WO2007135747A1 - Head substrate and discharge control apparatus using such head substrate, heating discharging type print head equipped with such discharge control apparatus, and thermal head - Google Patents

Head substrate and discharge control apparatus using such head substrate, heating discharging type print head equipped with such discharge control apparatus, and thermal head Download PDF

Info

Publication number
WO2007135747A1
WO2007135747A1 PCT/JP2006/310402 JP2006310402W WO2007135747A1 WO 2007135747 A1 WO2007135747 A1 WO 2007135747A1 JP 2006310402 W JP2006310402 W JP 2006310402W WO 2007135747 A1 WO2007135747 A1 WO 2007135747A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
substrate
heat
head
shape
Prior art date
Application number
PCT/JP2006/310402
Other languages
French (fr)
Japanese (ja)
Inventor
Hisanobu Matsuzoe
Original Assignee
Fukuoka Technoken Kogyo, Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Technoken Kogyo, Co., Ltd. filed Critical Fukuoka Technoken Kogyo, Co., Ltd.
Priority to JP2007530088A priority Critical patent/JP4263759B2/en
Priority to PCT/JP2006/310402 priority patent/WO2007135747A1/en
Publication of WO2007135747A1 publication Critical patent/WO2007135747A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/385Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material
    • B41J2/41Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing
    • B41J2/415Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing by passing charged particles through a hole or a slit
    • B41J2/4155Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing by passing charged particles through a hole or a slit for direct electrostatic printing [DEP]

Definitions

  • the present invention relates to a head substrate used in a heat discharge type print head for forming an image on an electrostatic development type recording medium capable of repetitive recording by the action of a discharge, a discharge control device using the head substrate, and the like BACKGROUND ART Related to a heat discharge type print head provided with a discharge control device, and a thermal head used as a heating head in a print head or a discharge control device for forming an image in a thermal printer or facsimile of a thermal or thermal transfer system
  • Patent Document 1 an ion irradiation method, which is an electrostatic latent image forming method different from the electrophotographic method, has been developed.
  • the electrophotographic method uses two processes, uniform charging and exposure, to release the exposed portion of the charge on the uniformly charged photoconductor, thereby forming an electrostatic latent image on the photoconductor as the electrostatic latent image carrier.
  • the ion irradiation method only selective charging (electrostatic latent image formation charging) by ion irradiation accompanying the generation of discharge from the discharge electrode is performed in an ion-generating atmosphere (such as in the air). Therefore, it is possible to complete the formation of the electrostatic latent image on the electrostatic latent image carrier (there is no need to be a photoconductor because it is an insulator). It is a method.
  • Patent Document 2 discloses a specific shape of an ion irradiation type print head compatible with a horizontal printer and an image forming apparatus including the shape.
  • a minute ball is color-coded into two colors (for example, black and white), and the ball is rotated by the difference in electrical characteristics of each color to display an arbitrary color, a minute ball
  • An electrophoretic system in which fine powders of two colors (for example, black and white) are mixed in a ball and only one color is floated due to the difference in electrical characteristics of the fine powders of each color.
  • There is a liquid crystal system that displays the background color of the part where the shutter is opened by opening and closing.
  • thermal heads are known as print heads for forming images on thermal and thermal transfer thermal printers and facsimiles.
  • the thermal head applies a current to the heating resistor formed on the substrate and develops thermal paper using Joule heat generated in the heating resistor, or sublimates the ink layer of the ink donor film to generate a sublimation type. This is a method of forming an image by transferring ink to recording paper.
  • This thermal head is classified into a thick film type and a thin film type depending on the manufacturing method.
  • a thick-film thermal head is a device in which a thick-film conductor (electrode), heating resistor, and glass paste are applied onto a substrate and baked to form a heat generating part by patterning using photolithography technology.
  • the thin film thermal head forms a heat generating part having electrodes and heat generating resistors by using a film forming technique such as sputtering or vacuum deposition.
  • the contact area with the recording medium can be determined by the size of the top of the curved surface, and the heat generated by the heating resistor does not spread in the scanning direction, so there is no blur.
  • a high quality image can be formed.
  • the heat generating part that forms the recording surface is formed on the end surface of the substrate, it is possible to form an image on a recording medium that is elastic and difficult to bend, such as plastic cards and cardboard. It is suitable as a print head for a horizontal printer, and the apparatus can be easily downsized.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-326756
  • Patent Document 2 WO2005Z056297
  • Patent Document 3 Japanese Patent Laid-Open No. 62-292451
  • a heat generating part having a heating element for heating a discharge electrode on a hard V, substrate, etc. is used as a lower layer, and the heat generating part is insulated.
  • a head substrate is formed by laminating a protective film as an intermediate layer and a discharge portion having a discharge electrode as an upper layer.
  • the head substrate Depending on the shape, the shape of the heat-discharge type print head is determined.
  • Patent Document 2 Therefore, in order to manufacture a heat discharge type print head compatible with a horizontal printer as shown in (Patent Document 2), a material such as ceramic was used to determine the shape of the heat discharge type print head. Due to restrictions on formation technology on non-planar substrates and restrictions on formation technology of discharge devices such as heat generating parts and discharge parts on non-planar substrates, workability, designability, and mass productivity are lacking. I have a problem.
  • thermal heads such as end-face type, edge-type, and raised-type using thin film technology
  • large-scale equipment such as sputtering equipment and vacuum evaporation equipment, as well as curved surfaces of non-planar substrates.
  • Metal thin film with thin film technology such as vapor deposition on the inclined surface and front and back flat parts Since the electrode to be connected to the heating resistor must be formed by simultaneously etching this with photolithographic technique, accurate masking on (non-planar) surfaces with different angles, It has the problem that it requires ingenious exposure control, the manufacturing process is complicated, the yield is poor, and the mass productivity is lacking.
  • the electrodes and heating resistors are formed in a flat state and then the desired shape It can be deformed (curved) and has excellent shape flexibility, but the flexible substrate cannot withstand the temperature during firing in the manufacturing process of thick film thermal heads, so the thin film thermal head manufacturing process is used. If it had to be mass-produced, it had a problem.
  • the present invention solves the above-mentioned conventional problems, and by forming a discharge device having a heat generating portion, a discharge portion, etc. on a planar substrate by forming the substrate itself with flexibility, the discharge device is formed.
  • Providing a head substrate that can process a substrate into a desired shape excels in workability and assembly workability, overcomes restrictions on the formation technology of the substrate and discharge device, and excels in design independence and mass productivity.
  • Excellent quality reliability By providing a horizontal printer compatible heating discharge print head equipped with a discharge control device, and making the substrate itself flexible, thin-film technology or thick-film technology is used for the substrate in a flat state. It can be formed, can be microfabricated and can be manufactured in large numbers, is excellent in mass productivity, can be processed into a desired shape, and can be processed into a desired shape.
  • the purpose of the present invention is to provide a thermal head that improves the thermal conductivity of the substrate, has excellent print stop response to heat stop, and has excellent image quality reliability.
  • a head substrate of the present invention a discharge control device using the head substrate, a heat discharge type print head including the discharge control device, and a thermal head have the following configurations.
  • This configuration has the following effects.
  • the flexible thin film covering the heat generating part has heat resistance and insulation properties, the heat generating element that is not thermally deformed by the heat generated by the heat generating element and the electrodes connected to the heat generating element are protected and discharged. Insulation with the electrode can be ensured, and the discharge electrode can be reliably heated.
  • a flexible substrate having an oxide film formed on at least one of both surfaces of the metal foil is excellent in thermal conductivity, so that heat from the discharge electrode is transferred to the shape substrate to escape. Therefore, it is possible to prevent the heat build-up on the discharge electrode, improve the response of the discharge stop to the heating stop of the heat generating part, and have excellent discharge control reliability.
  • the heating control by the heating element can be selectively performed in a state where the discharge control voltage is applied to the discharge electrode.
  • Discharge electrode force In an atmosphere where discharge or light emission occurs and ions can be generated, the amount of ions generated can be controlled, and it can be used to form images on a dedicated recording medium such as an electrostatic development type digital paper. Can do.
  • a heat generating part having a heating element By forming a heat generating part having a heating element on the surface of the flexible substrate on which the oxide film is formed, the flexible substrate and the heat generating part can be reliably insulated, and can be selected as the heating element of the heat generating part. Can be energized to generate heat.
  • a head substrate is formed by forming a discharge device such as a heat generating portion or a discharge portion on a flexible substrate.
  • a discharge device such as a heat generating portion or a discharge portion
  • the metal foil serving as the base material of the flexible substrate aluminum, copper, or an alloy thereof is preferably used.
  • oxide film SiO, MgO, Al O
  • a thermal spraying method in addition to the anodic oxidation method, a thermal spraying method, a coating method, an acid treatment method, a vapor deposition method, a gradient function method, or a method in which a plurality of these methods are combined is preferably used.
  • the thickness of the flexible substrate is preferably 6 ⁇ m to 50 ⁇ m. As the thickness of the flexible substrate becomes thinner than 6 m, handling becomes difficult, and the mass productivity and durability tend to be reduced, and as the thickness becomes thicker than 50 m, the thermal conductivity tends to decrease. Neither is desirable.
  • the flexible thin film those having heat resistance and heat insulation and heat transfer properties capable of transferring heat generated by the heat generating portion of the heating means to the discharge electrode are suitably used.
  • synthetic resins such as polyimide, aramid, and polyetherimide, glass, and the like are preferably used.
  • an insulating film may be further formed in a range that does not hinder flexibility and heat transfer to the discharge electrode.
  • An electric field is formed by setting a potential difference corresponding to a discharge control voltage between the discharge electrode and a counter electrode formed on or in contact with or close to the back side of the recording medium.
  • TaSiO, RuO or the like is preferably used as a heat generating element as long as it can selectively heat a plurality of discharge electrodes or arbitrary positions of the discharge electrodes.
  • the heating location of the heat generating part By selecting the heating location of the heat generating part, it is possible to easily generate a discharge easily from an arbitrary heating position (discharge generation site) of the discharge electrode.
  • the discharge control voltage is a voltage range in which discharge does not occur between the discharge electrode and the counter electrode on the recording medium side only by the potential difference, but discharge occurs by heating the discharge electrode.
  • the discharge portion is formed in a comb shape by connecting one end portions of a plurality of discharge electrodes with a common electrode portion, or formed in a ladder shape or the like by connecting both end portions of the plurality of discharge electrodes with a common electrode portion.
  • it can be formed into a flat plate shape with a single discharge electrode such as a rectangular shape or a square shape (see, for example, JP-A-2003-326756, WO2005Z056297).
  • the discharge electrode's heat dissipation area is increased and the heat capacity is increased, thereby improving the cooling effect of the discharge electrode and the response to heat stoppage.
  • a stable voltage can always be applied by reducing the resistance value, the discharge stability and the like can be further improved.
  • the vicinity of the heating position by the heat generating part of the discharge electrode is a discharge generation site.
  • the portion other than the discharge generation site is the common electrode unit.
  • the discharge part is formed of a flat discharge electrode, the portion heated by the heat generating part becomes a discharge generating part, and therefore, the discharge part can be reliably discharged without fine alignment between the discharge part and the heat generating part. Can be generated and is excellent in reliability and mass productivity.
  • the discharge part is formed in a comb shape or a ladder shape
  • the cooling effect of the discharge electrode and heating can be increased by increasing the heat radiation area of the discharge part and increasing the heat capacity. Responsiveness to the stop is improved, and a stable voltage can always be applied by reducing the resistance value, so that the stability of discharge can be further improved.
  • the pole width is wider than the width of each discharge electrode, the cooling effect of the discharge electrode, which is temporarily heated to 100-300 ° C, will be improved, and heat will not be burned.
  • the discharge can be stopped in response to the stop quickly, the discharge time interval can be shortened and the presence / absence of the discharge can be switched in a short time, and the recording speed can be increased.
  • the resistance value of the common electrode part can be reduced, and the potential difference generated between the discharge electrodes connected by the common electrode part can be suppressed as much as possible, thereby reducing the variation in the discharge amount at each discharge electrode. And has excellent discharge stability.
  • each discharge electrode can be formed in a substantially rectangular shape, trapezoidal shape, semicircular shape, bullet shape, or a combination thereof. Further, the peripheral length around the edge of the discharge electrode can be increased by further dividing a part of the discharge electrode with a slit or the like, or by forming an uneven portion on the peripheral edge (for example, WO2005 / 05629
  • the discharge electrode Since the discharge electrode has a large amount of discharge from the periphery of the edge, it is possible to increase the amount of ions emitted and the intensity of the emitted light by increasing the discharge amount from the discharge electrode by increasing the circumference around the edge.
  • the discharge control voltage and heating temperature can be set low, and energy saving and discharge generation efficiency are excellent.
  • the discharge control voltage can be set low, the discharge electrode has excellent long life.
  • a discharge hole portion may be formed in the vicinity of the discharge generation site (heating position) of the discharge electrode.
  • the edge peripheral force of the discharge hole can also generate a discharge, and the same effect as that obtained by dividing the end of the discharge electrode can be obtained.
  • the shape of the discharge hole can be formed in various shapes such as a substantially circular shape, a substantially oval shape, a polygon such as a quadrangle or a hexagon, and a star shape.
  • the number and size of the discharge holes per discharge generation site (near the heating position) can be appropriately selected and combined.
  • the concave and convex portions and the discharge hole portions of the discharge electrode can be formed by the above-described etching or laser calorie.
  • a conductive material layer may be formed on at least the surface of the common electrode portion in the discharge portion.
  • the resistance value of the common electrode portion can be further lowered, the potential difference generated between the respective discharge electrodes can be reliably reduced, and the discharge stability is excellent.
  • the conductive material layer only needs to have conductivity superior to that of the discharge electrode, such as screen printing of silver paste, silver plating, etc. Can be formed more easily. By increasing the thickness of the conductive material layer, the resistance value of the common electrode portion can be reduced, and the stability of discharge generation can be improved.
  • a metal such as gold, silver, copper, or aluminum is formed by vapor deposition, sputtering, printing, plating, etc., and then etched to form a pattern as necessary.
  • a conductive material such as carbon may be used.
  • the thickness of the discharge electrode varies depending on the material and the characteristics of the recording medium used, but the thickness when gold is formed is preferably 0.1 ⁇ m to 100 ⁇ m. Discharge electrode thickness is less than 0 .: As it becomes thinner than Lm, it tends to be affected by wear, and the life of the discharge electrode tends to be shortened. There is a tendency for the properties to be easily lowered, both of which are not preferred.
  • the discharge electrode and the counter electrode In the state where an electric field is formed by setting a potential difference corresponding to the discharge control voltage between and the discharge electrode, a discharge is generated by selectively heating the discharge electrode at the heat generating part based on image information.
  • Various waveforms can be selected as the voltage to be applied to the electrodes. Triangular waves, rectangular waves, trapezoidal waves, sine waves, etc. can be used alone or in combination, and a DC voltage or an AC voltage can be superimposed on them. You can. For example, when only an AC voltage is applied to the discharge electrode, positive and negative ions are generated. Therefore, to select only negative ions, a negative DC voltage is superimposed on the AC voltage, and to select only positive ions, an AC voltage superimposed with a positive DC voltage is applied to the discharge electrode. .
  • the voltage value applied to the discharge electrode and the counter electrode can be arbitrarily set within the range. Therefore, all the voltage corresponding to the discharge control voltage may be applied to the discharge electrode side and the counter electrode may be grounded, or the voltage corresponding to the discharge control voltage may be distributed to the discharge electrode and the counter electrode side. Let's apply it.
  • the voltage applied to the counter electrode can be selected from various waveforms in the same manner as the voltage applied to the discharge electrode. For example, a discharge control voltage obtained by superimposing a DC voltage on an AC voltage.
  • a discharge control voltage obtained by superimposing a DC voltage on an AC voltage.
  • the invention according to claim 2 is the head substrate according to claim 1, wherein the head substrate includes an insulating film formed on at least one of the surfaces of the flexible thin film. is doing.
  • the insulating film may be a thin film made of an inorganic material such as SiON or SiO, or other insulating films.
  • the thin film may be formed of a material having an affinity (regardless of organic or inorganic).
  • a material having an affinity regardless of organic or inorganic.
  • those having high thermal conductivity that can efficiently transfer the heat of the heating element to the discharge electrode are preferred.
  • an insulating film is formed by multiple coatings, even if pinholes are generated by each coating, the possibility of overlapping pinholes can be reduced by repeated coating. Since the heat generating portion can be reliably insulated, the reliability is excellent.
  • a head substrate according to claim 3 of the present invention includes a heat-resistant and insulating flexible substrate in which an oxide film is formed on both surfaces of a metal foil, and one of both surfaces of the flexible substrate.
  • a discharge part having a discharge electrode formed on the surface side and a heat generation part having a heating element formed on the other surface side of both surfaces of the flexible substrate are provided.
  • This configuration has the following effects.
  • a flexible board on which discharge devices such as heat-generating parts and discharge parts are formed can be processed (curved) into a desired shape and has excellent flexibility and versatility.
  • the flexible substrate can be deformed (curved) together with the desired shape, and fixed to the shape of the shape substrate to fix the desired shape using conventional technology (previously, It is possible to manufacture a heat-discharge type print head (which required advanced technology) and has excellent productivity.
  • the flexible substrate has heat resistance and insulation properties, it protects the heating element that is not thermally deformed by the heat generated by the heating element and the electrode connected to the heating element to ensure insulation from the discharge electrode.
  • the discharge electrode can be heated.
  • the flexible substrate with the oxide film formed on both sides of the metal foil is excellent in thermal conductivity, the heat generated by the heating element can be efficiently transmitted to the discharge electrode through the flexible substrate. Control voltage and heating temperature can be set low, and energy saving and discharge generation efficiency are excellent.
  • the heating control by the heating element can be selectively performed in a state where the discharge control voltage is applied to the discharge electrode.
  • Discharge electrode force In an atmosphere where discharge or light emission occurs and ions can be generated, the amount of ions generated can be controlled, and it can be used to form images on a dedicated recording medium such as an electrostatic development type digital paper. Can do.
  • the head substrate of claim 3 is the same as that of claim 1 except for the arrangement of the flexible substrate, the discharge part, and the heat generating part, and the material, shape, formation method, etc. are the same as in claim 1. Is omitted.
  • the invention according to claim 4 is the head substrate according to claim 3, and includes a flexible thin film having heat resistance and insulation covering the heat generating portion. According to the configuration, in addition to the operation of the third aspect, the following operation is provided.
  • the flexible thin film is the same as in claim 1 and the description thereof is omitted.
  • the head substrate according to claim 5 of the present invention includes: (a) a flexible substrate having heat resistance and insulation in which an oxide film is formed on both surfaces of a metal foil; and one of both surfaces of the flexible substrate.
  • the head substrate according to claim 5 is a head substrate in which a discharge unit having a discharge portion and a heat generation unit having a heat generation portion and a driver IC are separately formed and combined.
  • a discharge device separation type the material, shape, formation method, etc. of the flexible substrate, the discharge part, and the heat generation part are the same as in claim 1, and the explanation is omitted.
  • the heat generating part of the heat generating unit may be formed on a flexible substrate having flexibility similar to the discharge unit, or may be formed on a hard substrate such as ceramic.
  • the discharge unit and the heat generating unit can be fixed by bonding the substrates together with a heat-resistant adhesive.
  • the positioning of the discharge unit and the heat generating unit can be performed by a method in which a positioning pin is protruded from one of the substrates and the pin is fitted.
  • the invention according to claim 6 is the head substrate according to claim 5, wherein the discharge unit and the heat generating unit are detachably disposed.
  • positioning of the discharge unit and the heat generating unit can be performed by a method such as pin fitting as described above. After positioning, both ends of the discharge unit and the heat generating unit in the longitudinal direction and the outer periphery can be sandwiched by a detachable fixing jig and fixed by a detachable fixing means such as pin fitting or screwing.
  • the invention described in claim 7 is the head substrate according to any one of claims 3 to 6, wherein the insulating film is formed on at least one of both surfaces of the flexible substrate. It has the structure which is equipped with.
  • the invention according to claim 8 is the head substrate according to any one of claims 1 to 7, wherein the head substrate is formed on the discharge portion side of the flexible substrate and insulated from the discharge electrode.
  • the induction electrode is provided with a structure.
  • the induction electrode may be formed so as to be separated (offset) in the horizontal direction from the end (edge) of the discharge electrode on the discharge generation site side!
  • an induction electrode is formed on the flexible thin film covering the heat generating part, and the induction electrode is covered with a flexible thin film similar to the flexible thin film covering the heat generating part.
  • the discharge electrode can be formed on The Alternatively, the induction electrode and the discharge electrode may be formed side by side on the flexible thin film covering the heat generating part, and the induction electrode may be covered with the flexible thin film, or the discharge electrode is formed on the flexible thin film covering the heat generating part. However, the induction electrode may be formed on the discharge electrode other than the end (edge) on the discharge generation site side with a flexible thin film.
  • an induction electrode is formed on the flexible substrate on which the discharge part is formed, and a flexible thin film is formed.
  • the discharge electrode can be formed on the induction electrode.
  • the induction electrode and the discharge electrode may be formed side by side on the flexible substrate, and the induction electrode may be covered with a flexible thin film.
  • the discharge electrode may be formed on the flexible substrate, and the end of the discharge electrode on the discharge generation site side.
  • the induction electrode may be formed on the other part (edge) covered with a flexible thin film.
  • the invention according to claim 9 is the head substrate according to any one of claims 1 to 8, and has heat resistance and insulation coated on the discharge electrode leaving a discharge generation site. A flexible coating film is provided.
  • the discharge electrode Since the periphery of the discharge electrode is covered with a flexible coating film, the discharge electrode can be prevented from being generated from an extra portion other than the discharge generation portion of the discharge electrode. Therefore, it is possible to concentrate and irradiate ions and ultraviolet rays in one place, and the efficiency of image formation is excellent.
  • a step can be formed between the discharge generation site surface and the surface of the flexible coating film.
  • the gap between the recording medium and the recording medium arranged opposite to each other can be kept constant, the contact with the discharge generation site can be prevented, and the discharge having the strength of the discharge generation site can be stabilized.
  • the discharge electrode the vicinity of the heating position by the heating element of the heat generating portion is the discharge generation site.
  • the flexible coating film is provided on the discharge electrode except for the discharge generation site.
  • the flexible coating film has an opening formed in a substantially circular shape, a substantially elliptical shape, a substantially rectangular shape, or the like at a discharge generation site of the discharge electrode (near the heating position of the heating portion by the heating element).
  • the opening may be formed independently for each of the plurality of discharge generation sites, or may be formed continuously in a long hole shape so as to straddle the plurality of discharge generation sites.
  • the same material as that of the flexible thin film is preferably used.
  • the invention according to claim 10 is the head substrate according to claim 9, wherein the head substrate includes a concavo-convex portion formed on a surface of the flexible coating film. .
  • the invention according to claim 11 is the head substrate according to any one of claims 1 to 10, wherein the oxide film of the flexible substrate is made of the same material as the metal foil. It is formed of a metal oxide film!
  • the acid film formed on both surfaces of the metal foil as the base material of the flexible substrate is formed of a metal oxide film of the same material as the metal foil, the metal foil and the acid film are formed. It has excellent film adhesion and can improve the insulation and durability of flexible substrates.
  • the invention according to claim 12 is the head substrate according to any one of claims 1 to 10, wherein the oxide film of the flexible substrate is made of a material different from the metal foil. It is made of a metal oxide film and has a structure. With this configuration, the following operations are provided in addition to the operation of any one of claims 1 to 10.
  • the oxide film formed on both sides of the metal foil used as the base material of the flexible substrate with a metal oxide film made of a material different from that of the metal foil, a combination of the metal foil and the oxide film is used.
  • the thermal conductivity and insulation of the flexible substrate can be controlled, and the efficiency of thermal conduction and the insulation reliability of the flexible substrate can be improved.
  • the invention according to claim 13 is the head substrate according to any one of claims 1 to 12, wherein the metal foil of the flexible substrate is formed of aluminum. Have.
  • the metal foil used as the base material of the flexible board is formed of aluminum, the thermal conductivity of the flexible board can be improved, and the excess heat from the discharge electrode and the heat generating part is fixed to the flexible board. Therefore, it is possible to efficiently transmit the heat to the shaped substrate to escape, or to efficiently transmit the heat generated by the heat generating portion to the discharge electrode, thereby improving the efficiency and reliability of the discharge generation.
  • the invention according to claim 14 is the head substrate according to any one of claims 1 to 12, wherein the metal foil of the flexible substrate is formed of copper. Yes.
  • the thermal conductivity of the flexible substrate can be improved, and the flexible substrate can absorb excess heat from the discharge electrode and the heat generating part. It can be efficiently transmitted to the fixed shape substrate and escaped, or the heat generated by the heat generating part can be efficiently transmitted to the discharge electrode, so that the efficiency and reliability of discharge generation can be improved.
  • the invention according to claim 15 is the head substrate according to any one of claims 1 to 14, wherein the oxide film of the flexible substrate is formed of alumina. Structure Have a success.
  • the oxide film of the flexible substrate is made of alumina, so that it is chemically stable, has excellent heat resistance and insulation, and improves the reliability of discharge control with high thermal conductivity. be able to.
  • the metal foil used as the base material of the flexible substrate is made of aluminum!
  • an aluminum oxide film can be formed by vapor-depositing aluminum on both surfaces and then performing an acid treatment by an anodic acid method.
  • An alumina film manufactured by Ibi Isako Co., Ltd. is an example of an alumina foil formed on both sides of an aluminum foil.
  • a discharge control device provides the head substrate according to any one of the first to fifteenth aspects and a surface of the head substrate on the heat generating portion side of the flexible substrate. And a driver IC that controls the heat generation of the heating element.
  • This configuration has the following effects.
  • the discharge time at the discharge electrode can be controlled, and the amount of generated ions and the emission intensity due to the discharge can be controlled.
  • the area gradation on the medium can be easily performed, and the image quality can be improved.
  • the heating means is to electrically join the driver IC and the heat generating portion and to control the heating of the heat generating element of the heat generating portion by the driver IC.
  • the discharge electrode of the discharge portion is controlled.
  • a heat discharge type discharge control apparatus controls the presence or absence of heating from the discharge electrode (discharge generation site) of the discharge part by controlling the presence or absence of heating.
  • the heating means is equipped with a driver IC that selectively energizes the heating element to control the heating of the heating element, the heating of the heating element can be controlled at a low voltage, and the discharge electrode The voltage applied to the capacitor can be lowered, and the discharge control device can be reduced in size and extended in life. Further, it is excellent in mass productivity and reliability as a heat discharge type print head.
  • the heating means a configuration similar to a thermal head used in a conventional thermal facsimile can be suitably used. For example, it is possible to selectively generate heat at an arbitrary portion of one heating element disposed across a plurality of discharge electrodes or a plurality of heating elements individually disposed corresponding to a plurality of discharge electrodes. Some generate heat.
  • the structure of the heating part can be thick or thin.
  • a heat-discharge type print head according to claim 17 of the present invention is a heat-discharge type print head including the discharge control device according to claim 16, wherein the head substrate has a shape of a shape substrate. It is fixed along and has a structure.
  • This configuration has the following effects.
  • the head substrate is flexible, it is possible to manufacture heat discharge printheads of various shapes using a common head substrate by simply changing the shape of the shape substrate and the fixing position of the discharge part relative to the shape substrate. Excellent in mass productivity and versatility.
  • a print wiring board provided with a connector for electrically connecting to the outside together with the discharge control device is disposed on the shape board to obtain a heat discharge type print head.
  • the flexible substrate Since the flexible substrate has flexibility, it can be simply fixed to the shape substrate by bending the head substrate itself along the shape of the shape substrate. For this reason, the discharge electrode has an end surface portion formed in an arc shape so as to be substantially orthogonal to the surface of the shape substrate, and an edge of the shape substrate formed in an inclined shape so as to form a substantially obtuse angle with the surface of the shape substrate. It can be easily placed at various positions such as a raised portion that protrudes from the surface of the substrate and the shaped substrate and is formed into a loose or strong hill shape, etc., and is excellent in design flexibility and productivity.
  • the discharge electrode is arranged on a different surface from the arrangement surface of the driver IC, and the arrangement surface of the discharge electrode and the arrangement surface of the driver IC are arranged. Can be prevented from being on the same plane, the degree of freedom of arrangement of the heat-discharge type print head can be increased, and versatility can be improved.
  • the electrostatic latent image can be formed from the optimum position with respect to the electrostatic latent image carrier having various shapes, the versatility and the reliability of the image quality are excellent.
  • the shape substrate itself is formed of a material having excellent thermal conductivity, such as aluminum, or a heat dissipation formed by a material having excellent thermal conductivity, such as aluminum, on the shape substrate to which the head substrate is fixed.
  • the plate By arranging the plate, the heat generated in the heat generating portion can be quickly absorbed into the shape substrate and the heat radiating plate and dissipated, so that the heat generating portion can be rapidly cooled. As a result, it is possible to improve the response of the discharge stop corresponding to the heating stop.
  • the driver IC can be protected from heat and has excellent reliability.
  • the surface of the shape substrate or heat sink is formed with grooves, etc., the surface area of the shape substrate or heat sink can be increased, increasing the efficiency of heat dissipation. Can be improved.
  • this heat-discharge type print head it is possible to form an electrostatic latent image or an image by oxidation-reduction reaction. Also, according to the light emission accompanying discharge, it is possible to use a digital paper or the like using a photochromic compound that forms an image with ultraviolet rays or visible rays as a recording medium.
  • An IC cover may be provided on the surface of the driver IC to protect the driver IC. As a result, it is possible to reliably prevent the driver IC and the recording medium from coming into contact with each other, and the reliability is excellent.
  • the invention according to claim 18 is the heat discharge type print head according to claim 17, wherein the disposition surface of the discharge electrode and the disposition surface of the driver IC of the discharge part are on the same plane. Has no success.
  • the disposition surface of the discharge electrode may be on a surface different from the disposition surface of the driver IC and may be in a positional relationship where the driver IC and the recording medium do not interfere when the discharge electrode is opposed to the recording medium.
  • the driver IC placed on the surface of the shape substrate is inclined so as to form an obtuse angle with the end surface of the shape substrate formed in an arc shape and substantially perpendicular to the surface of the shape substrate.
  • the discharge electrode can be arranged at various positions such as the edge of the shaped substrate formed in a shape, the raised portion formed on the surface of the shaped substrate, and formed in a gentle hill shape.
  • a driver IC is placed by forming a stepped portion or an inclined portion on the shape substrate so as to be lower than the placement surface, or on the end surface or back surface of the shape substrate. You can place an IC.
  • the invention according to claim 19 is the heat-discharge type print head according to claim 18, wherein the discharge unit is arranged such that the driver IC is arranged on a surface of the shaped substrate.
  • the discharge electrode has a configuration of an end surface type in which the discharge electrode is disposed at an end surface portion of the shape substrate so as to be substantially perpendicular to the surface of the shape substrate.
  • the recording medium can be conveyed in a straight line and can be suitably used for a horizontal printer.
  • the width of the part facing the electrostatic latent image carrier and the recording medium can be narrowed and can be arranged without being bulky in the horizontal direction. It can be applied to various types of electrostatic latent image carriers and has excellent versatility.
  • the arrangement method of the discharge part is the end face type
  • at least the discharge electrode (discharge generation site) of the discharge part is arranged on the end face part of the shape substrate, and the driver IC is arranged on the surface of the shape substrate.
  • the end surface portion of the shaped substrate is formed in a substantially arc shape.
  • the invention according to claim 20 is the heat-discharge type print head according to claim 18, wherein the discharge unit is arranged such that the driver IC is arranged on a surface of the shaped substrate.
  • the discharge electrode has an edge-type configuration in which an inclined edge of the fixed plate is arranged to form an obtuse angle with the surface of the shaped substrate.
  • the driver IC is placed on the surface of the shape substrate and the discharge electrode is placed on the inclined edge of the shape substrate so that the driver IC and the discharge electrode form an obtuse angle.
  • the recording medium can be conveyed in a straight line, and can be suitably used for a horizontal printer.
  • the discharge unit Since the discharge unit is arranged in an edge type, it can be placed without being bulky in the height direction when the discharge unit is opposed to the recording medium. It can respond to the body and has excellent versatility.
  • the arrangement method of the discharge part is the edge type
  • at least the discharge electrode (discharge generation site) of the discharge part is arranged on the edge of the inclined chamfered shape substrate, and the driver IC is arranged on the shape substrate. It arranges on the surface of.
  • the invention according to claim 21 is the heat-discharge type print head according to claim 18, wherein the discharge unit is arranged such that the driver IC is arranged on a surface of the shape substrate.
  • the discharge electrode has a raised type arrangement on the raised surface of the raised part formed on the surface of the shaped substrate.
  • the driver IC is placed on the surface of the shape substrate, the discharge electrode is placed on the raised surface of the raised portion formed on the surface of the shape substrate, and the discharge electrode protrudes more than the driver IC. If the recording medium is not curved like paper, the recording medium is transported in a straight line. And can be suitably used for a horizontal printer.
  • the discharge unit Since the discharge unit is arranged in a raised manner, it can be placed without being bulky in the height direction when the discharge unit is opposed to the recording medium. It can respond to the body and has excellent versatility.
  • the raised type (new end face type) is considered that the end face part of the shape substrate on which at least the discharge electrode (discharge generation site) of the discharge part is arranged is bent to the surface side of the shape substrate. Can be considered as an end face type.
  • the discharge electrode can be arranged on the raised surface (slope or upper surface) of the raised portion, but it must be arranged so as not to interfere with the recording medium conveyance path.
  • the shape substrate and the recording medium can be disposed substantially in parallel by projecting the top of the raised portion above the upper surface of the driver IC. Further, when the discharge electrode is disposed on the raised surface (slope) opposite to the driver IC of the raised portion, the recording medium and the driver are arranged by inclining the shape substrate so that the discharge electrode and the recording medium are substantially parallel to each other. Interference with IC etc. can be prevented.
  • the invention according to claim 22 is the heat discharge print head according to any one of claims 17 to 21, wherein the shaped substrate is formed of a material having thermal conductivity. It has the structure which is.
  • the shape substrate is made of a material with thermal conductivity, so it is possible to reduce the number of parts and manufacturing man-hours that do not require a separate heat dissipation plate. Can be improved.
  • the invention described in claim 23 is the heating / discharging type print head according to any one of claims 17 to 22, wherein the shape substrate is formed of a material having thermal conductivity.
  • a heat radiating plate is provided and has a structure.
  • the heat sink made of a material having thermal conductivity is disposed on the shape substrate, the heat dissipation area can be expanded, and the heat sink can be passed through the flexible substrate and the shape substrate. The heat transferred to the can be efficiently dissipated and the reliability of the discharge control can be improved.
  • the heat radiating area can be further expanded and the efficiency of heat radiating can be improved.
  • the thermal head according to Claim 24 of the present invention is a flexible substrate having heat resistance and insulating properties in which an oxide film is formed on at least one of both surfaces of the metal foil, and Heating means having a heating part having a heating element formed on the surface of the flexible substrate on which the oxide film is formed, and a driver IC for controlling the heating of the heating element, and heat resistance and covering the heating part And a heat generating unit having an insulating protective film.
  • This configuration has the following effects.
  • the flexible substrate of the heat generating unit can be bent, after forming the heat generating part etc. using thin film technology or thick film technology that is technically easy on a flexible substrate in a flat state, the entire flexible substrate is desired
  • the thermal head can be deformed (curved) to the desired shape (fixed with advanced technology) using simple technology by fixing the heating unit along the shape of the shape substrate. Can be manufactured and has excellent productivity
  • thermal heads of various shapes can be manufactured using a common heat generation unit, which is excellent in mass productivity and versatility.
  • the heat generating part is covered with a heat-resistant and insulating protective film, the heat generating part can be protected to prevent damage, and the heat generating unit has excellent durability and long life.
  • the flexible substrate and the heat generating part can be reliably insulated, and can be selected as the heating element of the heat generating part. Can be energized to generate heat.
  • the flexible substrate and the heating element are the same as those described in claim 1, and thus the description thereof is omitted.
  • a film having heat resistance and heat insulating properties and heat transfer properties capable of transferring heat generated by the heat generating portion of the heating means to the recording medium is preferably used.
  • the heating element of the heating part and the driving electrode for selectively energizing the heating element to generate heat and the protective film that protects the heating part can be formed even using the thin film technology and the thick film technology! Can.
  • the material of the protective film can be appropriately selected. Specifically, synthetic resins such as polyimide, aramid, and polyetherimide, glass, and the like are preferably used.
  • an insulating film may be formed within a range that does not hinder flexibility and heat transfer to the shape substrate.
  • the flexible substrate of the heat generating unit has flexibility, it follows the shape of the shape substrate. It can be fixed to the shaped substrate by bending it. For this reason, the heating element can be arranged at an arbitrary position of the shape substrate formed in a desired shape, which is excellent in design flexibility and productivity.
  • the shape substrate by forming the shape substrate with a material having excellent thermal conductivity such as aluminum, the heat generated in the heat generating part can be quickly absorbed into the shape substrate, and the shape substrate force can be dissipated, so that Cooling is possible. As a result, it is possible to improve the responsiveness of the printing stop corresponding to the heating stop. It is excellent in reliability because it can protect the driver IC with heat.
  • the invention according to claim 25 is the thermal head according to claim 24, wherein the oxide film of the flexible substrate is a metal oxide film made of the same material as the metal foil. It has a formed structure.
  • the acid film formed on both surfaces of the metal foil as the base material of the flexible substrate is formed of a metal oxide film of the same material as the metal foil, the metal foil and the acid film are formed. It has excellent film adhesion and can improve the insulation and durability of flexible substrates.
  • the invention according to claim 26 is the thermal head according to claim 24, wherein the oxide film of the flexible substrate is a metal oxide film made of a material different from the metal foil. It has a formed structure.
  • the oxide film formed on both sides of the metal foil used as the base material of the flexible substrate with a metal oxide film made of a material different from that of the metal foil, a combination of the metal foil and the oxide film is used.
  • the thermal conductivity and insulation of the flexible substrate can be controlled, and the efficiency of thermal conduction and the insulation reliability of the flexible substrate can be improved.
  • the invention according to claim 27 is the thermal head according to any one of claims 24 to 26, wherein the metal foil of the flexible substrate is made of aluminum. is doing.
  • the metal foil used as the base material of the flexible substrate is made of aluminum.
  • the thermal conductivity of the flexible board can be improved, and the excess heat from the heat generating part can be efficiently transferred to the shape board to which the flexible board is fixed, allowing it to escape. Responsiveness and excellent image quality reliability.
  • the metal foil used as the base material of the flexible board is made of copper, the thermal conductivity of the flexible board can be improved, and the flexible board is fixed with excess heat from the heat generating part. It can be efficiently transmitted to the shape substrate and escaped, and the print stop response to the heat stop of the heat generating part is excellent, and the image quality is highly reliable.
  • the invention according to claim 29 is the head substrate according to any one of claims 24 to 28, wherein the oxide film of the flexible substrate is formed of alumina. It has a structure.
  • the oxide film of the flexible substrate is made of alumina, so that it is chemically stable, has excellent heat resistance and insulation, and improves the reliability of discharge control with high thermal conductivity. be able to.
  • the metal foil used as the base material of the flexible substrate is made of aluminum!
  • an aluminum oxide film can be formed by vapor-depositing aluminum on both surfaces and then performing an acid treatment by an anodic acid method.
  • the invention according to claim 30 is the thermal head according to any one of claims 24 to 29, wherein the heat generating unit is fixed along the shape of the shape substrate, and The arrangement surface of the heating element and the arrangement surface of the driver IC are not on the same plane. With this configuration, in addition to the operation of any one of claims 24 to 29, the following operation is provided.
  • the arrangement surface of the heating element may be on a surface different from the arrangement surface of the driver IC, as long as the driver IC and the recording medium do not interfere with each other when the heating element is opposed to the recording medium.
  • the driver IC placed on the surface of the shape board is inclined so that it forms an obtuse angle with the end face of the shape board, which is formed in an arc shape so as to be substantially perpendicular to the surface of the shape board, and the surface of the shape board.
  • the heating element can be arranged at various positions such as the edge of the shaped substrate formed in a shape, the raised portion formed on the surface of the shaped substrate and formed in a gentle hill shape or the like.
  • a driver IC is placed by forming a stepped part or an inclined part on the shape board so as to be lower than the placement surface, or a driver IC is placed on the end face or back face of the shape board. IC may be arranged.
  • a recording medium that is elastic such as a plastic card or cardboard, that is difficult to bend is conveyed linearly without interfering with the driver IC to form a high-quality image. Therefore, it can be suitably used as a print head compatible with a horizontal printer, the apparatus can be easily downsized, and the image quality is reliable and versatile.
  • the invention according to claim 31 is the thermal head according to claim 30, wherein the heat generating portion is arranged such that the driver IC is arranged on a surface of the shaped substrate, and the heating element is The end surface portion of the shape substrate has an end surface type disposed so as to be substantially perpendicular to the surface of the shape substrate.
  • a recording medium such as cardboard that is elastic and difficult to bend can be conveyed linearly and can be suitably used for a horizontal printer.
  • the arrangement method of the heat generating portion is an end surface type
  • at least the heat generating element of the heat generating portion is disposed on the end surface portion of the shape substrate
  • the driver IC is disposed on the surface of the shape substrate.
  • the end surface portion of the shaped substrate is formed in a substantially arc shape.
  • the invention according to Claim 32 is the thermal head according to Claim 30, wherein the heat generating portion is arranged such that the driver IC is arranged on a surface of the shaped substrate, and the heating element is
  • the fixed plate has a configuration that is an edge type disposed at an inclined edge of the fixed plate so as to form an obtuse angle with the surface of the shaped substrate.
  • the heating unit Since the heating unit is arranged in an edge type, the heating unit can be arranged without being bulky in the height direction when facing the recording medium, and can support recording media of various shapes.
  • the heat generated from the heating element with a small contact area between the heat generating part and the recording medium does not spread in the scanning direction, and a high-quality image without blur can be formed. Excellent reliability.
  • the arrangement of the heat generating parts is an edge type
  • at least the heat generating elements of the heat generating parts are inclined.
  • the driver IC is arranged on the surface of the shape substrate.
  • the invention according to Claim 33 is the thermal head according to Claim 30, wherein the heat generating portion is arranged such that the driver IC is disposed on a surface of the shaped substrate, and the heating element is It has the structure which is a protruding type
  • the heating element protrudes more than the driver IC.
  • a recording medium such as a manufactured card or cardboard that is elastic and difficult to be bent can be conveyed linearly, and can be suitably used for a horizontal printer.
  • the heating unit Since the heating unit is arranged in a raised manner, the heating unit can be arranged without being bulky in the height direction when facing the recording medium, and is excellent in versatility.
  • the heat generated by the heating element with a small contact area does not spread in the scanning direction, and a high-quality image without blur can be formed and the image quality is highly reliable.
  • the raised type (new end face type) can be regarded as the end face portion of the shape substrate on which at least the heating element of the heat generating portion is arranged bent to the surface side of the shape substrate. It can be thought of as a form.
  • the heating element can be arranged on the raised surface (slope or upper surface) of the raised part, but it must be made so as not to interfere with the transport path of the recording medium.
  • the shape substrate and the recording medium can be arranged substantially in parallel by projecting the top of the raised portion above the upper surface of the driver IC.
  • the recording is performed by inclining the shape substrate (thermal head) so that the heating element and the recording medium are substantially parallel. Interference between media and driver ICs can be prevented.
  • thermal head described in claims 24 to 33 is also suitable as a heating means for a discharge control device of a heating / discharging system that can be used only as a print head for a thermal printer. It can be used and has excellent design flexibility and versatility.
  • the discharge control device using the head substrate, the heating discharge type print head including the discharge control device, and the thermal head the following advantageous effects are obtained. Is obtained.
  • a discharge device such as a heat generating part or a discharge part on a flexible substrate in a flat state by a technically easy method
  • it is easily processed (deformed) into a desired shape by bending the flexible substrate together. Since it can be fixed to a shape substrate, it is possible to provide a head substrate that has a simple production process, is excellent in mass productivity, can be used for manufacturing various types of heat-discharge-type printheads, and has excellent design flexibility and versatility. it can.
  • a flexible substrate in which an oxide film is formed on at least one of both surfaces of the metal foil is excellent in thermal conductivity, so that heat from the discharge electrode is transferred to the shape substrate to escape. It is possible to manufacture a discharge control device with excellent discharge control reliability that can prevent the heat build-up to the discharge electrode and improve the response of the discharge stop to the heating stop of the heat generating part.
  • a suitable head substrate can be provided.
  • a flexible substrate having an oxide film formed on the surface of a metal foil has better heat resistance than a flexible substrate made of a resin such as polyimide galamide, so that it can be used for firing in thick film technology. Since it can withstand the temperature, it is possible to provide a head substrate excellent in mass productivity and versatility that can form a heat generating portion even if a thick film technology is used in addition to the thin film technology.
  • a discharge device such as a heat generating part or a discharge part on a flexible substrate in a flat state by a technically easy method
  • it is easily processed (deformed) into a desired shape by bending the flexible substrate together. Since it can be fixed to a shape substrate, it is possible to provide a head substrate that has a simple production process, is excellent in mass productivity, can be used for manufacturing various types of heat-discharge-type printheads, and has excellent design flexibility and versatility. it can.
  • the heat generating part and the discharging part can be insulated by the flexible substrate and excellent in mass productivity, and the head substrate with excellent heating efficiency that can efficiently transfer the heat of the heating part to the discharging part through the flexible substrate. Can be provided.
  • the flexible substrate with the oxide film formed on both sides of the metal foil has excellent thermal conductivity, the heat generated by the heating element can be efficiently transmitted to the discharge electrode through the flexible substrate, and the discharge It is possible to provide a head substrate excellent in energy saving and discharge generation efficiency in which the control voltage and heating temperature can be set low.
  • a flexible substrate having an oxide film formed on the surface of a metal foil has a heat resistance superior to that of a resin substrate made of a resin such as polyimide galamide. Since it can withstand the temperature, it is possible to provide a head substrate excellent in mass productivity and versatility that can form a heat generating portion even if a thick film technology is used in addition to the thin film technology.
  • Detachable discharge units and heat generating units can be easily replaced or repaired, and they are excellent in maintainability, and each unit is treated as a consumable item, which saves running costs and saves resources.
  • An excellent head substrate can be provided.
  • the step formed between the surface of the discharge generation site and the surface of the flexible coating film can prevent the contact between the discharge generation site and the recording medium and keep the gap between the recording medium constant and the discharge generation site.
  • the thermal conductivity of the flexible board can be improved, and the excess heat from the discharge electrode and heat generating part can be efficiently transferred to the shape board where the flexible board is fixed. Therefore, it is possible to provide a head substrate excellent in the efficiency and reliability of the generation of discharge that can be transmitted and released efficiently, and that the heat generated by the heat generating portion can be efficiently transmitted to the discharge electrode.
  • a flexible substrate with an oxide film formed of alumina provides a head substrate that is chemically stable, excellent in heat resistance and insulation, and has high thermal conductivity and excellent discharge control reliability. be able to.
  • the driver IC can selectively heat the discharge electrode based on the image data to generate a discharge, and can easily control the amount of generated ions and the emission intensity associated with the discharge from the discharge electrode. It is possible to provide a discharge control device that is easy in area gradation on the recording medium and can improve the image quality of the recording medium and has excellent discharge control reliability.
  • the arrangement of the discharge part is an end face type, so that the driver IC and the discharge electrode can be arranged almost at right angles, and it is better not to bend like a digital paper. It is possible to provide a heat-discharge type print head suitable for a horizontal printer that can convey a long recording medium in a straight line.
  • the width of the part facing the electrostatic latent image carrier and the recording medium can be narrowed and can be arranged without being bulky in the horizontal direction. It is possible to provide a heat-discharge type print head excellent in versatility that can be used for electrostatic latent image carriers having various shapes.
  • the placement method of the discharge part is an edge type, so that the driver IC and the discharge electrode can be placed at an obtuse angle, and it is better not to bend it like a digital paper. It is possible to provide a heat discharge type print head suitable for a horizontal printer capable of conveying a recording medium linearly.
  • the discharge unit Since the discharge unit is arranged in an edge type, the discharge unit can be arranged without being bulky in the height direction when facing the recording medium. It is possible to provide a heat-discharge type print head excellent in versatility that can be applied to an image carrier.
  • the shape substrate has thermal conductivity, it is possible to quickly absorb the excess heat from the discharge electrode and the heat generating part without the need to provide a separate heat sink, and to dissipate the heat. In addition, it is possible to provide a heat discharge type print head that is excellent in mass reliability and can be reduced in the number of parts and the number of manufacturing steps. [0084] According to the invention of claim 23, in addition to the effect of any one of claims 17 to 22, the following effect is obtained.
  • the heat release area can be expanded, and the flexible substrate force is also transmitted to the heat sink via the shape substrate. It is possible to provide a heat discharge type print head excellent in reliability of discharge control capable of efficiently radiating heat.
  • the heat generating unit After forming the heat generating part etc. using thin film technology or technically easy thick film technology on the flat flexible substrate, the heat generating unit can be deformed (curved) into the desired shape together with the flexible substrate, By simply changing the shape of the shape substrate and the fixing position of the heat generating unit with respect to the shape substrate, mass production and general-purpose that can support the production of thermal heads of the desired shape (previously requiring advanced technology) using simple technology It is possible to provide an excellent thermal head.
  • a flexible substrate with an oxide film formed on at least one of both surfaces of the metal foil is excellent in thermal conductivity, so that heat from the heat generating part is transferred to the shape substrate to escape. This prevents the heat build-up from occurring in the heat generating part, improves the printing stop response to the heating stop of the heat generating part, and increases the printing speed. It is possible to provide a thermal head excellent in image quality reliability capable of forming a quality image.
  • a flexible substrate having an oxide film formed on the surface of a metal foil has better heat resistance than a flexible substrate made of a resin such as polyimide galamide, so that it can be used for firing in thick film technology. Since it can withstand the temperature, it is possible to provide a thermal head excellent in mass productivity and versatility that can form a heat generating portion even by using a thick film technology in addition to the thin film technology.
  • the thermal conductivity of the flexible board can be improved, and excess heat from the heat generating part can be efficiently transferred to the shape board where the flexible board is fixed. It is possible to provide a thermal head excellent in the efficiency and reliability of heating control that can be transmitted and escaped.
  • the thermal conductivity of the flexible board can be improved, and excess heat from the heat generating part can be efficiently transferred to the shape board to which the flexible board is fixed. It is possible to provide a thermal head with excellent efficiency and reliability of heating control that can be transmitted and escaped.
  • Flexible substrates with an oxide film made of alumina are chemically stable, have excellent heat resistance and insulation, and have a thermal head with high thermal conductivity and high reliability in heating control. Can be provided.
  • a highly versatile thermal head that can increase the degree of freedom in arranging the heating element for a variety of shapes of recording media where the heating element placement surface and the driver IC placement surface are on the same plane. Can be provided.
  • the driver IC and the heat generating element can be arranged so as to form a substantially right angle, which is particularly elastic such as plastic cards and cardboard. Therefore, it is possible to provide a thermal head suitable for a horizontal printer that can linearly convey a recording medium that is difficult to bend.
  • the heat generating portion is arranged in the end face type, the width of the portion facing the recording medium can be narrowed and arranged without being bulky in the horizontal direction. It is possible to cope with it, and it has excellent versatility, and the contact area between the heat generating part and the recording medium can be reduced to prevent the heat generated by the heating element from spreading in the scanning direction, and a high-quality image without blur can be formed. It is possible to provide a thermal head with excellent image quality reliability.
  • the arrangement of the heat generating part is an edge type, so that the driver IC and the heat generating element can be arranged at an obtuse angle, and in particular, the elastic force S such as a plastic card or cardboard.
  • the thermal head suitable for a horizontal printer that can linearly convey a recording medium that is difficult to bend.
  • the heating unit Since the heating unit is arranged in an edge type, the heating unit can be arranged without being bulky in the height direction when facing the recording medium, and can support recording media of various shapes. It is excellent in versatility, can reduce the contact area between the heating part and the recording medium, can prevent the heat from the heating element from spreading in the scanning direction, and can form a high-quality image without blurring. We can provide a thermal head with excellent image quality reliability [0094] According to the invention of claim 33, in addition to the effect of claim 30, the following effect is obtained.
  • the heating unit is arranged in a raised manner, the heating element can be projected beyond the driver IC, and it is particularly flexible and curved like plastic cards and cardboard. Therefore, it is possible to provide a thermal head suitable for a horizontal printer that can convey a recording medium that is difficult to perform linearly.
  • the heating unit Since the heating unit is arranged in a raised manner, the heating unit can be arranged without being bulky in the height direction when facing the recording medium, and is excellent in versatility.
  • the thermal head with excellent image quality that can prevent the spread of heat in the scanning direction by spreading the heat in the scanning direction and form high-quality images without blurring. be able to.
  • FIG. 1 (a) Schematic side view showing a heat discharge type print head provided with the discharge control device in Embodiment 1. (b) Heat discharge type print head provided with the discharge control device in Embodiment 1. Main part schematic perspective view showing
  • FIG. 2 is a plan development view of a main part showing a head substrate of the discharge control device in the first embodiment.
  • FIG. 3 (a) A-A line cross-sectional view of FIG. 2 (b) B-B cross-sectional view of FIG.
  • FIG. 4 is an exploded perspective view showing a main part of the head substrate of the discharge control device according to Embodiment 1.
  • FIG. 5 is a configuration diagram of a discharge control device according to Embodiment 1.
  • FIG. 6 is a perspective view showing a heating part forming process of the head substrate of the discharge control device in the first embodiment.
  • FIG. 7 is a perspective view showing a discharge part forming process of the head substrate of the discharge control device in the first embodiment.
  • FIG. 8 (a) Schematic plan view showing a first modification of the head substrate of the discharge control device in Embodiment 1 (b) Schematic cross-sectional view taken along the line CC in FIG. 8 (a)
  • FIG. 9 is a schematic cross-sectional view showing a second modification of the head substrate of the discharge control device according to Embodiment 1.
  • FIG. 10 (a) shows a third modification of the head substrate of the discharge control device according to Embodiment 1.
  • FIG. 2 is a schematic side view showing a second modification of the heating / discharge-type print head including the discharge control device according to the first embodiment.
  • ⁇ 13 A diagram showing a control method of ion generation of the discharge control device in the first embodiment
  • FIG. 14 (a) Schematic side view showing a heat discharge type print head provided with the discharge control device in Embodiment 2. (b) Heat discharge type print head provided with the discharge control device in Embodiment 2. Main part schematic perspective view showing
  • FIG. 15 (a) Plane development of the main part of the head substrate of the discharge control device in Embodiment 2 (b) Cross-sectional view taken along line E—E in FIG. 15 (a)
  • FIG. 17 (a) Sectional view taken along line FF in FIG. 16 (b) Sectional view taken along line GG in FIG.
  • FIG. 18 (a) Schematic plan view showing a first modification of the head substrate of the discharge control device in Embodiment 3. (b) Schematic cross-sectional view taken along line H—H in FIG. 18 (a).
  • FIG. 20 (a) Schematic plan view showing a third modification of the head substrate of the discharge control device according to the third embodiment (b) Schematic cross-sectional view taken along line I-I in FIG. 20 (a)
  • FIG. 22 (a) Schematic cross-sectional view showing a discharge unit of the head substrate of the discharge control device of the discharge device separation type in Embodiment 4 (b) Head substrate of the discharge control device of the discharge device separation type of Embodiment 4. (C) Schematic sectional view showing the head substrate of the discharge device separation type discharge control device in Embodiment 4 (d) Discharge device separation type discharge control device in Embodiment 4 Shows a modification of the head substrate Schematic cross section
  • FIG. 23 is a schematic perspective view of the main part showing the thermal head in the fifth embodiment.
  • FIG. 24 is a plan development view of main parts showing the heat generating unit of the thermal head in the fifth embodiment.
  • a heat-discharge type print head provided with a discharge control device according to Embodiment 1 of the present invention will be described below with reference to the drawings.
  • FIG. 1 (a) is a schematic side view showing a heat-discharge type print head provided with the discharge control device according to Embodiment 1
  • FIG. 1 (b) is a calorie heat discharge provided with the discharge control device according to Embodiment 1. It is a principal part model perspective view which shows a type
  • la is an end face type heat discharge type print head corresponding to a horizontal printer equipped with a discharge control device 7 in Embodiment 1 described later, and 2 is formed of a material such as aluminum, and the discharge control device 7 is A fixed heat discharge type print head la-shaped substrate, 3a is an arcuate end surface formed at the tip of the shape substrate 2, 4 is a flexible substrate described later, and a discharge device such as a heat generating unit or discharge unit 5 described later is provided.
  • 5a is a plurality of discharge electrodes of the discharge portion 5 formed in a comb shape
  • 5b is a discharge portion that connects one end of the discharge electrode 5a.
  • Heated discharge print head la printed wiring board 9 IC cover is Kutsugae ⁇ to protect driver IC6 and the printed wiring board 8 9a is a high-voltage board that is disposed on the back surface of the IC cover 9 and is connected to the common electrode part 5b of the discharge part 5 by electrical wiring (not shown) and supplies a high voltage (discharge control voltage) to the discharge electrode 5a. is there.
  • FIG. 2 is a plan development view of the main part showing the head substrate of the discharge control device according to Embodiment 1
  • FIG. 3 (a) is a cross-sectional view taken along line AA in FIG. 2
  • FIG. FIG. 4 is a cross-sectional view taken along the line B-B in FIG. 2
  • FIG. 4 is an exploded perspective view showing a main part of the head substrate of the discharge control device according to the first embodiment.
  • reference numeral 10 denotes a heat-resistant and insulating head substrate in which an aluminum oxide film is formed on both sides of an aluminum foil. 4, a plurality of comb-shaped electrodes 11a for heat generation;
  • the heat generating common conductor pattern formed integrally on the upper surface of the flexible substrate 10, 1 lb is the heat generating common electrode portion disposed on the upper surface of the heat generating common conductor pattern 11, and 12 is the heat generating comb electrode 11 a.
  • Heat generating individual electrodes alternately formed on the upper surface of the flexible substrate 10, 12 a is a bonding pad formed at the end of the heat generating individual electrode 12, 13 is a heat generating part of the discharge controller 5, and 13 a is a heat generating comb tooth
  • Exposed electrode 11a and exothermic electrode 1 2 are electrically connected to the upper part of the exothermic body 13 of the exothermic part 13 and 14 is a flexible substrate except for the end of the exothermic common electrode part l ib and the exothermic individual electrode 12 Heat resistance and insulation covered on top of 10
  • Flexible thin films such as polyimide, aramid, and polyetherimide
  • 14a is an insulating film formed on the upper surface of the flexible thin film 14
  • 15 is a discharge electrode 5a that generates a discharge when heated by a heating element 13a. It is a discharge generation site.
  • the discharge electrode 5 described above is insulated from the heating comb electrode lla, the heating individual electrode 12 and the heating resistor 13a by the flexible thin film 14 and the insulating film 14a. It is formed facing the heat generating resistor 13a at a position corresponding to the individual electrode 12 for heat generation.
  • the flexible thin film 14 is formed with an insulating film 14a on the upper surface of the flexible thin film 14 in order to insulate between the discharge part 5 and the heat generating part 13 more reliably by heat resistance and insulation.
  • the force of forming the insulating film 14a only on the upper surface of the flexible thin film 14
  • the insulating film 14a is formed on at least one of the both surfaces of the flexible thin film 14. Just do it. Insulating film 14a is made of inorganic materials such as SiON and SiO, and other insulating materials (
  • the insulating film 14a is formed by multiple coatings, even if pinholes are generated by each coating, the possibility of overlapping pinholes can be reduced by applying multiple coatings. It is possible to reliably insulate the heat generating portion 13 and is excellent in reliability.
  • the single-area layer type head substrate 4 is formed in a planar state, it is extremely thin and flexible, and is easily processed from the planar state into a shape (desired shape) along the shape substrate 2 (deformation). Make it possible.
  • a flexible substrate 10 (alumina film manufactured by Ibi Kaiko Co., Ltd.) in which an aluminum oxide film is formed on both surfaces of an aluminum foil is used, but the oxide film is a flexible substrate 10.
  • the thermal expansion coefficient can be made equal on the front and back of the flexible substrate 10, so that deformation due to the warp of the flexible substrate 10 can be prevented, and the discharge part 5 and heat generation
  • the manufacturing stability of the part 13 is excellent, and the thermal deformation during driving can be reduced and the long life is excellent.
  • the metal foil and the acid film used as the base material of the flexible substrate 10 can be appropriately selected according to the heat resistance and insulation required for the flexible substrate 10 without being limited thereto.
  • FIG. 5 is a configuration diagram of the discharge control device in the first embodiment.
  • the head substrate 4 has a discharge part 5 and a heat generation part 13.
  • Heat generated by the driver IC 6 electrically connected to the heat generating part 13 (the driver IC 6 is wire-bonded to the lead pattern extending from the heat generating part 13 with a gold wire and then sealed with an IC protective resin such as epoxy resin)
  • the heating means 16 controls the heat generation of the heating element 13a of the section 13. It is the discharge controller 7 of the heating discharge type that controls the discharge from the discharge electrode 5a by controlling the heating of the discharge part 5 by the heating means 16 to the discharge electrode 5a.
  • the shape substrate 2 has good heat dissipation such as aluminum.
  • the heat generated in the heat generating portion 13 can be quickly transferred from the flexible substrate 10 to the shape substrate 2 and radiated from the shape substrate 2.
  • the heat generating portion 13 can be rapidly cooled to improve the response to the heating stop.
  • the driver IC6 etc. can be protected from heat and is highly reliable.
  • FIG. 6 is a perspective view showing a heat generating part formation process of the head substrate of the discharge control device according to the first embodiment
  • FIG. 7 is a perspective view showing a discharge part forming process of the head substrate of the discharge control device according to the first embodiment. It is.
  • FIG. 6 after a conductor such as a gold paste is printed on the surface of the flexible substrate 10 formed in a flat shape, a plurality of comb electrodes 11a for heating and individual heating electrodes connected by a heating common conductor pattern 11 by etching. Electrode 12 is formed. After that, a strip-like shape is printed by printing TaSiO, RuO, etc. on the top of the heating comb electrode 11a and the heating individual electrode 12.
  • a heating element 13a is formed. Further, the heat generating common electrode portion l ib is formed on the upper surface of the heat generating common conductor pattern 11 by printing silver paste or the like.
  • Bonding pads 12a were formed at the ends of the individual heating electrodes 12. This makes it easy to connect to the driver IC 6 by wire bonding.
  • the heating unit 16 preferably has the same configuration as a thermal head used in a conventional thermal facsimile.
  • the existing thermal head manufacturing process can be followed, and the discharge control device 7 can be manufactured at low cost by diverting the manufacturing device.
  • the heating element 13a of the heating part 13 is formed in a strip shape, the heating comb electrodes 11a and the heating individual electrodes 12 are alternately arranged, and one heating individual electrode 12 at each center is provided. Between the heat generating comb electrodes 11a on both sides of the discharge electrode 5a, and selectively generate heat at any part of the heating element 13a corresponding to the position of the discharge generating part 15 of each discharge electrode 5a.
  • the present invention is not limited to this, and any structure that can selectively heat the discharge generation site 15 of each discharge electrode 5a can be used.
  • the discharge part forming step will be described.
  • the surface of the flexible substrate 10 has a heat resistance and insulating property of about 300 ° C., such as polyimide, aramid, polyetherimide, etc.
  • the flexible thin film 14 is formed, for example, by printing the thin film resin.
  • the flexible thin film 14 may be any material that can protect and insulate the heat generating common electrode section l lb, the heat generating individual electrode 12, the heat generating element 13a, etc., but efficiently transfer the heat of the heat generating element 13a to the discharge electrode 5a. Those having high thermal conductivity that can be used are preferably used.
  • the flexible thin film 14 may be formed by applying a heat-resistant and insulating-resistant resin solution such as polyimide garamide by screen printing or the like, or a thin film sheet formed of the same resin. It may be formed by covering.
  • a plurality of discharge electrodes 5 a facing the heat generating individual electrodes 12 of the heating means 16 and a common electrode portion 5 b connecting them are formed on the flexible thin film 14.
  • a metal such as gold, silver, copper, or aluminum formed by vapor deposition or sputtering printing and then etched to form a pattern is suitably used.
  • a conductive material such as carbon may be used.
  • each discharge electrode 5a can be formed in a trapezoidal shape, a bullet shape, a semicircular shape, or a combination of these, formed in a substantially rectangular shape.
  • the discharge generation site 15 of the discharge electrode 5a has a large amount of discharge from the periphery of the edge, a plurality of uneven portions are formed on the outer peripheral edge of the discharge electrode 5a so that the peripheral length of the periphery of the discharge electrode 5a becomes longer. Generation efficiency can be improved.
  • the amount of discharge from the discharge generation site 15 is increased, and the ion irradiation amount and emission intensity can be increased, so that the energy saving performance of the discharge control device 7 is excellent.
  • the voltage applied to the discharge electrode 5a can be set small, the long life of the discharge electrode 5a is also excellent.
  • FIG. 8 (a) is a schematic plan view showing a first modification of the head substrate of the discharge control device in Embodiment 1
  • FIG. 8 (b) is a schematic view taken along the line CC in FIG. 8 (a). It is sectional drawing.
  • the first modification of the head substrate of the discharge control device in the first embodiment is different from the first embodiment in that the head substrate 4a is covered with heat resistance and covered on the surface of the discharge part 5.
  • a flexible coating film 17 having an insulating property and the flexible coating film 17 has a substantially circular opening 17a at a position where the flexible coating film 17 hits a discharge generation site 15 (near the position of the heating element 13a) of each discharge electrode 5a. It is.
  • the flexible coating film 17 was formed in the same manner as the flexible thin film 14 described above. Instead of forming a plurality of independent openings 17a, a long hole-like opening extending over the plurality of discharge electrodes 5a may be formed.
  • a step can be formed between the surface of the discharge generation site 15 of the discharge electrode 5a and the surface of the flexible coating film 17, the gap between the discharge generation site 15 of the discharge electrode 5a and the recording medium, etc.
  • the gap can be kept constant, the contact between the discharge electrode 5a and the recording medium can be prevented, and the discharge from the discharge generation site 15 can be stabilized.
  • FIG. 9 is a schematic cross-sectional view showing a second modification of the head substrate of the discharge control device in the first embodiment.
  • the second modification of the head substrate of the discharge control device in the first embodiment is different from the first modification in that a plurality of irregularities are formed on the surface of the flexible coating film 17 of the head substrate 4b. This is the point where the portion 17b is formed.
  • FIG. 10 (a) is a schematic plan view showing a third modification of the head substrate of the discharge control device according to Embodiment 1
  • FIG. 10 (b) is a cross-sectional view of D—D in FIG. 10 (a).
  • the third modification of the head substrate of the discharge control device in the first embodiment is different from that in the first embodiment in that the horizontal direction extends from the end of the discharge electrode 5a of the head substrate 4c on the heating element 13a side.
  • Insulating electrode 14 is formed on insulating film 14a apart from each other, and flexible thin film 19 and insulating film 19a covering induction electrode 18 are formed between insulating film 14a and discharge part 5. It is a point to speak.
  • the flexible thin film 19 and the insulating film 19a are the same as the flexible thin film 14 and the insulating film 14a, respectively.
  • the induction electrode 18 was formed in a strip shape on the insulating film 14a and grounded.
  • the gap between the discharge electrode 5a of the discharge part 5 and the induction electrode 18 can be kept constant at all times, and by applying a voltage between the discharge electrode 5a and the induction electrode 18, a discharge can be reliably generated.
  • the discharge is generated by being pulled by the induction electrode 18, but by grounding the irradiated object side such as a recording medium, the ions are irradiated to the irradiated object in the same direction as when the induction electrode 18 is not provided. .
  • FIG. 11 (a) is a schematic side view showing a first modification of the heat-discharge type print head provided with the discharge control device in the first embodiment
  • FIG. 11 (b) is a discharge control device in the first embodiment
  • FIG. 6 is a schematic perspective view of an essential part showing a first modified example of a heating / discharging type print head equipped with
  • the first modification of the heat discharge type print head provided with the discharge control device in the first embodiment is different from that in the first embodiment in that the discharge generation site 15 of the discharge electrode 5a is different.
  • the head is an edge-type head disposed on the inclined edge 3b of the shape substrate 2.
  • the driver IC 6 and the discharge electrode 5a are disposed so as to form an obtuse angle.
  • the recording medium can be conveyed in a straight line and can be suitably used for a horizontal printer.
  • the discharge electrode 5a is arranged in the edge type, the heating discharge type print head lb can be arranged without being bulky in the height direction, and the electrostatic latent image carrier having various shapes can be arranged. It can be used and has excellent versatility.
  • FIG. 12 (a) is a schematic side view showing a second modification of the heat-discharge type print head provided with the discharge control device in Embodiment 1
  • FIG. 12 (b) is in FIG.
  • FIG. 10 is a schematic perspective view of a main part showing a second modification of a heat discharge type print head provided with a discharge control device.
  • the second modification of the heating discharge type print head provided with the discharge control device in the first embodiment is different from the first embodiment in that the discharge generation site 15 of the discharge electrode 5a is a shape substrate.
  • 2 is a raised head that protrudes from the driver IC6 on the raised surface of the raised portion 3c that protrudes from the surface of 2 and is formed in a gentle hill shape (arc shape, elliptical arc shape, etc.) is there.
  • Heat-discharge type print head lc can be arranged so that the shape substrate 2 and the electrostatic latent image carrier or recording medium are substantially parallel, reducing the bulkiness in the height direction and being excellent in space saving. In both cases, since the discharge electrode 5a is disposed so as to protrude from the driver IC 6, the electrostatic latent image carrier or recording medium does not interfere with the driver IC 6 or the IC cover 9, and the reliability is excellent.
  • the thickness of the flexible substrate 10 and the flexible thin film 14 of the head substrate 4 (4a, 4b, 4c) is extremely thin, for example, several ⁇ m to several tens of ⁇ m.
  • the total thickness of 4a, 4b, and 4c) can be reduced to a few tens of ⁇ m to several hundreds of ⁇ m and can be made extremely thin. Since the head substrate 4 (4a, 4b, 4c) is naturally flexible, the end surface 3a (see Fig. 1), the edge 3b (see Fig. 11), the raised portion 3c of the shape substrate 2 from the flat state.
  • the discharge control device 7 can be easily processed (deformed) by bending it in accordance with the shape of the discharge device, etc., and is not subject to restrictions on the formation technology of the discharge device such as the discharge portion 5 and the heat generation portion 13. Obtainable. Therefore, the head substrate 4 (4a, 4b, 4c) remains the same, and various forms of heating / discharge type can be achieved simply by changing the shape of the shape substrate 2 and the attachment position of the head substrate 4 (4a, 4b, 4c). Print heads la, lb, and lc can be obtained, and they are excellent in versatility and mass productivity.
  • FIG. 13 is a diagram showing an ion generation control method of the discharge control apparatus according to Embodiment 1 of the present invention.
  • discharge control voltage to the discharge electrode 5a (a voltage range in which discharge does not occur just by application! / But a discharge occurs when heated) is applied to the high voltage connected to the common electrode part 5b of the discharge part 5 Start with substrate 9a (see Figure 1).
  • the numerical values of the AC voltage and DC voltage applied to the discharge electrode 5a (common electrode portion 5b) of the discharge unit 5 can be used in various combinations.
  • the discharge electrode 5a of the discharge unit 5 is, for example, AC550Vpp A voltage of 700V was superimposed on the DC bias (triangular wave 1kHz) and applied. The voltage of AC550Vpp was superimposed to obtain the discharge stability.
  • the heating section 13 is controlled by the driver IC 6 as described in FIG. According to 13a
  • the discharge electrode 5a is selectively heated (100 to 300 ° C.). Discharge occurs as shown by the arrows in FIGS. 3 and 8 to 12 at an applied voltage in the range from the discharge generation site 15 of the selectively heated discharge electrode 5a to the discharge control voltage.
  • an electrostatic force is applied to the electrostatic latent image carrier and the recording medium.
  • ions are irradiated.
  • An electrostatic latent image is formed on the surface of the electrostatic latent image carrier irradiated with ions.
  • an electrostatic latent image can be formed or an image can be formed by an oxidation-reduction reaction.
  • An image can also be formed on a recording medium that reacts to light emission such as ultraviolet rays and visible rays.
  • the heating discharge type print head la provided with the discharge control device 7 in Embodiment 1 has a high voltage substrate 9a disposed on the back surface of the IC cover 9 as shown in FIG.
  • the electrical wiring for applying the discharge control voltage can be shortened, and the high-voltage board 9a can be handled integrally with the heat-discharge type print head la.
  • the heat-discharge type print head la and the high-voltage board 9a can be moved together, so that the electrical wiring is less likely to be loaded and has poor continuity. Generation can be reduced.
  • the arrangement position of the high-voltage substrate 9a is not limited to the present embodiment, and it is sufficient that the discharge control voltage can be applied to the common electrode portion 5b of the discharge portion 5.
  • the high voltage substrate 9a (see FIG. 1) is not shown, but it can be provided in the same manner as in the first embodiment. As described above, the head substrate according to Embodiment 1 has the following effects.
  • the flexible substrate 10 on which the discharge devices such as the heat generating portion 13 and the discharge portion 5 are formed can be bent, after the discharge device is formed on the flexible substrate 10 in a flat state by a technically easy method.
  • the flexible substrate 10 can be deformed (curved) into a desired shape, and fixed along the shape of the shape substrate 2, so that the desired shape can be obtained using a simple technology (previously, advanced technology was required)
  • the heat discharge type print head la can be manufactured with excellent productivity.
  • the heating control by the heating element 13a can be selectively performed with the discharge control voltage applied to the discharge electrode 5a.
  • the amount of ions generated can be controlled, and the image can be recorded on a dedicated recording medium such as an electrostatic developing digital vapor. Can be formed.
  • the flexible thin film 14 covering the heat generating part 13 has heat resistance and insulation, it is connected to the heat generating element 13a and the heat generating element 13a that are not thermally deformed by the heat generated by the heat generating element 13a.
  • the electrode can be protected to ensure insulation from the discharge electrode 5a, and the discharge electrode 5a can be heated.
  • a step can be formed between the surface of the discharge generation site 15 and the surface of the flexible coating film 17.
  • the gap between the discharge electrode 5a and the recording medium arranged opposite to the discharge electrode 5a can be kept constant, the contact with the discharge generation site 15 can be prevented, and the discharge from the discharge generation site 15 can be stabilized.
  • many irregularities 17b are provided on the surface of the flexible coating film 17, the surface distance is extended to increase the surface resistance, and the current flows from the discharge generation site 15 of the stripped discharge electrode 5a to the surroundings. As a result, the driver IC 6 used for the discharge control is not adversely affected, and the stability of the discharge control can be improved. Since there is no leakage, the applied voltage applied to the discharge electrode 5a does not drop and the discharge is stable and efficient.
  • the oxide film formed on both sides of the aluminum foil that is the base material of the flexible substrate 10 is alumina, it has excellent adhesion between the metal foil and the oxide film, and the insulation and durability of the flexible substrate 10 Can be improved.
  • the metal foil used as the base material of the flexible substrate 10 is formed of aluminum, the thermal conductivity of the flexible substrate 10 can be improved, and excess heat from the discharge electrode 5a and the heat generating portion 13 can be removed.
  • the flexible substrate 10 can be efficiently transmitted to the shape substrate 2 to which the flexible substrate 10 is fixed and escaped, and the efficiency and reliability of discharge generation can be improved.
  • the oxide film of the flexible substrate 10 is formed of alumina, it is chemically stable, has excellent heat resistance and insulation, and has high thermal conductivity, improving the reliability of discharge control. Can be made.
  • the flexible substrate 10 having an oxide film formed on the surface of the metal foil is excellent in heat resistance, when the heat generating portion 13 is formed, in addition to using a thin film technology such as sputtering or vapor deposition, baking is performed at a high temperature. Therefore, it is possible to use a thick film technique that requires high-quality, and it is excellent in mass productivity.
  • the discharge control device using the head substrate in the first embodiment has the following effects.
  • the discharge electrode 5a can be selectively heated based on the image data to generate discharge, and the reliability of discharge control Excellent.
  • the discharge time at the discharge electrode 5a can be controlled, and the amount of ions generated and the intensity of emitted light can be controlled. Therefore, the area gradation on the recording medium can be easily performed, and the image quality can be improved.
  • the heat-discharge type print head provided with the discharge control device according to Embodiment 1 has the following effects.
  • the head substrate 10 has flexibility, it is possible to change the shape of the shape substrate 2 and the fixing position of the discharge part 5 with respect to the shape substrate 2.
  • driver IC6 is placed on the surface of shape substrate 2 and discharge electrode 5a is placed on end surface 3a of shape substrate 2 so that driver IC6 and discharge electrode 5a are substantially perpendicular to each other
  • the print head la can be transported in a straight line rather than being bent like a digital paper or the like, and can be suitably used for a horizontal printer.
  • the heating discharge type print head la in which the discharge unit 5 is arranged in the end face type, can be narrowed in the width of the part facing the electrostatic latent image carrier and the recording medium, and arranged without being bulky in the horizontal direction. Since it can be used, it can be applied to various types of electrostatic latent image carriers and has excellent versatility.
  • the type print head lb can be conveyed in a straight line rather than being bent like a digital paper or the like, and can be suitably used for a horizontal printer.
  • Heating discharge type print head lb whose discharge unit 5 is arranged in an edge type When facing the recording medium, it can be arranged without being bulky in the height direction, and can correspond to a variety of shapes of electrostatic latent image carriers, and is excellent in versatility.
  • the driver IC 6 is arranged on the surface of the shape substrate 2, and the discharge electrode 5a is arranged on the raised surface of the raised portion 3c formed on the surface of the shape substrate 2, so that the discharge electrode 5a protrudes from the driver IC 6.
  • the heating / discharge-type print head lc which should not be bent particularly like a digital paper, can convey a recording medium in a straight line, and can be suitably used for a horizontal printer.
  • the heating discharge type print head lc in which the discharge unit 5 is arranged in a raised form, can be arranged without being bulky in the height direction when the discharge unit 5 is opposed to the recording medium. It can be applied to any shape of electrostatic latent image carrier and has excellent versatility.
  • the shape substrate 2 Since the shape substrate 2 is made of a material having thermal conductivity, the shape substrate 2 acts as a heat sink, so that it is possible to reduce the number of parts and manufacturing steps that do not require a separate heat sink, Mass productivity can be improved.
  • a heating / discharging print head provided with the discharge control device according to the second embodiment of the present invention will be described below with reference to the drawings.
  • symbol is attached
  • FIG. 14 (a) is a schematic side view showing a heat discharge type print head provided with the discharge control device according to the second embodiment
  • FIG. 14 (b) is a calorie heat discharge provided with the discharge control device according to the second embodiment. It is a principal part model perspective view which shows a type
  • the heating discharge type print head Id provided with the discharge control device 7 in the second embodiment is different from that in the first embodiment in that the discharge electrode 5a is disposed in the vicinity of the lowermost portion of the shape substrate 2. Similar to the discharge needle of the electrostatic plotter, it is a vertical discharge type that corresponds to a horizontal printer type that is arranged perpendicular to the recording medium.
  • the heat discharge type print head Id is excellent in mass productivity and is suitably used as a model compatible with horizontal printers. be able to.
  • FIG. 15 (a) is a plan development view of the main part of the head substrate of the discharge control device according to the second embodiment
  • FIG. 15 (b) is a cross-sectional view taken along the line EE in FIG. 15 (a).
  • the head substrate 4d of the discharge control device 7 according to the second embodiment is different from the head substrate 4 of the discharge control device 7 according to the first embodiment in that it is located on the lowermost surface (front end) side of the discharge electrode 5a.
  • the discharge part 5 is covered with a flexible thin film 20 similar to the flexible thin film 14 and the flexible coating film 17 within a range that does not prevent the downward irradiation of ions, leaving a portion of the downward force from the discharge generation site 15 Is a point.
  • the manufacturing method of the head substrate 4d of the discharge control device 7 in the second embodiment is the same as that in the first embodiment except that the number of steps for forming the flexible thin film 20 is increased, and the description thereof is omitted.
  • the discharge control device 7 in the second embodiment is different from the first embodiment only in the ion irradiation direction, and the ion generation control method is the same as that in the first embodiment, so that the description thereof is omitted.
  • the head substrate and the discharge control apparatus using the head substrate in the second embodiment have the same operations as those in the first embodiment.
  • the discharge electrode 5a does not discharge from an extra portion other than the discharge generation site 15, the leakage from the discharge section 5 does not cause damage to the driver IC 6 and has excellent discharge control stability. By eliminating this, it is possible to prevent a decrease in the applied voltage applied to the discharge electrode 5a and improve the stability of the discharge.
  • Embodiment 3 of the present invention will be described below with reference to the drawings.
  • the same components as those in the first or second embodiment are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 16 is a plan development view of the main part of the head substrate of the discharge control device according to the third embodiment.
  • FIG. 17 (a) is a cross-sectional view taken along the line FF of FIG. 16, and
  • FIG. FIG. 16 is a cross-sectional view taken along line G-G.
  • the head substrate 4e of the discharge control device in the third embodiment is different from that in the first embodiment in that the discharge is performed via the insulating film 1 Oa on one surface side of both surfaces of the flexible substrate 10.
  • the discharge portion 5 having the electrode 5a is formed, and the heat generating portion 13 for heating the discharge electrode 5a is formed on the other surface side.
  • the manufacturing method of the head substrate 4e of the discharge control device in the third embodiment is different from the first embodiment in that the discharge part 5 and the heat generating part 13 are formed on the front and back of the flexible substrate 10, and each step. Is the same as in the first embodiment, and a description thereof will be omitted.
  • the force insulating film 10a in which the insulating film 10a similar to the insulating film 14a described above is formed only on the upper surface of the flexible substrate 10 is provided on at least one surface of both surfaces of the flexible substrate 10. What is necessary is just to form. Thereby, the discharge part 5 and the heat generating part 13 can be reliably insulated. Further, in the double-sided laminated head substrate 4e, when the discharge part 5 and the heat generating part 13 are formed on different surfaces of the flexible substrate 10, respectively, either may be formed first.
  • FIG. 18 (a) shows a first modification of the head substrate of the discharge control device according to the third embodiment.
  • FIG. 18 (b) is a schematic cross-sectional view taken along line H—H in FIG. 18 (a).
  • the first modification of the head substrate of the discharge control device in the third embodiment is different from the third embodiment in that the head substrate 4f is covered with the heat resistance and insulation covered on the surface of the discharge part 5.
  • Flexible coating film 17, and the flexible coating film 17 has a substantially circular opening 17 a at a position corresponding to the discharge generation site 15 (near the position of the heating element 13 a) of each discharge electrode 5 a. .
  • the flexible coating film 17 was formed in the same manner as the flexible thin film 14 described above. Instead of forming the plurality of independent openings 17a, a long hole-like opening extending over the plurality of discharge electrodes 5a may be formed! /.
  • a step can be formed between the surface of the discharge generation site 15 of the discharge electrode 5a and the surface of the flexible coating film 17, the gap between the discharge generation site 15 of the discharge electrode 5a and the recording medium, etc.
  • the gap can be kept constant, the contact between the discharge electrode 5a and the recording medium can be prevented, and the discharge from the discharge generation site 15 can be stabilized.
  • FIG. 19 is a schematic cross-sectional view showing a second modification of the head substrate of the discharge control device according to the third embodiment.
  • the second modification of the head substrate of the discharge control device in the third embodiment is different from the first modification in that a plurality of uneven portions 17b are formed on the surface of the flexible coating film 17 of the head substrate 4g. It is a point that is formed.
  • the surface distance of the flexible coating film 17 can be extended and the surface resistance can be increased, and leakage from the discharge generation site 15 of the discharge electrode 5a to the surroundings can be easily prevented.
  • the uneven portion 17b on the surface of the flexible coating film 17 can be easily formed by screen printing or the like. Alternatively, an uneven portion may be formed on the surface of the flexible covering film 17 using the same material as the insulating film 10a.
  • FIG. 20 (a) is a schematic plan view showing a third modification of the head substrate of the discharge control device according to the third embodiment
  • FIG. 20 (b) is a diagram of I—I in FIG. 20 (a).
  • the third modification of the head substrate of the discharge control device in the third embodiment differs from the third embodiment in the end of the discharge electrode 5a of the head substrate 4h on the heating element 13a side. And a flexible thin film 19 and an insulating film 19a covering the induction electrode 18 between the insulating film 1 Oa and the discharge part 5; It is a point that is formed.
  • the induction electrode 18 was formed in a strip shape on the insulating film 14a and grounded.
  • the gap between the discharge electrode 5a of the discharge part 5 and the induction electrode 18 can be kept constant at all times, and by applying a voltage between the discharge electrode 5a and the induction electrode 18, a discharge can be reliably generated.
  • the discharge is generated by being pulled by the induction electrode 18, but by grounding the irradiated object side such as a recording medium, the ions are irradiated to the irradiated object in the same direction as when the induction electrode 18 is not provided. .
  • the head substrate 4e (4f, 4g, 4h) of the discharge control device 7 in the third embodiment is very flexible
  • the head substrate 4 (4a, 4b, 4h) of the discharge control device 7 in the first embodiment Similar to 4c), it can be easily processed (deformed) from the planar state by bending it along the shape of the end face portion 3a, edge portion 3b, raised portion 3c, etc. of the shaped substrate 2.
  • Heat-discharge type print heads la, lb and lc similar to those in form 1 can be obtained.
  • the head substrate in the third embodiment has the following operation in addition to the operation in the first embodiment.
  • the flexible substrate 10 has heat resistance and insulation, it is not thermally deformed by the heat generated by the heating element 13a, and the electrodes connected to the heating element 13a and the heating element 13a are protected and discharged. Insulation with the electrode 5a can be ensured, and the discharge electrode 5a can be heated.
  • the high temperature heat generating part 13 can be prevented from being exposed, and insulation between the heat generating part 13 and the outside can be ensured, resulting in excellent safety.
  • Embodiment 4 of the present invention will be described below with reference to the drawings.
  • the same components as those in the first to third embodiments are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 21 is a configuration diagram showing the head substrate of the discharge control device of the discharge device separation type according to the fourth embodiment
  • FIG. 22 (a) shows the head substrate of the discharge control device of the discharge device separation type according to the fourth embodiment.
  • FIG. 22 (b) is a schematic cross-sectional view showing the heat generating unit of the head substrate of the discharge control device of the discharge device separation type in Embodiment 4
  • FIG. 22 (c) is a schematic cross-sectional view showing the discharge unit.
  • FIG. 22 is a schematic cross-sectional view showing the head substrate of the discharge control device of the discharge device separation type in Embodiment 4
  • FIG. 22 (d) is a modification of the head substrate of the discharge control device of the discharge device separation type of Embodiment 4.
  • FIG. 22 (b) is a schematic cross-sectional view showing the heat generating unit of the head substrate of the discharge control device of the discharge device separation type in Embodiment 4
  • FIG. 22 (c) is a schematic cross-sectional view showing the
  • the head substrate of the discharge control device in the fourth embodiment is different from the first to third embodiments in that the discharge part 5 and the heat generating part 13 are separately formed on the flexible substrate 10.
  • the discharge unit 21 and the heat generation unit 22 are combined, and the discharge unit 21 is combined with the heat generation unit 22 to form the head substrates 4i and 4j.
  • FIGS. 22 (a) and 22 (b) the manufacturing method capabilities of the discharge unit 21 and the heat generation unit 22 of the head substrate of the discharge control device according to the fourth embodiment are different from the third embodiment in that they are separate flexible
  • the discharge part 5 and the heat generating part 13 are formed on the substrate 10, and the respective steps are the same as those in the third embodiment, and the description thereof is omitted.
  • the discharge unit 21 and the heat generation unit 22 are bonded together. 22d, or as shown in FIG. 22 (d), the discharge unit 5 of the discharge unit 21 and the heat generation unit 13 of the heat generation unit 22 are back to back, and the flexible substrates 10 are bonded together to form the head substrate. It may be 4j.
  • the discharge unit 21 and the heat generating unit 22 are fixed with jigs for fixing the longitudinal ends and outer peripheral portions of the discharge unit 21 and the heat generating unit 22 from above and below instead of being bonded together with a heat-resistant adhesive. It is good also as attachment or detachment by pinching and fixing.
  • the fixing jig may be fixed by a detachable fixing means such as pin fitting or screwing. Positioning of the discharge unit 21 and the heat generation unit 22 can be performed by pin fitting with a pin protruding from one of the discharge unit 21 and the heat generation unit 22 and a fitting hole formed in the other.
  • the flexible substrate 10 of both the discharge unit 21 and the heat generating unit 22 may be provided with fitting holes, and both may be positioned and fixed using pins of a fixing jig.
  • the heat generating unit 22 has a function of heating the discharge unit 21, and may be formed on a hard substrate such as ceramic instead of being formed on the flexible substrate 10 having flexibility.
  • a hard substrate such as ceramic
  • an existing thermal head can be used as the heat generating unit 22, and the heat discharge type print head obtained in this way is a conventional flat print. It can be used as a head.
  • the flexible coating film 17 having the opening 17a is formed on the surface of the discharge section 5
  • a plurality of irregularities may be formed on the surface of the flexible coating film 17 or the flexible coating film. 17 is not necessary
  • discharge unit 21 and the heat generating unit 22 can be manufactured as separate parts, the respective manufacturing processes of the discharge unit 21 and the heat generating unit 22 can be simplified, yield can be improved, and mass productivity is excellent.
  • the discharge unit 21 and the heat generating unit 22 are detachable, they can be easily replaced or repaired if any one of them fails, especially when the discharge electrode 5a is worn. Since the discharge unit 21 can be replaced, the running cost of the discharge control device 7 can be reduced, and the maintenance and resource saving are excellent. In particular, a remarkable effect can be obtained when an existing thermal head is used as the heating unit 22.
  • the operation is the same as in the first or third embodiment. .
  • FIG. 23 is a schematic perspective view of an essential part showing the thermal head in the fifth embodiment.
  • symbol is attached
  • reference numeral 30 denotes a heating element 13a of the heating unit 22a so that the heating element 13a of the heating unit 13a is substantially perpendicular to the surface of the shape substrate 2a on the end surface portion 3a of the flat shape substrate 2a formed of a material such as an anorium.
  • 6 is an end face type thermal head according to the fifth embodiment.
  • FIG. 24 is a plan development view of the main part showing the heat generating unit of the thermal head in the fifth embodiment
  • FIG. 25 (a) is a cross-sectional view taken along the line JJ in FIG. 24,
  • FIG. FIG. 10 is a sectional view taken along the line K—K.
  • 14b is formed of heat-resistant and insulating glass covered on the upper surface of the flexible substrate 10 except for the end portion of the heating common electrode portion 1 lb and the heating individual electrode 12. It is a protective film.
  • the heating unit 22a of the thermal head 30 in the fifth embodiment has the same configuration as the heating unit 22 of the head substrate 4i of the discharge control device 7 in the fourth embodiment.
  • the method of manufacturing the heat generating unit 22a of the thermal head 30 in the fifth embodiment is different from the heat generating unit 22 of the head substrate 4i of the discharge control device 7 in the fourth embodiment.
  • a protective film 14b is formed with glass. Heat-generating common conductor pattern 11, Heat-generating comb electrode 11a, Heat-generating common electrode part l ib, Heat-generating individual electrode 12 Conductor (electrode), Heat-generating element 13a TaSiO or RuO, Protective film 14b
  • Each thick glass-type heat generating part 13 can be easily formed by applying and baking each glass paste on the flexible substrate 10 in a flat state and patterning using a photolithographic technique.
  • the arrangement method of the heat generating portion 13 is an end face type, but the shape of the shape substrate 2a and
  • an edge-type or raised-type thermal head similar to the heat-discharge type print heads lb, lc shown in FIGS. 11 and 12 can be obtained.
  • the heat generating portion 13 of the heat generating unit 22a can also be formed in a thin film type using a film forming technique such as sputtering or vacuum deposition.
  • the flexible substrate 10 of the heat generating unit 22a can be bent, the flexible substrate 10 is formed after forming the heat generating portion 13 and the like on the planar flexible substrate 10 using a technically easy thick film technology. Each unit can be deformed (curved) into a desired shape, and by fixing the heat generating unit 22a along the shape of the shape substrate 2a, a simple technique can be used.
  • the thermal head 30 is manufactured with high productivity.
  • the thermal head 30 of various shapes can be manufactured using the common heat generating unit 22a. Excellent.
  • the heat generating part 13 is covered with a heat-resistant and insulating protective film 14b.
  • the heat generating part 13 can be protected to prevent damage, and the heat generating unit 22a has excellent durability and long life.
  • the heat of the heat generating part 13 can be transferred to the shape substrate 2a and escaped to the heat generating part 13. This prevents the heat build-up from occurring, improves the print stop response to the heating stop of the heat generating part 13 and increases the print speed, and forms a high-quality image without a tail. Can be reliable in image quality.
  • the oxide film formed on both surfaces of the aluminum foil that is the base material of the flexible substrate 10 is alumina, it has excellent adhesion between the metal foil and the oxide film, and the insulating and durability of the flexible substrate 10 Can be improved.
  • the metal foil used as the base material of the flexible substrate 10 is formed of aluminum, the thermal conductivity of the flexible substrate 10 can be improved, and the flexible substrate 10 It can be efficiently transmitted to the fixed shape substrate 2a and escaped, and the printing stop response to the heating stop of the heat generating part 13 is excellent, and the reliability of the image quality is excellent.
  • the oxide film of the flexible substrate 10 is made of alumina, it is chemically stable, has excellent heat resistance and insulation properties, and has high thermal conductivity, improving the reliability of discharge control. It is out.
  • a recording medium such as a plastic card or cardboard that is elastic and difficult to be bent can be conveyed in a straight line, and can be suitably used for a horizontal printer.
  • the arrangement of the heat generating portion 13 is an end face type, the width of the portion facing the recording medium can be reduced and the arrangement can be made without being bulky in the horizontal direction.
  • the heat from the heating element 13a with a small contact area between the heat generating part 13 and the recording medium does not spread in the scanning direction and forms a high-quality image without blurring.
  • the image quality is highly reliable.
  • the flexible substrate 10 with an oxide film formed on the surface of the metal foil is excellent in heat resistance.
  • a thick film technique that requires baking at a high temperature can be used, which is excellent in mass productivity.
  • the substrate on which the discharge device is formed is processed into a desired shape.
  • a head substrate that is superior in workability and assembly workability, can overcome limitations on the formation technology of the substrate and discharge device and can be designed and mass-produced, and by improving the thermal conductivity of the substrate Offers a discharge control device that uses a head substrate with excellent discharge stop response to heat stop and excellent discharge control reliability, small size, excellent mass productivity, easy installation, and writing without bending the recording medium
  • a heat generating part can be formed on a planar substrate using thin film technology or thick film technology.
  • a heating means such as a heat discharge type discharge control device that can be used only as a print head, and is excellent in design flexibility and versatility, and is improved by improving the thermal conductivity of the substrate. It is possible to provide a thermal head that is excellent in response to printing stop and excellent in image quality reliability, and can be used for horizontal printer compatible print heads and heating means.

Landscapes

  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Abstract

There is provided a heating discharging type print head excellent in: processability and assembly workability by giving flexibility to a substrate itself, after the discharge device having a heating portion and a discharge portion is formed on a flat substrate, that the substrate on which a discharge device is formed can be fabricated into a desired shape, after the discharge device having a heating portion and a discharge portion is formed on a flat substrate by giving flexibility to a substrate itself; design flexibility and mass productivity by eliminating technological constraints on the formations of the substrate and the discharge device; discharge stop response to heating stop by improving thermal conductivity of the substrate; reliability of discharge control; and mass productivity and installation flexibility with a small size. The print head comprises a head substrate including a flexible substrate having a metal foil on both sides of which oxide films are formed and having heat resistance and electrical insulation properties, a heating portion formed on the flexible substrate and having a heating element, a flexible thin film covering the heating portion and having heat resistance and electrical insulation properties, and a discharge portion having a discharge electrode to be heated by the heating element formed on the flexible thin film.

Description

明 細 書  Specification
ヘッド基板とそれを用いた放電制御装置、その放電制御装置を備えた加 熱放電型印字ヘッド、及びサーマルヘッド  Head substrate, discharge control device using the same, heating discharge type print head equipped with the discharge control device, and thermal head
技術分野  Technical field
[0001] 本発明は、繰り返し記録可能な静電現像方式の記録媒体に放電の作用により画像 を形成するための加熱放電型印字ヘッドに用いられるヘッド基板とそれを用いた放 電制御装置、その放電制御装置を備えた加熱放電型印字ヘッド、及び感熱方式や 熱転写方式のサーマルプリンタやファクシミリにおいて画像を形成するための印字へ ッド或いは放電制御装置における加熱手段として用いられるサーマルヘッドに関する 背景技術  The present invention relates to a head substrate used in a heat discharge type print head for forming an image on an electrostatic development type recording medium capable of repetitive recording by the action of a discharge, a discharge control device using the head substrate, and the like BACKGROUND ART Related to a heat discharge type print head provided with a discharge control device, and a thermal head used as a heating head in a print head or a discharge control device for forming an image in a thermal printer or facsimile of a thermal or thermal transfer system
[0002] 近年、(特許文献 1)に示すように、電子写真方式とは別方式の静電潜像形成方式 である、イオン照射方式が開発されてきている。  In recent years, as shown in (Patent Document 1), an ion irradiation method, which is an electrostatic latent image forming method different from the electrophotographic method, has been developed.
電子写真方式が一様帯電 +露光という 2工程で、一様帯電した感光体上の露光し た部分の電荷を逃がすことで、静電潜像担持体としての感光体上に静電潜像を形成 するのに対し、イオン照射方式では、イオン生成可能な雰囲気中(大気中等)におい ては、放電電極からの放電の発生に伴うイオンの照射による選択的帯電 (静電潜像 形成帯電)のみで静電潜像担持体 (絶縁体であれば良 、ので、必ずしも感光体であ る必要はない)上に静電潜像の形成を完了できるので、より簡素化された静電潜像 形成方式である。  The electrophotographic method uses two processes, uniform charging and exposure, to release the exposed portion of the charge on the uniformly charged photoconductor, thereby forming an electrostatic latent image on the photoconductor as the electrostatic latent image carrier. On the other hand, in the ion irradiation method, only selective charging (electrostatic latent image formation charging) by ion irradiation accompanying the generation of discharge from the discharge electrode is performed in an ion-generating atmosphere (such as in the air). Therefore, it is possible to complete the formation of the electrostatic latent image on the electrostatic latent image carrier (there is no need to be a photoconductor because it is an insulator). It is a method.
また、(特許文献 2)には、水平プリンタ対応型のイオン照射型印字ヘッドの具体的 な形状及びそれを備えた画像形成装置が開示されている。  Further, (Patent Document 2) discloses a specific shape of an ion irradiation type print head compatible with a horizontal printer and an image forming apparatus including the shape.
特に、(特許文献 1)や (特許文献 2)に示す加熱放電方式は、放電電極に印加した だけでは放電が発生せず加熱することにより放電が発生する電圧 (放電制御電圧)を 印加した状態で、放電電極への加熱の有無を制御することにより、放電の有無を制 御してイオンの発生制御を行うものであり、放電電極に印加する電圧の制御が不要 である。その結果、発熱抵抗体等による加熱の制御に使用する 5V駆動のような低耐 電圧対応のドライバ ICで放電の発生を制御することができ、放電の制御の観点から は最も優れた制御方式であると言える。 In particular, the heating and discharging methods shown in (Patent Document 1) and (Patent Document 2) are in a state in which a voltage (discharge control voltage) is generated in which a discharge is generated by heating without generating a discharge just by being applied to the discharge electrode. Thus, by controlling the presence or absence of heating of the discharge electrode, the generation of ions is controlled by controlling the presence or absence of discharge, and it is not necessary to control the voltage applied to the discharge electrode. As a result, low resistance such as 5V drive used to control heating by heating resistors, etc. The generation of discharge can be controlled by a voltage-compatible driver IC, which is the most excellent control method from the viewpoint of discharge control.
因に、現時点におけるデジタルぺーパとしては、微小なボールを二色 (例えば白黒 )に色分けし、各色の電気特性の違いによりボールを回転して任意の一色を表示す るツイストボール方式、微小なボール中に二色 (例えば白黒)の微粉末を混入し、各 色の微粉末が持つ電気特性の違いにより一色のみを浮上させて表示する電気泳動 方式、液晶板あるいは微小な液晶ブロックの液晶シャッターを開閉して、シャッターを 開けた部分の背景色を表示する液晶方式等がある。  Incidentally, as a digital paper at the present time, a minute ball is color-coded into two colors (for example, black and white), and the ball is rotated by the difference in electrical characteristics of each color to display an arbitrary color, a minute ball An electrophoretic system in which fine powders of two colors (for example, black and white) are mixed in a ball and only one color is floated due to the difference in electrical characteristics of the fine powders of each color. There is a liquid crystal system that displays the background color of the part where the shutter is opened by opening and closing.
一方、感熱方式や熱転写方式のサーマルプリンタやファクシミリにお!/ヽて画像を形 成するための印字ヘッドとしてサーマルヘッドが知られている。  On the other hand, thermal heads are known as print heads for forming images on thermal and thermal transfer thermal printers and facsimiles.
サーマルヘッドは、基板上に形成した発熱抵抗体に電流を印加し、発熱抵抗体に 発生するジュール熱を利用して感熱紙を発色させたり、あるいはインクドナーフィルム のインク層を昇華させて昇華型記録紙にインクを移転させたりして画像を形成する方 式である。  The thermal head applies a current to the heating resistor formed on the substrate and develops thermal paper using Joule heat generated in the heating resistor, or sublimates the ink layer of the ink donor film to generate a sublimation type. This is a method of forming an image by transferring ink to recording paper.
このサーマルヘッドには、その製造方法の違いによって厚膜型と薄膜型とがある。 厚膜型サーマルヘッドは、厚膜の導体 (電極)、発熱抵抗体、ガラスの各ペーストを基 板上に塗布、焼成し、フォトリソグラフ技術を用いたパターユングにより発熱部を形成 するものであり、薄膜型サーマルヘッドは、スパッタリングや真空蒸着等の成膜技術 を用いて電極や発熱抵抗体を有する発熱部を形成するものである。  This thermal head is classified into a thick film type and a thin film type depending on the manufacturing method. A thick-film thermal head is a device in which a thick-film conductor (electrode), heating resistor, and glass paste are applied onto a substrate and baked to form a heat generating part by patterning using photolithography technology. The thin film thermal head forms a heat generating part having electrodes and heat generating resistors by using a film forming technique such as sputtering or vacuum deposition.
厚膜型と薄膜型の何れも、平面状の基板の上に電極や発熱抵抗体などを積層し、 その積層面である基板の表面を記録面とする平面型が主流であった。  In both the thick film type and the thin film type, a flat type in which an electrode, a heating resistor and the like are laminated on a flat substrate and the surface of the substrate, which is the laminated surface, is a recording surface has been the mainstream.
しかし、ファクシミリなどの普及に伴う装置の小型化や記録媒体の多様ィ匕によって、 基板の端面を記録面とする端面型、基板の表面の縁部に面取りされて形成された傾 斜面を記録面とするエッジ型、基板の表面に丘状に隆起して形成された隆起面を記 録面とする隆起型 (新端面型)などのタイプのサーマルヘッドが注目されて ヽる。 端面型のサーマルヘッドは、例えば、(特許文献 3)に開示されているように、絶縁 基板の側端面を、該基板の表面と裏面に対して連続した曲面となるような円弧状に 研削し、この曲面の上に電極と発熱抵抗体とを形成して!/ヽる。 このように製作された端面型のサーマルヘッドは、記録媒体との接触面積が曲面の 頭頂部の大きさによって決定でき、また、発熱抵抗体力もの熱が走査方向に広がらな いために、にじみのない高品質な画像を形成することができる。さらに、記録面となる 発熱部が基板の端面に形成されるため、プラスチック製のカードや厚紙などのように 弾力性があり、湾曲させることが困難な記録媒体にも画像を形成することができ、水 平プリンタ対応型の印字ヘッドとして好適であり、装置の小型化が容易である。 However, due to the downsizing of devices and the variety of recording media associated with the spread of facsimiles, etc., the end surface type with the end surface of the substrate as the recording surface, and the inclined surface formed by chamfering the edge of the surface of the substrate can be Thermal heads such as the edge type, and the raised type (new end face type) with the recording surface of the raised surface formed in a hill-like shape on the surface of the substrate are attracting attention. For example, as disclosed in (Patent Document 3), an end face type thermal head is obtained by grinding a side end face of an insulating substrate into an arc shape that forms a continuous curved surface with respect to the front surface and the back surface of the substrate. Form an electrode and a heating resistor on this curved surface! In the end face type thermal head manufactured in this way, the contact area with the recording medium can be determined by the size of the top of the curved surface, and the heat generated by the heating resistor does not spread in the scanning direction, so there is no blur. A high quality image can be formed. In addition, since the heat generating part that forms the recording surface is formed on the end surface of the substrate, it is possible to form an image on a recording medium that is elastic and difficult to bend, such as plastic cards and cardboard. It is suitable as a print head for a horizontal printer, and the apparatus can be easily downsized.
端面型、エッジ型、隆起型などのサーマルヘッドは、非平面状の基板の極めて微小 な面積に電極や発熱抵抗体を形成しなければならないため、従来は、スパッタリング 装置や真空蒸着装置などによる薄膜技術を用いて製造されている。  End-face, edge-type, and raised-type thermal heads require electrodes and heating resistors to be formed on a very small area of a non-planar substrate. Manufactured using technology.
特許文献 1:特開 2003 - 326756号公報 Patent Document 1: Japanese Patent Laid-Open No. 2003-326756
特許文献 2: WO2005Z056297号公報 Patent Document 2: WO2005Z056297
特許文献 3:特開昭 62— 292451号公報 Patent Document 3: Japanese Patent Laid-Open No. 62-292451
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
し力しながら、上記従来の技術では以下の課題を有していた。  However, the above conventional technique has the following problems.
(1)加熱放電型印字ヘッドに用いられる放電制御装置においては、セラミック等の硬 V、基板上に放電電極を加熱するための発熱体を有する発熱部を下層に、発熱部を 絶縁するための保護膜を中間層に、放電電極を有する放電部を上層に積層してへッ ド基板を形成して 、るが、このような硬 、ヘッド基板は湾曲させることができな 、ので 、ヘッド基板の形状次第で加熱放電型印字ヘッドの形状が決まることになる。  (1) In a discharge control device used for a heat discharge type print head, a heat generating part having a heating element for heating a discharge electrode on a hard V, substrate, etc., is used as a lower layer, and the heat generating part is insulated. A head substrate is formed by laminating a protective film as an intermediate layer and a discharge portion having a discharge electrode as an upper layer. However, since such a hard substrate cannot be curved, the head substrate Depending on the shape, the shape of the heat-discharge type print head is determined.
(2)そのため、(特許文献 2)に示すような水平プリンタ対応型の加熱放電型印字へッ ドを製造するには、加熱放電型印字ヘッドの形状を決めるためのセラミック等の素材 を用いた非平面状の基板への形成技術上の制約及び、非平面状の基板への発熱 部や放電部等の放電デバイスの形成技術上の制約を受け、加工性、設計自在性、 量産性に欠けると 、う課題を有して 、た。  (2) Therefore, in order to manufacture a heat discharge type print head compatible with a horizontal printer as shown in (Patent Document 2), a material such as ceramic was used to determine the shape of the heat discharge type print head. Due to restrictions on formation technology on non-planar substrates and restrictions on formation technology of discharge devices such as heat generating parts and discharge parts on non-planar substrates, workability, designability, and mass productivity are lacking. I have a problem.
(3)また、端面型、エッジ型、隆起型などのサーマルヘッドの薄膜技術による製造で は、スパッタリング装置や真空蒸着装置などの大掛かりな設備を必要とする上に、非 平面状の基板の曲面や傾斜面及び表裏の平面部に蒸着等の薄膜技術で金属薄膜 を被着し、これをフォトリソ技術で同時にエッチングすることによって、発熱抵抗体に 接続される電極を形成しなければならないため、角度の異なる(非平面状の)面に亙 つた正確なマスキングと、工夫を凝らした露光制御を必要とし、製造工程が煩雑で歩 留りが悪ぐ量産性に欠けるという課題を有していた。 (3) In addition, manufacturing of thermal heads such as end-face type, edge-type, and raised-type using thin film technology requires large-scale equipment such as sputtering equipment and vacuum evaporation equipment, as well as curved surfaces of non-planar substrates. Metal thin film with thin film technology such as vapor deposition on the inclined surface and front and back flat parts Since the electrode to be connected to the heating resistor must be formed by simultaneously etching this with photolithographic technique, accurate masking on (non-planar) surfaces with different angles, It has the problem that it requires ingenious exposure control, the manufacturing process is complicated, the yield is poor, and the mass productivity is lacking.
(4)電極や発熱抵抗体を形成する基板として、ポリイミドゃァラミド等の薄膜樹脂で形 成されたフレキシブル基板を用いた場合、平面状態で電極や発熱抵抗体を形成した 上で、所望の形状に変形 (湾曲)させることができ、形状自在性に優れるが、フレキシ ブル基板が厚膜型サーマルヘッドの製造工程における焼成時の温度に耐えることが できないため、薄膜型サーマルヘッドの製造工程を用いなければならず、量産性に 欠けると 、う課題を有して ヽた。  (4) When a flexible substrate made of a thin film resin such as polyimide galamide is used as a substrate for forming electrodes and heating resistors, the electrodes and heating resistors are formed in a flat state and then the desired shape It can be deformed (curved) and has excellent shape flexibility, but the flexible substrate cannot withstand the temperature during firing in the manufacturing process of thick film thermal heads, so the thin film thermal head manufacturing process is used. If it had to be mass-produced, it had a problem.
本発明は上記従来の課題を解決するもので、基板自体に柔軟性を持たせることに より、平面状態の基板に発熱部や放電部等を有する放電デバイスを形成した後に、 放電デバイスを形成した基板を所望の形状に加工することができ加工性、組立作業 性に優れ、基板及び放電デバイスの形成技術上の制約を克服することができ設計自 在性、量産性に優れるヘッド基板の提供、基板の熱伝導性を向上させることにより加 熱停止に対する放電停止の応答性に優れ、放電制御の信頼性に優れるヘッド基板 を用いた放電制御装置の提供、小型で量産性、設置自在性に優れ、記録媒体が湾 曲しな 、状態で書き込みが可能であると共に、多種多様な形状の静電潜像担持体 に対しても最適な位置カゝら静電潜像を形成できる汎用性、画像品質の信頼性に優れ る放電制御装置を備えた水平プリンタ対応型の加熱放電型印字ヘッドの提供、及び 基板自体に柔軟性を持たせることにより、平面状態の基板に薄膜技術或いは厚膜技 術を用いて発熱部を形成することができ、微細加工及び多数個取りが可能で量産性 に優れ、発熱部を形成した基板を所望の形状に加工することができ加工性、組立作 業性に優れ、基板及び発熱部の形成技術上の制約を克服することができ、印字へッ ドとしてだけでなぐ加熱放電方式の放電制御装置などの加熱手段としても好適に用 いることができ設計自在性、汎用性に優れると共に、基板の熱伝導性を向上させて 加熱停止に対する印字停止の応答性に優れ、画像品質の信頼性に優れるサーマル ヘッドの提供を目的とする。 課題を解決するための手段 The present invention solves the above-mentioned conventional problems, and by forming a discharge device having a heat generating portion, a discharge portion, etc. on a planar substrate by forming the substrate itself with flexibility, the discharge device is formed. Providing a head substrate that can process a substrate into a desired shape, excels in workability and assembly workability, overcomes restrictions on the formation technology of the substrate and discharge device, and excels in design independence and mass productivity. Offers a discharge control device that uses a head substrate that excels in discharge stop response to heat stop and improves discharge control reliability by improving the thermal conductivity of the substrate, and is small, mass-productive, and easy to install The versatility and image that can be written in a state where the recording medium is not bent, and can form an electrostatic latent image with an optimum position for various types of electrostatic latent image carriers. Excellent quality reliability By providing a horizontal printer compatible heating discharge print head equipped with a discharge control device, and making the substrate itself flexible, thin-film technology or thick-film technology is used for the substrate in a flat state. It can be formed, can be microfabricated and can be manufactured in large numbers, is excellent in mass productivity, can be processed into a desired shape, and can be processed into a desired shape. Excellent in workability and assembly workability. It can be used as a heating means such as a heat discharge type discharge control device that can be used not only as a print head, but also has excellent design flexibility and versatility. The purpose of the present invention is to provide a thermal head that improves the thermal conductivity of the substrate, has excellent print stop response to heat stop, and has excellent image quality reliability. Means for solving the problem
上記課題を解決するために本発明のヘッド基板とそれを用いた放電制御装置、そ の放電制御装置を備えた加熱放電型印字ヘッド、及びサーマルヘッドは、以下の構 成を有している。  In order to solve the above-described problems, a head substrate of the present invention, a discharge control device using the head substrate, a heat discharge type print head including the discharge control device, and a thermal head have the following configurations.
本発明の請求項 1に記載のヘッド基板は、金属箔の両面の内の少なくともいずれか 一方の面に酸化膜が形成された耐熱性及び絶縁性を有するフレキシブル基板と、前 記フレキシブル基板の前記酸化膜が形成された面上に形成された発熱体を有する 発熱部と、前記発熱部を被覆した耐熱性及び絶縁性を有するフレキシブル薄膜と、 前記フレキシブル薄膜の上に形成され前記発熱体により加熱される放電電極を有す る放電部と、を備えている構成を有している。  The head substrate according to claim 1 of the present invention is a flexible substrate having heat resistance and insulation, in which an oxide film is formed on at least one of both surfaces of the metal foil, and the flexible substrate. A heating part having a heating element formed on the surface on which the oxide film is formed, a heat-resistant and insulating flexible thin film covering the heating part, and heated by the heating element formed on the flexible thin film And a discharge part having a discharge electrode.
この構成により、以下のような作用を有する。  This configuration has the following effects.
(1)発熱部や放電部等の放電デバイスを形成したフレキシブル基板は湾曲させるこ とができるので、平面状態のフレキシブル基板へ技術的に容易な方法で放電デバィ スを形成した後に、フレキシブル基板ごと所望の形状に変形 (湾曲)させることができ 、形状基板の形状に沿わせて固定することにより、平易な技術を用いて所望の形状( 従来は高度な技術を要した)の加熱放電型印字ヘッドを製造でき、生産性に優れる。 (1) Since a flexible board on which a discharge device such as a heat generating part or a discharge part is formed can be curved, after forming a discharge device on a flat flexible board by a technically easy method, It can be deformed (curved) into a desired shape and fixed along the shape of the shape substrate, so that it can be heated and discharged in a desired shape (previously requiring advanced technology) using simple technology. The head can be manufactured and the productivity is excellent.
(2)発熱部を被覆するフレキシブル薄膜が耐熱性及び絶縁性を有することにより、発 熱体の発する熱で熱変形することがなぐ発熱体及び発熱体に接続された電極を保 護して放電電極との絶縁性を確保でき、放電電極の加熱を確実に行うことができる。(2) Since the flexible thin film covering the heat generating part has heat resistance and insulation properties, the heat generating element that is not thermally deformed by the heat generated by the heat generating element and the electrodes connected to the heat generating element are protected and discharged. Insulation with the electrode can be ensured, and the discharge electrode can be reliably heated.
(3)金属箔の両面の内の少なくともいずれか一方の面に酸ィ匕膜が形成されたフレキ シブル基板は、熱伝導性に優れるので、放電電極の熱を形状基板へ伝達させて逃 がすことができ、放電電極への熱の籠もりを防止し、発熱部の加熱停止に対する放 電停止の応答性を向上させることができ、放電制御の信頼性に優れる。 (3) A flexible substrate having an oxide film formed on at least one of both surfaces of the metal foil is excellent in thermal conductivity, so that heat from the discharge electrode is transferred to the shape substrate to escape. Therefore, it is possible to prevent the heat build-up on the discharge electrode, improve the response of the discharge stop to the heating stop of the heat generating part, and have excellent discharge control reliability.
(4)放電部と発熱部がフレキシブル薄膜で絶縁されていることにより、放電電極に放 電制御電圧を印加した状態で、発熱体による加熱制御を選択的に行うことができ、加 熱された放電電極力 放電や発光が起こり、イオン生成可能な雰囲気中においては イオン発生量を制御することができ、静電現像方式のデジタルぺーパ等の専用の記 録媒体への画像の形成に用いることができる。 (5)フレキシブル基板の酸化膜が形成された面上に発熱体を有する発熱部を形成 することにより、フレキシブル基板と発熱部の間を確実に絶縁することができ、発熱部 の発熱体に選択的に通電して発熱させることができる。 (4) Since the discharge part and the heat generating part are insulated by the flexible thin film, the heating control by the heating element can be selectively performed in a state where the discharge control voltage is applied to the discharge electrode. Discharge electrode force In an atmosphere where discharge or light emission occurs and ions can be generated, the amount of ions generated can be controlled, and it can be used to form images on a dedicated recording medium such as an electrostatic development type digital paper. Can do. (5) By forming a heat generating part having a heating element on the surface of the flexible substrate on which the oxide film is formed, the flexible substrate and the heat generating part can be reliably insulated, and can be selected as the heating element of the heat generating part. Can be energized to generate heat.
(6)金属箔の表面に酸化膜を形成したフレキシブル基板は耐熱性に優れるので、発 熱部を形成する際に、スパッタリングや蒸着などの薄膜技術を用いる以外に、焼成が 必要な厚膜技術を用いることができ、量産性に優れる。  (6) Since a flexible substrate with an oxide film formed on the surface of a metal foil has excellent heat resistance, in addition to using thin film technology such as sputtering and vapor deposition, a thick film technology that requires firing is used when forming the heat generating part. Can be used, and is excellent in mass productivity.
(7)平面状態のフレキシブル基板上に放電デバイスを形成することができるので、微 細加工及び多数個取りが容易で量産性に優れる。  (7) Since a discharge device can be formed on a flexible substrate in a flat state, fine processing and multi-piece fabrication are easy and excellent in mass productivity.
[0007] ここで、フレキシブル基板上に発熱部や放電部等の放電デバイスを形成したものが ヘッド基板である。フレキシブル基板の基材となる金属箔としては、アルミニウム、銅、 若しくはこれらの合金等が好適に用いられる。酸ィ匕膜としては、 SiO、 MgO、 Al O  [0007] Here, a head substrate is formed by forming a discharge device such as a heat generating portion or a discharge portion on a flexible substrate. As the metal foil serving as the base material of the flexible substrate, aluminum, copper, or an alloy thereof is preferably used. For oxide film, SiO, MgO, Al O
2 2 3 2 2 3
、 Cr O , Cr O
2 3等が好適に用いられる。酸化膜を形成する方法としては、陽極酸化法の他 に、溶射、塗装法、酸処理法、蒸着法、傾斜機能法、或いはこれらの方法を複数組 み合わせた方法などが好適に用いられる。  2 3 etc. are preferably used. As a method for forming the oxide film, in addition to the anodic oxidation method, a thermal spraying method, a coating method, an acid treatment method, a vapor deposition method, a gradient function method, or a method in which a plurality of these methods are combined is preferably used.
放電電極に印加する電圧とフレキシブル基板の絶縁破壊電圧との関係にもよるが 、フレキシブル基板の厚さとしては、 6 μ m〜50 μ mが好ましい。フレキシブル基板の 厚さが 6 mより薄くなるにつれ取り扱いが困難になり、量産性、耐久性が低下し易く なる傾向があり、 50 mより厚くなるにつれ熱伝導率が低下し易くなる傾向があり、い ずれも好ましくない。  Although it depends on the relationship between the voltage applied to the discharge electrode and the dielectric breakdown voltage of the flexible substrate, the thickness of the flexible substrate is preferably 6 μm to 50 μm. As the thickness of the flexible substrate becomes thinner than 6 m, handling becomes difficult, and the mass productivity and durability tend to be reduced, and as the thickness becomes thicker than 50 m, the thermal conductivity tends to decrease. Neither is desirable.
フレキシブル薄膜としては、耐熱性及び絶縁性を有すると共に、加熱手段の発熱 部が発する熱を放電電極に伝達できる熱伝達性を有するものが好適に用いられる。 具体的には、ポリイミド,ァラミド,ポリエーテルイミド等の合成樹脂やガラス等が好適 に用いられる。  As the flexible thin film, those having heat resistance and heat insulation and heat transfer properties capable of transferring heat generated by the heat generating portion of the heating means to the discharge electrode are suitably used. Specifically, synthetic resins such as polyimide, aramid, and polyetherimide, glass, and the like are preferably used.
また、フレキシブル基板やフレキシブル薄膜単独で十分な絶縁性を確保できな ヽ 場合は、柔軟性と放電電極への熱伝達性を妨げな 、範囲で更に絶縁膜を形成する 等してちょい。  If sufficient insulation cannot be ensured with a flexible substrate or a flexible thin film alone, an insulating film may be further formed in a range that does not hinder flexibility and heat transfer to the discharge electrode.
[0008] 放電電極と、記録媒体の裏面側に形成或いは接触又は近接して配設された対向 電極と、の間に放電制御電圧に相当する電位差を設定して電界を形成し、発熱部に より放電電極を選択的に加熱することで、対向して配置された放電電極と対向電極と の間で放電を発生させることができ、電界によって放電電極力も放出させた電子や正 又は負のイオンを記録媒体の記録面 (表面)に移動させ、その電荷の作用により画像 の書込や消去を行うことができる。 [0008] An electric field is formed by setting a potential difference corresponding to a discharge control voltage between the discharge electrode and a counter electrode formed on or in contact with or close to the back side of the recording medium. By selectively heating the discharge electrode more, a discharge can be generated between the discharge electrode and the counter electrode arranged opposite to each other, and electrons or positive or negative ions that have also discharged the discharge electrode force by an electric field. Can be moved to the recording surface (surface) of the recording medium, and the image can be written or erased by the action of the charge.
発熱部としては、複数の放電電極或いは放電電極の任意の位置を選択的に加熱 できるものであればよぐ発熱体としては、 TaSiO、 RuO等が好適に用いられる。こ  As the heat generating part, TaSiO, RuO or the like is preferably used as a heat generating element as long as it can selectively heat a plurality of discharge electrodes or arbitrary positions of the discharge electrodes. This
2 2  twenty two
の発熱部による加熱箇所を選択することで、容易に放電電極の任意の加熱位置近 傍 (放電発生部位)から選択的に放電を発生させることができる。  By selecting the heating location of the heat generating part, it is possible to easily generate a discharge easily from an arbitrary heating position (discharge generation site) of the discharge electrode.
尚、放電制御電圧とは、その電位差だけでは放電電極と記録媒体側の対向電極と の間で放電は起こらないが、放電電極を加熱することにより放電が起こる電圧域を言  The discharge control voltage is a voltage range in which discharge does not occur between the discharge electrode and the counter electrode on the recording medium side only by the potential difference, but discharge occurs by heating the discharge electrode.
[0009] 放電部は、例えば複数の放電電極の一端部を共通電極部で接続して櫛型に形成 したり、複数の放電電極の両端部を共通電極部で接続して梯子型等に形成したりで きるほか、長方形状や正方形状等の一枚の放電電極で平板状に形成することができ る(例えば、特開 2003— 326756号、 WO2005Z056297参照)。 [0009] For example, the discharge portion is formed in a comb shape by connecting one end portions of a plurality of discharge electrodes with a common electrode portion, or formed in a ladder shape or the like by connecting both end portions of the plurality of discharge electrodes with a common electrode portion. In addition, it can be formed into a flat plate shape with a single discharge electrode such as a rectangular shape or a square shape (see, for example, JP-A-2003-326756, WO2005Z056297).
櫛型や梯子型のように放電電極の近傍に共通電極部を設けることで、放電電極の 放熱面積の拡大及び、熱容量の増大により、放電電極の冷却効果、加熱停止に対 する応答性が向上し、また、抵抗値の低減により常に安定した電圧を印加できるので 、放電の安定性等を更に向上させることができる。尚、放電電極の内の発熱部による 加熱位置近傍が放電発生部位となるが、放電部を平板状の放電電極で形成した場 合は、放電発生部位以外が共通電極部となる。  By providing a common electrode in the vicinity of the discharge electrode, such as a comb or ladder, the discharge electrode's heat dissipation area is increased and the heat capacity is increased, thereby improving the cooling effect of the discharge electrode and the response to heat stoppage. In addition, since a stable voltage can always be applied by reducing the resistance value, the discharge stability and the like can be further improved. The vicinity of the heating position by the heat generating part of the discharge electrode is a discharge generation site. However, when the discharge part is formed of a flat discharge electrode, the portion other than the discharge generation site is the common electrode unit.
[0010] 放電部を平板状の放電電極で形成した場合、発熱部により加熱された箇所が放電 発生部位となるため、放電部と発熱部との細かな位置合わせをすることなく確実に放 電を発生させることができ、信頼性、量産性に優れる。  [0010] When the discharge part is formed of a flat discharge electrode, the portion heated by the heat generating part becomes a discharge generating part, and therefore, the discharge part can be reliably discharged without fine alignment between the discharge part and the heat generating part. Can be generated and is excellent in reliability and mass productivity.
また、放電部を櫛型や梯子型に形成した場合、放電電極近傍に共通電極部を設け ることで、放電部の放熱面積の拡大及び、熱容量の増大により、放電電極の冷却効 果、加熱停止に対する応答性が向上し、また、抵抗値の低減により常に安定した電 圧を印加できるので、放電の安定性等を更に向上させることができる。特に、共通電 極部の幅を各々の放電電極の幅より幅広に形成した場合、一時的に 100〜300°C に加熱される放電電極の冷却効果が向上し、熱の籠りを防ぐことができるので、加熱 停止に迅速に応答して放電を停止でき、放電時間間隔を短縮して短時間で放電の 有無を切替えることができ、記録速度の高速ィ匕を図ることができる。また、共通電極部 の抵抗値を引き下げることができ、共通電極部で接続された各々の放電電極の間に 生じる電位差を極力抑えることができるので、各々の放電電極における放電量のばら つきを低減でき、放電の安定性に優れる。 In addition, when the discharge part is formed in a comb shape or a ladder shape, by providing a common electrode part in the vicinity of the discharge electrode, the cooling effect of the discharge electrode and heating can be increased by increasing the heat radiation area of the discharge part and increasing the heat capacity. Responsiveness to the stop is improved, and a stable voltage can always be applied by reducing the resistance value, so that the stability of discharge can be further improved. Especially common power If the pole width is wider than the width of each discharge electrode, the cooling effect of the discharge electrode, which is temporarily heated to 100-300 ° C, will be improved, and heat will not be burned. The discharge can be stopped in response to the stop quickly, the discharge time interval can be shortened and the presence / absence of the discharge can be switched in a short time, and the recording speed can be increased. In addition, the resistance value of the common electrode part can be reduced, and the potential difference generated between the discharge electrodes connected by the common electrode part can be suppressed as much as possible, thereby reducing the variation in the discharge amount at each discharge electrode. And has excellent discharge stability.
[0011] 放電部を櫛型に形成する場合、各々の放電電極の形状は、略矩形状、台形状、半 円形状、砲弾状あるいはこれらを組合せた形状等に形成することができる。また、放 電電極の一部をさらにスリット等で分割したり、周縁部に凹凸部を形成したりすること で放電電極の縁周辺の周長を増加させることができる(例えば、 WO2005/05629 [0011] When the discharge part is formed in a comb shape, the shape of each discharge electrode can be formed in a substantially rectangular shape, trapezoidal shape, semicircular shape, bullet shape, or a combination thereof. Further, the peripheral length around the edge of the discharge electrode can be increased by further dividing a part of the discharge electrode with a slit or the like, or by forming an uneven portion on the peripheral edge (for example, WO2005 / 05629
7参照)。放電電極は縁周辺からの放電量が多いので、縁周辺の周長を長くすること で、放電電極からの放電量を増加させて照射されるイオン量や発光強度を増加させ ることができ、放電制御電圧や加熱温度を低く設定することができ、省エネルギー性 及び放電発生の効率性に優れる。また、放電制御電圧を低く設定できるので、放電 電極の長寿命性にも優れる。 7). Since the discharge electrode has a large amount of discharge from the periphery of the edge, it is possible to increase the amount of ions emitted and the intensity of the emitted light by increasing the discharge amount from the discharge electrode by increasing the circumference around the edge. The discharge control voltage and heating temperature can be set low, and energy saving and discharge generation efficiency are excellent. In addition, since the discharge control voltage can be set low, the discharge electrode has excellent long life.
放電電極の端部を分割したり周縁部に凹凸部を形成したりする代りに、放電電極の 放電発生部位 (加熱位置)の近傍に放電孔部を形成してもよい。これにより、放電孔 部の縁周辺力も放電を発生させることができ、放電電極の端部を分割するのと同様 の作用を得ることができる。放電孔部の形状は、略円形、略楕円形、四角形や六角 形等の多角形、星形など様々な形状に形成することができる。また、放電発生部位( 加熱位置近傍)の 1箇所当たりの放電孔部の数及び大きさは適宜選択して組合せる ことができる。尚、放電電極の凹凸部や放電孔部は前述のエッチングやレーザカロェ 等により形成することができる。  Instead of dividing the end portion of the discharge electrode or forming the uneven portion on the peripheral edge portion, a discharge hole portion may be formed in the vicinity of the discharge generation site (heating position) of the discharge electrode. Thus, the edge peripheral force of the discharge hole can also generate a discharge, and the same effect as that obtained by dividing the end of the discharge electrode can be obtained. The shape of the discharge hole can be formed in various shapes such as a substantially circular shape, a substantially oval shape, a polygon such as a quadrangle or a hexagon, and a star shape. In addition, the number and size of the discharge holes per discharge generation site (near the heating position) can be appropriately selected and combined. Note that the concave and convex portions and the discharge hole portions of the discharge electrode can be formed by the above-described etching or laser calorie.
[0012] また、放電部の内の少なくとも共通電極部の表面には導電材層を形成してもよい。 [0012] In addition, a conductive material layer may be formed on at least the surface of the common electrode portion in the discharge portion.
これにより、共通電極部の抵抗値を更に引き下げることができ、各々の放電電極間に 生じる電位差を確実に低減でき、放電の安定性に優れる。導電材層は放電電極より も優れた導電性を有するものであればよく、銀ペーストのスクリーン印刷ゃ銀メツキ等 により容易に形成することができる。導電材層の厚みを増すことにより、共通電極部の 抵抗値を低減でき、放電発生の安定性を向上させることができる。 As a result, the resistance value of the common electrode portion can be further lowered, the potential difference generated between the respective discharge electrodes can be reliably reduced, and the discharge stability is excellent. The conductive material layer only needs to have conductivity superior to that of the discharge electrode, such as screen printing of silver paste, silver plating, etc. Can be formed more easily. By increasing the thickness of the conductive material layer, the resistance value of the common electrode portion can be reduced, and the stability of discharge generation can be improved.
放電電極や共通電極部としては、金、銀、銅、アルミニウム等の金属を、蒸着、スパ ッタ、印刷、メツキ等で形成した後、必要に応じてエッチングしてパターン形成するも の等が好適に用いられる。また、その他にカーボン等の導電材料を用いてもよい。 放電電極の厚さは材質や使用する記録媒体の特性等によっても異なるが、金で形 成する場合の厚さは 0. 1 μ m〜100 μ mが好ましい。放電電極の厚さが 0.: L mよ り薄くなるにつれ摩耗の影響を受け易く放電電極の寿命が短くなる傾向があり、 100 mより厚くなるにつれ熱容量が増加し加熱のオン Zオフに対する応答性が低下し 易くなる傾向があり、いずれも好ましくない。放電電極の厚さを 100 m以下にするこ とで、加熱状態力 急速に復帰させることができ、印字速度を高速化することができる 前述のように、加熱放電方式では、放電電極と対向電極との間に放電制御電圧に 相当する電位差を設定して電界を形成した状態で、画像情報に基づ!ヽて発熱部で 放電電極を選択的に加熱することにより放電を発生させるが、放電電極に印加する 電圧としては様々な波形を選択することができ、三角波、矩形波、台形波、 sin波等を 単独で或 ヽは組合せて用いたり、さらにこれらに直流電圧や交流電圧を重畳したり できる。例えば、放電電極に交流電圧のみを印加すると正負のイオンが生成される。 そこで、負のイオンのみを選別するには交流電圧に負の直流電圧を重畳し、正のィ オンのみを選別するには交流電圧に正の直流電圧を重畳したものを放電電極に印 加する。  As the discharge electrode and the common electrode part, a metal such as gold, silver, copper, or aluminum is formed by vapor deposition, sputtering, printing, plating, etc., and then etched to form a pattern as necessary. Preferably used. In addition, a conductive material such as carbon may be used. The thickness of the discharge electrode varies depending on the material and the characteristics of the recording medium used, but the thickness when gold is formed is preferably 0.1 μm to 100 μm. Discharge electrode thickness is less than 0 .: As it becomes thinner than Lm, it tends to be affected by wear, and the life of the discharge electrode tends to be shortened. There is a tendency for the properties to be easily lowered, both of which are not preferred. By reducing the thickness of the discharge electrode to 100 m or less, the heating state force can be quickly restored and the printing speed can be increased. As described above, in the heat discharge method, the discharge electrode and the counter electrode In the state where an electric field is formed by setting a potential difference corresponding to the discharge control voltage between and the discharge electrode, a discharge is generated by selectively heating the discharge electrode at the heat generating part based on image information. Various waveforms can be selected as the voltage to be applied to the electrodes. Triangular waves, rectangular waves, trapezoidal waves, sine waves, etc. can be used alone or in combination, and a DC voltage or an AC voltage can be superimposed on them. You can. For example, when only an AC voltage is applied to the discharge electrode, positive and negative ions are generated. Therefore, to select only negative ions, a negative DC voltage is superimposed on the AC voltage, and to select only positive ions, an AC voltage superimposed with a positive DC voltage is applied to the discharge electrode. .
放電電極と対向電極との間の電位差が放電制御電圧の範囲内にあればよいので 、その範囲内で放電電極及び対向電極に印加する電圧値を任意に設定することが できる。よって、放電制御電圧に相当する電圧を全て放電電極側に印加し、対向電 極を接地するようにしてもよいし、放電制御電圧に相当する電圧を放電電極と対向電 極側に分配して印加するようにしてもょ 、。  Since the potential difference between the discharge electrode and the counter electrode only needs to be within the range of the discharge control voltage, the voltage value applied to the discharge electrode and the counter electrode can be arbitrarily set within the range. Therefore, all the voltage corresponding to the discharge control voltage may be applied to the discharge electrode side and the counter electrode may be grounded, or the voltage corresponding to the discharge control voltage may be distributed to the discharge electrode and the counter electrode side. Let's apply it.
尚、対向電極に印加する電圧は、放電電極に印加する電圧と同様に様々な波形を 選択することができる。例えば、交流電圧に直流電圧を重畳した放電制御電圧の一 部を対向電極に印加する場合、その直流成分の少なくとも一部を対向電極に分配し て印加してもょ 、し、交流成分の一部を対向電極に分配して印加してもよ!、。 The voltage applied to the counter electrode can be selected from various waveforms in the same manner as the voltage applied to the discharge electrode. For example, a discharge control voltage obtained by superimposing a DC voltage on an AC voltage. When applying a part to the counter electrode, at least part of the DC component may be distributed and applied to the counter electrode, or part of the AC component may be distributed to the counter electrode and applied! .
[0014] 請求項 2に記載の発明は、請求項 1に記載のヘッド基板であって、前記フレキシブ ル薄膜の両面の内の少なくとも一方の面に形成された絶縁膜を備えている構成を有 している。  [0014] The invention according to claim 2 is the head substrate according to claim 1, wherein the head substrate includes an insulating film formed on at least one of the surfaces of the flexible thin film. is doing.
この構成により、請求項 1の作用に加え、以下のような作用を有する。  With this configuration, in addition to the operation of claim 1, the following operation is provided.
( 1)発熱部と放電部とを絶縁するフレキシブル薄膜にピンホールが生じていても、フ レキシブル薄膜に絶縁膜を形成することで発熱部と放電部との絶縁性を確保でき信 頼性に優れる。  (1) Even if a pinhole is formed in the flexible thin film that insulates the heat-generating part from the discharge part, the insulation between the heat-generating part and the discharge part can be ensured by forming an insulating film on the flexible thin film. Excellent.
[0015] ここで、絶縁膜は SiON, SiO等の無機質で薄膜を形成しても良いし、その他の絶  Here, the insulating film may be a thin film made of an inorganic material such as SiON or SiO, or other insulating films.
2  2
縁性を有する材質 (有機'無機を問わず)で薄膜を形成しても良い。特に、発熱体の 熱を効率よく放電電極に伝達することができる高熱伝導性のものが好まし 、。特に、 複数回に分けて重ね塗りして絶縁膜を形成した場合、一回毎の塗りでピンホールが 発生したとしても、重ね塗りすることでピンホール同士が重なる可能性を低減すること ができ、確実に発熱部を絶縁することができるので信頼性に優れる。  The thin film may be formed of a material having an affinity (regardless of organic or inorganic). In particular, those having high thermal conductivity that can efficiently transfer the heat of the heating element to the discharge electrode are preferred. In particular, when an insulating film is formed by multiple coatings, even if pinholes are generated by each coating, the possibility of overlapping pinholes can be reduced by repeated coating. Since the heat generating portion can be reliably insulated, the reliability is excellent.
[0016] 本発明の請求項 3に記載のヘッド基板は、金属箔の両面に酸ィ匕膜が形成された耐 熱性及び絶縁性を有するフレキシブル基板と、前記フレキシブル基板の両面の内の 一方の面側に形成された放電電極を有する放電部と、前記フレキシブル基板の両面 の内の他方の面側に形成された発熱体を有する発熱部と、を備えている構成を有し ている。 [0016] A head substrate according to claim 3 of the present invention includes a heat-resistant and insulating flexible substrate in which an oxide film is formed on both surfaces of a metal foil, and one of both surfaces of the flexible substrate. A discharge part having a discharge electrode formed on the surface side and a heat generation part having a heating element formed on the other surface side of both surfaces of the flexible substrate are provided.
この構成により、以下のような作用を有する。  This configuration has the following effects.
( 1)発熱部や放電部等の放電デバイスを形成したフレキシブル基板は所望の形状に 加工 (湾曲)できカ卩ェ自在性、普遍性に富むので、平面状態のフレキシブル基板へ 技術的に容易な方法で放電デバイスを形成した後に、フレキシブル基板ごと所望の 形状に変形 (湾曲)させることができ、形状基板の形状に沿わせて固定することにより 、平易な技術を用いて所望の形状 (従来は高度な技術を要した)の加熱放電型印字 ヘッドを製造でき、生産性に優れる。  (1) A flexible board on which discharge devices such as heat-generating parts and discharge parts are formed can be processed (curved) into a desired shape and has excellent flexibility and versatility. After the discharge device is formed by this method, the flexible substrate can be deformed (curved) together with the desired shape, and fixed to the shape of the shape substrate to fix the desired shape using conventional technology (previously, It is possible to manufacture a heat-discharge type print head (which required advanced technology) and has excellent productivity.
(2)フレキシブル基板を挟んで発熱部と放電部を形成するので、別途、発熱部と放 電部を絶縁するためのフレキシブル薄膜を形成する必要がなく生産工数を低減でき ると共に、フレキシブル基板を介して発熱部と放電部とが完全に密着するので、熱の 伝達効率が良くなり、加熱の効率性に優れる。 (2) Since the heat generating part and the discharge part are formed across the flexible substrate, the heat generating part and the discharge part are separately provided. There is no need to form a flexible thin film to insulate the electrical parts, and the production man-hours can be reduced, and the heat-generating part and the discharge part are completely intimately contacted via the flexible substrate, improving the heat transfer efficiency and heating. Excellent in efficiency.
(3)フレキシブル基板が耐熱性及び絶縁性を有することにより、発熱体の発する熱で 熱変形することがなぐ発熱体及び発熱体に接続された電極を保護して放電電極と の絶縁性を確保でき、放電電極の加熱を行うことができる。  (3) Since the flexible substrate has heat resistance and insulation properties, it protects the heating element that is not thermally deformed by the heat generated by the heating element and the electrode connected to the heating element to ensure insulation from the discharge electrode. The discharge electrode can be heated.
(4)金属箔の両面に酸化膜が形成されたフレキシブル基板は、熱伝導性に優れるの で、発熱体の発する熱をフレキシブル基板を介して放電電極へ効率よく伝達させるこ とができ、放電制御電圧や加熱温度を低く設定することができ、省エネルギー性及び 放電発生の効率性に優れる。  (4) Since the flexible substrate with the oxide film formed on both sides of the metal foil is excellent in thermal conductivity, the heat generated by the heating element can be efficiently transmitted to the discharge electrode through the flexible substrate. Control voltage and heating temperature can be set low, and energy saving and discharge generation efficiency are excellent.
(5)放電部と発熱部がフレキシブル基板で絶縁されていることにより、放電電極に放 電制御電圧を印加した状態で、発熱体による加熱制御を選択的に行うことができ、加 熱された放電電極力 放電や発光が起こり、イオン生成可能な雰囲気中においては イオン発生量を制御することができ、静電現像方式のデジタルぺーパ等の専用の記 録媒体への画像の形成に用いることができる。  (5) Since the discharge part and the heat generating part are insulated by the flexible substrate, the heating control by the heating element can be selectively performed in a state where the discharge control voltage is applied to the discharge electrode. Discharge electrode force In an atmosphere where discharge or light emission occurs and ions can be generated, the amount of ions generated can be controlled, and it can be used to form images on a dedicated recording medium such as an electrostatic development type digital paper. Can do.
(6)金属箔の表面に酸化膜を形成したフレキシブル基板は耐熱性に優れるので、発 熱部を形成する際に、スパッタリングや蒸着などの薄膜技術を用いる以外に、焼成が 必要な厚膜技術を用いることができ、量産性に優れる。  (6) Since a flexible substrate with an oxide film formed on the surface of a metal foil has excellent heat resistance, in addition to using thin film technology such as sputtering and vapor deposition, a thick film technology that requires firing is used when forming the heat generating part. Can be used, and is excellent in mass productivity.
(7)平面状態のフレキシブル基板上に放電デバイスを形成することができるので、微 細加工及び多数個取りが容易で量産性に優れる。  (7) Since a discharge device can be formed on a flexible substrate in a flat state, fine processing and multi-piece fabrication are easy and excellent in mass productivity.
ここで、請求項 3のヘッド基板は、フレキシブル基板,放電部,発熱部の配置が請 求項 1と異なるだけで、材質、形状、形成方法などについては請求項 1と同様である ので、説明を省略する。  Here, the head substrate of claim 3 is the same as that of claim 1 except for the arrangement of the flexible substrate, the discharge part, and the heat generating part, and the material, shape, formation method, etc. are the same as in claim 1. Is omitted.
請求項 4に記載の発明は、請求項 3に記載のヘッド基板であって、前記発熱部を被 覆した耐熱性及び絶縁性を有するフレキシブル薄膜を備えて 、る構成を有して 、る この構成により、請求項 3の作用に加え、以下のような作用を有する。  The invention according to claim 4 is the head substrate according to claim 3, and includes a flexible thin film having heat resistance and insulation covering the heat generating portion. According to the configuration, in addition to the operation of the third aspect, the following operation is provided.
(1)発熱部をフレキシブル薄膜で被覆することにより、高温になる発熱部が剥き出し になるのを防止でき、発熱部と外部との絶縁性を確保でき安全性に優れる。 (1) By covering the heat generating part with a flexible thin film, the heat generating part that becomes hot is exposed. Can be prevented, and insulation between the heat generating part and the outside can be ensured, which is excellent in safety.
ここで、フレキシブル薄膜は請求項 1と同様なので説明を省略する。  Here, the flexible thin film is the same as in claim 1 and the description thereof is omitted.
[0018] 本発明の請求項 5に記載のヘッド基板は、(a)金属箔の両面に酸化膜が形成され た耐熱性及び絶縁性を有するフレキシブル基板と、前記フレキシブル基板の両面の 内の一方の面側に形成された放電電極を有する放電部と、を備えた放電ユニットと、 (b)前記放電電極を加熱する発熱体を有する発熱部を備え、前記放電ユニットの前 記フレキシブル基板の両面の内の他方の面側に配設された発熱ユニットと、を備え ている構成を有している。 [0018] The head substrate according to claim 5 of the present invention includes: (a) a flexible substrate having heat resistance and insulation in which an oxide film is formed on both surfaces of a metal foil; and one of both surfaces of the flexible substrate. A discharge unit having a discharge electrode formed on the surface side of the discharge unit, and (b) a heating unit having a heating element for heating the discharge electrode, and the both sides of the flexible substrate of the discharge unit And a heat generating unit disposed on the other surface side.
この構成により、請求項 3の作用に加え、以下のような作用を有する。  With this configuration, in addition to the operation of the third aspect, the following operation is provided.
(1)放電ユニットと発熱ユニットとを別個の部品として製造できるので、各々のユニット の製造工程を簡素化でき、歩留まりを向上でき量産性に優れる。  (1) Since the discharge unit and the heat generating unit can be manufactured as separate parts, the manufacturing process of each unit can be simplified, yield can be improved, and mass productivity is excellent.
(2)放電ユニットと発熱ユニットのそれぞれの特性のばらつきを考慮して組み合わせ ることにより、放電制御装置としての特性のばらつきを低減してほぼ均一な性能を得 ることができ実用性、量産性に優れる。  (2) Combining the discharge unit and the heat generation unit in consideration of variations in characteristics, the variation in characteristics as a discharge control device can be reduced and almost uniform performance can be obtained. Excellent.
[0019] ここで、請求項 5に記載のヘッド基板は、放電部を有する放電ユニットと、発熱部及 びドライバ ICを有する発熱ユニットとを別個に形成し、それらを合体させてヘッド基板 とする放電デバイス分離型であるが、フレキシブル基板,放電部,発熱部の材質、形 状、形成方法などについては請求項 1と同様であるので、説明を省略する。  Here, the head substrate according to claim 5 is a head substrate in which a discharge unit having a discharge portion and a heat generation unit having a heat generation portion and a driver IC are separately formed and combined. Although it is a discharge device separation type, the material, shape, formation method, etc. of the flexible substrate, the discharge part, and the heat generation part are the same as in claim 1, and the explanation is omitted.
尚、発熱ユニットの発熱部については、放電ユニットと同様に柔軟性を有するフレキ シブル基板上に形成しても良 、し、セラミック等の硬 、基板上に形成しても良 、。 放電ユニットと発熱ユニットは、基板同士を耐熱性を有する接着剤で接着すること により固定することができる。また、放電ユニットと発熱ユニットの位置決めは、いずれ か一方の基板に位置決めピンを突設し、ピン嵌合する方法などにより行うことができ る。  The heat generating part of the heat generating unit may be formed on a flexible substrate having flexibility similar to the discharge unit, or may be formed on a hard substrate such as ceramic. The discharge unit and the heat generating unit can be fixed by bonding the substrates together with a heat-resistant adhesive. In addition, the positioning of the discharge unit and the heat generating unit can be performed by a method in which a positioning pin is protruded from one of the substrates and the pin is fitted.
[0020] 請求項 6に記載の発明は、請求項 5に記載のヘッド基板であって、前記放電ュニッ トと前記発熱ユニットが着脱自在に配設されて 、る構成を有して 、る。  [0020] The invention according to claim 6 is the head substrate according to claim 5, wherein the discharge unit and the heat generating unit are detachably disposed.
この構成により、請求項 5の作用に加え、以下のような作用を有する。  With this configuration, in addition to the operation of the fifth aspect, the following operation is provided.
(1)放電ユニットと発熱ユニットが着脱自在であることにより、 、ずれか一方に不具合 が発生した場合に、容易に交換或いは修理を行うことができ、特に放電電極が摩耗 した際には、放電ユニットの取り替えで対応できるので、放電制御装置のランニング コストを低減でき、メンテナンス性、省資源性に優れる。 (1) Because the discharge unit and the heat generation unit are detachable, there is a problem with either displacement Can be easily replaced or repaired, and especially when the discharge electrode is worn, it can be dealt with by replacing the discharge unit. Excellent resource.
ここで、放電ユニットと発熱ユニットの位置決めは、前述と同様のピン嵌合などの方 法で行うことができる。位置決め後に放電ユニットと発熱ユニットの長手方向の両端 部や外周部等を着脱自在な固定治具で挟み、ピン嵌合やねじ止め等の着脱自在な 固定手段で固定することができる。  Here, positioning of the discharge unit and the heat generating unit can be performed by a method such as pin fitting as described above. After positioning, both ends of the discharge unit and the heat generating unit in the longitudinal direction and the outer periphery can be sandwiched by a detachable fixing jig and fixed by a detachable fixing means such as pin fitting or screwing.
[0021] 請求項 7に記載の発明は、請求項 3乃至 6の内いずれ力 1項に記載のヘッド基板で あって、前記フレキシブル基板の両面の内の少なくとも一方の面に形成された絶縁 膜を備えて 、る構成を有して 、る。  [0021] The invention described in claim 7 is the head substrate according to any one of claims 3 to 6, wherein the insulating film is formed on at least one of both surfaces of the flexible substrate. It has the structure which is equipped with.
この構成により、請求項 3乃至 6の内いずれか 1項の作用にカ卩え、以下のような作用 を有する。  With this configuration, in addition to the operation of any one of claims 3 to 6, the following operation is provided.
(1)フレキシブル基板にピンホールが生じて 、ても、フレキシブル基板に絶縁膜を形 成することで発熱部と放電部との絶縁性を確保でき信頼性に優れる。  (1) Even if pinholes are generated in the flexible substrate, the insulation between the heat generating portion and the discharge portion can be secured by forming an insulating film on the flexible substrate, and the reliability is excellent.
ここで、絶縁膜は請求項 2と同様であるので、説明を省略する。  Here, since the insulating film is the same as in claim 2, the description thereof is omitted.
[0022] 請求項 8に記載の発明は、請求項 1乃至 7の内いずれ力 1項に記載のヘッド基板で あって、前記フレキシブル基板の前記放電部側に前記放電電極と絶縁されて形成さ れた誘導電極を備えて 、る構成を有して 、る。 [0022] The invention according to claim 8 is the head substrate according to any one of claims 1 to 7, wherein the head substrate is formed on the discharge portion side of the flexible substrate and insulated from the discharge electrode. The induction electrode is provided with a structure.
この構成により、請求項 1乃至 7の内いずれか 1項の作用にカ卩え、以下のような作用 を有する。  With this configuration, in addition to the operation of any one of claims 1 to 7, the following operation is provided.
(1)放電電極と記録媒体 (アース側)との間隔が広過ぎて放電が起こりにく!ヽ場合で も、放電電極の近傍に形成された誘導電極がアースとして機能するので、放電電極 から誘導電極への放電が確実に起こり、画像形成の信頼性に優れる。  (1) Even if the gap between the discharge electrode and the recording medium (ground side) is too wide to cause discharge, the induction electrode formed near the discharge electrode functions as ground, so The induction electrode is surely discharged, and the image forming reliability is excellent.
[0023] ここで、誘導電極は放電電極の放電発生部位側の端部 (縁)から水平方向に離間( オフセット)して形成すればよ!、。 [0023] Here, the induction electrode may be formed so as to be separated (offset) in the horizontal direction from the end (edge) of the discharge electrode on the discharge generation site side!
発熱部と放電部をフレキシブル基板の同一面側に形成する場合は、発熱部を被覆 したフレキシブル薄膜上に誘導電極を形成し、発熱部を被覆したフレキシブル薄膜と 同様のフレキシブル薄膜で誘導電極を被覆した上に放電電極を形成することができ る。また、発熱部を被覆したフレキシブル薄膜上に誘導電極と放電電極を並べて形 成し、フレキシブル薄膜で誘導電極を被覆するようにしてもよいし、発熱部を被覆した フレキシブル薄膜上に放電電極を形成し、放電電極の放電発生部位側の端部 (縁) 以外をフレキシブル薄膜で被覆した上に誘導電極を形成するようにしてもょ 、。 発熱部と放電部をフレキシブル基板を挟んで反対面に形成する場合や発熱ュニッ トと放電ユニットを別々に形成する場合は、放電部が形成されるフレキシブル基板上 に誘導電極を形成し、フレキシブル薄膜で誘導電極を被覆した上に放電電極を形成 することができる。また、フレキシブル基板上に誘導電極と放電電極を並べて形成し 、フレキシブル薄膜で誘導電極を被覆するようにしてもよいし、フレキシブル基板上に 放電電極を形成し、放電電極の放電発生部位側の端部 (縁)以外をフレキシブル薄 膜で被覆した上に誘導電極を形成するようにしてもょ ヽ。 When the heat generating part and the discharge part are formed on the same side of the flexible substrate, an induction electrode is formed on the flexible thin film covering the heat generating part, and the induction electrode is covered with a flexible thin film similar to the flexible thin film covering the heat generating part. The discharge electrode can be formed on The Alternatively, the induction electrode and the discharge electrode may be formed side by side on the flexible thin film covering the heat generating part, and the induction electrode may be covered with the flexible thin film, or the discharge electrode is formed on the flexible thin film covering the heat generating part. However, the induction electrode may be formed on the discharge electrode other than the end (edge) on the discharge generation site side with a flexible thin film. When forming the heat-generating part and the discharge part on opposite sides of the flexible substrate, or when forming the heat-generating unit and the discharge unit separately, an induction electrode is formed on the flexible substrate on which the discharge part is formed, and a flexible thin film is formed. The discharge electrode can be formed on the induction electrode. Alternatively, the induction electrode and the discharge electrode may be formed side by side on the flexible substrate, and the induction electrode may be covered with a flexible thin film. Alternatively, the discharge electrode may be formed on the flexible substrate, and the end of the discharge electrode on the discharge generation site side. The induction electrode may be formed on the other part (edge) covered with a flexible thin film.
尚、誘導電極を被覆するフレキシブル薄膜上に請求項 2と同様の絶縁膜を形成し た場合、フレキシブル薄膜にピンホールが生じていても、誘導電極と放電部との絶縁 性を確保でき信頼性に優れる。  If an insulating film similar to claim 2 is formed on the flexible thin film covering the induction electrode, the insulation between the induction electrode and the discharge part can be ensured even if pinholes are formed in the flexible thin film. Excellent.
請求項 9に記載の発明は、請求項 1乃至 8の内いずれ力 1項に記載のヘッド基板で あって、前記放電電極に放電発生部位を残して被覆された耐熱性及び絶縁性を有 するフレキシブル被覆膜を備えて 、る構成を有して 、る。  The invention according to claim 9 is the head substrate according to any one of claims 1 to 8, and has heat resistance and insulation coated on the discharge electrode leaving a discharge generation site. A flexible coating film is provided.
この構成により、請求項 1乃至 8の内いずれか 1項の作用にカ卩え、以下のような作用 を有する。  With this configuration, in addition to the operation of any one of claims 1 to 8, the following operation is provided.
(1)放電電極の放電発生部位を残して周囲をフレキシブル被覆膜で被覆するので、 放電電極の放電発生部位以外の余分な箇所から放電が発生するのを防止でき、電 子や正又は負のイオン、紫外線を一箇所に集中して照射させることができ画像形成 の効率性に優れる。  (1) Since the periphery of the discharge electrode is covered with a flexible coating film, the discharge electrode can be prevented from being generated from an extra portion other than the discharge generation portion of the discharge electrode. Therefore, it is possible to concentrate and irradiate ions and ultraviolet rays in one place, and the efficiency of image formation is excellent.
(2)放電電極の放電発生部位を残してフレキシブル被覆膜を形成することにより、放 電発生部位表面とフレキシブル被覆膜の表面との間に段差を形成することができる ので、放電電極と対向配置される記録媒体との間のギャップを一定に保つことができ 、放電発生部位との接触を防止でき、放電発生部位力もの放電を安定させることが できる。 [0025] ここで、放電電極の内、発熱部の発熱体による加熱位置近傍が放電発生部位とな る。フレキシブル被覆膜は放電発生部位を除く放電電極に覆設される。より具体的に は、フレキシブル被覆膜は、放電電極の放電発生部位 (発熱部の発熱体による加熱 位置近傍)に略円形状、略楕円形状、略矩形状等に形成された開口部を有する。開 口部は複数の放電発生部位に対し、それぞれ独立に形成してもよいし、複数の放電 発生部位にまたがるように長孔状に連続させて形成してもよ 、。 (2) By forming the flexible coating film while leaving the discharge generation site of the discharge electrode, a step can be formed between the discharge generation site surface and the surface of the flexible coating film. The gap between the recording medium and the recording medium arranged opposite to each other can be kept constant, the contact with the discharge generation site can be prevented, and the discharge having the strength of the discharge generation site can be stabilized. [0025] Here, in the discharge electrode, the vicinity of the heating position by the heating element of the heat generating portion is the discharge generation site. The flexible coating film is provided on the discharge electrode except for the discharge generation site. More specifically, the flexible coating film has an opening formed in a substantially circular shape, a substantially elliptical shape, a substantially rectangular shape, or the like at a discharge generation site of the discharge electrode (near the heating position of the heating portion by the heating element). . The opening may be formed independently for each of the plurality of discharge generation sites, or may be formed continuously in a long hole shape so as to straddle the plurality of discharge generation sites.
フレキシブル被覆膜には、前述のフレキシブル薄膜と同様の材質が好適に用いら れる。  For the flexible coating film, the same material as that of the flexible thin film is preferably used.
[0026] 請求項 10に記載の発明は、請求項 9に記載のヘッド基板であって、前記フレキシ ブル被覆膜の表面に形成された凹凸部を備えて 、る構成を有して 、る。  [0026] The invention according to claim 10 is the head substrate according to claim 9, wherein the head substrate includes a concavo-convex portion formed on a surface of the flexible coating film. .
この構成により、請求項 9の作用に加え、以下のような作用を有する。  With this configuration, in addition to the operation of the ninth aspect, the following operation is provided.
(1)フレキシブル被覆膜の表面に多くの凹凸部を設けることにより、表面距離が伸延 されて表面抵抗が増加し、電流が剥身の放電電極の放電発生部位から周囲に漏電 するのを防止できるので、放電制御に用いるドライバ ICへの悪影響も発生せず、放 電制御の安定性を向上させることができる。  (1) By providing many irregularities on the surface of the flexible coating film, the surface distance is extended, the surface resistance increases, and the current is prevented from leaking from the discharge generation site of the delaminated discharge electrode to the surroundings. As a result, there is no adverse effect on the driver IC used for discharge control, and the stability of discharge control can be improved.
(2)放電発生部位からの漏電がなくなるため、放電電極に印加した印加電圧の低下 がなくなり、放電の安定性、効率性に優れる。  (2) Since there is no leakage from the site where the discharge occurs, the applied voltage applied to the discharge electrode does not drop and the discharge is stable and efficient.
[0027] 請求項 11に記載の発明は、請求項 1乃至 10の内いずれか 1項に記載のヘッド基 板であって、前記フレキシブル基板の前記酸ィ匕膜が、前記金属箔と同じ材質の金属 の酸化膜で形成されて!、る構成を有して 、る。  [0027] The invention according to claim 11 is the head substrate according to any one of claims 1 to 10, wherein the oxide film of the flexible substrate is made of the same material as the metal foil. It is formed of a metal oxide film!
この構成により、請求項 1乃至 10の内いずれか 1項の作用にカ卩え、以下のような作 用を有する。  With this configuration, the following operations are provided in addition to the operation of any one of claims 1 to 10.
(1)フレキシブル基板の基材となる金属箔の両面に形成される酸ィ匕膜が、金属箔と 同じ材質の金属の酸ィ匕膜で形成されていることにより、金属箔と酸ィ匕膜の密着性に 優れ、フレキシブル基板の絶縁性、耐久性を向上させることができる。  (1) Since the acid film formed on both surfaces of the metal foil as the base material of the flexible substrate is formed of a metal oxide film of the same material as the metal foil, the metal foil and the acid film are formed. It has excellent film adhesion and can improve the insulation and durability of flexible substrates.
[0028] 請求項 12に記載の発明は、請求項 1乃至 10の内いずれか 1項に記載のヘッド基 板であって、前記フレキシブル基板の前記酸ィ匕膜が、前記金属箔と異なる材質の金 属の酸化膜で形成されて 、る構成を有して 、る。 この構成により、請求項 1乃至 10の内いずれか 1項の作用にカ卩え、以下のような作 用を有する。 [0028] The invention according to claim 12 is the head substrate according to any one of claims 1 to 10, wherein the oxide film of the flexible substrate is made of a material different from the metal foil. It is made of a metal oxide film and has a structure. With this configuration, the following operations are provided in addition to the operation of any one of claims 1 to 10.
(1)フレキシブル基板の基材となる金属箔の両面に形成する酸化膜を、金属箔と異 なる材質の金属の酸ィ匕膜で形成することにより、金属箔と酸ィ匕膜の組合せによって、 フレキシブル基板の熱伝導性と絶縁性をコントロールすることができ、フレキシブル基 板における熱伝導の効率性、絶縁の信頼性を向上させることができる。  (1) By forming the oxide film formed on both sides of the metal foil used as the base material of the flexible substrate with a metal oxide film made of a material different from that of the metal foil, a combination of the metal foil and the oxide film is used. The thermal conductivity and insulation of the flexible substrate can be controlled, and the efficiency of thermal conduction and the insulation reliability of the flexible substrate can be improved.
[0029] 請求項 13に記載の発明は、請求項 1乃至 12の内いずれか 1項に記載のヘッド基 板であって、前記フレキシブル基板の前記金属箔が、アルミニウムで形成されている 構成を有している。  [0029] The invention according to claim 13 is the head substrate according to any one of claims 1 to 12, wherein the metal foil of the flexible substrate is formed of aluminum. Have.
この構成により、請求項 1乃至 12の内いずれか 1項の作用にカ卩え、以下のような作 用を有する。  With this configuration, the following operation is provided in addition to the operation of any one of claims 1 to 12.
(1)フレキシブル基板の基材となる金属箔がアルミニウムで形成されていることにより 、フレキシブル基板の熱伝導性を向上させることができ、放電電極や発熱部の余分 な熱をフレキシブル基板が固定される形状基板へ効率的に伝達させて逃がすことや 、発熱部の発する熱を効率的に放電電極へ伝達させることができ、放電発生の効率 性、信頼性を向上させることができる。  (1) Since the metal foil used as the base material of the flexible board is formed of aluminum, the thermal conductivity of the flexible board can be improved, and the excess heat from the discharge electrode and the heat generating part is fixed to the flexible board. Therefore, it is possible to efficiently transmit the heat to the shaped substrate to escape, or to efficiently transmit the heat generated by the heat generating portion to the discharge electrode, thereby improving the efficiency and reliability of the discharge generation.
[0030] 請求項 14に記載の発明は、請求項 1乃至 12の内いずれか 1項に記載のヘッド基 板であって、前記フレキシブル基板の前記金属箔が、銅で形成されている構成を有 している。 [0030] The invention according to claim 14 is the head substrate according to any one of claims 1 to 12, wherein the metal foil of the flexible substrate is formed of copper. Yes.
この構成により、請求項 1乃至 12の内いずれか 1項の作用にカ卩え、以下のような作 用を有する。  With this configuration, the following operation is provided in addition to the operation of any one of claims 1 to 12.
(1)フレキシブル基板の基材となる金属箔が銅で形成されていることにより、フレキシ ブル基板の熱伝導性を向上させることができ、放電電極や発熱部の余分な熱をフレ キシブル基板が固定される形状基板へ効率的に伝達させて逃がすことや、発熱部の 発する熱を効率的に放電電極へ伝達させることができ、放電発生の効率性、信頼性 を向上させることができる。  (1) Since the metal foil used as the base material of the flexible substrate is made of copper, the thermal conductivity of the flexible substrate can be improved, and the flexible substrate can absorb excess heat from the discharge electrode and the heat generating part. It can be efficiently transmitted to the fixed shape substrate and escaped, or the heat generated by the heat generating part can be efficiently transmitted to the discharge electrode, so that the efficiency and reliability of discharge generation can be improved.
[0031] 請求項 15に記載の発明は、請求項 1乃至 14の内いずれか 1項に記載のヘッド基 板であって、前記フレキシブル基板の前記酸ィ匕膜が、アルミナで形成されている構 成を有している。 [0031] The invention according to claim 15 is the head substrate according to any one of claims 1 to 14, wherein the oxide film of the flexible substrate is formed of alumina. Structure Have a success.
この構成により、請求項 1乃至 14の内いずれか 1項の作用にカ卩え、以下のような作 用を有する。  With this configuration, the following operation is provided in addition to the operation of any one of claims 1 to 14.
(1)フレキシブル基板の酸ィ匕膜がアルミナで形成されていることにより、化学的に安 定で耐熱性、絶縁性に優れると共に、熱伝導率が高ぐ放電制御の信頼性を向上さ せることができる。  (1) The oxide film of the flexible substrate is made of alumina, so that it is chemically stable, has excellent heat resistance and insulation, and improves the reliability of discharge control with high thermal conductivity. be able to.
ここで、フレキシブル基板の基材となる金属箔がアルミニウムで形成されて!ヽる場合 、その両面にアルミニウムを蒸着後、陽極酸ィ匕法にて酸ィ匕処理するなどしてアルミナ の酸ィ匕膜を形成することができる。アルミニウム箔の両面にアルミナの酸ィ匕膜を形成 したものとして、有限会社アイビ一化工社製のアルミナフィルムがある。  Here, the metal foil used as the base material of the flexible substrate is made of aluminum! In this case, an aluminum oxide film can be formed by vapor-depositing aluminum on both surfaces and then performing an acid treatment by an anodic acid method. An alumina film manufactured by Ibi Isako Co., Ltd. is an example of an alumina foil formed on both sides of an aluminum foil.
[0032] 本発明の請求項 16に記載の放電制御装置は、請求項 1乃至 15の内いずれか 1項 に記載のヘッド基板と、前記ヘッド基板の前記フレキシブル基板の前記発熱部側の 面に配設され前記発熱体の発熱を制御するドライバ ICと、を備えて!/ヽる構成を有して いる。 [0032] A discharge control device according to a sixteenth aspect of the present invention provides the head substrate according to any one of the first to fifteenth aspects and a surface of the head substrate on the heat generating portion side of the flexible substrate. And a driver IC that controls the heat generation of the heating element.
この構成により、以下のような作用を有する。  This configuration has the following effects.
(1)発熱体の発熱を制御するドライバ ICを備えて 、るので、画像データに基づ!/ヽて 放電電極を選択的に加熱して放電を発生させることができ、放電制御の信頼性に優 れる。  (1) Since it has a driver IC that controls the heat generation of the heating element, it is possible to generate discharge by selectively heating the discharge electrode based on image data! Be superior to
(2)ドライバ ICで発熱体による放電電極の加熱時間を制御することにより、放電電極 における放電時間を制御することができ、放電によるイオン発生量や発光強度を制 御することができるので、記録媒体上での面積階調を容易に行うことができ、画像品 質を向上させることができる。  (2) By controlling the heating time of the discharge electrode by the heating element with the driver IC, the discharge time at the discharge electrode can be controlled, and the amount of generated ions and the emission intensity due to the discharge can be controlled. The area gradation on the medium can be easily performed, and the image quality can be improved.
[0033] ここで、ドライバ ICと発熱部とを電気的に接合し、ドライバ ICで発熱部の発熱体の加 熱を制御するのが加熱手段であり、この加熱手段により、放電部の放電電極への加 熱の有無を制御して、放電部の放電電極 (放電発生部位)からの放電の有無を制御 するのが加熱放電方式の放電制御装置である。  [0033] Here, the heating means is to electrically join the driver IC and the heat generating portion and to control the heating of the heat generating element of the heat generating portion by the driver IC. By this heating means, the discharge electrode of the discharge portion is controlled. A heat discharge type discharge control apparatus controls the presence or absence of heating from the discharge electrode (discharge generation site) of the discharge part by controlling the presence or absence of heating.
加熱手段が、発熱体に選択的に通電して発熱体の発熱を制御するドライバ ICを備 えていることにより、発熱体の発熱を低電圧で制御することができると共に、放電電極 に印加する電圧自体を引き下げることができ、放電制御装置の小型化、長寿命化を 図ることができる。また、加熱放電型印字ヘッドとしての量産性、信頼性に優れる。 加熱手段としては、従来の感熱式のファクシミリに使用されるサーマルヘッドと同様 の構成を好適に用いることができる。例えば、複数の放電電極にまたがって配設され た 1つの発熱体の任意の箇所を選択的に発熱させるものや複数の放電電極に対応 して個別に配設された複数の発熱体を選択的に発熱させるものがある。発熱部の構 成は厚膜型でも薄膜型でもよ ヽ。 Since the heating means is equipped with a driver IC that selectively energizes the heating element to control the heating of the heating element, the heating of the heating element can be controlled at a low voltage, and the discharge electrode The voltage applied to the capacitor can be lowered, and the discharge control device can be reduced in size and extended in life. Further, it is excellent in mass productivity and reliability as a heat discharge type print head. As the heating means, a configuration similar to a thermal head used in a conventional thermal facsimile can be suitably used. For example, it is possible to selectively generate heat at an arbitrary portion of one heating element disposed across a plurality of discharge electrodes or a plurality of heating elements individually disposed corresponding to a plurality of discharge electrodes. Some generate heat. The structure of the heating part can be thick or thin.
[0034] 本発明の請求項 17に記載の加熱放電型印字ヘッドは、請求項 16に記載の放電 制御装置を備えた加熱放電型印字ヘッドであって、前記ヘッド基板が、形状基板の 形状に沿って固定されて 、る構成を有して 、る。  [0034] A heat-discharge type print head according to claim 17 of the present invention is a heat-discharge type print head including the discharge control device according to claim 16, wherein the head substrate has a shape of a shape substrate. It is fixed along and has a structure.
この構成により、以下のような作用を有する。  This configuration has the following effects.
(1)ヘッド基板が柔軟性を有するので、形状基板の形状や形状基板に対する放電部 の固定位置を変更するだけで、共通のヘッド基板を用いて様々な形状の加熱放電 型印字ヘッドを製造でき、量産性、汎用性に優れる。  (1) Since the head substrate is flexible, it is possible to manufacture heat discharge printheads of various shapes using a common head substrate by simply changing the shape of the shape substrate and the fixing position of the discharge part relative to the shape substrate. Excellent in mass productivity and versatility.
[0035] ここで、放電制御装置と共に外部と電気的に接続するためのコネクタを備えたプリ ント配線基板を形状基板に配設して加熱放電型印字ヘッドが得られる。  Here, a print wiring board provided with a connector for electrically connecting to the outside together with the discharge control device is disposed on the shape board to obtain a heat discharge type print head.
フレキシブル基板が柔軟性を有するので、形状基板の形状に沿うようにヘッド基板 自体を湾曲させる等して形状基板への固定を簡便に行うことができる。このため、放 電電極を形状基板の表面と略直交するように円弧状に形成された形状基板の端面 部、形状基板の表面と略鈍角をなすように傾斜状に形成された形状基板の縁部、形 状基板の表面に突出し緩や力な丘状等に形成された隆起部等の様々な位置に容易 に配置することができ、設計自在性、生産性に優れる。また、ドライバ ICが形状基板 の表面若しくは形状基板と同一平面上に配置されている場合、放電電極をドライバ I Cの配置面と異なる面に配置して、放電電極の配置面とドライバ ICの配置面とが同 一平面上にないようにすることができるので、加熱放電型印字ヘッドの配置の自由度 を増大させることができ、汎用性を向上させることができる。  Since the flexible substrate has flexibility, it can be simply fixed to the shape substrate by bending the head substrate itself along the shape of the shape substrate. For this reason, the discharge electrode has an end surface portion formed in an arc shape so as to be substantially orthogonal to the surface of the shape substrate, and an edge of the shape substrate formed in an inclined shape so as to form a substantially obtuse angle with the surface of the shape substrate. It can be easily placed at various positions such as a raised portion that protrudes from the surface of the substrate and the shaped substrate and is formed into a loose or strong hill shape, etc., and is excellent in design flexibility and productivity. When the driver IC is arranged on the surface of the shape substrate or on the same plane as the shape substrate, the discharge electrode is arranged on a different surface from the arrangement surface of the driver IC, and the arrangement surface of the discharge electrode and the arrangement surface of the driver IC are arranged. Can be prevented from being on the same plane, the degree of freedom of arrangement of the heat-discharge type print head can be increased, and versatility can be improved.
デジタルぺーパ等のように湾曲させな 、方がよ 、記録媒体をドライバ ICと干渉させ ることなく直線状に搬送することができるので、水平プリンタに好適に用いることがで きる。また、多種多様な形状の静電潜像担持体に対し最適な位置から静電潜像を形 成できるので、汎用性、画像品質の信頼性に優れる。 It is better to use it in a horizontal printer because it can be conveyed in a straight line without interfering with the driver IC. wear. In addition, since the electrostatic latent image can be formed from the optimum position with respect to the electrostatic latent image carrier having various shapes, the versatility and the reliability of the image quality are excellent.
[0036] また、形状基板自体をアルミニウム等の熱伝導性に優れる材質で形成したり、へッ ド基板が固定された形状基板にさらにアルミニウム等の熱伝導性に優れる材質で形 成された放熱板を配設したりすることで、発熱部で発生した熱を速やかに形状基板 や放熱板に吸収させ、放熱させることができるので、発熱部の急速冷却が可能となる 。この結果、加熱停止に対応する放電停止の応答性を向上させることができる。加え て、ドライバ IC等を熱力も守ることができ信頼性に優れる。ヘッド基板やプリント配線 基板の取り付けに影響しない範囲で、形状基板や放熱板の表面に溝等により凹凸を 形成した場合、形状基板や放熱板の表面積を拡大することができ、放熱の効率性を 向上させることができる。  [0036] In addition, the shape substrate itself is formed of a material having excellent thermal conductivity, such as aluminum, or a heat dissipation formed by a material having excellent thermal conductivity, such as aluminum, on the shape substrate to which the head substrate is fixed. By arranging the plate, the heat generated in the heat generating portion can be quickly absorbed into the shape substrate and the heat radiating plate and dissipated, so that the heat generating portion can be rapidly cooled. As a result, it is possible to improve the response of the discharge stop corresponding to the heating stop. In addition, the driver IC can be protected from heat and has excellent reliability. In the range that does not affect the mounting of the head substrate or printed wiring board, if the surface of the shape substrate or heat sink is formed with grooves, etc., the surface area of the shape substrate or heat sink can be increased, increasing the efficiency of heat dissipation. Can be improved.
この加熱放電型印字ヘッドによれば、静電潜像の形成や酸化還元反応による画像 の形成も可能である。また放電に伴う発光によれば、紫外線や可視光線等で画像を 形成するフォトクロミック化合物を用いたデジタルぺーパ等を記録媒体として使用す ることがでさる。  According to this heat-discharge type print head, it is possible to form an electrostatic latent image or an image by oxidation-reduction reaction. Also, according to the light emission accompanying discharge, it is possible to use a digital paper or the like using a photochromic compound that forms an image with ultraviolet rays or visible rays as a recording medium.
尚、ドライバ ICの表面にはドライバ ICを保護するために ICカバーを覆設してもよい 。これにより、ドライバ ICと記録媒体等が接触するのを確実に防止でき信頼性に優れ る。  An IC cover may be provided on the surface of the driver IC to protect the driver IC. As a result, it is possible to reliably prevent the driver IC and the recording medium from coming into contact with each other, and the reliability is excellent.
[0037] 請求項 18に記載の発明は、請求項 17に記載の加熱放電型印字ヘッドであって、 前記放電部の前記放電電極の配置面と前記ドライバ ICの配置面とが同一平面上に ない成を有している。  [0037] The invention according to claim 18 is the heat discharge type print head according to claim 17, wherein the disposition surface of the discharge electrode and the disposition surface of the driver IC of the discharge part are on the same plane. Has no success.
この構成により、請求項 17の作用に加え、以下のような作用を有する。  With this configuration, in addition to the operation of the seventeenth aspect, the following operation is provided.
(1)放電電極の配置面とドライバ ICの配置面とが同一平面上にな 、ようにすることで 、小型で量産性、設置自在性に優れ、記録媒体が湾曲しない状態で書き込みが可 能であると共に、多種多様な形状の静電潜像担持体に対しても最適な位置から静電 潜像を形成でき汎用性、画像品質の信頼性に優れる。  (1) By arranging the discharge electrode placement surface and driver IC placement surface to be on the same plane, it is compact, excellent in mass productivity, easy to install, and can be written in a state where the recording medium is not curved. In addition, an electrostatic latent image can be formed from an optimal position even on a variety of shapes of electrostatic latent image carriers, and the versatility and reliability of image quality are excellent.
[0038] ここで、放電電極の配置面はドライバ ICの配置面と異なる面上で、放電電極を記録 媒体に対向させた際に、ドライバ ICと記録媒体が干渉しない位置関係であればよい 。形状基板の表面に配置されたドライバ ICに対しては、形状基板の表面と略直交す るように円弧状に形成された形状基板の端面部、形状基板の表面と略鈍角をなすよ うに傾斜状に形成された形状基板の縁部、形状基板の表面に突出し緩やかな丘状 等に形成された隆起部等の様々な位置に放電電極を配置することができる。また、 形状基板の表面に配置した放電電極に対し、その配置面より低くなるように形状基板 に段差部や傾斜部を形成してドライバ ICを配置したり、形状基板の端面や裏面にド ライバ ICを配置したりしてもょ 、。 [0038] Here, the disposition surface of the discharge electrode may be on a surface different from the disposition surface of the driver IC and may be in a positional relationship where the driver IC and the recording medium do not interfere when the discharge electrode is opposed to the recording medium. . The driver IC placed on the surface of the shape substrate is inclined so as to form an obtuse angle with the end surface of the shape substrate formed in an arc shape and substantially perpendicular to the surface of the shape substrate. The discharge electrode can be arranged at various positions such as the edge of the shaped substrate formed in a shape, the raised portion formed on the surface of the shaped substrate, and formed in a gentle hill shape. Also, for the discharge electrode placed on the surface of the shape substrate, a driver IC is placed by forming a stepped portion or an inclined portion on the shape substrate so as to be lower than the placement surface, or on the end surface or back surface of the shape substrate. You can place an IC.
これらの配置により、デジタルぺーパ等のように湾曲させな!/、方がよ!、記録媒体をド ライバ ICと干渉させることなく直線状に搬送して高品質な画像を形成することができ、 水平プリンタ対応型の印字ヘッドとして好適に用いることができ、装置の小型化が容 易で、画像品質の信頼性、汎用性に優れる。  With these arrangements, it is better not to bend like a digital paper! It is better to form a high-quality image by conveying the recording medium in a straight line without interfering with the driver IC. It can be suitably used as a print head compatible with a horizontal printer, and it is easy to reduce the size of the apparatus, and it has excellent image quality reliability and versatility.
[0039] 請求項 19に記載の発明は、請求項 18に記載の加熱放電型印字ヘッドであって、 前記放電部の配置方式が、前記ドライバ ICが前記形状基板の表面に配置され、前 記放電電極が前記形状基板の端面部に前記形状基板の表面と略直角をなすように 配置された端面型である構成を有して 、る。  [0039] The invention according to claim 19 is the heat-discharge type print head according to claim 18, wherein the discharge unit is arranged such that the driver IC is arranged on a surface of the shaped substrate. The discharge electrode has a configuration of an end surface type in which the discharge electrode is disposed at an end surface portion of the shape substrate so as to be substantially perpendicular to the surface of the shape substrate.
この構成により、請求項 18の作用に加え、以下のような作用を有する。  With this configuration, in addition to the effect of claim 18, the following effect is obtained.
(1)ドライバ ICを形状基板の表面に配置し、放電電極を形状基板の端面部に配置し て、ドライバ ICと放電電極とが略直角をなすようにすることにより、特にデジタルぺー パ等のように湾曲させな 、方がよ!、記録媒体を直線状に搬送することができ、水平プ リンタに好適に用いることができる。  (1) By placing the driver IC on the surface of the shape substrate and disposing the discharge electrode on the end face of the shape substrate so that the driver IC and the discharge electrode are substantially at right angles, it is especially useful for digital paper, etc. The recording medium can be conveyed in a straight line and can be suitably used for a horizontal printer.
(2)放電部の配置方式が端面型であることにより、静電潜像担持体や記録媒体に対 向する部分の幅を狭くでき、水平方向に嵩張らずに配置することができるので、特に 多種多様な形状の静電潜像担持体に対応することができ汎用性に優れる。  (2) Since the arrangement of the discharge part is an end face type, the width of the part facing the electrostatic latent image carrier and the recording medium can be narrowed and can be arranged without being bulky in the horizontal direction. It can be applied to various types of electrostatic latent image carriers and has excellent versatility.
[0040] ここで、放電部の配置方式が端面型の場合、放電部の少なくとも放電電極 (放電発 生部位)を形状基板の端面部に配置し、ドライバ ICを形状基板の表面に配設する。 このとき、形状基板の端面部を略円弧状に形成することが好ましい。これにより、フレ キシブル基板を形状基板の形状沿わせて変形 (湾曲)させて固定する際に、放電電 極やフレキシブル薄膜、発熱部とドライバ ICを電気的に接続するためのリードパター ン (電極)等を形状基板の表面力 端面部にかけて緩やかな曲面上に配置すること ができ、亀裂や断線等の発生を防止でき信頼性に優れる。 [0040] Here, when the arrangement method of the discharge part is the end face type, at least the discharge electrode (discharge generation site) of the discharge part is arranged on the end face part of the shape substrate, and the driver IC is arranged on the surface of the shape substrate. . At this time, it is preferable that the end surface portion of the shaped substrate is formed in a substantially arc shape. As a result, when the flexible substrate is deformed (curved) and fixed along the shape of the shape substrate, the lead pattern for electrically connecting the discharge electrode, the flexible thin film, the heat generating part and the driver IC. The electrode (electrode) etc. can be placed on a gently curved surface over the surface force end face part of the shaped substrate, and it is possible to prevent the occurrence of cracks and disconnections and to have excellent reliability.
尚、形状基板の端面部を形状基板の表面側に折曲する等して形状基板を略く字 型に形成したものも端面型に含まれる。  In addition, what formed the shape board | substrate in the substantially square shape by bending the end surface part of a shape board | substrate to the surface side of the shape board | substrate is also contained in an end face type | mold.
[0041] 請求項 20に記載の発明は、請求項 18に記載の加熱放電型印字ヘッドであって、 前記放電部の配置方式が、前記ドライバ ICが前記形状基板の表面に配置され、前 記放電電極が前記固定板の傾斜状の縁部に前記形状基板の表面と鈍角をなすよう に配置されたエッジ型である構成を有して 、る。  [0041] The invention according to claim 20 is the heat-discharge type print head according to claim 18, wherein the discharge unit is arranged such that the driver IC is arranged on a surface of the shaped substrate. The discharge electrode has an edge-type configuration in which an inclined edge of the fixed plate is arranged to form an obtuse angle with the surface of the shaped substrate.
この構成により、請求項 18の作用に加え、以下のような作用を有する。  With this configuration, in addition to the effect of claim 18, the following effect is obtained.
(1)ドライバ ICを形状基板の表面に配置し、放電電極を形状基板の傾斜状の縁部に 配置して、ドライバ ICと放電電極とが鈍角をなすようにすることにより、特にデジタル ぺーパ等のように湾曲させな 、方がょ 、記録媒体を直線状に搬送することができ、 水平プリンタに好適に用いることができる。  (1) The driver IC is placed on the surface of the shape substrate and the discharge electrode is placed on the inclined edge of the shape substrate so that the driver IC and the discharge electrode form an obtuse angle. Instead, the recording medium can be conveyed in a straight line, and can be suitably used for a horizontal printer.
(2)放電部の配置方式がエッジ型であることにより、放電部を記録媒体に対向させる 際に、高さ方向に嵩張らずに配置することができ、多種多様な形状の静電潜像担持 体に対応することができ汎用性に優れる。  (2) Since the discharge unit is arranged in an edge type, it can be placed without being bulky in the height direction when the discharge unit is opposed to the recording medium. It can respond to the body and has excellent versatility.
[0042] ここで、放電部の配置方式がエッジ型の場合、放電部の少なくとも放電電極 (放電 発生部位)を傾斜状に面取りされた形状基板の縁部に配置し、ドライバ ICを形状基 板の表面に配設する。ドライバ ICと放電電極とを鈍角をなすように配置することにより 、端面型と同様の作用を得ることができる。  [0042] Here, when the arrangement method of the discharge part is the edge type, at least the discharge electrode (discharge generation site) of the discharge part is arranged on the edge of the inclined chamfered shape substrate, and the driver IC is arranged on the shape substrate. It arranges on the surface of. By disposing the driver IC and the discharge electrode so as to form an obtuse angle, the same effect as that of the end face type can be obtained.
[0043] 請求項 21に記載の発明は、請求項 18に記載の加熱放電型印字ヘッドであって、 前記放電部の配置方式が、前記ドライバ ICが前記形状基板の表面に配置され、前 記放電電極が前記形状基板の表面に形成された隆起部の隆起面に配置された隆 起型である構成を有して!/ヽる。  [0043] The invention according to claim 21 is the heat-discharge type print head according to claim 18, wherein the discharge unit is arranged such that the driver IC is arranged on a surface of the shape substrate. The discharge electrode has a raised type arrangement on the raised surface of the raised part formed on the surface of the shaped substrate.
この構成により、請求項 18の作用に加え、以下のような作用を有する。  With this configuration, in addition to the effect of claim 18, the following effect is obtained.
(1)ドライバ ICを形状基板の表面に配置し、放電電極を形状基板の表面に形成され た隆起部の隆起面に配置して、ドライバ ICよりも放電電極を突出させることにより、特 にデジタルぺーパ等のように湾曲させな 、方がょ 、記録媒体を直線状に搬送するこ とができ、水平プリンタに好適に用いることができる。 (1) The driver IC is placed on the surface of the shape substrate, the discharge electrode is placed on the raised surface of the raised portion formed on the surface of the shape substrate, and the discharge electrode protrudes more than the driver IC. If the recording medium is not curved like paper, the recording medium is transported in a straight line. And can be suitably used for a horizontal printer.
(2)放電部の配置方式が隆起型であることにより、放電部を記録媒体に対向させる 際に、高さ方向に嵩張らずに配置することができ、多種多様な形状の静電潜像担持 体に対応することができ汎用性に優れる。  (2) Since the discharge unit is arranged in a raised manner, it can be placed without being bulky in the height direction when the discharge unit is opposed to the recording medium. It can respond to the body and has excellent versatility.
[0044] ここで、隆起型 (新端面型)は、放電部の少なくとも放電電極 (放電発生部位)が配 置された形状基板の端面部を形状基板の表面側に折曲したものとみなすことができ 、端面型の一形態と考えることができる。 [0044] Here, the raised type (new end face type) is considered that the end face part of the shape substrate on which at least the discharge electrode (discharge generation site) of the discharge part is arranged is bent to the surface side of the shape substrate. Can be considered as an end face type.
放電電極は隆起部の隆起面 (斜面や上面)に配置することができるが、記録媒体の 搬送路と干渉しな 、ようにする必要がある。  The discharge electrode can be arranged on the raised surface (slope or upper surface) of the raised portion, but it must be arranged so as not to interfere with the recording medium conveyance path.
放電電極を隆起部の頂部(上面)近傍に配置する場合、隆起部の頂部をドライバ I Cの上面よりも上方に突出させることで、形状基板と記録媒体を略平行に配置するこ とができる。また、放電電極を隆起部のドライバ ICと反対側の隆起面 (斜面)に配置 する場合、放電電極と記録媒体が略平行となるように形状基板を傾斜させることによ り、記録媒体とドライバ IC等との干渉を防ぐことができる。  When the discharge electrode is disposed in the vicinity of the top (upper surface) of the raised portion, the shape substrate and the recording medium can be disposed substantially in parallel by projecting the top of the raised portion above the upper surface of the driver IC. Further, when the discharge electrode is disposed on the raised surface (slope) opposite to the driver IC of the raised portion, the recording medium and the driver are arranged by inclining the shape substrate so that the discharge electrode and the recording medium are substantially parallel to each other. Interference with IC etc. can be prevented.
[0045] 請求項 22に記載の発明は、請求項 17乃至 21の内いずれか 1項に記載の加熱放 電型印字ヘッドであって、前記形状基板が、熱伝導性を有する材質で形成されてい る構成を有している。 [0045] The invention according to claim 22 is the heat discharge print head according to any one of claims 17 to 21, wherein the shaped substrate is formed of a material having thermal conductivity. It has the structure which is.
この構成により、請求項 17乃至 21の内いずれか 1項の作用に加え、以下のような 作用を有する。  With this configuration, in addition to the operation of any one of claims 17 to 21, the following operation is provided.
(1)形状基板が熱伝導性を有する材質で形成されていることにより、形状基板が放 熱板として作用するので、別途、放熱板を設ける必要がなぐ部品点数、製造工数を 低減でき、量産性を向上させることができる。  (1) Because the shape substrate is made of a material with thermal conductivity, the shape substrate acts as a heat dissipation plate, so it is possible to reduce the number of parts and manufacturing man-hours that do not require a separate heat dissipation plate. Can be improved.
(2)形状基板が熱伝導性を有することにより、放電電極や発熱部の余分な熱を速や かに形状基板で吸収して放熱させることができるので、放電部や発熱部の急速冷却 が可能となり、発熱部の加熱停止に対応する放電部の放電停止の応答性を向上さ せることができる。  (2) Since the shape substrate has thermal conductivity, excess heat from the discharge electrode and heat generating part can be quickly absorbed and dissipated by the shape substrate, so that the discharge part and heat generating part can be cooled quickly. This makes it possible to improve the discharge stop responsiveness of the discharge portion corresponding to the heating stop of the heat generating portion.
ここで、形状基板を形成する熱伝導性を有する材質としては、アルミニウム等が好 適に用いられる。 [0046] 請求項 23に記載の発明は、請求項 17乃至 22の内いずれか 1項に記載の加熱放 電型印字ヘッドであって、前記形状基板に熱伝導性を有する材質で形成された放熱 板が配設されて 、る構成を有して 、る。 Here, aluminum or the like is preferably used as the material having thermal conductivity for forming the shape substrate. [0046] The invention described in claim 23 is the heating / discharging type print head according to any one of claims 17 to 22, wherein the shape substrate is formed of a material having thermal conductivity. A heat radiating plate is provided and has a structure.
この構成により、請求項 17乃至 22の内いずれか 1項の作用に加え、以下のような 作用を有する。  With this configuration, in addition to the operation of any one of claims 17 to 22, the following operation is provided.
(1)形状基板に熱伝導性を有する材質で形成された放熱板が配設されていること〖こ より、放熱面積を拡大することができ、フレキシブル基板カゝら形状基板を介して放熱 板に伝達された熱を効率的に放熱させることができ、放電制御の信頼性を向上させ ることがでさる。  (1) Since the heat sink made of a material having thermal conductivity is disposed on the shape substrate, the heat dissipation area can be expanded, and the heat sink can be passed through the flexible substrate and the shape substrate. The heat transferred to the can be efficiently dissipated and the reliability of the discharge control can be improved.
ここで、放熱板の材質としては、アルミニウム等が好適に用いられる。放熱板の表面 に溝等により凹凸を形成したり、ヒートシンクを配設したりすることにより、さらに放熱面 積を拡大して放熱の効率性を向上させることができる。  Here, aluminum or the like is preferably used as the material of the heat sink. By forming irregularities with grooves or the like on the surface of the heat radiating plate or disposing a heat sink, the heat radiating area can be further expanded and the efficiency of heat radiating can be improved.
[0047] 本発明の請求項 24に記載のサーマルヘッドは、金属箔の両面の内の少なくともい ずれか一方の面に酸化膜が形成された耐熱性及び絶縁性を有するフレキシブル基 板と、前記フレキシブル基板の前記酸化膜が形成された面上に形成された発熱体を 有する発熱部と前記発熱体の発熱を制御するドライバ ICとを有する加熱手段と、前 記発熱部を被覆した耐熱性及び絶縁性を有する保護膜と、を備えた発熱ユニットを 搭載した構成を有している。 [0047] The thermal head according to Claim 24 of the present invention is a flexible substrate having heat resistance and insulating properties in which an oxide film is formed on at least one of both surfaces of the metal foil, and Heating means having a heating part having a heating element formed on the surface of the flexible substrate on which the oxide film is formed, and a driver IC for controlling the heating of the heating element, and heat resistance and covering the heating part And a heat generating unit having an insulating protective film.
この構成により、以下のような作用を有する。  This configuration has the following effects.
(1)発熱ユニットのフレキシブル基板を湾曲させることができるので、平面状態のフレ キシブル基板へ薄膜技術或いは技術的に容易な厚膜技術を用いて発熱部などを形 成した後に、フレキシブル基板ごと所望の形状に変形 (湾曲)させることができ、発熱 ユニットを形状基板の形状に沿わせて固定することにより、平易な技術を用いて所望 の形状 (従来は高度な技術を要した)のサーマルヘッドを製造でき、生産性に優れる  (1) Since the flexible substrate of the heat generating unit can be bent, after forming the heat generating part etc. using thin film technology or thick film technology that is technically easy on a flexible substrate in a flat state, the entire flexible substrate is desired The thermal head can be deformed (curved) to the desired shape (fixed with advanced technology) using simple technology by fixing the heating unit along the shape of the shape substrate. Can be manufactured and has excellent productivity
(2)形状基板の形状や形状基板に対する発熱ユニットの固定位置を変更するだけで 、共通の発熱ユニットを用いて様々な形状のサーマルヘッドを製造でき、量産性、汎 用性に優れる。 (3)発熱部が耐熱性及び絶縁性を有する保護膜で被覆されていることにより、発熱 部を保護して破損を防止することができ、発熱ユニットの耐久性、長寿命性に優れる (2) By changing the shape of the shape substrate and the fixing position of the heat generation unit with respect to the shape substrate, thermal heads of various shapes can be manufactured using a common heat generation unit, which is excellent in mass productivity and versatility. (3) Since the heat generating part is covered with a heat-resistant and insulating protective film, the heat generating part can be protected to prevent damage, and the heat generating unit has excellent durability and long life.
(4)金属箔の両面の内の少なくともいずれか一方の面に酸ィ匕膜が形成されたフレキ シブル基板は、熱伝導性に優れるので、発熱部の熱を形状基板へ伝達させて逃が すことができ、発熱部への熱の籠もりを防止し、発熱部の加熱停止に対する印字停 止の応答性を向上させて印字速度を高速ィ匕することができると共に、尾引のない高 品質な画像を形成することができ画像品質の信頼性に優れる。 (4) Since a flexible substrate with an oxide film formed on at least one of both surfaces of the metal foil has excellent thermal conductivity, heat from the heat generating part is transferred to the shape substrate to escape. This prevents the heat build-up from occurring in the heat generating part, improves the printing stop response to the heating stop of the heat generating part, and increases the printing speed. A high-quality image can be formed, and the reliability of the image quality is excellent.
(5)フレキシブル基板の酸化膜が形成された面上に発熱体を有する発熱部を形成 することにより、フレキシブル基板と発熱部の間を確実に絶縁することができ、発熱部 の発熱体に選択的に通電して発熱させることができる。  (5) By forming a heat generating part having a heating element on the surface of the flexible substrate on which the oxide film is formed, the flexible substrate and the heat generating part can be reliably insulated, and can be selected as the heating element of the heat generating part. Can be energized to generate heat.
(6)金属箔の表面に酸化膜を形成したフレキシブル基板は耐熱性に優れるので、発 熱部を形成する際に、スパッタリングや蒸着などの薄膜技術を用いる以外に、焼成が 必要な厚膜技術を用いることができ、量産性に優れる。  (6) Since a flexible substrate with an oxide film formed on the surface of a metal foil has excellent heat resistance, in addition to using thin film technology such as sputtering and vapor deposition, a thick film technology that requires firing is used when forming the heat generating part. Can be used, and is excellent in mass productivity.
(7)平面状態のフレキシブル基板上に発熱部を形成することができるので、微細加 工及び多数個取りが容易で量産性に優れる。  (7) Since a heat generating part can be formed on a flexible substrate in a flat state, fine machining and multi-piece fabrication are easy and excellent in mass productivity.
[0048] ここで、フレキシブル基板及び発熱体は請求項 1で説明したものと同様であるので 説明を省略する。  [0048] Here, the flexible substrate and the heating element are the same as those described in claim 1, and thus the description thereof is omitted.
保護膜としては、耐熱性及び絶縁性を有すると共に、加熱手段の発熱部が発する 熱を記録媒体に伝達できる熱伝達性を有するものが好適に用いられる。  As the protective film, a film having heat resistance and heat insulating properties and heat transfer properties capable of transferring heat generated by the heat generating portion of the heating means to the recording medium is preferably used.
発熱部の発熱体及び発熱体に選択的に通電して発熱させるための駆動用の電極 や発熱部を保護する保護膜は、薄膜技術及び厚膜技術の!/ヽずれを用いても形成す ることができる。薄膜技術及び厚膜技術のいずれを用いるかによつて、保護膜の材質 を適宜、選択することができる。具体的には、ポリイミド,ァラミド,ポリエーテルイミド等 の合成樹脂やガラス等が好適に用いられる。  The heating element of the heating part and the driving electrode for selectively energizing the heating element to generate heat and the protective film that protects the heating part can be formed even using the thin film technology and the thick film technology! Can. Depending on whether the thin film technology or the thick film technology is used, the material of the protective film can be appropriately selected. Specifically, synthetic resins such as polyimide, aramid, and polyetherimide, glass, and the like are preferably used.
また、フレキシブル基板単独で十分な絶縁性を確保できない場合は、柔軟性と形 状基板への熱伝達性を妨げな ヽ範囲で絶縁膜を形成する等してもょ ヽ。  If sufficient insulation cannot be secured with a flexible substrate alone, an insulating film may be formed within a range that does not hinder flexibility and heat transfer to the shape substrate.
[0049] 発熱ユニットのフレキシブル基板が柔軟性を有するので、形状基板の形状に沿うよ うに湾曲させる等して形状基板への固定を行うことができる。このため、所望の形状に 形成された形状基板の任意の位置に発熱体を配置することができ、設計自在性、生 産性に優れる。 [0049] Since the flexible substrate of the heat generating unit has flexibility, it follows the shape of the shape substrate. It can be fixed to the shaped substrate by bending it. For this reason, the heating element can be arranged at an arbitrary position of the shape substrate formed in a desired shape, which is excellent in design flexibility and productivity.
また、形状基板をアルミニウム等の熱伝導性に優れた材質で形成することで、発熱 部で発生した熱を速やかに形状基板に吸収し、形状基板力 放熱させることができる ので、発熱部の急速冷却が可能となる。この結果、加熱停止に対応する印字停止の 応答性を向上させることができる。カロえて、ドライバ IC等を熱力も守ることができ信頼 性に優れる。  In addition, by forming the shape substrate with a material having excellent thermal conductivity such as aluminum, the heat generated in the heat generating part can be quickly absorbed into the shape substrate, and the shape substrate force can be dissipated, so that Cooling is possible. As a result, it is possible to improve the responsiveness of the printing stop corresponding to the heating stop. It is excellent in reliability because it can protect the driver IC with heat.
[0050] 請求項 25に記載の発明は、請求項 24に記載のサーマルヘッドであって、前記フレ キシブル基板の前記酸ィ匕膜が、前記金属箔と同じ材質の金属の酸ィ匕膜で形成され ている構成を有している。  [0050] The invention according to claim 25 is the thermal head according to claim 24, wherein the oxide film of the flexible substrate is a metal oxide film made of the same material as the metal foil. It has a formed structure.
この構成により、請求項 24の作用に加え、以下のような作用を有する。  With this configuration, in addition to the operation of Claim 24, the following operation is provided.
(1)フレキシブル基板の基材となる金属箔の両面に形成される酸ィ匕膜が、金属箔と 同じ材質の金属の酸ィ匕膜で形成されていることにより、金属箔と酸ィ匕膜の密着性に 優れ、フレキシブル基板の絶縁性、耐久性を向上させることができる。  (1) Since the acid film formed on both surfaces of the metal foil as the base material of the flexible substrate is formed of a metal oxide film of the same material as the metal foil, the metal foil and the acid film are formed. It has excellent film adhesion and can improve the insulation and durability of flexible substrates.
[0051] 請求項 26に記載の発明は、請求項 24に記載のサーマルヘッドであって、前記フレ キシブル基板の前記酸ィ匕膜が、前記金属箔と異なる材質の金属の酸ィ匕膜で形成さ れている構成を有している。 [0051] The invention according to claim 26 is the thermal head according to claim 24, wherein the oxide film of the flexible substrate is a metal oxide film made of a material different from the metal foil. It has a formed structure.
この構成により、請求項 24の作用に加え、以下のような作用を有する。  With this configuration, in addition to the operation of Claim 24, the following operation is provided.
(1)フレキシブル基板の基材となる金属箔の両面に形成する酸化膜を、金属箔と異 なる材質の金属の酸ィ匕膜で形成することにより、金属箔と酸ィ匕膜の組合せによって、 フレキシブル基板の熱伝導性と絶縁性をコントロールすることができ、フレキシブル基 板における熱伝導の効率性、絶縁の信頼性を向上させることができる。  (1) By forming the oxide film formed on both sides of the metal foil used as the base material of the flexible substrate with a metal oxide film made of a material different from that of the metal foil, a combination of the metal foil and the oxide film is used. The thermal conductivity and insulation of the flexible substrate can be controlled, and the efficiency of thermal conduction and the insulation reliability of the flexible substrate can be improved.
[0052] 請求項 27に記載の発明は、請求項 24乃至 26の内いずれか 1項に記載のサーマ ルヘッドであって、前記フレキシブル基板の前記金属箔が、アルミニウムで形成され ている構成を有している。 [0052] The invention according to claim 27 is the thermal head according to any one of claims 24 to 26, wherein the metal foil of the flexible substrate is made of aluminum. is doing.
この構成により、請求項 24乃至 26の内いずれか 1項の作用に加え、以下のような 作用を有する。 (1)フレキシブル基板の基材となる金属箔がアルミニウムで形成されていることによりWith this configuration, in addition to the operation of any one of claims 24 to 26, the following operation is provided. (1) The metal foil used as the base material of the flexible substrate is made of aluminum.
、フレキシブル基板の熱伝導性を向上させることができ、発熱部の余分な熱をフレキ シブル基板が固定される形状基板へ効率的に伝達させて逃がすことができ、発熱部 の加熱停止に対する印字停止の応答性に優れ、画像品質の信頼性に優れる。 The thermal conductivity of the flexible board can be improved, and the excess heat from the heat generating part can be efficiently transferred to the shape board to which the flexible board is fixed, allowing it to escape. Responsiveness and excellent image quality reliability.
[0053] 請求項 28に記載の発明は、請求項 24乃至 26の内いずれか 1項に記載のヘッド基 板であって、前記フレキシブル基板の前記金属箔が、銅で形成されている構成を有 している。  [0053] The invention according to claim 28 is the head substrate according to any one of claims 24 to 26, wherein the metal foil of the flexible substrate is formed of copper. Yes.
この構成により、請求項 24乃至 26の内いずれか 1項の作用に加え、以下のような 作用を有する。  With this configuration, in addition to the operation of any one of claims 24 to 26, the following operation is provided.
(1)フレキシブル基板の基材となる金属箔が銅で形成されていることにより、フレキシ ブル基板の熱伝導性を向上させることができ、発熱部の余分な熱をフレキシブル基 板が固定される形状基板へ効率的に伝達させて逃がすことができ、発熱部の加熱停 止に対する印字停止の応答性に優れ、画像品質の信頼性に優れる。  (1) Since the metal foil used as the base material of the flexible board is made of copper, the thermal conductivity of the flexible board can be improved, and the flexible board is fixed with excess heat from the heat generating part. It can be efficiently transmitted to the shape substrate and escaped, and the print stop response to the heat stop of the heat generating part is excellent, and the image quality is highly reliable.
[0054] 請求項 29に記載の発明は、請求項 24乃至 28の内いずれか 1項に記載のヘッド基 板であって、前記フレキシブル基板の前記酸ィ匕膜が、アルミナで形成されている構 成を有している。 [0054] The invention according to claim 29 is the head substrate according to any one of claims 24 to 28, wherein the oxide film of the flexible substrate is formed of alumina. It has a structure.
この構成により、請求項 24乃至 28の内いずれか 1項の作用に加え、以下のような 作用を有する。  With this configuration, in addition to the operation of any one of claims 24 to 28, the following operation is provided.
(1)フレキシブル基板の酸ィ匕膜がアルミナで形成されていることにより、化学的に安 定で耐熱性、絶縁性に優れると共に、熱伝導率が高ぐ放電制御の信頼性を向上さ せることができる。  (1) The oxide film of the flexible substrate is made of alumina, so that it is chemically stable, has excellent heat resistance and insulation, and improves the reliability of discharge control with high thermal conductivity. be able to.
ここで、フレキシブル基板の基材となる金属箔がアルミニウムで形成されて!ヽる場合 、その両面にアルミニウムを蒸着後、陽極酸ィ匕法にて酸ィ匕処理するなどしてアルミナ の酸ィ匕膜を形成することができる。  Here, the metal foil used as the base material of the flexible substrate is made of aluminum! In this case, an aluminum oxide film can be formed by vapor-depositing aluminum on both surfaces and then performing an acid treatment by an anodic acid method.
[0055] 請求項 30に記載の発明は、請求項 24乃至 29の内いずれか 1項に記載のサーマ ルヘッドであって、前記発熱ユニットが形状基板の形状に沿って固定され、前記発熱 部の前記発熱体の配置面と前記ドライバ ICの配置面とが同一平面上にない構成を 有している。 この構成により、請求項 24乃至 29の内いずれか 1項の作用に加え、以下のような 作用を有する。 [0055] The invention according to claim 30 is the thermal head according to any one of claims 24 to 29, wherein the heat generating unit is fixed along the shape of the shape substrate, and The arrangement surface of the heating element and the arrangement surface of the driver IC are not on the same plane. With this configuration, in addition to the operation of any one of claims 24 to 29, the following operation is provided.
(1)発熱体の配置面とドライバ ICの配置面とが同一平面上にな 、ようにすることで、 多種多様な形状の記録媒体に対する発熱体の配置の自由度を増大させることがで き、汎用性を向上させることができる。  (1) By ensuring that the heating element placement surface and the driver IC placement surface are on the same plane, it is possible to increase the degree of freedom in arranging the heating elements for a variety of shapes of recording media. , Versatility can be improved.
[0056] ここで、発熱体の配置面はドライバ ICの配置面と異なる面上で、発熱体を記録媒体 に対向させた際に、ドライバ ICと記録媒体が干渉しない位置関係であればよい。形 状基板の表面に配置されたドライバ ICに対しては、形状基板の表面と略直交するよ うに円弧状に形成された形状基板の端面部、形状基板の表面と略鈍角をなすように 傾斜状に形成された形状基板の縁部、形状基板の表面に突出し緩やかな丘状等に 形成された隆起部等の様々な位置に発熱体を配置することができる。また、形状基 板の表面に配置した発熱体に対し、その配置面より低くなるように形状基板に段差部 や傾斜部を形成してドライバ ICを配置したり、形状基板の端面や裏面にドライバ ICを 配置したりしてもよい。  Here, the arrangement surface of the heating element may be on a surface different from the arrangement surface of the driver IC, as long as the driver IC and the recording medium do not interfere with each other when the heating element is opposed to the recording medium. The driver IC placed on the surface of the shape board is inclined so that it forms an obtuse angle with the end face of the shape board, which is formed in an arc shape so as to be substantially perpendicular to the surface of the shape board, and the surface of the shape board. The heating element can be arranged at various positions such as the edge of the shaped substrate formed in a shape, the raised portion formed on the surface of the shaped substrate and formed in a gentle hill shape or the like. Also, for the heating element placed on the surface of the shape board, a driver IC is placed by forming a stepped part or an inclined part on the shape board so as to be lower than the placement surface, or a driver IC is placed on the end face or back face of the shape board. IC may be arranged.
これらの配置により、プラスチック製のカードや厚紙などのように弾力性があり、湾曲 させることが困難な記録媒体をドライバ ICと干渉させることなく直線状に搬送して高品 質な画像を形成することができ、水平プリンタ対応型の印字ヘッドとして好適に用い ることができ、装置の小型化が容易で、画像品質の信頼性、汎用性に優れる。  With these arrangements, a recording medium that is elastic, such as a plastic card or cardboard, that is difficult to bend is conveyed linearly without interfering with the driver IC to form a high-quality image. Therefore, it can be suitably used as a print head compatible with a horizontal printer, the apparatus can be easily downsized, and the image quality is reliable and versatile.
[0057] 請求項 31に記載の発明は、請求項 30に記載のサーマルヘッドであって、前記発 熱部の配置方式が、前記ドライバ ICが前記形状基板の表面に配置され、前記発熱 体が前記形状基板の端面部に前記形状基板の表面と略直角をなすように配置され た端面型である構成を有して 、る。  [0057] The invention according to claim 31 is the thermal head according to claim 30, wherein the heat generating portion is arranged such that the driver IC is arranged on a surface of the shaped substrate, and the heating element is The end surface portion of the shape substrate has an end surface type disposed so as to be substantially perpendicular to the surface of the shape substrate.
この構成により、請求項 30の作用に加え、以下のような作用を有する。  With this configuration, in addition to the operation of the thirty-third aspect, the following operation is achieved.
(1)ドライバ ICを形状基板の表面に配置し、発熱体を形状基板の端面部に配置して 、ドライバ ICと発熱体とが略直角をなすようにすることにより、特にプラスチック製の力 ードゃ厚紙などのように弾力性があり、湾曲させることが困難な記録媒体を直線状に 搬送することができ、水平プリンタに好適に用いることができる。  (1) By placing the driver IC on the surface of the shape substrate and the heating element on the end face of the shape substrate so that the driver IC and the heating element are substantially perpendicular, A recording medium such as cardboard that is elastic and difficult to bend can be conveyed linearly and can be suitably used for a horizontal printer.
(2)発熱部の配置方式が端面型であることにより、記録媒体に対向する部分の幅を 狭くでき、水平方向に嵩張らずに配置することができるので、特に多種多様な形状の 記録媒体に対応することができ汎用性に優れ、発熱部と記録媒体との接触面積が小 さぐ発熱体力 の熱が走査方向に広がらず、にじみのない高品質な画像を形成す ることができ画像品質の信頼性に優れる。 (2) The arrangement of the heat generating part is an end face type, so the width of the part facing the recording medium is reduced. Since it can be narrowed and arranged without being bulky in the horizontal direction, it can be applied to recording media with a wide variety of shapes, and it has excellent versatility and has a heat generating body force that reduces the contact area between the heat generating part and the recording medium. The heat does not spread in the scanning direction, and a high-quality image without blur can be formed, and the reliability of the image quality is excellent.
[0058] ここで、発熱部の配置方式が端面型の場合、発熱部の少なくとも発熱体を形状基 板の端面部に配置し、ドライバ ICを形状基板の表面に配設する。このとき、形状基板 の端面部を略円弧状に形成することが好ましい。これにより、フレキシブル基板を形 状基板の形状沿わせて変形 (湾曲)させて固定する際に、フレキシブル薄膜や発熱 部とドライバ ICを電気的に接続するためのリードパターン (電極)等を形状基板の表 面力 端面部にかけて緩やかな曲面上に配置することができ、亀裂や断線等の発生 を防止でき信頼性に優れる。  [0058] Here, when the arrangement method of the heat generating portion is an end surface type, at least the heat generating element of the heat generating portion is disposed on the end surface portion of the shape substrate, and the driver IC is disposed on the surface of the shape substrate. At this time, it is preferable that the end surface portion of the shaped substrate is formed in a substantially arc shape. As a result, when the flexible substrate is deformed (curved) along the shape of the shape substrate and fixed, the lead pattern (electrode) etc. for electrically connecting the flexible thin film and the heat generating part to the driver IC is provided. It can be placed on a gently curved surface over the end surface, preventing cracks and disconnections, and has excellent reliability.
尚、形状基板の端面部を形状基板の表面側に折曲する等して形状基板を略く字 型に形成したものも端面型に含まれる。  In addition, what formed the shape board | substrate in the substantially square shape by bending the end surface part of a shape board | substrate to the surface side of the shape board | substrate is also contained in an end face type | mold.
[0059] 請求項 32に記載の発明は、請求項 30に記載のサーマルヘッドであって、前記発 熱部の配置方式が、前記ドライバ ICが前記形状基板の表面に配置され、前記発熱 体が前記固定板の傾斜状の縁部に前記形状基板の表面と鈍角をなすように配置さ れたエッジ型である構成を有して 、る。  [0059] The invention according to Claim 32 is the thermal head according to Claim 30, wherein the heat generating portion is arranged such that the driver IC is arranged on a surface of the shaped substrate, and the heating element is The fixed plate has a configuration that is an edge type disposed at an inclined edge of the fixed plate so as to form an obtuse angle with the surface of the shaped substrate.
この構成により、請求項 30の作用に加え、以下のような作用を有する。  With this configuration, in addition to the operation of the 30th aspect, the following operation is provided.
(1)ドライバ ICを形状基板の表面に配置し、発熱体を形状基板の傾斜状の縁部に配 置して、ドライバ ICと発熱体とが鈍角をなすようにすることにより、特にプラスチック製 のカードや厚紙などのように弾力性があり、湾曲させることが困難な記録媒体を直線 状に搬送することができ、水平プリンタに好適に用いることができる。  (1) The driver IC is placed on the surface of the shape substrate, and the heating element is placed on the inclined edge of the shape substrate so that the driver IC and the heating element form an obtuse angle. A recording medium such as a card or cardboard that is elastic and difficult to bend can be conveyed linearly and can be suitably used for a horizontal printer.
(2)発熱部の配置方式がエッジ型であることにより、発熱部を記録媒体に対向させる 際に、高さ方向に嵩張らずに配置することができ、多種多様な形状の記録媒体に対 応することができ汎用性に優れ、発熱部と記録媒体との接触面積が小さぐ発熱体か らの熱が走査方向に広がらず、にじみのない高品質な画像を形成することができ画 像品質の信頼性に優れる。  (2) Since the heating unit is arranged in an edge type, the heating unit can be arranged without being bulky in the height direction when facing the recording medium, and can support recording media of various shapes. The heat generated from the heating element with a small contact area between the heat generating part and the recording medium does not spread in the scanning direction, and a high-quality image without blur can be formed. Excellent reliability.
[0060] ここで、発熱部の配置方式がエッジ型の場合、発熱部の少なくとも発熱体を傾斜状 に面取りされた形状基板の縁部に配置し、ドライバ ICを形状基板の表面に配設する 。ドライバ ICと発熱体とを鈍角をなすように配置することにより、端面型と同様の作用 を得ることができる。 [0060] Here, when the arrangement of the heat generating parts is an edge type, at least the heat generating elements of the heat generating parts are inclined. The driver IC is arranged on the surface of the shape substrate. By arranging the driver IC and the heating element so as to form an obtuse angle, the same effect as that of the end face type can be obtained.
[0061] 請求項 33に記載の発明は、請求項 30に記載のサーマルヘッドであって、前記発 熱部の配置方式が、前記ドライバ ICが前記形状基板の表面に配置され、前記発熱 体が前記形状基板の表面に形成された隆起部の隆起面に配置された隆起型である 構成を有している。  [0061] The invention according to Claim 33 is the thermal head according to Claim 30, wherein the heat generating portion is arranged such that the driver IC is disposed on a surface of the shaped substrate, and the heating element is It has the structure which is a protruding type | mold arrange | positioned at the protruding surface of the protruding part formed in the surface of the said shape board | substrate.
この構成により、請求項 30の作用に加え、以下のような作用を有する。  With this configuration, in addition to the operation of the thirty-third aspect, the following operation is achieved.
(1)ドライバ ICを形状基板の表面に配置し、発熱体を形状基板の表面に形成された 隆起部の隆起面に配置して、ドライバ ICよりも発熱体を突出させることにより、特にプ ラスチック製のカードや厚紙などのように弾力性があり、湾曲させることが困難な記録 媒体を直線状に搬送することができ、水平プリンタに好適に用いることができる。 (1) By placing the driver IC on the surface of the shape substrate and placing the heating element on the raised surface of the raised portion formed on the surface of the shape substrate, the heating element protrudes more than the driver IC. A recording medium such as a manufactured card or cardboard that is elastic and difficult to be bent can be conveyed linearly, and can be suitably used for a horizontal printer.
(2)発熱部の配置方式が隆起型であることにより、発熱部を記録媒体に対向させる 際に、高さ方向に嵩張らずに配置することができ、汎用性に優れ、発熱部と記録媒体 との接触面積が小さぐ発熱体力 の熱が走査方向に広がらず、にじみのない高品 質な画像を形成することができ画像品質の信頼性に優れる。 (2) Since the heating unit is arranged in a raised manner, the heating unit can be arranged without being bulky in the height direction when facing the recording medium, and is excellent in versatility. The heat generated by the heating element with a small contact area does not spread in the scanning direction, and a high-quality image without blur can be formed and the image quality is highly reliable.
[0062] ここで、隆起型 (新端面型)は発熱部の少なくとも発熱体が配置された形状基板の 端面部を形状基板の表面側に折曲したものとみなすことができ、端面型の一形態と 考えることができる。  Here, the raised type (new end face type) can be regarded as the end face portion of the shape substrate on which at least the heating element of the heat generating portion is arranged bent to the surface side of the shape substrate. It can be thought of as a form.
発熱体は隆起部の隆起面 (斜面や上面)に配置することができるが、記録媒体の搬 送路と干渉しな 、ようにする必要がある。  The heating element can be arranged on the raised surface (slope or upper surface) of the raised part, but it must be made so as not to interfere with the transport path of the recording medium.
発熱体を隆起部の頂部(上面)近傍に配置する場合、隆起部の頂部をドライバ IC の上面よりも上方に突出させることで、形状基板と記録媒体を略平行に配置すること ができる。また、発熱体を隆起部のドライバ ICと反対側の隆起面 (斜面)に配置する 場合、発熱体と記録媒体が略平行となるように形状基板 (サーマルヘッド)を傾斜さ せることにより、記録媒体とドライバ IC等との干渉を防ぐことができる。  When the heating element is arranged near the top (upper surface) of the raised portion, the shape substrate and the recording medium can be arranged substantially in parallel by projecting the top of the raised portion above the upper surface of the driver IC. In addition, when the heating element is placed on the raised surface (slope) on the opposite side of the driver IC of the protruding part, the recording is performed by inclining the shape substrate (thermal head) so that the heating element and the recording medium are substantially parallel. Interference between media and driver ICs can be prevented.
尚、請求項 24乃至 33で説明したサーマルヘッドは、サーマルプリンタ用の印字へ ッドとしてだけでなぐ加熱放電方式の放電制御装置などの加熱手段としても好適に 用いることができ設計自在性、汎用性に優れる。 Note that the thermal head described in claims 24 to 33 is also suitable as a heating means for a discharge control device of a heating / discharging system that can be used only as a print head for a thermal printer. It can be used and has excellent design flexibility and versatility.
発明の効果  The invention's effect
[0063] 以上のように、本発明のヘッド基板とそれを用いた放電制御装置、その放電制御装 置を備えた加熱放電型印字ヘッド、及びサーマルヘッドによれば、以下のような有利 な効果が得られる。  [0063] As described above, according to the head substrate of the present invention, the discharge control device using the head substrate, the heating discharge type print head including the discharge control device, and the thermal head, the following advantageous effects are obtained. Is obtained.
請求項 1に記載の発明によれば、以下のような効果を有する。  According to the invention described in claim 1, the following effects are obtained.
(1)発熱部や放電部等の放電デバイスを平面状態のフレキシブル基板へ技術的に 容易な方法で形成した後に、フレキシブル基板ごと湾曲させる等して容易に所望の 形状に加工 (変形)して形状基板に固定できるので、生産工程が簡便で量産性に優 れ、様々な形状の加熱放電型印字ヘッドの製造に対応可能で、設計自在性、汎用 性に優れたヘッド基板を提供することができる。  (1) After forming a discharge device such as a heat generating part or a discharge part on a flexible substrate in a flat state by a technically easy method, it is easily processed (deformed) into a desired shape by bending the flexible substrate together. Since it can be fixed to a shape substrate, it is possible to provide a head substrate that has a simple production process, is excellent in mass productivity, can be used for manufacturing various types of heat-discharge-type printheads, and has excellent design flexibility and versatility. it can.
(2)金属箔の両面の内の少なくともいずれか一方の面に酸ィ匕膜が形成されたフレキ シブル基板は、熱伝導性に優れるので、放電電極の熱を形状基板へ伝達させて逃 がすことができ、放電電極への熱の籠もりを防止し、発熱部の加熱停止に対する放 電停止の応答性を向上させることができる放電制御の信頼性に優れた放電制御装 置の製造に好適なヘッド基板を提供することができる。  (2) A flexible substrate in which an oxide film is formed on at least one of both surfaces of the metal foil is excellent in thermal conductivity, so that heat from the discharge electrode is transferred to the shape substrate to escape. It is possible to manufacture a discharge control device with excellent discharge control reliability that can prevent the heat build-up to the discharge electrode and improve the response of the discharge stop to the heating stop of the heat generating part. A suitable head substrate can be provided.
(3)金属箔の表面に酸ィ匕膜を形成したフレキシブル基板が、ポリイミドゃァラミド等の 榭脂製のフレキシブル基板よりも優れた耐熱性を有することにより、厚膜技術におけ る焼成時の温度に耐えることができるので、薄膜技術以外に厚膜技術を用いても発 熱部を形成することができる量産性、汎用性に優れたヘッド基板を提供することがで きる。  (3) A flexible substrate having an oxide film formed on the surface of a metal foil has better heat resistance than a flexible substrate made of a resin such as polyimide galamide, so that it can be used for firing in thick film technology. Since it can withstand the temperature, it is possible to provide a head substrate excellent in mass productivity and versatility that can form a heat generating portion even if a thick film technology is used in addition to the thin film technology.
(4)平面状態のフレキシブル基板上に放電デバイスを形成することにより、微細加工 及び多数個取りに対応することができる量産性に優れたヘッド基板を提供することが できる。  (4) By forming a discharge device on a flexible substrate in a planar state, it is possible to provide a head substrate excellent in mass productivity that can cope with microfabrication and multi-cavity.
[0064] 請求項 2に記載の発明によれば、請求項 1の効果に加え、以下のような効果を有す る。  [0064] According to the invention described in claim 2, in addition to the effect of claim 1, the following effect is obtained.
(1)フレキシブル薄膜の少なくとも一方の面に絶縁膜を形成することで発熱部と放電 部を確実に絶縁できる信頼性に優れたヘッド基板を提供することができる。 [0065] 請求項 3に記載の発明によれば、以下のような効果を有する。 (1) By forming an insulating film on at least one surface of the flexible thin film, it is possible to provide a highly reliable head substrate that can reliably insulate the heat generating portion and the discharge portion. [0065] According to the invention of claim 3, the following effects are obtained.
(1)発熱部や放電部等の放電デバイスを平面状態のフレキシブル基板へ技術的に 容易な方法で形成した後に、フレキシブル基板ごと湾曲させる等して容易に所望の 形状に加工 (変形)して形状基板に固定できるので、生産工程が簡便で量産性に優 れ、様々な形状の加熱放電型印字ヘッドの製造に対応可能で、設計自在性、汎用 性に優れたヘッド基板を提供することができる。  (1) After forming a discharge device such as a heat generating part or a discharge part on a flexible substrate in a flat state by a technically easy method, it is easily processed (deformed) into a desired shape by bending the flexible substrate together. Since it can be fixed to a shape substrate, it is possible to provide a head substrate that has a simple production process, is excellent in mass productivity, can be used for manufacturing various types of heat-discharge-type printheads, and has excellent design flexibility and versatility. it can.
(2)フレキシブル基板により発熱部と放電部を絶縁でき量産性に優れると共に、発熱 部の熱をフレキシブル基板を介して効率良く放電部に伝達することができる加熱の 効率性に優れたヘッド基板を提供することができる。  (2) The heat generating part and the discharging part can be insulated by the flexible substrate and excellent in mass productivity, and the head substrate with excellent heating efficiency that can efficiently transfer the heat of the heating part to the discharging part through the flexible substrate. Can be provided.
(3)金属箔の両面に酸化膜が形成されたフレキシブル基板は、熱伝導性に優れるの で、発熱体の発する熱をフレキシブル基板を介して放電電極へ効率よく伝達させるこ とができ、放電制御電圧や加熱温度を低く設定することができる省エネルギー性及 び放電発生の効率性に優れたヘッド基板を提供することができる。  (3) Since the flexible substrate with the oxide film formed on both sides of the metal foil has excellent thermal conductivity, the heat generated by the heating element can be efficiently transmitted to the discharge electrode through the flexible substrate, and the discharge It is possible to provide a head substrate excellent in energy saving and discharge generation efficiency in which the control voltage and heating temperature can be set low.
(4)金属箔の表面に酸ィ匕膜を形成したフレキシブル基板が、ポリイミドゃァラミド等の 榭脂製のフレキシブル基板よりも優れた耐熱性を有することにより、厚膜技術におけ る焼成時の温度に耐えることができるので、薄膜技術以外に厚膜技術を用いても発 熱部を形成することができる量産性、汎用性に優れたヘッド基板を提供することがで きる。  (4) A flexible substrate having an oxide film formed on the surface of a metal foil has a heat resistance superior to that of a resin substrate made of a resin such as polyimide galamide. Since it can withstand the temperature, it is possible to provide a head substrate excellent in mass productivity and versatility that can form a heat generating portion even if a thick film technology is used in addition to the thin film technology.
(5)平面状態のフレキシブル基板上に放電デバイスを形成することにより、微細加工 及び多数個取りに対応することができる量産性に優れたヘッド基板を提供することが できる。  (5) By forming a discharge device on a flexible substrate in a planar state, it is possible to provide a head substrate excellent in mass productivity that can cope with microfabrication and multi-cavity.
[0066] 請求項 4に記載の発明によれば、請求項 3の効果に加え、以下のような効果を有す る。  [0066] According to the invention described in claim 4, in addition to the effect of claim 3, the following effect is obtained.
(1)高温になる発熱部をフレキシブル薄膜で被覆することにより、外部との絶縁性を 確保できる安全性に優れたヘッド基板を提供することができる。  (1) By covering the heat generating portion that becomes high temperature with a flexible thin film, it is possible to provide a head substrate with excellent safety that can ensure insulation from the outside.
[0067] 請求項 5に記載の発明によれば、請求項 3の効果に加え、以下のような効果を有す る。 [0067] According to the invention of claim 5, in addition to the effect of claim 3, the following effect is obtained.
(1)放電ユニットと発熱ユニットとを別個の部品として製造することにより、各々のュ- ットの製造工程を簡素化して歩留まりを向上できる量産性に優れたヘッド基板を提供 することができる。 (1) By manufacturing the discharge unit and heat generation unit as separate parts, It is possible to provide a head substrate excellent in mass productivity that can simplify the manufacturing process of the robot and improve the yield.
(2)放電ユニットと発熱ユニットのそれぞれの特性のばらつきを考慮して組み合わせ ることにより、ほぼ均一な性能を得ることができる量産性に優れたヘッド基板を提供す ることがでさる。  (2) By combining the discharge unit and the heat generation unit in consideration of the variation in characteristics, it is possible to provide a head substrate excellent in mass productivity that can obtain almost uniform performance.
[0068] 請求項 6に記載の発明によれば、請求項 5の効果に加え、以下のような効果を有す る。  [0068] According to the invention described in claim 6, in addition to the effect of claim 5, the following effect is obtained.
( 1)着脱自在な放電ユニットや発熱ユニットは、容易に交換或いは修理を行うことが でき、メンテナンス性に優れると共に、各ユニットを消耗品として扱うことにより、ラン二 ングコストを低減できる省資源性に優れたヘッド基板を提供することができる。  (1) Detachable discharge units and heat generating units can be easily replaced or repaired, and they are excellent in maintainability, and each unit is treated as a consumable item, which saves running costs and saves resources. An excellent head substrate can be provided.
[0069] 請求項 7に記載の発明によれば、請求項 3乃至 6の内いずれか 1項の効果にカロえ、 以下のような効果を有する。 [0069] According to the invention of claim 7, the effect of any one of claims 3 to 6 is reduced and the following effects are obtained.
(1)フレキシブル基板の少なくとも一方の面に絶縁膜を形成することで発熱部と放電 部を確実に絶縁できる信頼性に優れたヘッド基板を提供することができる。  (1) By forming an insulating film on at least one surface of the flexible substrate, it is possible to provide a highly reliable head substrate that can reliably insulate the heat generating portion and the discharge portion.
[0070] 請求項 8に記載の発明によれば、請求項 1乃至 7の内いずれか 1項の効果にカロえ、 以下のような効果を有する。 [0070] According to the invention of claim 8, the effect of any one of claims 1 to 7 is achieved, and the following effects are obtained.
(1)放電電極の近傍に形成された誘導電極がアースとして機能することにより、放電 電極から誘導電極への放電を確実に発生させて記録媒体に画像を形成することが できる画像形成の信頼性に優れたヘッド基板を提供することができる。  (1) The reliability of image formation that allows the induction electrode formed in the vicinity of the discharge electrode to function as ground, thereby reliably generating a discharge from the discharge electrode to the induction electrode and forming an image on the recording medium. It is possible to provide an excellent head substrate.
[0071] 請求項 9に記載の発明によれば、請求項 1乃至 8の内いずれか 1項の効果にカロえ、 以下のような効果を有する。 [0071] According to the invention of claim 9, the effect of any one of claims 1 to 8 is reduced, and the following effects are obtained.
(1)放電電極の放電発生部位以外をフレキシブル被覆膜で被覆して余分な箇所か ら放電が発生するのを防止することにより、電子や正又は負のイオン、紫外線を一箇 所に集中して照射させることができる画像形成の効率性に優れたヘッド基板を提供 することができる。  (1) Concentrate electrons, positive or negative ions, and ultraviolet rays in one place by covering the other part of the discharge electrode with the flexible coating film to prevent the discharge from occurring from the excess part. Thus, it is possible to provide a head substrate having excellent image formation efficiency that can be irradiated.
(2)放電発生部位表面とフレキシブル被覆膜の表面との間に形成された段差により、 放電発生部位と記録媒体との接触を防止でき、記録媒体とのギャップを一定に保つ て放電発生部位力 の放電を安定させることができる信頼性に優れたヘッド基板を 提供することができる。 (2) The step formed between the surface of the discharge generation site and the surface of the flexible coating film can prevent the contact between the discharge generation site and the recording medium and keep the gap between the recording medium constant and the discharge generation site. A highly reliable head substrate that can stabilize power discharge Can be provided.
[0072] 請求項 10に記載の発明によれば、請求項 9の効果に加え、以下のような効果を有 する。  [0072] According to the invention of claim 10, in addition to the effect of claim 9, the following effect is obtained.
(1)フレキシブル被覆膜の表面に多くの凹凸部を設け、表面距離を伸延させることに より、表面抵抗を増カロさせることができ、剥身の放電発生部位力も周囲に漏電するの を防止して、ドライバ ICによる放電制御の安定性を向上させることができる信頼性に 優れたヘッド基板を提供することができる。  (1) By providing many irregularities on the surface of the flexible coating film and extending the surface distance, it is possible to increase the surface resistance and prevent the discharge generation site force of the debris from leaking to the surroundings. Thus, it is possible to provide a highly reliable head substrate that can improve the stability of discharge control by the driver IC.
(2)放電発生部位からの漏電を防止することにより、放電電極に印加した電圧 (放電 制御電圧)が低下するのを防止でき、放電発生の安定性、効率性に優れたヘッド基 板を提供することができる。  (2) Providing a head board with excellent discharge stability and efficiency by preventing the voltage applied to the discharge electrode (discharge control voltage) from decreasing by preventing leakage from the site where the discharge occurs. can do.
[0073] 請求項 11に記載の発明によれば、請求項 1乃至 10の内いずれか 1項の効果に加 え、以下のような効果を有する。  [0073] According to the invention of claim 11, in addition to the effect of any one of claims 1 to 10, the following effect is obtained.
(1)フレキシブル基板の金属箔に、金属箔と同じ材質の金属の酸化膜を形成するこ とにより、金属箔と酸化膜の密着性に優れ、絶縁性、耐久性に優れたヘッド基板を提 供することができる。  (1) By forming a metal oxide film of the same material as the metal foil on the metal foil of the flexible substrate, a head substrate with excellent adhesion between the metal foil and the oxide film and excellent insulation and durability is provided. Can be provided.
[0074] 請求項 12に記載の発明によれば、請求項 1乃至 10の内いずれか 1項の効果に加 え、以下のような効果を有する。  [0074] According to the invention of claim 12, in addition to the effect of any one of claims 1 to 10, the following effect is obtained.
(1)フレキシブル基板の金属箔に金属箔と異なる材質の金属の酸ィ匕膜で形成するこ とにより、金属箔と酸ィ匕膜の組合せによって、フレキシブル基板の熱伝導性と絶縁性 をコントロールすることができる熱伝導の効率性、絶縁の信頼性に優れたヘッド基板 を提供することができる。  (1) Controlling the thermal conductivity and insulation of the flexible board by combining the metal foil and the acid film by forming the metal foil of the flexible board on the metal foil of a material different from the metal foil. Thus, it is possible to provide a head substrate that is excellent in heat conduction efficiency and insulation reliability.
[0075] 請求項 13に記載の発明によれば、請求項 1乃至 12の内いずれか 1項の効果に加 え、以下のような効果を有する。 [0075] According to the invention of claim 13, in addition to the effect of any one of claims 1 to 12, the following effect is obtained.
(1)フレキシブル基板の金属箔をアルミニウムで形成することにより、フレキシブル基 板の熱伝導性を向上させることができ、放電電極や発熱部の余分な熱をフレキシブ ル基板が固定される形状基板へ効率的に伝達させて逃がすことや、発熱部の発する 熱を効率的に放電電極へ伝達させることができる放電発生の効率性、信頼性に優れ たヘッド基板を提供することができる。 [0076] 請求項 14に記載の発明によれば、請求項 1乃至 12の内いずれか 1項の効果に加 え、以下のような効果を有する。 (1) By forming the metal foil of the flexible board with aluminum, the thermal conductivity of the flexible board can be improved, and the excess heat from the discharge electrode and heat generating part is transferred to the shape board where the flexible board is fixed. It is possible to provide a head substrate excellent in the efficiency and reliability of discharge generation that can be efficiently transmitted and escaped, or the heat generated by the heat generating portion can be efficiently transmitted to the discharge electrode. [0076] According to the invention of claim 14, in addition to the effect of any one of claims 1 to 12, the following effect is obtained.
(1)フレキシブル基板の金属箔を銅で形成することにより、フレキシブル基板の熱伝 導性を向上させることができ、放電電極や発熱部の余分な熱をフレキシブル基板が 固定される形状基板へ効率的に伝達させて逃がすことや、発熱部の発する熱を効率 的に放電電極へ伝達させることができる放電発生の効率性、信頼性に優れたヘッド 基板を提供することができる。  (1) By forming the metal foil of the flexible board with copper, the thermal conductivity of the flexible board can be improved, and the excess heat from the discharge electrode and heat generating part can be efficiently transferred to the shape board where the flexible board is fixed. Therefore, it is possible to provide a head substrate excellent in the efficiency and reliability of the generation of discharge that can be transmitted and released efficiently, and that the heat generated by the heat generating portion can be efficiently transmitted to the discharge electrode.
[0077] 請求項 15に記載の発明によれば、請求項 1乃至 14の内いずれか 1項の効果に加 え、以下のような効果を有する。 [0077] According to the invention of claim 15, in addition to the effect of any one of claims 1 to 14, the following effect is obtained.
(1)酸ィ匕膜がアルミナで形成されたフレキシブル基板は、化学的に安定で耐熱性、 絶縁性に優れると共に、熱伝導率が高ぐ放電制御の信頼性に優れたヘッド基板を 提供することができる。  (1) A flexible substrate with an oxide film formed of alumina provides a head substrate that is chemically stable, excellent in heat resistance and insulation, and has high thermal conductivity and excellent discharge control reliability. be able to.
[0078] 請求項 16に記載の発明によれば、以下のような効果を有する。  [0078] According to the invention of claim 16, the following effects are obtained.
(1)ドライバ ICにより、画像データに基づいて放電電極を選択的に加熱して放電を発 生させることができ、容易に放電電極からの放電に伴うイオン発生量や発光強度を制 御でき、記録媒体上での面積階調が容易で、記録媒体の画像品質を向上させること ができる放電制御の信頼性に優れた放電制御装置を提供することができる。  (1) The driver IC can selectively heat the discharge electrode based on the image data to generate a discharge, and can easily control the amount of generated ions and the emission intensity associated with the discharge from the discharge electrode. It is possible to provide a discharge control device that is easy in area gradation on the recording medium and can improve the image quality of the recording medium and has excellent discharge control reliability.
[0079] 請求項 17に記載の発明によれば、請求項 16の効果に加え、以下のような効果を 有する。  [0079] According to the invention of claim 17, in addition to the effect of claim 16, the following effect is obtained.
(1)柔軟性を有するヘッド基板を形状基板に沿わせて固定するだけで、様々な形状 に加工することができる小型で量産性に優れた加熱放電型印字ヘッドを提供するこ とがでさる。  (1) By simply fixing a flexible head substrate along the shape substrate, it is possible to provide a heat discharge type print head that can be processed into various shapes and is excellent in mass production. .
[0080] 請求項 18に記載の発明によれば、請求項 17の効果に加え、以下のような効果を 有する。  [0080] According to the invention of claim 18, in addition to the effect of claim 17, the following effect is obtained.
(1)放電電極の配置面とドライバ ICの配置面とが同一平面上になぐ多種多様な形 状の記録媒体に対する放電電極の配置の自由度を増大させることができ小型で量 産性、設置自在性に優れ、記録媒体が湾曲しない状態で書き込みが可能であると共 に、多種多様な形状の静電潜像担持体に対しても最適な位置から静電潜像を形成 できる汎用性、画像品質の信頼性に優れた加熱放電型印字ヘッドを提供することが できる。 (1) It is possible to increase the degree of freedom in the arrangement of the discharge electrode for a wide variety of recording media, in which the discharge electrode arrangement surface and the driver IC arrangement surface are on the same plane. Excellent flexibility, allowing writing without bending the recording medium, and forming an electrostatic latent image from an optimal position on various types of electrostatic latent image carriers Therefore, it is possible to provide a heat-discharge type print head excellent in versatility and image quality reliability.
[0081] 請求項 19に記載の発明によれば、請求項 18の効果に加え、以下のような効果を 有する。  [0081] According to the invention of claim 19, in addition to the effect of claim 18, the following effect is obtained.
(1)放電部の配置方式が端面型であることにより、ドライバ ICと放電電極とが略直角 をなすように配置することができ、特にデジタルぺーパ等のように湾曲させな 、方がよ い記録媒体を直線状に搬送することができる水平プリンタに好適な加熱放電型印字 ヘッドを提供することができる。  (1) The arrangement of the discharge part is an end face type, so that the driver IC and the discharge electrode can be arranged almost at right angles, and it is better not to bend like a digital paper. It is possible to provide a heat-discharge type print head suitable for a horizontal printer that can convey a long recording medium in a straight line.
(2)放電部の配置方式が端面型であることにより、静電潜像担持体や記録媒体に対 向する部分の幅を狭くでき、水平方向に嵩張らずに配置することができるので、特に 多種多様な形状の静電潜像担持体に対応することができる汎用性に優れた加熱放 電型印字ヘッドを提供することができる。  (2) Since the arrangement of the discharge part is an end face type, the width of the part facing the electrostatic latent image carrier and the recording medium can be narrowed and can be arranged without being bulky in the horizontal direction. It is possible to provide a heat-discharge type print head excellent in versatility that can be used for electrostatic latent image carriers having various shapes.
[0082] 請求項 20に記載の発明によれば、請求項 18の効果に加え、以下のような効果を 有する。  [0082] According to the invention of claim 20, in addition to the effect of claim 18, the following effect is obtained.
(1)放電部の配置方式がエッジ型であることにより、ドライバ ICと放電電極とが鈍角を なすように配置することができ、特にデジタルぺーパ等のように湾曲させな 、方がよ い記録媒体を直線状に搬送することができる水平プリンタに好適な加熱放電型印字 ヘッドを提供することができる。  (1) The placement method of the discharge part is an edge type, so that the driver IC and the discharge electrode can be placed at an obtuse angle, and it is better not to bend it like a digital paper. It is possible to provide a heat discharge type print head suitable for a horizontal printer capable of conveying a recording medium linearly.
(2)放電部の配置方式がエッジ型であることにより、放電部を記録媒体に対向させる 際に、高さ方向に嵩張らずに配置することができるので、特に多種多様な形状の静 電潜像担持体に対応することができる汎用性に優れた加熱放電型印字ヘッドを提供 することができる。  (2) Since the discharge unit is arranged in an edge type, the discharge unit can be arranged without being bulky in the height direction when facing the recording medium. It is possible to provide a heat-discharge type print head excellent in versatility that can be applied to an image carrier.
[0083] 請求項 22に記載の発明によれば、請求項 17乃至 21の内いずれか 1項の効果に 加え、以下のような効果を有する。  [0083] According to the invention of claim 22, in addition to the effect of any one of claims 17 to 21, the following effect is obtained.
(1)形状基板が熱伝導性を有することにより、別途、放熱板を設ける必要がなぐ放 電電極や発熱部の余分な熱を速やかに形状基板で吸収して放熱させることができ、 放電制御の信頼性に優れると共に、部品点数、製造工数を低減できる量産性に優 れた加熱放電型印字ヘッドを提供することができる。 [0084] 請求項 23に記載の発明によれば、請求項 17乃至 22の内いずれか 1項の効果に 加え、以下のような効果を有する。 (1) Since the shape substrate has thermal conductivity, it is possible to quickly absorb the excess heat from the discharge electrode and the heat generating part without the need to provide a separate heat sink, and to dissipate the heat. In addition, it is possible to provide a heat discharge type print head that is excellent in mass reliability and can be reduced in the number of parts and the number of manufacturing steps. [0084] According to the invention of claim 23, in addition to the effect of any one of claims 17 to 22, the following effect is obtained.
(1)形状基板に熱伝導性を有する材質で形成された放熱板を配設することにより、放 熱面積を拡大することができ、フレキシブル基板力も形状基板を介して放熱板に伝 達された熱を効率的に放熱させることができる放電制御の信頼性に優れた加熱放電 型印字ヘッドを提供することができる。  (1) By disposing a heat sink made of a material with thermal conductivity on the shape substrate, the heat release area can be expanded, and the flexible substrate force is also transmitted to the heat sink via the shape substrate. It is possible to provide a heat discharge type print head excellent in reliability of discharge control capable of efficiently radiating heat.
[0085] 請求項 24に記載の発明によれば、以下のような効果を有する。 [0085] According to the invention of claim 24, the following effects are provided.
(1)平面状態のフレキシブル基板へ薄膜技術或いは技術的に容易な厚膜技術を用 いて発熱部などを形成した後に、発熱ユニットをフレキシブル基板ごと所望の形状に 変形 (湾曲)させることができ、形状基板の形状や形状基板に対する発熱ユニットの 固定位置を変更するだけで、平易な技術を用いて所望の形状 (従来は高度な技術を 要した)のサーマルヘッドの製造に対応できる量産性、汎用性に優れたサーマルへッ ドを提供することができる。  (1) After forming the heat generating part etc. using thin film technology or technically easy thick film technology on the flat flexible substrate, the heat generating unit can be deformed (curved) into the desired shape together with the flexible substrate, By simply changing the shape of the shape substrate and the fixing position of the heat generating unit with respect to the shape substrate, mass production and general-purpose that can support the production of thermal heads of the desired shape (previously requiring advanced technology) using simple technology It is possible to provide an excellent thermal head.
(2)金属箔の両面の内の少なくともいずれか一方の面に酸ィ匕膜が形成されたフレキ シブル基板は、熱伝導性に優れるので、発熱部の熱を形状基板へ伝達させて逃が すことができ、発熱部への熱の籠もりを防止し、発熱部の加熱停止に対する印字停 止の応答性を向上させて印字速度を高速ィ匕することができると共に、尾引のない高 品質な画像を形成することができる画像品質の信頼性に優れたサーマルヘッドを提 供することができる。  (2) A flexible substrate with an oxide film formed on at least one of both surfaces of the metal foil is excellent in thermal conductivity, so that heat from the heat generating part is transferred to the shape substrate to escape. This prevents the heat build-up from occurring in the heat generating part, improves the printing stop response to the heating stop of the heat generating part, and increases the printing speed. It is possible to provide a thermal head excellent in image quality reliability capable of forming a quality image.
(3)金属箔の表面に酸ィ匕膜を形成したフレキシブル基板が、ポリイミドゃァラミド等の 榭脂製のフレキシブル基板よりも優れた耐熱性を有することにより、厚膜技術におけ る焼成時の温度に耐えることができるので、薄膜技術以外に厚膜技術を用いても発 熱部を形成することができる量産性、汎用性に優れたサーマルヘッドを提供すること ができる。  (3) A flexible substrate having an oxide film formed on the surface of a metal foil has better heat resistance than a flexible substrate made of a resin such as polyimide galamide, so that it can be used for firing in thick film technology. Since it can withstand the temperature, it is possible to provide a thermal head excellent in mass productivity and versatility that can form a heat generating portion even by using a thick film technology in addition to the thin film technology.
(4)平面状態のフレキシブル基板上に発熱部を形成することにより、微細加工及び 多数個取りに対応することができる量産性に優れたサーマルヘッドを提供することが できる。  (4) By forming a heat generating part on a flexible substrate in a flat state, it is possible to provide a thermal head excellent in mass productivity that can cope with microfabrication and multi-cavity picking.
[0086] 請求項 25に記載の発明によれば、請求項 24の効果に加え、以下のような効果を 有する。 [0086] According to the invention of claim 25, in addition to the effect of claim 24, the following effect is obtained. Have.
(1)フレキシブル基板の金属箔に、金属箔と同じ材質の金属の酸化膜を形成するこ とにより、金属箔と酸化膜の密着性に優れ、絶縁性、耐久性に優れたサーマルヘッド を提供することができる。  (1) By providing a metal oxide film of the same material as the metal foil on the metal foil of the flexible substrate, a thermal head with excellent adhesion between the metal foil and oxide film and excellent insulation and durability is provided. can do.
[0087] 請求項 26に記載の発明によれば、請求項 24の効果に加え、以下のような効果を 有する。  [0087] According to the invention of claim 26, in addition to the effect of claim 24, the following effect is obtained.
(1)フレキシブル基板の金属箔に金属箔と異なる材質の金属の酸ィ匕膜で形成するこ とにより、金属箔と酸ィ匕膜の組合せによって、フレキシブル基板の熱伝導性と絶縁性 をコントロールすることができる熱伝導の効率性、絶縁の信頼性に優れたサーマルへ ッドを提供することができる。  (1) Controlling the thermal conductivity and insulation of the flexible board by combining the metal foil and the acid film by forming the metal foil of the flexible board on the metal foil of a material different from the metal foil. Therefore, it is possible to provide a thermal head with excellent heat transfer efficiency and insulation reliability.
[0088] 請求項 27に記載の発明によれば、請求項 24乃至 26の内いずれか 1項の効果に 加え、以下のような効果を有する。 [0088] According to the invention of claim 27, in addition to the effect of any one of claims 24 to 26, the following effect is obtained.
(1)フレキシブル基板の金属箔をアルミニウムで形成することにより、フレキシブル基 板の熱伝導性を向上させることができ、発熱部の余分な熱をフレキシブル基板が固 定される形状基板へ効率的に伝達させて逃がすことができる加熱制御の効率性、信 頼性に優れたサーマルヘッドを提供することができる。  (1) By forming the metal foil of the flexible board with aluminum, the thermal conductivity of the flexible board can be improved, and excess heat from the heat generating part can be efficiently transferred to the shape board where the flexible board is fixed. It is possible to provide a thermal head excellent in the efficiency and reliability of heating control that can be transmitted and escaped.
[0089] 請求項 28に記載の発明によれば、請求項 24乃至 26の内いずれか 1項の効果に 加え、以下のような効果を有する。 [0089] According to the invention of claim 28, in addition to the effect of any one of claims 24 to 26, the following effect is obtained.
(1)フレキシブル基板の金属箔を銅で形成することにより、フレキシブル基板の熱伝 導性を向上させることができ、発熱部の余分な熱をフレキシブル基板が固定される形 状基板へ効率的に伝達させて逃がすことができる加熱制御の効率性、信頼性に優 れたサ一マルヘッドを提供することができる。  (1) By forming the metal foil of the flexible board with copper, the thermal conductivity of the flexible board can be improved, and excess heat from the heat generating part can be efficiently transferred to the shape board to which the flexible board is fixed. It is possible to provide a thermal head with excellent efficiency and reliability of heating control that can be transmitted and escaped.
[0090] 請求項 29に記載の発明によれば、請求項 24乃至 28の内いずれか 1項の効果に 加え、以下のような効果を有する。 [0090] According to the invention of claim 29, in addition to the effect of any one of claims 24 to 28, the following effect is obtained.
(1)酸ィ匕膜がアルミナで形成されたフレキシブル基板は、化学的に安定で耐熱性、 絶縁性に優れると共に、熱伝導率が高ぐ加熱制御の信頼性に優れたサーマルへッ ドを提供することができる。  (1) Flexible substrates with an oxide film made of alumina are chemically stable, have excellent heat resistance and insulation, and have a thermal head with high thermal conductivity and high reliability in heating control. Can be provided.
[0091] 請求項 30に記載の発明によれば、請求項 24乃至 29の内いずれか 1項の効果に 加え、以下のような効果を有する。 [0091] According to the invention of claim 30, the effect of any one of claims 24 to 29 is achieved. In addition, it has the following effects.
(1)発熱体の配置面とドライバ ICの配置面とが同一平面上になぐ多種多様な形状 の記録媒体に対する発熱体の配置の自由度を増大させることができる汎用性に優れ たサーマルヘッドを提供することができる。  (1) A highly versatile thermal head that can increase the degree of freedom in arranging the heating element for a variety of shapes of recording media where the heating element placement surface and the driver IC placement surface are on the same plane. Can be provided.
[0092] 請求項 31に記載の発明によれば、請求項 30の効果に加え、以下のような効果を 有する。  [0092] According to the invention of claim 31, in addition to the effect of claim 30, the following effect is obtained.
(1)発熱部の配置方式が端面型であることにより、ドライバ ICと発熱体とが略直角を なすように配置することができ、特にプラスチック製のカードや厚紙などのように弾力 性があり、湾曲させることが困難な記録媒体を直線状に搬送することができる水平プ リンタに好適なサーマルヘッドを提供することができる。  (1) Since the heat generating part is arranged in an end face type, the driver IC and the heat generating element can be arranged so as to form a substantially right angle, which is particularly elastic such as plastic cards and cardboard. Therefore, it is possible to provide a thermal head suitable for a horizontal printer that can linearly convey a recording medium that is difficult to bend.
(2)発熱部の配置方式が端面型であることにより、記録媒体に対向する部分の幅を 狭くでき、水平方向に嵩張らずに配置することができるので、特に多種多様な形状の 記録媒体に対応することができ汎用性に優れ、発熱部と記録媒体との接触面積を小 さくして、発熱体力もの熱が走査方向に広がることを防止でき、にじみのない高品質 な画像を形成することができる画像品質の信頼性に優れたサーマルヘッドを提供す ることがでさる。  (2) Since the heat generating portion is arranged in the end face type, the width of the portion facing the recording medium can be narrowed and arranged without being bulky in the horizontal direction. It is possible to cope with it, and it has excellent versatility, and the contact area between the heat generating part and the recording medium can be reduced to prevent the heat generated by the heating element from spreading in the scanning direction, and a high-quality image without blur can be formed. It is possible to provide a thermal head with excellent image quality reliability.
[0093] 請求項 32に記載の発明によれば、請求項 30の効果に加え、以下のような効果を 有する。  [0093] According to the invention of claim 32, in addition to the effect of claim 30, the following effect is obtained.
(1)発熱部の配置方式がエッジ型であることにより、ドライバ ICと発熱体とが鈍角をな すように配置することができ、特にプラスチック製のカードや厚紙などのように弾力性 力 Sあり、湾曲させることが困難な記録媒体を直線状に搬送することができる水平プリン タに好適なサーマルヘッドを提供することができる。  (1) The arrangement of the heat generating part is an edge type, so that the driver IC and the heat generating element can be arranged at an obtuse angle, and in particular, the elastic force S such as a plastic card or cardboard. In addition, it is possible to provide a thermal head suitable for a horizontal printer that can linearly convey a recording medium that is difficult to bend.
(2)発熱部の配置方式がエッジ型であることにより、発熱部を記録媒体に対向させる 際に、高さ方向に嵩張らずに配置することができ、多種多様な形状の記録媒体に対 応することができ汎用性に優れ、発熱部と記録媒体との接触面積を小さくして、発熱 体からの熱が走査方向に広がることを防止でき、にじみのない高品質な画像を形成 することができる画像品質の信頼性に優れたサーマルヘッドを提供することができる [0094] 請求項 33に記載の発明によれば、請求項 30の効果に加え、以下のような効果を 有する。 (2) Since the heating unit is arranged in an edge type, the heating unit can be arranged without being bulky in the height direction when facing the recording medium, and can support recording media of various shapes. It is excellent in versatility, can reduce the contact area between the heating part and the recording medium, can prevent the heat from the heating element from spreading in the scanning direction, and can form a high-quality image without blurring. We can provide a thermal head with excellent image quality reliability [0094] According to the invention of claim 33, in addition to the effect of claim 30, the following effect is obtained.
(1)発熱部の配置方式が隆起型であることにより、ドライバ ICよりも発熱体を突出させ て配置することができ、特にプラスチック製のカードや厚紙などのように弾力性があり 、湾曲させることが困難な記録媒体を直線状に搬送することができる水平プリンタに 好適なサーマルヘッドを提供することができる。  (1) Since the heating unit is arranged in a raised manner, the heating element can be projected beyond the driver IC, and it is particularly flexible and curved like plastic cards and cardboard. Therefore, it is possible to provide a thermal head suitable for a horizontal printer that can convey a recording medium that is difficult to perform linearly.
(2)発熱部の配置方式が隆起型であることにより、発熱部を記録媒体に対向させる 際に、高さ方向に嵩張らずに配置することができ、汎用性に優れ、発熱部と記録媒体 との接触面積を小さくして、発熱体力もの熱が走査方向に広がることを防止でき、に じみのない高品質な画像を形成することができる画像品質の信頼性に優れたサーマ ルヘッドを提供することができる。  (2) Since the heating unit is arranged in a raised manner, the heating unit can be arranged without being bulky in the height direction when facing the recording medium, and is excellent in versatility. The thermal head with excellent image quality that can prevent the spread of heat in the scanning direction by spreading the heat in the scanning direction and form high-quality images without blurring. be able to.
図面の簡単な説明  Brief Description of Drawings
[0095] [図 1] (a)実施の形態 1における放電制御装置を備えた加熱放電型印字ヘッドを示す 模式側面図 (b)実施の形態 1における放電制御装置を備えた加熱放電型印字ヘッド を示す要部模式斜視図  [FIG. 1] (a) Schematic side view showing a heat discharge type print head provided with the discharge control device in Embodiment 1. (b) Heat discharge type print head provided with the discharge control device in Embodiment 1. Main part schematic perspective view showing
[図 2]実施の形態 1における放電制御装置のヘッド基板を示す要部平面展開図  FIG. 2 is a plan development view of a main part showing a head substrate of the discharge control device in the first embodiment.
[図 3] (a)図 2の A— A線矢視断面図(b)図 2の B— B線矢視断面図  [Fig. 3] (a) A-A line cross-sectional view of FIG. 2 (b) B-B cross-sectional view of FIG.
[図 4]実施の形態 1における放電制御装置のヘッド基板を示す要部分解斜視図  FIG. 4 is an exploded perspective view showing a main part of the head substrate of the discharge control device according to Embodiment 1.
[図 5]実施の形態 1における放電制御装置の構成図  FIG. 5 is a configuration diagram of a discharge control device according to Embodiment 1.
[図 6]実施の形態 1における放電制御装置のヘッド基板の発熱部形成工程を示す斜 視図  FIG. 6 is a perspective view showing a heating part forming process of the head substrate of the discharge control device in the first embodiment.
[図 7]実施の形態 1における放電制御装置のヘッド基板の放電部形成工程を示す斜 視図  FIG. 7 is a perspective view showing a discharge part forming process of the head substrate of the discharge control device in the first embodiment.
[図 8] (a)実施の形態 1における放電制御装置のヘッド基板の第 1の変形例を示す模 式平面図(b)図 8 (a)の C— C線矢視模式断面図  [FIG. 8] (a) Schematic plan view showing a first modification of the head substrate of the discharge control device in Embodiment 1 (b) Schematic cross-sectional view taken along the line CC in FIG. 8 (a)
[図 9]実施の形態 1における放電制御装置のヘッド基板の第 2の変形例を示す模式 断面図  FIG. 9 is a schematic cross-sectional view showing a second modification of the head substrate of the discharge control device according to Embodiment 1.
[図 10] (a)は実施の形態 1における放電制御装置のヘッド基板の第 3の変形例を示 す模式平面図 (b)図 10 (a)の D— D線矢視模式断面図 FIG. 10 (a) shows a third modification of the head substrate of the discharge control device according to Embodiment 1. (B) Schematic cross-sectional view taken along line D-D in Fig. 10 (a)
圆 11] (a)実施の形態 1における放電制御装置を備えた加熱放電型印字ヘッドの第 1の変形例を示す模式側面図 (b)実施の形態 1における放電制御装置を備えた加熱 放電型印字ヘッドの第 1の変形例を示す要部模式斜視図 圆 11] (a) Schematic side view showing a first modification of the heat discharge type print head provided with the discharge control device in Embodiment 1 (b) Heat discharge type having the discharge control device in Embodiment 1 Main part schematic perspective view showing a first modification of the print head
圆 12] (a)実施の形態 1における放電制御装置を備えた加熱放電型印字ヘッドの第[12] (a) The first of the heat discharge type print head provided with the discharge control device in the first embodiment.
2の変形例を示す模式側面図 (b)実施の形態 1における放電制御装置を備えた加熱 放電型印字ヘッドの第 2の変形例を示す要部模式斜視図 2 is a schematic side view showing a second modification of the heating / discharge-type print head including the discharge control device according to the first embodiment.
圆 13]実施の形態 1における放電制御装置のイオン発生の制御方法を示す図 圆 13] A diagram showing a control method of ion generation of the discharge control device in the first embodiment
[図 14] (a)実施の形態 2における放電制御装置を備えた加熱放電型印字ヘッドを示 す模式側面図 (b)実施の形態 2における放電制御装置を備えた加熱放電型印字へ ッドを示す要部模式斜視図  [FIG. 14] (a) Schematic side view showing a heat discharge type print head provided with the discharge control device in Embodiment 2. (b) Heat discharge type print head provided with the discharge control device in Embodiment 2. Main part schematic perspective view showing
[図 15] (a)実施の形態 2における放電制御装置のヘッド基板の要部平面展開図 (b) 図 15 (a)の E— E線矢視断面図  [FIG. 15] (a) Plane development of the main part of the head substrate of the discharge control device in Embodiment 2 (b) Cross-sectional view taken along line E—E in FIG. 15 (a)
圆 16]実施の形態 3における放電制御装置のヘッド基板の要部平面展開図 圆 16] Planar development of the main part of the head substrate of the discharge control device in the third embodiment
[図 17] (a)図 16の F— F線矢視断面図(b)図 16の G— G線矢視断面図 [Fig. 17] (a) Sectional view taken along line FF in FIG. 16 (b) Sectional view taken along line GG in FIG.
[図 18] (a)実施の形態 3における放電制御装置のヘッド基板の第 1の変形例を示す 模式平面図 (b)図 18 (a)の H— H線矢視模式断面図 [FIG. 18] (a) Schematic plan view showing a first modification of the head substrate of the discharge control device in Embodiment 3. (b) Schematic cross-sectional view taken along line H—H in FIG. 18 (a).
圆 19]実施の形態 3における放電制御装置のヘッド基板の第 2の変形例を示す模式 断面図 圆 19] Schematic cross-sectional view showing a second modification of the head substrate of the discharge control device in the third embodiment
[図 20] (a)実施の形態 3における放電制御装置のヘッド基板の第 3の変形例を示す 模式平面図 (b)図 20 (a)の I-I線矢視模式断面図  FIG. 20 (a) Schematic plan view showing a third modification of the head substrate of the discharge control device according to the third embodiment (b) Schematic cross-sectional view taken along line I-I in FIG. 20 (a)
圆 21]実施の形態 4における放電デバイス分離型の放電制御装置のヘッド基板を示 す構成図 21] Configuration diagram showing the head substrate of the discharge control device of the discharge device separation type according to the fourth embodiment
[図 22] (a)実施の形態 4における放電デバイス分離型の放電制御装置のヘッド基板 の放電ユニットを示す模式断面図 (b)実施の形態 4における放電デバイス分離型の 放電制御装置のヘッド基板の発熱ユニットを示す模式断面図(c)実施の形態 4にお ける放電デバイス分離型の放電制御装置のヘッド基板を示す模式断面図 (d)実施 の形態 4における放電デバイス分離型の放電制御装置のヘッド基板の変形例を示す 模式断面図 [FIG. 22] (a) Schematic cross-sectional view showing a discharge unit of the head substrate of the discharge control device of the discharge device separation type in Embodiment 4 (b) Head substrate of the discharge control device of the discharge device separation type of Embodiment 4. (C) Schematic sectional view showing the head substrate of the discharge device separation type discharge control device in Embodiment 4 (d) Discharge device separation type discharge control device in Embodiment 4 Shows a modification of the head substrate Schematic cross section
[図 23]実施の形態 5におけるサーマルヘッドを示す要部模式斜視図  FIG. 23 is a schematic perspective view of the main part showing the thermal head in the fifth embodiment.
[図 24]実施の形態 5におけるサーマルヘッドの発熱ユニットを示す要部平面展開図 FIG. 24 is a plan development view of main parts showing the heat generating unit of the thermal head in the fifth embodiment.
[図 25] (a)図 24の J一 J線矢視断面図(b)図 24の K一 K線矢視断面図 [Fig.25] (a) Cross section taken along line J-1 in FIG. 24 (b) Cross section taken along line K in FIG.
符号の説明 Explanation of symbols
la, lb, lc, Id 加熱放電型印字ヘッド  la, lb, lc, Id Heat-discharge print head
2, 2a 形状基板  2, 2a shaped substrate
3a 端面部  3a End face
3b 縁部  3b edge
3c 隆起部  3c ridge
4, 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i, 4j ヘッド基板  4, 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i, 4j Head substrate
5 放電部  5 Discharge section
5a 放電電極  5a Discharge electrode
5b 共通電極部  5b Common electrode section
6 ドライバ  6 Driver
7 放電制御装置  7 Discharge control device
8 プリント配線基板  8 Printed circuit board
8a コネクタ  8a connector
9 ICカバー  9 IC cover
9a 高圧基板  9a High voltage substrate
10 フレキシブル基板  10 Flexible substrate
10a, 14a, 14b, 19a 絶縁膜  10a, 14a, 14b, 19a Insulating film
11 発熱用共通導体パターン  11 Common conductor pattern for heat generation
11a 発熱用櫛歯電極  11a Comb electrode for heating
l ib 発熱用共通電極部  l ib Common electrode for heat generation
12 発熱用個別電極  12 Individual electrode for heat generation
12a ボンディングパッド  12a Bonding pad
13 発熱部 13a 発熱体 13 Heating part 13a Heating element
14, 19, 20 フレキシブル薄膜  14, 19, 20 Flexible thin film
15 放電発生部位  15 Discharge generation site
16 加熱手段  16 Heating means
17 フレキシブル被覆膜  17 Flexible coating
17a 開口部  17a opening
17b 凹凸部  17b Concavity and convexity
18 誘導電極  18 Induction electrode
21 放電ユニット  21 Discharge unit
22, 22a 発熱ユニット  22, 22a Heating unit
30 サーマルヘッド  30 Thermal head
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
(実施の形態 1)  (Embodiment 1)
本発明の実施の形態 1における放電制御装置を備えた加熱放電型印字ヘッドにつ いて、以下図面を参照しながら説明する。  A heat-discharge type print head provided with a discharge control device according to Embodiment 1 of the present invention will be described below with reference to the drawings.
図 1 (a)は実施の形態 1における放電制御装置を備えた加熱放電型印字ヘッドを 示す模式側面図であり、図 1 (b)は実施の形態 1における放電制御装置を備えたカロ 熱放電型印字ヘッドを示す要部模式斜視図である。  FIG. 1 (a) is a schematic side view showing a heat-discharge type print head provided with the discharge control device according to Embodiment 1, and FIG. 1 (b) is a calorie heat discharge provided with the discharge control device according to Embodiment 1. It is a principal part model perspective view which shows a type | mold printing head.
図 1中、 laは後述する実施の形態 1における放電制御装置 7を備えた水平プリンタ 対応型の部類の端面型の加熱放電型印字ヘッド、 2はアルミニウム等の材質で形成 され放電制御装置 7が固定された加熱放電型印字ヘッド laの形状基板、 3aは形状 基板 2の先端に形成された円弧状の端面部、 4は後述するフレキシブル基板に後述 する発熱部や放電部 5等の放電デバイスが積層され形状基板 2に配設された放電制 御装置 7のヘッド基板、 5aは櫛型に形成された放電部 5の複数の放電電極、 5bは放 電電極 5aの一端部を接続する放電部 5の共通電極部、 7はヘッド基板 4とドライバ IC 6を備えた実施の形態 1における放電制御装置、 8は外部と電気的に接続するため のコネクタ 8aを備え形状基板 2に配設された加熱放電型印字ヘッド laのプリント配線 基板、 9はドライバ IC6及びプリント配線基板 8を保護するために覆設された ICカバー 、 9aは ICカバー 9の背面に配設され放電部 5の共通電極部 5bに電気配線(図示せ ず)で接続され放電電極 5aに対して高電圧 (放電制御電圧)を供給する高圧基板で ある。 In FIG. 1, la is an end face type heat discharge type print head corresponding to a horizontal printer equipped with a discharge control device 7 in Embodiment 1 described later, and 2 is formed of a material such as aluminum, and the discharge control device 7 is A fixed heat discharge type print head la-shaped substrate, 3a is an arcuate end surface formed at the tip of the shape substrate 2, 4 is a flexible substrate described later, and a discharge device such as a heat generating unit or discharge unit 5 described later is provided. The head substrate of the discharge control device 7 that is stacked and disposed on the shape substrate 2, 5a is a plurality of discharge electrodes of the discharge portion 5 formed in a comb shape, and 5b is a discharge portion that connects one end of the discharge electrode 5a. 5 is a common electrode portion, 7 is a discharge control device according to the first embodiment including a head substrate 4 and a driver IC 6, and 8 is disposed on the shape substrate 2 including a connector 8a for electrical connection to the outside. Heated discharge print head la printed wiring board 9 IC cover is Kutsugae設 to protect driver IC6 and the printed wiring board 8 9a is a high-voltage board that is disposed on the back surface of the IC cover 9 and is connected to the common electrode part 5b of the discharge part 5 by electrical wiring (not shown) and supplies a high voltage (discharge control voltage) to the discharge electrode 5a. is there.
[0098] 次に、実施の形態 1における放電制御装置に用いるヘッド基板の構造について詳 細を説明する。  Next, details of the structure of the head substrate used in the discharge control apparatus according to Embodiment 1 will be described.
図 2は実施の形態 1における放電制御装置のヘッド基板を示す要部平面展開図で あり、図 3 (a)は図 2の A— A線矢視断面図であり、図 3 (b)は図 2の B— B線矢視断面 図であり、図 4は実施の形態 1における放電制御装置のヘッド基板を示す要部分解 斜視図である。  FIG. 2 is a plan development view of the main part showing the head substrate of the discharge control device according to Embodiment 1, FIG. 3 (a) is a cross-sectional view taken along line AA in FIG. 2, and FIG. FIG. 4 is a cross-sectional view taken along the line B-B in FIG. 2, and FIG. 4 is an exploded perspective view showing a main part of the head substrate of the discharge control device according to the first embodiment.
図 2乃至図 4中、 10はアルミニウム箔の両面にアルミナの酸ィ匕膜が形成された耐熱 性及び絶縁性を有するヘッド基板 4のフレキシブル基板、 11は複数の発熱用櫛歯電 極 11aと一体に形成されフレキシブル基板 10の上面に形成された発熱用共通導体 パターン、 1 lbは発熱用共通導体パターン 11の上面に配設された発熱用共通電極 部、 12は発熱用櫛歯電極 11aと交互にフレキシブル基板 10の上面に形成された発 熱用個別電極、 12aは発熱用個別電極 12の端部に形成されたボンディングパッド、 13は放電制御装置 5の発熱部、 13aは発熱用櫛歯電極 11a及び発熱用個別電極 1 2の上部に電気的に接続され形成された発熱部 13の発熱体、 14は発熱用共通電極 部 l ib及び発熱用個別電極 12の端部を除いてフレキシブル基板 10の上面に覆設 された耐熱性及び絶縁性を有するポリイミド,ァラミド,ポリエーテルイミド等のフレキ シブル薄膜、 14aはフレキシブル薄膜 14の上面に形成された絶縁膜、 15は発熱体 1 3aで加熱されることにより放電が発生する放電電極 5aの放電発生部位である。  In FIGS. 2 to 4, reference numeral 10 denotes a heat-resistant and insulating head substrate in which an aluminum oxide film is formed on both sides of an aluminum foil. 4, a plurality of comb-shaped electrodes 11a for heat generation; The heat generating common conductor pattern formed integrally on the upper surface of the flexible substrate 10, 1 lb is the heat generating common electrode portion disposed on the upper surface of the heat generating common conductor pattern 11, and 12 is the heat generating comb electrode 11 a. Heat generating individual electrodes alternately formed on the upper surface of the flexible substrate 10, 12 a is a bonding pad formed at the end of the heat generating individual electrode 12, 13 is a heat generating part of the discharge controller 5, and 13 a is a heat generating comb tooth Exposed electrode 11a and exothermic electrode 1 2 are electrically connected to the upper part of the exothermic body 13 of the exothermic part 13 and 14 is a flexible substrate except for the end of the exothermic common electrode part l ib and the exothermic individual electrode 12 Heat resistance and insulation covered on top of 10 Flexible thin films such as polyimide, aramid, and polyetherimide, 14a is an insulating film formed on the upper surface of the flexible thin film 14, and 15 is a discharge electrode 5a that generates a discharge when heated by a heating element 13a. It is a discharge generation site.
[0099] 尚、前述の放電電極 5はフレキシブル薄膜 14及び絶縁膜 14aにより発熱用櫛歯電 極 l la、発熱用個別電極 12及び発熱抵抗体 13aと絶縁され、複数の放電電極 5aは 各々の発熱用個別電極 12に対応する位置で発熱抵抗体 13aに対向して形成されて いる。フレキシブル薄膜 14は耐熱性及び絶縁性を有する力 より確実に放電部 5と 発熱部 13との間を絶縁するために、フレキシブル薄膜 14の上面に絶縁膜 14aを形 成した。本実施の形態では、フレキシブル薄膜 14の上面のみに絶縁膜 14aを形成し た力 絶縁膜 14aはフレキシブル薄膜 14の両面の内の少なくとも一方の面に形成す ればよい。絶縁膜 14aは SiON, SiO等の無機質やその他の絶縁性を有する材質( [0099] The discharge electrode 5 described above is insulated from the heating comb electrode lla, the heating individual electrode 12 and the heating resistor 13a by the flexible thin film 14 and the insulating film 14a. It is formed facing the heat generating resistor 13a at a position corresponding to the individual electrode 12 for heat generation. The flexible thin film 14 is formed with an insulating film 14a on the upper surface of the flexible thin film 14 in order to insulate between the discharge part 5 and the heat generating part 13 more reliably by heat resistance and insulation. In the present embodiment, the force of forming the insulating film 14a only on the upper surface of the flexible thin film 14 The insulating film 14a is formed on at least one of the both surfaces of the flexible thin film 14. Just do it. Insulating film 14a is made of inorganic materials such as SiON and SiO, and other insulating materials (
2  2
有機 ·無機を問わず)で薄膜状に形成することができる。特に、発熱体 13aの熱を効 率よく放電電極 5aに伝達することができる高熱伝導性のものが好ましい。また、複数 回に分けて重ね塗りして絶縁膜 14aを形成した場合、一回毎の塗りでピンホールが 発生したとしても、重ね塗りすることでピンホール同士が重なる可能性を低減すること ができ、確実に発熱部 13を絶縁することができるので信頼性に優れる。  It can be formed into a thin film form (whether organic or inorganic). In particular, those having high thermal conductivity that can efficiently transfer the heat of the heating element 13a to the discharge electrode 5a are preferable. In addition, when the insulating film 14a is formed by multiple coatings, even if pinholes are generated by each coating, the possibility of overlapping pinholes can be reduced by applying multiple coatings. It is possible to reliably insulate the heat generating portion 13 and is excellent in reliability.
[0100] 片面積層型のヘッド基板 4は平面状態で形成するものの、極めて薄くかつ柔軟性 に富んでいるため、平面状態から容易に形状基板 2に沿う形状 (所望の形状)に加工 する(変形させる)ことがでさる。 [0100] Although the single-area layer type head substrate 4 is formed in a planar state, it is extremely thin and flexible, and is easily processed from the planar state into a shape (desired shape) along the shape substrate 2 (deformation). Make it possible.
本実施の形態では、アルミニウム箔の両面にアルミナの酸ィ匕膜が形成されたフレキ シブル基板 10 (有限会社アイビ一化工社製のアルミナフィルム)を用いたが、酸ィ匕膜 はフレキシブル基板 10の両面の内、少なくとも絶縁が必要な発熱部 13を形成する側 の面に形成されていればよい。尚、フレキシブル基板 10の両面に酸化膜を形成した 場合、フレキシブル基板 10の表裏で熱膨張率を等しくすることができるので、フレキ シブル基板 10の反りなどによる変形を防止でき、放電部 5や発熱部 13の製造安定 性に優れると共に、駆動時の熱変形を低減でき長寿命性に優れる。また、フレキシブ ル基板 10の基材となる金属箔及び酸ィ匕膜はこれに限定されるものではなぐフレキ シブル基板 10に必要な耐熱性及び絶縁性に応じて適宜、選択することができる。  In this embodiment, a flexible substrate 10 (alumina film manufactured by Ibi Kaiko Co., Ltd.) in which an aluminum oxide film is formed on both surfaces of an aluminum foil is used, but the oxide film is a flexible substrate 10. Of these, it is only necessary to be formed on at least the surface on which the heat generating portion 13 requiring insulation is formed. In addition, when an oxide film is formed on both surfaces of the flexible substrate 10, the thermal expansion coefficient can be made equal on the front and back of the flexible substrate 10, so that deformation due to the warp of the flexible substrate 10 can be prevented, and the discharge part 5 and heat generation The manufacturing stability of the part 13 is excellent, and the thermal deformation during driving can be reduced and the long life is excellent. Further, the metal foil and the acid film used as the base material of the flexible substrate 10 can be appropriately selected according to the heat resistance and insulation required for the flexible substrate 10 without being limited thereto.
[0101] 次に、放電制御装置の構成について詳細に説明する。 Next, the configuration of the discharge control device will be described in detail.
図 5は実施の形態 1における放電制御装置の構成図である。  FIG. 5 is a configuration diagram of the discharge control device in the first embodiment.
図 5において、ヘッド基板 4は放電部 5と発熱部 13とを有する。発熱部 13と電気的 に接続されたドライバ IC6 (発熱部 13から延びるリードパターンにドライバ IC6を金線 でワイヤボンディングした後に、エポキシ榭脂等の IC保護用の樹脂で封止する)で発 熱部 13の発熱体 13aの発熱を制御するのが加熱手段 16である。加熱手段 16により 放電部 5の放電電極 5aへの加熱を制御することで、放電電極 5aからの放電を制御 するのが加熱放電方式の放電制御装置 7である。  In FIG. 5, the head substrate 4 has a discharge part 5 and a heat generation part 13. Heat generated by the driver IC 6 electrically connected to the heat generating part 13 (the driver IC 6 is wire-bonded to the lead pattern extending from the heat generating part 13 with a gold wire and then sealed with an IC protective resin such as epoxy resin) The heating means 16 controls the heat generation of the heating element 13a of the section 13. It is the discharge controller 7 of the heating discharge type that controls the discharge from the discharge electrode 5a by controlling the heating of the discharge part 5 by the heating means 16 to the discharge electrode 5a.
ヘッド基板 4を形状基板 2に沿わせて固定することにより、図 1に示したような加熱放 電型印字ヘッド laを得ることができる。尚、形状基板 2をアルミニウム等の放熱性のよ い材質で形成することにより、発熱部 13で発生した熱を速やかにフレキシブル基板 1 0から形状基板 2に伝達させ、形状基板 2から放熱させることができる。これにより、発 熱部 13の急速冷却を可能にして加熱停止に対する応答性を向上させて 、る。また、 ドライバ IC6等を熱力 守ることができ信頼性に優れる。形状基板 2の表面に溝等に より凹凸を形成した場合、形状基板 2の表面積を拡大することができ、放熱の効率性 を向上させることができる。 By fixing the head substrate 4 along the shape substrate 2, a heating / discharging print head la as shown in FIG. 1 can be obtained. The shape substrate 2 has good heat dissipation such as aluminum. By forming it with a new material, the heat generated in the heat generating portion 13 can be quickly transferred from the flexible substrate 10 to the shape substrate 2 and radiated from the shape substrate 2. As a result, the heat generating portion 13 can be rapidly cooled to improve the response to the heating stop. In addition, the driver IC6 etc. can be protected from heat and is highly reliable. When irregularities are formed on the surface of the shape substrate 2 by grooves or the like, the surface area of the shape substrate 2 can be increased, and the efficiency of heat dissipation can be improved.
[0102] 次に、ヘッド基板の製造方法について詳細に説明する。 Next, a method for manufacturing the head substrate will be described in detail.
図 6は実施の形態 1における放電制御装置のヘッド基板の発熱部形成工程を示す 斜視図であり、図 7は実施の形態 1における放電制御装置のヘッド基板の放電部形 成工程を示す斜視図である。  FIG. 6 is a perspective view showing a heat generating part formation process of the head substrate of the discharge control device according to the first embodiment, and FIG. 7 is a perspective view showing a discharge part forming process of the head substrate of the discharge control device according to the first embodiment. It is.
まず、発熱部形成工程について説明する。  First, the heating part forming step will be described.
図 6において、平面状に形成されたフレキシブル基板 10の表面に金ペースト等の 導体を印刷した後、エッチングにより発熱用共通導体パターン 11で接続された複数 の発熱用櫛歯電極 11a及び発熱用個別電極 12を形成する。その後、発熱用櫛歯電 極 11a及び発熱用個別電極 12の上部に TaSiO、 RuO等を印刷する等して帯状の  In FIG. 6, after a conductor such as a gold paste is printed on the surface of the flexible substrate 10 formed in a flat shape, a plurality of comb electrodes 11a for heating and individual heating electrodes connected by a heating common conductor pattern 11 by etching. Electrode 12 is formed. After that, a strip-like shape is printed by printing TaSiO, RuO, etc. on the top of the heating comb electrode 11a and the heating individual electrode 12.
2 2  twenty two
発熱体 13aを形成する。また、発熱用共通導体パターン 11の上面には銀ペースト等 を印刷する等して発熱用共通電極部 l ibを形成する。  A heating element 13a is formed. Further, the heat generating common electrode portion l ib is formed on the upper surface of the heat generating common conductor pattern 11 by printing silver paste or the like.
[0103] 発熱用個別電極 12の端部にはボンディングパッド 12aを形成した。これにより、ワイ ャボンディングによるドライバ IC6との接続を容易に行うことができる。 [0103] Bonding pads 12a were formed at the ends of the individual heating electrodes 12. This makes it easy to connect to the driver IC 6 by wire bonding.
尚、加熱手段 16は従来の感熱式のファクシミリなどに使用されるサーマルヘッドと 同様の構成が好適に用いられる。この場合、既存のサーマルヘッドの製造工程を踏 襲でき、製造装置を流用して放電制御装置 7を低コストで製造することができる。 本実施の形態では、発熱部 13の発熱体 13aを帯状に形成し、発熱用櫛歯電極 11 aと発熱用個別電極 12を交互に配設し、各中央の 1本の発熱用個別電極 12とその 両側の発熱用櫛歯電極 11aとの間に通電することにより各々の放電電極 5aの放電 発生部位 15の位置に対応する発熱体 13aの任意の箇所を選択的に発熱させ、放電 電極 5aを加熱する方式としたが、これに限定されるものではなぐ各々の放電電極 5a の放電発生部位 15を選択的に加熱できる構造であればよ!、。 [0104] 次に、放電部形成工程について説明する。 The heating unit 16 preferably has the same configuration as a thermal head used in a conventional thermal facsimile. In this case, the existing thermal head manufacturing process can be followed, and the discharge control device 7 can be manufactured at low cost by diverting the manufacturing device. In the present embodiment, the heating element 13a of the heating part 13 is formed in a strip shape, the heating comb electrodes 11a and the heating individual electrodes 12 are alternately arranged, and one heating individual electrode 12 at each center is provided. Between the heat generating comb electrodes 11a on both sides of the discharge electrode 5a, and selectively generate heat at any part of the heating element 13a corresponding to the position of the discharge generating part 15 of each discharge electrode 5a. However, the present invention is not limited to this, and any structure that can selectively heat the discharge generation site 15 of each discharge electrode 5a can be used. Next, the discharge part forming step will be described.
図 7において、発熱用共通電極部 l ib及び発熱用個別電極 12の各端部を除いて フレキシブル基板 10の表面に 300°C程度の耐熱性及び絶縁性を有するポリイミド, ァラミド,ポリエーテルイミド等の薄膜榭脂を印刷する等してフレキシブル薄膜 14を形 成する。フレキシブル薄膜 14は発熱用共通電極部 l lb、発熱用個別電極 12、発熱 体 13a等を保護し、絶縁できるものであればよいが、発熱体 13aの熱を効率よく放電 電極 5aに伝達することができる高熱伝導性のものが好適に用いられる。フレキシブル 薄膜 14は、ポリイミドゃァラミド等の耐熱性及び耐絶縁性を有する榭脂の溶液をスク リーン印刷等で塗布して形成してもよ ヽし、同様の榭脂で形成された薄膜シートを覆 設して形成してもよい。  In FIG. 7, except for each end of the heat generating common electrode section ib and the heat generating individual electrode 12, the surface of the flexible substrate 10 has a heat resistance and insulating property of about 300 ° C., such as polyimide, aramid, polyetherimide, etc. The flexible thin film 14 is formed, for example, by printing the thin film resin. The flexible thin film 14 may be any material that can protect and insulate the heat generating common electrode section l lb, the heat generating individual electrode 12, the heat generating element 13a, etc., but efficiently transfer the heat of the heat generating element 13a to the discharge electrode 5a. Those having high thermal conductivity that can be used are preferably used. The flexible thin film 14 may be formed by applying a heat-resistant and insulating-resistant resin solution such as polyimide garamide by screen printing or the like, or a thin film sheet formed of the same resin. It may be formed by covering.
[0105] 次に、フレキシブル薄膜 14の上部に加熱手段 16の発熱用個別電極 12に対向した 複数の放電電極 5a及びそれらを接続する共通電極部 5bを形成する。放電電極 5a 及び共通電極部 5bの形成には、金、銀、銅、アルミニウム等の金属を、蒸着やスパッ タゃ印刷で形成した後、エッチングしてパターン形成するものが好適に用いられる。 また、その他にカーボン等の導電材料を用いてもよい。  Next, a plurality of discharge electrodes 5 a facing the heat generating individual electrodes 12 of the heating means 16 and a common electrode portion 5 b connecting them are formed on the flexible thin film 14. For the formation of the discharge electrode 5a and the common electrode portion 5b, a metal such as gold, silver, copper, or aluminum formed by vapor deposition or sputtering printing and then etched to form a pattern is suitably used. In addition, a conductive material such as carbon may be used.
尚、本実施の形態では各々の放電電極 5aを略矩形状に形成した力 台形状、砲 弾状、半円形状あるいはこれらを組合せた形状等に形成することができる。また、放 電電極 5aの放電発生部位 15は縁周辺からの放電量が多いので、縁周辺の周長が 長くなるように放電電極 5aの外周周縁部に複数の凹凸部を形成して放電の発生効 率を向上させることができる。その結果、放電発生部位 15からの放電量が増加し、ィ オン照射量や発光強度を増加させることができるので、放電制御装置 7の省エネル ギー性に優れる。また、放電電極 5aへの印加電圧を小さく設定できるので、放電電 極 5aの長寿命性にも優れる。  In the present embodiment, each discharge electrode 5a can be formed in a trapezoidal shape, a bullet shape, a semicircular shape, or a combination of these, formed in a substantially rectangular shape. In addition, since the discharge generation site 15 of the discharge electrode 5a has a large amount of discharge from the periphery of the edge, a plurality of uneven portions are formed on the outer peripheral edge of the discharge electrode 5a so that the peripheral length of the periphery of the discharge electrode 5a becomes longer. Generation efficiency can be improved. As a result, the amount of discharge from the discharge generation site 15 is increased, and the ion irradiation amount and emission intensity can be increased, so that the energy saving performance of the discharge control device 7 is excellent. Moreover, since the voltage applied to the discharge electrode 5a can be set small, the long life of the discharge electrode 5a is also excellent.
[0106] 次に、ヘッド基板の変形例について説明する。 Next, a modified example of the head substrate will be described.
図 8 (a)は実施の形態 1における放電制御装置のヘッド基板の第 1の変形例を示す 模式平面図であり、図 8 (b)は図 8 (a)の C— C線矢視模式断面図である。  FIG. 8 (a) is a schematic plan view showing a first modification of the head substrate of the discharge control device in Embodiment 1, and FIG. 8 (b) is a schematic view taken along the line CC in FIG. 8 (a). It is sectional drawing.
図 8において、実施の形態 1における放電制御装置のヘッド基板の第 1の変形例が 実施の形態 1と異なるのは、ヘッド基板 4aが、放電部 5の表面に覆設された耐熱性及 び絶縁性を有するフレキシブル被覆膜 17を有し、フレキシブル被覆膜 17が各々の 放電電極 5aの放電発生部位 15 (発熱体 13a位置近傍)に当たる位置に略円形状の 開口部 17aを有する点である。フレキシブル被覆膜 17は前述のフレキシブル薄膜 14 と同様にして形成した。尚、独立した複数の開口部 17aを形成する代わりに、複数の 放電電極 5aにまたがった長孔状の開口部を形成してもよい。 In FIG. 8, the first modification of the head substrate of the discharge control device in the first embodiment is different from the first embodiment in that the head substrate 4a is covered with heat resistance and covered on the surface of the discharge part 5. And a flexible coating film 17 having an insulating property, and the flexible coating film 17 has a substantially circular opening 17a at a position where the flexible coating film 17 hits a discharge generation site 15 (near the position of the heating element 13a) of each discharge electrode 5a. It is. The flexible coating film 17 was formed in the same manner as the flexible thin film 14 described above. Instead of forming a plurality of independent openings 17a, a long hole-like opening extending over the plurality of discharge electrodes 5a may be formed.
放電電極 5aの放電発生部位 15表面とフレキシブル被覆膜 17の表面との間に段差 を形成することができるので、放電電極 5aの放電発生部位 15と対向配置される記録 媒体等との間のギャップを一定に保つことができ、放電電極 5aと記録媒体等との接 触を防止でき、放電発生部位 15からの放電を安定させることができる。  Since a step can be formed between the surface of the discharge generation site 15 of the discharge electrode 5a and the surface of the flexible coating film 17, the gap between the discharge generation site 15 of the discharge electrode 5a and the recording medium, etc. The gap can be kept constant, the contact between the discharge electrode 5a and the recording medium can be prevented, and the discharge from the discharge generation site 15 can be stabilized.
[0107] 図 9は実施の形態 1における放電制御装置のヘッド基板の第 2の変形例を示す模 式断面図である。 FIG. 9 is a schematic cross-sectional view showing a second modification of the head substrate of the discharge control device in the first embodiment.
図 9にお 、て、実施の形態 1における放電制御装置のヘッド基板の第 2の変形例が 第 1の変形例と異なるのは、ヘッド基板 4bのフレキシブル被覆膜 17の表面に複数の 凹凸部 17bが形成されて 、る点である。  In FIG. 9, the second modification of the head substrate of the discharge control device in the first embodiment is different from the first modification in that a plurality of irregularities are formed on the surface of the flexible coating film 17 of the head substrate 4b. This is the point where the portion 17b is formed.
これにより、フレキシブル被覆膜 17の表面距離を伸延させ表面抵抗を増加させるこ とができ、簡便に放電電極 5aの放電発生部位 15から周囲への漏電を防止できる。 尚、フレキシブル被覆膜 17の表面の凹凸部 17bは、スクリーン印刷等を用いて容易 に形成することができる。あるいは、絶縁膜 14aと同じ材質を用いて、フレキシブル被 覆膜 17の表面に凹凸部を形成しても良い。  Thereby, the surface distance of the flexible coating film 17 can be extended and the surface resistance can be increased, and leakage from the discharge generation site 15 of the discharge electrode 5a to the surroundings can be easily prevented. The uneven portion 17b on the surface of the flexible coating film 17 can be easily formed by screen printing or the like. Alternatively, an uneven portion may be formed on the surface of the flexible covering film 17 using the same material as the insulating film 14a.
[0108] 図 10 (a)は実施の形態 1における放電制御装置のヘッド基板の第 3の変形例を示 す模式平面図であり、図 10 (b)は図 10 (a)の D— D線矢視模式断面図である。 図 10において、実施の形態 1における放電制御装置のヘッド基板の第 3の変形例 が実施の形態 1と異なるのは、ヘッド基板 4cの放電電極 5aの発熱体 13a側の端部か ら水平方向に離間して絶縁膜 14a上に誘導電極 18が形成されている点と、絶縁膜 1 4aと放電部 5との間に誘導電極 18を覆設するフレキシブル薄膜 19及び絶縁膜 19a が形成されて ヽる点、である。 FIG. 10 (a) is a schematic plan view showing a third modification of the head substrate of the discharge control device according to Embodiment 1, and FIG. 10 (b) is a cross-sectional view of D—D in FIG. 10 (a). FIG. In FIG. 10, the third modification of the head substrate of the discharge control device in the first embodiment is different from that in the first embodiment in that the horizontal direction extends from the end of the discharge electrode 5a of the head substrate 4c on the heating element 13a side. Insulating electrode 14 is formed on insulating film 14a apart from each other, and flexible thin film 19 and insulating film 19a covering induction electrode 18 are formed between insulating film 14a and discharge part 5. It is a point to speak.
フレキシブル薄膜 19及び絶縁膜 19aは、それぞれ前述のフレキシブル薄膜 14及 び絶縁膜 14aと同様である。 誘導電極 18は絶縁膜 14a上に帯状に形成し接地した。放電部 5の放電電極 5aと 誘導電極 18間のギャップを常に一定に保つことができ、放電電極 5aと誘導電極 18 間に電圧を印加することにより、確実に放電を発生させることができる。放電は誘導 電極 18に引張られるように発生するが、記録媒体等の被イオン照射体側を接地する ことで、イオンは誘導電極 18が無い場合と同様に被イオン照射体に向力つて照射さ れる。 The flexible thin film 19 and the insulating film 19a are the same as the flexible thin film 14 and the insulating film 14a, respectively. The induction electrode 18 was formed in a strip shape on the insulating film 14a and grounded. The gap between the discharge electrode 5a of the discharge part 5 and the induction electrode 18 can be kept constant at all times, and by applying a voltage between the discharge electrode 5a and the induction electrode 18, a discharge can be reliably generated. The discharge is generated by being pulled by the induction electrode 18, but by grounding the irradiated object side such as a recording medium, the ions are irradiated to the irradiated object in the same direction as when the induction electrode 18 is not provided. .
[0109] 次に、実施の形態 1における放電制御装置を備えた加熱放電型印字ヘッドの変形 例について説明する。  Next, a modified example of the heat discharge type print head provided with the discharge control device in the first embodiment will be described.
図 11 (a)は実施の形態 1における放電制御装置を備えた加熱放電型印字ヘッドの 第 1の変形例を示す模式側面図であり、図 11 (b)は実施の形態 1における放電制御 装置を備えた加熱放電型印字ヘッドの第 1の変形例を示す要部模式斜視図である。 図 11にお 、て、実施の形態 1における放電制御装置を備えた加熱放電型印字へ ッドの第 1の変形例が実施の形態 1と異なるのは、放電電極 5aの放電発生部位 15が 、形状基板 2の傾斜状の縁部 3bに配置されたエッジ型のヘッドである点である。 ドライバ IC6を形状基板 2の表面に配置し、形状基板 2の傾斜状の縁部 3bに放電 電極 5aを配置することにより、ドライバ IC6と放電電極 5aとが鈍角をなすように配置さ れるので、特にデジタルぺーパ等のように湾曲させな 、方がよ!、記録媒体を直線状 に搬送することができ、水平プリンタに好適に用いることができる。また、放電電極 5a の配置方式がエッジ型であることにより、高さ方向に嵩張らずに加熱放電型印字へッ ド lbを配置することができ、多種多様な形状の静電潜像担持体に対応することがで き汎用性に優れる。  FIG. 11 (a) is a schematic side view showing a first modification of the heat-discharge type print head provided with the discharge control device in the first embodiment, and FIG. 11 (b) is a discharge control device in the first embodiment. FIG. 6 is a schematic perspective view of an essential part showing a first modified example of a heating / discharging type print head equipped with In FIG. 11, the first modification of the heat discharge type print head provided with the discharge control device in the first embodiment is different from that in the first embodiment in that the discharge generation site 15 of the discharge electrode 5a is different. In other words, the head is an edge-type head disposed on the inclined edge 3b of the shape substrate 2. By disposing the driver IC 6 on the surface of the shape substrate 2 and disposing the discharge electrode 5a on the inclined edge 3b of the shape substrate 2, the driver IC 6 and the discharge electrode 5a are disposed so as to form an obtuse angle. In particular, it is better not to bend like a digital paper or the like! The recording medium can be conveyed in a straight line and can be suitably used for a horizontal printer. In addition, since the discharge electrode 5a is arranged in the edge type, the heating discharge type print head lb can be arranged without being bulky in the height direction, and the electrostatic latent image carrier having various shapes can be arranged. It can be used and has excellent versatility.
[0110] 図 12 (a)は実施の形態 1における放電制御装置を備えた加熱放電型印字ヘッドの 第 2の変形例を示す模式側面図であり、図 12 (b)は実施の形態 1における放電制御 装置を備えた加熱放電型印字ヘッドの第 2の変形例を示す要部模式斜視図である。 図 12において、実施の形態 1における放電制御装置を備えた加熱放電型印字へ ッドの第 2の変形例が実施の形態 1と異なるのは、放電電極 5aの放電発生部位 15が 、形状基板 2の表面に突出し緩やかな丘状(円弧状や楕円弧状など)に形成された 隆起部 3cの隆起面にドライバ IC6より突出して配置された隆起型のヘッドである点で ある。 FIG. 12 (a) is a schematic side view showing a second modification of the heat-discharge type print head provided with the discharge control device in Embodiment 1, and FIG. 12 (b) is in FIG. FIG. 10 is a schematic perspective view of a main part showing a second modification of a heat discharge type print head provided with a discharge control device. In FIG. 12, the second modification of the heating discharge type print head provided with the discharge control device in the first embodiment is different from the first embodiment in that the discharge generation site 15 of the discharge electrode 5a is a shape substrate. 2 is a raised head that protrudes from the driver IC6 on the raised surface of the raised portion 3c that protrudes from the surface of 2 and is formed in a gentle hill shape (arc shape, elliptical arc shape, etc.) is there.
形状基板 2と静電潜像担持体や記録媒体が略平行になるように加熱放電型印字へ ッド lcを配置することができ、高さ方向の嵩張りを低減でき省スペース性に優れると 共に、放電電極 5aがドライバ IC6より突出して配置されているので、静電潜像担持体 や記録媒体とドライバ IC6や ICカバー 9が干渉することがなく信頼性に優れる。  Heat-discharge type print head lc can be arranged so that the shape substrate 2 and the electrostatic latent image carrier or recording medium are substantially parallel, reducing the bulkiness in the height direction and being excellent in space saving. In both cases, since the discharge electrode 5a is disposed so as to protrude from the driver IC 6, the electrostatic latent image carrier or recording medium does not interfere with the driver IC 6 or the IC cover 9, and the reliability is excellent.
[0111] ヘッド基板 4 (4a, 4b, 4c)のフレキシブル基板 10やフレキシブル薄膜 14の厚みは 、各々が例えば数 μ m〜数十 μ mと極めて薄!、ものであるため、ヘッド基板 4 (4a, 4 b, 4c)の総合的な厚さを数十 μ m〜数百 μ m程度に抑えて極めて薄く形成すること ができる。ヘッド基板 4 (4a, 4b, 4c)は当然ながら柔軟性に富んでいるため、平面状 態から形状基板 2の端面部 3a (図 1参照),縁部 3b (図 11参照),隆起部 3cなどの形 状に合わせて湾曲させる等して容易に加工する(変形させる)ことができ、放電部 5や 発熱部 13等の放電デバイスの形成技術上の制約を受けることなぐ放電制御装置 7 を得ることができる。よって、ヘッド基板 4 (4a, 4b, 4c)は共通のままで、形状基板 2 の形状やヘッド基板 4 (4a, 4b, 4c)の貼り付け位置を変えるだけで様々な形態の加 熱放電型印字ヘッド la, lb, lcを得ることができ、汎用性、量産性に優れる。  [0111] The thickness of the flexible substrate 10 and the flexible thin film 14 of the head substrate 4 (4a, 4b, 4c) is extremely thin, for example, several μm to several tens of μm. The total thickness of 4a, 4b, and 4c) can be reduced to a few tens of μm to several hundreds of μm and can be made extremely thin. Since the head substrate 4 (4a, 4b, 4c) is naturally flexible, the end surface 3a (see Fig. 1), the edge 3b (see Fig. 11), the raised portion 3c of the shape substrate 2 from the flat state. The discharge control device 7 can be easily processed (deformed) by bending it in accordance with the shape of the discharge device, etc., and is not subject to restrictions on the formation technology of the discharge device such as the discharge portion 5 and the heat generation portion 13. Obtainable. Therefore, the head substrate 4 (4a, 4b, 4c) remains the same, and various forms of heating / discharge type can be achieved simply by changing the shape of the shape substrate 2 and the attachment position of the head substrate 4 (4a, 4b, 4c). Print heads la, lb, and lc can be obtained, and they are excellent in versatility and mass productivity.
[0112] 以上のように形成された放電制御装置のイオン発生の制御方法について説明する 図 13は本発明の実施の形態 1における放電制御装置のイオン発生の制御方法を 示す図である。  [0112] An ion generation control method of the discharge control apparatus formed as described above will be described. FIG. 13 is a diagram showing an ion generation control method of the discharge control apparatus according to Embodiment 1 of the present invention.
放電電極 5aへの放電制御電圧(印加しただけでは放電が起こらな!/、が、加熱する ことにより放電が起こる電圧域を言う)の印加は放電部 5の共通電極部 5bに接続され た高圧基板 9a (図 1参照)から行う。放電部 5の放電電極 5a (共通電極部 5b)に印カロ する交流電圧や直流電圧の数値は、色々な組み合わせが考えられる力 本実施の 形態では放電部 5の放電電極 5aに、一例として AC550Vpp (三角波 1kHz)に DCバ ィァスで 700Vの電圧を重畳して印加した。尚、 AC550Vppの電圧は放電の安定 性を得るために重畳した。  Application of a discharge control voltage to the discharge electrode 5a (a voltage range in which discharge does not occur just by application! / But a discharge occurs when heated) is applied to the high voltage connected to the common electrode part 5b of the discharge part 5 Start with substrate 9a (see Figure 1). The numerical values of the AC voltage and DC voltage applied to the discharge electrode 5a (common electrode portion 5b) of the discharge unit 5 can be used in various combinations.In this embodiment, the discharge electrode 5a of the discharge unit 5 is, for example, AC550Vpp A voltage of 700V was superimposed on the DC bias (triangular wave 1kHz) and applied. The voltage of AC550Vpp was superimposed to obtain the discharge stability.
[0113] 放電部 5の放電電極 5a (共通電極部 5b)に放電制御電圧以下の電圧が印加され た状態で、図 5で説明したように、発熱部 13をドライバ IC6で制御し、発熱体 13aによ り放電電極 5aを選択的に加熱(100〜300°C)する。選択的に加熱された放電電極 5aの放電発生部位 15から放電制御電圧の範囲の印加電圧で、図 3、図 8乃至図 12 の矢印で示したように放電が起こる。 [0113] In the state where a voltage equal to or lower than the discharge control voltage is applied to the discharge electrode 5a (common electrode portion 5b) of the discharge section 5, the heating section 13 is controlled by the driver IC 6 as described in FIG. According to 13a The discharge electrode 5a is selectively heated (100 to 300 ° C.). Discharge occurs as shown by the arrows in FIGS. 3 and 8 to 12 at an applied voltage in the range from the discharge generation site 15 of the selectively heated discharge electrode 5a to the discharge control voltage.
放電が起こるとイオン生成可能な雰囲気中ではイオンが生成され、図 1 (a) ,図 11 ( a) ,図 12 (a)で示したように静電潜像担持体や記録媒体へ向力つてイオンが照射さ れる。そして、イオンが照射された静電潜像担持体の表面には静電潜像が形成され る。記録媒体には、その種類により静電潜像の形成や酸化還元反応による画像の形 成ができる。また、紫外線や可視光線等の発光に反応する記録媒体にも画像を形成 することができる。  When discharge occurs, ions are generated in an atmosphere where ions can be generated, and as shown in Fig. 1 (a), Fig. 11 (a), and Fig. 12 (a), an electrostatic force is applied to the electrostatic latent image carrier and the recording medium. As a result, ions are irradiated. An electrostatic latent image is formed on the surface of the electrostatic latent image carrier irradiated with ions. Depending on the type of recording medium, an electrostatic latent image can be formed or an image can be formed by an oxidation-reduction reaction. An image can also be formed on a recording medium that reacts to light emission such as ultraviolet rays and visible rays.
[0114] 放電電極 5a (共通電極部 5b)に交流電圧のみを印加すると正負のイオンが生成さ れるが、負のイオンのみを選別するには交流電圧に負の直流電圧を重畳すればよく 、正のイオンのみを選別するには交流電圧に正の直流電圧を重畳すればよい。 尚、放電制御電圧の値は発熱体 13aによる加熱温度との組み合わせで適宜、選択 することができる。また、発熱体 13aの加熱は 24Vの低電圧で行い、発熱体 13aを発 熱させるためのスィッチとして用いるドライバ IC6には、 5V駆動の低耐電圧対応のも のを用いた。  [0114] When only an AC voltage is applied to the discharge electrode 5a (common electrode portion 5b), positive and negative ions are generated. To select only negative ions, a negative DC voltage may be superimposed on the AC voltage. In order to select only positive ions, a positive DC voltage may be superimposed on an AC voltage. The value of the discharge control voltage can be selected as appropriate in combination with the heating temperature by the heating element 13a. The heating element 13a was heated at a low voltage of 24V, and the driver IC 6 used as a switch for generating heat from the heating element 13a was a 5V drive with a low withstand voltage.
[0115] 実施の形態 1における放電制御装置 7を備えた加熱放電型印字ヘッド laは、図 1 に示したように ICカバー 9の背面に高圧基板 9aを配設し、放電部 5の共通電極部 5b に電気的に接続することにより、放電制御電圧を印加するための電気配線を短くする ことができ、高圧基板 9aを加熱放電型印字ヘッド laと一体に取扱うことができる。こ れにより、電気配線の取り回しが不要で画像形成装置への組込みが容易で量産性 に優れる。特に、加熱放電型印字ヘッド laを走査させて画像を形成する場合、加熱 放電型印字ヘッド laと高圧基板 9aを一体に移動させることができるので、電気配線 に負荷などがかかり難ぐ導通不良の発生を低減できる。  [0115] The heating discharge type print head la provided with the discharge control device 7 in Embodiment 1 has a high voltage substrate 9a disposed on the back surface of the IC cover 9 as shown in FIG. By electrically connecting to the section 5b, the electrical wiring for applying the discharge control voltage can be shortened, and the high-voltage board 9a can be handled integrally with the heat-discharge type print head la. This eliminates the need for electrical wiring, facilitates incorporation into image forming apparatuses, and provides excellent mass productivity. In particular, when an image is formed by scanning the heat-discharge type print head la, the heat-discharge type print head la and the high-voltage board 9a can be moved together, so that the electrical wiring is less likely to be loaded and has poor continuity. Generation can be reduced.
尚、高圧基板 9aの配設位置は本実施の形態に限定されるものではなぐ放電部 5 の共通電極部 5bに放電制御電圧を印加することができればよい。また、加熱放電型 印字ヘッド lb, lcにおいては、高圧基板 9a (図 1参照)は図示していないが、実施の 形態 1と同様に設けることができる。 以上のように実施の形態 1におけるヘッド基板によれば、以下の作用を有する。Note that the arrangement position of the high-voltage substrate 9a is not limited to the present embodiment, and it is sufficient that the discharge control voltage can be applied to the common electrode portion 5b of the discharge portion 5. Further, in the heat discharge type print heads lb, lc, the high voltage substrate 9a (see FIG. 1) is not shown, but it can be provided in the same manner as in the first embodiment. As described above, the head substrate according to Embodiment 1 has the following effects.
(1)発熱部 13や放電部 5等の放電デバイスを形成したフレキシブル基板 10は湾曲さ せることができるので、平面状態のフレキシブル基板 10へ技術的に容易な方法で放 電デバイスを形成した後にフレキシブル基板 10ごと所望の形状に変形 (湾曲)させる ことができ、形状基板 2の形状に沿わせて固定することにより、平易な技術を用いて 所望の形状 (従来は高度の技術を要した)の加熱放電型印字ヘッド laを製造でき、 生産性に優れる。 (1) Since the flexible substrate 10 on which the discharge devices such as the heat generating portion 13 and the discharge portion 5 are formed can be bent, after the discharge device is formed on the flexible substrate 10 in a flat state by a technically easy method. The flexible substrate 10 can be deformed (curved) into a desired shape, and fixed along the shape of the shape substrate 2, so that the desired shape can be obtained using a simple technology (previously, advanced technology was required) The heat discharge type print head la can be manufactured with excellent productivity.
(2)放電電極 5aと発熱体 13がフレキシブル薄膜 14で絶縁されていることにより、放 電電極 5aに放電制御電圧を印加した状態で、発熱体 13aによる加熱制御を選択的 に行うことができ、加熱された放電電極 5aから放電や発光が起こり、イオン生成可能 な雰囲気中にぉ ヽてはイオン発生量を制御することができ、静電現像方式のデジタ ルベーパ等の専用の記録媒体に画像を形成することができる。  (2) Since the discharge electrode 5a and the heating element 13 are insulated by the flexible thin film 14, the heating control by the heating element 13a can be selectively performed with the discharge control voltage applied to the discharge electrode 5a. In the atmosphere where discharge or light emission occurs from the heated discharge electrode 5a and ions can be generated, the amount of ions generated can be controlled, and the image can be recorded on a dedicated recording medium such as an electrostatic developing digital vapor. Can be formed.
(3)発熱部 13を被覆するフレキシブル薄膜 14が耐熱性及び絶縁性を有することによ り、発熱体 13aの発する熱で熱変形することがなぐ発熱体 13a及び発熱体 13aに接 続された電極を保護して放電電極 5aとの絶縁性を確保でき、放電電極 5aの加熱を 行うことができる。  (3) Since the flexible thin film 14 covering the heat generating part 13 has heat resistance and insulation, it is connected to the heat generating element 13a and the heat generating element 13a that are not thermally deformed by the heat generated by the heat generating element 13a. The electrode can be protected to ensure insulation from the discharge electrode 5a, and the discharge electrode 5a can be heated.
(4)発熱部 13と放電部 5とを絶縁するフレキシブル薄膜 14にピンホールが生じてい ても、フレキシブル薄膜 14に絶縁膜 14aを形成することで発熱部 13と放電部 5との絶 縁性を確保でき信頼性に優れる。  (4) Even if there is a pinhole in the flexible thin film 14 that insulates the heat generating part 13 from the discharge part 5, the insulation between the heat generating part 13 and the discharge part 5 can be achieved by forming the insulating film 14a on the flexible thin film 14. Can be secured and has excellent reliability.
(5)放電電極 5aの放電発生部位 15を残して周囲をフレキシブル被覆膜 17で被覆し た場合、放電電極 5aの放電発生部位 15以外の余分な箇所から放電が発生するの を防止でき、電子や正又は負のイオン、紫外線を一箇所に集中して照射させることが でき画像形成の効率性に優れる。  (5) When the periphery of the discharge electrode 5a is covered with the flexible coating film 17 while leaving the discharge generation site 15, the discharge can be prevented from being generated from an extra portion other than the discharge generation site 15 of the discharge electrode 5a. Electrons, positive or negative ions, and ultraviolet rays can be concentrated and irradiated at one location, and the efficiency of image formation is excellent.
(6)放電電極 5aの放電発生部位 15を残してフレキシブル被覆膜 17を形成した場合 、放電発生部位 15表面とフレキシブル被覆膜 17の表面との間に段差を形成すること ができるので、放電電極 5aと対向配置される記録媒体との間のギャップを一定に保 つことができ、放電発生部位 15との接触を防止でき、放電発生部位 15からの放電を 安定させることができる。 (7)フレキシブル被覆膜 17の表面に多くの凹凸部 17bを設けた場合、表面距離が伸 延されて表面抵抗が増加し、剥身の放電電極 5aの放電発生部位 15から周囲に電 流が漏電するのを防止できるので、放電制御に用いるドライバ IC6への悪影響も発 生せず、放電制御の安定性を向上させることができる。漏電がなくなるため、放電電 極 5aに印加した印加電圧の低下がなくなり、放電の安定性、効率性に優れる。(6) When the flexible coating film 17 is formed leaving the discharge generation site 15 of the discharge electrode 5a, a step can be formed between the surface of the discharge generation site 15 and the surface of the flexible coating film 17. The gap between the discharge electrode 5a and the recording medium arranged opposite to the discharge electrode 5a can be kept constant, the contact with the discharge generation site 15 can be prevented, and the discharge from the discharge generation site 15 can be stabilized. (7) When many irregularities 17b are provided on the surface of the flexible coating film 17, the surface distance is extended to increase the surface resistance, and the current flows from the discharge generation site 15 of the stripped discharge electrode 5a to the surroundings. As a result, the driver IC 6 used for the discharge control is not adversely affected, and the stability of the discharge control can be improved. Since there is no leakage, the applied voltage applied to the discharge electrode 5a does not drop and the discharge is stable and efficient.
(8)放電電極 5aの発熱体 13a側の端部力も水平方向に離間して絶縁膜 14a上に誘 導電極 18を形成した場合、放電電極 5aと記録媒体 (アース側)との間隔が広過ぎて 放電が起こりにくい場合でも、放電電極 5aの近傍に形成された誘導電極 18がアース として機能するので、放電電極 5aから誘導電極 18への放電が確実に起こり、画像形 成の信頼性に優れる。 (8) When the end electrode force on the heating element 13a side of the discharge electrode 5a is also horizontally separated and the induction electrode 18 is formed on the insulating film 14a, the gap between the discharge electrode 5a and the recording medium (ground side) is wide. Even if the discharge is difficult to occur, the induction electrode 18 formed in the vicinity of the discharge electrode 5a functions as a ground, so that the discharge from the discharge electrode 5a to the induction electrode 18 surely occurs, and the reliability of image formation is improved. Excellent.
(9)アルミニウム箔の両面に酸ィ匕膜が形成されたフレキシブル基板 10は、熱伝導性 に優れるので、放電電極 5aの熱を形状基板 2へ伝達させて逃がすことができ、放電 電極 5aへの熱の籠もりを防止し、発熱部 13の加熱停止に対する放電停止の応答性 を向上させることができ、放電制御の信頼性に優れる。  (9) Since the flexible substrate 10 having the oxide film formed on both surfaces of the aluminum foil is excellent in thermal conductivity, the heat of the discharge electrode 5a can be transferred to the shape substrate 2 and escaped to the discharge electrode 5a. Therefore, the responsiveness of the discharge stop to the heating stop of the heat generating part 13 can be improved, and the reliability of the discharge control is excellent.
(10)フレキシブル基板 10の基材となるアルミニウム箔の両面に形成される酸ィ匕膜が アルミナであることにより、金属箔と酸化膜の密着性に優れ、フレキシブル基板 10の 絶縁性、耐久性を向上させることができる。  (10) Since the oxide film formed on both sides of the aluminum foil that is the base material of the flexible substrate 10 is alumina, it has excellent adhesion between the metal foil and the oxide film, and the insulation and durability of the flexible substrate 10 Can be improved.
(11)フレキシブル基板 10の基材となる金属箔がアルミニウムで形成されていることに より、フレキシブル基板 10の熱伝導性を向上させることができ、放電電極 5aや発熱 部 13の余分な熱をフレキシブル基板 10が固定される形状基板 2へ効率的に伝達さ せて逃がすことができ、放電発生の効率性、信頼性を向上させることができる。  (11) Since the metal foil used as the base material of the flexible substrate 10 is formed of aluminum, the thermal conductivity of the flexible substrate 10 can be improved, and excess heat from the discharge electrode 5a and the heat generating portion 13 can be removed. The flexible substrate 10 can be efficiently transmitted to the shape substrate 2 to which the flexible substrate 10 is fixed and escaped, and the efficiency and reliability of discharge generation can be improved.
( 12)フレキシブル基板 10の酸ィ匕膜がアルミナで形成されて 、ることにより、化学的 に安定で耐熱性、絶縁性に優れると共に、熱伝導率が高ぐ放電制御の信頼性を向 上させることができる。  (12) Since the oxide film of the flexible substrate 10 is formed of alumina, it is chemically stable, has excellent heat resistance and insulation, and has high thermal conductivity, improving the reliability of discharge control. Can be made.
(13)金属箔の表面に酸ィ匕膜を形成したフレキシブル基板 10は耐熱性に優れるので 、発熱部 13を形成する際に、スパッタリングや蒸着などの薄膜技術を用いる以外に、 高温での焼成が必要な厚膜技術を用いることができ、量産性に優れる。  (13) Since the flexible substrate 10 having an oxide film formed on the surface of the metal foil is excellent in heat resistance, when the heat generating portion 13 is formed, in addition to using a thin film technology such as sputtering or vapor deposition, baking is performed at a high temperature. Therefore, it is possible to use a thick film technique that requires high-quality, and it is excellent in mass productivity.
(14)平面状態のフレキシブル基板 10上に放電デバイスを形成することができるので 、微細加工及び多数個取りが容易で量産性に優れる。 (14) Since a discharge device can be formed on the flexible substrate 10 in a planar state , Easy to microfabrication and multi-cavity and excellent in mass productivity.
[0117] 以上のように実施の形態 1におけるヘッド基板を用いた放電制御装置によれば、以 下の作用を有する。  [0117] As described above, the discharge control device using the head substrate in the first embodiment has the following effects.
(1)発熱体 13aの発熱を制御するドライバ IC6を備えているので、画像データに基づ V、て放電電極 5aを選択的に加熱して放電を発生させることができ、放電制御の信頼 性に優れる。  (1) Since the driver IC 6 that controls the heat generation of the heating element 13a is provided, the discharge electrode 5a can be selectively heated based on the image data to generate discharge, and the reliability of discharge control Excellent.
(2)ドライバ IC6で発熱体 13aによる放電電極 5aの加熱時間を制御することにより、 放電電極 5aにおける放電時間を制御することができ、放電によるイオン発生量や発 光強度を制御することができるので、記録媒体上での面積階調を容易に行うことがで き、画像品質を向上させることができる。  (2) By controlling the heating time of the discharge electrode 5a by the heating element 13a with the driver IC6, the discharge time at the discharge electrode 5a can be controlled, and the amount of ions generated and the intensity of emitted light can be controlled. Therefore, the area gradation on the recording medium can be easily performed, and the image quality can be improved.
[0118] 以上のように実施の形態 1における放電制御装置を備えた加熱放電型印字ヘッド によれば、以下の作用を有する。  [0118] As described above, the heat-discharge type print head provided with the discharge control device according to Embodiment 1 has the following effects.
(1)ヘッド基板 10が柔軟性を有するので、形状基板 2の形状や形状基板 2に対する 放電部 5の固定位置を変更するだけで、共通のヘッド基板 10を用いて様々な形状の 加熱放電型印字ヘッド la, lb, lcを製造でき、量産性、汎用性に優れる。  (1) Since the head substrate 10 has flexibility, it is possible to change the shape of the shape substrate 2 and the fixing position of the discharge part 5 with respect to the shape substrate 2. Can produce print heads la, lb, and lc, and is excellent in mass productivity and versatility.
(2)ドライバ IC6を形状基板 2の表面に配置し、放電電極 5aを形状基板 2の端面部 3 aに配置して、ドライバ IC6と放電電極 5aとが略直角をなすようにした加熱放電型印 字ヘッド laは、特にデジタルぺーパ等のように湾曲させな 、方がょ 、記録媒体を直 線状に搬送することができ、水平プリンタに好適に用いることができる。  (2) Heating discharge type in which driver IC6 is placed on the surface of shape substrate 2 and discharge electrode 5a is placed on end surface 3a of shape substrate 2 so that driver IC6 and discharge electrode 5a are substantially perpendicular to each other The print head la can be transported in a straight line rather than being bent like a digital paper or the like, and can be suitably used for a horizontal printer.
(3)放電部 5の配置方式が端面型である加熱放電型印字ヘッド laは、静電潜像担 持体や記録媒体に対向する部分の幅を狭くでき、水平方向に嵩張らずに配置するこ とができるので、特に多種多様な形状の静電潜像担持体に対応することができ汎用 性に優れる。  (3) The heating discharge type print head la, in which the discharge unit 5 is arranged in the end face type, can be narrowed in the width of the part facing the electrostatic latent image carrier and the recording medium, and arranged without being bulky in the horizontal direction. Since it can be used, it can be applied to various types of electrostatic latent image carriers and has excellent versatility.
(4)ドライバ IC6を形状基板 2の表面に配置し、放電電極 5aを形状基板 2の傾斜状の 縁部 3bに配置して、ドライバ IC6と放電電極 5aとが鈍角をなすようにした加熱放電型 印字ヘッド lbは、特にデジタルぺーパ等のように湾曲させな 、方がょ 、記録媒体を 直線状に搬送することができ、水平プリンタに好適に用いることができる。  (4) Heating discharge in which driver IC6 is placed on the surface of shape substrate 2 and discharge electrode 5a is placed on the inclined edge 3b of shape substrate 2 so that driver IC6 and discharge electrode 5a form an obtuse angle The type print head lb can be conveyed in a straight line rather than being bent like a digital paper or the like, and can be suitably used for a horizontal printer.
(5)放電部 5の配置方式がエッジ型である加熱放電型印字ヘッド lbは、放電部 5を 記録媒体に対向させる際に、高さ方向に嵩張らずに配置することができ、多種多様 な形状の静電潜像担持体に対応することができ汎用性に優れる。 (5) Heating discharge type print head lb whose discharge unit 5 is arranged in an edge type When facing the recording medium, it can be arranged without being bulky in the height direction, and can correspond to a variety of shapes of electrostatic latent image carriers, and is excellent in versatility.
(6)ドライバ IC6を形状基板 2の表面に配置し、放電電極 5aを形状基板 2の表面に形 成された隆起部 3cの隆起面に配置して、ドライバ IC6よりも放電電極 5aを突出させた 加熱放電型印字ヘッド lcは、特にデジタルぺーパ等のように湾曲させない方がよい 記録媒体を直線状に搬送することができ、水平プリンタに好適に用いることができる。 (6) The driver IC 6 is arranged on the surface of the shape substrate 2, and the discharge electrode 5a is arranged on the raised surface of the raised portion 3c formed on the surface of the shape substrate 2, so that the discharge electrode 5a protrudes from the driver IC 6. The heating / discharge-type print head lc, which should not be bent particularly like a digital paper, can convey a recording medium in a straight line, and can be suitably used for a horizontal printer.
(7)放電部 5の配置方式が隆起型である加熱放電型印字ヘッド lcは、放電部 5を記 録媒体に対向させる際に、高さ方向に嵩張らずに配置することができ、多種多様な 形状の静電潜像担持体に対応することができ汎用性に優れる。 (7) The heating discharge type print head lc, in which the discharge unit 5 is arranged in a raised form, can be arranged without being bulky in the height direction when the discharge unit 5 is opposed to the recording medium. It can be applied to any shape of electrostatic latent image carrier and has excellent versatility.
(8)形状基板 2が熱伝導性を有する材質で形成されていることにより、形状基板 2が 放熱板として作用するので、別途、放熱板を設ける必要がなぐ部品点数、製造工数 を低減でき、量産性を向上させることができる。  (8) Since the shape substrate 2 is made of a material having thermal conductivity, the shape substrate 2 acts as a heat sink, so that it is possible to reduce the number of parts and manufacturing steps that do not require a separate heat sink, Mass productivity can be improved.
(9)形状基板 2が熱伝導性を有することにより、放電電極 5aや発熱部 13の余分な熱 を速やかに形状基板 2で吸収して放熱させることができるので、放電部 5や発熱部 13 の急速冷却が可能となり、発熱部 13の加熱停止に対応する放電部 5の放電停止の 応答性を向上させることができる。  (9) Since the shape substrate 2 has thermal conductivity, excess heat from the discharge electrode 5a and the heat generating portion 13 can be quickly absorbed and dissipated by the shape substrate 2, so that the discharge portion 5 and the heat generating portion 13 can be dissipated. Can be rapidly cooled, and the discharge stop responsiveness of the discharge part 5 corresponding to the heating stop of the heat generating part 13 can be improved.
(実施の形態 2)  (Embodiment 2)
本発明の実施の形態 2における放電制御装置を備えた加熱放電型印字ヘッドにつ いて、以下図面を参照しながら説明する。尚、実施の形態 1と同様のものには同一の 符号を付して説明を省略する  A heating / discharging print head provided with the discharge control device according to the second embodiment of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the thing similar to Embodiment 1, and description is abbreviate | omitted.
図 14 (a)は実施の形態 2における放電制御装置を備えた加熱放電型印字ヘッドを 示す模式側面図であり、図 14 (b)は実施の形態 2における放電制御装置を備えたカロ 熱放電型印字ヘッドを示す要部模式斜視図である。  FIG. 14 (a) is a schematic side view showing a heat discharge type print head provided with the discharge control device according to the second embodiment, and FIG. 14 (b) is a calorie heat discharge provided with the discharge control device according to the second embodiment. It is a principal part model perspective view which shows a type | mold printing head.
図 14において、実施の形態 2における放電制御装置 7を備えた加熱放電型印字へ ッド Idが実施の形態 1と異なるのは、放電電極 5aが形状基板 2の最下部の近傍に配 置され、静電プロッタの放電針と同様に、記録媒体に対して垂直に配置された水平 プリンタ対応型の部類の垂直放電型である点である。  In FIG. 14, the heating discharge type print head Id provided with the discharge control device 7 in the second embodiment is different from that in the first embodiment in that the discharge electrode 5a is disposed in the vicinity of the lowermost portion of the shape substrate 2. Similar to the discharge needle of the electrostatic plotter, it is a vertical discharge type that corresponds to a horizontal printer type that is arranged perpendicular to the recording medium.
放電部 5を形状基板 2の表面の最下部 (先端)に配置するようにヘッド基板 4dの貼 り付け位置を変更するだけで、放電電極 5aの表面と略直角方向に放電を発生させる ことができるので、加熱放電型印字ヘッド Idの量産性に優れ、水平プリンタ対応型と して好適に用いることができる。 Affix the head substrate 4d so that the discharge part 5 is placed at the bottom (tip) of the surface of the shaped substrate 2. Since the discharge can be generated in a direction substantially perpendicular to the surface of the discharge electrode 5a simply by changing the attachment position, the heat discharge type print head Id is excellent in mass productivity and is suitably used as a model compatible with horizontal printers. be able to.
[0120] 次に、実施の形態 2における放電制御装置に用いるヘッド基板の構造について詳 細を説明する。 [0120] Next, details of the structure of the head substrate used in the discharge control apparatus according to Embodiment 2 will be described.
図 15 (a)は実施の形態 2における放電制御装置のヘッド基板の要部平面展開図で あり、図 15 (b)は図 15 (a)の E— E線矢視断面図である。  FIG. 15 (a) is a plan development view of the main part of the head substrate of the discharge control device according to the second embodiment, and FIG. 15 (b) is a cross-sectional view taken along the line EE in FIG. 15 (a).
図 15において、実施の形態 2における放電制御装置 7のヘッド基板 4dが実施の形 態 1における放電制御装置 7のヘッド基板 4と異なるのは、放電電極 5aの最下面 (先 端)側に位置する放電発生部位 15から下方に向力 部分を残して、イオンの下方へ の照射を妨げない範囲で放電部 5をフレキシブル薄膜 14やフレキシブル被覆膜 17 と同様のフレキシブル薄膜 20で被覆している点である。  In FIG. 15, the head substrate 4d of the discharge control device 7 according to the second embodiment is different from the head substrate 4 of the discharge control device 7 according to the first embodiment in that it is located on the lowermost surface (front end) side of the discharge electrode 5a. The discharge part 5 is covered with a flexible thin film 20 similar to the flexible thin film 14 and the flexible coating film 17 within a range that does not prevent the downward irradiation of ions, leaving a portion of the downward force from the discharge generation site 15 Is a point.
実施の形態 2における放電制御装置 7のヘッド基板 4dの製造方法は、フレキシブ ル薄膜 20を形成する工程が増える以外は、実施の形態 1と同様なので説明を省略 する。  The manufacturing method of the head substrate 4d of the discharge control device 7 in the second embodiment is the same as that in the first embodiment except that the number of steps for forming the flexible thin film 20 is increased, and the description thereof is omitted.
尚、図 9の場合と同様に、フレキシブル薄膜 20の表面に多くの凹凸部 (段差)を設 ければ、フレキシブル薄膜 20の表面距離が伸延されて図 15に示したものより表面抵 抗が増加するので、電流が剥身の放電電極 5aの放電発生部位 15から周囲に漏電 しなくなる。  As in the case of FIG. 9, if many irregularities (steps) are provided on the surface of the flexible thin film 20, the surface distance of the flexible thin film 20 is extended and the surface resistance is increased from that shown in FIG. As a result, the current does not leak from the discharge generation site 15 of the discharge electrode 5a to the surroundings.
また、実施の形態 2における放電制御装置 7は、実施の形態 1とイオン照射方向が 異なるだけで、イオン発生の制御方法は実施の形態 1と同様であるので説明を省略 する。  Further, the discharge control device 7 in the second embodiment is different from the first embodiment only in the ion irradiation direction, and the ion generation control method is the same as that in the first embodiment, so that the description thereof is omitted.
[0121] 以上のように実施の形態 2におけるヘッド基板とそれを用いた放電制御装置によれ ば、実施の形態 1と同様の作用を有する。  As described above, the head substrate and the discharge control apparatus using the head substrate in the second embodiment have the same operations as those in the first embodiment.
[0122] 以上のように実施の形態 2における放電制御装置を備えた加熱放電型印字ヘッド によれば、実施の形態 1の作用に加え、以下の作用を有する。  [0122] As described above, according to the heat discharge type print head including the discharge control device in the second embodiment, in addition to the operation in the first embodiment, the following operation is provided.
(1)放電電極 5aの最下面 (先端)側に位置する放電発生部位 15から下方に向力 部 分を残して、フレキシブル薄膜 20で被覆することにより、放電部 5の放電電極 5aから の広範囲な放電を防止することができ、放電電極 5aの表面と略直角方向に効率よく 放電を発生させることができる。 (1) From the discharge electrode 5a of the discharge part 5 by covering it with the flexible thin film 20 leaving a directional force part downward from the discharge generation site 15 located on the lowermost surface (tip) side of the discharge electrode 5a. This can prevent a wide range of discharges and can efficiently generate a discharge in a direction substantially perpendicular to the surface of the discharge electrode 5a.
(2)放電電極 5aの放電発生部位 15以外の余分な所からは放電しないので、放電部 5からの漏電でドライバ IC6に被害を及ぼすことがなくなり放電制御の安定性に優れ ると共に、漏電がなくなることにより、放電電極 5aに印加した印加電圧の低下を防止 でき、放電の安定性を向上させることができる。  (2) Since the discharge electrode 5a does not discharge from an extra portion other than the discharge generation site 15, the leakage from the discharge section 5 does not cause damage to the driver IC 6 and has excellent discharge control stability. By eliminating this, it is possible to prevent a decrease in the applied voltage applied to the discharge electrode 5a and improve the stability of the discharge.
[0123] (実施の形態 3) [0123] (Embodiment 3)
本発明の実施の形態 3における放電制御装置について、以下図面を参照しながら 説明する。尚、実施の形態 1又は 2と同様のものには同一の符号を付して説明を省略 する  A discharge control apparatus according to Embodiment 3 of the present invention will be described below with reference to the drawings. The same components as those in the first or second embodiment are denoted by the same reference numerals and description thereof is omitted.
図 16は実施の形態 3における放電制御装置のヘッド基板の要部平面展開図であり 、図 17 (a)は図 16の F—F線矢視断面図であり、図 17 (b)は図 16の G— G線矢視断 面図である。  FIG. 16 is a plan development view of the main part of the head substrate of the discharge control device according to the third embodiment. FIG. 17 (a) is a cross-sectional view taken along the line FF of FIG. 16, and FIG. FIG. 16 is a cross-sectional view taken along line G-G.
図 16及び 17において、実施の形態 3における放電制御装置のヘッド基板 4eが実 施の形態 1と異なるのは、フレキシブル基板 10の両面の内の一方の面側に絶縁膜 1 Oaを介して放電電極 5aを有する放電部 5が形成され、他方の面側に放電電極 5aを 加熱するための発熱部 13が形成された両面積層型である点である。  16 and 17, the head substrate 4e of the discharge control device in the third embodiment is different from that in the first embodiment in that the discharge is performed via the insulating film 1 Oa on one surface side of both surfaces of the flexible substrate 10. The discharge portion 5 having the electrode 5a is formed, and the heat generating portion 13 for heating the discharge electrode 5a is formed on the other surface side.
実施の形態 3における放電制御装置のヘッド基板 4eの製造方法が、実施の形態 1 と異なるのは、フレキシブル基板 10の表裏に放電部 5及び発熱部 13を形成している 点であり、各工程は実施の形態 1と同様なので説明を省略する。  The manufacturing method of the head substrate 4e of the discharge control device in the third embodiment is different from the first embodiment in that the discharge part 5 and the heat generating part 13 are formed on the front and back of the flexible substrate 10, and each step. Is the same as in the first embodiment, and a description thereof will be omitted.
尚、本実施の形態では、フレキシブル基板 10の上面のみに前述の絶縁膜 14aと同 様の絶縁膜 10aを形成した力 絶縁膜 10aはフレキシブル基板 10の両面の内の少 なくとも一方の面に形成すればよい。これにより、確実に放電部 5と発熱部 13との間 を絶縁することができる。また、両面積層型のヘッド基板 4eにおいて、フレキシブル 基板 10の異なる側の面にそれぞれ放電部 5と発熱部 13を形成する際には、どちらを 先に形成しても良い。  In this embodiment, the force insulating film 10a in which the insulating film 10a similar to the insulating film 14a described above is formed only on the upper surface of the flexible substrate 10 is provided on at least one surface of both surfaces of the flexible substrate 10. What is necessary is just to form. Thereby, the discharge part 5 and the heat generating part 13 can be reliably insulated. Further, in the double-sided laminated head substrate 4e, when the discharge part 5 and the heat generating part 13 are formed on different surfaces of the flexible substrate 10, respectively, either may be formed first.
[0124] 次に、ヘッド基板の変形例について説明する。 [0124] Next, a modified example of the head substrate will be described.
図 18 (a)は実施の形態 3における放電制御装置のヘッド基板の第 1の変形例を示 す模式平面図であり、図 18 (b)は図 18 (a)の H— H線矢視模式断面図である。 図 18において、実施の形態 3における放電制御装置のヘッド基板の第 1の変形例 が実施の形態 3と異なるのは、ヘッド基板 4fが、放電部 5の表面に覆設された耐熱性 及び絶縁性を有するフレキシブル被覆膜 17を有し、フレキシブル被覆膜 17が各々 の放電電極 5aの放電発生部位 15 (発熱体 13a位置近傍)に当たる位置に略円形状 の開口部 17aを有する点である。フレキシブル被覆膜 17は前述のフレキシブル薄膜 14と同様にして形成した。尚、独立した複数の開口部 17aを形成する代わりに、複数 の放電電極 5aにまたがった長孔状の開口部を形成してもよ!/、。 FIG. 18 (a) shows a first modification of the head substrate of the discharge control device according to the third embodiment. FIG. 18 (b) is a schematic cross-sectional view taken along line H—H in FIG. 18 (a). In FIG. 18, the first modification of the head substrate of the discharge control device in the third embodiment is different from the third embodiment in that the head substrate 4f is covered with the heat resistance and insulation covered on the surface of the discharge part 5. Flexible coating film 17, and the flexible coating film 17 has a substantially circular opening 17 a at a position corresponding to the discharge generation site 15 (near the position of the heating element 13 a) of each discharge electrode 5 a. . The flexible coating film 17 was formed in the same manner as the flexible thin film 14 described above. Instead of forming the plurality of independent openings 17a, a long hole-like opening extending over the plurality of discharge electrodes 5a may be formed! /.
放電電極 5aの放電発生部位 15表面とフレキシブル被覆膜 17の表面との間に段差 を形成することができるので、放電電極 5aの放電発生部位 15と対向配置される記録 媒体等との間のギャップを一定に保つことができ、放電電極 5aと記録媒体等との接 触を防止でき、放電発生部位 15からの放電を安定させることができる。  Since a step can be formed between the surface of the discharge generation site 15 of the discharge electrode 5a and the surface of the flexible coating film 17, the gap between the discharge generation site 15 of the discharge electrode 5a and the recording medium, etc. The gap can be kept constant, the contact between the discharge electrode 5a and the recording medium can be prevented, and the discharge from the discharge generation site 15 can be stabilized.
[0125] 図 19は実施の形態 3における放電制御装置のヘッド基板の第 2の変形例を示す模 式断面図である。 FIG. 19 is a schematic cross-sectional view showing a second modification of the head substrate of the discharge control device according to the third embodiment.
図 19において、実施の形態 3における放電制御装置のヘッド基板の第 2の変形例 が第 1の変形例と異なるのは、ヘッド基板 4gのフレキシブル被覆膜 17の表面に複数 の凹凸部 17bが形成されて 、る点である。  In FIG. 19, the second modification of the head substrate of the discharge control device in the third embodiment is different from the first modification in that a plurality of uneven portions 17b are formed on the surface of the flexible coating film 17 of the head substrate 4g. It is a point that is formed.
これにより、フレキシブル被覆膜 17の表面距離を伸延させ表面抵抗を増加させるこ とができ、簡便に放電電極 5aの放電発生部位 15から周囲への漏電を防止できる。 尚、フレキシブル被覆膜 17の表面の凹凸部 17bは、スクリーン印刷等を用いて容易 に形成することができる。あるいは、絶縁膜 10aと同じ材質を用いて、フレキシブル被 覆膜 17の表面に凹凸部を形成しても良い。  Thereby, the surface distance of the flexible coating film 17 can be extended and the surface resistance can be increased, and leakage from the discharge generation site 15 of the discharge electrode 5a to the surroundings can be easily prevented. The uneven portion 17b on the surface of the flexible coating film 17 can be easily formed by screen printing or the like. Alternatively, an uneven portion may be formed on the surface of the flexible covering film 17 using the same material as the insulating film 10a.
[0126] 図 20 (a)は実施の形態 3における放電制御装置のヘッド基板の第 3の変形例を示 す模式平面図であり、図 20 (b)は図 20 (a)の I—I線矢視模式断面図である。 FIG. 20 (a) is a schematic plan view showing a third modification of the head substrate of the discharge control device according to the third embodiment, and FIG. 20 (b) is a diagram of I—I in FIG. 20 (a). FIG.
図 20にお 、て、実施の形態 3における放電制御装置のヘッド基板の第 3の変形例 が実施の形態 3と異なるのは、ヘッド基板 4hの放電電極 5aの発熱体 13a側の端部か ら水平方向に離間して絶縁膜 10a上に誘導電極 18が形成されている点と、絶縁膜 1 Oaと放電部 5との間に誘導電極 18を覆設するフレキシブル薄膜 19及び絶縁膜 19a が形成されて ヽる点、である。 In FIG. 20, the third modification of the head substrate of the discharge control device in the third embodiment differs from the third embodiment in the end of the discharge electrode 5a of the head substrate 4h on the heating element 13a side. And a flexible thin film 19 and an insulating film 19a covering the induction electrode 18 between the insulating film 1 Oa and the discharge part 5; It is a point that is formed.
誘導電極 18は絶縁膜 14a上に帯状に形成し接地した。放電部 5の放電電極 5aと 誘導電極 18間のギャップを常に一定に保つことができ、放電電極 5aと誘導電極 18 間に電圧を印加することにより、確実に放電を発生させることができる。放電は誘導 電極 18に引張られるように発生するが、記録媒体等の被イオン照射体側を接地する ことで、イオンは誘導電極 18が無い場合と同様に被イオン照射体に向力つて照射さ れる。  The induction electrode 18 was formed in a strip shape on the insulating film 14a and grounded. The gap between the discharge electrode 5a of the discharge part 5 and the induction electrode 18 can be kept constant at all times, and by applying a voltage between the discharge electrode 5a and the induction electrode 18, a discharge can be reliably generated. The discharge is generated by being pulled by the induction electrode 18, but by grounding the irradiated object side such as a recording medium, the ions are irradiated to the irradiated object in the same direction as when the induction electrode 18 is not provided. .
[0127] 実施の形態 3における放電制御装置 7のヘッド基板 4e (4f, 4g, 4h)は柔軟性に富 んでいるため、実施の形態 1における放電制御装置 7のヘッド基板 4 (4a, 4b, 4c)と 同様に、平面状態から形状基板 2の端面部 3a,縁部 3b,隆起部 3c等の形状に沿わ せて湾曲させる等して容易に加工する(変形させる)ことができ、実施の形態 1と同様 の加熱放電型印字ヘッド la, lb, lcを得ることができる。  [0127] Since the head substrate 4e (4f, 4g, 4h) of the discharge control device 7 in the third embodiment is very flexible, the head substrate 4 (4a, 4b, 4h) of the discharge control device 7 in the first embodiment. Similar to 4c), it can be easily processed (deformed) from the planar state by bending it along the shape of the end face portion 3a, edge portion 3b, raised portion 3c, etc. of the shaped substrate 2. Heat-discharge type print heads la, lb and lc similar to those in form 1 can be obtained.
[0128] 以上のように実施の形態 3におけるヘッド基板によれば、実施の形態 1の作用に加 え、以下の作用を有する。  As described above, the head substrate in the third embodiment has the following operation in addition to the operation in the first embodiment.
(1)フレキシブル基板 10を挟んで発熱部 13と放電部 5を形成するので、別途、発熱 部 13と放電部 5を絶縁するためのフレキシブル薄膜を形成する必要がなく生産工数 を低減できると共に、フレキシブル基板 10を介して発熱部 13と放電部 5とが完全に 密着するので、熱の伝達効率が良くなり、加熱及び放電の効率性に優れる。  (1) Since the heat generating part 13 and the discharge part 5 are formed across the flexible substrate 10, there is no need to separately form a flexible thin film for insulating the heat generating part 13 and the discharge part 5, and the production man-hour can be reduced. Since the heat generating part 13 and the discharge part 5 are completely adhered via the flexible substrate 10, the heat transfer efficiency is improved, and the heating and discharge efficiency is excellent.
(2)フレキシブル基板 10が耐熱性及び絶縁性を有することにより、発熱体 13aの発 する熱で熱変形することがなく、発熱体 13a及び発熱体 13aに接続された電極を保 護して放電電極 5aとの絶縁性を確保でき、放電電極 5aの加熱を行うことができる。 (2) Since the flexible substrate 10 has heat resistance and insulation, it is not thermally deformed by the heat generated by the heating element 13a, and the electrodes connected to the heating element 13a and the heating element 13a are protected and discharged. Insulation with the electrode 5a can be ensured, and the discharge electrode 5a can be heated.
(3)発熱部 13をフレキシブル薄膜 14で被覆することにより、高温になる発熱部 13が 剥き出しになるのを防止でき、発熱部 13と外部との絶縁性を確保でき安全性に優れ る。 (3) By covering the heat generating part 13 with the flexible thin film 14, the high temperature heat generating part 13 can be prevented from being exposed, and insulation between the heat generating part 13 and the outside can be ensured, resulting in excellent safety.
(4)フレキシブル基板 10にピンホールが生じていても、フレキシブル基板 10に絶縁 膜 10aを形成することで発熱部 13と放電部 5との絶縁性を確保でき信頼性に優れる  (4) Even if pinholes are formed in the flexible substrate 10, forming the insulating film 10a on the flexible substrate 10 ensures the insulation between the heat generating part 13 and the discharge part 5 and is excellent in reliability.
(5)アルミニウム箔の両面に酸ィ匕膜が形成されたフレキシブル基板 10は、熱伝導性 に優れるので、発熱体 13aの発する熱をフレキシブル基板 10を介して放電電極 5a へ効率よく伝達させることができ、放電制御電圧や加熱温度を低く設定することがで き、省エネルギー性及び放電発生の効率性に優れる。 (5) Flexible substrate 10 with an oxide film formed on both sides of aluminum foil Therefore, the heat generated by the heating element 13a can be efficiently transmitted to the discharge electrode 5a through the flexible substrate 10, the discharge control voltage and the heating temperature can be set low, and energy saving and discharge generation are prevented. Excellent efficiency.
[0129] 以上のように実施の形態 3におけるヘッド基板を用いた放電制御装置及びその放 電制御装置を備えた加熱放電型印字ヘッドによれば、実施の形態 1と同様の作用を 有する。  As described above, according to the discharge control device using the head substrate in the third embodiment and the heat discharge type print head including the discharge control device, the same operation as in the first embodiment is obtained.
[0130] (実施の形態 4) [0130] (Embodiment 4)
本発明の実施の形態 4における放電制御装置について、以下図面を参照しながら 説明する。尚、実施の形態 1乃至 3と同様のものには同一の符号を付して説明を省略 する  A discharge control apparatus according to Embodiment 4 of the present invention will be described below with reference to the drawings. The same components as those in the first to third embodiments are denoted by the same reference numerals and description thereof is omitted.
図 21は実施の形態 4における放電デバイス分離型の放電制御装置のヘッド基板を 示す構成図であり、図 22 (a)は実施の形態 4における放電デバイス分離型の放電制 御装置のヘッド基板の放電ユニットを示す模式断面図であり、図 22 (b)は実施の形 態 4における放電デバイス分離型の放電制御装置のヘッド基板の発熱ユニットを示 す模式断面図であり、図 22 (c)は実施の形態 4における放電デバイス分離型の放電 制御装置のヘッド基板を示す模式断面図であり、図 22 (d)は実施の形態 4における 放電デバイス分離型の放電制御装置のヘッド基板の変形例を示す模式断面図であ る。  FIG. 21 is a configuration diagram showing the head substrate of the discharge control device of the discharge device separation type according to the fourth embodiment, and FIG. 22 (a) shows the head substrate of the discharge control device of the discharge device separation type according to the fourth embodiment. FIG. 22 (b) is a schematic cross-sectional view showing the heat generating unit of the head substrate of the discharge control device of the discharge device separation type in Embodiment 4, and FIG. 22 (c) is a schematic cross-sectional view showing the discharge unit. FIG. 22 is a schematic cross-sectional view showing the head substrate of the discharge control device of the discharge device separation type in Embodiment 4, and FIG. 22 (d) is a modification of the head substrate of the discharge control device of the discharge device separation type of Embodiment 4. FIG.
[0131] 図 21及び 22において、実施の形態 4における放電制御装置のヘッド基板が実施 の形態 1乃至 3と異なるのは、放電部 5と発熱部 13とを別個にフレキシブル基板 10上 に形成して、それぞれを放電ユニット 21と発熱ユニット 22とし、発熱ユニット 22に放 電ユニット 21を合体させてヘッド基板 4i, 4jとする放電デバイス分離型である点であ る。  In FIGS. 21 and 22, the head substrate of the discharge control device in the fourth embodiment is different from the first to third embodiments in that the discharge part 5 and the heat generating part 13 are separately formed on the flexible substrate 10. The discharge unit 21 and the heat generation unit 22 are combined, and the discharge unit 21 is combined with the heat generation unit 22 to form the head substrates 4i and 4j.
図 22 (a) , (b)にお 、て、実施の形態 4における放電制御装置のヘッド基板の放電 ユニット 21及び発熱ユニット 22の製造方法力 実施の形態 3と異なるのは、別々のフ レキシブル基板 10に放電部 5及び発熱部 13を形成している点であり、各工程は実 施の形態 3と同様なので説明を省略する。  In FIGS. 22 (a) and 22 (b), the manufacturing method capabilities of the discharge unit 21 and the heat generation unit 22 of the head substrate of the discharge control device according to the fourth embodiment are different from the third embodiment in that they are separate flexible The discharge part 5 and the heat generating part 13 are formed on the substrate 10, and the respective steps are the same as those in the third embodiment, and the description thereof is omitted.
[0132] 図 22 (c)に示すように、放電ユニット 21と発熱ユニット 22をそのまま貼り合わせてへ ッド基板 4iとしてもよいし、図 22 (d)に示すように、放電ユニット 21の放電部 5と発熱 ユニット 22の発熱部 13を背中合わせにし、それぞれのフレキシブル基板 10同士を 貼り合わせてヘッド基板 4jとしてもよい。 [0132] As shown in Fig. 22 (c), the discharge unit 21 and the heat generation unit 22 are bonded together. 22d, or as shown in FIG. 22 (d), the discharge unit 5 of the discharge unit 21 and the heat generation unit 13 of the heat generation unit 22 are back to back, and the flexible substrates 10 are bonded together to form the head substrate. It may be 4j.
尚、放電ユニット 21と発熱ユニット 22は耐熱性を有する接着剤で接着して一体ィ匕 する代わりに、放電ユニット 21と発熱ユニット 22の長手方向の両端部や外周部等を 上下から固定治具で挟んで固定することにより着脱自在としてもよい。固定治具はピ ン嵌合やねじ止め等の着脱自在な固定手段で固定すればよい。放電ユニット 21と発 熱ユニット 22の位置決めは、放電ユニット 21と発熱ユニット 22のいずれか一方にピ ンを突設し、他方に嵌合孔を穿設してピン嵌合で行うことができる。また、放電ュニッ ト 21と発熱ユニット 22の双方のフレキシブル基板 10に嵌合孔を穿設しておき、固定 治具のピンを利用して両者を位置決め固定してもよい。尚、発熱ユニット 22は放電ュ ニット 21を加熱する機能を有して 、ればよぐ柔軟性を有するフレキシブル基板 10 上に形成する代わりに、セラミック等の硬い基板上に形成してもよい。発熱ユニット 22 をセラミック等の硬 、基板上に形成する場合、発熱ユニット 22としては既存のサーマ ルヘッドを使用することもでき、そのようにして得られる加熱放電型印字ヘッドは従来 の平面型の印字ヘッドとして用いることができる。  Note that the discharge unit 21 and the heat generating unit 22 are fixed with jigs for fixing the longitudinal ends and outer peripheral portions of the discharge unit 21 and the heat generating unit 22 from above and below instead of being bonded together with a heat-resistant adhesive. It is good also as attachment or detachment by pinching and fixing. The fixing jig may be fixed by a detachable fixing means such as pin fitting or screwing. Positioning of the discharge unit 21 and the heat generation unit 22 can be performed by pin fitting with a pin protruding from one of the discharge unit 21 and the heat generation unit 22 and a fitting hole formed in the other. Alternatively, the flexible substrate 10 of both the discharge unit 21 and the heat generating unit 22 may be provided with fitting holes, and both may be positioned and fixed using pins of a fixing jig. The heat generating unit 22 has a function of heating the discharge unit 21, and may be formed on a hard substrate such as ceramic instead of being formed on the flexible substrate 10 having flexibility. When the heat generating unit 22 is formed on a hard substrate such as ceramic, an existing thermal head can be used as the heat generating unit 22, and the heat discharge type print head obtained in this way is a conventional flat print. It can be used as a head.
本実施の形態では、実施の形態 1及び 3における放電制御装置のヘッド基板の第 1の変形例と同様に、放電部 5の表面に開口部 17aを有するフレキシブル被覆膜 17 を形成したが、実施の形態 1及び 3における放電制御装置のヘッド基板の第 2の変形 例と同様に、フレキシブル被覆膜 17の表面に複数の凹凸部を形成してもよいし、或 いはフレキシブル被覆膜 17を設けなくてもよ 、。  In the present embodiment, as in the first modification of the head substrate of the discharge control device in the first and third embodiments, the flexible coating film 17 having the opening 17a is formed on the surface of the discharge section 5, Similar to the second modification of the head substrate of the discharge control device according to the first and third embodiments, a plurality of irregularities may be formed on the surface of the flexible coating film 17 or the flexible coating film. 17 is not necessary
以上のように実施の形態 4におけるヘッド基板によれば、実施の形態 1乃至 3の作 用に加え、以下の作用を有する。  As described above, the head substrate in the fourth embodiment has the following actions in addition to the operations in the first to third embodiments.
(1)放電ユニット 21と発熱ユニット 22とを別個の部品として製造できるので、放電ュ ニット 21及び発熱ユニット 22のそれぞれの製造工程を簡素化でき、歩留まりを向上 でき量産性に優れる。  (1) Since the discharge unit 21 and the heat generating unit 22 can be manufactured as separate parts, the respective manufacturing processes of the discharge unit 21 and the heat generating unit 22 can be simplified, yield can be improved, and mass productivity is excellent.
(2)放電ユニット 21と発熱ユニット 22のそれぞれの特性のばらつきを考慮して組み合 わせること〖こより、ヘッド基板 4i, 4jとしての特性のばらつきを低減してほぼ均一な性 能を得ることができ実用性、量産性に優れる。 (2) By combining the discharge unit 21 and the heat generation unit 22 in consideration of the variation in characteristics, the variation in characteristics of the head substrates 4i and 4j can be reduced to achieve almost uniform characteristics. Performance and mass productivity.
(3)放電ユニット 21と発熱ユニット 22を着脱自在とした場合、いずれか一方に不具合 が発生した場合に、容易に交換或いは修理を行うことができ、特に放電電極 5aが摩 耗した際には、放電ユニット 21の取り替えで対応できるので、放電制御装置 7のラン ユングコストを低減でき、メンテナンス性、省資源性に優れる。特に、発熱ユニット 22 として既存のサーマルヘッドを使用する場合に顕著な作用が得られる。  (3) When the discharge unit 21 and the heat generating unit 22 are detachable, they can be easily replaced or repaired if any one of them fails, especially when the discharge electrode 5a is worn. Since the discharge unit 21 can be replaced, the running cost of the discharge control device 7 can be reduced, and the maintenance and resource saving are excellent. In particular, a remarkable effect can be obtained when an existing thermal head is used as the heating unit 22.
[0134] 以上のように実施の形態 4におけるヘッド基板を用いた放電制御装置及びその放 電制御装置を備えた加熱放電型印字ヘッドによれば、実施の形態 1又は 3と同様の 作用を有する。  As described above, according to the discharge control device using the head substrate in the fourth embodiment and the heat-discharge type print head equipped with the discharge control device, the operation is the same as in the first or third embodiment. .
[0135] (実施の形態 5)  [Embodiment 5]
本発明の実施の形態 5におけるサーマルヘッドについて、以下図面を参照しながら 説明する。  A thermal head according to Embodiment 5 of the present invention will be described below with reference to the drawings.
図 23は実施の形態 5におけるサーマルヘッドを示す要部模式斜視図である。尚、 実施の形態 1乃至 4と同様のものには同一の符号を付して説明を省略する。  FIG. 23 is a schematic perspective view of an essential part showing the thermal head in the fifth embodiment. In addition, the same code | symbol is attached | subjected to the thing similar to Embodiment 1-4, and description is abbreviate | omitted.
図 23中、 30は発熱ユニット 22aの発熱咅 13の発熱体 13aが、ァノレミニゥム等の材 質で形成された平板状の形状基板 2aの端面部 3aに形状基板 2aの表面と略直角を なすように配置された実施の形態 5における端面型のサーマルヘッドである。  In FIG. 23, reference numeral 30 denotes a heating element 13a of the heating unit 22a so that the heating element 13a of the heating unit 13a is substantially perpendicular to the surface of the shape substrate 2a on the end surface portion 3a of the flat shape substrate 2a formed of a material such as an anorium. 6 is an end face type thermal head according to the fifth embodiment.
[0136] 次に、実施の形態 5におけるサーマルヘッドの発熱ユニットの構造について詳細を 説明する。 Next, the structure of the heat generating unit of the thermal head in the fifth embodiment will be described in detail.
図 24は実施の形態 5におけるサーマルヘッドの発熱ユニットを示す要部平面展開 図であり、図 25 (a)は図 24の J J線矢視断面図であり、図 25 (b)は図 24の K— K線 矢視断面図である。  FIG. 24 is a plan development view of the main part showing the heat generating unit of the thermal head in the fifth embodiment, FIG. 25 (a) is a cross-sectional view taken along the line JJ in FIG. 24, and FIG. FIG. 10 is a sectional view taken along the line K—K.
図 24及び図 25中、 14bは発熱用共通電極部 1 lb及び発熱用個別電極 12の端部 を除いてフレキシブル基板 10の上面に覆設された耐熱性及び絶縁性を有するガラ スで形成された保護膜である。  In FIGS. 24 and 25, 14b is formed of heat-resistant and insulating glass covered on the upper surface of the flexible substrate 10 except for the end portion of the heating common electrode portion 1 lb and the heating individual electrode 12. It is a protective film.
この実施の形態 5におけるサーマルヘッド 30の発熱ユニット 22aは、実施の形態 4 における放電制御装置 7のヘッド基板 4iの発熱ユニット 22と同等の構成を有している [0137] 図 24及び図 25において、実施の形態 5におけるサーマルヘッド 30の発熱ユニット 22aの製造方法が実施の形態 4における放電制御装置 7のヘッド基板 4iの発熱ュ- ット 22と異なるのは、ポリイミド,ァラミド,ポリエーテルイミド等の合成樹脂でフレキシ ブル薄膜 14を形成する代わりに、ガラスで保護膜 14bを形成して 、る点である。 発熱用共通導体パターン 11,発熱用櫛歯電極 11a,発熱用共通電極部 l ib,発 熱用個別電極 12となる導体 (電極)、発熱体 13aとなる TaSiOや RuO、保護膜 14b The heating unit 22a of the thermal head 30 in the fifth embodiment has the same configuration as the heating unit 22 of the head substrate 4i of the discharge control device 7 in the fourth embodiment. In FIG. 24 and FIG. 25, the method of manufacturing the heat generating unit 22a of the thermal head 30 in the fifth embodiment is different from the heat generating unit 22 of the head substrate 4i of the discharge control device 7 in the fourth embodiment. Instead of forming the flexible thin film 14 with a synthetic resin such as polyimide, aramid, or polyetherimide, a protective film 14b is formed with glass. Heat-generating common conductor pattern 11, Heat-generating comb electrode 11a, Heat-generating common electrode part l ib, Heat-generating individual electrode 12 Conductor (electrode), Heat-generating element 13a TaSiO or RuO, Protective film 14b
2 2  twenty two
となるガラスの各ペーストを平面状態のフレキシブル基板 10上に塗布、焼成し、フォ トリソグラフ技術を用いたパターユングにより、簡便に厚膜型の発熱部 13を形成する ことができる。  Each thick glass-type heat generating part 13 can be easily formed by applying and baking each glass paste on the flexible substrate 10 in a flat state and patterning using a photolithographic technique.
本実施の形態では、発熱部 13の配置方式を端面型としたが、形状基板 2aの形状 及び  In the present embodiment, the arrangement method of the heat generating portion 13 is an end face type, but the shape of the shape substrate 2a and
発熱ユニット 22aの貼り付け位置を選択することにより、図 11及び図 12で示した加熱 放電型印字ヘッド lb, lcと同様のエッジ型や隆起型のサーマルヘッドを得ることがで きる。  By selecting the attachment position of the heat generating unit 22a, an edge-type or raised-type thermal head similar to the heat-discharge type print heads lb, lc shown in FIGS. 11 and 12 can be obtained.
尚、発熱ユニット 22aの発熱部 13は、スパッタリングや真空蒸着等の成膜技術を用 いた薄膜型に形成することもできる。  The heat generating portion 13 of the heat generating unit 22a can also be formed in a thin film type using a film forming technique such as sputtering or vacuum deposition.
[0138] 以上のように実施の形態 5におけるサーマルヘッドによれば、以下の作用を有する [0138] As described above, according to the thermal head in the fifth embodiment, the following effects are obtained.
(1)発熱ユニット 22aのフレキシブル基板 10を湾曲させることができるので、平面状 態のフレキシブル基板 10へ技術的に容易な厚膜技術を用いて発熱部 13などを形 成した後に、フレキシブル基板 10ごと所望の形状に変形 (湾曲)させることができ、発 熱ユニット 22aを形状基板 2aの形状に沿わせて固定することにより、平易な技術を用 V、て所望の形状 (従来は高度な技術を要した)のサーマルヘッド 30を製造でき、生産 性に優れる。 (1) Since the flexible substrate 10 of the heat generating unit 22a can be bent, the flexible substrate 10 is formed after forming the heat generating portion 13 and the like on the planar flexible substrate 10 using a technically easy thick film technology. Each unit can be deformed (curved) into a desired shape, and by fixing the heat generating unit 22a along the shape of the shape substrate 2a, a simple technique can be used. The thermal head 30 is manufactured with high productivity.
(2)形状基板 2aの形状や形状基板 2aに対する発熱ユニット 22aの固定位置を変更 するだけで、共通の発熱ユニット 22aを用いて様々な形状のサーマルヘッド 30を製 造でき、量産性、汎用性に優れる。  (2) By changing the shape of the shape substrate 2a and the fixing position of the heat generating unit 22a relative to the shape substrate 2a, the thermal head 30 of various shapes can be manufactured using the common heat generating unit 22a. Excellent.
(3)発熱部 13が耐熱性及び絶縁性を有する保護膜 14bで被覆されていることにより 、発熱部 13を保護して破損を防止することができ、発熱ユニット 22aの耐久性、長寿 命性に優れる。 (3) The heat generating part 13 is covered with a heat-resistant and insulating protective film 14b. The heat generating part 13 can be protected to prevent damage, and the heat generating unit 22a has excellent durability and long life.
(4)アルミニウム箔の両面に酸ィ匕膜が形成されたフレキシブル基板 10は、熱伝導性 に優れるので、発熱部 13の熱を形状基板 2aへ伝達させて逃がすことができ、発熱部 13への熱の籠もりを防止し、発熱部 13の加熱停止に対する印字停止の応答性を向 上させて印字速度を高速ィ匕することができると共に、尾引のない高品質な画像を形 成することができ画像品質の信頼性に優れる。  (4) Since the flexible substrate 10 having the oxide film formed on both surfaces of the aluminum foil is excellent in thermal conductivity, the heat of the heat generating part 13 can be transferred to the shape substrate 2a and escaped to the heat generating part 13. This prevents the heat build-up from occurring, improves the print stop response to the heating stop of the heat generating part 13 and increases the print speed, and forms a high-quality image without a tail. Can be reliable in image quality.
(5)フレキシブル基板 10の基材となるアルミニウム箔の両面に形成される酸ィ匕膜が、 アルミナであることにより、金属箔と酸化膜の密着性に優れ、フレキシブル基板 10の 絶縁性、耐久性を向上させることができる。  (5) Since the oxide film formed on both surfaces of the aluminum foil that is the base material of the flexible substrate 10 is alumina, it has excellent adhesion between the metal foil and the oxide film, and the insulating and durability of the flexible substrate 10 Can be improved.
(6)フレキシブル基板 10の基材となる金属箔がアルミニウムで形成されていることに より、フレキシブル基板 10の熱伝導性を向上させることができ、発熱部 13の余分な 熱をフレキシブル基板 10が固定される形状基板 2aへ効率的に伝達させて逃がすこ とができ、発熱部 13の加熱停止に対する印字停止の応答性に優れ、画像品質の信 頼性に優れる。  (6) Since the metal foil used as the base material of the flexible substrate 10 is formed of aluminum, the thermal conductivity of the flexible substrate 10 can be improved, and the flexible substrate 10 It can be efficiently transmitted to the fixed shape substrate 2a and escaped, and the printing stop response to the heating stop of the heat generating part 13 is excellent, and the reliability of the image quality is excellent.
(7)フレキシブル基板 10の酸ィ匕膜がアルミナで形成されていることにより、化学的に 安定で耐熱性、絶縁性に優れると共に、熱伝導率が高ぐ放電制御の信頼性を向上 させることがでさる。  (7) Because the oxide film of the flexible substrate 10 is made of alumina, it is chemically stable, has excellent heat resistance and insulation properties, and has high thermal conductivity, improving the reliability of discharge control. It is out.
(8)ドライバ IC6を形状基板 2aの表面に配置し、発熱体 13aを形状基板 2aの端面部 3aに配置して、ドライバ IC6と発熱体 13aとが略直角をなすようにすることにより、特に プラスチック製のカードや厚紙などのように弾力性があり、湾曲させることが困難な記 録媒体を直線状に搬送することができ、水平プリンタに好適に用いることができる。 (8) By disposing the driver IC6 on the surface of the shape substrate 2a and disposing the heating element 13a on the end surface 3a of the shape substrate 2a so that the driver IC6 and the heating element 13a are substantially at right angles, A recording medium such as a plastic card or cardboard that is elastic and difficult to be bent can be conveyed in a straight line, and can be suitably used for a horizontal printer.
(9)発熱部 13の配置方式が端面型であることにより、記録媒体に対向する部分の幅 を狭くでき、水平方向に嵩張らずに配置することができるので、特に多種多様な形状 の記録媒体に対応することができ汎用性に優れ、発熱部 13と記録媒体との接触面 積が小さぐ発熱体 13aからの熱が走査方向に広がらず、にじみのない高品質な画 像を形成することができ画像品質の信頼性に優れる。 (9) Since the arrangement of the heat generating portion 13 is an end face type, the width of the portion facing the recording medium can be reduced and the arrangement can be made without being bulky in the horizontal direction. The heat from the heating element 13a with a small contact area between the heat generating part 13 and the recording medium does not spread in the scanning direction and forms a high-quality image without blurring. The image quality is highly reliable.
(10)金属箔の表面に酸ィ匕膜を形成したフレキシブル基板 10は耐熱性に優れるので 、発熱部 13を形成する際に、スパッタリングや蒸着などの薄膜技術を用いる以外に、 高温での焼成が必要な厚膜技術を用いることができ、量産性に優れる。 (10) The flexible substrate 10 with an oxide film formed on the surface of the metal foil is excellent in heat resistance. When forming the heat generating portion 13, in addition to using a thin film technique such as sputtering or vapor deposition, a thick film technique that requires baking at a high temperature can be used, which is excellent in mass productivity.
( 11 )平面状態のフレキシブル基板 10上に発熱部 13を形成することができるので、 微細加工及び多数個取りが容易で量産性に優れる。 (11) Since the heat generating portion 13 can be formed on the flexible substrate 10 in a planar state, fine processing and multi-piece fabrication are easy and excellent in mass productivity.
産業上の利用可能性 Industrial applicability
本発明は、基板自体に柔軟性を持たせることにより、平面状態の基板に発熱部や 放電部等を有する放電デバイスを形成した後に、放電デバイスを形成した基板を所 望の形状に加工することができ加工性、組立作業性に優れ、基板及び放電デバイス の形成技術上の制約を克服することができ設計自在性、量産性に優れるヘッド基板 の提供、基板の熱伝導性を向上させることにより加熱停止に対する放電停止の応答 性に優れ、放電制御の信頼性に優れるヘッド基板を用いた放電制御装置の提供、 小型で量産性、設置自在性に優れ、記録媒体が湾曲しない状態で書き込みが可能 であると共に、多種多様な形状の静電潜像担持体に対しても最適な位置から静電潜 像を形成できる汎用性、画像品質の信頼性に優れる放電制御装置を備えた水平プリ ンタ対応型の加熱放電型印字ヘッドの提供、及び基板自体に柔軟性を持たせること により、平面状態の基板に薄膜技術或いは厚膜技術を用いて発熱部を形成すること ができ、微細加工及び多数個取りが可能で量産性に優れ、発熱部を形成した基板を 所望の形状に加工することができ加工性、組立作業性に優れ、基板及び発熱部の 形成技術上の制約を克服することができ、印字ヘッドとしてだけでなぐ加熱放電方 式の放電制御装置などの加熱手段としても好適に用いることができ設計自在性、汎 用性に優れると共に、基板の熱伝導性を向上させて加熱停止に対する印字停止の 応答性に優れ、画像品質の信頼性に優れるサーマルヘッドの提供を行うことができ、 水平プリンタ対応型の印字ヘッドや加熱手段を普及させることができる。  In the present invention, by providing a flexible substrate, after forming a discharge device having a heating part, a discharge part, etc. on a flat substrate, the substrate on which the discharge device is formed is processed into a desired shape. By providing a head substrate that is superior in workability and assembly workability, can overcome limitations on the formation technology of the substrate and discharge device and can be designed and mass-produced, and by improving the thermal conductivity of the substrate Offers a discharge control device that uses a head substrate with excellent discharge stop response to heat stop and excellent discharge control reliability, small size, excellent mass productivity, easy installation, and writing without bending the recording medium In addition, it is possible to form an electrostatic latent image from an optimal position on a variety of shapes of electrostatic latent image carriers. By providing a heat-discharge-type print head that can handle data and providing flexibility to the substrate itself, a heat generating part can be formed on a planar substrate using thin film technology or thick film technology. Capable of mass production, excellent mass productivity, processing a substrate with a heat generation part into a desired shape, excellent workability and assembly workability, and overcoming restrictions on the technology for forming the substrate and the heat generation part It can be suitably used as a heating means such as a heat discharge type discharge control device that can be used only as a print head, and is excellent in design flexibility and versatility, and is improved by improving the thermal conductivity of the substrate. It is possible to provide a thermal head that is excellent in response to printing stop and excellent in image quality reliability, and can be used for horizontal printer compatible print heads and heating means.

Claims

請求の範囲 The scope of the claims
[1] 金属箔の両面の内の少なくともいずれか一方の面に酸ィ匕膜が形成された耐熱性及 び絶縁性を有するフレキシブル基板と、前記フレキシブル基板の前記酸ィ匕膜が形成 された面上に形成された発熱体を有する発熱部と、前記発熱部を被覆した耐熱性及 び絶縁性を有するフレキシブル薄膜と、前記フレキシブル薄膜の上に形成され前記 発熱体により加熱される放電電極を有する放電部と、を備えたことを特徴とするヘッド 基板。  [1] A heat-resistant and insulating flexible substrate having an oxide film formed on at least one of both surfaces of the metal foil, and the oxide film of the flexible substrate formed A heating part having a heating element formed on the surface, a heat-resistant and insulating flexible thin film covering the heating part, and a discharge electrode formed on the flexible thin film and heated by the heating element. And a discharge part having a head substrate.
[2] 前記フレキシブル薄膜の両面の内の少なくとも一方の面に形成された絶縁膜を備 えたことを特徴とする請求項 1に記載のヘッド基板。  2. The head substrate according to claim 1, further comprising an insulating film formed on at least one of both surfaces of the flexible thin film.
[3] 金属箔の両面に酸化膜が形成された耐熱性及び絶縁性を有するフレキシブル基 板と、前記フレキシブル基板の両面の内の一方の面側に形成された放電電極を有 する放電部と、前記フレキシブル基板の両面の内の他方の面側に形成された発熱体 を有する発熱部と、を備えたことを特徴とするヘッド基板。  [3] A heat-resistant and insulating flexible substrate in which an oxide film is formed on both surfaces of a metal foil, and a discharge part having a discharge electrode formed on one surface side of both surfaces of the flexible substrate; And a heat generating part having a heat generating element formed on the other surface side of both surfaces of the flexible substrate.
[4] 前記発熱部を被覆した耐熱性及び絶縁性を有するフレキシブル薄膜を備えたこと を特徴とする請求項 3に記載のヘッド基板。  [4] The head substrate according to [3], further comprising a flexible thin film having heat resistance and insulation covering the heat generating portion.
[5] (a)金属箔の両面に酸化膜が形成された耐熱性及び絶縁性を有するフレキシブル 基板と、前記フレキシブル基板の両面の内の一方の面側に形成された放電電極を 有する放電部と、を備えた放電ユニットと、(b)前記放電電極を加熱する発熱体を有 する発熱部を備え、前記放電ユニットの前記フレキシブル基板の両面の内の他方の 面側に配設された発熱ユニットと、を備えたことを特徴とするヘッド基板。  [5] (a) A discharge part having a heat-resistant and insulating flexible substrate in which an oxide film is formed on both surfaces of a metal foil, and a discharge electrode formed on one side of both surfaces of the flexible substrate And (b) a heat generating portion having a heat generating element for heating the discharge electrode, and the heat generation disposed on the other surface side of both surfaces of the flexible substrate of the discharge unit. And a unit comprising a unit.
[6] 前記放電ユニットと前記発熱ユニットが着脱自在に配設されたことを特徴とする請 求項 5に記載のヘッド基板。  [6] The head substrate according to claim 5, wherein the discharge unit and the heat generating unit are detachably disposed.
[7] 前記フレキシブル基板の両面の内の少なくとも一方の面に形成された絶縁膜を備 えたことを特徴とする請求項 3乃至 6の内いずれ力 1項に記載のヘッド基板。 7. The head substrate according to any one of claims 3 to 6, further comprising an insulating film formed on at least one of both surfaces of the flexible substrate.
[8] 前記フレキシブル基板の前記放電部側に前記放電電極と絶縁されて形成された誘 導電極を備えたことを特徴とする請求項 1乃至 7の内いずれか 1項に記載のヘッド基 板。 [8] The head substrate according to any one of [1] to [7], further comprising an induction electrode formed on the discharge portion side of the flexible substrate so as to be insulated from the discharge electrode. .
[9] 前記放電電極に放電発生部位を残して被覆された耐熱性及び絶縁性を有するフ レキシブル被覆膜を備えたことを特徴とする請求項 1乃至 8の内いずれ力 1項に記載 のヘッド基板。 [9] A heat-resistant and insulating film coated on the discharge electrode leaving a discharge generation site. The head substrate according to any one of claims 1 to 8, wherein the head substrate is provided with a compliant coating film.
[10] 前記フレキシブル被覆膜の表面に形成された凹凸部を備えたことを特徴とする請 求項 9に記載のヘッド基板。  [10] The head substrate according to claim 9, further comprising an uneven portion formed on the surface of the flexible coating film.
[11] 前記フレキシブル基板の前記酸ィ匕膜が、前記金属箔と同じ材質の金属の酸ィ匕膜で 形成されていることを特徴とする請求項 1乃至 10の内いずれ力 1項に記載のヘッド基 板。 [11] The internal force of any one of [1] to [10], wherein the oxide film of the flexible substrate is formed of a metal oxide film made of the same material as the metal foil. Head board.
[12] 前記フレキシブル基板の前記酸ィ匕膜が、前記金属箔と異なる材質の金属の酸ィ匕膜 で形成されていることを特徴とする請求項 1乃至 10の内いずれか 1項に記載のヘッド 基板。  12. The oxide film of the flexible substrate is formed of a metal oxide film of a material different from that of the metal foil. Head board.
[13] 前記フレキシブル基板の前記金属箔が、アルミニウムで形成されていることを特徴 とする請求項 1乃至 12の内いずれか 1項に記載のヘッド基板。  [13] The head substrate according to any one of [1] to [12], wherein the metal foil of the flexible substrate is made of aluminum.
[14] 前記フレキシブル基板の前記金属箔が、銅で形成されていることを特徴とする請求 項 1乃至 12の内いずれか 1項に記載のヘッド基板。 [14] The head substrate according to any one of [1] to [12], wherein the metal foil of the flexible substrate is made of copper.
[15] 前記フレキシブル基板の前記酸ィ匕膜が、アルミナで形成されて 、ることを特徴とす る請求項 1乃至 14の内いずれ力 1項に記載のヘッド基板。 15. The head substrate according to any one of claims 1 to 14, wherein the oxide film of the flexible substrate is made of alumina.
[16] 請求項 1乃至 15の内いずれか 1項に記載のヘッド基板と、前記ヘッド基板の前記フ レキシブル基板の前記発熱部側の面に配設され前記発熱体の発熱を制御するドラ ィバ ICと、を備えたことを特徴とする放電制御装置。 [16] The head substrate according to any one of claims 1 to 15, and a drive disposed on a surface of the flexible substrate on the heat generating portion side of the head substrate to control heat generation of the heating element. A discharge control device comprising: an IC.
[17] 請求項 16に記載の放電制御装置を備えた加熱放電型印字ヘッドであって、前記 ヘッド基板が、形状基板の形状に沿って固定されていることを特徴とする加熱放電型 印字ヘッド。 [17] A heat discharge type print head comprising the discharge control device according to claim 16, wherein the head substrate is fixed along the shape of the shape substrate. .
[18] 前記放電部の前記放電電極の配置面と前記ドライバ ICの配置面とが同一平面上 にないことを特徴とする請求項 17に記載の加熱放電型印字ヘッド。  18. The heating discharge type print head according to claim 17, wherein a surface on which the discharge electrode is disposed and a surface on which the driver IC is disposed are not on the same plane.
[19] 前記放電部の配置方式が、前記ドライバ ICが前記形状基板の表面に配置され、前 記放電電極が前記形状基板の端面部に前記形状基板の表面と略直角をなすように 配置された端面型であることを特徴とする請求項 18に記載の加熱放電型印字ヘッド [19] In the arrangement of the discharge part, the driver IC is arranged on the surface of the shape substrate, and the discharge electrode is arranged on the end surface of the shape substrate so as to be substantially perpendicular to the surface of the shape substrate. 19. The heat-discharge type print head according to claim 18, wherein the print head is of an end face type.
[20] 前記放電部の配置方式が、前記ドライバ ICが前記形状基板の表面に配置され、前 記放電電極が前記固定板の傾斜状の縁部に前記形状基板の表面と鈍角をなすよう に配置されたエッジ型であることを特徴とする請求項 18に記載の加熱放電型印字へ ッド、。 [20] In the arrangement of the discharge part, the driver IC is arranged on the surface of the shape substrate, and the discharge electrode forms an obtuse angle with the surface of the shape substrate at the inclined edge of the fixed plate. 19. The heating and discharging type printing head according to claim 18, wherein the heating and discharging type printing head is an arranged edge type.
[21] 前記放電部の配置方式が、前記ドライバ ICが前記形状基板の表面に配置され、前 記放電電極が前記形状基板の表面に形成された隆起部の隆起面に配置された隆 起型であることを特徴とする請求項 18に記載の加熱放電型印字ヘッド。  [21] The discharge portion is arranged in a raised type in which the driver IC is placed on the surface of the shape substrate, and the discharge electrode is placed on the raised surface of the raised portion formed on the surface of the shape substrate. 19. The heat discharge type print head according to claim 18, wherein the print head is a heat discharge type print head.
[22] 前記形状基板が、熱伝導性を有する材質で形成されて!ヽることを特徴とする請求 項 17乃至 21の内いずれか 1項に記載の加熱放電型印字ヘッド。  22. The heat discharge type print head according to any one of claims 17 to 21, wherein the shaped substrate is made of a material having thermal conductivity.
[23] 前記形状基板に熱伝導性を有する材質で形成された放熱板が配設されていること を特徴とする請求項 17乃至 22の内いずれか 1項に記載の加熱放電型印字ヘッド。  23. The heat discharge type print head according to any one of claims 17 to 22, wherein a heat radiating plate made of a material having thermal conductivity is disposed on the shaped substrate.
[24] 金属箔の両面の内の少なくともいずれか一方の面に酸ィ匕膜が形成された耐熱性及 び絶縁性を有するフレキシブル基板と、前記フレキシブル基板の前記酸ィ匕膜が形成 された面上に形成された発熱体を有する発熱部と前記発熱体の発熱を制御するドラ ィバ ICとを有する加熱手段と、前記発熱部を被覆した耐熱性及び絶縁性を有する保 護膜と、を備えた発熱ユニットを搭載したことを特徴とするサーマルヘッド。  [24] A heat-resistant and insulating flexible substrate in which an oxide film is formed on at least one of both surfaces of the metal foil, and the oxide film of the flexible substrate is formed A heating means having a heat generating part having a heat generating element formed on the surface and a driver IC for controlling the heat generation of the heat generating element; a heat-resistant and insulating protective film covering the heat generating part; A thermal head that is equipped with a heating unit equipped with
[25] 前記フレキシブル基板の前記酸ィ匕膜が、前記金属箔と同じ材質の金属の酸ィ匕膜で 形成されていることを特徴とする請求項 24に記載のサーマルヘッド。  25. The thermal head according to claim 24, wherein the oxide film of the flexible substrate is formed of a metal oxide film made of the same material as the metal foil.
[26] 前記フレキシブル基板の前記酸ィ匕膜が、前記金属箔と異なる材質の金属の酸ィ匕膜 で形成されていることを特徴とする請求項 24に記載サーマルヘッド。  26. The thermal head according to claim 24, wherein the oxide film of the flexible substrate is formed of a metal oxide film made of a material different from that of the metal foil.
[27] 前記フレキシブル基板の前記金属箔が、アルミニウムで形成されていることを特徴 とする請求項 24乃至 26の内いずれ力 1項に記載のサーマルヘッド。  27. The thermal head according to any one of claims 24 to 26, wherein the metal foil of the flexible substrate is made of aluminum.
[28] 前記フレキシブル基板の前記金属箔が、銅で形成されていることを特徴とする請求 項 24乃至 26の内いずれ力 1項に記載のサーマルヘッド。  28. The thermal head according to any one of claims 24 to 26, wherein the metal foil of the flexible substrate is made of copper.
[29] 前記フレキシブル基板の前記酸ィ匕膜が、アルミナで形成されて 、ることを特徴とす る請求項 24乃至 28の内いずれ力 1項に記載のサーマルヘッド。  29. The thermal head according to any one of claims 24 to 28, wherein the oxide film of the flexible substrate is made of alumina.
[30] 前記発熱ユニットが形状基板の形状に沿って固定され、前記発熱部の前記発熱体 の配置面と前記ドライバ ICの配置面とが同一平面上にないことを特徴とする請求項 2 4乃至 29の内いずれか 1項に記載のサーマルヘッド。 30. The heat generating unit is fixed along the shape of the shape substrate, and the heat generating element disposition surface of the heat generating portion and the driver IC disposition surface are not coplanar. The thermal head according to any one of 4 to 29.
[31] 前記発熱部の配置方式が、前記ドライバ ICが前記形状基板の表面に配置され、前 記発熱体が前記形状基板の端面部に前記形状基板の表面と略直角をなすように配 置された端面型であることを特徴とする請求項 30に記載のサーマルヘッド。 [31] The heating unit is arranged in such a manner that the driver IC is arranged on the surface of the shape substrate, and the heating element is arranged on the end surface portion of the shape substrate so as to be substantially perpendicular to the surface of the shape substrate. 31. The thermal head according to claim 30, wherein the thermal head is an end face type.
[32] 前記発熱部の配置方式が、前記ドライバ ICが前記形状基板の表面に配置され、前 記発熱体が前記固定板の傾斜状の縁部に前記形状基板の表面と鈍角をなすように 配置されたエッジ型であることを特徴とする請求項 30に記載のサーマルヘッド。 [32] The heating unit is arranged such that the driver IC is arranged on the surface of the shape substrate, and the heating element forms an obtuse angle with the surface of the shape substrate at the inclined edge of the fixed plate. 32. The thermal head according to claim 30, wherein the thermal head is an arranged edge type.
[33] 前記発熱部の配置方式が、前記ドライバ ICが前記形状基板の表面に配置され、前 記発熱体が前記形状基板の表面に形成された隆起部の隆起面に配置された隆起 型であることを特徴とする請求項 30に記載のサーマルヘッド。 [33] The arrangement of the heat generating part is a raised type in which the driver IC is arranged on the surface of the shape substrate, and the heat generating element is arranged on a raised surface of a raised part formed on the surface of the shape substrate. The thermal head according to claim 30, wherein the thermal head is provided.
PCT/JP2006/310402 2006-05-24 2006-05-24 Head substrate and discharge control apparatus using such head substrate, heating discharging type print head equipped with such discharge control apparatus, and thermal head WO2007135747A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007530088A JP4263759B2 (en) 2006-05-24 2006-05-24 Head substrate, discharge control device using the same, and heating discharge type print head equipped with the discharge control device
PCT/JP2006/310402 WO2007135747A1 (en) 2006-05-24 2006-05-24 Head substrate and discharge control apparatus using such head substrate, heating discharging type print head equipped with such discharge control apparatus, and thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/310402 WO2007135747A1 (en) 2006-05-24 2006-05-24 Head substrate and discharge control apparatus using such head substrate, heating discharging type print head equipped with such discharge control apparatus, and thermal head

Publications (1)

Publication Number Publication Date
WO2007135747A1 true WO2007135747A1 (en) 2007-11-29

Family

ID=38723063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310402 WO2007135747A1 (en) 2006-05-24 2006-05-24 Head substrate and discharge control apparatus using such head substrate, heating discharging type print head equipped with such discharge control apparatus, and thermal head

Country Status (2)

Country Link
JP (1) JP4263759B2 (en)
WO (1) WO2007135747A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104955254A (en) * 2014-03-28 2015-09-30 株式会社大福 Electricity removing device and conveying device with same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288760A (en) * 1987-05-21 1988-11-25 Nec Corp Thermal head
WO2005087496A1 (en) * 2004-03-11 2005-09-22 Fukuoka Technoken Kogyo, Co., Ltd. Printing head and image forming device provided with the printing head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288760A (en) * 1987-05-21 1988-11-25 Nec Corp Thermal head
WO2005087496A1 (en) * 2004-03-11 2005-09-22 Fukuoka Technoken Kogyo, Co., Ltd. Printing head and image forming device provided with the printing head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104955254A (en) * 2014-03-28 2015-09-30 株式会社大福 Electricity removing device and conveying device with same
CN108463043A (en) * 2014-03-28 2018-08-28 株式会社大福 Neutralizer and the conveying device for having the neutralizer
TWI672076B (en) * 2014-03-28 2019-09-11 Fisa Corporation Neutralization device and transport apparatus having the same

Also Published As

Publication number Publication date
JPWO2007135747A1 (en) 2009-09-24
JP4263759B2 (en) 2009-05-13

Similar Documents

Publication Publication Date Title
JP6367962B2 (en) Thermal head and thermal printer
WO2014104170A1 (en) Thermal head and thermal printer provided with same
WO2016158685A1 (en) Thermal head and thermal printer
JP5952176B2 (en) Thermal head and thermal printer equipped with the same
WO2007135747A1 (en) Head substrate and discharge control apparatus using such head substrate, heating discharging type print head equipped with such discharge control apparatus, and thermal head
JP4575922B2 (en) Heat discharge type print head and discharge unit used therefor
JPWO2016104479A1 (en) Thermal head and thermal printer
US20160207327A1 (en) Thermal head and thermal printer provided with same
US8953006B2 (en) Thermal head and thermal printer provided with same
JP2016185675A (en) Thermal head and thermal printer
JP5489836B2 (en) Thermal head
JP5937309B2 (en) Thermal head and thermal printer equipped with the same
JP4047906B2 (en) Composite image forming apparatus
JP6767296B2 (en) Thermal head and thermal printer
JP2006347041A (en) Thermal print head
JP6208564B2 (en) Thermal head and thermal printer
JP6987588B2 (en) Thermal head and thermal printer
WO2020196078A1 (en) Thermal head and thermal printer
JP5780715B2 (en) Thermal head and thermal printer equipped with the same
JP5908810B2 (en) Thermal head and thermal printer
JP6110198B2 (en) Thermal head and thermal printer
JP6081888B2 (en) Thermal head and thermal printer equipped with the same
JP6075626B2 (en) Thermal head and thermal printer
JP5754888B2 (en) Thermal head, thermal head array, and thermal printer having thermal head
JP2015047696A (en) Thermal head and printer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007530088

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06756562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756562

Country of ref document: EP

Kind code of ref document: A1