data regarding the vehicle from the GPS signal;
前記 GPS信号の受信数を判別する GPS信号受信数判別部と、  A GPS signal reception number determining unit for determining the number of GPS signals received;
この GPS信号受信数判別部によって GPS信号が 3つ以上受信されたと判断された 場合、この GPS信号によって算出された実測位置データを補正用位置データとして 採用する補正用位置データ採用部と、  When the GPS signal reception number discriminating unit determines that three or more GPS signals have been received, a correction position data adopting unit that adopts the actual position data calculated by the GPS signal as correction position data;
前記 GPS受信数判別部によって GPS信号の受信数が 2つ以下と判断された場合 、直前の補正用位置データ、前記時間データおよび前記時速データを取得する補 正用データ取得部と、 When the GPS reception number discriminating unit determines that the number of GPS signal receptions is two or less, the correction position data immediately before, the time data, and the speed data are acquired. A regular data acquisition unit;
前記直前の補正用位置データにより特定される補正開始位置からの経過時間およ び前記時速データに基づいて前記車両の予測走行距離を算出する予測走行距離 算出部と、  A predicted travel distance calculation unit that calculates the predicted travel distance of the vehicle based on the elapsed time from the correction start position specified by the immediately preceding correction position data and the speed data;
前記路線特定位置データによって特定される鉄道路線に沿って前記補正開始位 置力 前記予測走行距離だけ進んだ予測位置を示す予測位置データを算出する予 測位置データ算出部と  A predicted position data calculating unit that calculates predicted position data indicating a predicted position advanced by the predicted travel distance along the railway line specified by the route specific position data;
を有して!/、ることを特徴とする鉄道車両運行管理システム。  A railway vehicle operation management system characterized by having! /.
[3] 請求項 2において、前記運行管理処理手段は、前記 GPS信号の受信数が 2っ以 下の状態が所定時間連続した場合、この時点での前記予測位置データと 2つの GP S信号から求められた実測位置データとを比較判別する位置データ比較判別部を有 しており、この位置データ比較判別部により前記予測位置データが前記実測位置デ ータとほぼ等しいと判断された場合、前記補正用位置データ採用部が、前記予測位 置データあるいは前記実測位置データを補正用位置データとして採用することを特 徴とする鉄道車両運行管理システム。  [3] In claim 2, the operation management processing means, based on the predicted position data and two GPS signals at this time, when the number of received GPS signals is 2 or less for a predetermined time. A position data comparison / determination unit that compares and determines the obtained actual position data; and if the position data comparison / determination unit determines that the predicted position data is substantially equal to the actual position data, A railway vehicle operation management system characterized in that a correction position data adopter employs the predicted position data or the measured position data as correction position data.
[4] 請求項 3にお 、て、前記位置データ比較判別部は、直前の補正用位置データと次 の路線特定点とをつな 、だ線上に前記予測位置を設定し、この予測位置を基準とし て所定の有効幅で設定された有効測定ゾーンの範囲内に前記実測位置データが位 置して!/、る場合に、前記予測位置データが前記実測位置データとほぼ等 、と判断 することを特徴とする鉄道車両運行管理システム。  [4] In claim 3, the position data comparison / determination unit connects the immediately preceding correction position data and the next route specific point, sets the predicted position on an elliptic line, and determines the predicted position. When the measured position data is located within the effective measurement zone set with a predetermined effective width as a reference, it is determined that the predicted position data is substantially equal to the measured position data. A railway vehicle operation management system characterized by this.
[5] 請求項 1から請求項 4のいずれかにおいて、前記路線データ記憶手段には、鉄道 路線上にお 、てチェックポイント位置力 車両の進行方向後方に所定の間隔を隔て て設定されるサブチェックポイントの位置を特定するサブチェックポイント位置データ が記憶されており、  [5] In any one of claims 1 to 4, in the route data storage means, the subpoint set on the railroad route is set at a predetermined interval behind the checkpoint position force in the traveling direction of the vehicle. Sub-checkpoint position data that identifies the position of the checkpoint is stored,
前記運行管理処理手段は、前記実測位置データまたは予測位置データにより特定 される車両位置力 前記運行予定データにおけるチェックポイント位置データおよび サブチェックポイント位置データによってそれぞれ特定される位置を基準にして所定 の有効範囲をもって設けられる CP測定エリア内に入ったとき、当該車両がチェックポ イントに到達したと判断するチェックポイント到達判断部を有していることを特徴とする 鉄道車両運行管理システム。 The operation management processing means has a predetermined vehicle position force specified by the measured position data or predicted position data, and a predetermined effective value based on the positions specified by the checkpoint position data and the sub-checkpoint position data in the operation schedule data. When entering the CP measurement area with a range, the vehicle A railway vehicle operation management system comprising a checkpoint arrival determination unit for determining that the vehicle has reached the mark.
[6] 請求項 1から請求項 5の!、ずれかにお 、て、 [6] Claim 1 to claim 5!
前記運行管理処理手段は、前記運行予定データと前記時間データおよび前記速 度データとを比較し、所定のチェックポイントにおける通過予定時刻とのずれ、および 予定速度とのずれを求めて、所定の許容値を超えていないか否力、あるいは三次元 加速度センサ力 取得した加速度アナログデータが所定の許容値を超えて 、な 、か 否かを判断する異常運行判断部と、  The operation management processing means compares the operation schedule data with the time data and the speed data, obtains a deviation from a scheduled passage time at a predetermined checkpoint and a deviation from a scheduled speed, and obtains a predetermined tolerance. Whether or not the value exceeds the value, or the three-dimensional acceleration sensor force An abnormal operation determination unit for determining whether or not the acquired acceleration analog data exceeds a predetermined allowable value,
この異常運行判断部により異常運行が検出されたとき、前記車両に搭載される各 種機器力 得られるデータ、あるいは前記車両外の機器力も受信した各種のデータ のうち、前記異常動作の発生前力 発生後までの所定時間内における各種のデータ を異常データ記憶手段に保存する異常時データ保存部と  When the abnormal operation is detected by the abnormal operation determination unit, the pre-occurrence force of the abnormal operation among the data obtained for the various device forces mounted on the vehicle or the various data received also for the device force outside the vehicle. An abnormal data storage unit for storing various data in the abnormal data storage means within a predetermined time until the occurrence
を有して!/、ることを特徴とする鉄道車両運行管理システム。  A railway vehicle operation management system characterized by having! /.
[7] 請求項 6において、前記車両の周囲状況あるいは前記運転手の運転状況を撮影 する運行状況撮影手段を有しており、 [7] In Claim 6, the vehicle has an operation situation photographing means for photographing a surrounding situation of the vehicle or a driving situation of the driver,
前記異常時データ保存部は、前記運行状況撮影手段により撮影された映像データ および前記 GPSデータを異常データ記憶手段に保存することを特徴とする鉄道車両 運行管理システム。  The abnormal data storage unit stores the video data photographed by the operation situation photographing means and the GPS data in an abnormal data storage means.
[8] 請求項 6にお!/、て、前記異常時データ保存部は、 ATS (Automatic Train Stop)の 地上子から得られる地上子 IDおよび車両速度からなる ATSデータを異常データ記 憶手段に保存することを特徴とする鉄道車両運行管理システム。  [8] In claim 6, the abnormal time data storage unit uses the ATS data including the ground unit ID obtained from the ground unit of the ATS (Automatic Train Stop) and the vehicle speed as the abnormal data storage means. A railway vehicle operation management system characterized by storage.
[9] 請求項 1から請求項 8の 、ずれかにお 1、て、前記運行管理処理手段は、前記車両 の出発地点に関する緯度 ·経度データと前記 GPSデータとの比較結果や、前記チェ ックポイント位置データと前記 GPSデータとの比較結果、ある 、はジャイロセンサの方 位データとチェックポイント間の方位データとの比較結果に基づ 、て、前記鉄道車両 運行管理システムが正常に動作している力否かを判断するシステムチェック部を有し て 、ることを特徴とする鉄道車両運行管理システム。  [9] The operation management processing means according to any one of claims 1 to 8, wherein the operation management processing means compares the latitude / longitude data regarding the departure point of the vehicle with the GPS data, and the check point. Based on the comparison result between the position data and the GPS data, or the comparison result between the direction data of the gyro sensor and the direction data between the checkpoints, the railway vehicle operation management system is operating normally. A railway vehicle operation management system characterized by having a system check unit for determining whether or not power is available.
[10] 鉄道路線を走行する車両の運行を管理する鉄道車両運行管理プログラムであって 鉄道路線上のカーブ位置を特定するカーブ特定点および車両の速度変更予定位 置を特定する車速変更予定地点の各緯度'経度データからなる路線特定位置デー タ、およびこれら各路線特定位置を結んだ路線上に任意に設定した車両の運行を管 理するためのチェックポイントの緯度'経度データ力 なるチェックポイント位置データ を記憶する路線データ記憶手段と、 [10] A railway vehicle operation management program for managing the operation of vehicles traveling on railway lines. Route specific position data consisting of the latitude and longitude data of the curve specific point that specifies the curve position on the railway line and the vehicle speed change planned position that specifies the vehicle speed change planned position, and these route specific positions are connected. Route data storage means for storing checkpoint position data, which is the latitude'longitude data force of the checkpoint for managing the operation of the vehicle arbitrarily set on the route;
前記チェックポイントの通過予定時刻、予定速度、停車駅案内情報を当該チェック ポイント位置データに対応付けて適宜設定した運行予定データを記憶する運行予定 データ記憶手段と、  An operation schedule data storage means for storing operation schedule data appropriately set in association with the check point position data, the estimated time of passing the checkpoint, the estimated speed, and the stop station guidance information;
グローバルポジショニングシステム(GPS)から GPS信号を受信する GPS信号受信 手段と、  GPS signal receiving means for receiving GPS signals from the global positioning system (GPS),
前記 GPS信号に基づいて前記車両に関する GPSデータを算出し、この GPSデー タおよび前記運行予定データに基づいて前記車両のチェックポイントにおける通過 予定時刻とのずれや予定速度とのずれ、次の停車駅情報を取得し、運行管理を行う 運行管理処理手段と、  GPS data related to the vehicle is calculated based on the GPS signal, and based on the GPS data and the operation schedule data, a deviation from a scheduled passing time or a scheduled speed at the checkpoint of the vehicle, the next stop station An operation management processing means for obtaining information and managing the operation;
この運行管理処理手段によって取得した通過予定時刻とのずれや予定速度とのず れ、次の停車駅情報を適宜運転手に案内する運行案内出力手段と  Deviations from the scheduled passage time and scheduled speed obtained by this operation management processing means, and operation guidance output means for guiding the next stop station information to the driver as appropriate.
してコンピュータを機能させることを特徴とする路線車両運行管理プログラム。 請求項 10において、前記運行管理処理手段は、  A route vehicle operation management program characterized by causing a computer to function. In Claim 10, the said operation management processing means is
前記 GPS信号から前記車両に関する実測位置データ、時間データおよび時速デ ータ等力 なる GPSデータを算出する GPSデータ算出部と、  A GPS data calculation unit for calculating GPS data such as measured position data, time data and hourly speed data regarding the vehicle from the GPS signal;
前記 GPS信号の受信数を判別する GPS信号受信数判別部と、  A GPS signal reception number determining unit for determining the number of GPS signals received;
この GPS信号受信数判別部によって GPS信号が 3つ以上受信されたと判断された 場合、この GPS信号によって算出された実測位置データを補正用位置データとして 採用する補正用位置データ採用部と、  When the GPS signal reception number discriminating unit determines that three or more GPS signals have been received, a correction position data adopting unit that adopts the actual position data calculated by the GPS signal as correction position data;
前記 GPS受信数判別部によって GPS信号の受信数が 2つ以下と判断された場合 、直前の補正用位置データ、前記時間データおよび前記時速データを取得する補 正用データ取得部と、 前記直前の補正用位置データにより特定される補正開始位置からの経過時間およ び前記時速データに基づいて前記車両の予測走行距離を算出する予測走行距離 算出部と、 A correction data acquisition unit that acquires the previous correction position data, the time data, and the hourly speed data when the GPS reception number determination unit determines that the number of GPS signal receptions is two or less; A predicted travel distance calculation unit that calculates the predicted travel distance of the vehicle based on the elapsed time from the correction start position specified by the immediately preceding correction position data and the speed data;
前記路線特定位置データによって特定される鉄道路線に沿って前記補正開始位 置力 前記予測走行距離だけ進んだ予測位置を示す予測位置データを算出する予 測位置データ算出部と  A predicted position data calculating unit that calculates predicted position data indicating a predicted position advanced by the predicted travel distance along the railway line specified by the route specific position data;
して機能することを特徴とする鉄道車両運行管理プログラム。  A railway vehicle operation management program characterized by
[12] 請求項 11にお!、て、前記運行管理処理手段は、前記 GPS信号の受信数が 2っ以 下の状態が所定時間連続した場合、この時点での前記予測位置データと 2つの GP S信号から求められた実測位置データとを比較判別する位置データ比較判別部とし て機能し、この位置データ比較判別部により前記予測位置データが前記実測位置デ ータとほぼ等しいと判断された場合、前記補正用位置データ採用部が、前記予測位 置データあるいは前記実測位置データを補正用位置データとして採用することを特 徴とする鉄道車両運行管理プログラム。  [12] In claim 11, the operation management processing means, when a state where the number of GPS signals received is 2 or less continues for a predetermined time, the predicted position data at this time point and two The position data comparison / determination unit functions as a position data comparison / determination unit for comparing and determining the actual position data obtained from the GPS signal. The position data comparison / determination unit determines that the predicted position data is substantially equal to the actual position data. The correction position data adopting unit employs the predicted position data or the actually measured position data as the correction position data.
[13] 請求項 12にお 、て、前記位置データ比較判別部は、直前の補正用位置データと 次の路線特定点とをつな 、だ線上に前記予測位置を設定し、この予測位置を基準と して所定の有効幅で設定された有効測定ゾーンの範囲内に前記実測位置データが 位置して!/、る場合に、前記予測位置データが前記実測位置データとほぼ等 、と判 断することを特徴とする鉄道車両運行管理プログラム。  [13] In Claim 12, the position data comparison / determination unit connects the immediately preceding correction position data and the next route specific point, sets the predicted position on an elliptic line, and determines the predicted position. When the measured position data is located within the effective measurement zone set with a predetermined effective width as a reference! /, It is determined that the predicted position data is substantially equal to the measured position data. A railway vehicle operation management program characterized by
[14] 請求項 10から請求項 13のいずれかにおいて、前記路線データ記憶手段には、鉄 道路線上にお 、てチ ックポイント位置力 車両の進行方向後方に所定の間隔を隔 てて設定されるサブチェックポイントの位置を特定するサブチェックポイント位置デー タが記憶されており、  [14] In any one of claims 10 to 13, the route data storage means is set on the railway line at a predetermined interval behind the direction of travel of the vehicle at the checkpoint position. Sub-checkpoint position data that identifies the position of the sub-checkpoint is stored,
前記運行管理処理手段は、前記実測位置データまたは予測位置データにより特定 される車両位置力 前記運行予定データにおけるチェックポイント位置データおよび サブチェックポイント位置データによってそれぞれ特定される位置を基準にして所定 の有効範囲をもって設けられる CP測定エリア内に入ったとき、当該車両がチェックポ イントに到達したと判断するチェックポイント到達判断部として機能することを特徴とす る鉄道車両運行管理プログラム。 The operation management processing means has a predetermined vehicle position force specified by the measured position data or predicted position data, and a predetermined effective value based on the positions specified by the checkpoint position data and the sub-checkpoint position data in the operation schedule data. It functions as a checkpoint arrival determination unit that determines that the vehicle has reached the checkpoint when entering the CP measurement area with a range. Railway vehicle operation management program.
[15] 請求項 10から請求項 14の!、ずれかにお 、て、 [15] From claim 10 to claim 14!
前記運行管理処理手段は、前記運行予定データと前記時間データおよび前記速 度データとを比較し、所定のチェックポイントにおける通過予定時刻とのずれ、および 予定速度とのずれを求めて、所定の許容値を超えていないか否力、あるいは三次元 加速度センサ力 取得した加速度アナログデータが所定の許容値を超えて 、な 、か 否かを判断する異常運行判断部と、  The operation management processing means compares the operation schedule data with the time data and the speed data, obtains a deviation from a scheduled passage time at a predetermined checkpoint and a deviation from a scheduled speed, and obtains a predetermined tolerance. Whether or not the value exceeds the value, or the three-dimensional acceleration sensor force An abnormal operation determination unit for determining whether or not the acquired acceleration analog data exceeds a predetermined allowable value,
この異常運行判断部により異常運行が検出されたとき、前記車両に搭載される各 種機器から得られるデータ、あるいは前記車両外の機器から送信される各種のデー タのうち、前記異常動作の発生前力 発生後までの所定時間内における各種のデー タを異常データ記憶手段に保存する異常時データ保存部と  When abnormal operation is detected by the abnormal operation determination unit, the occurrence of the abnormal operation occurs among data obtained from various devices mounted on the vehicle or various data transmitted from devices outside the vehicle. An abnormal data storage unit that stores various data in the abnormal data storage means within a predetermined time until the occurrence of front force
として機能することを特徴とする鉄道車両運行管理プログラム。  A railway vehicle operation management program characterized by functioning as
[16] 請求項 15において、前記異常時データ保存部は、車両の周囲状況あるいは運転 手の運転状況を撮影する運行状況撮影手段により撮影された映像データおよび前 記 GPSデータを異常データ記憶手段に保存することを特徴とする鉄道車両運行管 理プログラム。 [16] In Claim 15, the abnormal time data storage unit stores the video data and the GPS data taken by the driving situation photographing means for photographing the surrounding situation of the vehicle or the driving situation of the driver in the abnormal data storage means. A railway vehicle operation management program characterized by preservation.
[17] 請求項 15にお!/、て、前記異常時データ保存部は、 ATS (Automatic Train Stop)の 地上子から得られる地上子 IDおよび車両速度からなる ATSデータを異常データ記 憶手段に保存することを特徴とする鉄道車両運行管理プログラム。  [17] In claim 15, the abnormal data storage unit uses the ATS data including the ground unit ID and the vehicle speed obtained from the ground unit of ATS (Automatic Train Stop) as the abnormal data storage means. A railway vehicle operation management program characterized by storage.
[18] 請求項 10から請求項 17のいずれかにおいて、前記運行管理処理手段は、前記車 両の出発地点に関する緯度 ·経度データと前記 GPSデータとの比較結果や、前記チ エックポイント位置データと前記 GPSデータとの比較結果、あるいはジャイロセンサの 方位データとチェックポイント間の方位データとの比較結果に基づ 、て、前記鉄道車 両運行管理システムが正常に動作している力否かを判断するシステムチェック部とし て機能することを特徴とする鉄道車両運行管理プログラム。  [18] In any one of claims 10 to 17, the operation management processing means may include a comparison result between latitude / longitude data regarding the departure point of the vehicle and the GPS data, and the check point position data. Based on the comparison result with the GPS data or the comparison result between the gyro sensor direction data and the direction data between the checkpoints, it is determined whether or not the railway vehicle operation management system is operating normally. A railway vehicle operation management program that functions as a system check unit.
PCT/JP2007/057249 2006-05-22 2007-03-30 Railroad train operation management system and railroad train operation management program WO2007135808A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800186210A CN101448693B (en) 2006-05-22 2007-03-30 Railroad train operation management system
KR1020087028724A KR101055331B1 (en) 2006-05-22 2007-03-30 Railway vehicle operation management system and railway vehicle operation management program
HK09107667.8A HK1131774A1 (en) 2006-05-22 2009-08-20 Railroad train operation management system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006141961 2006-05-22
JP2006-141961 2006-05-22
JP2007-088730 2007-03-29
JP2007088730A JP4840871B2 (en) 2006-05-22 2007-03-29 Railway vehicle operation management system and railway vehicle operation management program

Publications (1)

Publication Number Publication Date
WO2007135808A1 true WO2007135808A1 (en) 2007-11-29

Family

ID=38723120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057249 WO2007135808A1 (en) 2006-05-22 2007-03-30 Railroad train operation management system and railroad train operation management program

Country Status (5)

Country Link
JP (1) JP4840871B2 (en)
KR (1) KR101055331B1 (en)
CN (1) CN101448693B (en)
HK (1) HK1131774A1 (en)
WO (1) WO2007135808A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786001B1 (en) * 2010-12-07 2011-10-05 三菱電機株式会社 Train security device and train position determination method
CN103838872A (en) * 2014-03-21 2014-06-04 上海富欣智能交通控制有限公司 Data structure definition method in rail transit software development
CN104240477A (en) * 2014-09-18 2014-12-24 南京富岛信息工程有限公司 Intelligent anti-sliding system and method for stopping of railway vehicles
CN105469244A (en) * 2015-12-04 2016-04-06 北汽福田汽车股份有限公司 Method and system for determining departing and arriving states of transport vehicle

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183109A (en) * 2008-01-31 2009-08-13 Toshiba Corp Train operation history monitoring system
JP5042066B2 (en) * 2008-02-25 2012-10-03 株式会社日立製作所 Train control system
JP5000675B2 (en) * 2009-03-18 2012-08-15 公益財団法人鉄道総合技術研究所 ATS system registration data verification device
JP5059044B2 (en) * 2009-03-24 2012-10-24 公益財団法人鉄道総合技術研究所 Secondary error prevention system for driver's train operation
DE102010030257A1 (en) * 2010-06-18 2011-12-22 Robert Bosch Gmbh Driver assistance method for vehicle, involves detecting and evaluating state information of vehicle and environment properties of environment of vehicle
CN102602435B (en) * 2012-04-11 2013-05-29 北京立信伟业科技发展有限公司 Automatic blocking control system and method
CN102642550B (en) * 2012-05-16 2015-10-28 北京世纪东方国铁科技股份有限公司 A kind of position control method of high speed train and positioning control system thereof
JP5829199B2 (en) * 2012-10-09 2015-12-09 株式会社京三製作所 Route data generation apparatus and route data generation method
CN104661179B (en) * 2013-11-20 2019-07-05 沈阳晨讯希姆通科技有限公司 Location data sharing method and system
CN106405535B (en) * 2015-07-31 2021-10-08 株式会社京三制作所 Train speed detection device and train speed detection method
CN105551337B (en) * 2015-12-21 2018-02-09 北京交通大学 A kind of train operator's auxiliary driving method and system
JP6850064B2 (en) * 2016-10-07 2021-03-31 フォルシアクラリオン・エレクトロニクス株式会社 In-vehicle device, running position estimation system, running position estimation method and program
WO2020008525A1 (en) * 2018-07-03 2020-01-09 日本製鉄株式会社 Inspection system, inspection method, and program
KR102079169B1 (en) 2018-10-30 2020-02-19 투아이시스(주) System and the Method of Railroad Facility Management on IoT(Internet of Things)-based
JP7351790B2 (en) * 2020-04-02 2023-09-27 トヨタ自動車株式会社 Autonomous vehicle operation control device and autonomous vehicle
CN111669440A (en) * 2020-05-28 2020-09-15 北京瑞华赢科技发展有限公司 Vehicle-mounted equipment positioning management method and device and traffic transportation device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518768A (en) * 1991-07-10 1993-01-26 Pioneer Electron Corp Gps navigation device
JP2001048021A (en) * 1999-08-03 2001-02-20 Nippon Signal Co Ltd:The Running control device for movable body
JP2002234440A (en) * 2001-02-07 2002-08-20 Toshiba Corp Track inside abnormal condition emergency communication system for railway, station service remote monitoring system, monitoring system having image delivery function
JP2003048543A (en) * 2001-08-03 2003-02-18 Toshiba Transport Eng Inc Train operation control device
JP2003079011A (en) * 2001-08-31 2003-03-14 Mitsubishi Heavy Ind Ltd On-vehicle device
JP2003285737A (en) * 2002-03-29 2003-10-07 Railway Technical Res Inst Emergency guidance system
JP2003294825A (en) * 2002-03-28 2003-10-15 Railway Technical Res Inst Method and system for detection of own position of train
JP2005186651A (en) * 2003-12-24 2005-07-14 Hokkaido Railway Co Vehicle position calculating device, railroad vehicle, ground facility, and vehicle position display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518768A (en) * 1991-07-10 1993-01-26 Pioneer Electron Corp Gps navigation device
JP2001048021A (en) * 1999-08-03 2001-02-20 Nippon Signal Co Ltd:The Running control device for movable body
JP2002234440A (en) * 2001-02-07 2002-08-20 Toshiba Corp Track inside abnormal condition emergency communication system for railway, station service remote monitoring system, monitoring system having image delivery function
JP2003048543A (en) * 2001-08-03 2003-02-18 Toshiba Transport Eng Inc Train operation control device
JP2003079011A (en) * 2001-08-31 2003-03-14 Mitsubishi Heavy Ind Ltd On-vehicle device
JP2003294825A (en) * 2002-03-28 2003-10-15 Railway Technical Res Inst Method and system for detection of own position of train
JP2003285737A (en) * 2002-03-29 2003-10-07 Railway Technical Res Inst Emergency guidance system
JP2005186651A (en) * 2003-12-24 2005-07-14 Hokkaido Railway Co Vehicle position calculating device, railroad vehicle, ground facility, and vehicle position display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786001B1 (en) * 2010-12-07 2011-10-05 三菱電機株式会社 Train security device and train position determination method
WO2012077184A1 (en) * 2010-12-07 2012-06-14 三菱電機株式会社 Train protection device and train position determination method
US9266543B2 (en) 2010-12-07 2016-02-23 Mitsubishi Electric Corporation Train protection device and train position decision method
CN103838872A (en) * 2014-03-21 2014-06-04 上海富欣智能交通控制有限公司 Data structure definition method in rail transit software development
CN104240477A (en) * 2014-09-18 2014-12-24 南京富岛信息工程有限公司 Intelligent anti-sliding system and method for stopping of railway vehicles
CN104240477B (en) * 2014-09-18 2017-10-31 南京富岛信息工程有限公司 A kind of rail truck intelligent parking anti running system and its method
CN105469244A (en) * 2015-12-04 2016-04-06 北汽福田汽车股份有限公司 Method and system for determining departing and arriving states of transport vehicle

Also Published As

Publication number Publication date
JP4840871B2 (en) 2011-12-21
KR101055331B1 (en) 2011-08-08
KR20090010078A (en) 2009-01-28
HK1131774A1 (en) 2010-02-05
JP2008001347A (en) 2008-01-10
CN101448693B (en) 2011-12-21
CN101448693A (en) 2009-06-03

Similar Documents

Publication Publication Date Title
WO2007135808A1 (en) Railroad train operation management system and railroad train operation management program
US20190056732A1 (en) Automated driving assistance apparatus, automated driving assistance system, automated driving assistance method and automated driving assistance program
US20180229743A1 (en) Automated driving assistance apparatus, automated driving assistance system, automated driving assistance method, program, and recording medium
JP4313808B2 (en) Vehicle monitoring system, data recording device, and vehicle monitoring device
US9599480B2 (en) Vehicle localization and transmission method and system using a plurality of communication methods
US10089864B2 (en) Operating management system, operating management method, and program
US10854087B2 (en) Assistance system and method for transferring data regarding an accident or a breakdown of a vehicle
US20220001900A1 (en) Driver abnormality response device, driver abnormality response system, and driver abnormality response method
JP2008001347A5 (en)
JP2007334574A (en) Emergency call unit, emergency call system, and emergency vehicle guide system
JP4805607B2 (en) Train operation support device
CN104859688B (en) Subway automated management system based on Big Dipper location
KR101795381B1 (en) System and method of sharing for vehicle position information, and computer readable medium recording the method
KR101569068B1 (en) Method and apparatus for remote monitoring management for safe operation of group bus
JP7085391B2 (en) Servers and communication systems
US11780483B2 (en) Electronic job aid system for operator of a vehicle system
WO2020022221A1 (en) Vehicle control system and vehicle control device
KR101826639B1 (en) Notice apparatus of departing person after departure of the vehicle and method thereof
JP7099116B2 (en) Vehicle management system, on-board unit, and center equipment
JPH09226583A (en) Railroad crossing monitor system
CN113808420A (en) Vehicle information presentation method and device, vehicle, storage medium and electronic device
JP4001784B2 (en) Train control system
JP2011255774A (en) Driving support system
JP5000675B2 (en) ATS system registration data verification device
JP2019077418A (en) Passenger guide system and passenger guide method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018621.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740685

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020087028724

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2637/MUMNP/2008

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 07740685

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)